
Procedures: Algorithms and Abstraction 5

5.1 Objectives

After completing this module, a student should be able to:

• Read and understand simple NetLogo models.

• Make changes to NetLogo procedures and predict the effect on the simulation.

• Name the control structures sufficient to express all components of programs.

5.2 Definitions

• Algorithm

• Procedural abstraction

• Procedure

5.3 Motivation

Part of calling science and engineering “disciplines” is the implication that they

often follow structured processes and procedures for data collection, analysis, and

evaluation of their respective topic areas. Thus, scientists and engineers often create

and/or follow those processes and procedures, many times using computing. But

before learning more about procedures and computers and their abstraction, we

need to first take a brief look at the concept of an algorithm. An algorithm is a

mathematical term for a clear set of instructions that, when followed, solves a

particular problem. Examples include methods you may have learned in school and

life:

• Multiplying large numbers by hand

• Constructing a perpendicular to a line using a ruler and compass

Springer International Publishing Switzerland 2016

K. Brewer, C. Bareiss, Concise Guide to Computing Foundations,
DOI 10.1007/978-3-319-29954-9_5

45

• Constructing an angle bisector using a compass

• Brushing your teeth

• Preparing a hotdog in a microwave

Discuss It!

Consider how you multiply two large numbers by longhand. Could you teach
someone this algorithm?

To get the correct result from an algorithm, you must understand each instruction

and carry them out in the right order. You also need some basic knowledge such as a

times table (for multiplication) or entering cooking time (on a microwave). In these

examples, a human is performing the algorithm in order to solve a problem. The key

to an algorithm (i.e. set of instructions) is that it can work with many different

inputs (data values) and therefore be reused and repeated. Algorithms are used in

science and engineering disciplines to solve common mathematical problems.

5.4 Procedures

Programmers sometimes use existing algorithms or they may design algorithms of

their own to find solutions. Once a clear set of instructions to solve a problem exists,

they must be written in a programming language so the algorithm can run on a

computer. The entire algorithm written in a programming language is called a

program or set of procedures. The computer must “know” some primitive things

like numbers and simple math operations, as well as various procedural
instructions.

A program can be separated into parts called subprograms. The structured
program theorem (B€ohm and Jacopini 2011) states that every algorithm can be

implemented in a programming language that combines subprograms in only three

specific ways, called “control structures”. These three control structures are:

• Executing one subprogram, and then another subprogram (sequence).
• Executing one of two subprograms according to the value of a Boolean condition

(selection).
• Executing a subprogram repeatedly while a Boolean condition is true

(repetition).

We will learn about algorithms, procedures, and programming by using the

NetLogo (Wilensky 1999) system and programming language. The objective is

not for you to become a good NetLogo programmer, but to have some experience

46 5 Procedures: Algorithms and Abstraction

and practical examples of a programming language using a defined set of built-in

commands and control structures.

5.5 Control Structure Example

Say we want to create a repetitive spiral graphic that looks something like that

shown in Fig. 5.1.

We can create this using NetLogo using a single turtle (the NetLogo term for an

agent that can be programmed to move around the simulated world) with the pen

down. All three control structures in the structured program theorem are needed,

and the entire algorithm can be written in a single command:

repeat 72 [ifelse heading mod 10< 5 [set color yellow] [set color green] repeat
4 [forward 10 right 90] right 5]

Answer It!

Q05.01: What part(s) of the command (algorithm) reflect a sequence?
Q05.02: What part(s) of the command (algorithm) reflect a selection?
Q05.03: What part(s) of the command (algorithm) reflect a repetition?

Fig. 5.1 Spiral graphic

example

5.5 Control Structure Example 47

5.6 Procedural Abstraction

By now you have used examples of NetLogo control structures for each of the three

types: sequence, selection, and repetition. There is one more powerful program-

ming concept to cover – procedural abstraction. Because it is difficult to figure out
exactly how to write a complex procedure and you often want to use them more

than once, most programming languages have a way to give a procedure a name and

to invoke it when needed. Once a name is associated with the procedure, you can

run all the instructions in the procedure just by using the associated name. It’s like a

new command and can be used just like built-in commands. By giving a procedure a

name, the set of commands is larger and the programming language is more

expressive and more abstract.

Answer It!

Q05.04: Write a NetLogo procedure to have a turtle draw an equilateral triangle

with sides of length 10.

5.7 Theater Lights Part 1

This model was inspired one day while driving past a local movie theater and

watching the flashing lights moving around each sign. You will create the user

interface and will program the algorithms that will perform the model behaviors. It

is strongly suggested you read through the NetLogo Tutorial appendix prior to

continuing in this module.

We will approach creating the model in two major efforts:

• we will first arrange turtles (our lights) around the edges of a 20� 12 rectangle

on every other patch.

• we will then make them move counter-clockwise to simulate the moving

flashing.

Let us begin. Start NetLogo and create the basic setup and go buttons as

instructed in the appendix. Ensure the setup procedure includes the “clear-all”

and “create-turtles 1” commands.

The next thing to do in the setup procedure is to ask the only turtle to set its (x, y)

location to (10, 6) the upper right corner of the rectangle. At the same time, we

should set the color to white and make its heading north.

ask turtle 0 [

set xcor 10

set ycor 6

48 5 Procedures: Algorithms and Abstraction

set color white

set heading 0

]

Try the code in the setup button and make sure it does what you’ve planned.

A turtle can make a copy of itself by using the command hatch 1. You’ll use this
command with the first turtle to leave lights along the path as it travels around a

rectangle in a counter-clockwise direction. Remember that you plan to put a light on

every other patch along the outside of a 20� 12 rectangle.

To add the top row of lights, try adding these commands inside the ask turtle
0 sequence (after the previous code).

left 90

repeat 10 [

forward 2

hatch 1

]

Test your modified procedure. Make sure you get it working (the top row lights

are created) before you continue. Try sliding the speed slider left to slow the

simulation down. Test your procedure again and watch it doing each command

one at a time in response to pushing the setup button.

You should save your model periodically while you are modifying it. Do that

now by selecting File and Save and naming your model (e.g. Lights1.nlogo).

Now you need to add commands to the setup procedure to complete the

rectangle. The rectangle is 20� 12. You repeated 10 times along the top because

you want a light every other patch. You should therefore repeat 6 times on the sides.

Each turn at the corners is 90� to the left. Don’t continue until your setup procedure
places all the lights around the rectangle. The corners of the rectangle should be at

(10, 6), (�10,6), (�10, �6), and (10, �6).

You should add one more command to the end of the setup procedure. The turtle
that traveled around the rectangle leaving copies of itself along the way using the

hatch 1 command will end up at its starting location in the upper right corner. But

there is also a copy of it in that same starting location. To avoid duplication, we

need to remove the turtle that hatched all the others. To remove turtles from the

world, we use the command die to ask a turtle to leave this world. Therefore ask the
turtle to “die” at the end of the “ask turtle 0” command. That should be all for the

setup procedure.

Answer It!

Q05.05: Report your setup procedure to create the initial lights around the

rectangle.

5.7 Theater Lights Part 1 49

Now you need a way to have the lights change color and move around to the left

(i.e. counter-clockwise) and you will create those commands in the go procedure.

Remember that the procedure starts with “to go” and ends with “end”.

Let us first modify the go procedure to blink the lights from white to yellow and

back again. It possible to identify a set of agents (i.e., all the turtles) using the term

“turtles”. You previously gave commands to a single turtle agent with a command

like ask turtle 0 [set color white]. You can give commands to each turtle in the set

of all turtles with a command like ask turtles [set color yellow]. Add commands to

set all the lights (turtles) to white and then a separate command to set all the lights to

yellow.

Test go by selecting the Interface tab and pushing the go button several times.

Try slowing the speed slider way down again until you can see what is happening to

each light when you push the button. You should see that the turtles are in a random

order when they are given commands by the ask turtles [] command. It is a form of

repetition control structure. Return the speed slider to normal now.

Now let us further modify the code to move the lights. Add a command to one of

your ask turtles [] commands to move your lights forward one distance. Test your

code by running it.

Your model should be getting closer to what you want, but the lights are

forgetting to turn left at the corners. You need a selection statement to see if a

turtle is at one of the corners. If it is, have it make a 90� left turn. Then have it move

forward 1. The way to see if a turtle is at the upper right corner (10, 6) would look

like this:

if xcor ¼ 10 and ycor ¼ 6 [left 90]

Add a statement like this for each of the other three corners of the rectangle. Test

your changes and see how it looks. Make sure you have also added the command

tick to the end of the go procedure. This adds one to the ticks counter on the model

to tell how many times the go procedure has run. Remember you can start the model

over anytime by pushing the setup button. Adjust the speed slider until it looks like

flickering theater lights. Make sure to save your model.

Answer It!

Q05.06: Give an example of a sequence of commands from your theater lights

model.

Q05.07: Give an example of a selection control structure from your theater lights

model.

Q05.08: Give an example of a repetition control structure from your theater

lights model.

50 5 Procedures: Algorithms and Abstraction

Discuss It!

Your model looks somewhat like flashing theater lights but you know that
lights don’t really move around the outside of a theater sign. How does a real
sign achieve the look of moving lights?

5.8 Theater Lights Part 2

One way to make lights on signs appear to be moving is by turning them off and on

in a sequence. We will change the previous model to model this technique. Open

your previous theater lights model and use File and Save As. . . to make a copy of

the model as Lights2.nlogo.

We will first modify the setup procedure to leave a turtle on every patch around

the border instead of every other one. Make sure the lights create the same size

rectangle. Test it and make sure it is working correctly before continuing.

After all the lights are on around the border, we now need to turn off every other

light. Turtles have a Boolean condition variable hidden? which is either true or

false. Boolean variables end with a ? to show that we are asking the question

whether the turtle is hidden or not. Right click one of the lights and select the option

to inspect whichever turtle you happened to click on. This should bring up the turtle

monitor. Look to see that the hidden? variable has the value false.Change it to true.
Did the light disappear? Change the value back to false and the light should come

back on.

Remember that each turtle has a unique who number assigned when it is created

(kind of like a social security number). Since the turtles are numbered in order

during creation, the turtles with even who numbers will be every other one.

Even numbers are evenly divisible by 2. That means they have a 0 remainder

when divided by 2. For each light that would be the condition who mod 2¼ 0. Now
add commands to the end of the setup procedure to ask all turtles with an even who
number to set hidden? true. (You may need to search the excellent NetLogo

Dictionary online to determine the proper terminology to use.) Test your setup
procedure until you get it working correctly (i.e. hides the even numbered turtles).

Answer It!
Q05.09: What was the command you used to hide the even numbered lights?

In order to give the illusion of moving lights, you want to keep turning lights on

and off. For each light, if it is on, then turn it off. If it is off, then turn it on. One

approach would be to use a statement like ifelse hidden? [set hidden? false] [set
hidden? true]. Study this code until it is clear.

5.8 Theater Lights Part 2 51

Another method takes advantage of Boolean algebra operation not hidden?
which gives the value true if hidden? is false and gives the value false if hidden?
is true. This makes it possible to set the value of hidden? to its opposite. That would
look something like set hidden? not hidden?. Now modify the go procedure by

removing the commands to move the turtles around the rectangle and replace with

commands to turn the lights off and on each time go is run. Test your model until it

works. Don’t forget to save your model.

Answer It!

Q05.10: Does it look like the lights are moving around or just flashing on and off?

Q05.11: If the lights appear to be moving, which direction are they moving

(clockwise or counter-clockwise)?

Q05.12: How might you improve the model to make it more realistic?

Discuss It!

Which theater lights model version do you think is better? Why? Which on
was easier to implement? How much more effort and code do you think would
be needed to make it more realistic?

5.9 Leaves on the River Part 1

This NetLogo model was inspired one beautiful day at the park from watching the

river flowing by. Assume that it is fall and leaves are falling into the river on the left

from where you sit watching. The river is flowing from left to right and you are

viewing from above. All leaves in our section of the river will float down river

(i.e. to the right) from where they enter on the left until they exit on the right.

Start NetLogo if it isn’t already started and be sure to begin a New model. Begin

by adding the basic, simple commands (see the appendix) and save the model with a

good name (e.g. Leaves1.nlogo). Don’t forget to periodically save your model as

you modify it.

You have seen the expressive power of procedural abstraction in enabling us to
name a set of commands. As you learn in Module 3, data abstraction provides

power in naming data types. In the previous theater lights models, you represented

lights with turtle agents. You may have found it difficult or at best annoying to

always remember to call a light a turtle. Wouldn’t it be nice to be able to call a light

a light?
NetLogo provides data abstraction by having every turtle have variable breed.

You can use the naming power of abstraction to create a new breed of turtle. If you

add the statement: breed [leaves leaf] at the top of your code, this defines a new

breed. Now you have a set of agents with the name leaves, with individuals called

52 5 Procedures: Algorithms and Abstraction

leaf. This one brief definition now makes it possible to use a command create-
leaves 10 instead of create-turtles 10. You can also give commands to this new

breed of turtles with ask leaves [] instead of ask turtles []. It merely makes it easier

to read leaves and think leaves as well as think leaves and write leaves.
Lets uses this abstraction by creating leafs in the new model. The create-leaves

command expects a number which will be the number of agents to be created. It can

also accept a block of commands to give to each leaf as it is created. This is the
same as creating some leaves and then asking them to all run a block of commands,

but a little more convenient. Add these commands to your setup procedure:

create-leaves 10 [

set color green

]

Now add commands to the go procedure to have all the leaves move with each

tick of the simulation. Try running the model.

Abstraction has allowed the naming of procedures and data according to what

they do and represent. You have seen the expressiveness of calling a procedure

draw-square when that is what it does. Also, you can now call a leaf a leaf.
Wouldn’t it be better if in addition to calling a leaf a leaf, you could look at a

leaf and have it look like a leaf instead of an arrowhead?

Select the Tools menu, then select Turtle Shapes Editor. There is a library of

shapes available for turtles and you can create your own. Scroll down until you see

the leaf shape. It is already included in the model. Select the leaf shape and push the
edit button. Check the rotatable box near the bottom left and push the OK button to

save the change to the shape. The arrowhead shape is the default shape of turtles.

Close the Turtle Shapes Editor. Add a command to the setup procedure to set shape
“leaf” for each of the leaves created. Doesn’t that look better? It might be a little

confusing with the word leaf meaning a type of turtle agent and “leaf” meaning a

shape. Remember that the naming of the agent breeds can be anything and you

choose them because they mean something to you.

Now when running the model, you should see all your leaves start at the middle

and then move out in random directions. They continue to move in straight lines,

and when they move past the edges of the world (the black window), they appear on

the other side (top to bottom, right to left, etc.). This is not realistic for a river and

we need to make some modifications to the placement and movement of our leaves.

Many real world phenomena occur with a particular probability. When observed,

these phenomena appear to occur by random chance. Probability and statistics is the

mathematical study of these types of occurrences. Mathematical models that

represent random outcomes are often used to build what are called Monte Carlo
Simulations. Much study of games with random chance, such as cards and dice,

have contributed to this type of simulation model. You will use some commands to

add realistic randomness to your model.

5.9 Leaves on the River Part 1 53

As leaves fall, they are usually a random set of colors. Try setting the color of the

leaves with set color one-of [green yellow brown]. one-of randomly selects one of

the values in a list enclosed in brackets. Test it to make sure it works.

By default, when the leaves are created they are placed in the center of the world

and have a random heading from 0 to 360. When they go forward, they all go in the
random direction they are headed. You want them to be randomly placed in the

world but all flow “downstream” to the right. We will first place the leaves

randomly in the world, then we will make sure they all move to the right.

The leaves are currently all being placed in the center of the world at the origin.

We need to set the xcor and ycor of our created leaves to a random coordinate

within the world. The commands random-pxcor and random-pycor provide a

random x and y value. Specifically random-pxcor returns a uniformly distributed

random number in the range of all the patches x coordinates on the world grid, same

for the other command for y coordinates. Test your code.

Moving to the right can be accomplished by two different ways: changing the

heading of all the leaves to 90� and moving them forward 1 (or more) distance; or

by changing all leaves xcor variable to be 1 more (which is the patch to the right).

Let us use the latter and modify the go procedure to ask the leaves to set xcor xcor
+ 1. Test your code.

Answer It!

Q05.13: Does your model look like leaves moving down a river? List things that

are unrealistic and should be improved.

Q05.14: Report your model code.

The model currently just causes the leaves that move off the right side of the

world to reappear on the left (at the same vertical location). This is somewhat

unrealistic. We could improve the model by randomly changing the vertical

placement of the leaf when it wraps to the left side. We would need to use a

conditional structure along with a reset of the y coordinate. Note that you need to

test if you are going to go off the right side before you move the leaf, as the system

will immediately place the leaf on the right side.

Answer It!

Q05.15: Implement code to cause the leaves to reappear on the right side in a

different vertical location. Report your model code. (Be sure to save

your model.)

54 5 Procedures: Algorithms and Abstraction

Discuss It!

An alternate way to improve the look of the model by having leafs appear on
the right differently than where they leave. This can be accomplished by
turning off the world wrapping, killing the leaving leafs, and creating a new
leaf (even with a new color) on the left side. Try modifying your model
accordingly.

5.10 Leaves on the River Part 2

Most computational science models have one or more input variables which are

changed within some set of possible parameters. These are the independent

variables for the experiment. Your current leaves on the river model currently has

10 leaves on the river. In order to vary the number of leaves, we must add an input

control.

Select the Interface tab and then choose a slider from the drop-down list of

controls. Add the slider control to your model interface above the setup button. A

slider dialog should pop-up. Complete the dialog: Global variable: leaves-in,
Minimum: 1, Increment: 1, Maximum: 30, initial Value: 15, and Units: leaves.
Then push the OK button to save the slider control. This has defined a new global

variable names leaves-in we can refer to in our code. You can change the slider

input parameters anytime by right clicking on the slider and selecting Edit.
Next, we need to connect the slider control to the procedures code. Change the

leaf creation command by replacing the create-leaves 10 with create-leaves leaves-
in. This now creates the number of leaves as indicated on our slider at the start of

the model. Run the model with different initial leaves. Change the slider to allow

100 leaves in the river.

Sometimes we want to monitor and record information from our model/simula-

tion as it is running, often with a graph. Let us add a graph to our NetLogo model

and have it report the average vertical position of our leaves. Add a plot “control”

and fill it out to be like Fig. 5.2. We will alter are code to store the current average y

coordinate value in the variable called leaf-average-y. After clicking OK to close

the dialog box, right-click the plot control and choose select, then resize the plot to

an appropriate size. Again right-click and unselect the control.

To calculate the average y position, we first need to add the leaf-average-y

variable to our model by using the declaration globals [leaf-average-y] at the

beginning of our code. We then need to calculate the value of the variable during

each go iteration. The average is just the sum of the leaf y locations divided by the

count of the leaves. We can therefore add the following at the end of the go
procedure (just before the tick command).

5.10 Leaves on the River Part 2 55

set leaf-average-y 0

ask leaves [

set leaf-average-y leaf-average-y + ycor

]

set leaf-average-y leaf-average-y / count leaves

Answer It!

Q05.16: Run the model for at least 200 ticks and screen capture your plot.

Discuss It!

There are many possible improvements to the leaves on a river model. How
might you implement an ability to change the number of leaves in the river
during the run? With user intervention? Randomly? How might you expand
the possible colors of the leaves? How might you make the “water” blue?

Fig. 5.2 Plot control dialog box

56 5 Procedures: Algorithms and Abstraction

5.11 Related Modules

• Module 1: Introduction to Computational Science.

• Module 2: Types of Visualization and Modeling.

• Module 9: Procedures: Performance and Complexity.

Acknowledgement The original version of this module was developed by Dr. Larry Vail.

References

B€ohm C, Jacopini G (2011) Structured program theorem. http://en.wikipedia.org/wiki/Structured_

program_theorem. Retrieved July 2011

Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning

and Computer-Based Modeling, Northwestern University, Evanston

References 57

http://en.wikipedia.org/wiki/Structured_program_theorem
http://en.wikipedia.org/wiki/Structured_program_theorem
http://ccl.northwestern.edu/netlogo/

	5: Procedures: Algorithms and Abstraction
	5.1 Objectives
	5.2 Definitions
	5.3 Motivation
	Discuss It!

	5.4 Procedures
	5.5 Control Structure Example
	5.6 Procedural Abstraction
	5.7 Theater Lights Part 1
	Discuss It!

	5.8 Theater Lights Part 2
	Discuss It!

	5.9 Leaves on the River Part 1
	Discuss It!

	5.10 Leaves on the River Part 2
	Discuss It!

	5.11 Related Modules
	References

