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For millennia tuberculosis (TB) has shown a successful strategy to survive, making it
one of the world’s deadliest infectious diseases. This resilient behavior is based not
only on remaining hidden in most of the infected population, but also by showing
slow evolution in most sick people. The course of the disease within a population
is highly related to its heterogeneity. Thus, classic epidemiological approaches with a
top-down perspective have not succeeded in understanding its dynamics. In the past
decade a few individual-based models were built, but most of them preserved a top-
down view that makes it difficult to study a heterogeneous population. We propose an
individual-based model developed with a bottom-up approach to studying the dynamics
of pulmonary TB in a certain population, considered constant. Individuals may belong
to the following classes: healthy, infected, sick, under treatment, and treated with a
probability of relapse. Several variables and parameters account for their age, origin
(native or immigrant), immunodeficiency, diabetes, and other risk factors (smoking and
alcoholism). The time within each infection state is controlled, and sick individuals may
show a cavitated disease or not that conditions infectiousness. It was implemented in
NetLogo because it allows non-modelers to perform virtual experiments with a user-
friendly interface. The simulation was conducted with data from Ciutat Vella, a district of
Barcelona with an incidence of 67 TB cases per 100,000 inhabitants in 2013. Several
virtual experiments were performed to relate the disease dynamics with the structure of
the infected subpopulation (e.g., the distribution of infected times). Moreover, the short-
term effect of health control policies on modifying that structure was studied. Results
show that the characteristics of the population are crucial for the local epidemiology of
TB. The developed user-friendly tool is ready to test control strategies of disease in any
city in the short-term.

Keywords: tuberculosis, epidemiology, individual-based model, diagnosis delay, contact tracing, risk factors,
HIV-tuberculosis, immigrant
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INTRODUCTION

Tuberculosis (TB) is an infectious disease that has co-
evolved with humanity with a successful strategy of remaining
unperceived and acting slowly during latent infection. It is
estimated that in 2013, 9 million people developed TB, and
1.5 million died from the disease (World Health Organization
[WHO], 2014). To reduce TB incidence is a goal shared by many
players (United Nations, 2000; Caines et al., 2006). Globally, a
significant improvement at the world level has been observed
since 1990. Nevertheless, there are still many challenges to face
(Sulis et al., 2014). Countries with a low incidence, as is the case
of most Western European states, are especially appropriate to
evaluate the real viability of controlling and eliminating TB. The
evolution of TB in big cities of these countries outlines many
unanswered questions about the viability of the objectives. In
many cases, they show incidence indexes that are much higher
than the corresponding national averages.

From 1990 to 2011 different dynamics in TB indicators
could be observed (de Vries et al., 2014). For instance, the
incidence in London (Great Britain) increased significantly. In
contrast, it decreased in cities like Barcelona (Spain), although
the decreasing rate slowed down in recent years. In the Western
Europe context, the current TB situation is particularly alarming.
This issue is particularly the case in some cities such as London,
Rotterdam, and Barcelona, among others, where heterogeneities
in TB incidence between districts are evident (de Vries et al.,
2014). Therefore, the present control strategies are not effective
enough; there is a need for improving the procedures with new
tools that serve as a test bed for assessing their effectiveness
and efficiency. This improvement requires the development of
mathematical models adapted to the study of TB epidemiology
at the city level and, in particular, at the neighborhood level. Such
models should take into account relevant factors related to social
and health diversity (e.g., native/immigrant origin and HIV+/−,
among others). At the same time, they should be designed to
incorporate and test different control strategies.

Several mathematical models have been used for estimating
long-term dynamics of TB epidemics (Ozcaglar et al., 2012;
Zwerling et al., 2015). Most of these models have been classically
built with a structured top-down strategy (Ferrer et al., 2009).
In this case, the population is divided into different classes (e.g.,
susceptible, exposed, infected, and recovered in the case of an
SEIR model) and specific fluxes are fixed between these groups.
This strategy is feasible whenever the size of each class satisfies
the continuum hypothesis. For instance, Ozcaglar et al. (2012)
show the outcome of several simulations of an SEIR and an SEIL
model with a sick compartment of 103 individuals. Moreover,
Castillo-Chavez and Song (2004) provide simulation results with
a TB-sick population of 104 individuals. Nevertheless, due to the
small percentage of sick people among the infected (on average,
only 10% of infected people develop an active disease), when the
studied population is not big enough the resulting number of sick
individuals can call the use of differential equations into question.

Furthermore, the dynamics of a TB infection inside a host
depends on the particular characteristics of this host. In fact,
there are several factors that have already been identified as

critical for such specific dynamics. We may mention that
an immunodeficiency dramatically increases the probability
of developing primary active TB, and that a patient with a
cavitation has a higher spreading rate than a non-cavitated
patient, among others. Such heterogeneities are hard to take
into account in a top-down approach, although they may have
long-term consequences. Furthermore, even when considering
a population with a sick fraction big enough to satisfy the
continuum hypothesis, the conditions may not be homogeneous
enough to make its calibration feasible. The reason lies in the
diversity of possible situations of the different subpopulations due
to the inherent heterogeneity of the studied system.

An alternative and complementary strategy to the top-
down approach is the bottom-up perspective, i.e., the study
and simulation of the parts and their interactions so that the
dynamics of the global system emerge from the lowest level. This
methodology is known as individual-based modelling (IbM), or
agent-based modeling in a wider sense. IbM is a mathematical
bottom-up approach consisting of modeling the elemental parts
of the system and the relationships among them in order
to obtain the behavior of the whole system (Grimm, 1999).
The fundamental units of these models are the individuals,
which are entities with a set of defined rules that can evolve
according to them. The level of depth achieved by this kind
of models allows the modeler to obtain phenomena present
in the system that other models such as compartment models
may overlook. Of course, the level of detail comes at the
price of a bigger computational cost. However, with increasing
computational capacities and the possibilities offered by high-
performance computing (HPC),the drawback that this represents
is notoriously compensated by the benefits of the model.

Individual-based modelling has been used in multiple fields,
from simulation in social science to business, and of course
in biology and epidemiology. As a consequence of this variety,
IbM models have had almost as many description procedures
as models developed. To deal with all the different description
systems and standardize the description of these models, the
overview, design concepts, and details (ODD) protocol was
developed (Grimm et al., 2006, 2010). This protocol consists in
formalizing the simulation model with three blocks, subdivided
into seven optional subcategories: Purpose, Entities, State
variables and scales, Process overview and scheduling, Design
concepts, Initialization, Input data, and Submodels.

In the last decade, IbM has been introduced into the study
of TB epidemiology (Montañola-Sales et al., 2015). Most of
the published models were fundamentally conceived from a
top-down perspective with regards to the evolution of an
infected individual (i.e., an SEIR-type model extrapolated to
the individual-level; Murray, 2002; Guzzetta et al., 2011; Kasaie
et al., 2013, 2014). Despite their top-down approach, these works
include more or less sophisticated models for the transmission
routes such as taking into account the socio-demographic
structure of the population and the different degrees of contact
between social groups. Among these, only Guzzetta et al. (2011)
dealt with a particular reality (Arkansas), while other models
were fitted to global data. None of them considered relevant
heterogeneity within the population, including factors like the
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kind of disease, possible immunodeficiency, smoking/drinking
habits, and immigrant-native origin simultaneously.

The final purpose of any epidemiological model is its use by
TB control units, public health agents, and politicians in order to
help in decision-making. Therefore, the implementation of these
models in user-friendly interfaces is a necessary step toward this
end. The availability of a user interface can leverage the design
of virtual experiments for testing future hypothetical situations
such as the effect of immigrant flow on local TB epidemiology.
Moreover, it can be used as a platform to test different
control strategies and health policies. NetLogo is an agent-based
programming language and integrated modeling environment
that includes a user-friendly interface for scheduling simulations
and performing virtual experiments (Tisue and Wilensky, 2004).
Therefore, it is an adequate platform to consider when looking
for a user-friendly IbM tool.

In this paper, we present an Individual-based Model of
TB spreading in a community implemented in the user-
friendly platform NetLogo, aiming to offer a useful tool for
epidemiological study of this disease in cities. The model is
described following the updated ODD protocol (Grimm et al.,
2010). It has been calibrated and validated with data from Ciutat
Vella (Barcelona) and used to perform a few virtual experiments
to show its potential.

ODD DESCRIPTION OF THE
INDIVIDUAL-BASED MODEL

Overview
Purpose
The objective of this IbM is to analyze the evolution of pulmonary
TB incidence in a community. It is fitted to the Ciutat Vella
neighborhood, considering the population to be constant, and
the possible effects of epidemiology control strategies and public
health decisions are checked through virtual experiments.

Entities, State Variables, and Scales
The fundamental entities in the model are persons. We consider
that persons can go through five infection states: healthy, infected
(i.e., with a latent TB infection), sick (i.e., with an active
TB), under treatment, and recovered. Persons in four out of
the five states, all but healthy, are simulated as individuals.
We consider that the characteristics of a healthy population
remain constant (e.g., native/immigrant distribution and HIV+
percentage, among others). Moreover, a healthy collective is
much larger than infected or sick collectives. Therefore, it
is not necessary to control healthy individuals one-by-one;
they are considered as a property of space (i.e., the number
of healthy people in a spatial cell). A healthy person will
acquire individuality once he/she enters the infection cycle. This
strategy is an important optimization for drastically reducing
the computing time. It was previously tested to provide results
comparable to those obtained considering healthy people as
individuals (Montañola-Sales et al., 2015).

The state variables of the individuals mainly refer to their
status in the TB infection cycle as well as the time spent

in such phases and individual diagnostic time when getting
sick. Other individual state variables and parameters are age,
native/immigrant origin, risk factors (e.g., smoking), diabetes,
and possible immunosuppression (mainly HIV infection). Once
a person gets infected, the presence (or not) of pulmonary
cavitation is also considered. A state diagram of the model is
presented in Figure 1. The population simulated is 105,123
people, which represents all the people of Ciutat Vella (2012).

Themodel is partially spatially explicit, i.e., space is considered
but it does not mimic the real space of Ciutat Vella. Simulation
occurs in a discrete area of 501 × 501 spatial cells. Each spatial
cell represents a local abstract space where two persons can meet,
and the bacilli can be spread in a day. The time step is set to 1 day,
and the simulation may cover up to a period of 1 or more years.

Process Overview and Scheduling
Our model was built in NetLogo (Tisue and Wilensky, 2004),
which is well suited for modeling a broad range of agent-based
systems in a user-friendly interface. The simulation starts with
the set-up of the initial configuration, where the population
is randomly generated according to the input distributions of
parameters and randomly distributed in the 501 × 501 grid. The
model assumes discrete time steps of 1 day, as mentioned. Each
day, all individuals execute a series of actions, and their variables
are updated immediately.

The individual actions may be: to age, to move, to get infected,
to get sick, to be diagnosed, and start a treatment, to abandon
or finish the treatment, to recover, and to die. Some of the
actions take place daily for all the individuals in the system
(e.g., aging and movement) and the other procedures are daily
evaluated when necessary (e.g., the possibility of a sick individual
to be diagnosed is daily assessed until it finally occurs). When
an individual dies, a new person is introduced with particular
random characteristics according to the initial distribution of
individual parameters, since general population heterogeneity is
assumed to remain constant during the simulation. At the end of
each time, step global variables are updated. Figure 2 shows the
flow diagram of the computational model.

Design Concepts
Basic Principles
The model is based on general knowledge of the natural history
of TB (Cardona, 2010). There are two essential characteristics of
TB that must be taken into account in any epidemiological model.
On the one hand, an infected individual does not necessarily
develop an active disease; on average, only 10% of infected
people become sick. Moreover, a person remains infected for
an extended period and may develop active TB after several
years, but the probability of developing the disease decreases with
time (Ferebee, 1970; Cardona and Ruiz-Manzano, 2004). Infected
people are usually not diagnosed. On the other hand, only TB
sick can disseminate the infection. The infection rate increases if
the patient has TB with cavitation. Once a TB sick is diagnosed,
the pharmaceutical treatment takes 6 months (World Health
Organization [WHO], 2010). Once the treatment is finished, the
possibility of getting sick again because of a TB reactivation
remains at 1% for 2 years. Moreover, in some experiments a
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FIGURE 1 | State diagram of the model, where the five states of individuals and possible transitions are shown. Output gray dotted arrows refer to
deaths; input dotted arrows are the corresponding entrances of randomly selected individuals in order to keep population constant.

treatment for detected infected individuals is included. This
treatment is longer than the one given to persons with active TB.
It lasts 9 months and is administered to infected individuals to
prevent the development of an active disease once they have been
detected during a screening process (World Health Organization
[WHO], 2015). There is also a probability of relapse to the
infected state that is calculated similarly to the first treatment.

Emergence
Emerging phenomena are mainly related to long-term dynamics
of the infection at the population level. On the one hand,
only non-treated people with active TB can spread the disease.
Therefore, diagnosis time is an essential parameter for the
prevalence of the disease. On the other hand, infected persons
may develop active TB a few years after the infection. Therefore,
global consequences of particular conditions at a precise moment
may be detected some years later.

Interaction
Local interactions between individuals are explicitly modeled and
crucial for the dynamics of the system. They refer to the meeting
of two persons favored by the spatial proximity between them and
the possibility that one of those individuals with an active TBmay
infect the other person.

Stochasticity
Randomness is introduced at all levels of the simulation. The
initial distribution of individual properties is randomly executed
according to input distributions. Movement is assumed to be
random. Each action is associated with a certain probability and
thus executed according to a stochastic number.

Collectives
Two collectives may be distinguished, according to the
individuals’ origin: native and immigrant. The difference between
them is the diagnosis time. Due to the social patterns, it is
considered that an immigrant is more liable to infect another
immigrant while a native is more likely to infect another native.

Observation
Output data show the daily evolution of number (or prevalence)
of healthy people, infected people, sick people, people under
treatment, and persons already treated. These data are exported
to an external data file, and an annual report is shown to the user
on the interface screen.

Details
Initialization
The user can change some initial conditions at the beginning
of the simulation. For this particular study, most of the
input parameters were taken from official reports. The initial
population was fixed at 105,123 individuals. All percentages
shown in Table 1 were used for calculating the configuration
of initial population: rates sick, under treatment and recovered
individuals per 100,000 inhabitants; mean diagnosis delay
(MDD); mean treatment abandon rate; individuals with risk
factors and with HIV infection. Some other initial variables are
assigned randomly: individual’s age (following the percentages
shown in Table 1), and time spent in the infection state assigned.

Submodels
Age
All individuals increase their age by 1 day each time step.

Move
All persons can move randomly through the surrounding local
space, once a day.

Get infected
If there is a number of individuals susceptible to TB (healthy and
treated) different from zero in the proximity of a sick individual,
meaning one of the four-neighboring spatial cells, this sick person
may infect one of them with a certain probability. The total of
susceptible neighboring individuals is computed and then the
infection process is repeated as many times as healthy and treated
people have been found. The infection probability depends on the
type of TB disease that the sick person has, either cavitated or
non-cavitated. A cavitation is considered to double the infection
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FIGURE 2 | Flow diagram of the model, with all the involved processes and subprocesses. Boxes with an asterisk (∗) contain actions that can take place if
specific conditions are satisfied. Details of two submodels are shown in blue (get sick and finish treatment), see the text for details of other submodels.

probability. The value of the infection probability is closely
linked to the spatial and temporal scales, i.e., the probability of
infection is inseparable from the spatiotemporal scale. A change
in any of these scales entails the revision of its value. Therefore,
it is not a real infection probability when a sick individual
meets a healthy person, but an effective infection probability
given the particular spatio-temporal constraints. In this case
(501 × 501 spatial cells and 105123 individuals), the value of
this probability was fixed at 49.7%. Once a person is infected, a
newly infected individual is created with the properties randomly
assigned according to the data from Table 1. Whether the new
person will be set to native or immigrant will depend on the
characteristics of the infective individual. Therefore, we consider

that the probability of an immigrant infecting another immigrant
is higher than that of infecting a native. In like manner, the
likelihood of a native infecting another native is greater than that
of infecting an immigrant, according to the social behavior of
these communities. The infection time of the new individual is
set at zero and starts increasing with each time step.

Get sick
Once infected, the individual may develop active TB according
to a particular annual probability that decreases with infection
time during the 7 years post-infection (Ferebee, 1970; Cardona
and Ruiz-Manzano, 2004). It is neglected for the subsequent
years (t > 7 years). Since simulation time does not cover

Frontiers in Microbiology | www.frontiersin.org 5 January 2016 | Volume 6 | Article 1564

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Prats et al. IbM of Tuberculosis in a User-Friendly Interface

periods longer than 10 years, the approximation is good enough.
For immunodeficient people, a certain factor multiplies this
probability. The same happens if there are other risk factors
(smoking, alcoholism) or if the patient has diabetes. The chance
of becoming a TB sick individual is evaluated at each time step
for all infected persons. Globally, the average of 10% of infected
developing an active disease is satisfied. The possibility of relapse
(getting sick again) for recovered patients is also evaluated daily
according to the individual relapse probability (see below). Once
a person gets sick, the disease time counter starts running until
the individual diagnostic time is reached.

Be diagnosed and start treatment
Each individual has a particular diagnostic time that is randomly
assigned when getting sick. These individual times are assumed
to be distributed following a normal distribution centered around
the mean diagnosis time shown inTable 1 and standard deviation
4 days. When the sick time counter reaches these values, the
individual is diagnosed. Once diagnosed, medical treatment is
assumed to start and TB to stop spreading. Individual time under
treatment is initially fixed at zero and then updated at each time
step.

Abandon the treatment
There is a certain probability that an individual abandons
the treatment before finishing it. This possibility is evaluated
daily for each patient under treatment, according to the input
abandonment probability. If a person leaves treatment during
the initial 15 days post-diagnosis, he/she becomes ill again. If

TABLE 1 | Official data of Ciutat Vella used in simulations (Ajuntament de
Barcelona, 2012; García de Olalla et al., 2012; Bartoll et al., 2013; Orcau i
Palau et al., 2013; Bartoll, 2014).

District of Ciutat Vella Value Units

Total population 105,123 Persons

Immigrant population 43.2% Percentage

Population <=10 years old 7.57% Percentage

Population 10–65 years old 77.7% Percentage

Population > 65 years old 14.73% Percentage

Total annual mortality 0.83% Percentage

Detected cases of TB 64 Persons

Detected cases of TB (native) 11 Persons

Detected cases of TB (immigrant) 53 Persons

Cavitation forms∗ 22% Percentage

Diagnosis delay (median) 39 Days

Diagnosis delay native (median) 42 Days

Diagnosis delay immigrants (median) 33 Days

Treatment abandonment rate∗ 2.2% Percentage

Alive cases of VIH+ 440 Persons

Detected cases of TB/VIH+ 32 Persons

Risk factors∗ 24.1% Percentage

Diabetes cases 5.6% Percentage

These data correspond to Ciutat Vella demography and TB indicators in
2012, and they were used for defining the initial population and input parameters.
All percentages are with respect to the total population of Ciutat Vella, except (∗ )
that are with respect to the total number of TB sick people.

he/she abandons the treatment after 15–180 days post-diagnosis,
the model will consider him/her to be recovered but with a
certain probability of relapse during the following 2 years. This
probability is assumed to decrease linearly from the 100% of a
15-day abandonment to the 1% of the 180-day treatment period.

Recover
When a sick individual is diagnosed and treated for 180 days,
he/she becomes recovered and a relapse probability of 1% is
assigned (the chance of getting sick again during the following
2 years). After 2 years, the individual is considered to be healthy.

Die
Each individual has a certain probability of dying according
to his/her age. These probabilities are fixed using demographic
data from Ciutat Vella in 2012. Accordingly, the daily dying
probabilities are considered to be 6.88 × 10−5 % for individuals
under 10, 5.45 × 10−4% for individuals between 10 and 65, and
1.22 × 10−2% for individuals over 65, which is a simplification
of the real mortality distribution. Furthermore, TB sick people
have a distinct probability of dying from TB. This probability is
evaluated daily for each sick individual, taking into account that
40% of non-treated TB sick may die in 5 years. Each time an
individual dies, a new individual is introduced into the simulation
world with the aim of maintaining a constant population. The
individual’s characteristics are fixed according to the distribution
of the initial population.

RESULTS

Sensitivity Analysis and Calibration
In a first step, all the parameters that could be deduced from
bibliography were fixed (Table 1). Then, we establishedminimum
and maximum limits of parameters to be calibrated. We designed
a series of simulations to explore the system’s behavior inside
these intervals. As a result, we established the influence of
these parameters on the outcome variables. Specifically, we
identified which simulation output or indicator was affected
the most by each parameter. For instance, the individual
multiplication factor of HIV+/TB coinfection for developing an
active disease once infected strongly determined the resulting
percentage of this coinfection among TB patients. In a similar
way, the multiplication factors assigned to people with diabetes
or with other risk factors (smoking, alcoholism) for developing
an active TB were determinant for the percentage of these
collectives among TB patients. The parameter that was crucial for
maintaining the reported proportion of immigrants and natives
among TB patients was the probability that an infection occured
within the own collective.

The most sensitive parameter was the initial number of
infected people. Simulations showed that this is a critical value
for the dynamics of TB among a population. Nevertheless, it is
difficult, if not impossible, to determine in a real population with
enough accuracy. Therefore, in this case, simulations can be used
to provide an order of magnitude of such value in a particular
community.
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Once the sensitivity analysis was finished, the calibration
process of sensitive parameters was performed using the official
data of TB in 2012 (Orcau i Palau et al., 2013) as initial conditions
and the official data of TB in 2013 (Orcau i Palau et al., 2015) to
check the results after 1 year of simulation time.Table 2 shows the
values obtained for these parameters, together with most affected
outputs of the simulation. Specifically, we display the median
of 30 simulations with the parameter set obtained from the
calibration and the value from the literature regarding TB in 2013.
These values are relevant from the epidemiological perspective,
since they provide information that is almost impossible to obtain
experimentally.

Figure 3 shows the boxplots corresponding to 30 simulation
runs using the set of calibrated parameters (Table 2). The most
affected simulation outputs are shown together with the values
from the literature. These boxplots also give an idea of the
inherent dispersion of simulations.

Virtual Experiments
Long-Term Effect of an Increase in Diagnosis Delay
Among Immigrants
In the context of the austerity policies of some governments, new
regulations for accessing public health systems were introduced.
For instance, on September 1, 2012, the Spanish Government
approved a health care reform that explicitly excluded adult
undocumented immigrants and people not paying into to social
security from the public health system (BOE-A-2012-10477).
Although this measure was not fully implemented by the local
government in Barcelona, we used the IbM to test its hypothetical
effects on TB epidemiology.

We assumed an effective delay in TB diagnosis among
immigrants as a direct consequence of this reform. Specifically,
we examined the effect of an increase in immigrants’ mean
diagnosis time up to 50 days, keeping the diagnosis time
at 42 days for natives. We looked for its impact over
the long-term, in a 10-year period, and considering three
possible scenarios: a permanent reform (i.e., a 50-day mean
diagnosis time for immigrants during the whole simulated
period), 5-year transitory reform (i.e., an average diagnosis
delay of 50 days for immigrants for 5 years, followed by the
recovering of the current 33-day immigrant-mean diagnosis
time), and a 2-year transitory reform (i.e., a MDD of
50 days for immigrants during 2 years, followed by the
recovering of the current 33-day immigrant-mean diagnosis

time). Figure 4 shows the results of this experiment, comparing
the annual TB cases of each situation with the control
case.

A permanent reform that entailed a 52% increase in the
MDD for immigrants would triple TB incidence after 10 years.
Furthermore, simulation results show that the effects of a
transitory reform would remain after the initial situation was
restored, both for the 5 and the 2-year change. Although the
restoration of initial conditions would halt the increase in TB
incidence, it would take more than 10 years to get back to the
TB incidence level in the control scenario. In the worst case, a
permanent reform would entail not only an incidence increase,
but also an increase in an accelerated way.

It would be of interest to do a rough economic evaluation
of the consequences of the studied delays. According to Diel
et al. (2014), the average per-case TB costs, including direct
and indirect costs, in the old EU-15 states plus Cyprus, Malta
and Slovenia is around €10,000. The difference in accumulated
number of TB cases in 10 years between extreme simulated
situations (no reform and permanent reform) is over 700. If
we evaluate the worst of the cases simulated, a permanent
reform that increased the MDD of immigrants up to 50 days
would represent budget overruns of €7 million. This number is
significant for a 105 people neighborhood that would probably
not compensate for the savings achieved with budget reduction.
In fact, this amount could increase because of the health problems
derived from a late TB diagnosis.

The Role of Infection Time Distribution in TB
Dynamics
An IbM allows the study of a certain system at the mesoscale,
i.e., between the individual (micro) and the community (macro)
(Ferrer et al., 2008). A typical variable at this mesoscale is
the distribution of individual properties among the population.
The particular dynamics of these distributions emerge from the
interaction among the parts of the system and determine the
dynamics of the whole system.

We have focused on a relevant individual property: the
infection time, i.e., the time elapsed from when an individual
became infected. The time that people has been infected is
important because the probability of developing an active disease
decreases with infection time. As mentioned above, we assumed
an active potential maximum infection time of 7 years. Therefore,
we can talk about the distribution of infection times among

TABLE 2 | Values of the fitted input parameters, together with most affected outputs of the 1-year simulation compared with values in the literature
(Orcau i Palau et al., 2015).

Parameter Fitted value Most affected output Simulation value1 Literature value

Initial number of infected individuals 4500 Number of sick individuals 78.5 78

Immunodeficiency multiplication factor 18.5 Percentage of HIV/TB coinfection 6.12% 6.08%

Diabetes multiplication factor 1.2 Percentage of diabetic sick individuals 6.22 % 6.99 %

Risk-factors multiplication factor 2.0 Percentage of sick individuals with other risk factors 40.97% 40.5%

Probability that an infection affects own-collective 90% Percentage of immigrant sick individuals 79.88% 83.33%

1Median of 30 simulations.
These values correspond to TB indicators of Ciutat Vella in 2013.
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FIGURE 3 | Results of the calibration process (see Table 2 in text). Four
relevant output of 30 runs with the calibrated dataset are shown in four
boxplots: (A) accumulated sick people, (B) percentage of sick with diabetes,
(C) percentage of sick with TB/HIV coinfection, and (D) percentage of sick
with other risk factors. Dotted lines plot the data from the literature (Orcau i
Palau et al., 2015).

FIGURE 4 | Evolution of annual TB cases over 10 years according to
virtual experiments. Four scenarios are considered: current situation
(control), in green; a 2-year health care reform, in blue; a 5-year reform, in
orange; and a permanent reform, in red. The health care reform would
exclude adult undocumented immigrants from the public health system and
would consequently increase their diagnosis delay. We assumed the current
33-day period for non-reform cases and a 50-day period for reform cases.

population. We will use a window size of 1 year. If the global
number of infected people is difficult to estimate in a real
community, the time from when this infection took place is even
more difficult to evaluate. An exception to this is the case in which
the infection source is known.

During the calibration, we estimated the initial number of
infected individuals assuming a uniform distribution, according
to Occam’s razor. Nevertheless, we may wonder about potential
effects of other distributions and evaluate the resulting dynamics
of the system. We considered two opposite possible cases.
First, the case in which in a community with a high incidence

the authorities take bold measures against TB and manage
to decrease the incidence remarkably. After a few years, the
community would have a significant number of individuals with a
long infection time and a smaller number of people with a young
infection. This situation was modeled as a distribution with the
shape of a positive exponential function. Second, we examined
a community with a low incidence that experiences a sudden
TB outbreak. This explosion could be caused for example by an
immigration wave from countries with a high incidence of TB. In
this situation there would presumably be a significant number of
infections and the distribution would present a large number of
recently infected individuals with lower levels of older infections.
This situation was modeled as a distribution with the shape of a
negative exponential function.

Figure 5 shows the three initial infection time distributions
used in simulations that would correspond to the uniform
assumption and the two situations presented above. With each
of these distributions, we executed 30 runs of a simulation with
a duration of 1 year. At the end of the year we recorded the
number of new TB cases. Figure 6 presents a boxplot diagram
of the obtained results. The most dangerous situation would
be the one that lead to a decreasing exponential distribution
of infection times. This outcome confirms that it is worth
concentrating public health efforts in tackling new infections, in
order to drastically reduce the first columns of the infection time
distribution.

We may also observe the evolution of the infection time
distributions over 10 years. As seen in Figure 7, all distributions
evolve and lose the original shape toward a quasi-homogeneous
distribution, which reveals a stationary state. In fact, all of them
have a slight decreasing slope. The most significant difference
between final distributions is that, although the shapes are similar,
the global numbers of infected people greatly differ: an average
of 5,856 infected individuals for the uniform distribution, 715 for
the exponentially increasing one, and 11,367 for the exponentially
decreasing one. If we compare these values with the initial
amount of infected individuals (4,500), they represent a 30%
increase, an 84% decrease and a 152% increase, respectively,
in a constant population of 105,123 inhabitants. Since infected
population is crucial for the evolution of TB in a population, as
seen in the sensitivity analysis process, we may conclude that
the structure of this population in terms of infection times is
determinant.

The IbM as a Platform to Test Screenings
The goal of a screening campaign is to detect diseases before
affected individuals show any symptoms. It is particularly useful
in TB control due to the long time that a person may remain in
the latent infection phase. There are several well-established types
of screenings. Among others, we may mention mass screening,
acting on the bulk of the population; selective or targeted
screening, operating on a particular sector of the population that
presents risk factors; and contact tracing, acting on the contacts
of a diagnosed individual that would have the greatest probability
of having been infected.

The objective of this virtual experiment was to determine
which of different proposed screening types would be the
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FIGURE 5 | Three infection time distributions (homogeneous, in blue; increasing exponential, in red; and decreasing exponential, in green) used as
initial conditions in simulations, all corresponding to a population of 4,500 infected individuals.

FIGURE 6 | Boxplots of virtual experiments results, showing the effect
of the distribution of initial infection times (Figure 5) on the number of
new TB cases after one simulated year.

most effective. This test also serves as a demonstration of the
capabilities of the developed simulator in public health decision-
making. We introduced a new sub-model to the simulator as
follows.

Get screened
A certain amount of infected are screened, that is, identified
as infected by medical authorities and undergoing preventive
treatment. Therefore, these infected individuals change to a new
class called treatment-screen that is equivalent to the treatment
type but with a longer duration (9 months).

Then we proposed three different virtual experiments as
examples to illustrate different possibilities and in order to check
the model’s versatility and usefulness as a test bed, trying to cover
different implementation strategies.

- One-year contact tracing: we assumed a hypothetical
intervention only during the first year that allowed the
detection of a certain percentage of the infected population.
We tested hypothetical detection rates of 25, 50, 75, and 100%
of the newly infected, and studied their effect at long-term.

- Selective screening:we selected two objective subpopulations,
immigrants and individuals with HIV infection. The
selective screening consisted of a one-time identification
of 20% of all infected immigrants and 80% of all persons
with HIV/TB co-infection. This one-time intervention was
carried out in the middle of the first simulated year.

- Permanent contact tracing: we assumed the detection of a
certain number of infected individuals each time that a
TB case was diagnosed. This detection was modeled as a
constant procedure during the whole simulated period. The
number of detected infections per TB case was estimated
from the following data corresponding to Barcelona (Millet
et al., 2015): between 2009 and 2011, 541 TB cases allowed
diagnosis of an extra 43 cases of TB and 1,239 TST positive
cases. Therefore, we set the identification of two infected
individuals per TB case diagnosed, and a 10% probability of
identifying an extra TB case.

Figure 8 shows the evolution of annual TB cases for each of the
above-mentioned screenings. The 1-year variable contact tracing
caused a decrease in the number of TB cases with respect to non-
intervention, as expected. This decrease was particularly notable
in the last years of the simulation when there was a difference of
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FIGURE 7 | Infection time distribution observed in virtual experiments after 1, 4, 6, and 10 years, depending on the initial infection time distribution
among a 4,500 infected-subpopulation (blue: initial uniform distribution; green: initial decreasing exponential distribution; red: initial increasing
exponential distribution; shown in Figure 5).

FIGURE 8 | Evolution of annual TB cases during 10 simulated years, depending on the type of screening implemented, compared with the
no-intervention scenario. (A) 1-year contact tracing with 25, 50, 75, and 100% success detecting new infections; (B) 1-year contact tracing with 100% success
detecting new infections, selective screening (immigrants and HIV+), and permanent contact tracing (see details in text).

about 15 individuals for the 25% success screening rate. In the
100% success case, this difference was almost 30 cases less.

In the first years, there was also an important reduction in
the number of TB cases for the one-time selective screening.
However, as the simulation went on, there was an increase in
TB incidence, although the results were much better than the
no-intervention value.

The situation for the permanent contact tracing was utterly
different. In the first years, the effect was almost negligible, but it
slowly took shape by the end of the third year of simulation. From
then on, the number of TB cases did not stop going down. By the
end of the simulation (10 years), the number of new TB cases with
the contact tracing procedure was the lowest, with a difference of
more than 30 individuals from the no-intervention case.
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If we observe the distribution of infection times among the
infected subpopulation after 10 years (Figure 9), we can see
similar shapes but substantial differences between the global
numbers of infected individuals: a final number of 5,695 infected
individuals with non-intervention (26% increase with respect to
initial conditions), 4,040 for permanent contact tracing (10%
decrease), 4,667 for selective screening (3% increase), and 3,854
for the 100% 1-year contact tracing (14% decrease).

Although a 1-year contact tracing screening that detected
100% of the new infected people seems to provide good
results that can still be perceived over the long-term, this is
an entirely unrealistic scenario. In fact, selective screenings
and permanent (partial) contact tracing are strategies that are
currently being implemented in some cities like Barcelona.
With the conditions imposed to simulations, the permanent
contact tracing would provide better longstanding results. The
apparently irrelevant effect of selective screening in these
simulations can be explained by two factors. Communities
in which it is applied are subpopulations; therefore, global
consequences are not outstanding. In this case we assumed
a single screening while contact tracing was carried out each
time a new TB case was diagnosed. At this point we should
mention that all the screenings simulated were not designed
from a real application point-of-view, but with an experimental
perspective to test the potential of this IbM. In order for
it to be useful in decision-making, the precise interventions
to be incorporated should be designed in collaboration with
health control specialists and adapted to the specific case to be
tackled.

DISCUSSION

We have developed an IbM for TB spreading at the city-level.
This simulator was implemented in the user-friendly platform
NetLogo with the aim of facilitating its use by non-modelers. It
was calibrated and validatedwith available data fromCiutat Vella,
a neighborhood in Barcelona with an incidence of 67 TB cases
per 100,000 inhabitants in 2013. Three virtual experiments were
used for testing its potential, mainly focused on the population
heterogeneity.

The first virtual experiment was aimed at an especially
important subpopulation of Ciutat Vella: immigrants. We
showed that an increase in the MDD of this collective would
revert to the whole population TB dynamics, the effects persisting
over the long-term. The second virtual experiment aimed
to explore the importance of the structure of the infected
subpopulation with regards to the infection time. Keeping
the initial number of infected individuals, the shape of this
distribution crucially directs the dynamics of TB. The third
virtual experiment was designed to test the platform as a tool
for helping decision-making. It quickly allowed the incorporation
of strategies directed either to the global community or specific
collectives, as well as the analysis of the consequences for the
structure of the infected subpopulation. In fact, the second and
third experiments demonstrated the importance of the hidden
infected collective in the dynamics of the TB disease. Thus, it

FIGURE 9 | Effect of the different tested screenings on the evolution of
the infected time distribution observed in virtual experiments after 10
simulated years. All of them started with a homogeneous distribution of
4,500 infected.

seems essential to keep directing efforts to the control of this
population cohort.

Beyond the results of the specific cases reported in this
paper, we want to emphasize the methodology used in this
approach. Mathematical models in epidemiology are used to
improve understanding and for predictive purposes. Historically,
these models have been expressed mainly with differential
equations. Continuous models are especially useful for studying
the spreading of diseases that follow the ecological r-strategy,
i.e., with a rapid increase in their incidence (Fierer et al.,
2007). This strategy usually guarantees that the fraction of
population simultaneously affected in a small period is large
enough to be statistically significant and to support the
continuum hypothesis. Moreover, this also guarantees that
short-term predictions are enough, which is important because
environmental and social conditions that affect the dynamics
of a disease spreading may be difficult to control over long-
term periods. In contrast, we can talk about diseases that
follow the ecological K-strategy (Fierer et al., 2007), i.e., with
slow dynamics and small incidence but greater persistency in
a community, usually remaining hidden for years. In this case,
the use of continuous models may be controversial, mostly
because of the limited size of the simultaneously affected
population.

Tuberculosis may be considered a K-strategy disease. As
such, the number of people with a simultaneous active disease
in a certain community is relatively small. The alternative
of increasing the modeled population is not feasible since
the inherent heterogeneity of situations also complicates the
parameterization and interpretation of results. The modeling
strategy that we have proposed in this paper is the use of
an Individual-based approach to studying TB spreading in
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communities such as neighborhoods or cities. On this scale,
population characteristics and the socio-economic environment
can be delimited and controlled. This approach allows proper
definition of individuals’ behavior with simple rules, as well as the
possibility of reproducing the diversity of possible situations.

The interest of the output of such models is the study of
variations in global dynamics emerging from actions over this
community. In fact, the reality is complex and dynamic, and
a wide variety of unexpected socio-economic changes that may
influence the epidemics of a disease like TB can occur. Thus, IbM
simulations should not aim to predict future evolution from a
realistic perspective, but rather to provide a virtual platform to
test different situations. Questions like the effect of migration
fluxes with different infection profiles, the impact of variations on
certain acting protocols, and the effect of changes in social habits
due to specific socio-economic situations, among others, can be
addressed one-by-one (i.e., each independently from the others)
or in combination. In general, the IbM simulations designed to
answer these issues require just a few changes in the model and
the computer code. The answers to these questions should help
the healthcare community and improve policy decision-making.
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