
From Conceptual Models to Agent-based

Simulations: Why and How

Swaroop Vattam
a
, Ashok K. Goel

a
, Spencer Rugaber

 a
, Cindy Hmelo-Silver

 b
, Rebecca

Jordan c
a

 School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA
b

 Graduate School of Education, Rutgers University, New Brunswick, New Jersey, USA
c

 School of Environmental and Biological Sciences, Rutgers University, New Brunswick,

New Jersey, USA

Abstract. The core problem we address in this paper is how to take a declarative

conceptual representation of a complex system and produce an agent-based

simulation of that model. In particular, we describe a computational technique that

takes Structure-Behavior-Function models of complex systems and simulates the
behavior of the modeled system in NetLogo, an agent-based programming and

simulation environment. This technique has been implemented in an interactive

learning environment to promote complex systems learning among middle school
students.

Keywords: Complex systems, interactive learning environments, modeling and

simulation.

Introduction

A Structure-Behavior-Function (SBF) model ([1], [2]) of a complex system

declaratively represents its functions (i.e., the observable inputs and outputs), its

structure (i.e., the components and connections), and its behaviors (i.e., the causal

processes that compose the functions of structural components into the functions of the
system). We are exploring the utility of this knowledge representation for helping

middle school students learn some of the core ideas related to complex systems (e.g.,

[3]). Our basic approach is to focus students' critical inquiry skills around building SBF

models of systems, allowing them to express their understanding in a visual SBF

knowledge representation language that not only makes explicit some of the targeted

core ideas related to complex systems but also serves as a stimulus, scaffold and

coordinator for various learning interactions within and among students.

Once a student develops a SBF model of a system, the model has the potential to

become a shared construct, enabling teachers and peers to assess the student’s

understanding of the modeled system and for providing relevant feedback. However,

having this social channel as the only form of evaluative support has its disadvantages.
The students’ tendency to wait until they have a relatively finished product before they

are ready to share it, coupled with the greater turn-around time for a response to arrive

from their teachers or peers prevent students from getting timely and intermediate

feedback as they construct their models.

We have tried to address this problem by coupling the SBF representation

language with a simulator capable of animating the SBF model. In particular, we have

developed a computational technique that takes an SBF model and simulates the

behavior of the modeled system in NetLogo ([4], [5]), an agent-based programming
and simulation environment. The advantages of this approach are that students can (1)

visualize the behavior of the system they modeled, (2) get feedback about their models

by comparing the behavior of the system they modeled with either an expert’s

simulation or a real-life version of the system, and (3) get feedback at intermediate

stages of their model development.

SBF models to NetLogo Simulations

Motivated by the larger educational issue of providing appropriate visualizations of and

timely feedback on students’ evolving understanding of complex systems, the core

problem we address in this paper is how to take a SBF model of a system and produce

a NetLogo simulation. HYPERION is a computational architecture for achieving this.

HYPERION deals with three kinds of computational constructs (1) instance SBF models,
(2) abstractions over instance SBF models called “behavior patterns”, and (3) the SBF-

NetLogo compiler. In order to simulate SBF models, they have to be transformed into

NetLogo programs. This is done by the SBF-NetLogo compiler. In order to simulate a

particular SBF model instance, the constructs of the SBF modeling language (e.g.,

states, transitions, components, substances, properties, etc.) have to be mapped to

constructs of the NetLogo programming language (e.g., world, agents, breeds,

topology, colors, shapes, movement, etc.). The compiler produces as output a program

which can be loaded into NetLogo and executed.

The process of compiling is complicated by two factors. First, the mapping rules

for the compilation process are context dependent and cannot be completely

determined a priori. For instance, although we know beforehand that model elements

of a certain category in SBF models (e.g., components) are mapped to one or the other
programming primitives in NetLogo (e.g., agents or breeds), the compiler cannot

determine in a context independent way, whether an occurrence of a component, say

Fish, should be declared as an agent or a breed in the NetLogo program. Second, the

compilation process has to deal with an impedance mismatch arising from how the

changes that a complex system undergoes are represented in the SBF and NetLogo

frameworks. In SBF, a process that accounts for those changes are approximated

(simplified) to a deterministic and discrete (event-based) representation. NetLogo,

however, is designed to simulate continuous, stochastic processes. Therefore, in

compiling SBF models, a NetLogo-suitable mapping function(s) has to be produced

that accounts for the discrete event changes of the SBF model. To mitigate these

challenges, we propose that the required mapping rules and function(s) can be fixed

beforehand for a class of SBF models that share deep similarity. That is, if the mapping

rules and function(s) for a particular class of models are known, any SBF model which

is an instance of this class can be simulated by instantiating the class’ mapping rules

and function(s). To capture this notion of a class of SBF models, we introduce the

notion of behavior patterns.

Behavior patterns are generic abstractions over many instances of SBF models that

share a common deep structure. For instance, models of ecosystem containing the

carbon-dioxide cycle and the nitrogen cycle are both instances of the “production-

consumption-cycle” behavior pattern. The role of a behavior pattern is to encode

knowledge common to a set of similar SBF model instances and use that to knowledge

to fill in the gaps during the SBF-NetLogo compilation process. In other words,

behavior patterns set up expectations for SBF model instances that belong to that
pattern. They suggest what information a model belonging to a certain pattern should

contain. For example, the “production-consumption-cycle” pattern suggests that there

must be one or more substances that are being produced and consumed (e.g., ammonia,

nitrite, nitrate, and food in the ammonia cycle model). This pattern suggests that for

every substance there has to be a producing agent and a consuming agent (e.g., fish

consumes food and produce ammonia, nitrosomonas bacteria consume ammonia and

produce nitrite, etc.). Since this pattern is related to a set of semantically related

models, specifically ecological models, the domain semantics suggests the mapping

rules to be included in the pattern (e.g., producing and consuming entities are

collectives and hence the occurrence of fish or plants in SBF should be mapped to

breeds in NetLogo). Similarly, the domain semantics also suggest the mapping
function(s) to be included (e.g., mathematical relationships governing the rates of

production and consumption).

This architecture raises a number of issues. First, how are particular instances of

SBF models associated with behavior patterns. At present, we assume that this

association is done manually by the students. Second, if the SBF model construction by

the students are completely unconstrained, this may lead to models that may be

internally inconsistent or too impoverished for the compilation process to succeed. To

address this issue, we provide students with model templates rather than having them

construct models from scratch. But this does not guarantee internal consistency or

sufficient completeness, lacking which the compilation fails. This failure of

compilation can itself serve as a feedback to the student that something is wrong with

the model. These issues point to interesting avenues for further theoretical exploration.
This article presents a computational technique. Further studies are required to

determine the soundness of the technique and its efficacy in addressing the educational

need it was designed to address.

Acknowledgements: We thank Vivek Menon for his contributions. This research is

supported by NSF ALT Grant #0632546 (Learning About Complex Systems by

Constructing Structure-Behavior-Function Models in Middle Schools).

References

[1] Goel, A., Gomez, A., Grue, N., Murdock, W., Recker, M. & Govindaraj, T. (1996) Towards Design
Learning Environments: Explaining How Devices Work. In Proc. International Conference on

Intelligent Tutoring Systems, Montreal, Canada, June 1996.

[2] Goel, A., Vattam, S., & Rugaber, S. (2009) Structure, Behavior & Function of Complex Systems: The
SBF Modeling Language. To appear in International Journal of AI in Engineering Design, Analysis

and Manufacturing, Special Issue on Developing and Using Engineering Ontologies.

[3] Hmelo-Silver, C., Jordan, R., Demeter, M., Gray, S., Liu, L., Vattam, S., Rugaber, S., & Goel, A (2008).
Focusing on Function: Thinking Below the Surface of Complex Natural Systems. Science Scope,

Summer 2008.

[4] Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and

Computer-Based Modeling, Northwestern University. Evanston, IL.
[5] Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense

of the world. Journal of Science Education and Technology, 8, 3-19.

