
NetLogo:

Design and Implementation of a

Multi-Agent Modeling Environment

Seth Tisue
seth@tisue.net

Uri Wilensky
uri@northwestern.edu

Center for Connected Learning and Computer-Based Modeling
Northwestern University, Evanston, Illinois

Presented at SwarmFest, Ann Arbor, May 9–11, 2004

1 Introduction

In this paper we examine design and implemen-
tation choices we made when creating NetLogo
[Wilensky, 1999], a multi-agent programming lan-
guage and modeling environment for simulating com-
plex phenomena [Wilensky, 2001]. Although NetL-
ogo is used across a wide range of education levels
from grade school up, we focus here on NetLogo as a
tool for research and for teaching at the undergradu-
ate level and higher.

Our earlier paper on NetLogo as a research
tool [Tisue & Wilensky, 2004] is recommended back-
ground reading, especially if you are not already fa-
miliar with NetLogo. It includes a history of Net-
Logo’s origins, a tour of the NetLogo interface, an
introduction to the NetLogo language, evidence of
acceptance of NetLogo in the research community,
and a list of ongoing NetLogo-centered projects in
our research group. That paper is less technical, this
paper more so.

2 Audience

NetLogo derives from our experience with our
earlier environment, StarLogoT [Wilensky, 1997].
Even though the original incarnation of StarLogo

[Resnick & Wilensky, 1993, Resnick, 1994] was on a
supercomputer, it had always been primarily in-
tended for use in schools.1 But StarLogoT became
very popular among researchers. So with NetLogo,
we now aim more explicitly to satisfy the needs of
both audiences.

All the multi-agent Logos have adopted design
principles from the Logo language [Papert, 1980]. A
central principle is “low threshold, no ceiling.” Low
threshold means new users, including those who never
programmed before, should find it easy to get started.
No ceiling means the language shouldn’t be limiting
for advanced users. We wanted NetLogo to be just as
popular with researchers as StarLogoT had been, so
that meant devoting significant attention to the “no
ceiling” side of the principle. Logo’s reputation as a
language for schools doesn’t do justice to its ample
power, as demonstrated in [Harvey, 1997].

We believe researchers should care about “low
threshold” too. Even for such users, NetLogo’s in-
heritance from educational languages brings several
benefits. First, in universities there is substantial
overlap between teaching and research, and if a sin-
gle tool can serve both needs synergy should result.

1There were several different early implementations of Star-
Logo in the first part of the 1990’s. The supercomputer version
was Connection Machine StarLogo. Later came MacStarLogo
[Begel, 1999], of which StarLogoT is a superset.

1



Second, when code is easier to write and easier to
read, everyone benefits. Models become easier to
build—often researchers can write models themselves
when otherwise they would have to hire a program-
mer. And models become more easily understood
by others; this is vitally important in order for re-
searchers to effectively communicate their results to
others, verify each other’s results, and build upon
each other’s work. The goals of scientific modeling
are compromised if programs are long, cryptic, and
platform-specific. A NetLogo model is less likely to
suffer these problems than one written in common
general-purpose languages like Java and C++.

NetLogo is its own programming language,
embedded in an integrated, interactive model-
ing environment. The integrated approach to
multi-agent modeling originates with StarLogo,
was refined in StarLogoT and NetLogo, and has
also been followed by other all-in-one agent-
based modeling solutions such as AgentSheets
[Repenning, Ioannidou & Zola, 2000] and Breve
[Klein, 2002]. “Toolkits” or libraries such as Swarm
[Minar, Burkhart, Langton & Askenazi, 1996] and
Repast [Collier & Sallach, 2001] take a different
approach; they make simulation facilities available
to programs written in a general-purpose language
such as Java.

We see the integrated approach as essential to
achieving our “low threshold” goal. The difficulty
of programming in Java or C++ isn’t due only to
the language itself. It’s also due to the complication
of the environments (whether command line based
or GUI based) in which programming in those lan-
guages is normally done. When you add in the added
complexity of getting the environment to talk to a
modeling library or toolkit, the initial barrier for en-
try for new programmers becomes quite high—even
before they start dealing with the difficulties of the
languages themselves.

In contrast, the NetLogo environment allows a
smooth, almost unnoticeable transition from explor-
ing existing models into programming. NetLogo’s
user interface makes no firm distinction between us-
ing a model and editing it. Even the smallest amount
of knowledge of the language is immediately useful in
creating buttons and monitors or typing commands

into the command center, in order to better inspect
and control an existing model. Altering the model’s
rules is only as far away as a click on the Procedures
tab.

3 StarLogoT

StarLogoT succeeded in attracting a large user base
from a range of disciplines, but it had important tech-
nical limitations that we wanted to address.

The biggest limitation of StarLogoT was that it
only ran on Macintosh computers. At the time de-
velopment on StarLogoT’s precursors began, the in-
troduction of Java had not yet brought cross-platform
development of GUI applications within easy reach.
Also, the target audience was schools, so the software
needed to be compact and fast enough to run even
on hardware that by today’s standards was absurdly
underpowered. Putting thousands of agents on such
machines was only possible if the underlying engine
was written in assembly language, which is of course
platform-specific.

The need to be fast and small caused other limi-
tations as well. StarLogoT’s decimal arithmetic was
fixed point, not floating point, with only a few digits
of precision. Many arbitrary limits were imposed in
order for crucial data structures to fit within a small,
fixed number of bits. For example, a model couldn’t
have more than 16,384 turtles, or a patch grid bigger
than 251x251, or a stack depth of more than 64.

StarLogoT’s language design was constrained as
well by what could reasonably be implemented. The
need for efficiency led StarLogoT’s architecture to be-
come quite complicated. It included three different
virtual machines for our three agent types (observer,
turtles, and patches). Different agent types had dif-
ferent capabilities and different rules for acting in
parallel; this was confusing to users and some of the
restrictions placed on user programs were severe.

4 Starting over

Because of these limitations, we chose to start over
and write our new environment, NetLogo, from

2



scratch in Java. We bet that Java would permit us
to write a cross-platform application that was reason-
ably fast. Java doesn’t always completely live up to
its “write once, run anywhere” promise, but it does
so enough of the time that it brought cross-platform
development within reach for our small development
team. We knew that Java was slower than assembly
language, but hoped that on newer, faster machines
it wouldn’t matter too much. (See below for a fuller
discussion of speed.)

Using Java offered the additional benefit that in-
dividual NetLogo models could be embedded in web
pages and run in a browser, without the end user
needing to download and install an application. (Ini-
tially, we even allowed the full NetLogo environment
to run as an applet in a web browser, although we
later abandoned this option as not worth the extra
development effort.)

Since we were starting from scratch anyway, we
took the opportunity to redesign the language to fur-
ther both our “low threshold” and “no ceiling” goals.
Sometimes we had to weigh tradeoffs between those
two goals; in other cases, we could reduce barriers to
novice entry yet also make the language more expres-
sive and powerful. In doing so, we also tried to be
compatible with standard, popular Logo implemen-
tations whenever possible and reasonable. In partic-
ular, we tried not to stray too far from StarLogoT,
so our existing user base wouldn’t find the transition
too painful.

NetLogo’s design was also driven not only by the
need to support the construction of models, but also
to support what we call “participatory simulations”
[Wilensky & Stroup, 1999a], in which a group of stu-
dents acts out the behavior of a system, each stu-
dent playing the role of an individual element of the
system. To enable this, NetLogo includes a tech-
nology called HubNet [Wilensky & Stroup, 1999b],
which enables communication between a NetLogo
model operating as a server and a set of clients, which
may be handheld devices or computers running Hub-
Net client software.

We began development in 1999. Since then aver-
aged we’ve averaged two to three new releases per
year. The first beta version came in 2000, the first
numbered version (1.0) in early 2002, version 2.0 at

the end of 2003, and version 2.0.1 in spring 2004.
Version 2.0.1 is mature, stable, and reliable. Even
though our user base has expanded greatly, the rate
of incoming bug reports has slowed to a trickle.

5 Language

As a language, NetLogo adds agents and concurrency
to Logo. Logo, as originally developed by Seymour
Papert and Wally Feurzeig in 1968, is derived from
Lisp, but has a friendlier syntax. Logo was designed
as a programming language usable by children as well
as adults and is still popular today for that purpose.
It is a powerful general-purpose computer language.
Although there is no single agreed upon standard for
the Logo language, NetLogo shares enough syntax,
vocabulary, and features with other Logos to earn
the Logo name.

Our earlier paper [Tisue & Wilensky, 2004] out-
lines the basics of the NetLogo language. We offer
additional details here.

Some important differences from most Logos in-
clude:

• We have no symbol data type. Eventually, we
may add one, but since it is seldom requested,
it may be that the need doesn’t arise much in
agent-based modeling. In most situations where
traditional Logo would use symbols, we simply
use strings instead.

• Control structures such as if and while are spe-
cial forms, not ordinary functions. You can’t de-
fine your own special forms.

• As in most Logos, functions as values are not
supported. Most Logos provide similar function-
ality, though, by allowing passing and manipu-
lation of fragments of source code in list form.
NetLogo’s capabilities in this area are presently
limited. A few of our built-in special forms
use UCBLogo-style “templates” to accomplish a
similar purpose, for example, sort-by [length
?1 < length ?2] string-list. In some cir-
cumstances, using run and runresult instead is
workable, but they operate on strings, not lists.

3



There are several reasons for those omissions. They
are partly due to NetLogo’s descent from StarLogoT,
which as discussed above needed to be very lean.
Many of StarLogoT’s limitations have already been
addressed in NetLogo (for example, NetLogo has
agentsets and double-precision floating point math),
but some of the “leanness” remains. This leanness
is not only historical, though. Efficiency is always a
vital goal for multi-agent systems, since many mod-
elers want to do large numbers of long model runs
with as many agents as they can. It is easiest to con-
struct a fast engine for a simple language, and, from a
language design perspective, omitting advanced lan-
guage features and prohibiting the definition of new
special forms may actually be desirable for a lan-
guage in which readability and sharing of code is
paramount. We weigh these tradeoffs carefully as we
continue to expand the language.

For further information on the NetLogo language,
consult the NetLogo User Manual [Wilensky, 1999],
particularly the Programming Guide and Primitives
Dictionary sections.

6 Java upgrade

NetLogo is written in Java. Java was chosen be-
cause both the core language and the GUI libraries
are cross-platform, and because modern Java virtual
machines have use JIT (just in time) compiler tech-
nology to achieve relatively high performance.

NetLogo 1.3 supported earlier Java versions going
back to Java 1.1, but for NetLogo 2.0 we decided to
require Java 1.4. The major reasons for choosing Java
1.4 for the new version were as follows:

• The new language version includes much richer
libraries. It was increasingly difficult to find de-
velopers used to working within the limitations
of the antiquated version.

• More recent VM’s are higher quality. Before we
abandoned Java 1.1, constantly working around
bugs in the various 1.1 VM’s was a serious drag
on our development efforts. For instance, we
were never able to get the interface builder fully
working on Linux.

• Unlike Java 1.1, Java 1.4 offers “strict” math
libraries which guarantee identical, reproducible
results cross-platform.

• Leaving Java 1.1 behind allowed us to switch
GUI toolkits, from the old AWT toolkit to the
newer Swing toolkit, which has numerous advan-
tages, including better look & feel (Figure 1).

• After a long wait, Apple finally released a high
quality Java 1.4 implementation for Mac OS X.

• Even with the new VM, Apple’s support for
AWT-based applications on Mac OS X was poor.
Mac support is important to us, but a high qual-
ity implementation on the Mac was simply im-
possible without switching to Swing.

• Since Java 1.4 is available for all the major plat-
forms for which 1.3 is also available (not counting
Mac OS X 10.0 and 10.1), it seemed unnecessary
to be backwards compatible with Java 1.3.

Regrettably, switching to Java 1.4 meant dropping
support for users of Windows 95 and MacOS 8 and
9, since no Java 1.4 implementation is available for
those operating systems. However, we continue to
offer support and bugfixes for NetLogo 1.3, so those
users aren’t left out in the cold.

7 Speed

Early versions of NetLogo were slow, but especially
since version 1.3, models run much faster. Most of
our users now find NetLogo fast enough for most pur-
poses. Nonetheless, we plan to continue to improve
NetLogo’s speed, since as mentioned above agent-
based modeling is a field in which users always want
more speed.

StarLogoT was partially written in assembly lan-
guage and was highly performance tuned. NetLogo
is written in Java and the NetLogo language is much
more flexible and feature rich than StarLogoT. There-
fore, you would expect NetLogo to be slower. Surpris-
ingly, that isn’t always or even usually true. Which
environment is faster depends on the nature of the

4



Figure 1: Our new, Swing-based user interface. Also
illustrates new graphics features.

model. In general, StarLogoT is still faster for mod-
els with simple code and large numbers of agents.
But NetLogo is usually faster for models with com-
plex code and smaller numbers of agents.

The surprising fact that StarLogoT is not always
faster can be accounted for by reference to StarL-
ogoT’s unique architecture. As mentioned above, the
StarLogoT engine was divided into three virtual ma-
chines: one for the observer, written in Lisp, and
two for the turtles and patches, written in assem-
bly language. The turtle and patch machines were
extremely fast, but crossing the boundaries between
the different machines was slow. With simpler code
and more turtles and patches, overall speed benefited
more from the speed of the turtle and patch virtual
machines. In contrast, NetLogo’s internal architec-
ture is much more uniform. A single virtual machine
handles all three agent types. Therefore, there is
no special penalty associated with complex code and
no special benefit associated with large numbers of
agents.

NetLogo is a hybrid compiler/interpreter. To im-
prove performance, we don’t interpret the user’s code
directly. Instead, our compiler analyzes, annotates,
and restructures it into a form that can be interpreted

more efficiently.
Earlier versions of NetLogo (1.0 and 1.1) compiled

user code into a form suitable for execution by a
virtual machine which was stack-based. However,
we discovered through profiling that making the vir-
tual machine stack-based actually hurt performance
rather than helping it. So, in our current compiled
representation, each command is tree-structured so
that intermediate results are stored on the Java VM’s
own stack instead of our stack. (We still have a
stack, but it is used by only a few commands.) This
change resulted in an approximately twofold perfor-
mance gain. Other, smaller engine performance gains
since NetLogo 1.0 came from profiling the engine code
and addressing inefficiencies in object creation, mem-
ory usage, and other areas.

If we want to further increase NetLogo’s speed in
the future, the most promising approach, relative to
the likely development effort required, seems to be
to compile NetLogo code to Java byte code instead
of our own custom intermediate representation. In-
formal tests indicate that this would likely result in
at least a twofold improvement in speed. We also
have considered replacing the Java-based engine with
a native one, perhaps written in C. However, general
opinion recently is that JITted Java code isn’t always
slower than C code anymore, so we’re not certain if
this approach would be fruitful.

So far we have been discussing the speed of Net-
Logo’s core computational engine. But NetLogo’s
overall performance doesn’t depend only on engine
speed. There’s also graphics speed to consider.
Whether engine speed or graphics speed dominates
varies widely from model to model—some are 90%
engine, others are 90% graphics. The latter kind
of model can always be sped up by using NetL-
ogo’s graphics “control strip” to temporarily shut off
graphics altogether, but that doesn’t mean graphics
performance is unimportant.

Switching our GUI framework from AWT to Swing
raised problems for graphics performance. Prior to
NetLogo 2.0, graphics window updates were “incre-
mental,” that is to say, only agents that moved or
changed were redrawn. Incremental painting on-
screen, instead of to an offscreen buffer, is not sup-
ported under Swing, and on Mac OS X, the perfor-

5



mance of painting offscreen was unacceptable. As
an experiment, we switched from incremental paint-
ing to always redrawing the complete contents of the
graphics window every time, fearful that the change
would hurt performance. We were pleasantly sur-
prised; on Macs graphics performance actually in-
creased, and on Windows, the speed penalty was neg-
ligible.

Abandoning incremental updates freed NetLogo’s
graphics capabilities enormously. Previously, in or-
der to make incremental updates possible, the graph-
ics window was limited in several important respects.
Even though NetLogo’s world is continuous, turtles
in the graphics window were always the same size and
appeared centered on their patches, like chess pieces.
Since patches did not overlap, it was possible to re-
draw each patch incrementally and separately. But
if incremental updates are no longer performed, then
there is no longer any reason to align turtles with the
grid. So now, in NetLogo 2.0, turtles can be any size
and shape and be positioned anywhere. Turtles and
patches can also be labeled with text. Turtle shapes
are vector-based to ensure smooth appearance at any
scale. (These features had been available in earlier
NetLogo versions, but were slow and buggy. Now
they are fast and reliable.) These changes have led
to dramatic visual enhancement of models (Figure 1,
Figure 2).

8 Concurrency

In many respects the engine is an ordinary inter-
preter. But it also has some unusual features because
of the need to support concurrent processes. Concur-
rency in NetLogo has two sources.

The first kind of concurrency we support is con-
currency among agents. If you use the command
forward 20 to ask a set of turtles to move forward
20 steps, we don’t want one turtle to win the race
before the others have even left the starting line.
So, we have all the turtles take one step together,
then they all take another step, and so forth. Ulti-
mately, the NetLogo engine is single-threaded, so the
turtles must move one at a time in some order; they
can’t really move simultaneously. So the engine “con-

Figure 2: The Ants model, with and without new
graphics features.

6



text switches” from agent to agent after each agent
has performed some minimal unit of work, called a
“turn.” Because the timing of context switches is de-
terministic, the overall behavior of the model remains
deterministic. We only update the screen after all the
agents have had a turn; this visually preserves the il-
lusion of simultaneity. The NetLogo User Manual
contains a more detailed discussion of the timing of
context switches between agents. We provide a com-
mand, without-interruption, which the program-
mer can use to prevent unwanted switching.

The second kind of concurrency we support is con-
currency among the different elements of the NetL-
ogo user interface which can initiate the execution of
code. Currently these are: buttons, monitors, and
the Command Center. Buttons and monitors con-
tain code entered by the model author, and the user
may enter commands into the Command Center at
any time. In all three cases, a “job” is created and
submitted to the engine to request that some code
be executed by some agents. Jobs are akin to what
operating systems call “threads” or “processes.” We
use the word “job” to avoid confusion. At the op-
erating system level, the NetLogo application is one
process, and the NetLogo engine is one thread within
that process.

When multiple jobs are active, the engine must
switch between them, just as it switches between the
agents within a job. The rule followed is to switch
from job to job once every agent in the first job has
had a turn. Here, the NetLogo engine is taking on a
task more typically associated in computer scientists’
minds with the process scheduler in a cooperatively
multi-tasked operating system rather than with a lan-
guage interpreter.

Concurrency is still an active area of concern for
us. We’re not sure we’ve arrived at final decisions
on how best to support it. We’re presently revisiting
and rethinking our current design choices with an eye
towards both helping newcomers avoid mistakes and
increasing the power available to advanced users.

9 Extensibility

At one time, NetLogo was a closed platform. Users
couldn’t alter or extend it, or control it from external
code. This is now changing—NetLogo is becoming
extensible. It has always been a full-fledged program-
ming language, so users may write procedures in Net-
Logo and then use them just like built-in commands.
But now in NetLogo 2.0.1, we have an application
programmer’s interface (API) for extensions so that
users can add new elements to the language by im-
plementing them directly in Java. For example, you
might let agents make sounds and music using Java’s
MIDI capabilities, or communicate with remote com-
puters, and many other things. We have been using
this new API internally for a while now, and have
written extensions that let NetLogo:

• Talk to other NetLogos running on different com-
puters, peer-to-peer

• Pull down data from a web server

• Make sounds using MIDI

Now that the API is in the hands of actual users, we
hope that feedback from them will help guide further
development.

We also offer a “controlling” API which allows ex-
ternal code to operate the NetLogo application by
remote control, so to speak. This API includes calls
for opening a model and running any NetLogo com-
mands. This permits users willing to do a little
light Java programming to automate large numbers
of model runs from the command line. This is useful
both on a single machine and when distributing runs
across a cluster. (We already provide an automated
parameter-sweeping tool called BehaviorSpace, but
the API will still be useful in situations where Be-
haviorSpace’s present capabilities aren’t sufficient.)

In making NetLogo extensible, we are bridging
the gap between integrated modeling environments
(easy to use, but potentially restricting) and model-
ing toolkits (more flexible, but much harder to use).
Extensions lift the “ceiling” on NetLogo’s usefulness
and range of applications. The integrated NetLogo
environment provides core functionality; our APIs

7



will allow advanced users to move outside that core.
Extension authors can share their extensions with the
user community, so that everyone can benefit from
their efforts.

Earlier, we described NetLogo as an “all in one”
environment. The full NetLogo environment bun-
dles together many components: a programming lan-
guage, a compiler, an interpreter, a syntax highlight-
ing editor, an interface builder, a graphics engine,
BehaviorSpace, and so on. The downside of the all-
in-one approach is that “all in one” can turn into “all
or nothing.” We run the risk that if one component
doesn’t suit a user’s needs, then that user won’t be
able to use any of the components, because they’re
all tied together.

We want to avoid this all-or-nothing trap by let-
ting users extend or replace parts of NetLogo that
don’t suit their purposes. That way even users who
have unique needs, or just needs we didn’t think of
or haven’t gotten around to addressing yet, can build
what they need themselves in Java, and they will still
get the benefit of the rest of our work. These new
APIs are steps towards that goal.

10 Models Library

Just as important as NetLogo itself is the materials it
comes with. We’ve devoted almost as much develop-
ment effort to our Models Library as to the NetLogo
application.

The Models Library contains more than 140 pre-
built simulations that can be explored and modified.
All of the models include an explanation of the sub-
ject matter and the rules of the simulation and sug-
gestions for activities, experiments, and possible ex-
tensions. To aid learning and encourage good pro-
gramming practice, the code for the simulations is
well commented and as elegantly written as we can
make it.

Our goal for the library is to include as many as
possible of the standard, well-known “chestnuts” of
complex systems science. This serves several pur-
poses:

• Researchers, already knowing the ideas behind
the models, can easily learn the language by

studying them.

• Modelers can usually find something in the li-
brary to base a new model on, rather than start-
ing from scratch.

• These well-known examples are introduced to a
new generation of students of complex systems
science.

The Models Library also includes a “curricular
models” section. It contains groups of models that
are intended to be used together in an educational
setting as part of a curricular unit. Most of them
include extra associated curricular materials (above
and beyond that which we provide with all of our
models).

In addition to the 140 simulations, the library also
includes several dozen “code examples.” These are
not full simulations, but brief demonstrations of Net-
Logo features or coding techniques.

11 Conclusion

We have already touched upon some goals for future
NetLogo versions, such as increased speed and greater
extensibility.

Here are some other enhancements for which we
already have working prototypes:

• 3-D NetLogo, including language extensions and
3-D graphics. Some 3-D models are already pos-
sible, but language support will make them eas-
ier to build and OpenGL will enable much higher
quality 3-D visualization. This is a very big job,
but we have a working prototype already (see
Figure 3).

• Support for different lattices and world topolo-
gies. with no extra code required. Currently,
the NetLogo patch world “wraps” in the X and
Y directions, forming a torus. Some language el-
ements are available in both wrapping and non-
wrapping versions. Typically, models that don’t
want wrapping use the outer layer of patches
as a barrier. In a future version, we plan to
make wrapping a global option which can be

8



Figure 3: Some screen captures of our prototype 3-D
version of NetLogo.

turned off. This is an example of an alternate
world topology. Soon, we will also support even-
numbered grid sizes and arbitrary placement of
the origin of the coordinate plane. In the longer
term, we would like to support unbounded plane
models. We already have some models that op-
erate on a hexagonal lattice, but their code is
not as concise as we would like.

• Improved editor for turtle shapes, to make it eas-
ier to customize the look of models. This is im-
portant for data visualization. The existing edi-
tor is serviceable, but limited.

• Parenthesis and bracket matching in the code
editor, to make editing complex code easier.

• Easier, more flexible randomized agent schedul-
ing. (Random scheduling is already possible by
adding extra code, but will be built in.)

We have also begun work on the following:

• Detecting individual keystrokes from code.
This will make highly interactive models more
usable—games, too.

• Improved plotting requiring less additional code
in the procedures tab. Separating code for agent
behaviors from code for data generation and vi-
sualization code will improve clarity and concise-
ness of models.

• Adding let to the language, so new local vari-
ables can be introduced anywhere. This will help
modelers write clearer, more concise code.

Networks are currently a very active area of re-
search in the agent-based modeling community. Net-
work models are already possible in NetLogo, but we
want to make them easier to build, including mak-
ing it easier to leverage the capabilities of existing
network analysis and visualization tools.

We also want to integrate NetLogo with aggregate
modeling engines, so that researchers and students
can investigate systems using agent-based and aggre-
gate techniques in tandem.

9



12 Acknowledgments

Thanks to the members of our user community and
to all past and present members of the Center for
Connected Learning and Computer-Based Modeling,
for all of their contributions to NetLogo.

We gratefully acknowledge the support of the Na-
tional Science Foundation.

References

[Begel, 1999] Begel, Andrew, “StarLogo: Building
a Modeling Construction Kit for Kids”, Proceed-
ings of the Workshop on Agent Simulation: Ap-
plications, Models, and Tools.

[Collier & Sallach, 2001] Collier, N. & Sallach, D.;
Repast. University of Chicago.
http://repast.sourceforge.net/

[Harvey, 1997] Harvey, Brian, Computer Science
Logo Style, 2nd ed., vols. 1–3, MIT Press.

[Klein, 2002] Klein, Jon, “Breve: a 3D simulation
environment for the simulation of decentralized
systems and artificial life”, Proceedings of Arti-
ficial Life VIII, the 8th International Conference
on the Simulation and Synthesis of Living Sys-
tems, MIT Press.

[Minar, Burkhart, Langton & Askenazi, 1996]
Minar, Nelson; Burkhart, Roger; Langton,
Chris; and Askenazi, Manor; “The Swarm
Simulation System: A Toolkit for Building
Multi-agent Simulations.” Santa Fe Institute
working paper 96-06-042.

[Papert, 1980] Papert, Seymour, Mindstorms:
Children, Computers, and Powerful Ideas, Basic
Books.

[Repenning, Ioannidou & Zola, 2000] Repenning,
Alexander; Ioannidou, Andri; and Zola,
John; “AgentSheets: End-User Programmable
Simulations”, Journal of Artificial Societies and
Social Simulation vol. 3, no. 3.

[Resnick, 1994] Resnick, Mitchel, Turtles, Termites
and Traffic Jams: Explorations in Massively
Parallel Microworlds, MIT Press.

[Resnick & Wilensky, 1993] Resnick, Mitchel; and
Uri Wilensky, “Beyond the Deterministic,
Centralized Mindsets: New Thinking for New
Sciences”, American Educational Research As-
sociation.

[Tisue & Wilensky, 2004] Tisue, Seth; and Uri
Wilensky, “NetLogo: A Simple Environment
for Modeling Complexity”, International Confer-
ence on Complex Systems.

[Wilensky, 1997] Wilensky, Uri, StarLogoT, Cen-
ter for Connected Learning and Computer-
Based Modeling, Northwestern University.
http://ccl.northwestern.edu/cm/starlogot/

[Wilensky, 1999] Wilensky, Uri, NetLogo
(and NetLogo User Manual), Center
for Connected Learning and Computer-
Based Modeling, Northwestern University.
http://ccl.northwestern.edu/netlogo/

[Wilensky, 2001] Wilensky, Uri, “Modeling Na-
ture’s Emergent Patterns with Multi-agent Lan-
guages”, EuroLogo.

[Wilensky & Stroup, 1999a] Wilensky, Uri; and
Stroup, Walter; “Learning through Participa-
tory Simulations: Network-based Design for Sys-
tems Learning in Classrooms”, Proceedings of
the Computer Supported Collaborative Learn-
ing Conference, Stanford University.

[Wilensky & Stroup, 1999b] Wilensky, Uri; and
Stroup, Walter; HubNet. Center for Con-
nected Learning and Computer-Based Modeling,
Northwestern University.
ccl.northwestern.edu/netlogo/hubnet.html

10


