
LiveLetters : Writing with Emergence

Michael J. Korman

May 15, 2003

Abstract

This paper will describe LiveLetters, a model for constructing letters
from emergent behaviors. The general principles behind emergent systems
will be discussed, and examples will be drawn from nature and technology.

1 Introduction

In this section, we will answer the question of what emergence is, and present
examples, both natural and artificial.

1.1 What is Emergence?

Emergent behaviors are those phenomena that occur as large systems of individ-
ual agents produce complex global behavior through simple local interactions.
Agents in an emergent system may not be aware of their participation in the
greater whole, having only their own limited concerns. They are completely
autonomous.

1.2 Principles of Emergence

Let us examine the qualities that characterize emergent systems. These qualities
will henceforth be referred to as the Principles of Emergence.

1.2.1 Decentralization

The power of decentralization has long been ignored. Systems without central-
ized control exist everywhere: in cities, economies, insect societies, and biological
organisms.

Adam Smith’s “invisible hand” gave explanation[10] as to how economies
could function without government control. His reasoning was that an economy
is an adaptive system, composed of interacting agents, each modifying its be-
havior based on personal gain. While this was previously believed to cause the
decay and collapse of order, Smith showed that it only strengthened the system,
as each individual fighting for itself made the whole much more robust than any
centralized authority ever could.

1

In the 19th century, Charles Darwin argued[2] that centralized design was
not requisite for the creation of life. His ideas of biological evolution shook the
world when he claimed that species’ adapting to their changing environments
was responsible for the diversity and flexibility of life.

Agents in such adaptive systems rely on a relatively simple local set of rules
to govern their behavior, rather than a central control.

1.2.2 Randomness

Given that emergent systems have no central command, it is left to probability
to dictate their behaviors. The strong law of large numbers[8] illustrates this.

The Strong Law of Large Numbers. Let X1, X2, . . . , Xn be a sequence of
independent and identically distributed random variables, each having a finite
mean µ. Then,

P

{
lim

n→∞

X1 + X2 + · · · + Xn

n
= µ

}
= 1

Simply put, with probability 1, the average of a collection of similar events
will converge to the average behavior of each event as the number of events
increases. If I flip ten coins, each one will land heads up with probability 1/2,
and tails up with probability 1/2. This does not mean that flipping ten coins
will result in five coming up heads and five coming up tails. However, as I
increase the number of coins to infinity, I am guaranteed that the distribution
will become half-and-half.

This principle plays an important role in emergent systems. Recall that
we are concerned with the behavior of the whole system, with the number
of individual agents some large arbitrary figure. Emergent systems must be
immune to random mutations in its agents. As long as the population is normal
“overall,” the system should function perfectly.

1.2.3 Localization

The principle of localization states that in an emergent system, agents can
only rely on their own, internal database of information. There is no “global
repository” of data that everyone can tap into. §2.1 describes how ants gather
food, which makes heavy use of localization.

1.2.4 Uniformity and Roles

Agents in emergent systems can take on one or more roles. However, the number
of agents is always significantly greater than the number of roles. That is, with
n agents, and k roles,

lim
n→∞

k

n
= 0

2

All agents in a given role must be identical. They all “execute the same
code.” However, it is possible for there to be states within a given role, and this
can lead to variety even among agents in the same role.

Roles can help create diverse behaviors, but it is more important that there
is interaction between the agents. Overall, the agents will appear to be rather
uniform. See §2.1 for an example of how roles work.

2 Examples of Emergence

In this section, we will explore examples of emergent systems.

2.1 Emergence in Nature: Ants

Many insect societies exhibit remarkable emergent behavior. We will look at
several characteristics of ant societies[3] that rely on decentralized attributes.

One astonishing quality of ant colonies is the limited number of roles in re-
lation to the wide variety of tasks that colonies perform. Some ants are used for
reproductive purposes; these are the queens and the males. The vast majority of
the ants in a colony, however, can be classified as workers. Workers are respon-
sible for several tasks, including patrolling, foraging, and nest maintenance. It
is not known exactly how the ants decide which workers are assigned to which
tasks, but it is widely believed that younger workers labor inside the nest, and
move on to more dangerous outdoor tasks as they get older.

Patrolling is an important task, and must be carried out before foraging for
food begins. Ants appear to have created an intricate network for determining
the safety conditions outside the nest. In the early morning, patrollers set out
from the nest, and begin wandering the surrounding area. Patrollers move in
special patterns, so that they cover as much area as they can. When they ran-
domly meet with other patrollers, they touch antennae, and move on. Outside
the nest, the patrollers appear to have an “interaction rate” programmed into
them, so that they are aware of how often they should be meeting up with other
patrollers. This way, if too many patrollers have been killed, the others will find
out almost immediately, without the use of any communication. Every so often,
they return to the nest, where they meet with foragers who are waiting there.
The foragers in the nest will know if the area is unsafe, because patrollers will
not return as often. Disturbing only a few patrollers in the field is enough to
send the entire colony into a state of caution.

Also of interest is the manner in which many species of ants gather food.
Foragers scout the area around the nest, looking for food. Ants cannot see very
well, so they basically wander around randomly. When they find food, they
return it to the nest, leaving behind a chemical pheromone as they travel. As
the foragers arrive at the nest, other ants follow the pheromone to the food,
and carry pieces back. As more ants travel the path, the chemical increases
in strength, and attracts more ants. When the food runs out, ants will stop
reinforcing the trail, and it will die out. If the food source was not large to

3

begin with, then it will run out quickly. This way, the colony appears to seek
out the strongest food sources as if by centralized command, when actually it
is all emergent.

2.2 Emergence in Technology: Freenet

Freenet[1] is a distributed network that was designed with decentralization as its
primary goal. Its designer, Ian Clarke, wanted to create a network that would be
resistant to censorship, sabotage, and failure of individual nodes. This contrasts
with the Internet, which uses a centralized mechanism, known as the Domain
Name System[5] (DNS), for locating data. With DNS, and the protocols built
on top of it1, the domain name of the server on which the information resides
must be known. To retrieve the information, a request is sent to a central DNS
server, which attempts to resolve the domain name into an Internet Protocol
(IP) address, by querying servers lower in the DNS hierarchy.

This system works, but it is highly centralized. The operators of the central
DNS servers have total control of all information flow on the Internet. If servers
contain objectionable material, they can be censored out of the DNS databases.
Too much power is in one place.

In contrast, Freenet employs a decentralized strategy. It lies on top of the
Internet, but uses a much different method for storing and retrieving information
than typical Internet protocols. Every computer on Freenet is equal; there are
no central servers. Nodes are connected to other nodes, and contain information
about their neighbors. Documents are inserted into the network anonymously,
referenced by keys. As documents pass through nodes, they are placed onto
a stack that is internal to each node. The stack is of limited size, so once it
becomes full, items on the bottom are deleted. To retrieve a document, the key
is sent to neighboring nodes, which provide information on where the document
is most likely to be, based on their knowledge of the network.

From this simple description of Freenet, several striking emergent behaviors
are noticed. First, posting of information is completely anonymous; the network
itself decides how to distribute files. Second, information is made available
based on popularity. As keys are requested more often, the associated files
become resident on more and more nodes, and thus become easier to attain.
Consequently, the keys that are not requested often get kicked out. The resulting
behavior is that important files are quickly accessed, and unimportant files are
lost. This is all done without human control.

3 Software Simulation Tools

In the words of Herbert A. Simon, “it is the organization of components, and
not their physical properties, that largely determines behavior.”[9] Therefore,
computer simulations play an important role in the study of multi-agent systems.

1Especially, the HyperText Transfer Protocol, the underlying protocol of the World Wide
Web.

4

In this section, we will examine StarLogo and related software, which are
used to model emergent systems.

3.1 StarLogo

StarLogo[6] was developed by Mitchel Resnick in 1989 at the MIT Media Lab.
It is described in [7]. StarLogo is based on an earlier programming language
called Logo. Logo was designed as language to teach programming to children.
Typical Logo systems involve the use of robots, often constructed from LEGO
bricks. Children can program these robots to move across the floor, making use
of their light and touch sensors.

Other versions of Logo do not use robots, but are completely virtual. The
user can control an on-screen creature, called a turtle. Graphics can be created
by having the turtle paint the screen as it moves across. As exciting as this
sounds, it is fairly limited in complexity. There is only one turtle, and it doesn’t
do much except move around.

StarLogo improves on Logo drastically. Instead of one turtle, it allows thou-
sand of turtles. Whereas the environment in Logo is inert, the StarLogo world
is composed of patches that are just as alive as the turtles themselves. They
can have their own state, and act on the turtles in addition to being acted on.
StarLogo provides a much richer environment for exploring multi-agent systems.

3.2 NetLogo

NetLogo[11] is basically an improved version of StarLogo. Developed at the
Center for Connected Learning and Computer-Based Modeling at Northwest-
ern University, it provides a more expressive command language, and a more
powerful interface. I am discussing it because it is the environment I chose to
implement the model described in §4. Please refer to Appendix A for a brief
NetLogo tutorial.

4 LiveLetters

This section will describe the LiveLetters model. The goal of LiveLetters is to
create English letters through emergent behavior. The system is decentralized;
the turtles only have a basic idea of what they’re doing, governed by a set of
simple rules. LiveLetters was built in NetLogo (see §3.2). As such, we will use
NetLogo parlance when describing it, namely the terms “turtles” and “patches.”

Before we look at the LiveLetters model, let us consider a more traditional,
centralized approach of solving the problem.

4.1 The Centralized Model

This model uses the tried and true software engineering principle of top-down
design. The code is listed in Appendix B.

5

Figure 1: The centralized ‘P’

4.1.1 Description

In the centralized method, all of the turtles will be identical. Letters will be
composed of lines, and the turtles will be instructed specifically how to create
those lines. To accomplish this, a set of procedural commands is created.

Suppose we wanted to create a line beginning at the point (x, y), with length
`, and at an angle θ. We could do this by dropping a large amount of turtles at
(x, y), have them choose a random number of steps between 0 and `, and order
them to march that number of steps in the direction given by θ. If there are
enough turtles, this will create the illusion of a solid line.

Now, imagine we wanted to create an arc at (x, y) with radius r and angle
θ. This will be done by placing several turtles at (x, y), having them choose a
random direction from 0 to θ, and having them march r steps. As an example,
the letter ‘P’ is composed of a single straight line and an arc (see Figure 1).

Let us suppose our final goal was to display the word “AI.” To do this, we
will first create procedures to draw the letters ‘A’ and ‘I.’ This is easy, as each
of these letters is composed of straight lines, so it reduces to a straight-forward
geometry problem. The code for these letters therefore consists of calls to our
line procedure. To draw the two letters, we must place them correctly on the
field. The final output is shown in Figure 2.

4.1.2 Discussion

Though the centralized model works, it violates the Principles of Emergence
(discussed in §1.2) in the following ways:

• It is highly centralized. The user, a god-like being, directs the turtles in
their every action. There is no adaptiveness.

• Though the turtles have no global knowledge, they have no local knowl-
edge, either. Therefore, the principle of localization is violated, as they
are not autonomous. The turtles do not make any decisions.

The centralized model is simplistic, and does not capture everything we want
in an emergent system.

6

Figure 2: The centralized “AI”

4.2 The Decentralized Model

Now that we have considered the centralized model, and its problems, let’s see
how we can modify it by shifting some of the power from the user to the turtles.

4.2.1 Description

In the decentralized approach, there are two types of turtles:

Seekers are the normal, “worker” turtles. They roam the field, ultimately
becoming the creatures that form letters.

Leaders are the guideposts of letters. Letters are described by placing a few
leaders in a proper position. Leaders are divided into line-leaders, which
create lines, and arc-leaders, which create arcs.

To create a line, two line-leaders are placed, one at each endpoint of the line.
All leaders have a charge, and the charges of leaders at the opposite ends of a line
are opposite. That is, if one leader has a charge of 5, then the opposite leader
will have a charge of −5. The field is then flooded with seekers. The seekers will
move about randomly, occasionally bumping into a leader. When this happens,
the seeker will be bound to the leader, and will acquire the opposite charge of
the leader. It will then seek out the leader that has its new charge2. When
it finally reaches that leader, it will reverse charges again, and seek out the
first leader. As this process continues, the seeker will move back and forth in a
straight line. Enough seekers, and we have a solid line.

Arcs must be drawn for the creation of certain letters. This can be ac-
complished by placing arc-leaders on the field, one per arc. We will require
arc-leaders to have charge 0. As seekers collide with the arc-leaders, they will
acquire charge 0, jump away, and then attempt to reach the arc-leader again.

2Like electric charges repel, but like turtle charges attract!

7

However, they will be repelled, and forced to keep a certain distance. This will
have the effect of the seekers being frozen in place, and they will form an arc.

Appendix C lists the code for the Decentralized Model. The add seekers
procedure begins by creating tnumber seekers, based on the global variable
tnumber that is set by the user at run-time. Next, it changes the shape and
color of the seekers. Following that, it sets their locations based on a random
normal distribution, so the seekers are sufficiently spread out over the field. It
assigns them the charge 20, which will change as they come in contact with
leaders. For now, the charge 20 represents unbound seekers.

Now that we have added seekers to the field, we need to add leaders. The
place leader procedure accepts three parameters: the xy-coordinates, and the
charge. Remember, the charges of line-leaders must come in pairs; if I add a
leader with charge 5, I must also add a leader with charge −5.

Now that we have leaders and seekers, we must have them interact with
each other. A go procedure will run continuously, acting as the main loop of
our program. It will tell the seekers to perform their actions. The procedure
that the seekers continuously execute is named hunt.

Seekers can be in one of two states, unbound or bound:

Unbound seekers wander the field randomly, looking for leaders.

Bound seekers have transitioned from unbound seekers when they bumped
into a leader. They have acquired charge because of this.

Our hunt procedure must specify actions for both states.
First, let us consider the case when the seeker is in state unbound. It will

move a random number of steps, in a random direction, and determine if there
is a leader at its new position. If there is, it will set its charge equal to the
charge of the leader and transition to state bound.

Next, we will deal with state bound. Since the seeker is bound at this point,
it will orient itself toward a leader that has the same charge as it. If it is an arc
seeker (has a charge of 0), then it will first check if it is too close to its leader. If
not, or if it is not an arc seeker, it will move forward a random number of steps
up to 2. Then, it will check if there is a leader of the correct charge in the patch
it settled in. If so, and it is an arc seeker, it will point in a random direction
between 0 and 180 degrees, and jump 10 steps in that direction. If it is not an
arc seeker, it will reverse its charge and set off in the opposite direction, seeking
out the new leader.

4.2.2 Discussion

Unlike the previous model, the decentralized version exploits the Principles:

• It is highly decentralized. Every seeker has its own program to execute, and
there is no authority telling what to do at each step, other than execute
its program.

8

• Randomness plays a large role in the system. Before they are bound,
seeker wander randomly. There is no way to tell which leader will end up
with which seekers.

• The turtles are divided into 2 distinct roles, seekers and leaders. As many
seekers as desired can be added, and the system will still work.

4.3 Improved Decentralized Model

Now, let’s try to improve the model by adding more realism. This final model
represents the complete LiveLetters system.

4.3.1 Description

To begin with, instead of the seekers wandering around randomly before they’re
bound, we can have them be attracted to leaders. To this end, we will have
the leaders emit an attractive chemical. If seekers are unbound, they will be
attracted to this chemical.

First, we will add a variable achem to the patches (see Appendix D for the
complete code). This will represent the amount of chemical on the patch. Next,
we must have the patches diffuse their chemical to their neighbors at each step.
Following that, we can instruct the seekers to follow the chemical.

A new procedure, simmer, is added. In this procedure, the leaders will give
off some of their chemical. When go is called, that chemical will be diffused to
its neighboring patches.

What else can be added to our model? We can make the turtles die and
reproduce. The mechanism will work as follows. Seekers will have some amount
of life, and as time goes on, they loose life. When their life reaches 0, they die.
unbound seekers cannot reproduce. bound seekers, on the other hand, try to
reproduce if the structure they’re in starts to die off. Let us give every seeker
a counter variable as well. This counter is initialized to some high number. As
bound seekers bump into other bound seekers, their counter is reinforced. If
they don’t bump into anyone, their counter decreases. When it reaches 0, they
create new bound seekers. These seekers then go and fill in the gaps in the
structure.

With these modifications, we have a truly self-maintaining system. As more
seekers die, the letters become sparser. As the letters become sparse, more
seekers are born. As more seekers are born, the letters become less sparse,
and as a result fewer turtles are born. The result is a stable population. In a
completely decentralized, emergent manner, the letter manages to sustain itself.

Figure 3 shows a plot of the population for 10,000 clock ticks. As you can
see, the population experiences an initial burst, as the letter is filled out, and
then settles into a pattern of regular oscillations. Figure 4 depicts an image of
the letter after this same amount of time.

Something else to note is that we do not need a large amount of seekers to
start off with. In fact, a starting population of only 6 seekers is enough to create
the “AI.”

9

Figure 3: Population for 10,000 clock ticks with finite lifespan enabled, from an
initial pool of 100 seekers.

4.3.2 Discussion

This model builds on the previous, to further support the Principles. Consider
the following improvements:

1. This system is now adaptive, as it can deal with seeker death.

2. Localization is improved, since the leaders now emit an attractiveness
chemical. Unbound seekers are able to use their local senses to travel.

5 Conclusion

The future of computing is in decentralized networking. Networks must be
resilient to failures of individual parts, and we must learn to use these adaptive
methods in our own designs.

Nature has shown us that there is much complexity to be found in simple
designs. Systems that use decentralized methods tend to be more robust, more
flexible, and more functional than systems that employ rigid centralized tech-
niques. A tiny imperfection in a microprocessor can cause it to cease functioning
entirely, while living things can lose entire body parts and still operate fine. The

10

Figure 4: Picture after 10,000 clock ticks with finite lifespan enabled, from an
initial pool of 100 seekers.

most complex of human systems, the computer, appears to be little more than
a toy compared to the sophistication of the simplest organism, and yet it is too
complex.

References

[1] Ian Clarke. A distributed decentralised information storage and retrieval
system. Division of Informatics, University of Edinburgh, 1999.

[2] Charles Darwin. On the Origin of Species. Atheneum, 1964. Originally
published in 1859.

[3] Deborah M. Gordon. Ants at Work: How an Insect Society is Organized.
The Free Press, 1999.

[4] John H. Holland. Hidden Order: How Adaptation Builds Complexity.
Perseus Books, 1995.

[5] P. Mockapetris. RFC1034: Domain names - concepts and facilities. Tech-
nical report, Network Working Group, November 1987.

[6] Mitchel Resnick. StarLogo on the Web. http://www.media.mit.edu/
starlogo/.

[7] Mitchel Resnick. Turtles, Termites, and Traffic Jams. The MIT Press,
1994.

11

http://www.media.mit.edu/starlogo/
http://www.media.mit.edu/starlogo/

[8] Sheldon Ross. A First Course in Probability. Prentice Hall, sixth edition,
2002.

[9] Herbert A. Simon. The Sciences of the Artificial. The MIT Press, third
edition, 1996.

[10] Adam Smith. An Inquiry into the Nature and Causes of the Wealth of
Nations. Encyclopedia Britannica, Inc., 1952. Originally published in 1776.

[11] U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/, 1999.

A NetLogo Tutorial

This Appendix gives a short NetLogo tutorial, geared toward understanding the
code examples given in this paper. For a more comprehensive guide, please refer
to the NetLogo Web site.

A.1 The NetLogo World

The NetLogo world is composed of a grid of patches, upon which turtles are
placed. More than one turtle can reside on the same patch. For directions,
straight upward is considered 0 degrees, and the angles increase in the clockwise
direction.

A.2 Commands

Here are some useful NetLogo commands:

fd 5 ; Tells turtle to move 5 spaces forward.

set heading 0 ; Tells turtle to change heading to 0 degrees.

create-custom-turtles 10 [; Creates 10 turtles, and
fd 5 ; has them move 5 spaces forward.

]

random 5 ; Returns a random number between 0 and 5.

setxy 10 20 ; Tells turtle to move to (10, 20).

random-normal 0 17 ; Returns a number in the random normal
; distribution with a mean of 0 and
; a standard deviation of 17.

ask turtles [hunt] ; Tells turtles to execute the hunt procedure.

turtles with [number = 0] ; Returns the set of turtles that have their local

12

http://ccl.northwestern.edu/netlogo/

; number variable set to 0.

count turtles ; Returns the size of the set of turtles.

hatch 2 [fd 5] ; Tells turtle to create 2 other turtles,
; and have them move forward 5 spaces.

uphill achem ; Returns the direction in which the patch
; variable achem is strongest.

A.3 Variables

Variables can be global, or owned by turtles or patches:

globals [x] ; Creates a global variable x.
turtles-own [y] ; Creates a turtle variable y.
patches-own [z] ; Creates a patch variable z.

To assign a variable, use the set command:

set x 1 ; Sets x equal to 1.

You can reference a variable of an agent:

set x-of one-of turtles 1 ; Sets the x of a random turtle equal to 1.

A.4 Procedures

Procedures are functions without return values. The following creates a proce-
dure named proc that prints “Hello!”

to proc
print "Hello!"

end

Procedures can have input parameters:

to add [x y]
print x + y

end

A.5 Control Flow

There are two conditional constructs:

if x = 0 [print "x = 0"] ; Prints ‘‘x = 0’’ if x = 0.

ifelse x = 0 [print "x = 0"] ; Prints ‘‘x = 0’’ if x = 0,
[print "x != 0"] ; otherwise prints ‘‘x != 0’’.

13

Procedures can be called by simply using their names. The following will
print “Hello!” if p2 is run:

to p1
print "Hello!"

end

to p2
p1

end

B Centralized Model Code Listings

to arc [x y r s f]
locals [a]
set a (f - s)
create-custom-turtles 1000 [

setxy x y
set heading random (s + a)
fd r

]
end

to line [x y a l]
create-custom-seekers 500 [

setxy x y
set color white
set heading a
fd random l

]
end

to draw_a [x y]
line x y 20 22.3
line (x + 10) (y + 20) 150 22.3
line (x + 5) (y + 10) 90 10

end

to draw_i [x y]
line x y 90 10
line (x + 5) y 0 20
line (x) (y + 20) 90 10

end

to draw_ai

14

draw_a -20 -10
draw_i 5 -10

end

to draw_p [x y]
line x y 0 20
arc x (y + 15) 3 0 180

end

C Decentralized Model Code Listings

turtles-own [charge state]
breeds [leaders seekers]
globals [clock]

to setup
clear-all
add-seekers

end

to add-seekers
create-custom-seekers tnumber [

set shape "circle"
setxy random-normal 0 17 random-normal 0 17
set state 0
set color gray
set charge 20

]
end

to setup-p [x y]
place-leader x y -9
place-leader x (y + 20) 9
place-leader x (y + 15) 0

end

to setup-i [x y]
place-leader x y -6
place-leader (x + 10) y 6
place-leader x (y + 20) -5
place-leader (x + 10) (y + 20) 5
place-leader (x + 5) (y + 20) -4
place-leader (x + 5) y 4

end

15

to setup-a [x y]
place-leader x y -3
place-leader (x + 20) y -2
place-leader (x + 11) (y + 21) 3
place-leader (x + 10) (y + 20) 2
place-leader (x + 5) (y + 10) -1
place-leader (x + 15) (y + 10) 1

end

to go
do-plot
ask seekers [hunt]
set clock clock + 1

end

to do-plot
set-current-plot "Captured Seekers"
plot count turtles with [charge != 20]
set-current-plot "Seeker Population"
plot count seekers

end

to place-leader [x y val]
create-custom-leaders 1 [

set color white
set charge val
setxy x y

]
end

to hunt
if state = 0 [

fd random 5
if count leaders-here = 1 and counter-of one-of leaders-here <= 10 [

set charge ((charge-of one-of leaders-here) * -1)
ifelse charge = 0 [set color pink] [

ifelse charge > 0 [set color red] [set color yellow]
]
set state 1

]
]

if state = 1 [
set heading towards one-of leaders with [charge = charge-of myself]

ifelse charge = 0 [

16

if distance one-of leaders with [charge = charge-of myself] > 5 [
fd random 2

]
] [fd random 2]

if count leaders-here = 1 [
if (charge-of one-of leaders-here) = charge [

set charge (charge-of one-of leaders-here * -1)
ask leaders-here [set counter 10]
ifelse charge = 0 [

set heading random 180
jump 10

] [
ifelse charge > 0 [set color red] [set color yellow]

]

set heading (heading + 180)
]

]

]
end

D Improved Decentralized Model Code Listings

Note that only the procedures that have changed from Appendix C are listed.

turtles-own [charge state counter life]
patches-own [achem]

to add-seekers
create-custom-seekers tnumber [

set shape "circle"
setxy random-normal 0 17 random-normal 0 17
set state 0
set color gray
set charge 20
set life random tlife

]
end

to go
diffuse achem 1
do-plot
ask seekers [hunt]

17

ask leaders [simmer]
set clock clock + 1
ifelse see-chem [ask patches [set pcolor scale-color gray achem 0 100]]

[ask patches [set pcolor black]]
end

to place-leader [x y val]
create-custom-leaders 1 [

set color white
set charge val
setxy x y

]
end

to hunt
if state = 0 [

ifelse attract [
set heading uphill achem

] [set heading random 360]

fd random 5
if count leaders-here = 1 and counter-of one-of leaders-here <= 10 [

set charge ((charge-of one-of leaders-here) * -1)
ifelse charge = 0 [set counter 5 set color pink] [

ifelse charge > 0 [set color red] [set color yellow]
]
set counter 10
set state 1

]
]

if state = 1 [
set heading towards one-of leaders with [charge = charge-of myself]

ifelse charge = 0 [
if distance one-of leaders with [charge = charge-of myself] > 5 [

fd random 2
]

] [fd random 2]

if count leaders-here = 1 [
if (charge-of one-of leaders-here) = charge [

set charge (charge-of one-of leaders-here * -1)
ask leaders-here [set counter 10]
ifelse charge = 0 [

set heading random global-angle

18

jump 10
] [

ifelse charge > 0 [set color red] [set color yellow]
]

set heading (heading + 180)
]

]

if death and charge != 0 [
if count seekers-here > 1 [set counter 10]
if counter < 0 [

set counter 0
hatch 2 [

set shape "circle"
set state 0
set color gray
set charge 20
set life random tlife

]
]
set counter counter - 2

]
]

set life life - (random 5)
if life <= 0 and death [die]

end

to simmer
set achem achem + 100

end

19

	Introduction
	What is Emergence?
	Principles of Emergence
	Decentralization
	Randomness
	Localization
	Uniformity and Roles

	Examples of Emergence
	Emergence in Nature: Ants
	Emergence in Technology: Freenet

	Software Simulation Tools
	StarLogo
	NetLogo

	LiveLetters
	The Centralized Model
	Description
	Discussion

	The Decentralized Model
	Description
	Discussion

	Improved Decentralized Model
	Description
	Discussion

	Conclusion
	NetLogo Tutorial
	The NetLogo World
	Commands
	Variables
	Procedures
	Control Flow

	Centralized Model Code Listings
	Decentralized Model Code Listings
	Improved Decentralized Model Code Listings

