
Enhancing NetLogo to Simulate
BDI Communicating Agents

Ilias Sakellariou1, Petros Kefalas2, and Ioanna Stamatopoulou2

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
iliass@uom.gr

2 Department of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr, istamatopoulou@seerc.org

Abstract. The implementation process of complex agent and multi-
agent systems (AMAS) can benefit significantly from a simulation plat-
form that would allow rapid prototyping and testing of initial design ideas
and choices. Such a platform, should ideally have a small learning curve,
easy implementation and visualisation of the AMAS under development,
while preserving agent oriented programming characteristics that would
allow to easily port the design choices to a fully-fledged agent develop-
ment environment. However, these requirements make such a simulation
platform an ideal learning tool as well. We argue that NetLogo meets
most of the requirements that suit our criteria. In addition, we describe
two extra NetLogo libraries, one for BDI-like agents and one for ACL-
like communication that allow effortless development of goal-oriented
agents, that communicate using FIPA-ACL messages. We present one
simulation scenario that employs these libraries to provide an implemen-
tation in which agents cooperate under a Contract Net protocol.

Keywords: Multi-Agent Systems, Simulation Platforms.

1 Introduction

Development of Agents and Multi-Agent Systems (AMAS) is a challenging and
complex task. Due to the complexity that AMAS exhibit, simulation of AMAS
models becomes an important step that can facilitate understanding of how the
intended system will perform when it will be actually implemented, since it allows
rapid prototyping and testing of initial design ideas and choices. It is crucial
that simulation output should be meaningful enough for the developers to draw
conclusions and drive the actual implementation. For instance, in multi-agent
systems with spatial reasoning and behaviour, a visual output which displays
agents moving in a two or three dimensional space is necessary.

On the other hand, future developers and researchers must be educated in
AMAS theory and trained in practice, which presents an equally challenging
task. Firstly, the topic is too broad to fit within specific time constraints. Es-
pecially at the University level, a course on AMAS can hardly fit itself among
a plethora of other mainstream/popular topics, despite the fact that AMAS is
listed in the ACM/IEEE Computing Curricula [1] as part of Intelligent Systems

J. Darzentas et al. (Eds.): SETN 2008, LNAI 5138, pp. 263–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

area. Secondly, due to the wide foundations and applicability of AMAS, it is only
natural that there is a lot of diversity with respect to learning outcomes and con-
tent, teaching and assessment, theory and practice etc. But definitely, educators’
common aim is to introduce AMAS as a useful new software paradigm, and for
this appropriate educational tools are necessary.

Such educational tools for AMAS should ideally have a small learning curve,
easy implementation and visualisation of the system under development, while
preserving agent oriented programming characteristics that would allow to easily
port the design choices to a fully-fledged agent development environment.

The requirements for choosing a simulation environment that can also act as
an educational tool (or vice-versa) are complemented by the following criteria:

– have a simple environment that presents the minimum installation problems,
– provide easy visualization for a better view of the agent behaviour,
– easy to learn and use language thus keeping a small learning curve,
– clearly demonstrate the difficulties in AMAS programming,
– support the basic agent architectures (reactive, BDI, hybrid)
– provide means for communication, message exchange and interaction.

A number of languages and environments are available as options to use in prac-
tice for training future AMAS developers and researchers. Apparently, deciding
which one to choose is not easy, since all the above criteria are not fully met by
existing development or simulation environments. For the work presented in this
paper, we chose NetLogo [2]. NetLogo has a number of important features as an
educational and simulation tool for AMAS, but lacks support for goal-oriented
and communicating agents. Our aim is to present how these issues are dealt
with, by enhancing NetLogo with libraries that support BDI architecture and
FIPA-ACL message exchange. The libraries have been developed for educational
purposes but can also be used for more advanced AMAS simulation.

The structure of the paper is as follows: In section 2, we discuss in more detail
the requirements and the choices available for using a simulation tool in edu-
cation. NetLogo is briefly presented in Section 3 and the extensions we suggest
and implemented are listed in Section 4. In the following section 5, we present a
case study of forest fires simulation, which demonstrates the applicability of our
proposal. Finally, we conclude with discussion and future work.

2 Simulation and Education in AMAS

It is commonly accepted that simulation tools and environments are not only
useful for AMAS research and development but also useful for training future
AMAS researchers and developers. We will generally refer to the latter as learn-
ers; they might be students, researchers or professionals who undergo further
training. In order to understand the theoretical concepts and complexity of
AMAS, some kind of practical program development is needed. There are several
choices educators may follow, depending on the emphasis and focus they give
to certain aspects of AMAS, e.g. architectures, communication and interaction

Enhancing NetLogo to Simulate BDI Communicating Agents 265

protocols, applications etc. Various tools and environments for AMAS have been
reported to assist the educational process, like RoboCup, NetLogo, TAC, FIPA-
OS, JADE, JadeX, Jason, Protégé etc. [3,4,5,6,7,8]. All aim to improve active
learning in the context of AMAS, some by engaging learners in writing code
(e.g. Java), others by allowing development of peripheral to agents structures
(e.g. Ontologies).

Many success stories in integrating such environments are reported, but ad-
mittedly, most of the times there are concerns about the tool’s complexity, the
time spent by some educators to build such a tool and the time spent by the
learners to reach the required level of skills in order to produce something use-
ful to their eyes. Given the time restrictions for training, which normally last a
few weeks, it is rather difficult for them to develop something simple but also
meaningful, easy to implement but also challenging, artificial but also realistic
enough, at some level of abstraction but also practical.

It would be preferable if learners see a more realistic view of their work in a
simulation. If this is the process of a competition like game (e.g. Trading Agent
Competition) or a visualisation of the agents’ environment (e.g. RoboCup sim-
ulation), the understanding and satisfaction seems to be increasing. One could
also argue that a simple robotic platform (e.g. Lego Mindstorms, RoboSapiens,
i-SOFT etc.) [9,10] could also serve the purpose, since in the average mind per-
ception a robot (from a science fiction perspective) matches with that of an
agent. Although, such an approach is feasible and sometimes desirable in more
engineering-oriented courses, it still suffers from complexity issues due to the
fact that learners need to take into account non-symbolic percepts and addi-
tional hardware devices and protocols.

In principle, learners should receive instruction and training on:

– basic AI theory and techniques;
– basic notions of intelligent agents;
– types of intelligent agents, their architecture, strengths and limitations;
– issues involved in AMAS communication and interaction;
– possible application areas of the AMAS technology;
– demonstration on how AMAS revolutionise human-computer interaction;
– advantages of the agent-based approach to engineering complex software

systems.

More particularly, the topics covered may include, among others, agent archi-
tectures (logic, reactive, BDI, hybrid), communication and interaction protocols
(speech acts theory, agent communication languages, knowledge communica-
tion, Contract Net protocol, auctions, negotiation), biology-inspired agents (Ant
Colony Optimization, Bio-Networking, Artificial Life), planning, learning and
mobile agents, agent theories (intentional notions: information, motivation and
social attitudes), AMAS software engineering methodologies (AAII methodology,
Cassiopeia, Agent UML), Semantic Web basics etc. [11,12,13]. It is important,
however, that some hands-on experience is also provided.

In the current work, we argue that NetLogo can act as the basis of an edu-
cational tool as well as an environment for AMAS research, provided that it is

266 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

enriched with certain features. NetLogo meets several of the requirements listed
in Section 1. It is easy to install and provides with a plethora of interesting ex-
amples ready to run. The language is functional and the learning curve seems to
be small, since someone is ready to produce a descent program in a short period
of time. Additionally, it allows visualisation of the developed systems, which is
extremely valuable to AMAS with spatial reasoning and behaviour as it helps
them both to gain a better understanding as well as get immediate feedback
from the simulation. However, NetLogo suffers from not being able to provide
ready-made constructs for goal-oriented agents, communication and coordina-
tion. In order to compensate for the features that NetLogo lacks, we decided to
work towards the implementation of an appropriate set of of extensions that aim
to facilitate the development of BDI-like communicating agents.

3 NetLogo as a Modelling Tool

NetLogo is a modelling environment targeted to the simulation of multi-agent
systems that involve a large number of agents. The platform aims to provide “a
cross-platform multi-agent programmable modelling environment” [2].

The main entities of NetLogo are the patches, the turtles and the observer.1

The observer simply controls the experiment, in which turtles and patches ac-
tively participate. Patches are stationary “agents”, i.e. components of a grid
on which turtles exist, i.e. agents that are able to move, “live” and interact.
Both patches and turtles can inspect the environment around them, for ex-
ample detect the existence of other agents, view the state of their surrounding
patches/turtles, and modify the environment. Agents can be organised in groups
under a user specified name, and thus agents of different breeds can exist in the
simulation world. Probably the feature that most greatly enhances the modelling
expressiveness of the platform is the fact that each patch and turtle can have its
own user-defined variables: in the case of patches this allows modelling complex
environments by including an adequate number of variables that describe it suf-
ficiently and in the case of turtles it simply means that each agent can carry its
own state, stored again in a number of user defined variables.

The NetLogo programming language allows the specification of the behaviour
of each patch and turtle, and of the control of execution. The language is simple
and expressive and has a rather functional flavour. There is an extensive set of
programming primitives, good support for floating point mathematics, random
numbers and plotting capabilities. Programming primitives include for exam-
ple, commands for “moving” the turtles on the grid, commands for environment
inspection (i.e. the state of other turtles and patches), classic programming con-
structs (branching, conditionals, repetition) etc. The main data structure is lists
(following the functional Lisp approach), and the language supports both func-
tions, called reporters, as well as procedures. Monitoring and execution of the
agents is controlled by the observer entity that “asks” each agent to perform a

1 The recent version (4.0) also offers links, not involved in this work.

Enhancing NetLogo to Simulate BDI Communicating Agents 267

specific computational task. The programming environment also offers GUI cre-
ation facilities, through which custom visualizations of the studied multi-agent
systems can be created with particular ease.

As it has been argued elsewhere [14]2, we found NetLogo to be suitable for
modelling agent systems that we are dealing with, since each NetLogo agent:

– perceives its environment and acts upon it,
– carries its own thread of control, and
– is autonomous,

i.e. it falls under the classic definition of agency found in [11]. NetLogo is an
excellent tool for rapid prototyping and initial testing of multi-agent systems,
particularly suited to systems with agents situated and operating in a restricted
space, as well as an excellent animation tool of the modelled system. However, it
lacks build-in support for implementing communicating agents with intentions
and beliefs, making the task of modelling/testing more complex architectures
and protocols rather hard.

4 Extending NetLogo with Libraries for Intelligent
Agents

Being a platform that is primarily targeted to modelling social and natural
phenomena, NetLogo fully supports the creation and study of reactive agent
systems. Indeed, one of the first models that we studied was the Luc Steels
Mars Explorer experiment [15] that presents many similarities to the ant colony
foraging behaviour experiment included in the library models (ants can be mod-
elled and studied as reactive agents [16,17]). However, the study of BDI agents
that are able to communicate with explicit symbolic message exchange was not
supported. Thus, taken into consideration the fact that NetLogo fulfilled the ma-
jority of our requirements we decided to extend the platform by providing one
library for building simple BDI-like agents and one for FIPA-ACL-like message
exchange, that are described in the sections that follow.

4.1 BDI-Like Agents in NetLogo

Although, we could have adopted as an option to link through the JAVA interface
of NetLogo an already existing BDI development platform, as for example JAM
[18], this would have made the installation of the complete platform a lot more
difficult and would have significantly increased the learning curve, due to the
complexity of such a fully fledged development environment. Thus, we decided
to provide a simpler alternative, i.e. to develop limited BDI agents by providing
the necessary primitives through a NetLogo library.3

2 Actually, the excellent page that Jose Vidal (http://jmvidal.cse.sc.edu/) main-
tains for NetLogo models, was a starting point for our work.

3 NetLogo being a simple platform, does not support libraries in the classic sense
found in other programming environments; by the term library we refer to a set of
procedures and functions that the user is given and includes in its own code.

http://jmvidal.cse.sc.edu/

268 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

Intentions in NetLogo. The simple BDI architecture that we have followed,
follows a PRS-like [19] model, i.e. there is a set of intentions (goals) that are
pushed into a stack; of course the implementation is far from delivering all the
features of systems like JAM, but can still be effectively used in implementing
simple BDI agents in the NetLogo simulation platform.

An intention (I) consists of two parts: the intention name (I-name) and a
condition that we call intention-done (I-done). The former maps to a NetLogo
procedure (usually user defined), while the latter maps to boolean NetLogo re-
porter (function) (again usually user defined). The semantics are the standard
followed by other architectures: an agent must pursue an intention until the
condition described in the intention-done part evaluates to true. For example
consider the following intention of an example ground unit agent working at a
fire site (see Section 5):

["move-towards-dest [23 20]" "at-dest [23 20]"]

The above simply states that the agent is currently committed to moving
towards the point with coordinates (23, 20) and it will retain the intention until
the reporter at-dest [23 20] evaluates to true. Note that the user in this case
has to specify both the procedure and the reporter, that map to the two parts
of the intention, since they are not part of the built-in NetLogo primitives.

As mentioned, the main concept behind the present implementation is the
intention stack where all the intentions of the agent are stored. Agents execute
intentions popping them from the stack as shown below:

IF the intention stack is not empty THEN do:
Get intention I from the top of the stack;
Execute I-name;
IF I-done evaluates to true THEN pop I from stack;

ELSE do nothing

The NetLogo implementation is rather straightforward: each intention is rep-
resented by a list of two elements, one for each part. The intention stack is a list
stored in a specific “turtle-own” variable, i.e. each agent carries its own stack.
The execution model is encoded in the procedure execute-intentions, that is
called to invoke the agent’s proactive behaviour. Notice that running a NetL-
ogo simulation involves multiple execution cycles, invoking in each a procedure
for each participating agent (or group of agents), thus ensuring their “parallel”
execution. In consequence, procedure execute-intentions concerns only the
execution of one intention in each such cycle.

The library also provides a set of reporters and procedures to the user for
adding and removing intentions on the stack, inspecting the current intentions,
set time-outs as intention-done conditions etc. For example, the following line:

add-intention "move-towards-dest [23 20]" "at-dest [23 20]"

will add the corresponding intention to the stack of the calling agent. A slightly
more complicated example is shown below, that allows an agent to participate
as a manager in a Contract Net protocol:

Enhancing NetLogo to Simulate BDI Communicating Agents 269

add-intention "select-best-and-reply" "true"
add-intention "wait-for-proposals" timeout_expired 15
add-intention "send-cfp" "true"

Since add-intention simply pushes intentions in the stack, such “plans” as
the above have to be encoded in reverse order. Intention send-cfp concerns
the agent broadcasting a call-for-proposals message to all agents and is exe-
cuted only once, since it has as I-done condition the NetLogo reserved word
true. wait-for-proposals remains as the agent’s intention for the next 15 ex-
ecution cycles (clicks according to NetLogo jargon), indicated by the provided
timeout expired BDI-library reporter. Finally, select-best-and-reply will
be executed once, selecting the best contractor among the received bids. Note
that wait-for-proposals, select-best-and-reply and send-cfp are user de-
fined procedures.

Managing Beliefs. To further support the BDI architecture, facilities for man-
aging beliefs were also created. Although, the latter was not really necessary,
since it is rather simple to store any information on a related turtle variable, we
have designed a set of procedures and reporters that would form an abstraction
layer that facilitates the user to manage agent beliefs, without getting into too
many details about how to program in the NetLogo language.

A belief consists of two elements: the type and the content. The former de-
clares the type of the belief, i.e. indicates a “class” that the belief belongs to.
Examples could include any string, e.g. “position” “agent” etc. Types facilitate
belief management, since they allow to check for example whether a belief of a
specific type exists or the removal of multiple beliefs at once. The content on
the other hand, is the specific information stored in the belief. It can be any
NetLogo structure (integer, string, list etc.). Obviously, there might be multi-
ple beliefs of the same type with a different content, however two beliefs of the
same type and content cannot be added. For instance, ["fire-at" [23 15]]
and ["location" [3 7]] are examples of beliefs that the agent can have.

Belief management is done through a set of reporters and procedures that
allow the creation, removal, checking of the current agent’s beliefs. For example,
the following line:

add-belief create-belief "fire-at" [23 15]

will include a belief of type “fire-at” with content “[23 15]” in the agent’s be-
liefs. In the current implementation, all agent beliefs are stored in an agent own
variable named beliefs.

4.2 FIPA-Like Message Passing

The ability to exchange symbolic messages is rather important in order to model
agent communication and interaction protocols, such as the Contract Net proto-
col. Thus, it was necessary to somehow enhance NetLogo with explicit message
communication primitives. Messages closely follow the FIPA ACL message for-
mat, i.e. are lists of the form:

270 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

[<performative> sender:<sender> receiver:<receiver>
content: <content>..]

For example, the following message was sent by agent (turtle) 5 to agent 3,
its content is “fire-at [23 15]” and the message performative (FIPA) is “inform”.

["inform" "sender:5" "receiver:3" "content:" "fire-at [23 15]"]

A message may include the above fields (performative, sender, receiver, con-
tent), omitting others such as the ontology field specified by FIPA, assuming
that all agents use the same ontology. The library, however, allows the creation
and addition of any custom field that may be considered necessary.

Participating agents are uniquely characterized by an ID, which is in fact an
integer automatically assigned by NetLogo at the time of their creation (“who”
NetLogo variable). This naming scheme was adopted since it greatly facilitates
the development of the message passing facilities. Message passing is asynchro-
nous and a set of library reporters and procedures allow easily creating, sending,
receiving, and processing messages between NetLogo agents. For example the
code below (assuming that the calling agent is 8):

let somemsg create-message "inform"
set somemsg add-receiver 5 somemsg
set somemsg add-content "fire-at [23 15]" somemsg
send somemsg

will send to agent 5 the following message:

["inform" "sender:8" "receiver:5" "content:" "fire-at [23 15]"]

Of course, both libraries (BDI and FIPA) take advantage of functional features
of the NetLogo programming language. The exact message can be send by simply
issuing the following one-line command:

send add-content "fire-at [23 15]" add-receiver 5
create-message "inform"

It should be noted that there are also primitives that allow broadcasting a
message to a group (breed) of NetLogo agents. For instance the following line of
code sends a cfp message containing the location of a fire (see Section 5) to all
agents of the breed “units”:

broadcast-to units add-content (list "fire-at" list pxcor pycor)
create-message "cfp"

Incoming messages for each agent are stored in the incoming-queue variable,
which is in fact a list. This is a “user-defined” variable that each agent must
have in order to be able to communicate. Sending a message to an agent simply
means adding the message to its incoming-queue list; it does not require an

Enhancing NetLogo to Simulate BDI Communicating Agents 271

explicit receive command to be invoked on the receivers side. At any time the
agent has the ability to obtain and process the messages from its queue using
the reporters and procedures provided.

Both libraries, FIPA-ACL and BDI, were fully implemented in the NetLogo
language and thus, their “installation” is trivial, since users have only to include
the given library code in their models. The library offers limited debugging
facilities, by allowing the user to inspect the list of messages exchanged and the
current intention stack of the agents in the NetLogo programming environment.
Limited error checking and debugging facilities was a design choice, in order to
avoid having efficiency issues.

We have used both libraries for a number of years in a Intelligent Agents
course: students have found them easy to use and did manage to implement
multi agent systems that involve communicating BDI agents under an interac-
tion protocol. The interested reader may find the libraries, brief manuals and
examples at [20].

5 Forest Fires Scenario: A Case Study

Using the programming facilities described in the previous sections, we have
designed and implemented a simulation of a multi-agent system in a fictional
scenario that involves forest fires detection and suppression. The aim of the

Fig. 1. NetLogo ScreenShot of the Forest Fires Scenario

272 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

to collect-msg-update-intentions
let msg []
let performative []
while [not empty? incoming-queue]
[set msg get-message
set performative get-performative msg
if performative = "cfp" [reply-to-cfp msg]
if performative = "accept-proposal" [reply-to-accept-proposal msg]
if performative = "reject-proposal" [do-nothing]]

end

to reply-to-cfp [msg]
ifelse current-intention = "find-target-fire"
[let dist distancexy get-content msg
send add-content dist create-reply "propose" msg]

[send add-content "busy" create-reply "refuse" msg]
end

to reply-to-accept-proposal [msg]
ifelse current-intention = "find-target-fire"
[let crds get-content msg
add-belief msg
add-intention "send-confirmation" "true"
add-intention "put-out-fire" "fire-out"
add-intention (word "move-towards-dest " crds) (word "at-dest " crds)]
[send add-content get-content msg create-reply "failure" msg]
end

Fig. 2. Ground Units NetLogo Code using the BDI and FIPA-ACL libraries

specific AMAS was the constant monitoring of the forest area, as well as taking
immediate action in the case of a fire spot, so that fire spreading is disallowed
and creation of fire fronts is avoided. We have tried to model in the simulation
many real-world features so that it is as close to reality as possible.

The environment (shown in Fig. 1) is inhabited by two types of communicating
agents with different capabilities and constraints, that cooperate to perform the
above task:

– Ground units are fire extinguishing autonomous vehicles that are able to
travel around the forest environment and put out any fires they detect.
Their speed is rather low and depends on the water supplies carried at each
moment. Their sensors have a limited range, and while moving they have to
avoid obstacles such as other ground units and forest areas already on fire.

– Scouters are small, light weight autonomous vehicles that can move around
the environment relatively fast. Although they do not have the ability to
extinguish a fire, they have close-range fire detection sensors. The only ob-
stacle for scouters are trees on fire; they are small enough to co-exist in the
same area with ground units or other scouters.

Enhancing NetLogo to Simulate BDI Communicating Agents 273

In the model, fire spots (i) appear randomly during the execution of the
experiment, and (ii) are spreading in adjacent trees over time, if they are not
put out, i.e. there is a close to reality fire spread model against which the agents
were competing. Various parameters can be set as, for example, the number of
fire spots that randomly appear (number-of-fires drop-down menu in Fig. 1),
the density of the forest (tree-num drop-down menu in Fig. 1), the number of
scouter and ground units, the initial water supplies of each unit etc.

Cooperation in this simple MAS is rather straightforward: scouters patrol the
forest area, detect fire spots and inform ground units that move to the specific
location and extinguish the fire. Cooperation takes place under the Contract-
Net protocol where scouters assume the role of managers and ground units that
of contractors: for each announced contract (cfp-message) by a scouter, bids
(proposals) are submitted by ground units and one is awarded the contract.
There is a single evaluation criterion of the bids, the distance of the ground
units from the fire location. Although it could have been possible to directly
implement the agents’ behaviour in NetLogo, the BDI and FIPA-ACL libraries
presented, greatly facilitated the development process. For instance, the code
in Fig. 2 shows part of the ground units code, that involves message handling,
proposal creation and commitment to an “accept-proposal” message that has as
content the coordinates of the forest fire, i.e. a large part of the agent’s reasoning.
It should be noted that the partial implementation of this simulation was given
as a coursework in the context of an Intelligent Agents course: details may be
found at [20].

6 Discussion and Conclusions

We started using NetLogo as an educational tool five years ago, in the context of
coursework of an undergraduate course in Intelligent Agents. Soon we started to
realise the necessity of being able to simulate more complex AMAS than those
composed of simple reactive agents. It was also encouraging to see a growing
interest of the academic as well as research community towards this simula-
tion environment. Both acted as motivations to create the BDI and FIPA-ACL
NetLogo libraries.

In education, we have already seen the benefits that NetLogo provides. We use
the same assignment template each year but with a different scenario (case study)
such as agents rescuing victims in a disaster area, taxis transporting passengers
in a city, vacuum cleaning a floor, luggage carriers solving logistics problems in
airports, space satellite aligning to provide telecommunication services etc. [20].
The overall impression was that students enjoyed the practical aspect of the
course. It is also clear to us that the overall student performance is increased
due to better and deeper understanding of the issues around AMAS. Most of
the students attributed much of the success of their solutions to the libraries
provided. Learners really enjoyed the sense of seeing and experimenting with
the virtual world they developed with minimum programming effort, thus having
more time to design and prototype the “real thing”.

274 I. Sakellariou, P. Kefalas, and I. Stamatopoulou

In research, NetLogo provided us a platform in which we could immediately
prototype and test our theoretical findings. Our interest in formal modelling of
swarm intelligence and biology inspired AMAS exactly matched the initial Net-
Logo requirements [16,17]. We are currently investigating how formal models for
goal-oriented agents exhibiting dynamic re-organisation can be directly mapped
to NetLogo constructs, so that a semi or fully automatic translation would be
possible. It is important that the libraries needed for such experimentation have
been already implemented.

Through the two libraries described in this paper, we managed to have a plat-
form that facilitates development of something more than a reactive agent. The
libraries are by no means complete or fully fledged to meet the complete BDI
and FIPA-ACL requirements. Future work is directed towards such extensions.
For example, NetLogo offers a JAVA interface, through which a link to com-
plete BDI packages, such as JAM, might be possible. Although we consider it
unsuitable for educational purposes, as argued above, the idea could offer new
opportunities for using the platform in research. In addition, we are considering
a rather ambitious development of an extendible/customisable game platform in
NetLogo, in which educators will be able to setup game environments and rules,
such as tank battles, RoboCup etc., that would allow an even simpler use of
the platform in the context of a course. Towards this direction, we have already
implemented a prototype, but the work is not fully completed yet.

References

1. Joint ACM/IEEE Task Force on Computing Curricula: Computing curricula 2001.
ACM Journal of Educational Resources in Computing 1 (2001)

2. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-
based Modelling, Northwestern University, Evanston, IL (1999),
http://ccl.northwestern.edu/netlogo

3. Beer, M.D., Hill, R.: Teaching multi-agent systems in a UK new university. In:
Proceedings of 1st AAMAS Workshop on Teaching Multi-AgentSystems (2004)

4. Hara, H., Sugawara, K., Kinoshita, T.: Design of TAF for training agent-
based framework. In: Proceedings of 1st AAMAS Workshop on Teaching Multi-
AgentSystems (2004)

5. Williams, A.B.: Teaching multi-agent systems using AI and software technology.
In: Proceedings of the 1st AAMAS Workshop on Teaching Multi-AgentSystems
(2004)

6. Beer, M.D., Hill, R.: Multi-agent systems and the wider artificial intelligence com-
puting curriculum. In: Proceedings of the 1st UK Workshop on Artificial Intelli-
gence in Education (2005)

7. Bordini, R.H.: A recent experience in teaching multi-agent systems using Jason.
In: Proceedings of the 2nd AAMAS Workshop on Teaching Multi-Agent Systems
(2005)

8. Fasli, M., Michalakopoulos, M.: Designing and implementing e-market games. In:
Proceedings of the IEEE Symposium on Computational Intelligence in Games, pp.
44–50. IEEE Press, Los Alamitos (2005)

http://ccl.northwestern.edu/netlogo

Enhancing NetLogo to Simulate BDI Communicating Agents 275

9. Behnke, S., Müller, J., Schreiber, M.: Playing Soccer with RoboSapien. In: Breden-
feld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI),
vol. 4020, pp. 36–48. Springer, Heidelberg (2006)

10. Ferme, E., Gaspar, L.: RCX+PROLOG: A platform to use Lego MindstormsTM

robots in artificial intelligence courses. In: Proceedings of the 3rd UK Workshop
on AI in Education (2007)

11. Wooldridge, M.: An Introduction to MultiAgent Systems. J. Wiley & Sons, Chich-
ester (2002)

12. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge (1999)

13. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs (2002)

14. Vidal, J.M., Buhler, P., Goradia, H.: The past and future of multiagent systems.
In: Proceedings of 1st AAMAS Workshop on Teaching Multi-AgentSystems (2004)

15. Steels, L.: Cooperation between distributed agents through self-organisation. In:
Towards a New Frontier of Applications, Proceedings of the IEEE International
Workshop on Intelligent Robots and Systems (IROS 1990), pp. 8–14 (1990)

16. Gheorghe, M., Stamatopoulou, I., Holcombe, M., Kefalas, P.: Modelling dynami-
cally organised colonies of bio-entities. In: Banâtre, J.P., Fradet, P., Giavitto, J.L.,
Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 207–224. Springer, Heidelberg
(2005)

17. Stamatopoulou, I., Sakellariou, I., Kefalas, P., Eleftherakis, G.: Formal mod-
elling for in-silico experiments with social insect colonies. In: Papatheodorou, T.,
Christodoulakis, D., Karanikolas, N. (eds.) Current Trends in Informatics, Patras,
Greece, May 18-20. Proceedings of the 11th Panhellenic Conference in Informatics
(PCI 2007), vol. B, pp. 79–89 (2007)

18. Huber, M.J.: JAM: a BDI-theoretic mobile agent architecture. In: Proceedings of
the 3rd Annual Conference on Autonomous Agents, pp. 236–243. ACM, New York
(1999)

19. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI 1987), pp. 677–682 (1987)

20. Sakellariou, I.: Extending NetLogo to Support BDI-like Architecture and
FIPA ACL-like Message Passing: Libraries, Manuals and Examples (2008),
http://eos.uom.gr/∼iliass/projects/NetLogo

http://eos.uom.gr/~iliass/projects/NetLogo

	Introduction
	Simulation and Education in AMAS
	NetLogo as a Modelling Tool
	Extending NetLogo with Libraries for Intelligent Agents
	BDI-Like Agents in NetLogo
	Intentions in NetLogo.
	Managing Beliefs.

	FIPA-Like Message Passing

	Forest Fires Scenario: A Case Study
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

