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ABSTRACT

Automatic algorithm generation for large-scale distributed
systems is one of the holy grails of artificial intelligence and
agent-based modeling. It has direct applicability in future
engineered (embedded) systems, such as mesh networks of
sensors and actuators where there is a high need to harness
their capabilities via algorithms that have good scalability
characteristics.
NetLogo has been extensively used as a teaching and re-
search tool by computer scientists, for example for exploring
distributed algorithms. Inventing such an algorithm usually
involves a tedious reasoning process for each individual idea.
In this paper, we report preliminary results in our effort to
push the boundary of the discovery process even further, by
replacing the classical approach with a guided search strat-
egy that makes use of genetic programming targeting the
NetLogo simulator. The effort moves from a manual model
implementation to an automated discovery process. The
only activity that is required is the implementation of prim-
itives and the configuration of the tool-chain. In this paper,
we explore the capabilities of our framework by re-inventing
five well-known distributed algorithms.

Categories and Subject Descriptors

G1.4 [Numerical Analysis]: Optimization—Unconstrained
optimization

Keywords

Agent Based Models, CUDA, Genetic Programming, NetL-
ogo, Multi-agent Systems, Global-to-local compilation

1. INTRODUCTION
The current technological advances have lead to the cre-

ation of engineered computing systems characterized by high
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complexity in terms of software [14], system engineering [8]
and expected quality of service [7]. Most of these systems
are made out of a large number of structural elements that
have complex dependencies and emergent properties. Some
exhibit a tight-coupling between their structural elements
split across a large number of layers [6]. Others are less
hierarchical while being topologically distributed over large
physical spaces [25].

The scale of the computing systems, measured in terms
of the number of constituent elements, the complexity of
the software stack required to control them, the tolerance
to failures, etc., require novel programming paradigms. [3]
Besides that, a well-known property of large-scale systems
is that above a certain system size, global properties occur
somewhat unexpectedly out of simple local interactions. In
a very small number of cases, this emergent behavior is a
positive property and can be put to good use by synchro-
nization algorithms [23], clustering schemes [19], distributed
feed-back mechanisms [5] etc., while in the large majority of
cases it has mainly a negative effect [15].

In this paper, we propose a so-called “Global-to-local com-
piler” [24] to automatically generate local interaction rules
between the constituent system elements starting from a
global description of the system behavior. Since there is
no linear mapping between the two levels, this has proven
to be a very complex problem [16].

Looking at the problem from a constructive point of view,
there is a high interest in programming in terms of emergent
behavior, using generative local behaviors (both computation-
wise as well as communication-wise), since such programs
scale-up very well for large systems [2].

Our approach to solve the problem at hand is to use Ge-
netic Programming in order to discover algorithms that ful-
fill the search goal. A large number of combinations of local
rules needs to be evaluated in order to determine how well
they map onto the desired global behavior (i.e. a good fit-
ness for a given program). Doing so on a normal CPU is
convenient, but it can take up a solid amount of computa-
tion time given that:

• The number of initial programs should be large enough
to be sufficiently diverse in nature (population size);

• The programs that are generated through crossover
and mutation should have enough iterations (number
of generations) to evolve good programs.
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Obviously, it would be best if the user would get fast re-
sults without trading off the solution quality. To help di-
minish the computation time it takes to discover a good pro-
gram, we accelerate the simulations on a graphics processing
unit (GPU). Due to the parallel computation approach used
by technologies such as CUDA and OpenCL, GPUs are a
more natural fit to our problem domain than CPUs, hence
obtaining a solution will take less time.

The paper is organized as follows. In Section 2 we present
the related work while in Section 3 we present the system
description. Experimental results are show-cased and dis-
cussed in Section 4. We conclude with Section 5 and show
hints about future work.

2. RELATED WORK
Other research initiatives have already tried to automate

the search for distributed algorithm targeted at multi-agent
systems. One such project is called BehaviorSpace [22],
and is included with the NetLogo [22] distribution. Behav-
iorSpace allows the user to simulate a model many times, by
varying the input parameters automatically, and recording
the results for each run. A user can provide multiple “re-
porter functions”, that monitor the state information (agent
properties) at every run. In this way, the user is provided
with an overview on all possible outcomes of a model, rather
than having to guess the model parameters. For models
that have relatively low complexity, execution time is not
a problem. Unfortunately, for a large number of parame-
ters, due to the exhaustive type of approach, the runtime
grows exponentially. Another similar project in [11] focuses
on sampling the parameter space densely where the solution
space changes rapidly, in order to precisely investigate the
influence of the different parameters.

A project that is similar to ours is BehaviorSearch [21].
It uses genetic algorithms to search for optimum parame-
ters for a given agent-based model. Unlike our approach,
it doesn’t change the structure (e.g., code) of the model.
This is somehow restrictive since it presumes that the user
already knows a promising agent behavior. What is left to
be discovered is only the tweaking of the parameters.

ABM Meta-modeling Framework [13], splits the problem
in two: bottom-up (also called forward-mapping problem)
and top-down (also called the reverse mapping problem).
Their approach to solving the top-bottom problem is to in-
terpolate configurations using the forward mapping to ap-
proximate a smooth and continuous surface. This inter-
polated surface represents the space of configurations that
would satisfy the system-level requirements set out by the
user. Again the framework presumes that the user knows
the exact structure of the model and what’s left to be dis-
covered are its parameters.

Our approach is to use Genetic Programming [1] for al-
tering the internal structure of the code for the agents. This
gives us more power for finding promising novel algorithms
with limited knowledge about the agent’s internal code struc-
ture. Out of many approaches we chose to use the Gram-
matical Evolution (GE) [17] to guide the evolution process.
We further outline our motivations for using this approach
in Subsection 3.1.

In [18], the Ant Foraging problem [9] is implemented using
Genetic Programming. In order to do this, the Genetic Pro-
gramming framework is supplied with a number of function
calls and properties that may be of importance for finding

Figure 1: MetaCompiler design

a suitable algorithm. The Genetic Programming framework
recombines these“building blocks”, and is able to find a good
solution for this particular problem.

3. SYSTEM DESCRIPTION

3.1 Genetic Programming
The main contribution of the paper is preliminary re-

porting on a tool called MetaCompiler for Automatic Al-
gorithm Discovery (MAAD). Its architecture is shown in
Figure 1. The input is a user defined configuration file in
which he/she specifies the simulation environment, as well
as agent-specific capabilities. These settings are expressed
as functions and their code is located in the user-defined
libraries. Additionally, it also contains the fitness function
that is used to evaluate the quality of the generated pro-
grams. For instance, for the case of a synchronisation algo-
rithm, a fitness function expressed as the standard-deviation
of the clocks should be as close as possible to zero.

Once the configuration file has been processed, the Meta-
Compiler generates a custom grammar file that defines all
the possible programs that are allowed to be generated by
the genetic programming module. As mentioned in Section 2
we use a Grammatical Evolution approach. GE is the most
flexible, widely applicable strategy out of all the GP alter-
natives; this is due to the fact that GE is able to generate
programs from an arbitrary grammar. The actual interpre-
tation of the generated programs can be done by a separate
system. The GE tool generates a string representation of
a program. Additionally, an inherent property of the fact
that we generate a program from a grammar is that the
generated code is by definition syntactically correct, given
the correctness of the grammar. This removes the need for
a program to be syntactically verified before pushing it for
evaluation by the agent simulator (e.g. NetLogo).

For us, this flexibility made it possible to come up with
a simple and general-purpose language we could fit to the
specifics of distributed systems algorithms. Our choice has
some advantages compared to other approaches:

• it generates only programs that are syntactically cor-
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rect. Agents do not have to execute methods that
make use of unknown or unsuited state information
(e.g. a method that returns a list will not be assigned
to a numeric state variable);

• it gives full control to the translation to other ABM
languages besides logo-*;

• it allows the usage of multiple agent simulators than
NetLogo, if necessary as a consequence of the modular
design;

• it is easy to change the grammar from which code is
generated;

• it offers multiple configuration options with respect to
initial population growth strategies, fitness evaluation,
experiment parameters, etc.

The Genetic Programming part of the MetaCompiler, is
built using the EpochX library [4]. This is an open source
genetic programming framework written in Java and is re-
leased under a permissive license. Among the advantages
of EpochX is the fact that it readily includes implementa-
tions for the most popular GP tactics. Another advantage
is the fact that it is built with extension and adaption in
mind, making it easy to change each of the steps of GP
to user’s will without having to adjust and recompile the
library. This way, we can leverage the power of genetic pro-
gramming while maintaining both flexibility and community
support.

Currently, we only use standard methods for the different
steps vital to GP, provided by default in EpochX. For ini-
tialization, we use a Ramped Half-and-Half initializer [10].
This uses a mix of the full and grow initialization tactics that
stem from the origin of GP [1]. We enhanced the initializa-
tion process, by allowing the specification of the maximum
initial tree depth and maximum end tree depth. Selection is
done through Tournament selection. This strategy repeat-
edly picks a subset of the programs in a population and picks
the most fit program from that subset to be used in the mu-
tation/crossover/reproduction stage of GP. Crossover hap-
pens through the One-Point Crossover technique. For both
parents, a random point in the program representation is
chosen, and the two parts of one parent are combined with
the two other parts of the other parent. The problem with
this approach is that programs with nested structures can-
not be cut and reattached at any point and still conform to
the given grammar. The reattached parts will be adjusted
to suit the grammar, but this is where they lose a lot of their
meaning. Hence, the second part of both new programs will
likely be very different from their original value.

Mutation is done using Point Mutation, which picks a
random structure (e.g. a statement or a function) from the
current program and changes its value to some random one.
Much like with crossover, the underlying structures of the
changed structure need to be adapted to suit the grammar,
and will most likely lose their meaning in the process.

The crossover and mutation methods we chose can be very
disruptive to programs. In the future we would like to in-
vestigate alternative methods to make program transitions
less disruptive. Additionally, we plan to give the user more
power over the parameters of the methods. The ultimate
goal of these steps being to smooth out the search space.

3.2 Agent behavior
To goal of this project is to generate global behavior based

on local interactions between the agents. If we look at their
structure, they have a reduced set of state variables. Due
to the fact that there is no global coordination or accessible
global state, we do not support NetLogo features that relate
to global state. Hence, the first approach for our framework
was to generate only local agent actions.

Even though it makes sense for the output program not
to rely on global state, testing whether a program fulfills a
global goal can be very hard without storing global state.
Therefore, we introduced global variables in the consecutive
version of the MetaCompiler. Global variables are also al-
lowed to fulfill the function of immutable agent variables,
reducing the memory consumption of the simulation. Other
global variables can be hidden in order to restrict the agents
from using global information.

Obviously, when porting the programs to a hardware plat-
form for real-life execution, hidden global variables should
be entirely dropped from the program, and immutable agent
variables (that are configured as global variables) should be
embedded at the agent level.

Another feature we added was the idea that we don’t want
to be entirely dependent on commands that are discovered
at run-time. For example, sometimes you want to enforce an
agent to move a little, or send out a particular signal, before
starting the execution of a next round of code, or maybe
after finishing the execution. For this, we introduced (agent)
static primitives, actions that execute either before (begin)
or after (end) the execution of “generated”code. In addition,
we also enabled global static primitives, that happen either
before the first agent static begin primitives, or after the last
agent static end primitives. These global static primitives
generally serve an administrative functions (e.g. updating
some value to be used by the fitness function, or updating
the network graph).

To enable the user to adjust the program between the
initialization and execution, we have also included the ability
to add initialization primitives. In conclusion, the outline of
our output programs is as follows:

1. Initialization phase (executed once)

1.1 Initialization code of both agent and global pa-
rameters

1.2 User supplied initialization primitives

2. Run phase (executed multiple times)

2.1 Global static begin primitives

2.2 Agent static begin primitives

2.3 Generated code

2.4 Agent static end primitives

2.5 Global static end primitives

3.3 NetLogo
The first agent language we use is NetLogo. Our choice

is merely because of its flexibility and simplicity. Addition-
ally, we have a lot of programming experience in NetLogo,
such that the translation from our intermediate language is
simple.

Since our intermediate language is mostly about the struc-
ture of the programs rather than using a lot of difficult lan-
guage constructs, and a major part of the program consists
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Figure 2: The influence of the code size to the fit-

ness.

of library calls (that are already natively implemented in
NetLogo), the translation to this language is fairly simple.

In fact, the only real separation is the difference between
the actions in initialization and run phases (as described
in Section 3.2). The rest of the NetLogo program is hard-
coded, and resides in a template.

3.4 CUDA
In order to develop an algorithm with the GE method,

usually a large number of experiments are required. Addi-
tionally, since the experiments involve random components
(random behavior of the agents, execution order, etc.) each
experiment has to be run multiple times. This requires a
lot of computation and thus it can take a long time to reach
a satisfactory fitness value. In order to accelerate the pro-
cess, the inherently parallel nature of the problem can be
exploited. However in most desktop computers the num-
ber of computational cores is low (between 2 and 8), thus
the overall architecture is less suitable for massively parallel
execution of programs.

Nowadays, the usual approach to accelerate these kind of
computations is to use General Purpose GPU’s, specifically
on CUDA capable cards. The architecture of these devices is
specifically designed to execute massively parallel programs,
utilizing a large number of cores, a special memory architec-
ture and a very large number of lightweight threads. As
described above, the MetaCompiler takes the user configu-
ration file, and generates a number of NetLogo source files.
With the GPU-based acceleration these are then converted
to a special bytecode that is executed by a virtual machine
running on the GPU. The evaluation of the fitness happens
on the GPU as well, after which a vector of fitness values
(for every experiment respectively) is sent back to the CPU.
This happens in order to minimize memory transfers be-
tween the host (CPU) and the device (GPU) memory. The
evaluation of the fitness usually requires the state informa-
tion for all the agents, and transferring these would incur a
high latency.

For CUDA, the threads can share data, and can synchro-
nize. The thread blocks run independently and it is not
possible to make any assumption on their execution order.

3.4.1 Application parallelism

The GE problem includes two levels of parallelism that
can be exploited. On one hand the experiments are indepen-
dent of each other. On the other hand, the agents execute
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Ld/st Arith/Logic Cntrl 1-hop
setLocalImmediate add IfElse addNeighbor

getOthersShared greaterThan threadGuardOn/Off getNrNeighbors

Table 1: Examples of VM instructions

the same code with some interaction between each other.
Thus each thread block is assigned to an experiment, and
each thread in that thread block is an agent of the experi-
ment.

3.4.2 The CUDA virtual machine

The CUDA virtual machine executes the agent code. This
is needed since on the current architectures it is not possible
to start multiple computational kernels simultaneously, yet
a number of different programs have to be tested. In this
case the kernel contains only the VM’s executor code. The
agent’s program is downloaded as a vector of numbers, each
encoding an instruction on the VM. Along these a vector of
parameters are passed with the instruction. With these the
VM can execute corresponding behavior.

In the NetLogo environment the state of the agents is
stored in turtle- (position, color, etc.) and in breed variables
(user defined). Apart from these it is possible to define lo-
cal variables in the procedures carried out by the agents.
Each agent has a number of private variables, that cannot
be accessed by the other agents, but also and shared vari-
ables which can. The procedure local variables along with
temporary variables (which e.g. store the output of arith-
metic operations) are stored in the array of local variables.
The shared variables store the turtle- and breed variables.
Both of these type of memories can be accessed for read-
ing and writing, so that agents can communicate with each
other (ask primitives). Apart from these each agent has a
data structure with stores the ID of those agents which it is
neighbors with. Since every agent executes the same code,
they have the same amount of memory allocated of every
type. Additionally, there is a vector of global values which
resides currently in the global DRAM. These variables can
thus be used to communicate with the host computer. At
this moment only scalar values of type double can be used
as variables, other types (e.g. lists, strings) will be imple-
mented in the future. Boolean and integer values are simply
converted to double (1.0 for true and 0.0 for false).

Table 1 shows some examples of the VM instruction set.
It contains the usual instructions (e.g moving data into vari-
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ables, arithmetic operations, comparisons, branching oper-
ations), and special instructions which encode higher level
behavior relevant to agent based simulations, as well. These
special instructions are currently: switch on/off the thread
guard. If it is on, only Thread 0 (in each block) execute the
upcoming instructions until it is switched off again. Another
special control instruction is synchronization, which creates
a thread barrier to synchronize all the threads in the block.
This is essential to ensure consistency in the shared memory
operations. The 1-hop operations manage the neighborhood
data structure, thus they add/remove neighbors, return the
number of neighbors, etc. One important member of this
family is the remote procedure calling, which translates Net-
Logo’s ask linkneighbors primitive. It is necessary, otherwise
agents would not be able to initiate communication. It is
implemented via a special shared data structure, which in-
cludes a flag, and a variable to store the call address.

The CUDA kernel implements an execution skeleton, which
consists of several phases:

1. Agent initialization: dynamically allocated variables
are allocated here (the data structures storing local,
shared and global variables, since their sizes are known
only at runtime), Thread 0 initializes shared data;

2. Execution: a while loop takes the instruction which is
pointed at by the instruction pointer and executes it
unless it is a stop instruction (at which point the agent
has finished its program;

3. Agent destruction: the dynamically copied data struc-
tures are destroyed.

In order to ensure the consistency of the shared variables,
the CUDA threads synchronize with each other via synchro-
nization barriers. Each instruction can be divided into a
read/execution and a write phase. Thus each instruction
has to synchronize twice once after reading and once after
writing. This scheme ensures that no race conditions occur
while accessing the same shared variables. Apart from this,
the VM has the customary auxiliary data structures: in-
struction pointer, which is incremented by the instructions
(or set by jump and branching instructions). It also has a
call stack with a stack pointer.

3.4.3 Translation of NetLogo code into CUDA VM
byte code

In order to run the genetically generated code on the
GPU, the NetLogo program has to be translated into a
special byte-code which is downloaded to a CUDA capable
card, and executed there. In order to simplify the process
of the translation, it is first compiled by the NetLogo en-
gine, so that later stages can use the information extracted
by the NetLogo compiler. The NetLogo engine merges the
included files, compiles the procedures one-by-one into an
intermediary format (ProcedureDefinition). Additionally, it
sets up the so called Workspace, which contains informa-
tion about the breeds of agents (which defines the shared
agent-variables, i.e. those which are visible to other agents),
and the global variables (along with their initial values). In
order to seamlessly integrate with NetLogo, the GPU VM
translation framework is implemented in Scala

The translation process is controlled by the GPUBack-
end class, which stores the necessary data extracted from
the NetLogo engine (as mentioned above), and instantiates

the classes which facilitate the different phases of the trans-
lation. The input of this process is a restricted subset of
the NetLogo language which is transformed the bytecode
as multiple vectors of numbers. The different stages of the
translation take place in the following order:

1. AST Modification: the Abstract Syntax Tree (AST)
representation of each procedure is extracted and mod-
ified, in order to make the later stages simpler. These
AST’s consist of an array of statements which store
Commands (instructions that create changes in the en-
vironment of the simulation), which in turn can store
Reporters (instructions which do not create changes
in the environment of the simulation, instead they re-
port values of variables in the workspace or constants),
or command blocks which contain more commands.
During the modification some of these are erased or
replaced by special primitives. Since the number of
agents is static in the current version, only one agent-
creating command is allowed. The number of agents
are extracted (to be used at CUDA kernel launch),
and the command is discarded. If there are agent ini-
tialization commands included, these are merged to
the SETUP procedure. The usual forever button that
keeps calling the GO procedure, is simulated by ap-
pending a jump statement at the end of the procedure
pointing at the beginning. A jump statement is ap-
pended to the end of the SETUP to ensure the contin-
uous running of the simulation. Finally agent variables
which are automatically set up by the NetLogo engine
are initialized (e.g. the CUDA thread ID is stored in
the WHO field which identifies the agent). Special
primitives are inserted to facilitate the passing of pa-
rameters between agents in case of remote procedure
calls (corresponding to ask linkneighbors).

2. Instruction mapping: in this stage the statements be-
longing to the procedures are iterated together, and
the NetLogo primitives, which constitute the instruc-
tions in the AST are mapped to their GPU VM coun-
terparts (this means sometimes multiple instructions).
This is also the phase where temporary variables are
allocated to store the result of each operation. Thus
in order to chain together operations the consecutive
ones take the predecessor’s result as their argument.
For the sake of simplicity those instruction who have
command blocks (ask, ifelse) are treated as a function
call, thus return instructions are appended to the end,
containing references to the parent procedure.

3. Branch assembly: In this stage the hitherto separated
code blocks of the procedures, ifelse, ask command
blocks, etc. are fused together into a continuous ar-
ray of instructions. Prior to this stage these blocks
referenced each other (call, return, etc.) with their
formal names, in this stages these names are changed
to addresses, which are simply their position in the
instruction array.

4. Variable renaming: In this stage the GPU instruc-
tions are iterated over and their formal names (WHO,
COLOR, etc.) are encoded with two numbers: the
first one designating the type (0 → local, 1 → shared,
2 → global), the second one is its identifier. Thus on
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to the fitness.

the GPU the separate types are allocated in separate
arrays, the identifier denoting their position. At this
stage one more global value is allocated after the ex-
isting ones, the fitness procedure (which has a conven-
tional name) is selected and with special instructions
its reported value is redirected into this global vari-
able. Thus it has always a fixed place, and it can be
easily retrieved after carrying out the simulation.

5. Instruction encoding: In this stage the instruction names
which were hitherto kept in mnemonic form are re-
named to identification numbers, which are understood
by the CUDA VM’s instruction executor.

Finally the GPUBackend class downloads the instructions
to the GPU and starts the CUDA kernel, which executes
the simulation and retrieves the fitness value. To ensure the
seamless integration with the rest of the software, JCUDA
was used.

3.4.4 Limitations

As this software is in its early stages, it suffers from severe
limitations. As mentioned before, the number of the agents
are fixed for each simulation. Also currently only one breed
of turtles is supported. The neighborhood relations between
the agents are decided solely by their ID, and not their po-
sition. The possible data types are floating point numbers
and boolean values (thus e.g. lists are not allowed). The
biggest limitation is currently on the language itself, as only
a very subset is implemented.

4. EXPERIMENTS AND DISCUSSION
In order to validate our MAAD, we chose five well-known

algorithms and tried to re-invent them with our framework.
The first one is called Firefly Synchronization [23]. Com-
pared to the synchronization algorithm used in sensor net-
works, our implementation uses a backwards time shift strat-
egy. Our choice is determined by the increased complexity
of the original paper. In short, our implementation works
as follows: nodes adjust their phase backwards to the mo-
ment where they finished the TX interval when they sense
a large number of neighboring nodes are sending at any RX
moment. The execution happens in rounds and phase is ini-
tialized with random values. The primitives that are used
are shown in Table 2.

The second algorithm is called Leader Election [12]. Nodes
are placed in a ring with bidirectional links. The solution is
an algorithm where the node with the highest id gets picked
as the leader in a distributed fashion. The primitives that
are used are shown in Table 2.

The third algorithm we implemented is Koza’s famous
Ant Foraging algorithm [9]. Ants collect food and carry
it towards the nest from two food places. Along the path,
they deposit pheromone in order to guide the others to good
paths. The algorithm looks for strategies to maximize the
amount of food carried around in a fixed amount of time.
The primitives that are used are shown in Table 2.

The fourth algorithm is called Fail Detect [20]. It esti-
mates in a distributed manner the amount of average packet
loss in a large-scale wireless mesh network. The primitives
that are used are shown in Table 2.

The fifth algorithm is called Sync. BFS [12]. It builds a
tree in a geometric graph starting from a random node.

Figure 4 shows the evolution of the fitness for all the exper-
iment generations (horizontal axis). The values have been
normalized to [0..1] interval (vertical axis). The first two
generations have been removed from the graph due to the
fact that the fitness function in this part handles the ex-
pansion of the search space and not the search of the actual
solution for the algorithm. Firefly Sync. and Ant Foraging
show a steep decline of the fitness in the first seven gen-
erations, while the other algorithms have a more smooth
transition towards the optimum. Leader Election algorithm
is discovered (reaches a zero fitness value) in one generation.

The second metric we used to evaluate the programs is
code complexity. It is defined as the number of symbols that
occur in a program. Figure 2 shows the evolution of the
code complexity (vertical axis) for all generations (horizontal
axis). Ant Foraging has the highest increase in code size
until it reaches the optimum at the seventh generation. All
the others have a slight increase till the seventh generation
and than remain quasi constant or show a slight decrease.

In the third set of experiments, we looked at the required
number of generations for every population size that is re-
quired to reach the optimum (an individual program in one
generation with a fitness value of 0.0). In Figure 3 we see
that Fail Estimate never reaches a perfect optimum no mat-
ter the population size. On the other extreme, syncBFS
and Leader Election find the optimum in one generation no
matter the population size. Firefly Sync. requires a higher
number of generations when the population size is small and
a smaller number of generations when the population size is
larger.

In the fourth set of experiments (Figure 5), we assessed
the impact of the mutation rate on the process of finding a
good algorithm. For these experiments, the mutation rate
and crossover rate always added up to 1, such that either
crossover or mutation was used to create a new program for
the next generation (no reproduction was used). The eval-
uation is made for mutation rates of .1, .2, .3, and .4, and
crossover rates of .9, .8, .7, and .6 respectively. All experi-
ments in this series used 2 initial expansion generations (not
displayed in the graph) to enhance the initial code complex-
ity. It can be seen that the discovery of syncBFS was triv-
ial in all cases, since the perfect solution was always found
directly, something that also happened for Leader Election
with mutation rate .1, and for Firefly Sync. and Ant Forag-
ing with mutation rate .4.
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Algorithm Name Primitive Params Description

Firefly Sync.
resetClock() none sets back the clock phase
countTXNodes() none counts the number of transmitting nodes
RX() none signals that TX period has finished

Leader Election

sendPacket() none send a packet to the neighboring node in the ring
sendMyID() none inform neighbors about own ID
setAsLeader() none set node as leader by setting a flag to true
isInMsgHigher() none check if input message is higher than own ID
isInMsgEqual() none check if input message is equal to own ID

Ant Foraging

MOV-RANDOM() none agents (ants) move randomly
MOV-TO-NEST() none agents (ants) move back to the nest
PICK-UP() none pick-up the food if patch has food available
DROP-PHEROMONE() none agents (ants) drop pheromone at the
IS-FOOD-HERE() none branching condition based on food level on a given patch
IF-CARRYING-FOOD() none branching condition based on the availability of food
MOV-ADJ-FOOD-ELSE() none branching condition based on the adjacency of food

SyncBFS addReqUnNeigh(nodeId) number adds a request to an unmarked neighbor
clearParentRequests() none clear the parent request list

Fail Detect

multiply() two numbers computes the multiplication of the two input numbers
timeWindow() none time elapsed since the start of the simulation
multiply() two numbers computes the multiplication of the two input numbers
oneMinus() one number computes one minus the input number
oneOverAggregate() none computes the inverse of the aggregate

Table 2: Algorithm primitives and parameters.
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Figure 5: The influence of the mutation rate on the

fitness.
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Figure 6: The influence of the maximum initial

depth of the tree to the fitness.

In Figure 6, we compare the fitness of Firefly Sync. for
different values of the maximum initial tree depth. The dif-

ferent maximum initial depths vary from 8 to 24, and we
have divided the measurements into 4 different categories:
best start fitness, median start fitness, best end fitness, and
median end fitness. Each of the experiments was run 4 times
to get a stable measurement value. Since we use Ramped
Half-and-Half initialization, we also have a maximum end
depth value to which the initializer tries to grow the trees,
but for these experiment we fixed this value to 60, which is
more than it can reach in the initialization phase. For this
experiment we did not use any expansion generations, since
they make the influence of the maximum initial tree depth
less clear.

The complexity of the algorithms has an important influ-
ence on the performance of framework. Simple ones, like
Sync BFS or Leader Election do not require a large pop-
ulation size or numerous generations in order to reach the
optimum (at least one program in a generation with a fitness
value of 0.0). More complex ones like Ant Foraging or Fail
Estimate require much more computational effort as seen in
Figures 2 and 3. An important role in the discovery process
of the algorithms is the fitness function. Not only it has
to guide the search process towards the solution algorithm
but it also has to ensure we don’t end up with trivial cases.
For instance, for the case of the Firefly Sync. algorithm, a
program that would trigger instantaneous synchronization
of the clocks for all the agents is when they all set it to a
constant value. We had to check that the clocks are actually
incremented and penalize solutions that fail this test. For
the case of the Fail Estimate algorithm, we had to make sure
that the programs make use of the so called conditional as-
signments. Otherwise, constant values can be assigned that
would sometimes provide very good, if not perfect estima-
tions.
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5. CONCLUSION AND FUTURE WORK
NetLogo has been used for many years as a teaching and

research tool by which many scientists have tested their
ideas. The task of inventing algorithms usually requires a
tedious discovery process for every individual research idea.
With our framework we push the boundary even further, by
replacing the “classic” approach with a guided search. The
potential user looks for novel distributed algorithms via an
automatic process that makes use of genetic programming.
The effort moves from manual implementation in NetLogo to
a guided search where only the implementation of primitives
is required. In this paper, we showcased our initial efforts
towards a framework by trying to automatically re-invent
five distributed algorithm and analyze its characteristics for
different parameters such as population size, expansion gen-
erations, solution code size etc. Since this work is just a
preliminary effort, the initial results are very promising. We
plan to make use of better suited approaches for the Genetic
Programming building blocks (mutation and crossover op-
erators), as well as to further optimize the execution speed
via e.g. the usage of GPUs. For the eventual usability of the
MetaCompiler, it is important to investigate the complexity
of algorithms it is able to discover. One way we plan to do
this by making the building blocks for the current examples
more granular and evaluate the difference in performance.
We also plan to discover new algorithms and report on the
corresponding results, as well as to report on the effort of
creating building blocks versus the automatic discovery of
algorithms.
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