
AAMAS Workshop on Teaching Multi-Agent Systems, 2004.

The Past and Future of Multiagent Systems

Jośe M Vidal∗

Computer Science and Engineering
University of South Carolina

Columbia, SC, 29208
vidal@sc.edu

Paul Buhler
Computer Science

College of Charleston
Charleston, SC, 29424

pbuhler@cs.cofc.edu

Hrishikesh Goradia
Computer Science and Engineering

University of South Carolina
Columbia, SC, 29208

goradia@cse.sc.edu

Abstract

We describe the lessons learned from using various tech-
nologies as aids in teaching a graduate multiagent systems
class. The class has been offered six times over the last
five years. The technologies described are RoboCup (along
with our Biter and SoccerBeans tools), NetLogo, JADE, and
FIPA-OS. We also discuss our view of the future of multiag-
ent systems which includes the separation of software agent
design into a separate class that focuses on distributed pro-
gramming and the development of a unifying notation for
representing multiagent problems.

1. Introduction

Over the last decade the field of multiagent systems has
evolved from its beginnings in distributed artificial intel-
ligence as a discipline largely concerned with distributed
problem solving, to the mature discipline we see today
which brings together researchers from disciplines as di-
verse as economics, game theory, biology, robotics, soft-
ware engineering, and artificial intelligence. All this diver-
sity make is difficult to provide students with the back-
ground needed for understanding multiagent approaches
to problem-solving. This difficulty has been further com-
pounded by the recent creation of sub-fields of study such
as auction-based systems, robotic-based systems, software
agents, and mechanism design approaches. Nonetheless, we

∗ This material is based upon work supported by the National Science
Foundation under Grant No. 0092593.

believe that it is possible to provide students with a deep un-
derstanding of the foundations of multiagent theory and al-
gorithms by using a coherent notation and providing them
with hands-on experience.

This article describes the lessons we have learned over
five years of teaching multiagent systems. Section 2 de-
scribes our use of RoboCup, NetLogo, FIPA, and formal
frameworks along with the lessons we have learned from
using them. Section 3 describes our future plans which in-
clude the continuing use of RoboCup and NetLogo, the sep-
aration of software agents into its own class, and the devel-
opment of a unifying notation for multiagent systems.

2. Past Classes

The first author has taught a graduate class in multiag-
ent systems at the University of South Carolina six times
during the years 1999–2003. On average, the class is at-
tended by 10–20 students each semester. Since it is gradu-
ate class in the Computer Science and Engineering depart-
ment, the students are assumed to be competent program-
mers and to have some mathematical sophistication. There
are no formal prerequisites for the class, specifically, an Ar-
tificial Intelligence class is not a prerequisite. The class has
used the Weiss [23] and the Wooldridge [25] textbooks, sup-
plemented with other readings.

Since its inception, the class has echoed research in the
field by having an explicit separation between the part that
deals with theory and algorithms and the part that deals
with software and hardware agents. One research commu-
nity emphasizes mathematics and logic to produce mod-
els, theories, and algorithms. The other research community
emphasizes software engineering and ontologies to produce

1

vidal@sc.edu
pbuhler@cs.cofc.edu
goradia@cse.sc.edu


software or hardware systems. This split mirrors the tradi-
tional split we see in computer science between the theory
and algorithms researchers and the software engineers. Of
course, both sides depend on each other. The system en-
gineers need the algorithms developed by the theoreticians
and the theoreticians need the problems raised by the sys-
tem engineers. Both parts present their own particular chal-
lenges for a teacher of multiagent systems.

The theory and algorithms of multiagent systems dif-
fers from that of traditional computer science in its signifi-
cant dynamic component. That is, the algorithms can often
be properly understood only by visualizing the agents en-
gaging in their individual actions and then recognizing the
emergent behavior that results. In fact, many of the algo-
rithms lack steady-state solutions and only provide an ex-
pected dynamic behavior.

The difficulty in building agent systems can only be
properly understood by actually building fairly complex
systems. The development process helps the students un-
derstand the difficulty in predicting the emergent behavior
that will result from simple agent behaviors as well as the
difficulty in debugging a distributed asynchronous system.

As such, our class uses a hands-on approach to teaching
multiagent systems. We strive to get the students to build
systems so they can see the algorithms in action and thus
achieve an intuitive understanding of how local changes af-
fect the emergent behavior of the system. In order to meet
this aim we have sought out and used various tools that al-
low students to gain first-hand experience within the time
constraints of a one semester class. We have also tried to
merge the use of these tools with the theory presented in
the textbooks. The next few sections describe our experi-
ences with the various tools we have used.

2.1. RoboCup, Biter, and SoccerBeans

The class has used the RoboCup simulator since the sec-
ond time the class was taught. The use of RoboCup as a
teaching tool has been very successful and it is something
we have already written about [21, 20]. The students are
made to form teams of one to three students. The teams
compete in a RoboCup simulated soccer tournament at the
end of the semester. The students are given a month to com-
plete their assignments. The grade for the project is deter-
mined by the team’s standing in the tournament and the
quality of their writeup. In the tournament all teams play
all other teams so as to minimize the likelihood of an un-
lucky loss at an early game and to gather more informa-
tion on the teams’ techniques. The tournament format has
proven to be a great motivator. The familiarity of the prob-
lem domain allows the students to immediately start work-
ing on their problem solving techniques rather than spend-
ing time trying to understand the problem. Their techniques

Figure 1: Screenshot of the SoccerBeans system.

usually echo those used by humans, but are always modi-
fied to the particular limitations of the two dimensional and
discrete soccer simulator.

After the first class we learned that the basic RoboCup
client offers so little functionality that students had to spend
almost all their time trying to implement basic behaviors
such as dribbling and passing the ball instead of focusing
on the multiagent aspects of the problem. In order to ease
this burden we developed the Biter system [6]. Biter imple-
ments a basic player that maintains a world model where
all the objects are given absolute coordinates and also im-
plements many useful behaviors such as kicking, passing,
dribbling, and catching a pass. These features were chosen
because all students agreed they were essential for a work-
ing player.

In the most recent class we used the SoccerBeans [10]
development system, as shown in Figure 1. The Soccer-
Beans system takes basic Biter player behaviors along with
decision criteria such as the player’s absolute position, the
ball’s absolute position, the player’s distance from the ball,
the number of teammates or opponents closing in, etc., and
wraps all of them as Java Beans. The students can then use
Sun’s Bean Development Kit to build their agents by vi-
sually connecting the various beans in different ways. This
system allows the students to fully concentrate on conduct-
ing their experiments and requires little or no coding on
their part.

We successfully used the SoccerBeans software in the
last class. The students found it very easy to use. In fact,
most of the final teams were developed without the need to
write a single line of code. However, the develop-test cy-
cle proved to be very slow. It took them around 5–10 min-
utes to compile a new agent because all the Beans had to be
compiled every time. This problem is an artifact of the Soc-



to setup
ca
create-n-turtles num-turtles

end

to move
locals [cx cy]
set cx mean values-from turtles [xcor]
set cy mean values-from turtles [ycor]
set heading towardsxy cx cy
if (distancexy cx cy < radius) [

set heading heading + 180]
if (abs distancexy cx cy - radius > 1)[

fd speed / 1.414]
set heading towardsxy cx cy
ifelse (clockwise) [

set heading heading - 90]
[

set heading heading + 90]
fd speed / 1.414

end

to update
no-display
while [count turtles > num-turtles][

ask random-one-of turtles [die]]
ask turtles [move]
display

end

to create-n-turtles [n]
create-custom-turtles n [

fd random 20
shake]

end

to shake
set heading heading + (random 10) - 5
set xcor xcor + random 10 - 5
set ycor ycor + random 10 - 5

end

Figure 2: Screenshot of NetLogo running the Circle program in which all turtles self-organize to run around in a circle, along
with all the NetLogo code needed to implement this application.

cerBeans architecture and will either have to be fixed for
the next class or we will have to revert back to Biter. We
also note that the winning team only used the Bean Devel-
opment Kit for their first version of the agent which they
then refined by directly editing the code. In this manner,
they eliminated the long compile time and were able to per-
form more tests, which resulted in a better team.

2.1.1. Lessons LearnedOur experience using RoboCup
as a learning tool has been overwhelmingly positive. Its
use along with Biter or SoccerBeans allows students to di-
rectly experience the problems inherent in building multiag-
ent systems. Many students have commented on their sur-
prise when, by making a small change to one of the play-
ers they inadvertently destroyed an emergent behavior that
seemed completely unrelated. We have been witness to the
long hours they devote to implementing techniques they
thought would help them win the game. Their final write-
ups have also confirmed their ability to think in terms of a
system behavior emerging out of simpler behaviors.

There are, however, some problems with the use of Ro-
boCup. The techniques developed for this domain are un-
likely to transfer to other domains, even other robotic do-
mains. Very few of the standard multiagent algorithms are
applicable to this domain. Most notably, since the domain

features cooperative agents it does not utilize research into
selfish agents. These hindrances stem from the fact that Ro-
boCup is a very well defined problem while multiagent re-
search provides solutions and techniques for many different
types of problems.

We are also not entirely satisfied with our Biter and Soc-
cerBeans implementations. In order for RoboCup to be a
multiagent problem the players need to be able to make
long-distance passes. These passes require good kicking
and catching behaviors, as well as good dribbling behaviors
so that the player can set itself correctly for making a pass.
Biter implements these behaviors reasonably well, but there
is a some room for improvement. Specifically, we would
like to have a dribbling behavior that allows the player to
consistentlykeep the ball within its kickable area, a passing
behavior thatconsistentlyplaces the ball at the requested co-
ordinates, and an intercept behavior that goes to where the
ball will be and stops it. We believe that with these behav-
iors available the students will have to focus much more on
the team dynamics rather than making marginal improve-
ments to the basic behaviors. We have been unable to work
on these improvements due to lack of resources.



2.2. NetLogo

In order to provide our students with experiences in
many other problem domains, the last two classes have in-
corporated the use of NetLogo [24]. NetLogo is a descen-
dant of StarLogo, which is a parallel version of Logo, which
is a variant of Lisp designed to teach children the basics of
programming. StarLogo was designed by Resnick to be a
programming language for teaching children the distributed
mindset [15]. Resnick’s hypothesis is that children have an
inherent tendency to explain the world using a centralized
mindset—when asked how ants deliver food back to the nest
they invariably answered that the ants simply followed or-
ders from the queen—which can be corrected by letting
them play with simulations of decentralized phenomena.
Once the children were able to program simulated ants fol-
lowing a pheromone trail they understood how the emergent
behavior arises from simple interactions.

NetLogo is based on StarLogo and is written in Java.
NetLogo’s designers also have a didactic mission but focus
instead on older students and social scientists as their core
user groups. The NetLogo interface allows the user to eas-
ily plot different types of bar and line graphs, to keep track
of the value of any variable, and to easily change the value
of variables. Figure 2 shows a screenshot of a simple appli-
cation along with all the code needed to implement it. The
NetLogo language has grown to be very sophisticated. The
NetLogo mailing list is actively populated by social scien-
tists who use it to build agent-based models of interactions.
Cognizant of its use as a research tool, the NetLogo pro-
grammers have been careful to use good randomization and
floating point libraries so that experiments result in the same
outcome regardless of the platform in which they are run.

The NetLogo language and metaphor are power-
ful enough to easily represent many of the traditional prob-
lems in multiagent systems. We have a webpage1 which
contains NetLogo implementations of many of these prob-
lems as well as a few more recent algorithms. Included
in this page are implementations of the Adopt [11] al-
gorithm for graph coloring and N-queens problems,
asynchronous backtracking [26] for the N-queens prob-
lem, the mailmen problem [16], tileworld [14], asyn-
chronous weak commitment [23] for the N-queens prob-
lem, path-finding using pheromones [13], a distributed
recommender system [18], reciprocity in package deliv-
ery [17], the coordination game [8], and congregating [4].
These implementations provide ample evidence of Net-
Logo’s expressive power.

We used NetLogo both as a way to demonstrate the
functioning of some algorithms during the lecture, and as
the platform for the implementation of various small as-

1 http://jmvidal.cse.sc.edu/netlogomas/

signments. We had one lecture, usually the second day of
classes, which introduced the NetLogo metaphor and the
basics of the language. The students easily understood the
turtle and patches metaphor and quickly became experts in
the language. A few students had difficulty comprehending
NetLogo’s use of lists and mapping functions over lists; this
was their first exposure to a functional language (they only
knew Java or C++). However, by the end of the first assign-
ment all students were fluent in NetLogo.

The students were given five or six NetLogo assign-
ments each semester. They were given two weeks to ei-
ther implement a solution to a well-known problem or to
modify a well-known solution so as to achieve a particu-
lar improvement. Some of the topics covered were: imple-
ment a solution to the tileworld problem, solve an instance
of the distributed sensor problem, solve the mailman prob-
lem, modify an existing solution to a package delivery prob-
lem in order to develop and incentive compatible protocol,
and implement modifications on asynchronous backtrack-
ing and weak-commitment search for solving the distributed
N-queens problem. Some of the assignments asked the stu-
dents to provide solutions to well-known open problems in
multiagent research. These allowed the students to apply the
techniques learned in class and think about the tradeoffs in-
herent to any solution. Other assignments asked them to im-
plement variations on well-known algorithms. These gave
them deeper insight into the workings of the algorithms.

2.2.1. Lessons LearnedThe NetLogo assignments gave
the students the ability to see many of the traditional multi-
agent algorithms in action. The students could modify var-
ious parameters and observe how these changes were re-
flected in the emergent behavior. The develop-test cycle was
thus reduced to mere seconds and new ideas could be im-
plemented in minutes. The students’ response was largely
positive. However, a few complained that the assignments
required too much time—an unfortunate side effect of the
open-ended nature of the assignments. We found that we
had to make it very clear how much work was expected for
each assignment otherwise some students would spend end-
less hours perfecting their solution.

We consider our NetLogo experiment a success. It is
the only suitable platform we have found that combines a
tiny learning curve, incredible expressive power, and an ex-
tremely short develop-test cycle. The students also found
the ability to quickly draw a GUI and plot graphs a great
help in extending and debugging their programs. NetLogo
brings to life many of the multiagent problems and algo-
rithms taught in class. It also serves as a nice complement to
RoboCup. While RoboCup stresses the real-world require-
ments of uncertainty and near real-time responses, NetLogo
allows us to focus on the algorithm itself by providing a
world with no uncertainty or real-time requirements.

http://jmvidal.cse.sc.edu/netlogomas/


Of course, there are a few drawbacks to NetLogo. While
the turtle and patches metaphor is very flexible, it cannot
represent some multiagent systems such as those involving
agents on the Internet. This shortcoming is not exclusive to
NetLogo but is simply a symptom of our inability to visual-
ize these type of multiagent systems. There is no commonly
agreed upon standard visual language for representing soft-
ware agents and their interactions, even when we limit their
interaction to, say, buying and selling. If such a standard
language is developed then it should not be too hard to pro-
vide a NetLogo implementation.

Another problem we encountered was our inability to de-
scribe the problem domain in the NetLogo language itself,
that is, to provide a data abstraction layer. NetLogo does
not provide any object-oriented data encapsulation tools. As
such, the students always have direct access to the underly-
ing metaphor and can get confused about which actions are
legal in a particular assignment. For example, in the sen-
sor domain we told the students that their agents could only
see the area close to them, but we had no way to express this
constraint programmatically in such a way that the students
could not program an agent that could see things far away,
neither could we programmatically check to make sure that
this constraint had not been violated. This lack of encapsu-
lation made grading difficult.

Finally, we also missed the availability of a Java API
for adding our own computationally intensive subroutines.
Specifically, we are interested in extending the agents with
machine learning subroutines and subroutines for finding
equilibriums in game matrices but the computational re-
quirements of these subroutines would make them very
slow if implemented in NetLogo. Fortunately, the authors
have announced such an API is forthcoming.

2.3. FIPA Agents

Our class always covers the FIPA architecture. We de-
scribe the overall architecture and discuss several interac-
tion protocols. In the Fall 2001 and Fall 2002 classes we
also had assignments that involved using either JADE [1] or
FIPA-OS [5]. In these assignments, groups of two or three
students developed a small distributed meeting scheduling
application using their chosen FIPA-compliant agent frame-
work. Each agent represents a user of the system. The stu-
dents had to develop and implement exchange protocols that
enabled the agents to schedule meetings that maximized the
users’ utilities. The users had utility values over the times of
day they wanted the meeting scheduled. Also, in all meet-
ings there were some users whose attendance is required
and others whose attendance was optional.

2.3.1. Lessons LearnedWe found that the students pre-
ferred to use JADE for their implementations. They thought
that JADE’s documentation was better and its API allowed

them to quickly get something that works. However, both
systems had significant learning curves which prevented the
students from dedicating more time to development of the
interaction protocols. Almost all of the final systems met the
minimum requirements as set by the assignments but were
otherwise uninspired. The interaction protocols did not take
into account many of the possible ways in which people can
lie in order to get what they want. The systems neglected to
consider the possibilities of some agents going offline for
significant periods of times or other network failures.

Because the class has a RoboCup tournament at the end,
it was hard to find the time for another long programming
project. As such, the FIPA assignment was dropped in the
Fall 2003 class. We also feel uncertain about the future of
the FIPA protocols given the popularity of web services.
We felt that we were wasting the students’ time by forc-
ing them to learn a complex API that was soon to be obso-
lete. Instead, the most recent class only taught the theoret-
ical basics of the FIPA architecture—ideas that will proba-
bly be re-implemented as web service technologies. We ex-
plain our reasoning further in Section 3.1.

2.4. Theory

The first three classes used the Weiss textbook [23] and
the last two used the Wooldridge textbook [25]. Both books
cover roughly the same theoretical material. They start by
describing the same formal agent model and then proceed
to cover the topics of agent architectures, game theory, auc-
tions, coordination, voting, and learning in multiagent sys-
tems. Weiss does a better job at covering distributed con-
straint satisfaction algorithms, so we have continued to use
that chapter. We also found an unpublished textbook by
Vlassis [22] which contains excellent introductions to game
theory and mechanism design. Both of these chapters were
also used in the latest class.

2.4.1. Lessons LearnedSince multiagent theory brings
together research from economics, game theory, formal
logic, and theoretical AI, it lacks a comprehensive notation.
The three textbooks mentioned try to develop a common
notation for all the algorithms and protocols they present
but largely fail in this effort. Specifically, both Weiss and
Wooldridge present a notation for describing an agent—its
inputs, actions, and environment—but fail to present a con-
sistent notation for describing the desired system behavior.
Vlassis comes close to achieving a common notation but it
still not entirely satisfactory. As such, our strategy has been
to teach all the new notation required for each topic. This
strategy has the advantage that the students become fluent
in the language of various disciplines but it has the disad-
vantage that some students fail to see how the various mul-
tiagent techniques relate to each other.





�

	
�
� 	�



�

	
�




�

	

�6

-

Solved

Problem

task allocation

distributed
constraint
optimization

RoboCup

M Known

M Unknown coalition formation

ui = vi(o, ti) + pi

δi Known δi Unknown

Use VCG
{s,p} = M(a)

Figure 3: Space of all multiagent problems. Thex-axis represents whether the decision functionδi of each agent is known
or unknown to the designer. They-axis represents whether the mechanism functionM(a) → o is known or unknown to the
designer.

3. The Future

We can spot two trends that will deeply impact mul-
tiagent systems: the growing popularity of the semantic
web along with web services and the growing popularity
of mechanism design. The first trend affects how multiag-
ent systems are used in the real world, while the second
trend affects how we, as researchers, talk about the theory
and algorithms behind them. We also see the second trend
as a harbinger of a unifying formal framework for multiag-
ent systems.

3.1. The Semantic Web

Since the elucidation of the semantic web vision [2], the
web services community and parts of the multiagent com-
munity have grown closer together. We believe that the work
done by the multiagent researchers on software agents, in-
teroperability, ontologies, and architectures (FIPA) will be
absorbed by the web services community, as exemplified
in the W3C “Web Services Architecture” working group
note [3]. We know that our students are largely interested
in SOAP and associated technologies because of market de-
mands. We also know that these technologies are complex.
As such, the multiagent system class can no longer explain
these technologies in depth. In the future, the multiagent
systems class will cover the theory and algorithms, while
a second class (“Distributed Programming”) will cover the
topics of Servlets, RMI, SOAP, WSDL, UDDI, WSDL,

Workflow, OWL, OWL-S, and any other technologies that
form part of the Semantic Web vision. We make this sepa-
ration because there is not enough time in one semester to
cover both topics and because there are many students in-
terested only on the software engineering aspects of build-
ing simple systems and not on the complex mathematics
and algorithms often required for building complex multi-
agent systems. For example, the last time these classes were
offered, the multiagent systems class had 11 students while
distributed programming had 26. We see this change as the
normal evolution of a technology as it moves from research
to application, becoming more complicated as it acquires all
the associated technologies needed to solve real-world im-
plementation problems.

3.2. A Unifying Notation for Multiagent Systems

The recent interest in mechanism design [7, 9, 12] within
the multiagent community is due largely in part to the recog-
nition that it provides an efficient, and up to now missing,
formal framework for describing the problem faced by a de-
signer of a multiagent system. To summarize, the mecha-
nism design framework defines a set outcomesO and a set
of typesT where each agenti has a utility functionui(o)
over all outcomeso ∈ O that it tries to maximize and a type
ti which is a secret known only to the agent. A social choice
functionf(t) → o is defined to be a mapping from the set
of all agent typest to an outcomeo. The goal of a mecha-
nism designer is to come up with some mechanismM that



is a mapping from the set of actions taken by the agents to
an outcome (M(a) = o) such that the mechanism imple-
ments thesocial choice functionf . That is, the mechanism
M must one such that the agents will maximize their utili-
ties if they take actionsa andM(a) = f(t∗) wheret∗ are
the true types of all the agents. The outcome is often com-
posed of the state of the systems along with a set of pay-
mentsp for each agent.

The appeal of this formalism lies in the social choice
function which serves to succinctly describe the desired
emergent behavior of the system. The formal frameworks
presented in Weiss’ and Wooldridge’s textbooks only de-
scribe the single agent; they fail to describe the global be-
havior which is, after all, the reason one builds a multiag-
ent system. Mechanism design is also appealing because it
has been studied by economists who have developed use-
ful mechanisms. For example, if we assume that the agents
have quasilinear utilities over the outcome and a sum of
money they might get and that they do not mind reveal-
ing their true types then a payment formula such as the
Vickrey-Clarke-Grooves (VCG) mechanism tells us exactly
how much to pay each agent so that its dominant strategy
will be to tell the truth about its true type.

The main drawbacks of mechanism design also stem
from the fact that it is borrowed from economics. Namely, it
assumes that agents are selfish, perfectly rational, and value
money. Most of the solution mechanisms also assume that
agents have quasilinear utility functions over the outcome
and a payment, and that agents do not mind revealing their
true types. These assumptions hold for some multiagent sys-
tems but not for all. Still, we propose that the basic frame-
work can be extended in order to cover all systems.

Figure 3 shows how we organize the space of multiagent
problems using the mechanism design notation along with
traditional agent notation. There are two dimensions: the x-
dimension represents whether or not we know the agents’
decision functionδi, the y-dimension represents whether or
not we know how the collective actions of the agents will
be mapped into an outcome. We use these to define a two-
dimensional space and place various standard multiagent
problems within this space.

The bottom left quadrant represents all the problems
were we already know how the agents will behave and we
know what the outcome for a vector of actions will be. Since
everything is known there is no problem for the multiagent
designer to solve in this case.

The bottom right quadrant corresponds to prob-
lems where we don’t know how the agents behave but
we do know the outcome that will result from their ac-
tions. The RoboCup problem, for example, fits this defini-
tion: we don’t know how the agents behave (that is the prob-
lem the designers must solve) but we do know the rules of
the simulator so we know the exact probability distribu-

tion over what will happen given the agents’ actions. As
such, we place RoboCup in the bottom right quadrant. Dis-
tributed constraint optimization and satisfaction problems
[26], such as distributed graph coloring, the N-queens prob-
lem, and sensor networks [19], also reside in this quad-
rant. In these problems we are given a global utility
function, typically something like “avoid constraint vio-
lations”, and must determine how the individual agents
must behave (δi) in order to maximize the global util-
ity. Depending on how the problem is stated, we are
sometimes also given some constraints on how much in-
formation is available to each particular agent which is
just a way of limiting the space of possible agent behav-
iors.

The top left quadrant represents systems were we already
know the agents’ behavior functions and we must deter-
mine how to map from their collective actions to a final out-
come. This quadrant is inhabited almost exclusively by sys-
tems with selfish agents. By definition, a selfish agent acts
to maximize its utility and in almost all cases these utilities
are known a priori. For example, in coalition formation each
agent wants to be in the coalition that brings it the highest
utility, in the mailman problem [16]—an instance of the task
allocation problem—we are told that each mailman wants to
minimize the total distance it must travel. The problems in
this quadrant require us to come up with the mapping from
joint actions to an outcome. A subset of this quadrant is pop-
ulated by systems that obey the typical mechanism design
assumptions, namely that the agents have quasilinear util-
ities over the outcome and a payoff (ui = vi(o, ti) + pi)
and that the mechanism results in an outcome that consists
of a states and a payoff for each agent({s,p} = M(a).
For these systems we can use well-known solutions such as
VCG, marginal cost, Shapley value payments, and others, as
long as we are willing to accept any limitations they might
have (for example, most of them lack budget balance). As
such, Figure 3 places the solutions offered by mechanism
design within the larger problem space of multiagent sys-
tems.

While this space does help us categorize multiagent
problems, it still does not completely capture their differ-
ences. Specifically, the RoboCup problem is hard because
predictions on the outcome rely on all of the agents’ ac-
tions, including those of the opposing team which the de-
signer cannot predict. That is, the space as shown assumes
that all decision functions that are not known will be im-
plemented by the designer of the system. A better depic-
tion would show the difference between systems where the
designer controls varying number of decision functions, or
varying parts of the mechanism function.

Still, we continue to use Figure 3 as our new map for
the study of multiagent systems. While the space is cur-
rently only sparsely populated, we believe that all multiag-



ent problems can be placed within this space. Furthermore,
the space shows us how we might develop a unifying formal
notation for describing all multiagent systems, from cooper-
ative planning systems in uncertain domains to combinato-
rial auctions. Such a notation could be explained in the first
couple of days of classes and then re-used throughout the
semester for the introduction of new problems. We are de-
veloping this notation for our next class. Figure 3 is only the
first step towards our goal of a unifying notation.

4. Summary

We have provided a summary of the lessons we have
learned after teaching a graduate multiagent systems class
six times over five years. We find that a hands-on approach
is best for helping students understand emergent dynamics
and distributed algorithms—an approach that is greatly fa-
cilitated by the use of RoboCup and NetLogo. We have also
pointed the way towards a unifying notation for describing
multiagent problems. We hope to have this notation fully
developed for use in our next class.

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-
agent systems with a FIPA-compliant agent framework.Soft-
ware: Practice and Experience, 31(2), 2001.

[2] T. Berners-Lee, J. Hendler, and O. Lasilla. The semantic
web. Scientific American, May 2001.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard. Web services architec-
ture. Technical report, W3C Working Group Note 11, 2004.
http://www.w3.org/TR/ws-arch/ .

[4] C. H. Brooks and E. H. Durfee. Congregating and mar-
ket formation. InProceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems,
pages 96–103, 2002.

[5] P. Buckle and R. Hadingham. FIPA-OS: FIPA everywhere,
October 1999.

[6] P. Buhler and J. M. Vidal. Biter: A platform for the teaching
and research of multiagent systems’ design using robocup.
In A. Birk, S. Coradeschi, and S. Tadokoro, editors,Robo-
Cup 2001: Robot Soccer World Cup V. LNCS/LNAI Lecture
Notes Volume 2377, pages 299–304. Springer-Verlag, Berlin
Heidelberg, 2002.

[7] R. K. Dash, N. R. Jennings, and D. C. Parkes. Computa-
tional mechanism design: A call to arms.IEEE Intelligent
Systems, 18(6):40–47, Jan./Feb. 2003.

[8] J. Delgado. Emergence of social conventions in complex net-
works. Artificial Intelligence, 141:171–185, 2002.

[9] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Com-
munications, pages 1–13. ACM Press, New York, 2002.

[10] H. J. Goradia and J. M. Vidal. Building blocks for agent de-
sign. In P. Giorgini, editor,Agent-Oriented Software Engi-
neering, pages 153–166. Springer-Verlag, 2004.

[11] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. An asyn-
chronous complete method for distributed constraint opti-
mization. InProceedings of Second International Joint Con-
ference on Autonomous Agents and MultiAgent Systems, July
2003.

[12] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behavior, 35:166–196, 2001.

[13] H. V. D. Parunak, S. Brueckner, and J. Sauter. Synthetic
pheronome mechanisms for coordination of unmanned vehi-
cles. InProceedings of the First Intenational Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages
448–450, Bologna, Italy, 2002. ACM Press, New York, NY.

[14] M. Pollack and M. Ringuette. Introducing the tileworld: ex-
perimentally evaluating agent architectures. In T. Dietterich
and W. Swartout, editors,Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 183–189, Menlo
Park, CA, 1990. AAAI Press.

[15] M. Resnick. Turtles, Termites, and Traffic Jams: Explo-
rations in Massively Parallel Microworlds. MIT Press, 1997.

[16] J. S. Rosenschein and G. Zlotkin.Rules of Encounter. The
MIT Press, Cambridge, MA, 1994.

[17] S. Sen. Believing others: Pros and cons.Artificial Intelli-
gence, 142(2):179–203, December 2002.

[18] J. M. Vidal. An incentive-compatible distributed recom-
mendation model. InProceedings of the Sixth International
Workshop on Trust, Privacy, Deception, and Fraud in Agent
Societies, pages 84–91, 2003.

[19] J. M. Vidal. A method for solving distributed service alloca-
tion problems.Web Intelligence and Agent Systems: An In-
ternational Journal, 1(2):139–146, 2003.

[20] J. M. Vidal and P. Buhler. Teaching multiagent systems us-
ing robocup and biter.The Interactive Multimedia Electronic
Journal of Computer-Enhanced Learning, 4(2), 2002.

[21] J. M. Vidal and P. Buhler. Using robocup to teach multiag-
ent systems and the distributed mindset. InProceedings of
the 33rd ACM Technical Symposium on Computer Science
Education, pages 3–7, 2002.

[22] N. Vlassis. A concise introduction to multiagent systems
and distributed AI. Informatics Institute, University of Am-
sterdam, Sept. 2003.http://www.science.uva.nl/
∼vlassis/cimasdai .

[23] G. Weiss, editor.Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. MIT Press, 1999.

[24] U. Wilensky. NetLogo: Center for connected learning
and computer-based modeling, Northwestern University.
Evanston, IL, 1999. http://ccl.northwestern.
edu/netlogo/ .

[25] M. Wooldridge. Introduction to MultiAgent Systems. John
Wiley and Sons, 2002.

[26] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

http://www.w3.org/TR/ws-arch/
http://www.science.uva.nl/~vlassis/cimasdai
http://www.science.uva.nl/~vlassis/cimasdai
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	1 Introduction
	2 Past Classes
	2.1 RoboCup, Biter, and SoccerBeans
	2.1.1 Lessons Learned

	2.2 NetLogo
	2.2.1 Lessons Learned

	2.3 FIPA Agents
	2.3.1 Lessons Learned

	2.4 Theory
	2.4.1 Lessons Learned


	3 The Future
	3.1 The Semantic Web
	3.2 A Unifying Notation for Multiagent Systems

	4 Summary

