
Using High Performance Computing To Model Cellular
Embryogenesis

Gerard Vanloo1

gerard.vanloo0@gmail.com

Dr. Kwai Wong2
kwong@utk.edu 

Dr. Chung Ng1
chung.ng@morehouse.edu

Ben Ramsey2
bramse10@vols.utk.edu

Dr. Zhirong Bao4
baoz@mskcc.org  

Kison Osborne1

ozuboon95@gmail.com

Dali Wang3
wangd@ornl.gov 

ABSTRACT
C. elegans is a primitive multicellular organism (worm) that
shares many important biological characteristics that arise as
complications within human beings. [1] It begins as a single cell
and then undergoes a complex embryogenesis to form a complete
animal. Using experimental data, the early stages of life of the
cells are simulated by computers. The goal of this project is to use
this simulation to compare the embryogenesis stage of C. elegans
cells with that of human cells. Since the simulation involves the
manipulation of many files and large amounts of data, the power
provided by supercomputers and parallel programming is
required.

CCS Concepts
• Computing methodologies~Massively parallel and high-
performance simulations • Computing methodologies~Agent /
discrete models • Computing methodologies~Simulation
languages • Computing methodologies~Simulation by animation
• General and reference~Performance

Keywords: RepastHPC; Parallel Programing; C. elegans;
VisIt; NetLogo; Simulation  

1.INTRODUCTION
A NetLogo [2] simulation was developed in order to quickly
obtain experimental results involving C. elegans, a popular
biological specimen. Given a time range and a file of initial cells,
the program would calculate and record the paths of each
microorganism as it moves and interacts with neighboring cells.
These communications between the embryos are described
through the “cell focusing” hypothesis proposed by Marcus
Bischoff and Ralf Schnabel. [3] However, during the
implementation process, it became apparent that the NetLogo
simulation would not be sufficient for the problem at hand.

NetLogo, an agent based modeling software written in Scala and
Java, was originally used to create the simulation. This type of
application was developed for showing the results of agent-to-
agent interactions over a period of time. While NetLogo is useful
for these simulations, it is crippled by some limitations. One of
these major drawbacks would be its lack of a parallelization
component. Due to this, the entire program is executed on one
core (serially). This causes slow results as the data set becomes
larger. In trial tests, the simulation (which generated 292 cells)
would take up to two hours to finish execution.

As research of this organism is vital, results from the program are
required to be generated in a shorter amount of time.

RepastHPC [4], like NetLogo, is an agent based simulation toolkit
that was written in C++. Unlike NetLogo, RepastHPC is
specifically made to be used in a high performance computing
environment by making use of the C++ parallelization library,
Boost. This gives the toolkit an advantage over serial programs.
Unlike NetLogo, it lacks of a visualization component. Therefore,
one cannot see a visual animation of the RepastHPC simulation
while it is running.
 s
However, this effect of this limitation is lessened by the use of
VisIt [5], a visualization program that can also make use of
parallel programing. VisIt can read a variety of files and, though it
is written in C/C++, can make use of other languages like Python
to convert text files into a file format it can visualize.

2.METHOD
The C. elegans simulation begins with four initial cells and after
over a 10,800 tick cycle –– a tick is the unit of time in the

© 2016 Association for Computing Machinery. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States government. As
such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).
XSEDE16, July 17-21, 2016, Miami, Florida
© 2016 ACM. ISBN 978-1-4503-4755-6/16/07$15.00
DOI: http://dx.doi.org/10.1145/2949550.2949576  

simulation –– generates 292 cells. During this time, each cell,
otherwise known as an agent for the purpose of the simulation,
will move in a linear fashion towards a target point. In addition,
the cells will divide and produce daughters at specific times. The
parent will then become one of the newly created cells. After a
period of time, the agents will stop dividing but will continue to
move. This duration is specific to each cell.

These destinations and division times are determined by the
experimental data gathered by the Memorial Sloan Kettering
Cancer Center. [6] The files containing these values are read into
the simulation. The program will then save the x, y, and z
coordinates, name, size, and various other ids of each agent into a
text file every tick.

The NetLogo simulation was ported into a C++ code so that it
could interface with the RepastHPC toolkit.

The RepastHPC simulation was tested on University of
Tennessee’s cluster, RockFrog using four processes.

In order to visualize the data, Python scripts are used to convert
the results generated by the simulation into a file that can be read
and visualized by VisIt. VisIt is then uses this data in order to
create a video of the simulation.

In addition to the C. elegans simulation, a simpler program was
created in order to show RepastHPC’s scalability. This code used
a less complex algorithm in which the cells would randomly
wander in a linear fashion. However, the agents would not attempt
to divide and create more cells. Rather all the cells required in the
simulation are created in the beginning of the execution. By doing
this, the division of agents between processes can be as even as
possible.

During the initialization phase, the first cell made by a process
would be marked as infected. This cell would then pass on this
trait to the closest neighboring one after the first 50 ticks. Then
every 50 ticks, any infected agent would mark the closest
neighboring cell to its location as infected. This “disease”
simulation offers better results in terms of testing RepastHPC’s
strength as there is more cell-to-cell interaction across processes
in comparison to the C. elegans model.

This simulation was executed on the University of Tennessee’s
supercomputer, Darter.

3.RESULTS
3.1.C. elegans Serial and Parallel Comparison
On average, the simulation currently produces about 292 cells.

NetLogo takes six minutes to fully execute the C. elegans
simulation without the “cell focusing” implementation.

By comparison with NetLogo, the RepastHPC simulation (also
without “cell focusing”) completed in under a minute when
executing on four processors of a small cluster.

Through the use of the Python scripts, the data is visualized
through VisIt in two ways: a general animation and a cell tracking
simulation.

Figure 1a shows a frame of this general video. The colors are
arbitrary; however, they show the daughter cells that have been
generated by the parent cell. There are four starting cells in the
simulation, hence the four color animation.

!
Figure 1a: VisIt Visualization of RepastHPC Simulation–

General Animation

Figure 1b is a frame from the cell tracking animation. The Python
script takes the name of a cell in the simulation and highlights it
and all of its daughters green. Every other agent is colored blue.

!
Figure 1b: VisIt Visualization of RepastHPC Simulation – Cell

Tracking

The axes shown in both frames are the XYZ axis that VisIt
displays while running the animation.

Despite this decrease in time, the program was still limited by the
power of the cluster that the program was run on.

3.2.RepastHPC Simulation Scaling
With the change in execution medium (from RockFrog to Darter),
the “disease” model could be used to determine RepastHPC’s
ability with bigger data sets.

First, the simulation was executed multiple times with 8
processes. Each time, the number of cells was incremented by
either 500 or 1,000 cells. Depicted in Figure 2, as the number of
cells becomes larger, the time taken by the eight processes does
increase steadily by an average of roughly 11 seconds per 500
cells added.

The reason for this could be due to the number of synchronization
calls that RepastHPC must make in order to keep the simulation
stable. In order to do this, each process must make the following
calls: 1) mark all cells that have moved out of that process’s
portion of the three dimensional grid, 2) move those agents to the
appropriate adjacent process, 3) create copies of agents close to
the boundary line to the adjacent process so that it is aware of it,
and 4) update copies with the current information from their home
process.

Since these function calls are made every tick cycle (after the
agents have moved), the processes are constantly communicating

with each other. In addition, there is the synchronization between
ticks for all processes that will also cause more time to be put into
this process. As the number of agents grows, the amount of
information passed between the processes increases. Thus the
execution time becomes larger.

Figure 2 shows this relationship to be largely linear.

!
Figure 2: Scaling of RepastHPC (Fixed Number of Processes –

16)

Next, the simulation was run with 1,000,000 agents. Each time,
the number of processes used was decreased by a power of 2 (32,
64, 128, 256, 512, 1024 respectively to the data shown in Figure
3).

As shown, a large data set requires an adequate amount of
processes in order to run the simulation in a timely fashion. As
mentioned previously, there are four function calls that are used in
order to keep the program stable in addition to synchronizing
between tick cycles.

For the same reasons mentioned, the execution time for
simulations using a small number of processes is greatly affected
by these synchronization times such as a simulation using 32
processes (which lasts for about 7.23 hours) since these processes
have many more cells to scan through in the synchronization step
than a simulation that has the agents divided among 1024
processes (which completes in roughly 9 minutes). While the
number of processes increases by a factor of two, the time taken
decreases on average by a factor of 2.88 minutes.

Figure 3 shows the relationship between the execution time and
the number of processes used is similar to that of the (a / x)
equation where a is some positive constant number.

!
Figure 3: Scaling of RepastHPC (Fixed Number of Agents –

1,000,000)

4.CONCLUSION
RepastHPC shows definite promise of being the faster medium of
the C. elegans simulation. While running a variation of the “cell
focusing” algorithm (which only generated 292 cells), NetLogo
did not finish until a little over two hours later. Meanwhile,
although a much less complex program, RepastHPC was able to
complete a 1,000,000 agent simulation in about 9 minutes. This
shows that RepastHPC can handle a much larger capacity, but it
also produces the results several times faster than NetLogo.

Although the goal is to use the “cell focusing” hypothesis as the
guide of cell movement, due to time limitations, the agents moved
independently to the other in the RepastHPC and NetLogo
comparison. The “cell focusing” algorithm is a rather complex
movement process and requires more time to be throughly tested.
In addition to this, the entire simulation will then be verified with
the experimental data to prove its correctness.

Time limitations prohibited more extensive tests to show
RepastHPC's scalability. There are some other methods that could
be run to further show RepastHPC’s power in agent based
modeling. The toolkit has one other method known as network
projection which can be used independently or cooperatively with
its spatial projection functions. In addition, more tests can be done
to see whether or not the gradual increase in agents over the
course of the simulation (dynamic creation of cells) causes
significant changes in time.

Currently, there have not been any plans to release the RepastHPC
nor NetLogo code; however, the VisIt Python scripts are
available. [7]

5.ACKNOWLEDGEMENTS
Our thanks to National Science Foundation, Joint Institute For
Computational Sciences, Memorial Sloan Kettering Cancer
Center, Kison Osborne (Morehouse College), Scott Simmerman
(Oak Ridge National Laboratory), and John Murphy (Argonne
National Laboratory).

This material is based upon work performed using computational
resources supported by the University of Tennessee and Oak
Ridge National Laboratory's Joint Institute for Computational
Sciences (http://www.jics.utk.edu). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the University of Tennessee (UTK), Oak Ridge National
Laboratory, or the Joint Institute for Computational Sciences.

This work is also sponsored by the National Science Foundation
through REU award #1262937. with additional support from the
National Institute of Computational Sciences at UTK.

6.AUTHOR INFORMATION
1. Morehouse College, 830 Westview Dr SW, Atlanta, GA

30314
2. University of Tennessee, Knoxville, TN 37996-2030
3. Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak

Ridge, TN 37831
4. Memorial Sloan Kettering Cancer Center, 1275 York

Avenue, New York, NY 10065

7.REFERENCES
[1] Anon. College of Biological Sciences.

Retrieved July 22, 2015 from
https://www.cbs.umn.edu/research/resources/cgc/what-c
-elegans.

[2] Marcus Bischoff and Ralf Schnabel. 2006. Global cell sorting
is mediated by local cell–cell interactions in the C. elegans
embryo. Developmental Biology 294, 2 (2006), 432–444.
DOI:http://dx.doi.org/10.1016/j.ydbio.2006.03.005

[3] Wilensky, U. (1999). NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL.

[4] N. Collier and M. North. 2012. Parallel agent-based
simulation with Repast for High Performance
Computing. Simulation 89, 10 (June 2012), 1215–1235.
DOI:http://dx.doi.org/10.1177/0037549712462620

[5] Hank Childs et al. 2012. VisIt: An End-User Tool for
Visualization and Analyzing Very Large Data. High
Performance Visualization Chapman & Hall/CRC
Computational Science Enabling Extreme-Scale Scientific
Insight 1 (2012). DOI:http://dx.doi.org/10.1201/b12985-21

[6] J.L. Moore, Z. Du, and Z. Bao. 2013. Systematic
quantification of developmental phenotypes at single-cell
resolution during embryogenesis. Development 140, 15
(2013), 3266–3274. DOI:http://dx.doi.org/10.1242/dev.
096040

[7] Kison Osborne. 2015. Agent Based Visualization of C.
Elegans Embryogenesis at Cellular Resolution. (August
2015). https://www.jics.tennessee.edu/files/images/csure-reu/
2015/kison-gerard/report1.pdf

