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Abstract

Arthur’s ‘El Farol Bar Problem’ (Arthur (1994)) is a
metaphor of a complex economic systems’ model based on
interaction and it is perfectly suited for the multi-agent sim-
ulation framework. It is a limited resource model in which
agents are boundedly rational and where no solution can be
deduced a priori. In this paper we discuss in particular the
implementation of the model in NetLogo, a multi-agent
platform introduced by Wilensky (1999). Our aim is to
translate Arthur’s model described in natural language into
a workable computational agent-based tool. Throughout the
process of setting up the tool we discuss the necessary as-
sumptions made for it’s implementation. We also conduct
simulations to illustrate the model and to show that the de-
sign of the tool is appropriate.
Keywords: Complex system, El Farol Bar Problem, model,
multi-agent, NetLogo, simulation.

1 Introduction

The problem set up by Arthur in the ‘El Farol Bar Prob-
lem’, here after EFBP, is a popular paradigm of complex
economic systems in which agents self-organise themselves
while they are in competition for a limited resource, without
possibility of communication, thus there is no solution de-
ductible a priori. In this problem, every agent has to choose
to go or not to go to the ‘El Farol’ bar each week using a
predictor of the next attendance. It is given that the agents
try to avoid crowd and they will not show up at the bar
if they forecast that more than sixty percent of the agents
go. But since there is no single predictor that can work for
everybody at the same time, there is no deductively ratio-
nal solution. In fact the agents would have to know which
predictors the others will use, which they don’t, so from the
point of view of the agent, the problem is ill-defined. They
can only observe the attendance, thus their reasoning, as
pointed out by Arthur, is inductive. The consequence is a
self-defeating prophecy feature because at each attendance
forecast, ‘if all believe few will go, all will go (...) and if all
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believe most will go, nobody will go’ (Arthur (1994)).
Resource limitation is characteristic to many other areas

such as road traffic, computer networks like internet or finan-
cial markets. These systems are complex in the sense that
they composed by a large variety of elements and that the
interaction in between these elements are non-linear and not
completely captured (LeMoigne (1990), Kauffman (1993)).
Paraphrasing Casti (1996), in the EFBP the agents are in a
universe in which their ‘forecasts (...) act to create the world
they are trying to forecast’1. Arthur’s simple scenario pro-
vides useful insights into complex systems and this is why
it is viewed as paradigmatic.

Modeling in mainstream economics is generally equation
based. However to study the EFBP, rather than considering
a particular stochastic process, a computational agent based
approach seems to be an appropriate alternative2 (Gilbert
and Troitzsch (1999)). A computational agent-based model
includes interacting agents who rely on their experience,
rules and information to determine their actions. Agents can
interact in both space and time, creating emerging dynamic
patterns, and potentially new behaviours not introduced by
the modeler (see Reynolds (1987)). Computational models
are not constrained by the limits imposed by the desire of
elegance in mathematics. The models also permit hetero-
geneity in not only agent preferences but also their behav-
ior, offering flexibility. Several references discuss multi-agent
systems; Weiss (2000) and Ferber (1995) are good ones.

The agent-based approach seems therefore to be a very
natural and flexible way to model the EFBP, and that is
what we have decided to apply here. The EFBP has al-
ready been studied by simulation in Arthur’s paper and
by Fogel, Chellapilla, and Angeline (1999). Mathemati-
cal formalisation has also been used by Challet, Marsili,
and Ottino (2004) based on the findings from the minor-
ity games (Challet (2000)), however we propose here to
rewrite step by step an agent-based version of the model and
we perform simulations of the collective behaviour to align
them with Arthur’s findings. Rewriting models that others
have described is common practice in the multi-agent based
simulation community in order to understand them more
deeply and reproduce the stated results (Hales, Rouchier,
and Edmonds (2003), Axelrod (1997)).

The rest of this paper is organised as follows. Section
2 presents the EFBP and discusses Arthur’s modeling as-
sumptions. Section 3 presents NetLogo, the multi-agent

1I took this quote from Zambrano (2004).
2For a deeper discussion on equation based modeling compared to

agent based modeling, see Parunak, Savit, and Riolo (1998).
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platform we use to perform the simulations and presents
the set up of the user interface. Section 4 briefly discusses
the implementation of the EFBP. In order to validate the
computational tool, we perform simulations on the collective
bahaviour and discuss the results in Section 5 and finally
Section 6 concludes.

2 Brian Arthur’s Model

El Farol is a bar at Santa Fe, New Mexico, where a band
plays Irish music on Thursday nights, and, like in many
places, the bar is enjoyable only if it is not too crowded.
The N (indexed by i) inhabitants of Santa Fe have the same
fixed preferences L (the open level), or more generally l,
with l = L/N ; the question asked by Arthur is to find out
how these N agents will select the following binary action
ai ∈ {0, 1}, where 1 is go to the bar and try to avoid crowd
to listen to good music, and 0 is not to go, and this without
any communication or exogeneous information. Thus the
total attendance is A =

∑
ai and if A > L, the bar does

not open, otherwise the bar opens and they have a great
evening (A ≤ L).

In order to take their decision, the only available piece of
information to predict the opening at the week t, A(t), that
the inhabitants have is the attendance from the d previous
weeks3,

ηt = {A(t− d), ..., A(t− 2), A(t− 1)} , (1)

published each Friday morning in the local paper.
On this basis, they formulate forecasts of A(t) using mod-

els called predictors. Arthur supposed that there exists a
large amount (several dozen), n, of variations of predictors,

called the ‘alphabetic soup’, Sj , with Sj =
{
s1, s2, ..., sn

}
from which each agent N selects randomly a portfolio k from
S, with k < n. A predictor forecasting for example an at-
tendance lower than L implies that the agents having that
predictor in their portfolio, and using that one to forecast,
will go to the bar because he expects that it will not be
crowded.

Arthur gave some information on the predictors by giving
examples; seven to be precise.

• The same attendance as the previous week A(ηt) =
A(t − 1), as two weeks ago A(ηt) = A(t − 2) or as
five weeks ago A(ηt) = A(t − 5), which he defines as
n-period cycle detectors, with n ∈ {1, 2, 5},

• a mirror image around 50% of the number of inhabi-
tants (N/2) of the attendance of the last week A(ηt) =
N −A(t− 1),

• a constant forecast A(ηt) = 67%

• the four week rounded moving average, that is the av-

erage of the last four weeks A(ηt) = 1/4
∑4

τ=1
A(t−τ),

• the trend over the last eight weeks, rounded and
bounded by zero and the maximum attendance, N ,

A(ηt) = min([trend {A8}]+, N) with x+ ≡ max(x, 0)
and trend {x} ≡ the trend computed using the least
squares method.

3The mathematical formalisation of the history set and of the pre-
dictors are inspired/taken from Challet, Marsili, and Ottino (2004).

At each time step, week after week, the agent uses the
most performing predictor - currently the most accurate -
over the past d weeks, to decide to go or not to the bar, called
the active predictor. Thus if the attendance prediction for
period t given history ηt of the active predictor sap(A(ηt)
is greater than L the action for the ith agent based on that
information, ai [sap(A(ηt))], is 0 and 1 otherwise. The way
in which Arthur attributes the performance to the predictors
in order to classify them to determine the active predictor is
not specified, however reviewing literature, we propose three
interpretations.

We start with what we call the absolute precision. This
interpretation establishes a function rewarding the predic-
tor indicating the best the opening or not of the bar, that
means the occurrence of the event. Say for example, with
an attendance of A(t) = 55, a predictor giving 10 or 50 is
equivalent. Parkes and Steinig (1997) use this interpretation
for the precision of the predictors of the inhabitants, and is
measured by associating a confidence level. They compute
it with the ‘percentage of times that the predictor has been
on the correct side of sixty percent’. The inhabitant, they
continue, will simply use at each time step the predictor
with the highest confidence level.

The second interpretation is one we call the relative pre-
cision, and has been used by Brandouy (2003), who gives
an interpretation of the efficiency of the predictors by its
‘difference between the attendance it has just predicted and
the realized attendance once every agent has decided to go
or not to the bar’, (implicitly supposed in absolute value).
The quality of this evaluation function is to be an atten-
dance measure, however, on the contrary to the previous
one, the past performance is not taken into account.

A paper from Zambrano (2004) seems however to take
away all doubts of this discussion by stating that his eval-
uation function has been given to him in Arthur’s original
code thanks to Bruce Edmonds, which we call the ‘original’
precision, and is given as follows

Ut(s
j) = λUt−1(s

j) + (1− λ) | sj(A(ηt))−A(t) |, (2)

where ηt (equation 1) is the history of attendance up to
period t− 1 of the d previous weeks, sj(A(ηt)) is the atten-
dance prediction of predictor sj for period t given history ηt,
A(t) is the actual attendance for period t, and λ is a number
strictly between zero and one.

The absolute and relative precision evaluation functions
do remain very interesting and should be considered for fur-
ther investigation. In this paper however, we only consider
equation 2, the ‘original precision’, for our implementation
and the simulations we perform.

3 Agent-Based Modeling in NetLogo

In order to perform our simulations, we designed the EFBP
model using NetLogo4 and it is available on the community
website5 since May 2004. We invite the interested reader to
test the simulation (source code included), with the aid of a
Java-enabled Internet browser. NetLogo is an agent-based
parallel modeling and simulation environment produced by
the Center for Connected Learning and Computer-Based

4http://ccl.northwestern.edu/NetLogo/
5http://ccl.northwestern.edu/NetLogo/models/community/

ElFarolBarProblem
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Modeling at Northwestern University (Wilensky (1999)). It
is particularly well suited for modeling complex systems
evolving over time. Modelers can give instructions to hun-
dreds or thousands of independent ‘turtles’ (the agents)
all operating concurrently. This makes it possible to ex-
plore connections between micro-level behaviors of individ-
uals and macro-level patterns that emerge from their in-
teractions. NetLogo is easy to get started, with a ‘low
threshold’, and no limitations for advanced users, called ‘no
ceiling’ (Tisue and Wilensky (2004b)).

We chose the NetLogo modeling and simulation envi-
ronment as a platform as it is well adapted to all of our
needs. There exists several dozens or more programming
environments of which NetLogo is but one. However we
have found this a good choice for our work, and here are
some of the reasons.

In order to avoid biased interpretation of the results or
other errors, we required a simple language for our imple-
mentation, which is the case of NetLogo’s declarative lan-
guage (as BASIC). It is freeware, it has excellent support,
and a large and active user community. It comes packaged
with extensive documentation and tutorials and a large col-
lection of sample models. It is easy to read and execute a
text file of commands that setup, run, and record the results
of an experiment. Moreover, its built-in visualization allows
dynamic, flexible, and customizable views of model results.
NetLogo has been under development since 1999. More on
it’s origins, a tour of the interface, an introduction to the
coding language and other details is presented by Tisue and
Wilensky (2004a). Finally NetLogo (version 2.1.0) has a
friendly graphical user interface (see Fig. 1).

Figure 1: NetLogo’s graphical user interface (version
2.1.0), with the El Farol Bar Problem running on the simu-
lation platform.

Figure 1 shows the composition of simulation platform,
with the controls (sliders and buttons), the world (where the
turtles interact), and the display of information (monitors
and plots).

The Number-of-Agents slider is straight-forward. It de-
termines the number of agents in the game, set at 100 in
the standard game, (from 0 to 143). The Strategy-Space
will determine the size of the ‘alphabetic soup’ (S = 6 to
200). It allows to user to simulate the impact (if any) of the

total amount of strategies before distributing them to the
agents. The Strategies-per-agent distributes randomly
the k strategies (3, 4, ..., or 12 out of S) to each agent.
The Memory slider will determine the length of the past data
(equation 1) the agents use (5 to 20). Since the past at-
tendance is the only available information, patrons having a
long memory are more informed. Finally the Lambda slider
is used in equation 2 to compute the performance of each
strategy. A low λ gives more importance to current perfor-
mance while a high λ uses the past (0 to 0.9). Note that a if
λ is set to 0, the predictor performance evaluation only uses
current performance thus reduces to the ‘relative precision’
described in Section 2. We also excluded to consider only
the past without adding any new information on the perfor-
mance (λ = 1), which depends in this case only on the first
attendance.

As in almost any NetLogo simulation, there is a SETUP
and a GO button, which control the execution of the model.
The SETUP button resets the system and prepares the model
to be run. The agents and the strategies are created, and
then the strategies are distributed randomly. These are de-
termined by the data from the sliders. The GO button, a
forever button, runs the model and the GO ONCE button is
the same except the agents only take one step.

Once the set up finished, the simulation can be launched,
and the agents start taking their decisions. The agents have
a binary choice, to go or to stay, respectively colored in pink
and white and shown in the world6. On the top-right part
of the simulation screen the attendance at the bar (with the
average) is plotted and the histogram is plotted next to it.
The best, worst and average score vs time are plotted in
the bottom right part of the screen. There are also a few
monitors (attendance, mean, standard deviation, number of
predictors choosing to go and to stay). There are many
displays of information, however in order to understand the
results, the implementation of the model has to be discussed,
which we do in the next Section (Section 4).

4 Architecture and Implementation

In order to analyse thus understand the results of the sim-
ulations of the EFBP in NetLogo we must discuss it’s im-
plementation. The schematic representation of the model
(Figure 2) puts in evidence the feed-back effects in between
the levels (Langton (1989)); the agents’ actions (microscopic
level) and their attendance at the bar (macroscopic level).

The logic behind the simulation is as follows. The first
step consists in the setting up of the environment/bar, the
specifications of the agents and the strategies creation and
distribution, according to the memory. This is done accord-
ing to the data retrieved from the sliders on the user inter-
face. The simulations may then begin and all of the agents
compute a forecast for the next week attendance using each
one of their predictors. They will go if this prediction is
equal or less than the open-level and not if it is more, based
on their active predictor.

to select-action
ifelse (active-predictor <= open-level)

[set choice 1]
[set choice 0]

end

6I used the same world representation as Nigel Gilbert for SITSIM,
available at http://ccl.northwestern.edu/NetLogo/models/community/
Sitsim
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Figure 2: A schematic representation of our approach to the
El Farol Bar Problem.

Then the number of agents having gone to the bar are
counted and the bar opens or not. The colors in the world
are refreshed in the GUI, and the attendance is added to the
history list.

to turtles-setup
ask turtles

[ifelse choice = 1
[set color pink]
[set color white]]

set count-list lput count turtles with
[choice = 1] count-list

set count-list-go lput ((count turtles
with [active-predictor > open-level])
* 100 / count turtles) count-list-go

ifelse (last count-list > open-level)
[set history 0]
[set history 1]

end

Since a new opening information is available, the agents
update their succes rate, which is the value based on the
agents’ portfolio of predictors (used to compare individual
performance). The scores that agents get to evaluate their
success versus time is 1 if they predict the correct outcome
(to go or to stay when the bar is open or closed respectively)
and 0 if they don’t figure out the correct outcome.

to update-agent-score
ask turtles [

ifelse (choice = history)
[set agent-score agent-score + 1]
[set agent-score agent-score + 0]

]
end

At this step each agent also updates the accuracies of all
of their predictors using equation 2 in order to determine a
new active predictor for the next forecast.

to update-scores-agent-list
ask turtles [

set step 0
repeat (strategies-per-agent)[

set strategies-scores replace-item step
strategies-scores

((Lambda * (item step strategies-scores))
+ ((1 - Lambda) * (abs (last count-list
- (item step individual-choices-list)))))

set step (step + 1)]
]

end

In our simulation the strategy space contains 200 pre-
dictors, which are composed mainly by trends, moving av-
erages, fixed rules and tit-for-tat rules. For the special case
where the history is not long enough yet, the predictors
choose randomly. For a 20 day tit-for-tat on week 10 for
example, the prediction will be random7 and the code looks
like this.

to TitForTat
ifelse
(length count-list < (item step individual-strategy-list) + 1)

[set forecast (random count turtles)]
[set forecast (item ((length count-list)

- (item step individual-strategy-list)- 1) count-list)]
end

The predictors we implemented are simple, limited in
number and are often similar in the sens of forecast (the
nine and the ten day moving average will forecast a similar
attendance). Therefore our work may be viewed as a start-
ing point that could be improved by adding more diversified
predictors, but it is however robust enough to perform sim-
ulations of the EFBP and we believe that it should be more
viewed as a ‘skeleton’ of the model instead.

5 Simulation Results

In order to evaluate the quality and measure the efficiency
of our implementation, we compare our results with the
ones from Arthur’s paper and since the only results are con-
cerning the collective behaviour, we use that as a bench-
mark. The domain of validating computational models is
in fact less straight forward as in mathematical theory for
example and one of the most common technique of valida-
tion is comparison of results (Axtell, Axelrod, Epstien, and
Cohen (1996)).

The simulations we perform are based on the following
parameters; The number of agents, N , is set to 100, the
simulations are done over 150 weeks, each agent chooses
randomly k, equal to 6, predictors out of 200, d, the memory,
on which the predictors are computed, is set to 20 weeks and
the weighting factor λ is set to 50%.

Figure 3 depicts an output of a simulation whose emerg-
ing result is similar to the one reached by Arthur (1994),
with the attendance at the bar (full line) oscillating around
60, the opening level, L. It is interesting to notice that
the average (dashed line) hardly moves and seems to stabi-
lize around this level. The dynamics seem random, despite
that no random component determines the dynamics of how
many people go (Casti (1996)). In fact, although at a mi-
croscopic level each agent is applying a different predictor at
any one time, with varying degrees of success, when viewed
globally, they seem pretty indistinguishable. The only ran-
dom part of Arthur’s model is the setting-up. Therefore
once the game is set the output is completely deterministic
since the rule update is stable.

7We believe that and this proposition seems reasonable (without
any mathematical proof) and Arthur did not give any indication on
this question.
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Figure 3: Standard simulation of the El Farol Bar Prob-
lem. The attendance at the bar (full line) and the average
attendance (dashed line) are plotted over 150 weeks. The
simulation is done with N = 100, k = 6, S = 200, d = 20
and λ = 50%.

The average of the attendance (Fig. 3) is stable in time
(60.34, 60.01 and 59.99 respectively on week 50, 100 and
150) and so is the standard deviation (7.61, 8.73 and 9.22).
However, in order to smooth the output and to validate
our computational tool, we re-launched the simulation 100
times. We found that the average of the averages tends
toward the opening level (Fig. 4, top left), however lower
59.7073 at the 150th week (< 60). We also notice differ-
ences in between the minimum and the maximum average
(59.0611 and 60.2214 respectively). Further, we found that
the average standard deviation is stable on average (Fig. 4,
top right), at 8.8247 on the 20th week and at 8.7546 on the
150th. But the data exhibits some differences in between
the minimum (6.8198) and the maximum (10, 8981) average
standard deviation.
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Figure 4: Bar chart of the minimum, the maximum and the
average of the average of the attendances (top left) and of the
standard deviations (top right). Also for the active predic-
tors expecting an attendance greater than the open level, and
equal or lower (respectively bottom left and right). Simu-
lations are done over 150 weeks for 100 simulations, with
N = 100, k = 6, S = 200, d = 20 and λ = 50%.

Not only does the number of people who attend the bar
fluctuate around the open-level attractor at an average level

of l, close to 60% in our simulations, there is also a (L, N−L)
internal structure of people going and not going (Fig. 4, bot-
tom left and right), which constitutes the well known Nash
Equilibria (Arthur (1994), Zambrano (2004)), and which is
selected through the computer simulations. We belive that
it is a well diversified predictor portfolio that allows the
bounded-rational agents to select this equilibrium strategy.
This is the same solution as choosing randomly a number
in between zero and N (the number of agents) and staying
at home if it is strictly greater than L, and to stay home
otherwise.

Our results confirm Arthur’s observations concerning the
attendance (< A >≈ L, with a (L, N − L) internal struc-
ture), even if the average attendance we measured is slightly
lower than the resource level. In fact Challet, Marsili, and
Ottino (2004) find that piking randomly and uniformly from
the total predictor space, the agents go to the bar with prob-
ability L/(N +1) and thus the average attendance settles at
that level (59.406 with N = 100 and L = 60). We consider
therefore that we are in presence of a ‘steady state’ and we
believe that our computer tool is workable. However adding
a more complete strategy space to our setup, in the sense
of Challet, Marsili, and Ottino (2004), could maybe reduce
the noise of the output results.

6 Conclusions

We have described throughout this paper the implementa-
tion and the simulation in NetLogo of the El Farol Bar
Problem. We discussed among others the modeling assump-
tions made in order to translate Arthur’s model described
in natural language into a workable computer tool. We then
used it and we presented the results of the simulations in
order to validate the model by comparison to other results
available in the literature. We also discussed briefly the out-
put data and the apparently random patterns even if the set
up is completely deterministic.

We have also shown NetLogo’s ‘low threshold, no ceil-
ing’ strength (Tisue and Wilensky (2004b)). Low threshold
because our implementation is short, simple and the results
we found match Arthur’s complex simulations. And no ceil-
ing because the ‘El Farol Bar Problem’ in NetLogo can now
be used for broader simulations; extending the behaviour
of the agents (Edmonds (1999)), testing Darwinism on the
players’ portfolios or testing the state of their information
(as in Challet (2000)) or using genetic algorithms (Fogel,
Chellapilla, and Angeline (1999)) for example.

The tool we have discussed here is therefore a ‘skeleton’
for further developments and simulations. The next step in
this work could be to investigate further the usage and the
performance of the predictors or for example the adaptabil-
ity of the EFBP metaphor to other domains.
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