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Abstract 

Cities are widely used as content in digital productions, and their 
complexity makes them very difficult for artists to model. The 
few tools that help artists in this work do not model land use, 

meaning artists must arrange the buildings in the cities they create 
manually. We describe a method for procedurally generating 
typical patterns of urban land use using agent-based simulation. 
Given a terrain description, our system returns a map of 
residential, commercial, industrial, recreational park and road land 
uses, including age and density of development. Artists can 
interact with the map via a painting interface to establish global 
developmental behavior, guide local development trends, or 
directly set desired land use. Our results conform to modern 
patterns of land use, but each generated city is unique. 

CR Categories: I.6.5 [Computing Methodologies]: Simulation and 
Modeling — Model Development; I.3.5 [Computing 
Methodologies]: Computer Graphics — Computational Geometry 

 

 

Figure 1: Vectorized output from our procedural city model at a three-mile width, showing residential (yellow), commercial (red), 

industrial (blue) and park (light green) development. The artist has painted ―honey‖ near the bay to create an unusually dense commercial 

zone, and left parcel boundaries quite loose. Note the neighborhoods with differing road layouts. 
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and Object Modeling; J.5 [Computer Applications]: Arts and 
Humanities — Architecture. 

Keywords: cities, urban planning, urban design, urban 
development, urban geography, procedural modeling, agent-based 
simulation, behaviors, complexity. 

1 Simulating land use 

Cities are important elements of content in digital productions, but 
their complexity and size make them very challenging to model. 
Few tools exist that can help artists with this work, even as rapid 
improvements in graphics hardware create demand for richer 
content without matching increases in production cost. 

We propose a method for procedurally generating realistic 
patterns of land use in cities, automating placement of buildings 
and roads for artists. Given a geographical map, our current 
system models the development of five fundamental types of land 
use: residential, commercial, industrial, roads and parks. Artists 
can allow development to proceed completely autonomously, 
adjust global developmental behavior, or interact with the 
evolving map of land use to guide or manually set local 
development. The system outputs a map of land use including 
property lines, age and density of development, and population. 
Each generated city is unique, but corresponds with modern 
patterns of land use. Figure 1 shows one artist-steered example. 

2 Procedural modeling and motivation 

Computer graphics has long been used to assist architects and 
urban planners, primarily through interactive modeling and 
visualization. Yet research in support of urban planning has only 
recently begun, with effort concentrating on capture [Teller et al. 
2003; Frueh and Zakhor 2003] and interactive walkthrough of 
entire cities [D´ecoret et al. 2003; Schaufler et al.2000]. 

Computer graphics researchers have also dedicated considerable 
effort to assisting artists in their work. One particularly relevant 
stream of this research develops highly automated (procedural) 
modeling tools [Ebert et al. 2002]. To date most of this work has 
modeled complex natural objects and phenomena, including 
among many others fire and explosions [Reeves 1983], plants 
[Deussen et al. 1998], and flocking and schooling [Reynolds 
1987]. Effort on procedural modeling of human artifacts has been 
relatively sparse, including work on modeling tilings [Miyata 
1990; Legakis et al. 2003] and truss structures [Smith et al. 2002]. 

Recently researchers in procedural modeling have begun 
addressing applications in architecture and urban planning, 
motivated by many of the same problems we focus on in our 
work. Even with the best capture techniques, urban models often 
contain gaps or lack detail. Lewis and Séquin [1998] ameliorate 
this problem by generating 3D building models from 2D plans. 
Given approximate 3D building geometries, Wonka et al. [2003] 
generate detailed facades using shape grammars, with results 
exhibiting cultural variety and responding to the influences of 
population and material. Other researchers have focused on 
procedural modeling of road networks. Parish and Müller [2001] 
grow these networks using L-systems, given input terrain and 
population maps. Users of their systems can specify that roads in 
certain locations use certain layouts (e.g. gridded and radial).  

The computer game SimCity [Electronic Arts 2003] allows 
players to act as city planners, creating road and land use maps 
manually and then watching simulated cities evolve according to 
these maps. Our project has benefited from a close collaboration 
with the SimCity developers at Electronic Arts. 

Our contributions to this research endeavor are many: 

Land use. Our system simulates the distribution of land uses in 
urban landscapes, automating the placement of buildings and 
structures in digital cities for artists and greatly increasing 
realism. 

Steerability. Because our tool uses agent-based simulation 
rather than L-systems, artists can pause and alter the course of 
the simulation freely to meet applied needs, without concern for 
whether or not the change is a valid construct of an output 
language. 

History. Our system simulates the continuous history of urban 
development. This enables the system to assign different ages to 
various parts of the urban landscape, greatly improving variety 
and realism. 

3 Simulating urban development 

Long before the procedural city modeling efforts described above, 
urban planners, designers and geographers built their own 
simulations. Planning simulations [Brail and Klosterman 2001] 
are focused on predicting near-term futures for existing cities, and 
therefore rely heavily on input from geographic information 
systems (GIS) and census data. In addition, because planners are 
much more interested in global statistics than fine spatial detail, 
most planning simulations only output statistics at global or 
extremely large spatial scales. One notable exception is Kwartler 
et al.’s CommunityViz [Kwartler and Bernard 2001], which uses 
agent-based based modeling, the same technique used by Reeves 
[1983] for his particle systems and by Reynolds for his boids 
[1987]. CommunityViz simulates development in small towns, 
outputting detailed spatial maps while still relying on extremely 
detailed GIS input. 

Simulators built by urban designers are used to envision possible 
urban improvements and futures [Bettum and Hensel 2000; Testa 
et al. 2000]. These simulations also rely heavily on GIS input, and 
since they are primarily tools for conceptual design, their output is 
extremely abstract and symbolic. 

Because they want to understand the basic processes of urban 
development at multiple scales, the needs of urban geographers 
are closest to our own, and we have learned much from their 
work. Geographic simulations are carefully validated and quite 
realistic. However until recently, urban geographic simulations 
were also created only at extremely large scales [Benenson and 
Torrens 2004]. Even newer simulations [Clarke et al.1997; White 
and Engelen 2000] are often too large in scale to enable detailed 
positioning of individual buildings and streets. Regardless, our 
goals (supporting artists) and those of geographers (understanding 
the real world) are fundamentally different, and result in 
fundamentally different solutions. Geographic simulations require 
heavy input, focus on modeling of realistic processes and once 
started, are usually unsteerable. In contrast, artists need solutions 
that require little input, focus on realistic output and are as 
interactive as possible. 
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4 Patterns of urban development 

According to urban experts, the most salient components of the 
urban development are residential, commercial, industrial and 
road development, which together result in roughly 80% of urban 
land use (40%, 5%, 10% and 25% for each respective land use) 
[Eisner et al. 1993]. We therefore focus primarily on these land 
uses in our work. 

Each property developer seeks the regions most appropriate for its 
use [Eisner et al. 1993; Kostof 1991; Alexander et al. 1977]. 
Residential developers prefer to place the homes they build in 
large clusters, and away from busy roads and industry. They favor 
waterfronts, above-average elevation for views, and parks. 
Residential developments also use the smallest and least densely 
populated parcels. 

Commercial developers place their stores and offices close to their 
markets and transportation corridors. For this reason these 
developments cluster as well, but this tendency is counteracted by 
the limited size of local markets. These developers also favor 
relatively flat terrain. Commercial development parcels are larger 
than residential parcels, and much more densely populated.  

Industrial developers prefer flat land and access to transport. The 
heavy traffic and pollution they generate make them 
uncomfortable residential and park neighbors. Industrial parcels 
are the largest, but  less densely populated than commercial 
parcels. 

Unfortunately, parks are typically an afterthought in cities, with 
large parks not appearing until the city is quite mature. For this 
reason, parks most often appear in neglected regions of the 
cityscape, such as flood plains and rugged terrain. As amenities 
for the home rather than the work life, parks are generally closer 
to residential than industrial areas. 

Roads are organized into a hierarchy, from freeways to primary 
roads down to tertiary roads [Eisner et al. 1993; Alexander 1977]. 
Higher levels of the hierarchy are wider roads serving high-speed 
travel over long distances. Lower levels provide access from 
homes and places of work to higher levels of the hierarchy, and 
therefore are smaller and only support travel at low speeds. Road 
networks are often organized in tight or loose grid patterns, or 
alternatively in more ―organic‖ patterns that respond to historic 
paths, property lines and topography [Kostof 1991; Carmona et al. 

2003]. Our system currently models both primary and tertiary 
roads, and allows artists to specify where these roads should be 
organized organically or into grids. 

5 Procedural modeling of land use 

We implement our simulation in NetLogo, a programming 
language and agent-based simulation environment developed by 
Uri Wilensky [1999]. The high-level nature of the language 
enables rapid development, aids low-cost experimentation with 
different solutions, and facilitates our collaborations with 
architects and urban planners with its transparent, ―open box‖ 
design.  

We associate each land use with distinct developer agents, which 
act in a simulated environment we call the world. The world 
consists of a rectangular grid of atomic areas called patches, 
which store local state. p refers to an agent’s current patch, and 
makes the components of the patch’s state accessible as fields 
(e.g. p.e is the patch’s elevation). Each patch is 40 ft (~12m) 
square, allowing the simulation to represent tertiary roads using a 
one-patch width. With a 200x200 patch world, our system then 
models an environment approximately 1.5 miles square. 

5.1 Input, interaction and output 

The primary source of input to our simulation is a terrain height 
map that can either be input directly using a painting interface, or 
read in from a file. In addition, artists may shape urban 
development using a number of parameters (though serviceable 
cities are generated using parameter defaults). Figure 1 shows the 
effect of road layout parameters, with gridded regions in different 
orientations, and ―organic‖ ungridded regions. Figure 2 shows 
how artists can adjust the proportions of residential, commercial, 
industrial and park development. In Figure 3, the artist varies the 
predominance of the urban center, with density of development 
clustering tightly or loosely. Finally in Figure 4, the artist creates 
cities in which different land uses cluster more or less tightly. 
Some parameters (e.g. proportions of development types) are 
global and affect the entire city, while others (e.g. road layout) are 
local, with artists applying them to a specific neighborhood using 
the painting interface. 

This initial artist input is useful, but the demands of digital 
production are often much more specific. Artists may therefore 
steer the simulation by removing unsatisfactory development, 

Figure 2: The artist increases red, commercial land use from left to right by manipulating the land cover constraints t. 
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adding desired development, and adjusting simulation parameters. 
These actions may be taken at any point during the development 
of the city. One particularly useful parameter is honey, which 
enables artists to add local incentives encouraging certain types of 
development. In Figure 6, the artist demolishes a residential 
neighborhood and paints it with honey encouraging industrial 
development. Another reserved parameter prohibits any 
development. Students in one of our architecture courses used this 
parameter to recreate the neighborhoods of Madrid and Berlin 
shown in Figure 7. 

Our system generates a rasterized map of land uses, with 
residential, commercial, industrial and park uses occupying 
properties called parcels made up of several patches, and roads 
occupying series of patches connected to form a transportation 
network. Each parcel describes its population, age, and value, 
with parcel density the ratio of parcel population over parcel 
patches. Roads are identified as either primary or tertiary. These 
layouts may then be populated with appropriate 3D buildings, as 
illustrated in Figure 17. 

5.2 Property developers 

Property developer agents construct parks as well as residential, 
commercial and industrial buildings. Each of these uses is 
matched to a corresponding agent type. As Figure 5 shows, during 

each simulation tick a property developer prospects, builds and 
checks profitability. 

 
Figure 5: High-level behavior of property developers. 

Figure 8 outlines prospecting behavior, which consists of moving 
to a new location, and then updating the agent’s list of 
developable sites devSites. The new location is the most valuable 
member of devSites in the developer’s current local area 
circle(5) (the diameter 11 circle centered at the developer). If 
circle(5) contains no developable sites, or if the agent has not 
created a profitable development recently, it relocates globally to 
one of the most valuable fifth of all developable sites, and resets 
its list of recently seen undeveloped patches devPatches. 

devSites contains parcels or empty patches that are adjacent to a 
road and not reserved by the artist. Parcels must also intersect 
circle(5) and not be prohibited for development by the 
developer’s type: residential use cannot be converted directly to 
industrial use (and vice versa), while parks may not be converted 

for each simulation tick 
  devSites = prospect(type,devSites) 
  for each site in devSites 
    newDev = build(site,type) 
    if profitable(site,type,newDev) then commit(newDev) 
  endfor 
endfor 

Figure 4: The artist varies the clustering behavior of residential, commercial and industrial developers by increasing attribute weights from 

left to right. Because red commercial developments have fewer proximity constraints than residential and industrial uses, they respond most 

strongly, forming fewer, denser (brighter red) clusters. 

Figure 3: The artist increases population clustering, from left to right, by adjusting the density smoothness constraints t. This effectively 

strengthens the urban core. In these density views, higher population density is indicated by whiter parcels, and use is not displayed. 
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to any other use, and may only be installed in undeveloped land. 
Empty patches may not be in circle(5). Instead, the developer 
maintains a list devPatches that is a subset of devSites, and 
after each move, adds all empty patches in circle(5) to 
devPatches, and then removes the least valuable 10% from the 
resulting set.. This non-local behavior increases selectivity in 
locating new development. 

 
Figure 8: Prospecting behavior of property developers. 

A property developer can build by improving an existing site 
already put to its own use, by converting a site to its own use, or 
by forming a parcel on undeveloped land. Figure 9 shows that to 
improve a site, a developer simply increases the site’s population 
by 1. To convert a site, the agent changes the site’s type. 

 
Figure 9: Building behavior of property developers. 

To form a residential, commercial or industrial parcel out of 
undeveloped patches, a developer chooses a random target parcel 
size from its type’s size range. Starting from the only empty patch 
currently in the site, the developer moves perpendicularly away 
from the road, adding each newly reached patch to the parcel. 
When the developer has traveled half the block length B, it stops 
moving away from the road and begins widening the strip of 
patches now in the parcel by adding patches along either side of 
the strip, until the target number of patches is in the parcel, or no 
undeveloped patches are adjacent to the parcel. If the resulting 
parcel is smaller than the minimum in the agent’s size range, it 
attempts to merge the parcel with adjacent parcels with the same 
use, without surpassing the range’s maximum. If the resulting 
parcel is in the type’s size range, the developer records the 
creation date in the parcel and assigns it a population proportional 
to its type’s minimum density. Otherwise the developer aborts 
parcel creation. 

Parks are built by the public sector, and are subject to additional 
artist-defined constraints. For park building to proceed, cities 
must have a certain minimum population and contain less than a 
certain number of park patches both per resident and per 
developed patch. To form a park, the developer chooses a random 
target size from its size range. It then scales this size by the value 
of the site and the size of the city, to create bigger parks at 
particularly valuable sites, and in bigger cities. The developer then 
starts a flood fill from the site’s only empty patch. From the set of 
empty, unreserved patches adjacent to the current parcel, the agent 
adds patches more valuable than half of the other patches in the 
set until the parcel reaches the target size, or is completely 
surrounded by development. If the flood fill stops before reaching 
the minimum park size, the park developer aborts parcel creation.  

To improve honey’s effectiveness, a developer may immediately 
swap an existing parcel for a honeyed parcel. Without this 
mechanism, simulation constraints on the global proportions of 
uses hinder the ability of developers to take advantage of honey, 
much like real world economies limit the effectiveness of 
government incentives. The existing parcel in the swap must be 
adjacent to a parcel of a different type, and will be the least 
valuable of such parcels. The swap is executed only if the 
honeyed parcel is more valuable than this existing parcel. At 
completion of the swap, the existing parcel reverts to an 
undeveloped state. 

To check profitability, the developer produces a cost-profit model 
by in fact developing on each site in devSites and calculating the 
change in land value. As Figure 10 illustrates, if the site’s value 
would increase by at least P%, it would be profitable. If the site 

prospect(type,devSites) 

  if devSites ≠  and (recentCommit or recentRelocate) then 
    move to select(devSites ∩ circle(5),max(value)) 
  else begin // relocate globally 

    wDevSites = select(world,parcels_convertible_to(type)) 

    wDevSites = wDevSites  select(world,empty) 
    move to random(select(wDevSites,top5th(value))) 

    devPatches =  
  endif 
  devParcels = select(circle(5),parcels_convertible_to(type)) 

  devPatches = select(devPatches  select(circle(5),empty),top90(value)) 

  devSites = devParcels  devPatches 
return validSites 

 

build(site,type) 
  if site is patch then newDev = newParcel(buildLot(site,type),type) 
  else if site is parcel then begin 
    newDev = copy(site) 
    if site.type ≠  type then newDev.type = type 
    else newDev.population = site.population + 1 
  endif 
return newDev 

Figure 6: The artist steers the urban simulation. Left, the state of the simulation before editing. Left of center, the artist erases an 

undesirable commercial and industrial cluster. Right of center, the artist paints residential, commercial and industrial honey on the city to 

attract desired uses to certain neighborhoods. Right, the resulting city, with roads and parcels automatically placed. 

Figure 7: Architecture students used the simulation to recreate 

neighborhoods in Madrid (left) and Berlin (right). They produced 3D 

models of their results with a rapid prototyping machine. 
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was undeveloped or its use would not change, then this 
profitability commits the agent to the new development. If the 
site’s use would change, then the profit from the new 
development must be greater than any loss in value to developers 
for the prior use. This helps ensure that sites are developed for the 
most profitable use, and brings some stability to the urban market. 

 
Figure 10: Profit-checking behavior of property developers. 

5.2.1 Determining Value 

The values that developers assign to properties are the most 
important factor in determining their behavior, and the primary 
means through which artists can influence it. Property developers 
of type t calculate patch value vt using the following equation: 

  ttttttt hAWv    

where A is a vector of attributes describing the world in the 
locality of the patch, Wt is the vector of importance weights given 

to each of those attributes by developers of type t, t is 
the proportional population constraint, t is the 
proportional land cover constraint, t is the proximity 
constraint, t is the density smoothness constraint, and 
ht is honey in the range [0,1]. Note that when patches 
have been developed and assigned to a parcel, value is 
determined not per-patch but per-parcel, with that value 
being the mean of the constituent patch values. 

Table I details the attributes in A, which measure a 
qualities that developers consider valuable or attractive. 
Since these attributes have different ranges and units of 
measurement, they are normalized by the function :  
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where x is the value of an attribute of a particular site 
(always positive) and x̄ is the mean of all such values in 
the city.  limits attribute values to the range [0,2]. If 
the value and its mean are equal,  is one. As the ratio 
of an attribute value to its mean increases,  
approaches two, while as the ratio drops,  approaches 
zero. 

Wt indicates the importance property developers attach 
to each attribute when valuing a patch. Table II shows 
the default weights. These weights sum to 1, so that a 
patch that is average in every respect will have an 

unconstrained value of 1. Figure 4 demonstrates the effects on 
clustering by use produced by manipulating some of these 
weights. The constraints listed in Table III implement powerful 
global restrictions on property development. The population 
constraint t maximizes value when the population occupying 
land dedicated to use t is a certain proportion of the entire city’s 
population. Similarly, the land coverage constraint t maximizes 
value when the number of patches dedicated to use t is a certain 
proportion of the number of patches in the city. Figure 2 shows 
how the portions of the city dedicated to each type change as 
these constraints are varied. The constraint t controls the 
smoothness of changes in population over space for each land use 
t. In Figure 3, changes in this constraint vary the strength of the 
city’s core. Finally, the proximity constraintt discourages certain 
types of developers from developing too close to others: in 
particular, residential and industrial uses are rarely located close 
to one another, while parks are rarely located close to industrial 
and commercial developments.  

5.3 Road developers 

Three types of developers build roads: tertiary extenders, which 
ensure that undeveloped land is accessible; tertiary connectors, 
which ensure that the tertiary road network is adequately 
interconnected; and primary developers, which ensure that 
residents can move through the city as a whole quickly. 

All road development is shaped by several local, artist-paintable 
constraints. gx and gy define the local grid spacing in two 
dimensions. gθ allows the grid to be rotated locally in the world’s 
plane. gdx and gdy indicate local tightness in each dimension of the 
grid. If gdx = gdy = 0, road patches must be directly on the grid. If 
gdx  gx and gdy  gy, the grid does not constrain road layout at all, 
so the local road network will be completely ungridded and 
―organic‖. Finally, Dt limits road density droad, the number of road 
patches within each local neighborhood circle(5). Figure 1 shows 
the impact of varying these parameters within a single city. 

profitable(site,newDev) 

  if newDev =  then profit = false 

  else begin 

    profit = value(newDev.type,newDev)/value(newDev.type,site)  (1+p/100) 
    if (site is parcel) and (site.type ≠ newDev.type) then begin 
      prevLoss = min(0,value(site.type,newDev) - value(site.type,site)) 
      newGain = value(newDev.type,newDev) – value(newDev.type,site) 

      profit = profit and prevLoss  newGain 
    endif 
  endif 
return profit 

Table I: Attributes used to value land. p is the current patch, with p.dp distance 

to primary roads, p.dw distance to water, p.e elevation and p.population 

development capacity. The size field is the number of patches in a parcel. ē is 

average elevation, eoffset is desirable height above ē, and ew is water elevation. 

Untransformed attributes not in the table include honey as well as p.dpk and 

p.dcom, the distances from p to the nearest park and commercial development. 

Attrib Description Equation 

eh Elevation advantage 
 

128

2



 offsetee

e

e.p

 

ev Variance in elevation (negative) e)cle(5).setVar(cire  

epv Variance in elevation (positive) e)cle(5).setVar(cir

 

efp Flood plain elevation  we


e.p
2

 

dpr Proximity to primary roads pd.p
e  

dw Proximity to water  d.p w



1

2
 

dm Proximity to market   ccpr dcd150.  

dr Residential density )))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(res

 

 

dc Commercial density )))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(com
 

di Industrial density )))n(circle(5(parcels_ipatches_inUcircle(5)

)population)).n(circle(5_parcels_isetSum(ind
 

cc Commercial clustering  size(p)).parcels_inneighbors(11 max

 x Anti-worth  icr vvv 111 

 

 
Table II: Weight vectors applied to land attributes by property 

developers. All attributes are normalized with μ. 

Weights eh ev epv efp dw dr di p.dpk dpr dm p.dcom x 

Wr .3    .3 .4       

Wc  .2   .15 .15    .4 .1  

Wi  .5   .3  .1  .1    

Wp   .1 .1 .1 .1  .4    .2 
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Figure 5 shows the common high-level behavior shared by all 
road developers. During each simulation tick, a road developer 
prospects by moving to a new location. If that location meets 
current road constraints and needs a road, then the developer 
attempts to build a new road. If the resulting road meets certain 
criteria, the developer commits to this road. Otherwise the road is 
removed. 

 
Figure 11: High-level road developer behavior. 

5.3.1 Tertiary road extenders 

Tertiary road extenders push access roads into empty territory, 
making it developable. An extender prospects by hill-climbing 
through a landscape defined by distance to the road network 
roadDist, which is stored at each patch. It will not move more 
than Dmax patches from the road network. To avoid local maxima, 
an extender does not revisit recently examined patches. If despite 
this a local maximum is reached, or if an extender has prospected 
for too long without attempting to build, it transports itself to a 
distant patch that meets local road constraints and needs a tertiary  
extension. 

 
Figure 12: Building behavior of tertiary road extenders. 

Any location at least dmin patches from the road network needs a 
road, and an extender will attempt to build a road to it, if the 
location meets local constraints. Extender building behavior is 
illustrated in Figure 12. To find the road’s path, an extender 
descends the same roadDist landscape it climbed when 

prospecting, checking that each 
patch it reaches fulfills the road 
constraints. Given a choice between 
two or more patches, an extender 
uses two tiebreakers. First, it will 
choose the patch that is on a parcel 
boundary. If that does not resolve 
the choice, the extender chooses the 
patch with the lowest absolute 
change in elevation. Otherwise, the 
choice is random. When the 
proposed road extension is 
complete, an extender will 
reexamine it to ensure that the road 
density constraint Dt is still met. If 
so, it commits to the road and adds it 
to the city. 

5.3.2 Tertiary Road 
Connectors 

Connector agents ensure that the tertiary road network is 
adequately interconnected, enabling fairly direct travel between 
any two points. A prospecting connector moves along the road 
network, choosing a random direction whenever it reaches an 
intersection. At each prospected patch p, the connector chooses a 
random destination road patch dest within the radius rc of p. p 
needs a road if the shortest path on existing roads to dest is too 
long, and the region along the direct line between p and dest 
contains no roads. A path is too long if it is cratio times longer than 
dist(p,dest), the actual distance between p and dest, or if any 
point on that path is beyond the radius rc. 

When building a road, a connector begins linking start and dest 
by moving toward dest as outlined in Figure 13. Each new road 
patch nextPatch must fulfill road constraints. When more than 
one patch q meets the constraints, the connector chooses a 
nextPatch that heads toward dest while avoiding existing roads 
and changes in elevation. It does this by minimizing the cost 
function ctc: 

         e.deste.q.destq,distroadDist.q.d.q. road  nnnntcc 04011020  

where n(z) = z/(max(z),  q). Because connectors work in a highly 
constrained, already developed environment, they can backtrack a 
few times should an initial road path prove unsuccessful. 

 
Figure 13: Building behavior of tertiary road connectors. 

Building ceases when a connector reaches a road patch, whether 
or not it is dest. Because the destination may change in this way, 
before an agent commits to a proposed complete connection, it 
must confirm not only that the connection still meets the density 
constraint Dt, but also that it is 1/cratio times shorter than the 
shortest path between start and the connections’s actual ending 
patch on the existing road network. 

buildRoad(start,connection)  
  prevStates = empty_stack[3]; possRoad = empty_list; nextPatch = {start} 
  repeat 
    repeat 
      move to nextPatch; possRoad = append(possRoad,p) 
      possPatches = select(select(neighbors(p),meetsConstraints()),min(crc)) 
      nextPatch = select(possPatches,random) 
      push(prevStates,possRoad,possPatches-nextPatch) 
    until (road(nextPatch) or ||nextPatch|| = 0) 
  until not restoreState(pop(prevStates)) 

return possRoad 

for each simulation tick 
  move to newLocation(type) 
  if (meetsConstraints(p) and needsRoad(p,type)) then 
    roadSegment = buildRoad(p,type) 
    if valid(roadSegment,type) then commit(roadSegment) 
  endif 
endfor 

buildRoad(start,extension) 
  possRoad = empty_list; nextPatch = {start} 
  while (not road(p) and ||nextPatch|| > 0) 
    move to select(nextPatch,random) 
    possRoad = append(roadSeg,p) 
    nextPatch = select(neighbors(p),meetsConstraints()) 
    nextPatch = select(nextPatch,min(roadDist)) 
    nextPatch = applyTiebreakers() 
  endwhile 
return possRoad 

 

Table III: Constraints used to value land. pt and lt are total population and land cover for use (type) 

t, pC and lC are city-wide population and land cover, while pDt and lDt are desired proportions of pt to 

pC and lt to lC. dti is the initial density of a building during construction. For parks, t = t = t = 1. 

All attributes are again normalized with μ. 

Constr Description Equation 

t Population constraint for use t    






 
2

19010
DtC pp

tp
max .,  

t Land cover constraint for use t    






 
2

19010
DtlCl

tlmax .,  

r Proximity constraint for residential uses  di
 102080 ..  

c Proximity constraint for commercial uses )( d.p pk..


 102080  

i Proximity constraint for industrial uses    pkd.p
...


 1040102040 rd  

p Proximity constraint for parks    cdid 
 10301070 ..  

t Density smoothness constraint for use t    1240 3 ,p).neighbors(.,clamp ddmindlog titit   
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5.3.3 Primary road developers 

Primary road developers connect the city’s center to its surround 
and ensure that a primary road will usually be nearby. Primary 
roads need not adhere to gridding and road density constraints. 
Nevertheless, because they very often overlay the existing tertiary 
network, primary roads are still very much shaped by the 
constraints. To prospect, a primary developer hill-climbs through 
a dp (distance to primary road) landscape. To avoid overly dense 
primary road development, it will not enter the circle(5) 
neighborhood surrounding other primary developers. To avoid 
local maxima, the developer will not move to recently visited 
patches. Should it prospect without successfully building for too 
long, the agent transports itself to a developed patch far from the 
primary road network. 

 
Figure 14: Building behavior of primary road developers. 

Tertiary road locations dminP patches along the network from the 
nearest primary road need a link to the primary network. A road 
developer builds such links using the behavior in Figure 14. It 
constructs two primary road segments, toward a nearby and a 
distant destination. The near destination is the primary road patch 
at end of the shortest path on the tertiary road network. The 
distant destination is either the road patch nearest the center of 
population density, or a patch at the edge of the world, in the 
opposite direction from the near destination. 

A primary road developer builds roads in two modes: urban and 
rural. The developer is in urban mode when development exists in 
its view slice, the eighth of circle(5) neighborhood within 22.5 
degrees of its current heading. In this mode, the constructed 
primary road avoids water, while heading toward dest as well as 
tertiary and especially primary roads. Candidate road patches q 
are neighbors of the last allocated road patch, and the developer 
chooses among them by minimizing the cost function  

cpu=[n(αpu) n(βpu) n(γpu) n(δpu) n(εpu) n(δpu)]•[0.3 0.2 1 0.1 1 3], 

where αpu = dist(q,dest); βpu = distance of q from the line 
between start and dest; γpu = 0 if road(q), 1 otherwise; δpu = 0 if 
q is a parcel boundary, 1 otherwise; εpu = q.dp; δpu = dw

2
 times the 

developer’s current heading dotted with the direction to water 

squared. 

In rural mode the constructed road again avoids water and now 
also changes in elevation. It heads toward dest as well as primary 
and tertiary roads. Candidate road patches are organized into 
several paths, each defined by a ray emanating from p to a patch 
on the edge of the developer’s view slice. The winning set of 
patches is chosen by minimizing the cost function  

cpr=[n(αpu) n(βpu) n(γpu) n(δpu) n(εpu) n(δpu)]•[0.3 0.5 0.1 0.2.1 3], 

where αpr = the variance of elevation along the ray; βpr = the 
percent of non-road patches in ray; γpr = distance from the ray’s 
tip to dest; and δpr = distance of the ray’s tip from the line 
between start and dest; εpr and δpr have the same definitions as 
they do in the urban mode. 

A developer continues to build a primary road until it either 
connects with the existing primary road network, or it reaches the 
edge of the world. Before committing the road, the developer 
clips it if it extends too far over water, and runs a smoothing filter 
over it to remove jagged angles. 

6 Results 

Figure 1 shows a vectorized version of the output of one of our 
simulations in a world of roughly nine square miles. Here the 
artist has brought almost all commercial (red) development to the 
bay with a strong dose of honey. Note in particular the four 
differently gridded road layouts, surrounded by ungridded, 
organic layouts. Vectorization is a polygon- and spline-based 2D 
post-process we apply to the raster outlines of parcels and roads in 
our simulation output. 

Figure 15 shows the developmental history of another city. Initial 
parameters including mountains, water, and road layouts were 
painted onto the map in less than 10 minutes. All development 
thereafter was completely automated. Note in particular the 
automatic growth of primary roads and the development focused 
along primary roads and shorelines. 

Validating this input numerically is a challenge because we are 
not attempting to reproduce any existing city, but only the typical 
urban patterns that make a newly visited city feel ―real‖. To 

buildRoad(start,primary) 
  nearDest = select(world,primary and min(roadPath(start))) 
  if (rand(0,1) > .5) then farDest = select(world,road and min(dist(city-ctr))) 
  else farDest = select(world,edge and oppositeDir(nearDest)) 
  primRoad = buildPrimary(start,nearDest) 
  append(primRoad,buildPrimary(start,farDest)) 
return primRoad 

buildPrimary(start,dest) 
  newRoad = empty_list; nextPatch = {start} 
  repeat 
    newRoad = append(newRoad,path(p,nextPatch)); move to nextPatch 
    if devInSlice() then nextPatch = select(neighbors(p),min(cpu)) 
    else nextPatch = select(distantNeighbors(p),min(cpr)) 
    nextPatch = select(nextPatch,random) 
  until (primaryRoad(nextPatch) or edge(nextPatch) or ||nextPatch|| = 0) 
return newRoad 

Figure 15: The developmental history of city nine miles square. Note the clustering at primary road intersections, and the early 

development along the shoreline. An industrial (blue) region develops away from the city center, but the city soon swallows it. 
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address this problem, urban geographers have turned to measures 
of composition or proportions of land cover by use; and spatial 
configuration, which refers to the distribution and clustering of 
land use [Turner 1989; Torrens 2002, 2003]. As we have 
demonstrated, composition is easily controlled by the artist, and 
proportions similar to those mentioned by Eisner et al. [1993] are 
simple to produce. Spatial configuration can be measured with 
conditional probabilities. We call our measure conditional 
proportion (Cp), inspired by the urban geography literature: 

 







 

  
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


 
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Cp is the proportion of land within a radius r surrounding use u 
that is dedicated to use v, across the entire m  n map. Here i, j, k 
and l are map coordinates, pi,j is the patch at i,j, UseIs(pi,j,u) is a 
function that returns 1 if pi,j has use u and 0 otherwise, InMap(pi,j) 
is a function that returns 1 if pi,j is in the map and 0 otherwise. 

We use Cp to compare our output to Houston, TX and show the 
results in Figure 16. Here we visualize conditional relationships 
between each type of use with grayscale matrices. In each matrix, 
the row indicates use u, the column use v, with the gray level in 
each cell indicating the corresponding value of Cp (brighter values 
are higher). Note in particular the bright diagonals, which indicate 
self-clustering of various usage types. Two other strong trends are 
the proximity of roads to most types (indicated by the bright 
column, fourth from left in each matrix), and the fading of strong 
pattern with increasing scale. 

The 2D maps produced by our system are designed to be 
populated with 3D building and structure models, providing urban 
content for digital productions. Figure 17 illustrates the potential 
of our maps for this application by visualizing one of them using 
Electronic Arts’ SimCity 3000 [Electronic Arts] display engine. 

Clearly our maps include enough information to enable 
meaningful choices among SimCity’s library of buildings. Our 
maps add an interesting ungridded and higher level structure not 
normally present in SimCity’s output. Note that because SimCity 
3000 cannot not display primary roads, place any structures on 
inclines, nor easily fill non-rectangular parcels, we were forced to 
simplify our output considerably.  

7 Limitations and future work 

Although already quite useful, our simulation does have some 
limitations. Our largest nine square mile worlds take several hours 
to develop fully. These sorts of speeds are far less than interactive 
and must be improved before our tool can see practical use. 
However, to this point our focus has been on correctness and 
robustness, not speed, and optimizations should be simple to 
implement. For example, NetLogo itself is a highly transparent 
and interruptible programming language and environment 
designed for instruction, and implemented in Java. Implementing 
the simulation directly in a high-performance language such as 
C++ would be an obvious first step. 

Of course, there is a great deal of urban development itself that 
our simulation, like any, does not capture. We are not completely 
satisfied with the shape of parcel boundaries even after 
vectorization – real cities often show much more regularity in 
their parceling. We might capture some of this regularity by 
performing development or at least parceling in larger units: block 
by block, or tract by tract, much like civil zoning authorities and 
modern developers. In addition, in the real world, uses are mixed 
even within parcels. Mechanisms for mixed-type developments 
would be a useful addition. With only two levels to our transport 
hierarchy, our cities often look a bit ―flat‖, without the rich 
structure that a deep transport hierarchy brings. A new level such 
as freeways would be welcome. 

In the longer run, we face important and exciting challenges. 
Although we already offer good artist control of the simulation, 
control at higher historic or cultural levels (e.g. ―old town‖ or 
―Chinatown‖) would increase the value of our tool greatly. To 
achieve this goal, we will have to simulate changes in urban 
dynamics over time: for example, the changes in transport from 
horses, to trains, to cars. 
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