
1

Procedural Modeling of Urban Land Use

Tom Lechner
1
,

Benjamin Watson
2

Dept. EECS, Dept. CS

Northwestern U., NC State U.

Uri Wilensky
1
,

Seth Tisue
1

Program Learning Sciences

Northwestern Univ.

Martin Felsen
3
,

Andy Moddrell
3

School of Architecture

Illinois Inst. Technology

Pin Ren
1
,

Craig Brozefsky
1

Dept. CS, Prog. LS

Northwestern Univ.

Abstract

Cities are widely used as content in digital productions, and their
complexity makes them very difficult for artists to model. The
few tools that help artists in this work do not model land use,

meaning artists must arrange the buildings in the cities they create
manually. We describe a method for procedurally generating
typical patterns of urban land use using agent-based simulation.
Given a terrain description, our system returns a map of
residential, commercial, industrial, recreational park and road land
uses, including age and density of development. Artists can
interact with the map via a painting interface to establish global
developmental behavior, guide local development trends, or
directly set desired land use. Our results conform to modern
patterns of land use, but each generated city is unique.

CR Categories: I.6.5 [Computing Methodologies]: Simulation and
Modeling — Model Development; I.3.5 [Computing
Methodologies]: Computer Graphics — Computational Geometry

Figure 1: Vectorized output from our procedural city model at a three-mile width, showing residential (yellow), commercial (red),

industrial (blue) and park (light green) development. The artist has painted ―honey‖ near the bay to create an unusually dense commercial

zone, and left parcel boundaries quite loose. Note the neighborhoods with differing road layouts.

2

and Object Modeling; J.5 [Computer Applications]: Arts and
Humanities — Architecture.

Keywords: cities, urban planning, urban design, urban
development, urban geography, procedural modeling, agent-based
simulation, behaviors, complexity.

1 Simulating land use

Cities are important elements of content in digital productions, but
their complexity and size make them very challenging to model.
Few tools exist that can help artists with this work, even as rapid
improvements in graphics hardware create demand for richer
content without matching increases in production cost.

We propose a method for procedurally generating realistic
patterns of land use in cities, automating placement of buildings
and roads for artists. Given a geographical map, our current
system models the development of five fundamental types of land
use: residential, commercial, industrial, roads and parks. Artists
can allow development to proceed completely autonomously,
adjust global developmental behavior, or interact with the
evolving map of land use to guide or manually set local
development. The system outputs a map of land use including
property lines, age and density of development, and population.
Each generated city is unique, but corresponds with modern
patterns of land use. Figure 1 shows one artist-steered example.

2 Procedural modeling and motivation

Computer graphics has long been used to assist architects and
urban planners, primarily through interactive modeling and
visualization. Yet research in support of urban planning has only
recently begun, with effort concentrating on capture [Teller et al.
2003; Frueh and Zakhor 2003] and interactive walkthrough of
entire cities [D´ecoret et al. 2003; Schaufler et al.2000].

Computer graphics researchers have also dedicated considerable
effort to assisting artists in their work. One particularly relevant
stream of this research develops highly automated (procedural)
modeling tools [Ebert et al. 2002]. To date most of this work has
modeled complex natural objects and phenomena, including
among many others fire and explosions [Reeves 1983], plants
[Deussen et al. 1998], and flocking and schooling [Reynolds
1987]. Effort on procedural modeling of human artifacts has been
relatively sparse, including work on modeling tilings [Miyata
1990; Legakis et al. 2003] and truss structures [Smith et al. 2002].

Recently researchers in procedural modeling have begun
addressing applications in architecture and urban planning,
motivated by many of the same problems we focus on in our
work. Even with the best capture techniques, urban models often
contain gaps or lack detail. Lewis and Séquin [1998] ameliorate
this problem by generating 3D building models from 2D plans.
Given approximate 3D building geometries, Wonka et al. [2003]
generate detailed facades using shape grammars, with results
exhibiting cultural variety and responding to the influences of
population and material. Other researchers have focused on
procedural modeling of road networks. Parish and Müller [2001]
grow these networks using L-systems, given input terrain and
population maps. Users of their systems can specify that roads in
certain locations use certain layouts (e.g. gridded and radial).

The computer game SimCity [Electronic Arts 2003] allows
players to act as city planners, creating road and land use maps
manually and then watching simulated cities evolve according to
these maps. Our project has benefited from a close collaboration
with the SimCity developers at Electronic Arts.

Our contributions to this research endeavor are many:

Land use. Our system simulates the distribution of land uses in
urban landscapes, automating the placement of buildings and
structures in digital cities for artists and greatly increasing
realism.

Steerability. Because our tool uses agent-based simulation
rather than L-systems, artists can pause and alter the course of
the simulation freely to meet applied needs, without concern for
whether or not the change is a valid construct of an output
language.

History. Our system simulates the continuous history of urban
development. This enables the system to assign different ages to
various parts of the urban landscape, greatly improving variety
and realism.

3 Simulating urban development

Long before the procedural city modeling efforts described above,
urban planners, designers and geographers built their own
simulations. Planning simulations [Brail and Klosterman 2001]
are focused on predicting near-term futures for existing cities, and
therefore rely heavily on input from geographic information
systems (GIS) and census data. In addition, because planners are
much more interested in global statistics than fine spatial detail,
most planning simulations only output statistics at global or
extremely large spatial scales. One notable exception is Kwartler
et al.’s CommunityViz [Kwartler and Bernard 2001], which uses
agent-based based modeling, the same technique used by Reeves
[1983] for his particle systems and by Reynolds for his boids
[1987]. CommunityViz simulates development in small towns,
outputting detailed spatial maps while still relying on extremely
detailed GIS input.

Simulators built by urban designers are used to envision possible
urban improvements and futures [Bettum and Hensel 2000; Testa
et al. 2000]. These simulations also rely heavily on GIS input, and
since they are primarily tools for conceptual design, their output is
extremely abstract and symbolic.

Because they want to understand the basic processes of urban
development at multiple scales, the needs of urban geographers
are closest to our own, and we have learned much from their
work. Geographic simulations are carefully validated and quite
realistic. However until recently, urban geographic simulations
were also created only at extremely large scales [Benenson and
Torrens 2004]. Even newer simulations [Clarke et al.1997; White
and Engelen 2000] are often too large in scale to enable detailed
positioning of individual buildings and streets. Regardless, our
goals (supporting artists) and those of geographers (understanding
the real world) are fundamentally different, and result in
fundamentally different solutions. Geographic simulations require
heavy input, focus on modeling of realistic processes and once
started, are usually unsteerable. In contrast, artists need solutions
that require little input, focus on realistic output and are as
interactive as possible.

3

4 Patterns of urban development

According to urban experts, the most salient components of the
urban development are residential, commercial, industrial and
road development, which together result in roughly 80% of urban
land use (40%, 5%, 10% and 25% for each respective land use)
[Eisner et al. 1993]. We therefore focus primarily on these land
uses in our work.

Each property developer seeks the regions most appropriate for its
use [Eisner et al. 1993; Kostof 1991; Alexander et al. 1977].
Residential developers prefer to place the homes they build in
large clusters, and away from busy roads and industry. They favor
waterfronts, above-average elevation for views, and parks.
Residential developments also use the smallest and least densely
populated parcels.

Commercial developers place their stores and offices close to their
markets and transportation corridors. For this reason these
developments cluster as well, but this tendency is counteracted by
the limited size of local markets. These developers also favor
relatively flat terrain. Commercial development parcels are larger
than residential parcels, and much more densely populated.

Industrial developers prefer flat land and access to transport. The
heavy traffic and pollution they generate make them
uncomfortable residential and park neighbors. Industrial parcels
are the largest, but less densely populated than commercial
parcels.

Unfortunately, parks are typically an afterthought in cities, with
large parks not appearing until the city is quite mature. For this
reason, parks most often appear in neglected regions of the
cityscape, such as flood plains and rugged terrain. As amenities
for the home rather than the work life, parks are generally closer
to residential than industrial areas.

Roads are organized into a hierarchy, from freeways to primary
roads down to tertiary roads [Eisner et al. 1993; Alexander 1977].
Higher levels of the hierarchy are wider roads serving high-speed
travel over long distances. Lower levels provide access from
homes and places of work to higher levels of the hierarchy, and
therefore are smaller and only support travel at low speeds. Road
networks are often organized in tight or loose grid patterns, or
alternatively in more ―organic‖ patterns that respond to historic
paths, property lines and topography [Kostof 1991; Carmona et al.

2003]. Our system currently models both primary and tertiary
roads, and allows artists to specify where these roads should be
organized organically or into grids.

5 Procedural modeling of land use

We implement our simulation in NetLogo, a programming
language and agent-based simulation environment developed by
Uri Wilensky [1999]. The high-level nature of the language
enables rapid development, aids low-cost experimentation with
different solutions, and facilitates our collaborations with
architects and urban planners with its transparent, ―open box‖
design.

We associate each land use with distinct developer agents, which
act in a simulated environment we call the world. The world
consists of a rectangular grid of atomic areas called patches,
which store local state. p refers to an agent’s current patch, and
makes the components of the patch’s state accessible as fields
(e.g. p.e is the patch’s elevation). Each patch is 40 ft (~12m)
square, allowing the simulation to represent tertiary roads using a
one-patch width. With a 200x200 patch world, our system then
models an environment approximately 1.5 miles square.

5.1 Input, interaction and output

The primary source of input to our simulation is a terrain height
map that can either be input directly using a painting interface, or
read in from a file. In addition, artists may shape urban
development using a number of parameters (though serviceable
cities are generated using parameter defaults). Figure 1 shows the
effect of road layout parameters, with gridded regions in different
orientations, and ―organic‖ ungridded regions. Figure 2 shows
how artists can adjust the proportions of residential, commercial,
industrial and park development. In Figure 3, the artist varies the
predominance of the urban center, with density of development
clustering tightly or loosely. Finally in Figure 4, the artist creates
cities in which different land uses cluster more or less tightly.
Some parameters (e.g. proportions of development types) are
global and affect the entire city, while others (e.g. road layout) are
local, with artists applying them to a specific neighborhood using
the painting interface.

This initial artist input is useful, but the demands of digital
production are often much more specific. Artists may therefore
steer the simulation by removing unsatisfactory development,

Figure 2: The artist increases red, commercial land use from left to right by manipulating the land cover constraints t.

4

adding desired development, and adjusting simulation parameters.
These actions may be taken at any point during the development
of the city. One particularly useful parameter is honey, which
enables artists to add local incentives encouraging certain types of
development. In Figure 6, the artist demolishes a residential
neighborhood and paints it with honey encouraging industrial
development. Another reserved parameter prohibits any
development. Students in one of our architecture courses used this
parameter to recreate the neighborhoods of Madrid and Berlin
shown in Figure 7.

Our system generates a rasterized map of land uses, with
residential, commercial, industrial and park uses occupying
properties called parcels made up of several patches, and roads
occupying series of patches connected to form a transportation
network. Each parcel describes its population, age, and value,
with parcel density the ratio of parcel population over parcel
patches. Roads are identified as either primary or tertiary. These
layouts may then be populated with appropriate 3D buildings, as
illustrated in Figure 17.

5.2 Property developers

Property developer agents construct parks as well as residential,
commercial and industrial buildings. Each of these uses is
matched to a corresponding agent type. As Figure 5 shows, during

each simulation tick a property developer prospects, builds and
checks profitability.

Figure 5: High-level behavior of property developers.

Figure 8 outlines prospecting behavior, which consists of moving
to a new location, and then updating the agent’s list of
developable sites devSites. The new location is the most valuable
member of devSites in the developer’s current local area
circle(5) (the diameter 11 circle centered at the developer). If
circle(5) contains no developable sites, or if the agent has not
created a profitable development recently, it relocates globally to
one of the most valuable fifth of all developable sites, and resets
its list of recently seen undeveloped patches devPatches.

devSites contains parcels or empty patches that are adjacent to a
road and not reserved by the artist. Parcels must also intersect
circle(5) and not be prohibited for development by the
developer’s type: residential use cannot be converted directly to
industrial use (and vice versa), while parks may not be converted

for each simulation tick
 devSites = prospect(type,devSites)
 for each site in devSites
 newDev = build(site,type)
 if profitable(site,type,newDev) then commit(newDev)
 endfor
endfor

Figure 4: The artist varies the clustering behavior of residential, commercial and industrial developers by increasing attribute weights from

left to right. Because red commercial developments have fewer proximity constraints than residential and industrial uses, they respond most

strongly, forming fewer, denser (brighter red) clusters.

Figure 3: The artist increases population clustering, from left to right, by adjusting the density smoothness constraints t. This effectively

strengthens the urban core. In these density views, higher population density is indicated by whiter parcels, and use is not displayed.

5

to any other use, and may only be installed in undeveloped land.
Empty patches may not be in circle(5). Instead, the developer
maintains a list devPatches that is a subset of devSites, and
after each move, adds all empty patches in circle(5) to
devPatches, and then removes the least valuable 10% from the
resulting set.. This non-local behavior increases selectivity in
locating new development.

Figure 8: Prospecting behavior of property developers.

A property developer can build by improving an existing site
already put to its own use, by converting a site to its own use, or
by forming a parcel on undeveloped land. Figure 9 shows that to
improve a site, a developer simply increases the site’s population
by 1. To convert a site, the agent changes the site’s type.

Figure 9: Building behavior of property developers.

To form a residential, commercial or industrial parcel out of
undeveloped patches, a developer chooses a random target parcel
size from its type’s size range. Starting from the only empty patch
currently in the site, the developer moves perpendicularly away
from the road, adding each newly reached patch to the parcel.
When the developer has traveled half the block length B, it stops
moving away from the road and begins widening the strip of
patches now in the parcel by adding patches along either side of
the strip, until the target number of patches is in the parcel, or no
undeveloped patches are adjacent to the parcel. If the resulting
parcel is smaller than the minimum in the agent’s size range, it
attempts to merge the parcel with adjacent parcels with the same
use, without surpassing the range’s maximum. If the resulting
parcel is in the type’s size range, the developer records the
creation date in the parcel and assigns it a population proportional
to its type’s minimum density. Otherwise the developer aborts
parcel creation.

Parks are built by the public sector, and are subject to additional
artist-defined constraints. For park building to proceed, cities
must have a certain minimum population and contain less than a
certain number of park patches both per resident and per
developed patch. To form a park, the developer chooses a random
target size from its size range. It then scales this size by the value
of the site and the size of the city, to create bigger parks at
particularly valuable sites, and in bigger cities. The developer then
starts a flood fill from the site’s only empty patch. From the set of
empty, unreserved patches adjacent to the current parcel, the agent
adds patches more valuable than half of the other patches in the
set until the parcel reaches the target size, or is completely
surrounded by development. If the flood fill stops before reaching
the minimum park size, the park developer aborts parcel creation.

To improve honey’s effectiveness, a developer may immediately
swap an existing parcel for a honeyed parcel. Without this
mechanism, simulation constraints on the global proportions of
uses hinder the ability of developers to take advantage of honey,
much like real world economies limit the effectiveness of
government incentives. The existing parcel in the swap must be
adjacent to a parcel of a different type, and will be the least
valuable of such parcels. The swap is executed only if the
honeyed parcel is more valuable than this existing parcel. At
completion of the swap, the existing parcel reverts to an
undeveloped state.

To check profitability, the developer produces a cost-profit model
by in fact developing on each site in devSites and calculating the
change in land value. As Figure 10 illustrates, if the site’s value
would increase by at least P%, it would be profitable. If the site

prospect(type,devSites)

 if devSites ≠  and (recentCommit or recentRelocate) then
 move to select(devSites ∩ circle(5),max(value))
 else begin // relocate globally

 wDevSites = select(world,parcels_convertible_to(type))

 wDevSites = wDevSites  select(world,empty)
 move to random(select(wDevSites,top5th(value)))

 devPatches = 
 endif
 devParcels = select(circle(5),parcels_convertible_to(type))

 devPatches = select(devPatches  select(circle(5),empty),top90(value))

 devSites = devParcels  devPatches
return validSites

build(site,type)
 if site is patch then newDev = newParcel(buildLot(site,type),type)
 else if site is parcel then begin
 newDev = copy(site)
 if site.type ≠ type then newDev.type = type
 else newDev.population = site.population + 1
 endif
return newDev

Figure 6: The artist steers the urban simulation. Left, the state of the simulation before editing. Left of center, the artist erases an

undesirable commercial and industrial cluster. Right of center, the artist paints residential, commercial and industrial honey on the city to

attract desired uses to certain neighborhoods. Right, the resulting city, with roads and parcels automatically placed.

Figure 7: Architecture students used the simulation to recreate

neighborhoods in Madrid (left) and Berlin (right). They produced 3D

models of their results with a rapid prototyping machine.

6

was undeveloped or its use would not change, then this
profitability commits the agent to the new development. If the
site’s use would change, then the profit from the new
development must be greater than any loss in value to developers
for the prior use. This helps ensure that sites are developed for the
most profitable use, and brings some stability to the urban market.

Figure 10: Profit-checking behavior of property developers.

5.2.1 Determining Value

The values that developers assign to properties are the most
important factor in determining their behavior, and the primary
means through which artists can influence it. Property developers
of type t calculate patch value vt using the following equation:

  ttttttt hAWv  

where A is a vector of attributes describing the world in the
locality of the patch, Wt is the vector of importance weights given

to each of those attributes by developers of type t, t is
the proportional population constraint, t is the
proportional land cover constraint, t is the proximity
constraint, t is the density smoothness constraint, and
ht is honey in the range [0,1]. Note that when patches
have been developed and assigned to a parcel, value is
determined not per-patch but per-parcel, with that value
being the mean of the constituent patch values.

Table I details the attributes in A, which measure a
qualities that developers consider valuable or attractive.
Since these attributes have different ranges and units of
measurement, they are normalized by the function :

 

 

















xx

xx
xx

xx

xx

:22

:2
),(

1

1



where x is the value of an attribute of a particular site
(always positive) and x̄ is the mean of all such values in
the city.  limits attribute values to the range [0,2]. If
the value and its mean are equal,  is one. As the ratio
of an attribute value to its mean increases, 
approaches two, while as the ratio drops,  approaches
zero.

Wt indicates the importance property developers attach
to each attribute when valuing a patch. Table II shows
the default weights. These weights sum to 1, so that a
patch that is average in every respect will have an

unconstrained value of 1. Figure 4 demonstrates the effects on
clustering by use produced by manipulating some of these
weights. The constraints listed in Table III implement powerful
global restrictions on property development. The population
constraint t maximizes value when the population occupying
land dedicated to use t is a certain proportion of the entire city’s
population. Similarly, the land coverage constraint t maximizes
value when the number of patches dedicated to use t is a certain
proportion of the number of patches in the city. Figure 2 shows
how the portions of the city dedicated to each type change as
these constraints are varied. The constraint t controls the
smoothness of changes in population over space for each land use
t. In Figure 3, changes in this constraint vary the strength of the
city’s core. Finally, the proximity constraintt discourages certain
types of developers from developing too close to others: in
particular, residential and industrial uses are rarely located close
to one another, while parks are rarely located close to industrial
and commercial developments.

5.3 Road developers

Three types of developers build roads: tertiary extenders, which
ensure that undeveloped land is accessible; tertiary connectors,
which ensure that the tertiary road network is adequately
interconnected; and primary developers, which ensure that
residents can move through the city as a whole quickly.

All road development is shaped by several local, artist-paintable
constraints. gx and gy define the local grid spacing in two
dimensions. gθ allows the grid to be rotated locally in the world’s
plane. gdx and gdy indicate local tightness in each dimension of the
grid. If gdx = gdy = 0, road patches must be directly on the grid. If
gdx  gx and gdy  gy, the grid does not constrain road layout at all,
so the local road network will be completely ungridded and
―organic‖. Finally, Dt limits road density droad, the number of road
patches within each local neighborhood circle(5). Figure 1 shows
the impact of varying these parameters within a single city.

profitable(site,newDev)

 if newDev =  then profit = false

 else begin

 profit = value(newDev.type,newDev)/value(newDev.type,site)  (1+p/100)
 if (site is parcel) and (site.type ≠ newDev.type) then begin
 prevLoss = min(0,value(site.type,newDev) - value(site.type,site))
 newGain = value(newDev.type,newDev) – value(newDev.type,site)

 profit = profit and prevLoss  newGain
 endif
 endif
return profit

Table I: Attributes used to value land. p is the current patch, with p.dp distance

to primary roads, p.dw distance to water, p.e elevation and p.population

development capacity. The size field is the number of patches in a parcel. ē is

average elevation, eoffset is desirable height above ē, and ew is water elevation.

Untransformed attributes not in the table include honey as well as p.dpk and

p.dcom, the distances from p to the nearest park and commercial development.

Attrib Description Equation

eh Elevation advantage
 

128

2



 offsetee

e

e.p

ev Variance in elevation (negative) e)cle(5).setVar(cire

epv Variance in elevation (positive) e)cle(5).setVar(cir

efp Flood plain elevation  we


e.p
2

dpr Proximity to primary roads pd.p
e

dw Proximity to water  d.p w



1

2

dm Proximity to market   ccpr dcd150.

dr Residential density)))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(res

dc Commercial density)))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(com

di Industrial density)))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(ind

cc Commercial clustering  size(p)).parcels_inneighbors(11 max

 x Anti-worth  icr vvv 111 

Table II: Weight vectors applied to land attributes by property

developers. All attributes are normalized with μ.

Weights eh ev epv efp dw dr di p.dpk dpr dm p.dcom x

Wr .3 .3 .4

Wc .2 .15 .15 .4 .1

Wi .5 .3 .1 .1

Wp .1 .1 .1 .1 .4 .2

7

Figure 5 shows the common high-level behavior shared by all
road developers. During each simulation tick, a road developer
prospects by moving to a new location. If that location meets
current road constraints and needs a road, then the developer
attempts to build a new road. If the resulting road meets certain
criteria, the developer commits to this road. Otherwise the road is
removed.

Figure 11: High-level road developer behavior.

5.3.1 Tertiary road extenders

Tertiary road extenders push access roads into empty territory,
making it developable. An extender prospects by hill-climbing
through a landscape defined by distance to the road network
roadDist, which is stored at each patch. It will not move more
than Dmax patches from the road network. To avoid local maxima,
an extender does not revisit recently examined patches. If despite
this a local maximum is reached, or if an extender has prospected
for too long without attempting to build, it transports itself to a
distant patch that meets local road constraints and needs a tertiary
extension.

Figure 12: Building behavior of tertiary road extenders.

Any location at least dmin patches from the road network needs a
road, and an extender will attempt to build a road to it, if the
location meets local constraints. Extender building behavior is
illustrated in Figure 12. To find the road’s path, an extender
descends the same roadDist landscape it climbed when

prospecting, checking that each
patch it reaches fulfills the road
constraints. Given a choice between
two or more patches, an extender
uses two tiebreakers. First, it will
choose the patch that is on a parcel
boundary. If that does not resolve
the choice, the extender chooses the
patch with the lowest absolute
change in elevation. Otherwise, the
choice is random. When the
proposed road extension is
complete, an extender will
reexamine it to ensure that the road
density constraint Dt is still met. If
so, it commits to the road and adds it
to the city.

5.3.2 Tertiary Road
Connectors

Connector agents ensure that the tertiary road network is
adequately interconnected, enabling fairly direct travel between
any two points. A prospecting connector moves along the road
network, choosing a random direction whenever it reaches an
intersection. At each prospected patch p, the connector chooses a
random destination road patch dest within the radius rc of p. p
needs a road if the shortest path on existing roads to dest is too
long, and the region along the direct line between p and dest
contains no roads. A path is too long if it is cratio times longer than
dist(p,dest), the actual distance between p and dest, or if any
point on that path is beyond the radius rc.

When building a road, a connector begins linking start and dest
by moving toward dest as outlined in Figure 13. Each new road
patch nextPatch must fulfill road constraints. When more than
one patch q meets the constraints, the connector chooses a
nextPatch that heads toward dest while avoiding existing roads
and changes in elevation. It does this by minimizing the cost
function ctc:

         e.deste.q.destq,distroadDist.q.d.q. road  nnnntcc 04011020

where n(z) = z/(max(z),  q). Because connectors work in a highly
constrained, already developed environment, they can backtrack a
few times should an initial road path prove unsuccessful.

Figure 13: Building behavior of tertiary road connectors.

Building ceases when a connector reaches a road patch, whether
or not it is dest. Because the destination may change in this way,
before an agent commits to a proposed complete connection, it
must confirm not only that the connection still meets the density
constraint Dt, but also that it is 1/cratio times shorter than the
shortest path between start and the connections’s actual ending
patch on the existing road network.

buildRoad(start,connection)
 prevStates = empty_stack[3]; possRoad = empty_list; nextPatch = {start}
 repeat
 repeat
 move to nextPatch; possRoad = append(possRoad,p)
 possPatches = select(select(neighbors(p),meetsConstraints()),min(crc))
 nextPatch = select(possPatches,random)
 push(prevStates,possRoad,possPatches-nextPatch)
 until (road(nextPatch) or ||nextPatch|| = 0)
 until not restoreState(pop(prevStates))

return possRoad

for each simulation tick
 move to newLocation(type)
 if (meetsConstraints(p) and needsRoad(p,type)) then
 roadSegment = buildRoad(p,type)
 if valid(roadSegment,type) then commit(roadSegment)
 endif
endfor

buildRoad(start,extension)
 possRoad = empty_list; nextPatch = {start}
 while (not road(p) and ||nextPatch|| > 0)
 move to select(nextPatch,random)
 possRoad = append(roadSeg,p)
 nextPatch = select(neighbors(p),meetsConstraints())
 nextPatch = select(nextPatch,min(roadDist))
 nextPatch = applyTiebreakers()
 endwhile
return possRoad

Table III: Constraints used to value land. pt and lt are total population and land cover for use (type)

t, pC and lC are city-wide population and land cover, while pDt and lDt are desired proportions of pt to

pC and lt to lC. dti is the initial density of a building during construction. For parks, t = t = t = 1.

All attributes are again normalized with μ.

Constr Description Equation

t Population constraint for use t    






 
2

19010
DtC pp

tp
max .,

t Land cover constraint for use t    






 
2

19010
DtlCl

tlmax .,

r Proximity constraint for residential uses  di
 102080 ..

c Proximity constraint for commercial uses)(d.p pk..


 102080

i Proximity constraint for industrial uses    pkd.p
...


 1040102040 rd

p Proximity constraint for parks    cdid 
 10301070 ..

t Density smoothness constraint for use t    1240 3 ,p).neighbors(.,clamp ddmindlog titit 

8

5.3.3 Primary road developers

Primary road developers connect the city’s center to its surround
and ensure that a primary road will usually be nearby. Primary
roads need not adhere to gridding and road density constraints.
Nevertheless, because they very often overlay the existing tertiary
network, primary roads are still very much shaped by the
constraints. To prospect, a primary developer hill-climbs through
a dp (distance to primary road) landscape. To avoid overly dense
primary road development, it will not enter the circle(5)
neighborhood surrounding other primary developers. To avoid
local maxima, the developer will not move to recently visited
patches. Should it prospect without successfully building for too
long, the agent transports itself to a developed patch far from the
primary road network.

Figure 14: Building behavior of primary road developers.

Tertiary road locations dminP patches along the network from the
nearest primary road need a link to the primary network. A road
developer builds such links using the behavior in Figure 14. It
constructs two primary road segments, toward a nearby and a
distant destination. The near destination is the primary road patch
at end of the shortest path on the tertiary road network. The
distant destination is either the road patch nearest the center of
population density, or a patch at the edge of the world, in the
opposite direction from the near destination.

A primary road developer builds roads in two modes: urban and
rural. The developer is in urban mode when development exists in
its view slice, the eighth of circle(5) neighborhood within 22.5
degrees of its current heading. In this mode, the constructed
primary road avoids water, while heading toward dest as well as
tertiary and especially primary roads. Candidate road patches q
are neighbors of the last allocated road patch, and the developer
chooses among them by minimizing the cost function

cpu=[n(αpu) n(βpu) n(γpu) n(δpu) n(εpu) n(δpu)]•[0.3 0.2 1 0.1 1 3],

where αpu = dist(q,dest); βpu = distance of q from the line
between start and dest; γpu = 0 if road(q), 1 otherwise; δpu = 0 if
q is a parcel boundary, 1 otherwise; εpu = q.dp; δpu = dw

2
 times the

developer’s current heading dotted with the direction to water

squared.

In rural mode the constructed road again avoids water and now
also changes in elevation. It heads toward dest as well as primary
and tertiary roads. Candidate road patches are organized into
several paths, each defined by a ray emanating from p to a patch
on the edge of the developer’s view slice. The winning set of
patches is chosen by minimizing the cost function

cpr=[n(αpu) n(βpu) n(γpu) n(δpu) n(εpu) n(δpu)]•[0.3 0.5 0.1 0.2.1 3],

where αpr = the variance of elevation along the ray; βpr = the
percent of non-road patches in ray; γpr = distance from the ray’s
tip to dest; and δpr = distance of the ray’s tip from the line
between start and dest; εpr and δpr have the same definitions as
they do in the urban mode.

A developer continues to build a primary road until it either
connects with the existing primary road network, or it reaches the
edge of the world. Before committing the road, the developer
clips it if it extends too far over water, and runs a smoothing filter
over it to remove jagged angles.

6 Results

Figure 1 shows a vectorized version of the output of one of our
simulations in a world of roughly nine square miles. Here the
artist has brought almost all commercial (red) development to the
bay with a strong dose of honey. Note in particular the four
differently gridded road layouts, surrounded by ungridded,
organic layouts. Vectorization is a polygon- and spline-based 2D
post-process we apply to the raster outlines of parcels and roads in
our simulation output.

Figure 15 shows the developmental history of another city. Initial
parameters including mountains, water, and road layouts were
painted onto the map in less than 10 minutes. All development
thereafter was completely automated. Note in particular the
automatic growth of primary roads and the development focused
along primary roads and shorelines.

Validating this input numerically is a challenge because we are
not attempting to reproduce any existing city, but only the typical
urban patterns that make a newly visited city feel ―real‖. To

buildRoad(start,primary)
 nearDest = select(world,primary and min(roadPath(start)))
 if (rand(0,1) > .5) then farDest = select(world,road and min(dist(city-ctr)))
 else farDest = select(world,edge and oppositeDir(nearDest))
 primRoad = buildPrimary(start,nearDest)
 append(primRoad,buildPrimary(start,farDest))
return primRoad

buildPrimary(start,dest)
 newRoad = empty_list; nextPatch = {start}
 repeat
 newRoad = append(newRoad,path(p,nextPatch)); move to nextPatch
 if devInSlice() then nextPatch = select(neighbors(p),min(cpu))
 else nextPatch = select(distantNeighbors(p),min(cpr))
 nextPatch = select(nextPatch,random)
 until (primaryRoad(nextPatch) or edge(nextPatch) or ||nextPatch|| = 0)
return newRoad

Figure 15: The developmental history of city nine miles square. Note the clustering at primary road intersections, and the early

development along the shoreline. An industrial (blue) region develops away from the city center, but the city soon swallows it.

9

address this problem, urban geographers have turned to measures
of composition or proportions of land cover by use; and spatial
configuration, which refers to the distribution and clustering of
land use [Turner 1989; Torrens 2002, 2003]. As we have
demonstrated, composition is easily controlled by the artist, and
proportions similar to those mentioned by Eisner et al. [1993] are
simple to produce. Spatial configuration can be measured with
conditional probabilities. We call our measure conditional
proportion (Cp), inspired by the urban geography literature:

 







 

  







 



 









 









m

i

n

j

ri

rik

rj

rjl
lkji

m

i

n

j

ri

rik

rj

rjl
lkji

p

pInMapupUseIs

vpUseIsupUseIs

C

1 1
,,

1 1
,,

)(),(

),(),(

.

Cp is the proportion of land within a radius r surrounding use u
that is dedicated to use v, across the entire m  n map. Here i, j, k
and l are map coordinates, pi,j is the patch at i,j, UseIs(pi,j,u) is a
function that returns 1 if pi,j has use u and 0 otherwise, InMap(pi,j)
is a function that returns 1 if pi,j is in the map and 0 otherwise.

We use Cp to compare our output to Houston, TX and show the
results in Figure 16. Here we visualize conditional relationships
between each type of use with grayscale matrices. In each matrix,
the row indicates use u, the column use v, with the gray level in
each cell indicating the corresponding value of Cp (brighter values
are higher). Note in particular the bright diagonals, which indicate
self-clustering of various usage types. Two other strong trends are
the proximity of roads to most types (indicated by the bright
column, fourth from left in each matrix), and the fading of strong
pattern with increasing scale.

The 2D maps produced by our system are designed to be
populated with 3D building and structure models, providing urban
content for digital productions. Figure 17 illustrates the potential
of our maps for this application by visualizing one of them using
Electronic Arts’ SimCity 3000 [Electronic Arts] display engine.

Clearly our maps include enough information to enable
meaningful choices among SimCity’s library of buildings. Our
maps add an interesting ungridded and higher level structure not
normally present in SimCity’s output. Note that because SimCity
3000 cannot not display primary roads, place any structures on
inclines, nor easily fill non-rectangular parcels, we were forced to
simplify our output considerably.

7 Limitations and future work

Although already quite useful, our simulation does have some
limitations. Our largest nine square mile worlds take several hours
to develop fully. These sorts of speeds are far less than interactive
and must be improved before our tool can see practical use.
However, to this point our focus has been on correctness and
robustness, not speed, and optimizations should be simple to
implement. For example, NetLogo itself is a highly transparent
and interruptible programming language and environment
designed for instruction, and implemented in Java. Implementing
the simulation directly in a high-performance language such as
C++ would be an obvious first step.

Of course, there is a great deal of urban development itself that
our simulation, like any, does not capture. We are not completely
satisfied with the shape of parcel boundaries even after
vectorization – real cities often show much more regularity in
their parceling. We might capture some of this regularity by
performing development or at least parceling in larger units: block
by block, or tract by tract, much like civil zoning authorities and
modern developers. In addition, in the real world, uses are mixed
even within parcels. Mechanisms for mixed-type developments
would be a useful addition. With only two levels to our transport
hierarchy, our cities often look a bit ―flat‖, without the rich
structure that a deep transport hierarchy brings. A new level such
as freeways would be welcome.

In the longer run, we face important and exciting challenges.
Although we already offer good artist control of the simulation,
control at higher historic or cultural levels (e.g. ―old town‖ or
―Chinatown‖) would increase the value of our tool greatly. To
achieve this goal, we will have to simulate changes in urban
dynamics over time: for example, the changes in transport from
horses, to trains, to cars.

8 Acknowledgements

9 References

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M, JACOBSON, M.,,

FIKSDAHL-KING, I. AND ANGEL, S. 1977. A Pattern Language: Towns,

Buildings, Construction. Oxford University Press.

BENENSON, I. AND TORRENS, P. 2004. Geosimulation: automata-based

modeling of urban phenomena. Chicester, England: John Wiley & Sons.
BETTUM, J. AND HENSEL, M. 2000. Channeling systems: dynamic

processes and digital time-based methods in urban design‖,

Contemporary Processes in Architecture, Architectural Design, 70, 3,
36-43.

BRAIL, R. AND KLOSTERMAN, R. (EDS.). 2001 Planning Support Systems.

Redlands: ESRI Press.
CARMONA, M., HEATH, T., OC, T. AND TIESDELL, S. 2003. Public Places

— Urban Spaces: The Dimensions of Urban Design. Burlington, MA:

Architectural Press.
CLARKE, K., HOPPEN, S. AND GAYDOS, L. 1997. A self-modifying cellular

automata model of historical urbanization in the San Francisco Bay

Figure 16: Strikingly similar spatial configurations of use

between Houston, TX (bottom row) and our simulation (top row).

Simulation results are the average configuration of 20 unsteered

outputs. The left column of images depicts configuration in a 40 ft

radius, the middle in a 160 ft radius, and the right in a 640 ft

radius. Rows and columns within images index the residential,

commercial, industrial, road, water and other uses (left to right,

top to bottom). Each cell in an image indicates the likelihood that

the column’s use will be in the radius surrounding the row’s use,

with white indicating high likelihood. Note the strong diagonal

indicating clustering by use, and the proximity of roads to

property at the highest radius.

10

area. Environment and Planning B: Planning and Design, 24, 2, 247-
261.

D´ECORET, X., DURAND, F., SILLION, F.X., AND DORSEY, J. 2003.

Billboard clouds for extreme model simplification. ACM Trans.
Graphics, 22, 3, 689–696.

DEUSSEN, O., HANRAHAN, P. M., LINTERMANN, B., MECH, R., PHARR, M.,

AND PRUSINKIEWICZ, P. 1998. Realistic modeling and rendering of plant
ecosystems. Proc. ACM SIGGRAPH, 275–286.

EBERT, D., MUSGRAVE, F.K., PEACHEY, D., PERLIN, K. AND WORLEY, S.

2002. Texturing and Modeling: A Procedural Approach, 3rd Ed. Morgan
Kaufman: San Francisco.

EISNER, S., GALLON, A., AND EISNER, S. 1993. Urban Pattern, 6th ed. John

Wiley & Sons, Inc.
ELECTRONIC ARTS. 2003. SimCity 4 Deluxe. http://simcity.ea.com/.

FRUEH, C., AND ZAKHOR, A. 2003. Constructing 3d city models by

merging ground-based and airborne views. Proc. Computer Vision &
Pattern Recognition, 562–569.

KOSTOF, S. 1991. The City Shaped. New York: Little, Brown and Co.

KWARTLER, M. AND BERNARD, R. 2001. CommunityViz: an integrated
planning support system. In R. Brail and R. Klosterman (eds.). Planning

Support Systems. Redlands: ESRI Press.

LEGAKIS, J., DORSEY, J., AND GORTLER, S.J. 2001. Feature based cellular
texturing for architectural models. Proc. ACM SIGGRAPH, 309–316.

LEWIS, R., AND SÉQUIN, C. 1998. Generation of 3d building models from

2D architectural plans. Computer-Aided Design, 30, 10, 765–779.
MIYATA, K. 1990. A method of generating stone wall patterns. Proc. ACM

SIGGRAPH, 387–394.
PARISH, Y.I.H., AND MÜLLER, P. 2001. Procedural modeling of cities.

Proc. ACM SIGGRAPH, 301–308.

REEVES, W.T. 1983. Particle systems: a technique for modeling a class of
fuzzy objects. ACM Trans. Graphics 2, 2, 91–108.

REYNOLDS, C.W. 1987. Flocks, herds, and schools: A distributed

behavioral model. Proc. ACM SIGGRAPH, 25-34.
SCHAUFLER, G., DORSEY, J., DECORET, X. AND SILLION, F. 2000.

Conservative volumetric visibility with occluder fusion. Proc. ACM

SIGGRAPH, 229-238.
SMITH, J., HODGINS, J., OPPENHEIM, I., AND WITKIN, A. 2002. Creating

models of truss structures with optimization. Proc. ACM SIGGRAPH,

295–301.
TELLER, S., ANTONE, M., BODNAR, Z., BOSSE, M., COORG, S., JETHWA,

M., AND MASTER, N. 2003. Calibrated, registered images of an extended

urban area. Int. J. Computer Vision, 53, 1, 93–107.
TESTA, P., O'REILLY, U., KANGAS, M. AND KILIAN, A. 2000. MoSS:

Morphogenetic Surface Structure — a software tool for design

exploration. Proc. Digital Creativity Symp. (Univ. Greenwich), 71-80.
TORRENS, P. 2002. SprawlSim: modeling sprawling urban growth using

automata-based models. In Parker, D., Berger, T., Manson, S. and

McConnell, W. (eds.) Agent-Based Models of Land-Use/Land-Cover
Change. Louvain-la-Neuve, Belgium: LUCC International Project

Office, 69-76.

TORRENS, P. 2003. Automata-based models of urban systems. In Longley
P. and Batty, M. (eds.). Advanced Spatial Analysis. Redlands, CA: ESRI

Press, 61-81.

TORRENS, P. 2004. Simulating sprawl with geographic automata models.
Submitted to the Annals of the Association of American Geographers.

TURNER, M. 1989. Landscape ecology: the effect of pattern on process.
Annual Review of Ecological Systems, 20,171-197.

WHITE, R. AND ENGELEN, G. 2000. High-resolution integrated modeling

of the spatial dynamics of urban and regional systems. Computers,
Environment & Urban Systems, 24, 5, 383-400.

WILENSKY, U. 1999. NetLogo. Ctr. Connected Learning & Comptr. Based

Modeling, Northwestern Univ. http://ccl.northwestern.edu/netlogo.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant

architecture. ACM Trans. Graphics, 22, 3, 669–677

Figure 17: Visualization of simulation results using SimCity 3000. Left, an overview shows a curvilinear, hierarchical road network and

two urban cores. Right, a close-up on the cores.

11

