
Xiaofeng Gao
Hongwei Du
Meng Han (Eds.)

 123

LN
CS

 1
06

27

11th International Conference, COCOA 2017
Shanghai, China, December 16–18, 2017
Proceedings, Part I

Combinatorial Optimization
and Applications

Lecture Notes in Computer Science 10627

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Xiaofeng Gao • Hongwei Du
Meng Han (Eds.)

Combinatorial Optimization
and Applications
11th International Conference, COCOA 2017
Shanghai, China, December 16–18, 2017
Proceedings, Part I

123

Editors
Xiaofeng Gao
Shanghai Jiao Tong University
Shanghai
China

Hongwei Du
Harbin Institute of Technology
Shenzhen
China

Meng Han
Kennesaw State University
Kennesaw, GA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-71149-2 ISBN 978-3-319-71150-8 (eBook)
https://doi.org/10.1007/978-3-319-71150-8

Library of Congress Control Number: 2017959595

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1776-8799
http://orcid.org/0000-0002-2138-749X
http://orcid.org/0000-0001-7472-0842

Preface

The 11th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2017) was held during December 16–18, 2017, in Shanghai,
P.R. China. COCOA 2017 provided a forum for researchers working in the area
of theoretical computer science and combinatorics.

The technical program of the conference included 59 regular papers selected by the
Program Committee from 145 full submissions received in response to the call for
papers. Each submission was peer-reviewed by at least three, and on average 3.8,
Program Committee members or external reviewers. The topics cover most aspects
of theoretical computer science and combinatorics related to computing, including
classic combinatorial optimization, geometric optimization, complexity and data
structures, graph theory, etc. We also selected 19 short papers to demonstrate various
applications in the related areas. Some of the papers were selected for publication in
special issues of Algorithmica, Theoretical Computer Science, and Journal of Com-
binatorial Optimization. It is expected that the journal version of the papers will appear
in a more complete form.

We thank everyone who made this meeting possible: the authors for submitting
papers, the Program Committee members, and external reviewers for volunteering their
time to review conference papers. Our sponsors include the Advanced Network
Laboratory (ANL) from Shanghai Jiao Tong University, the GPS Laboratory from
Nanjing University, the Research Institute for Interdisciplinary Sciences (RIIS) from
Shanghai University of Finance and Economics, and the Cardinal Operations (shanshu.
ai) company, China. We would also like to extend special thanks to the chairs and
conference Organizing Committee for their work in making COCOA 2017 a successful
event.

October 2017 Xiaofeng Gao
Meng Han

Zhipeng Cai
Hongwei Du

Organization

General Chairs

Guihai Chen Nanjing University, China
Minyi Guo Shanghai Jiao Tong University, China

Vice General Chair

Zhipeng Cai Georgia State University, USA

Program Co-chairs

Xiaofeng Gao Shanghai Jiao Tong University, China
Hongwei Du Harbin Institute of Technology, Shenzhen, China

Publicity Co-chairs

Dongdong Ge Shanghai Jiao Tong University, China
Chenchen Wu Tianjin University of Technology, China

Publication Chair

Meng Han Kennesaw State University, USA

Financial Chair

Fay Zhong California State University, USA

Local Organization Chair

Sherman Hung Shanghai Jiao Tong University, China

Web Chair

Shilei Tian Shanghai Jiao Tong University, China

Program Committee

Xiaohui Bei Nanyang Technological University, Singapore
Wolfgang Bein University of Nevada, Las Vegas, USA
Zhipeng Cai Georgia State University, USA
Gruia Calinescu Illinois Institute of Technology, USA

T.-H. Hubert Chan The University of Hong Kong, SAR China
Kun-Mao Chao National Taiwan University, Taiwan
Vincent Chau City University of Hong Kong, SAR China
Jing Chen Stony Brook University, USA
Xujin Chen Institute of Applied Mathematics,

Chinese Academy of Sciences, China
Rajesh Chitnis Weizmann Institute, Israel
Ovidiu Daescu University of Texas at Dallas, USA
Haipeng Dai Nanjing University, China
Thang Dinh Virginia Commonwealth University, USA
Hongwei Du Harbin Institute of Technology Shenzhen Graduate School,

China
Zhenhua Duan Xidian University, China
Thomas Erlebach University of Leicester, UK
Neng Fan University of Arizona, USA
Bin Fu University of Texas, Rio Grande Valley, USA
Stanley Fung University of Leicester, UK
Xiaofeng Gao Shanghai Jiao Tong University, China
Dongdong Ge Shanghai University of Finance and Economics, China
Qianping Gu Simon Fraser University, Canada
Meng Han Kennesaw State University, USA
Pinar Heggernes University of Bergen, Norway
Juraj Hromkovic ETH Zurich, Switzerland
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Jie Hu Wuhan University, China
Hejiao Huang Harbin Institute of Technology Shenzhen Graduate School,

China
Kazuo Iwama Kyoto University, Japan
Naoki Katoh Kyoto University, Japan
Donghyun Kim Kennesaw State University, USA
Minming Li City University of Hong Kong, SAR China
Xianyue Li Lanzhou University, China
Guohui Lin University of Alberta, Canada
Xianmin Liu Harbin Institute of Technology, China
Xiaowen Liu Indiana University-Purdue University Indianapolis, USA
Bin Ma University of Waterloo, Canada
Mitsunori Ogihara University of Miami, USA
Sheung-Hung Poon Brunei Technological University, Brunei
Erfang Shan Shanghai University, China
Gerhard Woeginger RWTH Aachen University, Germany
Chenchen Wu Tianjin University of Technology, China
Xiaowei Wu University of Hong Kong, SAR China
Boting Yang University of Regina, Canada
Hsu-Chun Yen National Taiwan University, Taiwan
Huacheng Yu Harvard University, USA
Chihao Zhang Shanghai Jiao Tong University, China

VIII Organization

Zhao Zhang Zhejiang Normal University, China
Jiaofei Zhong California State University, East Bay, USA
Yuqing Zhu California State University, Los Angeles, USA

Additional Reviewers

Aloupis, Greg
Andro-Vasko, James
Armaselu, Bogdan
Bein, Doina
Boeckenhauer, Hans-Joachim
Boyanapalli, Uday Bhaskar
Burjons Pujol, Elisabet
Cao, Zhigang
Chang, Nai-Wen
Chang, Yi-Jun
Chen, Chi-Yeh
Chen, Ho-Lin
Chen, Li-Hsuan
Chen, Yu-Fang
Chiu, Man Kwun
Dao, Minh-Son
Deineko, Vladimir
Dobrev, Stefan
Doerr, Carola
Fan, Chenglin
Frei, Fabian
Fukagawa, Daiji
Guo, Longkun
Han, Xin
He, Hongjin
He, Simai
Higashikawa, Yuya
Hung, Ling-Ju
Jakoby, Andreas
Jansson, Jesper
Jiang, Bo
Kim, Yeojin
Ko, Euiseong
Kobayashi, Yuki
Komm, Dennis
Larmore, Lawrence
Lee, Chia-Wei

Letsios, Dimitrios
Li, Bo
Li, Yingkai
Liao, Chao
Lin, Bingkai
Lin, Chun-Cheng
Lu, Yue
Malik, Hemant
Mount, David
Möhring, Rolf H.
Nakano, Shin-Ichi
Nguyen, Kim Thang
Nishimura, Naomi
Nistor, Marian Sorin
Nyknahad, Dara
Oda, Yoshiaki
Peng, Sheng-Lung
Polak, Ido
Raichel, Benjamin
Rutter, Ignaz
Saitoh, Toshiki
Shi, Yongtang
Sukegawa, Noriyoshi
Suzuki, Akira
Takizawa, Atsushi
Tan, Zhiyi
Tang, Zhihao Gavin
Teruyama, Junichi
Wang, Hui
Wang, Hung-Lung
Wang, Meng
Wang, Wensheng
Wang, Yinling
Wehner, David
Wei, Chia-Chen
Williams, Derek
Wong, Prudence W.H.

Organization IX

Xiao, Mingyu
Xiao, Tao
Xu, Chunming
Yang, Kai
Ye, Deshi
Ye, Junjie
Yu, Bin

Yu, Tian-Li
Zhang, An
Zhang, Peng
Zhang, Yihan
Zhang, Yong
Zhao, Chenxia

X Organization

Contents – Part I

Network

Filtering Undesirable Flows in Networks . 3
Gleb Polevoy, Stojan Trajanovski, Paola Grosso, and Cees de Laat

A Framework for Overall Storage Overflow Problem to Maximize
the Lifetime in WSNs . 18

Guoliang Song, Chen Zhang, Chuang Liu, and Yuna Chai

Floorplans with Columns . 33
Katsuhisa Yamanaka, Md. Saidur Rahman, and Shin-Ichi Nakano

A Parallel Construction of Vertex-Disjoint Spanning Trees
with Optimal Heights in Star Networks . 41

Shih-Shun Kao, Jou-Ming Chang, Kung-Jui Pai, Jinn-Shyong Yang,
Shyue-Ming Tang, and Ro-Yu Wu

Protein Mover’s Distance: A Geometric Framework for Solving
Global Alignment of PPI Networks . 56

Manni Liu and Hu Ding

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 70
Xi Luo, Jialiang Lu, Guangshuo Chen, Linghe Kong, and Min-You Wu

A New Approximation Algorithm for the Maximum Stacking Base Pairs
Problem from RNA Secondary Structures Prediction 85

Aizhong Zhou, Haitao Jiang, Jiong Guo, and Daming Zhu

Approximation Algorithm and Graph Theory

Approximation Algorithms for the Generalized Stacker Crane Problem 95
Jianping Li, Xiaofei Liu, Weidong Li, Li Guan, and Junran Lichen

Fast Approximation Algorithms for Computing Constrained Minimum
Spanning Trees . 103

Pei Yao and Longkun Guo

Trajectory-Based Multi-hop Relay Deployment in Wireless Networks 111
Shilei Tian, Haotian Wang, Sha Li, Fan Wu, and Guihai Chen

http://dx.doi.org/10.1007/978-3-319-71150-8_1
http://dx.doi.org/10.1007/978-3-319-71150-8_2
http://dx.doi.org/10.1007/978-3-319-71150-8_2
http://dx.doi.org/10.1007/978-3-319-71150-8_3
http://dx.doi.org/10.1007/978-3-319-71150-8_4
http://dx.doi.org/10.1007/978-3-319-71150-8_4
http://dx.doi.org/10.1007/978-3-319-71150-8_5
http://dx.doi.org/10.1007/978-3-319-71150-8_5
http://dx.doi.org/10.1007/978-3-319-71150-8_6
http://dx.doi.org/10.1007/978-3-319-71150-8_7
http://dx.doi.org/10.1007/978-3-319-71150-8_7
http://dx.doi.org/10.1007/978-3-319-71150-8_8
http://dx.doi.org/10.1007/978-3-319-71150-8_9
http://dx.doi.org/10.1007/978-3-319-71150-8_9
http://dx.doi.org/10.1007/978-3-319-71150-8_10

A Local Search Approximation Algorithm for a Squared
Metric k-Facility Location Problem . 119

Dongmei Zhang, Dachuan Xu, Yishui Wang, Peng Zhang,
and Zhenning Zhang

Combinatorial Approximation Algorithms for Spectrum Assignment
Problem in Chain and Ring Networks . 125

Guangting Chen, Lei Zhang, An Zhang, and Yong Chen

Mixed Connectivity of Random Graphs . 133
Ran Gu, Yongtang Shi, and Neng Fan

Conflict-Free Connection Numbers of Line Graphs 141
Bo Deng, Wenjing Li, Xueliang Li, Yaping Mao, and Haixing Zhao

The Coloring Reconfiguration Problem on Specific Graph Classes 152
Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou

Combinatorial Optimization

Minimizing Total Completion Time of Batch Scheduling
with Nonidentical Job Sizes . 165

Rongqi Li, Zhiyi Tan, and Qianyu Zhu

New Insights for Power Edge Set Problem . 180
Benoit Darties, Annie Chateau, Rodolphe Giroudeau,
and Mathias Weller

Extended Spanning Star Forest Problems . 195
Kaveh Khoshkhah, Mehdi Khosravian Ghadikolaei, Jérôme Monnot,
and Dirk Oliver Theis

Faster and Enhanced Inclusion-Minimal Cograph Completion. 210
Christophe Crespelle, Daniel Lokshtanov, Thi Ha Duong Phan,
and Eric Thierry

Structure of Towers and a New Proof of the Tight Cut Lemma 225
Nanao Kita

On the Complexity of Detecting k-Length Negative Cost Cycles 240
Longkun Guo and Peng Li

A Refined Characteristic of Minimum Contingency
Set for Conjunctive Query . 251

Dongjing Miao and Zhipeng Cai

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-71150-8_11
http://dx.doi.org/10.1007/978-3-319-71150-8_11
http://dx.doi.org/10.1007/978-3-319-71150-8_12
http://dx.doi.org/10.1007/978-3-319-71150-8_12
http://dx.doi.org/10.1007/978-3-319-71150-8_13
http://dx.doi.org/10.1007/978-3-319-71150-8_14
http://dx.doi.org/10.1007/978-3-319-71150-8_15
http://dx.doi.org/10.1007/978-3-319-71150-8_16
http://dx.doi.org/10.1007/978-3-319-71150-8_16
http://dx.doi.org/10.1007/978-3-319-71150-8_17
http://dx.doi.org/10.1007/978-3-319-71150-8_18
http://dx.doi.org/10.1007/978-3-319-71150-8_19
http://dx.doi.org/10.1007/978-3-319-71150-8_20
http://dx.doi.org/10.1007/978-3-319-71150-8_21
http://dx.doi.org/10.1007/978-3-319-71150-8_22
http://dx.doi.org/10.1007/978-3-319-71150-8_22

Generalized Pyramidal Tours for the Generalized Traveling
Salesman Problem. 265

Michael Khachay and Katherine Neznakhina

The 2-Median Problem on Cactus Graphs with Positive
and Negative Weights . 278

Chunsong Bai and Liying Kang

The Eigen-Distribution of Weighted Game Trees . 286
Shohei Okisaka, Weiguang Peng, Wenjuan Li, and Kazuyuki Tanaka

A Spectral Partitioning Algorithm for Maximum Directed Cut Problem 298
Zhenning Zhang, Donglei Du, Chenchen Wu, Dachuan Xu,
and Dongmei Zhang

Better Approximation Ratios for the Single-Vehicle Scheduling Problems
on Tree/Cycle Networks. 313

Yuanxiao Wu and Xiwen Lu

An Efficient Primal-Dual Algorithm for Fair Combinatorial
Optimization Problems. 324

Viet Hung Nguyen and Paul Weng

Efficient Algorithms for Ridesharing of Personal Vehicles 340
Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang

Cost-Sharing Mechanisms for Selfish Bin Packing 355
Chenhao Zhang and Guochuan Zhang

Application

Modelling and Solving Anti-aircraft Mission Planning for Defensive
Missile Battalions . 371

Trang T. Nguyen, Trung Q. Bui, Bang Q. Nguyen, and Su T. Le

Perspectives of Big Data Analysis in Urban Railway Planning:
Shenzhen Metro Case Study . 386

Keke Peng, Caiwei Yuan, and Wen Xu

Cloning Automata: Simulation and Analysis of Computer Bacteria 401
Chu Chen, Zhenhua Duan, Cong Tian, and Hongwei Du

Research on Arrival Integration Method for Point Merge System
in Tactical Operation . 417

Yannan Qi, Xinglong Wang, and Chen Chen

Repair Position Selection for Inconsistent Data . 426
Xianmin Liu, Yingshu Li, and Jianzhong Li

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-71150-8_23
http://dx.doi.org/10.1007/978-3-319-71150-8_23
http://dx.doi.org/10.1007/978-3-319-71150-8_24
http://dx.doi.org/10.1007/978-3-319-71150-8_24
http://dx.doi.org/10.1007/978-3-319-71150-8_25
http://dx.doi.org/10.1007/978-3-319-71150-8_26
http://dx.doi.org/10.1007/978-3-319-71150-8_27
http://dx.doi.org/10.1007/978-3-319-71150-8_27
http://dx.doi.org/10.1007/978-3-319-71150-8_28
http://dx.doi.org/10.1007/978-3-319-71150-8_28
http://dx.doi.org/10.1007/978-3-319-71150-8_29
http://dx.doi.org/10.1007/978-3-319-71150-8_30
http://dx.doi.org/10.1007/978-3-319-71150-8_31
http://dx.doi.org/10.1007/978-3-319-71150-8_31
http://dx.doi.org/10.1007/978-3-319-71150-8_32
http://dx.doi.org/10.1007/978-3-319-71150-8_32
http://dx.doi.org/10.1007/978-3-319-71150-8_33
http://dx.doi.org/10.1007/978-3-319-71150-8_34
http://dx.doi.org/10.1007/978-3-319-71150-8_34
http://dx.doi.org/10.1007/978-3-319-71150-8_35

Unbounded One-Way Trading on Distributions with Monotone
Hazard Rate . 439

Francis Y.L. Chin, Francis C.M. Lau, Haisheng Tan, Hing-Fung Ting,
and Yong Zhang

Generalized Bidirectional Limited Magnitude Error Correcting Code
for MLC Flash Memories. 450

Akram Hussain, Xinchun Yu, and Yuan Luo

Optimal Topology Design of High Altitude Platform Based Maritime
Broadband Communication Networks . 462

Jianli Duan, Tiange Zhao, and Bin Lin

On Adaptive Bitprobe Schemes for Storing Two Elements 471
Deepanjan Kesh

Author Index . 481

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-71150-8_36
http://dx.doi.org/10.1007/978-3-319-71150-8_36
http://dx.doi.org/10.1007/978-3-319-71150-8_37
http://dx.doi.org/10.1007/978-3-319-71150-8_37
http://dx.doi.org/10.1007/978-3-319-71150-8_38
http://dx.doi.org/10.1007/978-3-319-71150-8_38
http://dx.doi.org/10.1007/978-3-319-71150-8_39

Contents – Part II

Combinatorial Optimization

Algorithms for the Ring Star Problem . 3
Xujin Chen, Xiaodong Hu, Zhongzheng Tang, Chenhao Wang,
and Ying Zhang

Price Fluctuation in Online Leasing . 17
Björn Feldkord, Christine Markarian,
and Friedhelm Meyer Auf der Heide

Novel Scheduling for Energy Management in Microgrid 32
Zaixin Lu, Jd Youngs, Zhi Chen, and Miao Pan

Improved Methods for Computing Distances Between Unordered
Trees Using Integer Programming . 45

Eunpyeong Hong, Yasuaki Kobayashi, and Akihiro Yamamoto

Touring Convex Polygons in Polygonal Domain Fences 61
Arash Ahadi, Amirhossein Mozafari, and Alireza Zarei

On Interdependent Failure Resilient Multi-path Routing
in Smart Grid Communication Network . 76

Zishen Yang, Donghyun Kim, and Wei Wang

An Improved Branching Algorithm for (n, 3)-MaxSAT Based
on Refined Observations . 94

Wenjun Li, Chao Xu, Jianxin Wang, and Yongjie Yang

Faster Algorithms for 1-Mappability of a Sequence 109
Mai Alzamel, Panagiotis Charalampopoulos, Costas S. Iliopoulos,
Solon P. Pissis, Jakub Radoszewski, and Wing-Kin Sung

Lexico-Minimum Replica Placement in Multitrees. 122
K. Alex Mills, R. Chandrasekaran, and Neeraj Mittal

Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter
Tractable . 138

Naomi Nishimura and Vijay Subramanya

A New Graph Parameter to Measure Linearity . 154
Pierre Charbit, Michel Habib, Lalla Mouatadid, and Reza Naserasr

http://dx.doi.org/10.1007/978-3-319-71147-8_1
http://dx.doi.org/10.1007/978-3-319-71147-8_2
http://dx.doi.org/10.1007/978-3-319-71147-8_3
http://dx.doi.org/10.1007/978-3-319-71147-8_4
http://dx.doi.org/10.1007/978-3-319-71147-8_4
http://dx.doi.org/10.1007/978-3-319-71147-8_5
http://dx.doi.org/10.1007/978-3-319-71147-8_6
http://dx.doi.org/10.1007/978-3-319-71147-8_6
http://dx.doi.org/10.1007/978-3-319-71147-8_7
http://dx.doi.org/10.1007/978-3-319-71147-8_7
http://dx.doi.org/10.1007/978-3-319-71147-8_8
http://dx.doi.org/10.1007/978-3-319-71147-8_9
http://dx.doi.org/10.1007/978-3-319-71147-8_10
http://dx.doi.org/10.1007/978-3-319-71147-8_10
http://dx.doi.org/10.1007/978-3-319-71147-8_11

Listing Acyclic Subgraphs and Subgraphs of Bounded Girth
in Directed Graphs . 169

Alessio Conte, Kazuhiro Kurita, Kunihiro Wasa, and Takeaki Uno

Toward Energy-Efficient and Robust Clustering Algorithm
on Mobile Ad Hoc Sensor Networks . 182

Huamei Qi, Tailong Xiao, Anfeng Liu, and Su Jiang

Game Theory

The Cop Number of the One-Cop-Moves Game on Planar Graphs 199
Ziyuan Gao and Boting Yang

The Price of Anarchy in Two-Stage Scheduling Games 214
Deshi Ye, Lin Chen, and Guochuan Zhang

Selfish Jobs with Favorite Machines: Price of Anarchy vs. Strong Price
of Anarchy. 226

Cong Chen, Paolo Penna, and Yinfeng Xu

An Improved Mechanism for Selfish Bin Packing . 241
Xin Chen, Qingqin Nong, and Qizhi Fang

Approximation Algorithm and Graph Theory

Hamiltonian Cycles in Covering Graphs of Trees . 261
Pavol Hell, Hiroshi Nishiyama, and Ladislav Stacho

On k-Strong Conflict–Free Multicoloring . 276
Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro

Tropical Paths in Vertex-Colored Graphs . 291
Johanne Cohen, Giuseppe F. Italiano, Yannis Manoussakis,
Kim Thang Nguyen, and Hong Phong Pham

The Spectral Radius and Domination Number of Uniform Hypergraphs 306
Liying Kang, Wei Zhang, and Erfang Shan

Complexity and Online Algorithms for Minimum Skyline Coloring
of Intervals. 317

Thomas Erlebach, Fu-Hong Liu, Hsiang-Hsuan Liu, Mordechai Shalom,
Prudence W.H. Wong, and Shmuel Zaks

Approximating k-Forest with Resource Augmentation:
A Primal-Dual Approach . 333

Eric Angel, Nguyen Kim Thang, and Shikha Singh

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-71147-8_12
http://dx.doi.org/10.1007/978-3-319-71147-8_12
http://dx.doi.org/10.1007/978-3-319-71147-8_13
http://dx.doi.org/10.1007/978-3-319-71147-8_13
http://dx.doi.org/10.1007/978-3-319-71147-8_14
http://dx.doi.org/10.1007/978-3-319-71147-8_15
http://dx.doi.org/10.1007/978-3-319-71147-8_16
http://dx.doi.org/10.1007/978-3-319-71147-8_16
http://dx.doi.org/10.1007/978-3-319-71147-8_17
http://dx.doi.org/10.1007/978-3-319-71147-8_18
http://dx.doi.org/10.1007/978-3-319-71147-8_19
http://dx.doi.org/10.1007/978-3-319-71147-8_20
http://dx.doi.org/10.1007/978-3-319-71147-8_21
http://dx.doi.org/10.1007/978-3-319-71147-8_22
http://dx.doi.org/10.1007/978-3-319-71147-8_22
http://dx.doi.org/10.1007/978-3-319-71147-8_23
http://dx.doi.org/10.1007/978-3-319-71147-8_23

Parameterized Approximation Algorithms for Some Location
Problems in Graphs . 348

Arne Leitert and Feodor F. Dragan

Approximation Algorithms for Maximum Coverage with Group
Budget Constraints . 362

Longkun Guo, Min Li, and Dachuan Xu

Application

A Simple Greedy Algorithm for the Profit-Aware Social Team
Formation Problem . 379

Shengxin Liu and Chung Keung Poon

Doctor Rostering in Compliance with the New UK Junior
Doctor Contract . 394

Anna Lavygina, Kris Welsh, and Alan Crispin

Bounds for Static Black-Peg AB Mastermind . 409
Christian Glazik, Gerold Jäger, Jan Schiemann, and Anand Srivastav

Classification Statistics in RFID Systems . 425
Zhenzao Wen, Jiapeng Huang, Linghe Kong, Min-You Wu,
and Guihai Chen

On the Complexity of Robust Stable Marriage . 441
Begum Genc, Mohamed Siala, Gilles Simonin, and Barry O’Sullivan

The Euclidean Vehicle Routing Problem with Multiple Depots
and Time Windows . 449

Liang Song and Hejiao Huang

Online Algorithms for Non-preemptive Speed Scaling
on Power-Heterogeneous Processors . 457

Aeshah Alsughayyir and Thomas Erlebach

An Efficient Algorithm for Judicious Partition of Hypergraphs 466
Tunzi Tan, Jihong Gui, Sainan Wang, Suixiang Gao, and Wenguo Yang

On Structural Parameterizations of the Matching Cut Problem 475
N.R. Aravind, Subrahmanyam Kalyanasundaram,
and Anjeneya Swami Kare

Longest Previous Non-overlapping Factors Table Computation 483
Supaporn Chairungsee and Maxime Crochemore

Modeling and Verifying Multi-core Programs . 492
Nan Zhang, Zhenhua Duan, Cong Tian, Hongwei Du, and Kai Yang

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-319-71147-8_24
http://dx.doi.org/10.1007/978-3-319-71147-8_24
http://dx.doi.org/10.1007/978-3-319-71147-8_25
http://dx.doi.org/10.1007/978-3-319-71147-8_25
http://dx.doi.org/10.1007/978-3-319-71147-8_26
http://dx.doi.org/10.1007/978-3-319-71147-8_26
http://dx.doi.org/10.1007/978-3-319-71147-8_27
http://dx.doi.org/10.1007/978-3-319-71147-8_27
http://dx.doi.org/10.1007/978-3-319-71147-8_28
http://dx.doi.org/10.1007/978-3-319-71147-8_29
http://dx.doi.org/10.1007/978-3-319-71147-8_30
http://dx.doi.org/10.1007/978-3-319-71147-8_31
http://dx.doi.org/10.1007/978-3-319-71147-8_31
http://dx.doi.org/10.1007/978-3-319-71147-8_32
http://dx.doi.org/10.1007/978-3-319-71147-8_32
http://dx.doi.org/10.1007/978-3-319-71147-8_33
http://dx.doi.org/10.1007/978-3-319-71147-8_34
http://dx.doi.org/10.1007/978-3-319-71147-8_35
http://dx.doi.org/10.1007/978-3-319-71147-8_36

Planar Vertex-Disjoint Cycle Packing: New Structures
and Improved Kernel . 501

Qilong Feng, Xiaolu Liao, and Jianxin Wang

On the Linearization of Scaffolds Sharing Repeated Contigs. 509
Mathias Weller, Annie Chateau, and Rodolphe Giroudeau

A Memetic Algorithm for the Linear Ordering Problem
with Cumulative Costs. 518

Taoqing Zhou, Zhipeng Lü, Tao Ye, and Kan Zhou

Author Index . 527

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-71147-8_37
http://dx.doi.org/10.1007/978-3-319-71147-8_37
http://dx.doi.org/10.1007/978-3-319-71147-8_38
http://dx.doi.org/10.1007/978-3-319-71147-8_39
http://dx.doi.org/10.1007/978-3-319-71147-8_39

Network

Filtering Undesirable Flows in Networks

Gleb Polevoy1(B), Stojan Trajanovski1,2, Paola Grosso1, and Cees de Laat1

1 University of Amsterdam, Amsterdam, the Netherlands
G.Polevoy@uva.nl

2 Philips Research, Eindhoven, the Netherlands

Abstract. We study the problem of fully mitigating the effects of denial
of service by filtering the minimum necessary set of the undesirable flows.
First, we model this problem and then we concentrate on a subproblem
where every good flow has a bottleneck. We prove that unless P = NP,

this subproblem is inapproximable within factor 2log1−1/ log logc(n)(n), for
n = |E|+ |GF | and any c < 0.5. We provide a b(k +1)-factor polynomial
approximation, where k bounds the number of the desirable flows that
a desirable flow intersects, and b bounds the number of the undesirable
flows that can intersect a desirable one at a given edge. Our algorithm
uses the local ratio technique.

Keywords: Flow · Filter · MMSA · Set cover · Approximation · Local
ratio algorithm

1 Introduction

Denial of Service (DoS) and Distributed DoS [18] are widespread network
attacks. These attacks negatively impact functionality, especially when the sys-
tem needs to be quick (soft real time, for example) [17]. Consequently, fighting
the problem is highly important [22]. Filtering the attacking flows [16] is one of
the main ways to fight the problem. Filtering is also preferred among practition-
ers and network operators, rather than, for example, the more complicated and
expensive link addition or removal. If we properly select a flow we want to filter,
filtering always succeeds, but the required efforts depend on the filtered flow. For
example, defining in the firewall which flows to filter is sometimes simple (say,
filter all the UDP), but sometimes contrived (e.g., no simple pattern of what to
filter exists) [11]. Unlike admission control, here we do not decide whether to
allow a connection, but rather how to handle an existing one.

A similar problem is having less important but not malicious flows in the
network. We then remove the less important flows to allow the more important
ones to optimally utilize the network, and we want to incur the least possible
cost from removing the less important flows. This pertains to both computer

S. Trajanovski—The research was started while S.T. was with the University of
Amsterdam. He is now with Philips Research.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-71150-8_1

4 G. Polevoy et al.

networks and transportation networks. In computer networks, streaming video
to prioritized customers may be contractually binding, forcing flows to the other
customers to give space to the prioritizes ones. In transportation, for example,
a less important freight connection may be removed in favor of the more crucial
ones [19].

We define a flow as a single path from the source to the sink and consider a
system with some desirable (call them good) and undesirable (name them bad)
flows. Undesirable flows can either model malicious flows or, alternatively, legit-
imate but dispensable flows. In particular, we model DoS as a set of bad flows
that take up the available bandwidth. We study filtering as a coping method,
possible within traffic engineering [1,2]. If we filter some bad flows, we can allo-
cate the good flows more value because of the freed capacity. We aim to max-
imally increase the good flows, while spending the minimum necessary filtering
effort, or losing the least from filtering the less important flows. Indeed, in the
context of DoS, minimizing the filtering effort is practically important: Koning
et al. [16] show that the filtering cost can have a significant effect on the overall
effectiveness of the response. Therefore, we should not simply filter everything:
Example 1 demonstrates that filtering all the bad flows can take arbitrarily more
effort than the minimum effort necessary to maximally increase the good flows.
In order to autonomously decide which flows to filter, as suggested in [16], we
need an algorithm to find which bad flows to filter. In order to cope with large
instances in real time, the algorithm has to be polynomial.

Example 1. In Fig. 1, assume the capacity of edge (V1, V2) is 2c and the capacity
of (V2, V3) is c. Let the original flows have the value of c each: v(b) = v(g) = c,
and let w(b) be positive. Because of the saturated edge (V2, V3), filtering b would
not allow increasing g. Therefore, the optimal set to filter is ∅ and it costs zero,
infinitely smaller than filtering anything.

b g
V1 V3V2

Fig. 1. Consider the network represented by the path graph with the 3 vertices
V1, V2, V3. We have a bad flow, b, and a good one, denoted by g.

We assume we know which flows are good and which are bad, either because
we know all the flows, they are all good, and we decide which are dispensable and
which are not, or, when malicious flows exist, we can identify them by frequent
access trials from the same IP group.

Take a look at the following example of using an algorithm that decides which
bad flows to filter.

Filtering Undesirable Flows in Networks 5

Example 2. In a system where the flows belong to the same organization and
carry equally important traffic, assume that our intrusion detection system dis-
covers a DoS attack, and determines which flows are attacking. We need to
respond quickly and efficiently. Having determined which flows are desirable,
which are attacking and how large the flows are, we first estimate how hard
filtering each attacking flow would be. Now, we run our algorithm to obtain an
(approximately) easiest set of attacking flows to filter, such that the desirable
flows will be able to fully utilize the system.

To pose the problem, we first model it in Sect. 2 and define k as the largest
number of good flows that any good flow intersects in a network. We will
also need b, defined as the largest number of bad flows that flow through an
edge where a good flow also flows. The measures k and b will be used later
on. Section 2.1 provides a short primer to the local ratio technique, which we
employ to approximate the subproblem where every good flow has a bottle-
neck. At the outset, we prove in Sect. 3 that for any k ≥ 0, the problem is
NP-hard, using a reduction from Set Cover. Even when no bad edges inter-
sect one another, we prove by reduction from Minimum-Monotone-Satisfying-
Assignment that the problem is not even approximable within 2log1−1/ log logc(n)(n),
for n = |edges in the network| + |desirable flows| and any c < 0.5, unless
P �= NP . In Sect. 4 we provide a polynomial approximation of the problem,
with the tight approximation ratio of b(k+1). The algorithm uses the local ratio
technique [3–5]. We conclude and suggest further research directions in Sect. 5.

Our approximation can facilitate remedying the distributed DoS and similar
congestion scenarios.

1.1 Related Work

We are not aware of any theoretical flow filtering approximations, but there is
literature studying related flow problems. First, we aim to maximize the desir-
able flows, each flow being on a given path, while the famous max-flow – min-cut
problem [8, Chap. 26] aims to maximize the total flow from source to sink, with-
out predefined paths. There exist many famous generalizations of max-flow, such
as maximum circulation [15, Chap. 7] and multi-commodity flow [10]. Regarding
the allowed actions, we study filtering, thereby completing the studies of network
design: edge addition [14], edge deletion [13,21], etc. In particular, deleting edges
that can disconnect all the flows from a source to a sink is a famous problem, and
Menger’s theorem [7, Chap. 3.2] characterizes the minimum number of edges one
has to remove in order to disconnect the source from the sink. Of course, finding
a minimum cut mentioned above and disconnecting it is an optimal algorithm
for this problem.

2 Model

We model the flow network as a directed graph G = (N,E) with (edge) capacities
c : E → R+. A flow f from node a to node z in this network is a path from

6 G. Polevoy et al.

source a to sink z, each of which edges carries the value of the flow. Formally,
f = (v(f), P (f)), where v(f) ∈ R+ is the value of the flow and P (f) is the set of
the edges of the path that the flow takes from a to z. Flow in this paper are not
splittable, which meanings that a flow takes a single path. This can also model
a splitting flow as separate flows with partially overlapping paths. All the flows
together fulfill the capacity constraint, meaning that for every edge e ∈ E, all
the passing flows together are bounded in their values by the capacity of the
edge, i.e. ∑

f :e∈P (f)

v(f) ≤ c(e).

Let us define the basic problem we are considering.

Definition 1. The Bad Flow Filtering problem (BFF) receives the input
(G = (N,E), c : E → R+, F,GF,BF,w : BF → R+). Here, G = (N,E) is a
capacitated network with capacities c and flows F = {fi}, where some flows,
denoted GF = {gi} ⊆ F , are marked as good (desirable), and the rest, denoted
BF = {bi} Δ= F \GF , are bad (undesirable). The values of the good flows are not
given in the input. Every bad flow f is endowed with a weight w(f), designating
how hard filtering that flow would be, or how important the bad flow is, if bad
flows model dispensable but legitimate flows.

A solution S is a subset of bad flows to filter.
A feasible solution is a solution such that the good flows can be allocated val-

ues such that the total value of the good flows is the maximum possible (i.e. equal
to the total value that can be allocated if all the bad flows are removed).

We aim to find a feasible solution with the minimum total weight. Intuitively,
we aim to optimize the total good flow while investing the minimum filtering
effort, or while losing the minimum of the less important flows, depending on
what bad flows model.

BFF is monotonic with respect to inclusion, in the sense that filtering more
bad flows after having filtered a feasible solution preserves feasibility.

We now define a constrained version of BFF, such that the algorithm can
always provably approximate the solution. We need to avoid a situation when
decreasing the value of a good flow can allow multiple good flows increase. Intu-
itively, we achieve this by always having a bottleneck that connects all the good
flows that intersect one another, so that decreasing one of them will never be
used multiple times to increase others. Formally,

Definition 2. For any good flow g ∈ GF , define a bottleneck of g be a set of
edges S(g) ⊆ P (G) such that every other good flow g′ that intersects g contains
all these edges, and for every edge i where g intersects another good flow and
for every solution BF ′ ⊆ BF , there exists an edge e ∈ S(g) such that c(e) −∑

b∈BF\BF ′:e∈b v(b) ≤ c(i) − ∑
b′∈BF\BF ′:i∈b′ v(b′).

A BFF problem where every good flow has a bottleneck is called a Bottleneck-
BFF (BBFF).

Filtering Undesirable Flows in Networks 7

We prove BBFF, and therefore, BFF, is hard and approximate BBFF. Let us
now present two cases that fall under BBFF.

Common Narrow Link. If every good flow g and all the flows that it intersects
pass through an edge of a much smaller capacity than the other edges on the
path of this flow, then this edge constitutes a bottleneck of g. This happens
in practice when the flows pass through a physically common link.

Uniform Intersection. Intuitively, we require that a set of intersecting good
flows all intersect each other at the same edges.

Definition 3. The Uniform Intersection Bad Flow Filtering problem
(UIBFF) is a restriction of BFF where every g ∈ GF has a set of edges
on its path, E(g) ⊆ P (g), such that every other good flow g′ that intersects
g shares with g exactly the edges of E(g), i.e. P (g) ∩ P (g′) = E(g).

Since the defined E(g) is a bottleneck of g, UIBFF is a subproblem of BBFF.
This uniformity can happen, for instance, if the intersecting flows share a
source or a destination, and intersect only near those nodes.

We now define the parameters which we will use to express the approximation
ratio of our algorithm.

Definition 4. Given an instance of BFF, let k be the largest possible number
of good flows that a given good flow intersects. Formally,

k
Δ= max {|{g′ ∈ GF \ {g} : P (g′) ∩ P (g) �= ∅}| : g ∈ G} .

Definition 5. For a BFF instance, let b be the largest number of bad flows that
intersect a good flow at any given edge. Formally,

b
Δ= max {|{f ∈ BF : e ∈ P (f)}| : g ∈ G, e ∈ P (g)} .

2.1 Local Ratio Approximation

A typical local ratio r-approximation algorithm for minimization [4,5] is easier
to formulate recursively, though practical implementations are usually iterative.
It works by manipulating the weights as follows.

1. If a trivial solution (often, the empty set) is feasible, return it.
2. Otherwise, if zero weight elements exist, we remove them, solve the problem

without them and add them back afterwards.
3. Otherwise, decompose the weight function w = w1 + w2 such that every

feasible solution would be an r-approximation with respect to w1. We call such
a w1 weight function r-effective and finding it is the main challenge. Then,
recursively invoke the algorithm with w2. The returned feasible solution is an
r-approximation w.r.t. w2, by induction. Since it also is an r-approximation
w.r.t. w1, by the way we decomposed w, the following theorem implies that
this solution is also an r-approximation w.r.t. w, as required.

8 G. Polevoy et al.

Theorem 1 (Local Ratio Theorem [4]). Let us have a feasible set D ⊆ R
n.1

Assume we have weight vectors w = w1 + w2 and that a feasible solution x ∈ D
is r-approximate w.r.t. w1 and w.r.t. w2. Then, x is r-approximate w.r.t. w as
well.

We also require from w1 that at least one element will have the zero weight in
w−w1, so that the instance will shrink at the next invocation. Finding a suitable
r-effective w1 for a small r is the crux of the method, requiring an insight about
all the feasible solutions of the problem.

3 Hardness

We prove that the decision version of BBFF is NP-complete, and even NP-
hard to be approximated within 2log1−1/ log logc(n)(n), for n = |E| + |GF |, thereby
motivating the need to seek an approximation instead of an exact solution.

We first prove that the problem is NP-hard not merely to optimize exactly,
but even to approximate.

Theorem 2. UIBFF (and, therefore, BBFF) is not approximable within
2log1−1/ log logc(n)(n), for n = |E| + |GF | and any c < 0.5, unless P �= NP . This
holds even if no bad edges intersect one another.

Proof. We prove the hardness of approximation by reducing the Minimum-
Monotone-Satisfying-Assignment of depth 3 (MMSA3) problem to UIBFF. Let
us remind the definition of MMSA3 [9].

Definition 6. The input of the MMSA3 problem is a monotone (with no neg-
ative literals) Boolean formula, which is a conjunction (AND) of disjunctions
(OR), every such disjunction being a disjunction of conjunctions. The goal is
finding a satisfying assignment that minimizes the number of variables that are
assigned 1.

An example of an MMSA3 is ((x1 AND x3 AND x5) OR (x2 AND x3)) AND
((x2 AND x4 AND x5 AND x6) OR (x1)).

Given an instance of MMSA3, our reduction defines the following UIBFF. For
each variable x in conjunction c, which is, in turn, a part of disjunction d, define
edge ex,c,d of capacity 1. Define also a bad flow bx of value 1 and weight 1 that has
all the edges {ex,c,d|x appears in c, a part of d} on its path, and no others of the
above edges. The rest of the edges, if any, are arbitrary and unique for each bad
flow. For each conjunction c of variables, which is a part of disjunction d, define
a good flow gc,d that flows through the edges {ex,c,d|x appears in c, a part of d}
and perhaps arbitrary other edges of capacity 1 without any bad flows that pass
through them. For each disjunction d of conjunctions, let the respectively defined
1 In our case, these are the incidence vectors of the bad flows that, if filtered, would

allow assigning the good flows the maximum possible total value. Thus, we have
D ⊆ N

n.

Filtering Undesirable Flows in Networks 9

MMSA3

conjunction (AND)

disjunction (OR)

conjunction (AND)

variables x

UIBFF

bad flows bx

Edges of a good flow

A set of food flows intersecting at an edge

All the sets of intersecting good flows

Fig. 2. The approximation preserving reduction from MMSA3 to UIBFF.

good flows {gc,d|c appears in d} intersect at a single edge ed where no bad flows
pass. Let these be the only intersections of good flows among themselves. The
reduction is illustrated in Fig. 2.

First, since we define the BFF instance such that every good flow intersects
all the other good flows at a single edge, it is indeed a UIBFF. To prove validity
of the reduction, note that the MMSA3 instance is satisfied if and only if the
main conjunction holds, which holds if and only if at least one conjunction in
every disjunction holds. The last statement is equivalent to at least one good
flow in all the intersecting sets of good flows has all its edges free and can thus
be given the value of 1. Therefore, feasibility is transferred by the reduction.
Since the costs are equivalent as well, the reduction preserves approximation.

Since MMSA3 is not approximable within 2log1−1/ log logc(n)(n), for any c < 0.5,
as shown in [9], we infer that UIBFF is not approximable within the same ratio,
when n = |E|+ |GF |. This is because the size of the MMSA3 formula translates
to |E| + |GF |. �

We now prove that the decision version is indeed NP-complete. We first define
the decision version of BBFF.

Definition 7. The Decision-BBFF receives (x, l) in its input, where x is an
instance of BBFF and l is a natural number. The question is whether there
exists a feasible solution for BBFF with weight at most l.

We finally prove that

Theorem 3. Decision-BBFF is NP-complete, for any k ≥ 0.

Proof. First, we show that Decision-BBFF is in NP. Indeed, for a candidate
solution S, filter all the flows there and maximize the good ones in the remaining
network. The maximization can be done polynomially by solving the Linear
Program (LP):

max
∑

i∈GF

xi (1)

such that
∀e ∈ E :

∑

i∈GF :e∈P (i)

xi +
∑

b∈BF\S:e∈P (i)

v(b) ≤ c(e) (2)

∀i ∈ GF : xi ≥ 0 (3)

10 G. Polevoy et al.

Remark 1. This LP does not require an LP solver, since we assume that any
good flow has a bottleneck set of edges which always is the constraint to any
intersection. This property means that it is not important how the good flows
divide a common edge, since their sum will remain the same. Consequently, we
can effectively reduce the capacity taken by the bad flows in O(|BF | |E|) time,
storing the effective capacities for each edge, and subsequently maximize each
good flow one after another, by checking the bottlenecks of each good flow in
O(|E|) time and storing the effectively remaining capacities, amounting to the
total time of O((|GF | + |BF |) |E|) = O(|F | |E|).

By comparing the maximum of this LP with the maximum when all the bad
flows are filtered, i.e. when S = BF , we check whether S is feasible. If it is,
then it constitutes a certificate if and only if w(S) ≤ l. Therefore, the problem
belongs to NP.

To prove the NP-hardness, notice that our reduction from MMSA3 is also
a Karp reduction for the decision versions, and since Decision-MMSA3 is NP-
hard [9], so is Decision-BBFF. However, to claim the NP-hardness for any k ≥ 0,
we now present a reduction from the decision version of Set Cover (SC) [12]. Let
us remind the definition of SC.

Definition 8. SC receives as input a universe U , a collection of its subsets
{S1, S2, . . . , Sm}, such that ∪m

i=1Si = U and a natural number d. A solution
is a subset of {S1, S2, . . . , Sm}, while a solution C ⊂ {S1, S2, . . . , Sm} is called
feasible or a cover if ∪S∈CS = U . The question is whether there exists a cover
C such that |C| ≤ d.2

Our reduction takes an input of SC, which is U, S1, S2, . . . , Sm, d, and returns
the following instance of Decision-BBFF (even Decision-UIBFF). First, we define
a bad flow bi for each set Si, with v(bi) = 1. For each element x ∈ U , let gx be
a good flow with a path consisting of the two edges: e

(1)
x and e

(2)
x . We set the

c(e(1)
x) to be the number of sets Si that contain x and we set c(e(2)

x) = 1. For
every Si that contains x, let bi intersect gx at e

(1)
x . Besides these intersections,

no more flow intersections take place. The weight of every bi is defined to be 1.3

The parameter l of the constructed Decision-UIBFF instance is defined to be d.
The reduction is exemplified in Fig. 3.

We now prove that this reduction is valid. Indeed, for every element x ∈
U , any set cover includes at least one set that contains x, say Si and this is
transformed to filtering the corresponding bad flow bi. This allows the good
flow gx to increase till it uses up all the capacity it can, i.e. 1. Note, that if more
covering sets are selected as well, then the corresponding bad flows are filtered
as well, but the value of flow gx remains 1 because c(e(2)

x) = 1; one filtering is
enough to maximize v(gx), guaranteeing feasibility to Decision UIBFF.
2 We use the unweighted set cover, where each set has the same importance, because

it has the same hardness results as the weighted version.
3 Did we reduce the weighted SC, we would define it to be the weight of the respective

set.

Filtering Undesirable Flows in Networks 11

Set Cover UIBFF

S1

S2

x y

z

gx

gy

gz

b1

b2

Fig. 3. The Karp reduction from Decision-SC to Decision-UIBFF.

In the other direction, a feasible solution to Decision UIBFF maximizes
the sum of good flows. This requires filtering at least one bad flow from those
that intersect every gx, which means that a feasible solution to the constructed
instance of Decision-UIBFF is obtained from a set cover. This completes the
proof of the NP-hardness. �

4 Approximation

Consider the local ratio approximation Algorithm 1 for BBFF. We explain it
now in the terms of Sect. 2.1. Line 1 finds the maximum total good flow that
is available at the current invocation. The recursion basis appears at line 2 and
line 3 removes the zero weight bad flows. We abuse notation by writing w in
the recursive call, while we actually mean the restriction of w to BF \ BF0.
The central scene of the algorithm occurs at line 4. There, we pick a good flow
that would benefit from filtering bad flows at line 4a and construct the set of all
the bad flows we may need to filter at line 4b. This serves us to decompose the
weights at line 4c.

When choosing the flows in H at line 4a and 4b, we take the minimum
possible flow each time. The idea is to select all the possible good flows that can
increase, to cover all the possibilities, and a smaller flow has more chances to
increase.

We now prove that in polynomial time, this algorithm returns a feasible
solution approximating the optimum within b(k + 1). This means, for example,
that if any good flow intersects at most 1 another good flow (k = 1), and at most
one bad flow contains a given edge of a good flow (b = 1), then the algorithm
approximates the optimal solution within 1 · (1 + 1) = 2. And in case the good
flows do not intersect one another (k = 0), the algorithm is optimal.

Another interesting particular case is the result of the reduction of Set Cover
to BBFF from Theorem 3. In the outcome of the reduction, b is the maxi-
mum number of sets that can include a given element, and k = 0. Therefore,
Algorithm 1, acting like the Algorithm 15.2 from [20], approximates set cover
within the b(0 + 1) = b, which is the maximum number of sets that can include

12 G. Polevoy et al.

ALGORITHM 1: MinFilter(G = (N,E), c, F,GF,BF,w)

1. Solve LP Eq. (1)–Eq. (3) and let (xi)i∈GF be the obtained result (the current
maximum). Note that these flow values are not necessarily unique, since we can
sometimes change several intersecting good flows one on the other’s expense,
preserving the sum.

2. If no good flow in (xi)i∈GF can increase by filtering the bad flows that intersect
it (without changing other flows), return ∅.

3. Else, if there exist bad flows with zero weight BF0,
(a) S′ ← MinFilter (G = (N, E), c, F \ BF0, GF, BF \ BF0, w).
(b) Return S ← S′ ∪ BF0.

4. Else,
(a) Pick any g ∈ GF that can be increased (without changing other flows) if we

filter the bad flows that intersect it.
This should be done by taking the minimum v(g) that can be in a maximum
total good flow. (Maximize the good flows that intersect g on g’s expense.)

(b) Consider all the other good flows g1, g2, . . . , gp (by the definition of k, p ≤ k)
that intersect g and would grow after filtering some bad flows, if we take the
minimum possible v(gi) in a maximum total good flow. Let H be the set of

the considered good flows, i.e. H
Δ
= {g, g1, g2, . . . , gp} and let D(H) be the

set of their respective saturated edges, chosen one from a flow (may choose
the same saturated edge from several good flows, so |D(H)| ≤ |H|). Denote
all the bad flows that contain edge(s) from D(H) as B(D(H)).

(c) Let δ > 0 be the minimum total weight in B(D(H)),
i.e. minb∈B(D(H)) {w(b)}. Define the weight function on the bad flows:

w1
Δ
=

{
δ if b ∈ B(D(H)),

0 otherwise.

.
(d) Return MinFilter (G = (N, E), c, F, GF, BF, w − w1).

an element. Of course, the general BBFF is much harder than SC, being not eas-
ier than MMSA3, as we show in Theorem 2. Approximating the general BBFF
constitutes our main contribution.

First, we make a crucial observation, which guarantees that the algorithm
always finds a required good flow g. This property requires the restriction of
every good flow to have a bottleneck, introduced in Definition 2.

Observation 1. A solution for an BBFF instance is infeasible if and only if
in any maximal allocation of good flows for it there exists a good flow that can
increase if we filter some bad flows that intersect it, without changing other flows.

Proof. If a good flow can increase, the solution is infeasible by definition.
In the other direction, let S be an infeasible solution. This means that any

allocation of good flows can increase if we filter some more bad flows. The only
option where “no good flow exists that would increase if we filtered some bad

Filtering Undesirable Flows in Networks 13

flows that intersect it” needs good flows that can grow only at the expense of
other good flows, like, for example, in Fig. 4. However, since any good flow in
BBFF has a bottleneck, where all the intersecting good flows pass, (unlike shown
in Fig. 4), increasing good flows at the expense of others would never increase
the total good flow. �

g3
g1

b1
g2

b2

Fig. 4. Flow g1 can grow if we filter b1 and if g3 decreases. Since decreasing g3 can also
help increasing g2, if b2 is filtered, the total good flow will increase.

As in any correctness proof for a local ratio algorithm, we show that the
weight function w1 is fully b(k + 1)-effective, meaning that any feasible solution
S is a b(k + 1) approximation to the optimum.

Lemma 1. Let S be any feasible solution to the instance of the problem at some
invocation of Algorithm 1. Then, w1(S) ≤ b(k + 1) · w1(S∗), where S∗ is an
optimal solution at that invocation.

Proof. Any feasible solution will either allow g to grow by filtering at least one
bad flow that contains its chosen saturated edge, or it will allow at least one of
the good flows that intersect it to grow by filtering at least one of the bad flows
that contain their respectively chosen saturated edges. Therefore, with respect
to w1, any feasible solution will cost at least δ. On the other hand, any solution
costs at most b(k + 1) · δ. Therefore, any feasible solution costs at most b(k + 1)
times the minimum cost. �

We are finally set to prove the correctness and the approximation ratio of
the algorithm.

Theorem 4. Algorithm 1 always returns a feasible solution that approximates
the optimal solution within the ratio of b(k + 1).

Proof. We prove by induction on our recursive algorithm.
In the basis (line 2), the good flow is optimal and therefore, the empty set of

bad flows is feasible. Since the empty set weighs zero, it is also optimal.
At a non-final stage, we need to prove that line 3 and line 4 both return

feasible b(k + 1)-approximation. In the case of line 3, S′ is a feasible b(k + 1)-
approximation for the instance after removing BF0, by induction on the algo-
rithm. Now, a feasible solution for the instance after removing the flows in BF0

remains feasible w.r.t. the original instance if we add the removed flows to the

14 G. Polevoy et al.

solution. Second, the approximation ratio keeps holding, since the optimum stays
the same after this operation, and the solution cost remains the same as well.

Having said that, let us show that line 4 returns a feasible b(k + 1)-
approximation. First, the recursive invocation at line 4d returns a feasible solu-
tion and a b(k + 1)-approximation with respect to the weight function w − w1,
by the induction hypothesis; call this solution Ŝ. Set Ŝ is also a b(k + 1)-
approximation with respect to w1, by Lemma 1. The Local Ratio Theorem 1
implies that Ŝ is also a b(k + 1)-approximation with respect to the sum of the
weight functions, i.e. (w − w1) + w1 = w. This completes the proof. �

We finally remark that

Remark 2. The algorithm terminates in time O(|BF | (l(S) + |E| |GF | |F |)),
where l(S) is the time taken to solve the LP that corresponds to instance S.
As we explain in Remark 1, l(S) = O(|F | |E|), implying the total running time
of O(|E| |BF | |GF | |F |).
Proof. The algorithm performs O(|BF |) iterations, since at least one bad flow
gets filtered at each invocation of line 4.

At each invocation of line 3, we filter the zero-weight bad flows and then add
them back in |BF | time.

At each invocation of line 4, we solve the LP in l(S) time. Next, we go over
all the good flows, checking for each good flow g in O(|P (g)| |F |) = O(|E| |F |)
time whether filtering bad flows can help increasing this flow, by passing through
all the edges of the path of the flow and checking whether the good flows can
be increased if no bad ones existed. If yes, we construct the sets H and D(H)
in O(|E| |GF | |F |), construct B(D(H)) and define the weight function w1 in
O(|E| |BF |). This takes together O(|E| |GF | |F | + l(S)). Finally, we make the
recursive invocation.

Summing up the above time bounds and multiplying by |BF |, we obtain
O(|BF | (l(S) + |E| |GF | |F |)). �

Finally, we prove that the approximation ratio b(k + 1) is tight for our algo-
rithm, even on a UIBFF. To this end, we employ the following example, partially
inspired by Example 15.4 from [20].

Example 3. The general idea is to reduce Example 15.4 from [20] for Set Cover
by our reduction from Theorem 3 to UIBFF, while also translating the weights of
sets to be the weights of the corresponding bad flows. This would produce a tight
example, but the parameter k would be zero. To allow for any k, we consider
several instances of such an example and make them intersect in a specific way.

Concretely, consider the following UIBFF instance, depicted in Fig. 5. We
have the good flows g1, g2, . . . , gn+1, each gi with the path of two edges e

(1)
i

and e
(2)
i , where c(e(1)

i) = 2, for i = 1, . . . , n − 1, c(e(1)
n) = n, and c(e(1)

n+1) =
1. For all i = 1, . . . , n + 1, we have c(e(2)

i) = 1. We have the bad flows
b{1,n}, b{2,n}, . . . , b{n−1,n} with weight 1 each and the bad flow b{1,2,...,n+1} with
weight 1 + ε for a positive ε. Every bad flow has the value of 1. A bad flow bS

Filtering Undesirable Flows in Networks 15

intersects the good flows corresponding to the elements of S at their respective
first edges, and, for now, no more intersections exist.

Next, consider m + 1 copies of the constructed problem instance. Let the
distinct copies intersect only at the edges e

(2)
i , for i = 1, . . . , n + 1, where all the

copies intersect.
Algorithm 1 can choose at its first recursive invocation any good edge that

can increase from filtering the bad ones. Assume it chooses gn of one of the m
copies. The weights of each of the bad flows in all the copies decrease by 1 and
in the next invocation we remove all the bad edges from all the copies, besides
the bad edges b{1,2,...,n+1}. Their weights will now also go to zero and in the
following invocation the empty set becomes feasible. In the unwinding of the
recursion, we will add all the bad flows to the solution, accruing the total weight
of m + 1 times 1 + . . . + 1︸ ︷︷ ︸

n−1

+1 + ε = (m + 1)(n + ε). Now, the optimal solution is

just b{1,2,...,n+1} of one of the copies, because the intersections among the good
flows let only values 1 in every intersecting set. Therefore, the optimal weight is
1 + ε, and we can obtain an arbitrarily close to n(m + 1) ratio, for a sufficiently
small ε. This is exactly b(k + 1) = n(m + 1), demonstrating the tightness of
b(k + 1).

gn

g1 g2 gn−1

gn+1

b{1,n}

b{2,n}

b{n−1,n}

b{1,2,...,n,n+1}

Fig. 5. The relevant part of the network. The bad flows are denoted by b with an index,
while the good ones are denoted by g with an index. An optimal solution would be to
filter b{1,2,...,n+1}, while our algorithm filters everyone.

5 Conclusion

Aiming to optimally mitigate DoS or unintended congestion, we study the BBFF
problem of filtering the minimum number of undesirable (bad) flows so as to allow

16 G. Polevoy et al.

the desirable (good) flows to maximally utilize the network. We demonstrate that
this practical problem is also very interesting theoretically. First, we reduce the
MMSA3 to BBFF while preserving approximation, proving that approximating
within 2log1−1/ log logc(n)(n), for n = |edges in the network| + |desirable flows| and
any c < 0.5 is NP-hard. We then provide a local ratio approximation algorithm
for BBFF.

An interesting variation of the problem would be to assume that the flows are
always allocated by a given protocol, for example, by the max-min fairness algo-
rithm [6, Sect. 6.5.2]. This would render the problem of filtering non-monotonic
with respect to inclusion, which would make many approximation techniques
fail. Another point is that we are given a continuous ranking of the bad flows by
weight, but the distinction between the bad and the good is binary. Exploring
other rankings would allow modeling other congestion domains.

To summarize, we have modeled an important NP-complete problem, proven
it be not easier than MMSA3 and approximated it.

Acknowledgments. This research is funded by the Dutch Science Foundation project
SARNET (grant no: CYBSEC.14.003/618.001.016).

References

1. Agarwal, S., Kodialam, M.S., Lakshman, T.V.: Traffic engineering in software
defined networks. In: INFOCOM, pp. 2211–2219. IEEE (2013)

2. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engi-
neering in SDN-openflow networks. Comput. Netw. 71, 1–30 (2014)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Shieber, B.: A unified approach
to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090
(2001)

4. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. North-Holland Math. Stud. 109, 27–45 (1985)

5. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-
work for approximation algorithms. In memoriam: shimon even 1935–2004. ACM
Comput. Surv. 36(4), 422–463 (2004)

6. Bertsekas, D.P.: Gallager: Data Networks, 2nd edn. Prentice-Hall, Englewood Cliffs
(1992)

7. Bondy, J., Murty, U.: Graph Theory with Applications. North Holland, New York
(1976)

8. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. MIT Press, Cambridge (2009)

9. Dinur, I., Safra, S.: On the hardness of approximating label-cover. Inf. Process.
Lett. 89(5), 247–254 (2004)

10. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-
commodity flow problems. In: Proceedings of the 16th Annual Symposium on Foun-
dations of Computer Science (SFCS 1975), pp. 184–193. IEEE Computer Society,
Washington (1975)

11. Ferguson, P., Senie, D.: Network ingress filtering: defeating denial of service attacks
which employ IP source address spoofing (1998)

Filtering Undesirable Flows in Networks 17

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

13. Italiano, G.F.: Finding paths and deleting edges in directed acyclic graphs. Inf.
Process. Lett. 28(1), 5–11 (1988)

14. Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. J.
Algorithms 14(2), 214–225 (1993)

15. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston (2005)

16. Koning, R., de Graaff, B., de Laat, C., Meijer, R., Grosso, P.: Interactive analysis
of SDN-driven defence against distributed denial of service attacks. In: 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pp. 483–488, June 2016

17. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service: Attack
and Defense Mechanisms (Radia Perlman Computer Networking and Security).
Prentice Hall PTR, Upper Saddle River (2004)

18. Mirkovic, J., Reiher, P.: A taxonomy of DDOS attack and DDOS defense mecha-
nisms. SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

19. Rodrigue, J.P.: The Geography of Transport Systems, 4th edn. Routledge, New
York (2017)

20. Vazirani, V.: Approximation Algorithms. Springer (2001)
21. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings

of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978),
pp. 253–264. ACM, New York (1978)

22. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDOS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

A Framework for Overall Storage Overflow
Problem to Maximize the Lifetime in WSNs

Guoliang Song, Chen Zhang(B), Chuang Liu, and Yuna Chai

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
s guoliang@foxmail.com, chenzhanghit@outlook.com, chuangliuhit@gmail.com,

chaiyuna@outlook.com

Abstract. Storage overflow problem in wireless sensor networks is a new
and challenging issue, wherein data-collecting base station is not avail-
able while more data items are generated than available storage space
in the entire network. In this paper, we consider overall storage overflow
problem in WSNs, the goal of which is to maximize the minimum remain-
ing energy of data node (the node with overflow data) in order to prolong
the lifetime of the sensor network. For overall storage overflow problem,
we propose a two-step solution. A degree-constrained data aggregation
algorithm is presented, and then we further propose a data replication
algorithm which is a unified method, integrating data aggregation and
data redistribution. Extensive simulations show that our proposed algo-
rithms significantly outperform than existing algorithms especially in
extending the lifetime of the sensor network.

Keywords: Wireless sensor networks · Overall storage overflow · Data
aggregation · Data redistribution

1 Introduction

In recent years, wireless sensor networks (WSNs) have been widely used in vari-
ous fields. Many of them are deployed in remote area or challenging environments
to collect large volumes of data for a long period of time, such as ocean moni-
toring, volcano eruption monitoring and climate change. Due to the inaccessible
and hostile environments, it is not feasible to deploy long-term base station with
power outlets. Therefore, the generated data is first stored inside the sensor net-
work for a period of time, and then collected by periodic visit of the robots or
data mules. In the challenging environment, however, uploading opportunities
would be unpredictable and rare, a major problem is how to store the massive
amount of data inside the network comprising of nodes with limited storage space
and limited energy. In the sensor network, sensor nodes are randomly deployed
in the area and then each node collects data independently. When events of the
interest take place, sensor nodes close to them may collect data more frequently
than nodes far away, therefore these nodes may run out of their storage space
quickly than others. After a period of time, some nodes may deplete their storage
space and generate overflow data, while other nodes may have available storage
space. There are two level of data overflow in the sensor network.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 18–32, 2017.
https://doi.org/10.1007/978-3-319-71150-8_2

A Framework for Overall Storage Overflow Problem 19

1. Partial Storage Overflow: In this level of data overflow, some nodes (denoted
as data nodes) in the sensor network deplete their own storage space while
other nodes (denoted as storage nodes) still have available storage space.
And the total size of available storage space is greater than or equal to the
total size of overflow data. If uploading opportunities are not available, the
newly generated data at data node can not be stored, causing data loss. In
order to avoid data loss, data redistribution are proposed. The idea of data
redistribution is that redistributing overflow data from data node to storage
node, such that any data node does not have any overflow data.

2. Overall Storage Overflow: This is a more serious situation, where the total
size of overflow data exceeds the total size of available storage space in the
network. To overcome overall storage overflow problem, it needs two step:
data aggregation [1] and data redistribution. Data aggregation for overall
storage overflow problem is to reduce the size of overflow data, such that the
overflow data can fit into the available storage space. After data aggregation,
overall storage overflow problem becomes partial storage overflow problem
and it can be solved by data redistribution.

Therefore overall storage overflow problem is more serious and complicated
compared to partial storage overflow problem. In this paper, we focus on overall
storage overflow problem. For this problem, we consider different sensor nodes
may have different remaining energy, especially data node which usually has
low remaining energy as collecting massive data consumes a lot of energy. The
contributions of this paper are as follows:

1. We first study overall storage overflow problem in WSNs for maximizing the
minimum remaining energy of data node. To our best knowledge, the problem
has not been addressed by any of existing research.

2. We propose a data aggregation algorithm and a data replication algorithm.
Data replication algorithm is a unified method which integrate data aggrega-
tion and data redistribution.

3. Extensive experiments have been conducted to verify that our algorithm
achieves higher lifetime than existing approaches.

The rest of this paper is organized as follows. In Sect. 2, we present related
work. In Sect. 3, we introduce overall storage overflow problem. Sections 4 and 5,
we introduce data aggregation and unified method for overall storage overflow
problem respectively. And we also give its corresponding algorithms. In Sect. 6,
we compare the proposed algorithms with existing algorithms and discuss the
performance. Section 7 concludes the paper with future work.

2 Related Work

Storage overflow problem in wireless sensor network is relatively new research
topic. Tang et al. [1] study overall storage overflow problem in base station-
less sensor networks. They solve the problem by data aggregation and data

20 G. Song et al.

redistribution. And they address data aggregation for overall storage overflow
is equivalent to multiple traveling salesman walks problem (MTSW). Alhakami
et al. [2] proposed a unified method that is based upon data replication tech-
niques for overall storage overflow problem. Both above work assume that the
energy of each node is infinity, ignoring different nodes may have different
remaining energy.

Tang et al. [3] also study how to minimize the total energy consumption
in the process of data redistribution, and address it as a minimum cost flow
problem. Hou et al. [4] study how to maximize the minimum remaining energy
of the nodes after data preservation, such that the data can be preserved for
maximum amount of time. And Takahashi et al. [5] try to preserve the data
inside the network for maximum possible time, by distributing the data items
from low energy nodes to high energy nodes. Xue et al. [6] consider different data
may have different importance and priority, and study how to preserve data with
maximum priority. They address the core of the problem is a maximum weighted
flow problem and propose a time efficient heuristic algorithm. A network flow
perspective of data preservation problem in sensor networks is given in [7]. All
above work, however, do not address overall storage overflow problem and they
just try to redistribute overflow data as much as possible. In this paper, we con-
sider the different remaining energy of nodes, and try to maximize the minimum
remaining energy of data node in the process of data aggregation in order to
prolong the lifetime of the network.

There are active research that focused on data aggregation. Kuo et al. [8]
studies how to construct a data aggregation tree that minimizes the total energy
cost of data transmission, while Chen et al. [9] study the construction of a
data gathering tree to maximize the network lifetime. Yan et al. [10] and Lee
et al. [11] consider the aggregation delay in the process of data aggregation
and propose data aggregation scheduling scheme to minimize latency in duty-
cycled WSNs. Some other work use mobile base stations collect aggregated data
[12,13]. However data aggregation for overall storage overflow problem signifi-
cantly differs from above data aggregation. The above data aggregation in wire-
less sensor network is used to collect data items from different sensor nodes, in
order to reduce number of transmissions and energy consumption. Data aggre-
gation for overall storage overflow problem is to aggregate the overflow data, so
that the overflow data can be stored in the available storage space. In Sect. 3, we
introduce the process of data aggregation for overall storage overflow problem
in detail.

3 Overall Storage Overflow Problem

The wireless sensor network consists of many nodes, we denote the node with
overflow data as data node, and the node with available storage space as storage
node. To aggregate data, one or more data nodes (called initiators) send their
overflow data to other data nodes. When a data node (called an aggregator)
receives the data, it aggregates its own overflow data, then forwards the initia-
tors entire overflow data to another data node, which becomes an aggregators

A Framework for Overall Storage Overflow Problem 21

and aggregates its own overflow data, and so on so forth. This continues until
enough aggregators are visited such that the total size of overflow data is equals
to or is slightly less than total available storage in the network. Each aggregator
can aggregate its own overflow data only once. If an aggregator receives another
initiator’s overflow data, it just transfers it to other data node. And if a storage
node receives the initiator’s overflow data, it simply relays it. After the aggre-
gation, the initiators’ overflow data become zero, and the last aggregator has
both its own aggregated data and the entire overflow data from initiator. Some
data nodes which neither an initiator nor an aggregator are not involved in data
aggregation, they have original overflow data which is not aggregated.

Network Model. The sensor network can be modeled as an undirected graph
G = (V,E), where V = {1, 2, · · · , |V |} is set of |V | sensor nodes, and E is set of
|E| edges. Every sensor node can transmit and receive data, but its transmission
range is limited. ∀vi, vj ∈ V , there exists an edge (vi, vj) ∈ E in graph G if and
only if node vi and vj are in each other transmission range. Assume that each
node has same transmission range and there are p data nodes, denoted as vd.
Thus the number of storage nodes (denoted as vs) is |V | − p. We consider that
each data node has same size of overflow data and each storage node has same
available storage space. Let R denote the size of overflow data in bits at each
data node, and let m denote the available storage space in bits at each storage
node. For overall storage overflow problem, it satisfies the following equation.

p × R > (|V | − p) × m (1)

Feasible Overall Storage Overflow. In order to reduce the overflow data to
the size which can be stored by the available storage capacity, enough number
of aggregators should be visited. Let q denotes the number of aggregators, and
r represents the size of overflow data after data aggregation, which based on
a spatial correlation model [14], indicating that the size of redundant overflow
data between any two data nodes is R − r. The feasibility of data aggregation
can be derived in [1].

q = �p × R − (|V | − p) × m

R − r
� = �p × (R + m) − |V | × m

R − r
� (2)

There is at least one initiator, and the maximum number of aggregators is p−1.
Therefore, the valid range of p is

|V |m
m + R

< p ≤ �|V |m − R + r

m + r
� (3)

Example 1. Figure 1 is an example of overall storage overflow problem in a linear
sensor network with five nodes. Figure 1(a) is data aggregation step for overall
storage overflow problem. Node A, C and D are data nodes, while B and E are
storage nodes. Each data node has 2 units overflow data, and each storage node
has 2 units available storage space. There are total 6 units of overflow data while

22 G. Song et al.

Fig. 1. A sensor network with overall storage overflow problem. (a) Data aggregation
step. (b) Data redistribution step.

there are only 4 units of available storage space, causing overall storage overflow
problem. We assume that r = 1. The number of aggregators q is calculated as 2
by using Eq. 2. Therefore the number of initiator is one. One possible aggregation
walk is A, B, C, D and node A is the initiator. After data aggregation, the size
of overflow data at A, C and D are 0, 1 and 3 respectively.

After data aggregation, the next step is data redistribution. Data redistrib-
ution is to decide how to redistribute overflow data from data node to storage
node. This has been shown to be a minimum cost flow problem [3], which can be
solved efficiently. Figure 1(b) shows data redistribution step post data aggrega-
tion. After data aggregation, the total size of overflow data is equal to available
storage space. One possible data redistribution solution is redistributing C’s 1
unit of data to B, D’s 1 unit of data to B via C and D’s 2 units of data to E.
Finally, any data node does not have overflow data.

4 Data Aggregation for Overall Storage Overflow
Problem

4.1 Data Aggregation Formulation

In the sensor network, all sensor nodes have a limited energy source, typically
in the form of a battery. It is awkward and unreasonable to replace the energy
source of node. For data node, it costs more energy than storage node as it
collects and saves massive data items. The remaining energy of the data node
is generally lower than the residual energy of the storage nodes. It is therefore
significant to save the data node’s energy for prolonging the lifetime of network
(the time until the first node depletes its energy in the network).

Let VDN = {DN1,DN2, · · · ,DNp} denotes the set of data nodes and there
is a set of aggregation walks: W = {W1,W2, · · · ,Wa}, where each walk Wi(1 ≤
i ≤ a) start from a distinct initiator. Each node have its own energy Ei. Let E′

i

denote node’s residual energy after data aggregation. Then,

E′
i = Ei −

a∑

j=1

Ci,Wj
(4)

A Framework for Overall Storage Overflow Problem 23

where Ci,Wj
is the energy cost of node i in the aggregation walk Wj by trans-

mitting or receiving data items. If node i is not in the aggregation walk Wj ,
Ci,Wj

= 0. The objective of data aggregation is to find a set of aggregation walk
W = {W1,W2, · · · ,Wa}, such that the minimum energy among all data node
VDN is maximized post aggregation, while saving as much energy as possible.

max
W

min
1≤i≤p

E′
DNi

(5)

under the energy constraint that each node can not spend more energy than its
own energy, E′

i ≥ 0,∀i ∈ V .

4.2 Data Aggregation Algorithm

Since the main participant in the process of data aggregation is the data node,
we firstly transform the original sensor network G(V,E) into an aggregation
network G′(V ′, E′). In the aggregation network G′(V ′, E′), V ′ is set of p data
node in V . For any two data node vi, vj ∈ V ′, if there exists an edge (vi, vj) ∈ E,
we add the same edge in G′(V ′, E′) , thus (vi, vj) ∈ E′. Otherwise we find the
shortest paths between node vi and vj , and add a new edge in the aggregation
network. Its weight of the new added edge is the cost of the shortest path between
those two nodes. Therefore the aggregation network is a complete graph. In this
paper, we introduce a new variable to represent the weight of edge between data
nodes in the network.

Definition 1 (Quality of Edge). For any two data nodes, vi, vj ∈ V and

eij = (vi, vj) ∈ E, Q(eij) = d2
ij

Eij
, where dij is the distance between node vi and

vj, and Eij = min(Evi
, Evj

) is the minimum energy between node vi and vj.

The quality of edge is proportional to the square of the distance between
two data nodes in the edge. The idea behind the quality of the edge is that the
larger quality of the edge, the two node in this edge will have less energy or longer
distance, then less likely the edge will be selected as data aggregation path. We
use the quality represent the weight of edge to help us to select the aggregation
path. In the aggregation network, if two data nodes are not directly connected
in the original sensor network, the distance dij is the cost of the shortest path
between those two nodes, and Eij is the minimum energy of node in the found

Fig. 2. (a) Original sensor network G. (b) Aggregation network G′. (c) Aggregation
walk.

24 G. Song et al.

shortest path. Figure 2(a) shows the original wireless sensor network. Figure 2(b)
is the corresponding aggregation network G′. In the original grid sensor network
Fig. 2(a), we assume that the distance between any pair of connected nodes is 1
and the energy of every node is 2. The quality of edge is marked on every edge
in Fig. 2(b) according to Definition 1.

Algorithm 1. Degree-Constrained Data Aggregation Algorithm
Input: G(V, E) and the number of aggregators q
Output: The set of aggregation walks W and E′

minDN

Notations:
ei: the edge in the aggregation network graph;
ve′

i
: one node of the edge ei;

ve′′
i
: the other node of the edge ei;

rf(vi): the number of reference of the node vi;
Q(ei): the quality of the edge ei;
E′

minDN
: the minimum remaining energy of data node;

1: Transform G(V, E) into G′(V ′, E′);
2: Calculate the quality of each edge in G′(V ′, E′);
3: Sort edges’ quality in G′(V ′, E′), Q(e1) ≤ Q(e2) ≤ . . . ≤ Q(eN);
4: for 1 ≤ j ≤ |V ′| do
5: Initialize node rf(vj) = 2;
6: end for
7: W = φ, count = i = 1;
8: while count ≤ q do
9: if rf(ve′

i
> 0) and rf(ve′′

i
> 0) and (ei in W will not induce cycle) then

10: W = W ∪ {ei};
11: rf(ve′

i
) − −;

12: rf(ve′′
i
) − −;

13: count + +;
14: end if
15: i + +;
16: end while
17: for 1 ≤ j ≤ |W | do
18: Aggregate data along Wj from one end which has the smaller quality of edge;
19: end for
20: find the minimum remaining energy of data node E′

minDN
;

21: return W and E′
minDN

;

Degree-Constrained Data Aggregation Algorithm. Now we present an
approximation algorithm for data aggregation. It works as follows. Line 1 trans-
forms the original wireless sensor network graph into the aggregation network
graph. Line 2 calculates the quality of each edge in the aggregation network
according to definition 1. Line 3 sorts all the edges’ quality into nondecreasing
order. Lines 4–6 initialize the number of reference of each node to be 2. That is,
the degree of each node in the set of aggregation walks will not exceed 2. The
while loop in lines 8–16 check if each edge in W is cycleless and the number

A Framework for Overall Storage Overflow Problem 25

of reference of each node is greater than 0. If yes, add it into W . This contin-
ues until q edges are added into W . After that, it starts from one end which
has the smaller quality of edge and aggregate overflow data via visiting the rest
nodes. Figure 2(c) shows the aggregation walk which generated by the algorithm
corresponding to aggregation network graph Fig. 2(b).

Time Complexity. Due to space constraints, the analysis is omitted. The time
complexity of this algorithm is O(|V |3).

5 Integrating Data Aggregation and Data Redistribution

To overcome overall storage overflow problem in the sensor network, we have
a two-step solution. But this solution does not necessarily achieve good per-
formance. A unified method is proposed [2] which is based on data replication
techniques. Data replication technology for overall storage overflow problem is
that using storage node which is on the aggregation walk to replicate part or all
overflow data of initiator in the process of data aggregation. However the total
size of replicated data on any storage node along any aggregation walk cannot
exceed this node’s available storage space. As it does not consume extra energy,
it saves a lot of energy in the step of data redistribution.

Example 2. Figure 1 shows the example of two-step solution for overall storage
overflow problem. Considering that initial energy E of each node is 10, and
the energy cost is 1 by transmitting 1 data item. Thus, data aggregation and
redistribution cost is 6 and 5 respectively, and the residual energy of each node is
marked under the node in Fig. 1. The total energy cost of two-step solution is 11
and the minimum residual energy of data node is 6. Figure 3 illustrate the data
replication technology with the same sensor network which described in Fig. 1.
It shows that when initiator node A sends its 2 units of data passing storage
node B, it replicates 1 unit of the data (marked in parentheses) and stores at
B. Therefore, next in data redistribution step, node D only needs redistribute
2 units of data to node E. Finally the total energy cost is 9 which has an 18%
improvement compared to two-step solution, while the minimum residual energy
of data node is 7, having a 17% improvement.

Fig. 3. Data replication technology for same sensor network in Fig. 1.

26 G. Song et al.

Since our Degree-Constrained Data Aggregation Algorithm can find the set
of aggregation walks and data redistribution can be solved by minimum cost
flow algorithm, the challenges of data replication technology are how to select
initiator for each aggregation walk and how many units of data to replicate
at storage nodes which in the aggregation walk. In each aggregation walk, the
initiator has two choices. For example, in Fig. 3(a) the initiator can be node A or
node D which can lead to different energy consumption. Observing that the last
aggregator has more overflow data than other data nodes after data aggregation
and having more available storage nodes around the last aggregator would make
the data redistribution more energy-efficient. Therefore we select the node which
surrounded by less storage nodes as the initiator in each aggregation walk. For
the second challenge, we give below definition.

Definition 2 (Demand Number of Storage Node). For any storage node
u on any aggregation walk, let N(u) be all its one-hop neighbor nodes. For each
data node v ∈ N(u) ∩ VDN , let Du,v represent the distance between node u and
node v, and VSN = V − VDN denotes the set of storage nodes. The demand
number d(u) of storage node u, d(u) =

∑
v∈N(u)∩VDN

1
∑

q∈N(v)∩VSN

D2
u,v

D2
q,v

.

Noted that
∑

q∈N(v)∩VSN

D2
u,v

D2
q,v

> 0 since node v has at least one neighboring
storage node u. And if each node v just has one neighboring storage node u,
the value of d(u) is equal to the number of data nodes which surround node u.
The idea behind d(u) is that the less number of data nodes surrounding u and
the more number of storage nodes surrounding such data nodes with shorter
distance, the more unites of data items should be replicated at storage node u.
Next we give a data replication algorithm, it works as follows. In each aggregation
walk, the initiator sends all its overflow data to the next node along the walk. If
a data node receives the overflow data, it just aggregates its own data and then
sends the received data to the next node. For a storage node u receiving the
data, firstly it calculates its own demand number d(u). And then calculate the
amount of data to be replicated as min (z

d(u) , z, s), where z is the rest of overflow
data which has not been replicated and s represents the available storage space
of this node. Finally node u replicates the calculated units of data in its storage
space and relays the entire overflow data to the next node along the aggregation
walk. This continues until the last aggregator receives the overflow data. The last
aggregator aggregates its data and keeps the rest units (may be zero) of overflow
data which have not been replicated. Finally, the aggregated overflow data is
redistributed to storage node which has available storage space by minimum
cost flow algorithm [3].

Time Complexity. Due to space constraints, the analysis is omitted. The time
complexity of this algorithm is O(|V |2|E| log(|V |C)), where C = max{R+r,m}.

A Framework for Overall Storage Overflow Problem 27

Algorithm 2. Data Replication Algorithm
Input: The sensor network G, and the set of aggregation walk W
Output: Minimum remaining energy of data node E′′

minDN

Notations:
|Wi| : the number of nodes on the aggregation walk Wi;
mcfa : minimum cost flow algorithm;
Vj .space : available storage space of storage node Vj ;

1: a = |W |;
2: for 1 ≤ i ≤ a do
3: Let Vini and Vagg be the initiator and the last aggregator on the aggregation

walk Wi respectively;
4: Vini sends all its overflow data to the next node along Wi;
5: z = R, b = |Wi|;
6: for 2 ≤ j ≤ (b − 1) do
7: if (Vj ∈ Wi is data node) then
8: Vj aggregates its own data with overflow data of Vini;
9: else

10: s = Vj .space;
11: if (s > 0 and z > 0) then
12: Calculate d(Vj);
13: t = min (z

d(Vj)
, z, s);

14: Replicate t units of overflow data on Vj ;
15: z = z − t;
16: end if
17: end if
18: Vj sends the entire overflow data of Vini to the next node along Wi;
19: end for
20: Vagg aggregates its own data and keeps the rest z units of data of Vini;
21: end for
22: E′′

minDN
= mcfa(G);

23: return E′′
minDN

;

6 Performance Evaluation

This section presents the effectiveness of our proposed algorithms for overall
storage overflow problem. Extensive experiments were performed in Java. In
our experiment, we adopt first order radio model [15]. For node u send R-bit
data to its neighbor v over their distance d, the transmission energy cost at u
is Et(R, d) = Eelec × R + εamp × R × d2, and the receiving energy cost at v
is Er(R) = Eelec × R, where Eelec = 100 nJ/bit and εamp = 100 pJ/bit/m2. 50
and 100 sensor nodes are scattered randomly across a 1000 × 1000 m2 network,
in which no two nodes can be in the same location. The transmission range of
each node is 250 m. For data node, the initial energy is randomly around 600 J–
700 J, while the initial energy of each storage node is randomly around 900 J–
1000 J. Unless otherwise mentioned, the sensor network consists of 50 nodes,
and R = m = 1 MB. To eliminate the impact of randomness, each experiment
scenario is repeated 100 times.

28 G. Song et al.

6.1 Performance of Data Aggregation Algorithm

For data aggregation algorithm, we compare the performance of our Degree-
Constrained Data Aggregation algorithm (denoted as DCDA) with STF-Walk
[1] and LP-Walk [1] algorithm. STF-Walk algorithm is a (2 − 1

q)-approximation
data aggregation algorithm, while LP-Walk is a novel heuristic algorithm.

We compare DCDA algorithm with STF-Walk algorithm where considering
r/R = 0.5 and the whole valid range of p ∈ [26, 33]. Figure 4(a) shows the total
aggregation cost of STF-Walk and DCDA algorithms. With the increase of the
number of data nodes p, total aggregation costs of both STF-Walk and DCDA
increase. It’s obviously that the DCDA algorithm yields less cost than STF-Walk.
This is because STF-Walk algorithm visits some edges twice in the process of
data aggregation, while DCDA algorithm tries to visit some edges which has
smaller weight instead of edges’ second visiting. Figure 4(b) shows the minimum
remaining energy of data node after data aggregation corresponding to Fig. 4(a).
The minimum remaining energy of data node decrease with increase p in both
DCDA and STF-Walk algorithms. As DCDA algorithm considers different node
with different remaining energy and selects the data node with higher priority
which has higher remaining energy to participate in the process of data aggrega-
tion, the minimum remaining energy of data node in DCDA algorithm is always
higher than the remaining energy in STF-Walk algorithm. And the performance
difference between DCDA and STF-Walk algorithm gets bigger with the increase
of number of data nodes.

LP-Walk algorithm which is a novel heuristic algorithm outperforms STF-
Walk algorithm in total energy consumption. We adopt r/R = 0.3 and 0.7, for
r/R = 0.3, the valid range of p is from 26 to 37, while p ∈ [26, 29] for r/R = 0.7.
Figure 5(a) is the aggregation energy cost by varying r/R and p. And Fig. 5(b)
is corresponding the minimum remaining of data node after data aggregation. It
shows that for the same p, with the increase of r/R, the total aggregation cost
for both DCDA and LP-Walk algorithm increase and the minimum remaining
energy of data node post aggregation decrease. The reason is that less redundant

(a) Aggregation cost (b) Minimum remaining energy

Fig. 4. Comparing DCDA with STF-Walk by varying p where r/R = 0.5.

A Framework for Overall Storage Overflow Problem 29

(a) Aggregation cost (b) Minimum remaining energy

Fig. 5. Comparing DCDA with LP-Walk by varying p and r/R.

(a) r/R = 0.3 (b) r/R = 0.5

Fig. 6. Comparing DCDA with LP-Walk in minimum remaining energy of data node
by varying R where p = 30.

data between data nodes leads to more number of aggregator are visited, thus
increasing aggregation energy cost and reducing the minimum remaining energy
of data node. However DCDA algorithm outperforms LP-Walk algorithm in
both aggregation cost and minimum remaining energy of data node for the same
reason. In Fig. 6(a), p = 30 and r/R = 0.3, we vary R from 1 MB to 10 MB while
in Fig. 6(b) p = 30 and r/m = 0.5. It’s obviously that as the increase of the size
of overflow data, the minimum remaining energy of data node post aggregation
in both two algorithm decrease, and the minimum remaining energy in Fig. 6(b)
decrease faster than that in Fig. 6(a). This is because with the increase of r/R,
the more number of aggregators should be visited, it costs more energy for data
nodes. However the minimum remaining energy of data node in DCDA algorithm
is still higher than that in LP-Walk algorithm and the performance difference
get bigger with the increase of R. Therefore DCDA algorithm is more energy
efficient and can prolong the lifetime of the sensor network compared to LP-Walk
algorithm.

30 G. Song et al.

6.2 Performance of Data Replication Algorithm

In this experiment, two-step solution adopts our data aggregation algorithm
(DCDA) and minimum cost flow algorithm. We compare the performance of
data replication algorithm and two-step solution. In Fig. 7, r/R = 0.5, we vary
p from 26 to 33. Figure 7(a) shows data redistribution energy cost and Fig. 7(b)
presents minimum remaining energy of data node. It is obviously that replica-
tion algorithm performs better than two-step solution in both data redistrib-
ution energy cost and minimum remaining energy of data node. In Fig. 7(a),
data redistribution energy cost decrease with increase of data node p. This is
because with the increase of p, the more overflow data is aggregated and less
overflow data is redistributed. In general, the minimum remaining energy of data
node decrease with increase of data node. However, in some case, the minimum
remaining energy of data node increase with the increase of data node. It maybe
that algorithms find relatively short paths in the process of data aggregation
and redistribution, leading to less energy cost. Figure 8 investigates the effect

(a) Data redistribution energy cost (b) Minimum remaining energy

Fig. 7. Comparing data replication algorithm with two-step solution by varying p where
r/ R = 0.5.

(a) r/R = 0.3 (b) r/R = 0.7

Fig. 8. Comparing replication algorithm with two-step solution in minimum remaining
energy of data node by varying p where R/m = 5.

A Framework for Overall Storage Overflow Problem 31

(a) r/R = 0.3 (b) r/R = 0.7

Fig. 9. Comparing replication algorithm with two-step solution in minimum remaining
energy of data node by varying R where p = 28.

of R/m = 5 and m = 1 MB. Figure 8(a) shows the performance of data repli-
cation algorithm and two-step solution in minimum remaining energy of data
node where r/R = 0.3 while in Fig. 8(b) r/R = 0.7. It shows the same trend
as Fig. 7(b). For data replication algorithm, it replicates data items at storage
nodes, saving a lot of energy of sensor nodes during data redistribution. And it
still has advantage over two-step solution.

Figure 9 presents the effect of the size of overflow data where p = 28. We vary
R from 1 MB to 7 MB. With the increase of R, it becomes more challenging since
there are more overflow data. In Fig. 9(a), r/R = 0.3 while r/R = 0.7 in Fig. 8(b).
We observe that with the increase of R, the minimum remaining energy of data
node decrease linearly. And with the same R, the minimum remaining energy of
data node in r/R = 0.7 is lower than that in r/R = 0.3. This is because with the
increase of r/R, more aggregators are visited, it costs more energy. In Fig. 8(b),
the sensor network can not finish data aggregation and data redistribution work
as some data node delept their energy when R = 7 MB. However, data replication
algorithm outperforms than two-step solutioin. And the performance difference
gets larger with the increase of R. This again demonstrates the effectiveness of
replication algorithm.

7 Conclusions and Future Work

In this paper, we study overall storage overflow problem in wireless sensor net-
work, the goal of which is to maximize the minimum energy of data node. To
our best knowledge, the problem has not been addressed by any of existing
research. And we propose energy-efficient data aggregation and data replication
algorithms. Via extensive simulations, it shows that our algorithms can effec-
tively prolong the lifetime of sensor network compared with existing algorithms.
As for future work, we will consider that different data nodes may have different
size of overflow data. And in order to adapt to large scale sensor networks, we
will design distributed algorithms.

32 G. Song et al.

References

1. Tang, B., Ma, Y., Alhakami, B.: Dao: overcoming overall storage overflow in base
station-less sensor networks via energy efficient data aggregation. Technical report,
California State University Dominguez Hills

2. Alhakami, B., Tang, B., Han, J., Beheshti, M.: DAO-R: integrating data aggrega-
tion and offloading in sensor networks via data replication. In: 2015 IEEE Global
Communications Conference (GLOBECOM), pp. 1–7 (2015)

3. Tang, B., Jaggi, N., Wu, H., Kurkal, R.: Energy-efficient data redistribution in
sensor networks. ACM Trans. Sensor Netw. 9(2), 1–28 (2013)

4. Hou, X., Sumpter, Z., Burson, L., Xue, X.: Maximizing data preservation in inter-
mittently connected sensor networks. In: 2012 IEEE 9th International Conference
on Mobile Ad-Hoc and Sensor Systems (MASS), pp. 448–452 (2012)

5. Takahashi, M., Tang, B., Jaggi, N.: Energy-efficient data preservation in intermit-
tently connected sensor networks. In: 2011 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pp. 590–595 (2011)

6. Xue, X., Hou, X., Tang, B., Bagai, R.: Data preservation in intermittently con-
nected sensor networks with data priority. In: 2013 10th Annual IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), pp. 122–130 (2013)

7. Tang, B., Bagai, R., Nilofar, F., Yildirim, M.B.: A generalized data preservation
problem in sensor networks–a network flow perspective. In: International Confer-
ence on Ad-Hoc Networks and Wireless (ADHOC-NOW), pp. 275–289 (2014)

8. Kuo, T.W., Lin, K.C.J., Tsai, M.J.: On the construction of data aggregation
tree with minimum energy cost in wireless sensor networks: NP-completeness and
approximation algorithms. IEEE Trans. Comput. 65(10), 3109–3121 (2016)

9. Chen, Z., Yang, G., Chen, L., Xu, J.: Constructing maximum-lifetime data-
gathering tree in wsns based on compressed sensing. Int. J. Distrib. Sensor Netw.
12(5), 1–11 (2016)

10. Yan, X., Du, H., Ye, Q., Song, G.: Minimum-delay data aggregation schedule in
duty-cycled sensor networks. In: Yang, Q., Yu, W., Challal, Y. (eds.) WASA 2016.
LNCS, vol. 9798, pp. 305–317. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42836-9 28

11. Lee, T., Kim, D.S., Choo, H., Kim, M.: A delay-aware scheduling for data aggre-
gation in duty-cycled wireless sensor networks. In: 2013 IEEE 9th International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pp. 254–261 (2013)

12. Liu, C., Du, H., Ye, Q.: Sweep coverage with return time constraint. In: 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6 (2016)

13. Alia, O.M.: Dynamic relocation of mobile base station in wireless sensor networks
using a cluster-based harmony search algorithm. Inf. Sci. 385–386, 76–95 (2017)

14. Cristescu, R., Beferull-Lozano, B., Vetterli, M., Wattenhofer, R.: Network cor-
related data gathering with explicit communication: NP-completeness and algo-
rithms. IEEE/ACM Trans. Netw. 14(1), 41–54 (2006)

15. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: 33rd Annual Hawaii Inter-
national Conference on System Sciences (2000)

https://doi.org/10.1007/978-3-319-42836-9_28
https://doi.org/10.1007/978-3-319-42836-9_28

Floorplans with Columns

Katsuhisa Yamanaka1, Md. Saidur Rahman2, and Shin-Ichi Nakano3(B)

1 Iwate University, Morioka, Japan
2 Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

3 Gunma University, Kiryu, Japan
nakano@cs.gunma-u.ac.jp

Abstract. Given an axis-aligned rectangle R and a set P of n points
in the proper inside of R we wish to partition R into a set S of n + 1
rectangles so that each point in P is on the common boundary between
two rectangles in S. We call such a partition of R a feasible floorplan of R
with respect to P . Intuitively P is the locations of columns and a feasible
floorplan is a floorplan in which no column is in the proper inside of a
room, i.e., columns are allowed to be placed only on the partition walls
between rooms. In this paper we give an efficient algorithm to enumer-
ate all feasible floorplans of R with respect to P . The algorithm is based
on the reverse search method, and enumerates all feasible floorplans in
O(|SP |) time using O(n) space where SP is the set of the feasible floor-
plans of R with respect to P , while the known algorithms need either
O(n|SP |) time and O(n) space or O(log n|SP |) time and O(n3) space.

Keywords: Enumeration · Floorplan · Algorithm

1 Introduction

Given an axis-aligned rectangle R and a set P of n points in the proper inside of
R we wish to partite R into a set S of n+1 rectangles so that each point in P is
on the common boundary between two rectangles in S. We call such a partition
of R a feasible floorplan of R with respect to P . Figure 1(b) illustrates the 22
feasible floorplans of R with respect to the point set P in Fig. 1(a). For simplicity
we assume no two points have the same x-coordinate, and no two points have
the same y-coordinate. Intuitively P is the locations of columns and a feasible
floorplan is a floorplan in which no column is in the proper inside of a room, i.e.
columns are allowed to be placed only on the partition walls between rooms.

Ackerman et al. [ABP1,ABP2] gave an algorithm to enumerate all feasible
floorplans with respect to P . The algorithm is based on the reverse search method
[A1,AF1] and enumerates all feasible floorplans in either O(n|SP |) time using
O(n) space or O(log n|SP |) time using O(n3) space, where SP is the set of feasible
floorplans with respect to P .

In this paper we design a faster algorithm, which is also based on the reverse
search method. Our algorithm is simple and uses only O(n) space, and enu-
merates all feasible floorplans in (|SP |) time. Using a similar method we have
designed efficient enumeration algorithms [N1,N2,LN1].
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 33–40, 2017.
https://doi.org/10.1007/978-3-319-71150-8_3

34 K. Yamanaka et al.

(a)

(b)

Fig. 1. (a) An example of a rectangle R and a set P of three points in R, (b) all feasible
floorplans of R with respect to P .

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines a tree structure among the feasible floorplans. Section 4 gives
our enumeration algorithm. Finally Sect. 5 is a conclusion.

2 Preliminaries

In this section we give some definitions.
A floorplan is a partition of an axis-aligned rectangle R into a set S of rec-

tangles. In this paper we have typical assumption for floorplans that no four
rectangles in S share a common corner point in a floorplan. We call R the outer
rectangle and each rectangle in S a face. Given an axis-aligned rectangle R and
a set P of n points in R a feasible floorplan of R with respect to P is a partition
of R into a set S of n + 1 rectangles (or faces) so that each point in P is on
the common boundary between two rectangles (or faces) in S. We assume that
no two points have the same x-coordinate, and no two points have the same
y-coordinate. Then one can observe that every maximal line segment not on R
contains exactly one point in P in any feasible floorplan of R with respect to P .
Let SP be the set of all feasible floorplans with respect to P . For R and P in
Fig. 1(a) all feasible floorplans in SP is illustrated in Fig. 1(b).

Let Q be a feasible floorplan of R with respect to P . A maximal line segment
containing no end vertex of other line segment is called a basic line segment. Each
maximal line segment consists of one or more basic line segments. A maximal
vertical line segment contains a point p ∈ P is type(u, d) if it contains u end
points of maximal horizontal line segments above p and d end points of maximal
horizontal line segment below p. Thus a basic vertical line segment is type(0, 0).

3 Family Tree

In this section we define a tree structure among the feasible floorplans of R with
respect to P .

Floorplans with Columns 35

Let Qr be the feasible floorplan of R with respect to P such that every point
in P is on a horizontal line segment.

Given a feasible floorplans Q �= Qr of R with respect to P , we define the
parent feasible floorplan P (Q) of R with respect to P , as follows. Let s be the
leftmost maximal vertical line segment in Q except the left vertical line segment
of R, and p ∈ P be the point on s. We have the following two cases to consider.

Case 1 s is type(0, 0)

In this case we (1) remove s from Q and then (2) append a horizontal line
segment containing p as a basic horizontal line segment as illustrated in Fig. 2.
Intuitively this is a rotation of s.

Case 2 Otherwise

In this case we (1) remove s from Q, then (2) extend to left each maximal
horizontal line segment having left end on s so that it has the same number of
basic line segments as it was, then (3) extend to right each maximal horizontal
line segment having right end on s so that it has the same number of basic line
segments as it was, and finally (4) append a horizontal line segment containing
p as a basic horizontal line segment. Intuitively this is a rotation of s after
shrinking. See Fig. 3.

Note that the number of maximal vertical line segments of P (Q) is decreased
by one from the one of Q, and the rotated line segment is always basic in P (Q).
We have defined P (Q) for each feasible floorplan Q except Qr. We say P (Q) is
the parent of Q and Q is a child of P (Q).

Q

ps

P(Q)

p

s

Fig. 2. The parent floorplan P (Q) of Q in Case 1.

Given a feasible floorplan Q in SP , by repeatedly computing its parent, we
can have the unique sequence Q, P (Q), P (P (Q)), · · · of feasible floorplans with
respect to P which eventually ends with Qr. See an example of such sequence
in Fig. 4. We call the sequence the removing sequence of Q.

By merging those sequences we define the family tree TP of SP such that
the vertices of TP correspond to feasible floorplans of R with respect to P , and
each edge corresponds to each relation between some Q and P (Q). See Fig. 5.
Note that each vertex of depth i in TP corresponds to a feasible floorplan with i

36 K. Yamanaka et al.

Q P(Q)

sp
s

p

Fig. 3. The parent floorplan P (Q) of Q in Case 2.

QP(Q)P(P(Q))P(P(P(Q)))

Fig. 4. The removing sequence.

vertical line segments except the two vertical line segments on R, and the height
of the family tree is n.

4 Algorithm

In this section we design an algorithm to enumerate all feasible floorplans of R
with respect to P .

If we have an algorithm to compute all child floorplans of a given feasible
floorplan of R with respect to P , then by recursively executing the algorithm
from Qr, we can compute all feasible floorplans of R with respect to P . We are
now going to design such an algorithm.

Let s′ be the leftmost vertical line segment in Q except the left vertical line
segment of R, and p′ ∈ P be the point on s′. (Thus if Q = Qr then s′ is the
right vertical line segment of R, and we regard any point on s as p′.) One can
observe that each child floorplan of Q is one of the following two types. Let s be
a basic horizontal line segment containing a point p ∈ P locating left of p′.

Type 1: C(s, 0, 0)

C(s, 0, 0) is the floorplan constructed from Q by (1) removing s from Q then
(2) appending a vertical line segment containing p as a basic line segment.

Note that C(s, 0, 0) is also a feasible floorplan with respect to P . Intuitively
this is the child floorplan derived from Q by rotation of s.

Floorplans with Columns 37

Fig. 5. The family tree.

Type 2: C(s, u, d)

Let u′ be the number of maximal horizontal line segments above p and d′

the number of maximal horizontal line segments below p in Q. For example for
the floorplan in Fig. 6, u′ = 3 and d′ = 2. For two integers u < u′ and d < d′,
C(s, u, d) is the floorplan constructed from Q by (1) removing s from Q then
(2) appending a vertical line segment s′ containing p as a basic line segment
then (3) extending s′ upward and downward so that it becomes type(u, d) then
(4) shrinking each maximal horizontal line segment intersecting s′ so that it has
an end point on s′. See examples in Fig. 6. Intuitively this is the child floorplan
derived from Q by rotation then extension of s.

Lemma 1. C(s, u, d) is a child of Q if and only if every shrinked horizontal line
segment having a point of P on the left of p consists of exactly one basic line
segment in Q. (We do not care each shrinked horizontal line segment having a
point of P on the right of p.)

Proof (sketch). Assume that some shrinked horizontal line segment has a point
of P on the left of p but consists of two or more basic line segments in Q. For
example see Fig. 7. The horizontal line segment t just above p has a point of P
on the left of p but consists of three basic line segments in Q. We need to shrink
t in C(s, 1, 0). For any suitable definition of C(s, 1, 0) each basic line segments of
t except the leftmost one cannot exists in C(s, 1, 0) (as depicted as dashed line
segments) since we have cut t at s. Thus P (C(s, 1, 0)) is not Q and C(s, 1, 0) is
not a child of Q. ��

Note that if s is a basic horizontal line segment containing a point in P
locating right of p′ then resulting floorplan C(s, u, d) is not a child of Q, since
the leftmost vertical line segment of the resulting floorplan is s′ not s. Thus we
do not need check C(s, u, d) with such s.

Based on the above observation we can enumerate all child floorplan of
given Q.

38 K. Yamanaka et al.

p s

Q

p

C(s,0,0) C(s,1,0) C(s,2,0)

p

C(s,0,1) C(s,1,1) C(s,2,1)

p

p p p

Fig. 6. The children.

p s

t t s’

Q

p

C(s,1,0)

p

P(C(s,1,0))

Fig. 7. C(s, 1, 0) is not a child of Q.

We now explain data structures required for our algorithm above. We regard
each corner of a rectangle as a vertex and each basic line segment as an edge
and a floorplan as a graph. We store and maintain the current floorplan using
some standard data structure for plane graphs during the execution of our enu-
meration algorithm. This part needs O(n) space. We can efficiently trace the
basic segments on the boundary of each face. Also given a vertex and a direction
(up/down/left/right) we can find the neighbour vertex in constant time.

We also maintain the list of the basic horizontal line segments located left of
the leftmost vertical line segment. We assume the basic horizontal line segments
are sorted in the list by the x-coordinates of the points in P on the basic hori-
zontal line segments. For Qr such list can be constructed in O(n log n) time. For
any feasible floorplan with respect to P the list is a prefix of the list of Qr. Thus
we need O(n) space for the list and can update it efficiently.

For each recursive call we need a constant amount of memory and the depth
of the call is at most n so this part needs O(n) space in total. Thus we need
O(n) space in total.

We have the following lemma.

Floorplans with Columns 39

Lemma 2. Given a child floorplan C(s, u, d) of Q one can check if C(s, u+1, d)
is a child floorplan of Q or not, and if it is a child floorplan of Q one can generate
C(s, u + 1, d) in constant time.

Proof. Let t be the maximal horizontal line segment containing the upper end
point of s in C(s, u, d). Now t consists of two or more basic line segments in
C(s, u, d). We have the following three cases.

If t has a point in P on the left of s and t consists of exactly two basic
line segments in C(s, u, d), then removing the right basic line segment of t from
C(s, u, d) then extending s upward so that it has one more basic line segment
results in C(s, u+ 1, d) and it is a child of Q. The number of different segments
between them is clearly a constant.

If t has a point in P on the left of s and t consists of three or more basic line
segments in C(s, u, d), then C(s, u + 1, d) is not a child of Q, as explained just
after the definition of Type(s, u, d).

If t has a point in P on the right of s then removing the leftmost basic line
segment of t from C(s, u, d) then extending s upward so that it has one more
basic line segment results in C(s, u+ 1, d) and it is a child of Q. The number of
different segments between them is also a constant.

Thus in constant time we can check if C(s, u + 1, d) is a child of Q or not,
and if it is a child one can generate C(s, u + 1, d) from C(s, u, d). ��

Intuitively we can generate C(s, u+ 1, d) from C(s, u, d) by removing a suit-
able basic horizontal line segment having an end point at the upper end point of
s then appending the basic vertical line segment having lower end point at the
upper end point of s. See Fig. 6.

Similarly given C(s, u, d) one can check if C(s, u, d+1) is a child or not, and
if it is a child one can generate C(s, u, d + 1) from C(s, u, d) in constant time.
Thus we have the following lemma.

Lemma 3. One can enumerate all child floorplans of a given feasible floorplan
Q with respect to P in O(k) time, where k is the number of child floorplans of Q.

Since we need O(k) time for each vertex of the family tree, where k is the
number of children of the floorplan corresponding to the vertex, the algorithm
above runs in O(|SP |) time, where SP is the set of feasible floorplans with respect
to P .

We have the following theorem.

Theorem 1. After O(n log n) time preprocessing one can enumerate all feasible
floorplans with respect to P in O(|SP |) time and O(n) space.

5 Conclusion

In this paper we have designed a simple and efficient algorithm to enumerate
all feasible floorplans with respect to a given set P of points. Our algorithm
enumerate all such floorplans in O(|SP |) time and O(n) space after O(n log n)

40 K. Yamanaka et al.

time preprocessing, where SP is the set of floorplans with respect to P , and
|P | = n.

Can we enumerate all feasible floorplans with respect to P when some walls
are fixed? Can we enumerate all feasible floorplans with respect to P when some
rooms are fixed? Can we enumerate all feasible floorplans with respect to P so
that each room has at least one window, which means each room must share
some part of the boundary of R?

Acknowledgment. This work is partially supported by JSPS KAKENHI Grant
Number JP16K00002 and JP17K00003.

References

[ABP1] Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations.
In: Proceedings of SODA, pp. 729–738 (2004)

[ABP2] Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations
of a planar point set. J. Comb. Theor. Ser. A 113, 1072–1091 (2006)

[A1] Avis, D.: Generating rooted triangulations without repetitions. Algorithmica
16, 618–632 (1996)

[AF1] Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math.
65, 21–46 (1996)

[N1] Nakano, S.: Enumerating floorplans with n rooms. In: Eades, P., Takaoka,
T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 107–115. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45678-3 10

[N2] Nakano, S.: Efficient generation of plane trees. Inf. Process. Lett. 84, 167–172
(2002)

[LN1] Li, Z., Nakano, S.: Efficient generation of plane triangulations without repe-
titions. In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 433–443. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-48224-5 36

https://doi.org/10.1007/3-540-45678-3_10
https://doi.org/10.1007/3-540-48224-5_36
https://doi.org/10.1007/3-540-48224-5_36

A Parallel Construction of Vertex-Disjoint
Spanning Trees with Optimal Heights in Star

Networks

Shih-Shun Kao1, Jou-Ming Chang1(B), Kung-Jui Pai2, Jinn-Shyong Yang3,
Shyue-Ming Tang4, and Ro-Yu Wu5

1 Institute of Information and Decision Sciences,
National Taipei University of Business, Taipei, Taiwan

spade@ntub.edu.tw
2 Department of Industrial Engineering and Management,

Ming Chi University of Technology, New Taipei City, Taiwan
3 Department of Information Management,

National Taipei University of Business, Taipei, Taiwan
4 Department of Psychology and Social Work,
National Defense University, Taipei, Taiwan

5 Department of Industrial Management, Lunghwa University of Science
and Technology, Taoyuan, Taiwan

Abstract. Constructing vertex-disjoint spanning trees (VDSTs for
short) of a given network is an important issue in the research of net-
work fault-tolerance and security. The star network was proposed as an
attractive interconnection network model for competing with n-cube.
Accordingly, Rescigno in [Inform. Sci. 137 (2001) 259–276] proposed an
algorithm to construct n − 1 VDSTs rooted at a common node in an
n-dimensional star network Sn. In this paper, we point out that there
exists a flaw in Rescigno’s algorithm, and thus the spanning trees con-
structed by this algorithm may not be vertex-disjoint. As a result, a
correct scheme of constructing n − 1 VDSTs on Sn is presented. More-
over, based on the reversing rule of building certain paths of VDSTs
in the amendatory scheme, we propose a new algorithm to construct
n − 1 VDSTs with optimal heights on Sn. In particular, the proposed
algorithm is more efficient and can easily be implemented in parallel.

Keywords: Vertex-disjoint spanning trees · Interconnection networks ·
Star networks · Fault-tolerance · Network security

1 Introduction

As usual, the underlying topology of an interconnection network is modeled as a
graph G, where the vertex set V (G) represents the set of processing elements and
the edge set E(G) represents the set of connection links between processing ele-
ments. In this paper, for convenience, the terms “networks” and “graphs”, “nodes”
and “vertices”, “links” and “edges” are often used interchangeably. An algorithm
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 41–55, 2017.
https://doi.org/10.1007/978-3-319-71150-8_4

42 S.-S. Kao et al.

developed for an interconnection network is said to be fully parallelized if it could
make use of all nodes of the network as processors for computation [6,20].

Two paths in a graph G are said to be vertex-disjoint (resp., edge-disjoint) if
they have no common vertices except for the two extreme vertices (resp., if they
have no common edges). A set of spanning trees of G are vertex-disjoint (resp.,
edge-disjoint) if they are rooted at the same vertex r such that, for any pair of
them and for each vertex v(�= r) in G, the two different paths from v to r, one
path in each tree, are vertex-disjoint (resp., edge-disjoint). Hereafter, vertex-
disjoint and edge-disjoint spanning trees are referred as VDSTs and EDSTs
for short, respectively. Constructing multiple spanning trees in interconnection
networks has many practical applications such as fault-tolerant broadcasting and
secure message distribution [5,13,15,17].

The star network, proposed by Akers and Krishnamurty [1], is one of the
most popular architectures for interconnecting a large number of nodes in a
parallel computing system. One advantage of the star network is that it is able
to accommodate more nodes with less connection links and less communication
delay than the hypercube, and thus is a viable alternative to the hypercube [2,8].
In addition, the star network enjoys a number of properties desirable in intercon-
nection networks. The illustrious features of the star network include low degree
of nodes, small diameter, vertex- and edge-symmetry, recursive decomposition,
maximal fault-tolerance, and strong resilience. For more topological properties
of star networks, we suggest readers to refer [1,14,16].

Based on these good features, many algorithms for solving diverse prob-
lems on star networks have been developed (e.g., see [3,4,9,10]). In particular,
the construction of multiple spanning trees on star networks has been studied
in several papers. For example, Fragopoulou and Akl [10] first considered some
fundamental communication problems on star networks, and showed that a com-
mon approach to implement algorithms for solving these problems is to design
communication protocols based on spanning trees with some special properties of
the networks. At a later time, for the n-dimensional star graph Sn, Fragopoulou
and Akl [11] proposed an algorithm to construct n − 1 EDSTs of Sn, and Bao
et al. [5] proposed an algorithm to construct n − 2 VDSTs of Sn. Shortly after,
an improvement of n − 1 VDSTs rooted at arbitrary node was provided by
Rescigno [15]. Although this result is optimal in the sense that the number of
VDSTs is maximized (i.e., the number of VDSTs has reached to the vertex-
connectivity of Sn which is an upper bound), it is highly regrettable that we
recently found a flaw in Rescigno’s algorithm, and thus the proposed algorithm
needs to be repaired.

In this paper, we revisit the problem of constructing VDSTs on Sn. For
Rescigno’s algorithm, we provide an amendatory scheme to recover the fault.
In addition, based on the reversing rule of building certain paths of VDSTs in
the amendatory scheme, we propose a new algorithm for constructing VDSTs
on Sn. In particular, our approach can be fully parallelized such that each node
can determine its parent in every spanning tree directly by only referring its
own label and the index of a tree. Consequently, the proposed algorithm for

A Parallel Construction of VDSTs in Star Networks 43

constructing n − 1 VDSTs on Sn can be run in O(n) time using n! nodes of Sn

as processors.
The remaining sections are organized as follows. Section 2 formally gives the

definition of Sn and introduces a particular shortest path routing scheme of
Sn. Section 3 presents Rescigno’s algorithm for constructing VDSTs of Sn, and
points out the existence of a critical flaw in this algorithm. Section 4 provides
our amendatory scheme and shows its correctness. Section 5 proposes a newly
parallel algorithm to construct n − 1 VDSTs of Sn. The final section contains
our concluding remarks.

2 The Star Graphs

Let Σn be the set of all permutations of symbols {1, 2, . . . , n}. For a node x =
x1 · · · xn ∈ Σn and i ∈ {2, . . . , n}, we denote x〈i〉 = xi · · · x1 · · · xn as the element
of Σn obtained from x by swapping the first symbol with the ith symbol. The
n-star graph, denoted by Sn, has the vertex set V (Sn) = Σn and edge set
E(Sn) = {(x,x〈i〉) : x ∈ Σn, 2 � i � n}. Note that Sn is a Cayley graph with
n! nodes, is both vertex- and edge-symmetric, and is regular of degree n − 1.
Moreover, it has connectivity κ(Sn) = n−1 and diameter D(Sn) = �3(n−1)/2�
(see [1,2]). For k, p ∈ {1, . . . , n}, we denote by C k

p the subgraph of Sn induced
by the vertices having symbol k in position p. Clearly, C k

p is isomorphic to Sn−1

if p �= 1, and is a set of isolated vertices of Sn otherwise.
A permutation x ∈ Σn can be expressed by the representation of cyclic

decomposition, i.e., the product of c(x) disjoint cycles K1,K2, . . . ,Kc(x) and
ψ(x) invariances, where a cycle Ki = (k1, . . . , k�) contains � � 2 distinct symbols
such that the desired symbol of x at position kj , 1 � j � �, is that occupied by
the next symbol kj+1 (where the index j + 1 takes modulo �), and an invariance
is a symbol xj such that xj = j. In particular, all cycles K1,K2, . . . ,Kc(x)

are chosen in lexicographic order. Also, let Ψ(x) = {j : xj = j} be the set of
invariances of x. Hence, K1 always contains the symbol 1 if 1 /∈ Ψ(x). In [15], a
cycle Ki is called the good cycle of x provided i is the smallest index such that
Ki does not contain the symbol 1.

Let 1 = 1 · · · n be the identity permutation. For any vertices x,y ∈ V (Sn),
we use P [x,y] to denote a path joining x and y. Due to the vertex-symmetry
of Sn, all paths from x to y are one-to-one correspondence with the paths from
the vertex xy−1 to 1 by multiplying each vertex in the latter path with the
specific permutation y. Hence, Day and Tripathi [8] gave the following lemma
to characterize shortest paths between pair of vertices in Sn.

Lemma 1 (See [8]). A path P [x0,1] = (x0,x1, . . . ,xh−1,xh = 1) joining ver-
tices x0(�= 1) and 1 is a shortest path in Sn if and only if, for i = 0, . . . , h−1, the
vertex xi+1 is obtained from xi by swapping symbols xi

1 and xi
s (i.e., xi+1

1 = xi
s

and xi+1
s = xi

1) such that s fulfills the condition: if xi
1 = 1, then s is any position

with xi
s �= s; otherwise, either s = xi

1 or s is any position belonging to a cycle of
xi such that the cycle does not contain the symbol 1.

44 S.-S. Kao et al.

From Lemma 1, Rescigno in [15] adopted a particular shortest path called
the basic path, hereafter denoted by P̂ [x0,1], which is defined as follows.

Definition 1 (See [15]). A path P̂ [x0,1] = (x0,x1, . . . ,xh−1,xh = 1) is called
the basic path from the vertex x0(�= 1) to 1 if, for i = 0, . . . , h − 1, the vertex
xi+1 is obtained from xi by swapping symbols xi

1 and xi
s such that s fulfills the

condition: if xi
1 �= 1 and c(xi) = 1, then s = xi

1; otherwise, s is the smallest
position of the good cycle of xi.

By Definition 1, it is easy to see that any subpath (xi,xi+1, . . . ,xh−1,xh)
with i � 1 is still a basic path from xi to 1. Moreover, if x0 ∈ C 1

r and r �= 1, it
implies that xi ∈ C 1

r for all i ∈ {1, . . . , h − 1}.

3 Rescigno’s Algorithm for Constructing VDSTs of Sn

In this section, we will introduce Rescigno’s algorithm for constructing VDSTs of
Sn. As the vertex-symmetry of Sn, without loss of generality, all spanning trees
of Sn constructed by Rescigno are considered to be rooted at the vertex 1, and
assume that T2, . . . , Tn are such spanning trees in which the common root 1 of
each spanning tree Ti for i ∈ {2, . . . , n} has a unique child 1〈i〉. For convenience,
a structure that contains all spanning tree by identifying the common root is
called the multiple spanning tree rooted at 1 in [15]. Throughout this paper, we
also use the following notation. The length of a path P , denoted by len(P), is
the number of edges passing through P . The distance between two vertices x
and y, denoted by d(x,y), is the length of a shortest path from x to y. Let P ⊕Q
denote the concatenation of two paths P and Q. The parent of a node u(�= 1)
in Ti is denoted by par(u, i).

For a vertex u(= u1 · · · un) ∈ V (C 1
r) where r ∈ {2, . . . , n}, let t be the index

such that ut = r. Clearly, t �= r. Also, let f be the smallest symbol in K2

if c(u) � 2, and f = u1 otherwise. According to Rescigno’s algorithm, a set
of n − 1 paths, denoted by I2(u), . . . , In(u), from u to a vertex of V (C 1

1) are
described as follows. For j ∈ {2, . . . , n}, define

Ij(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u,u〈j〉) ⊕ P̂ [u〈j〉,1] if j = f,

(u,u〈j〉) if j = r,

(u,u〈j〉,u〈j〉〈f〉,u〈j〉〈f〉〈r〉) if j = t,

(u,u〈j〉,u〈j〉〈r〉) if j �= r, f, t.

(1)

Note that If (u) matches the basic path defined in Definition 1. Thus,
len(Ij(u)) = d(u,1) if j = f ; and len(Ij(u)) � 3 otherwise. Also, a func-
tion that assigns an index to each path for constructing spanning trees is given
as follows:

sp(Ij(u)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r if j = f,

uf if (j = r = u1) or (j = t and u1 �= r),
u1 if j = r �= u1,

uj otherwise.

(2)

A Parallel Construction of VDSTs in Star Networks 45

Note that, in Eq. (2), if u1 = r then K1 = (1, r), otherwise, |K1| � 3. Moreover,
for j, j′ ∈ {2, . . . , n}, sp(Ij(u)) �= sp(Ij′(u)) if and only if j �= j′. To construct Ti

for i = 2, . . . , n, the algorithm proposed in [15] builds a multiple spanning tree
rooted at 1 that takes 1〈i〉 as child as follows.

Algorithm 1. Rescigno’s algorithm
1. Build a spanning tree of C 1

i rooted at 1〈i〉 in the following way and
denote it by T 1

i :
for each vertex u(= u1 · · · un) ∈ V (C 1

i) \ {1〈i〉} do
Let par(u, i) = u〈s〉 such that
if c(u) = 1 then s is the position for which u1 = s;
if c(u) � 2 then s is the smallest position of the good cycle of u;

2. Add vertices V (C 1
1) \ {1} to T 1

i and denote the resulting tree by T 1
i,1 as

follows:
for each vertex u(= 1u2 · · · un) ∈ V (C 1

1) \ {1} do
Let par(u, i) = u〈i〉;

3. Complete Ti by adding to T 1
i,1 the vertices V (C 1

r) for r ∈ {2, . . . , n} \ {i}
as follows:

for each vertex u ∈ V (C 1
r) do

Construct n − 1 vertex-disjoint paths I2(u), . . . , In(u) defined by
Eq. (1);

Compute sp(Ij(u)) for each j ∈ {2, . . . , n} defined by Eq. (2);

for each vertex u ∈ V (C 1
r) with r ∈ {2, . . . , n} \ {i} do

Let par(u, i) be the successor of u on the path Ij(u) where
i = sp(Ij(u));

For example, a multiple spanning tree of S4 rooted at 1(= 1234) that contains
T2, T3 and T4 is presented in [15]. Here, we reproduce the multiple spanning tree
as shown in Fig. 1 to illustrate some faults occurred in [15]. In this figure, solid,
dashed and bold lines represent edges produced by Step 1, 2 and 3, respectively.
In particular, we note that a path with edges of solid lines is a basic path (see
Definition 1). We first consider the vertex u = 3142 ∈ V (C 1

2). Clearly, r = 2,
t = 4 and f = u1 = 3. By Eq. (1), we have

I2(u) = (u,u〈2〉) = (3142, 1342),
I3(u) = (u,u〈3〉) ⊕ P̂ [u〈3〉,1] = (3142, 4132, 2134, 1234), and
I4(u) = (u,u〈4〉,u〈4〉〈3〉,u〈4〉〈3〉〈2〉) = (3142, 2143, 4123, 1423).

Moreover, by Eq. (2), we obtain sp(I2(u)) = u1 = 3, sp(I3(u)) = r = 2, and
sp(I4(u)) = u3 = 4. Thus, the paths I2(u), I3(u) and I4(u) are contained in
spanning trees T3, T2 and T4, respectively.

Next, we consider the vertex u = 2143 ∈ V (C 1
2). In this case, r = 2, t = 1

and f = 3 (i.e., the smallest symbol of K2). By Eq. (1), we have

46 S.-S. Kao et al.

1234

2134

3124 4132

4123 1324 3142 1432

2143 1423 2314 1342 2431

1243 2413

4213 3412

4312

3214 2341

3241 4321

3421

4231

3214

2314 4213

4312 1324 2413 1243

3412 1342 4321 3124

1432 3142 2341 2134

4132 2143

4123

1423

3421

2431

3241

4231

4231

2431 3241

3421 1432 2341 1243

4321 1423 3412 4132 1342 4213

1324 4123 2413 2134 4312 3214

3124 2143

3142

2314

T2 T3 T4

Fig. 1. A multiple spanning tree of S4 constructed by Rescigno’s algorithm. (See Exam-
ple 3 of [15])

I2(u) = (u,u〈2〉) = (2143, 1243),
I3(u) = (u,u〈3〉) ⊕ P̂ [u〈3〉,1] = (2143, 4123, 3124, 2134, 1234), and
I4(u) = (u,u〈4〉,u〈4〉〈2〉) = (2143, 3142, 1342).

Again, by Eq. (2), we obtain sp(I2(u)) = u3 = 4, sp(I3(u)) = r = 2, and
sp(I4(u)) = u4 = 3. Thus, the paths I2(u), I3(u) and I4(u) are contained in
spanning trees T4, T2 and T3, respectively.

We are now at a position to show that there exists a conflict in the struc-
ture of the multiple spanning tree. Since T4 contains the path I4(3142) =
(3142, 2143, 4123, 1423), we have par(2143, 4) = 4123. Since T2 contains the
path I3(2143) = (2143, 4123, 3124, 2134, 1234), we have par(2143, 2) = 4123.
This shows that the edge (2143, 4123) is shared by T2 and T4, and thus they are
not vertex-disjoint (see vertices surrounded by the two ovals in Fig. 1). By Eq. (1),
the two paths I4(3142) = (3142, 2143, 4123, 1423) and I2(2143) = (2143, 1243)
in T4 are indeed inconsistent. Moreover, the function Ij(u) is not well-defined in
Eq. (1), e.g., consider the vertex u = 4213 ∈ V (C 1

3) or u = 4231 ∈ V (C 1
4). For

the former, we have r = 3, f = u1 = 4 and t = 4, and the latter we have r = 4,
f = u1 = 4 and t = 1. Thus, the situation f = t or f = r lead to a conflict in
Eq. (1).

4 An Amendatory Scheme

In this section, we will repair Rescigno’s algorithm. For a vertex u (= u1 · · · un) ∈
V (C 1

r) where r ∈ {2, . . . , n}, let t be the index such that ut = r. Also, let fu be
the smallest symbol in K2 if c(u) � 2, and fu = u1 otherwise. For j ∈ {2, . . . , n},

A Parallel Construction of VDSTs in Star Networks 47

we define

Ij(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u,u〈j〉) ⊕ P̂ [u〈j〉,1] if j = fu,

(u,u〈j〉) if j = r �= fu,

(u,u〈j〉,u〈j〉〈fu〉,u〈j〉〈fu〉〈r〉) if j = t �= fu and fu �= fu〈j〉
(u,u〈j〉,u〈j〉〈r〉) otherwise.

(3)

In addition, a function sp(Ij(u)) is defined in a similar way to Eq. (2) as follows.

sp(Ij(u)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r if j = fu,

uf if (j = r = u1 �= fu) or (j = t �= fu and u1 �= r),
u1 if j = r /∈ {u1, fu},

uj otherwise.

(4)

Therefore, an amendatory scheme can be obtained from Algorithm 1 (as shown
in the previous section) by modifying the following statement in Step 3:

for each vertex u ∈ V (C 1
r) do

Construct n − 1 vertex-disjoint paths I2(u), . . . , In(u) defined by Eq. (3);
Compute sp(Ij(u)) for each j ∈ {2, . . . , n} defined by Eq. (4);

As a consequence, for each i ∈ {2, . . . , n}, the result that Ti is a spanning
tree of Sn can be proved by a similar way as that in [15], and thus we have the
following lemma.

Lemma 2. For each i ∈ {2, . . . , n}, the construction of Ti is a spanning tree
of Sn.

To guarantee that every path in a spanning tree constructed above is correct,
we say that two paths Ij(u) and Ij′(v) are consistent in Ti if i = sp(Ij(u)) =
sp(Ij′(v)) for some j, j′ ∈ {2, . . . , n} and v is the parent of u in Ti such that
Ij′(v) is a subpath of Ij(u). As we have mentioned earlier, any subpath of a
basic path is still a basic path. In the following, we give a proof to show that any
non-basic path and its subpath in a spanning tree constructed by Algorithm1
with the amendatory scheme are consistent.

Lemma 3. For any vertex u(= u1 · · · un) ∈ V (C 1
r) where r ∈ {2, . . . , n} \ {i},

let v = u〈j〉 = v1 · · · vn be the successor of u on the path Ij(u) for some j ∈
{2, . . . , n} \ {fu, r} such that i = sp(Ij(u)), and let Ij′(v) be the path for some
j′ ∈ {2, . . . , n} \ {fv} such that i = sp(Ij′(v)). Then, the two paths Ij(u) and
Ij′(v) are consistent in Ti.

Proof. Since v = u〈j〉, it is clear that vj = u1, v1 = uj and vk = uk for
k ∈ {2, . . . , n} \ {j}. Since r /∈ {1, j}, we have v ∈ V (C 1

r). By definition, fu �= 1

48 S.-S. Kao et al.

and fv �= 1. To avoid confusion, we denote by tu and tv to mean the indices such
that utu = vtv = r. We consider the following cases to build the paths Ij(u) and
Ij′(v) for proving the consistency.

Case 1: j �= tu. By Eq. (3) with the condition j /∈ {fu, r, tu}, we obtain the
path Ij(u) = (u,v,v〈r〉). Also, by Eq. (4) with the condition j /∈ {fu, r, tu},
we have i = sp(Ij(u)) = uj . Since i = sp(Ij′(v)) and uj = v1, it follows that
sp(Ij′(v)) = v1. Again by Eq. (4), since j′ �= fv, we have sp(Ij′(v)) �= r. Also,
since fv �= 1, we have sp(Ij′(v)) �= vfv . Thus, sp(Ij′(v)) = v1 implies j′ = r /∈
{v1, fv}. Hence, by Eq. (3) with the condition j′ = r �= fv, we obtain the path
Ij′(v) = (v,v〈j′〉) = (v,v〈r〉), which is a subpath of Ij(u).

Case 2: j = tu and fu �= fv. By Eq. (3) with conditions j = tu �= fu and
fu �= fv, we obtain Ij(u) = (u,v,v〈fu〉,v〈fu〉〈r〉). Since r = utu = uj and
j �= 1, it implies u1 �= r. By Eq. (4) with conditions j = tu �= fu and u1 �= r,
we have i = sp(Ij(u)) = ufu . Since i = sp(Ij′(v)) and fu /∈ {1, j}, it follows
that sp(Ij′(v)) = i = ufu = vfu . Moreover, since fu /∈ {1, fv} and i �= r, we
have sp(Ij′(v)) /∈ {r, v1, vfv}. Hence, by Eq. (4) again, only the case sp(Ij′(v)) =
vj′ is possible, and it further implies that j′ = fu /∈ {fv, r, tv}. Therefore, by
Eq. (3) with the last condition, we obtain the path Ij′(v) = (v,v〈j′〉,v〈j′〉〈r〉) =
(v,v〈fu〉,v〈fu〉〈r〉), which is a subpath of Ij(u).

Case 3: j = tu and fu = fv. By Eq. (3) with conditions j = tu /∈ {fu, r} and
fu = fv, we obtain Ij(u) = (u,v,v〈r〉). Since v1 = uj = utu = r = vtv and
j �= 1, it implies u1 �= r and tv = 1. By Eq. (4) with conditions j = tu �= fu and
u1 �= r, we have i = sp(Ij(u)) = ufu . Since i = sp(Ij′(v)) and fv = fu /∈ {1, j},
it follows that sp(Ij′(v)) = i = ufu = ufv = vfv . Again by Eq. (4), since
j′ �= fv, we have sp(Ij′(v)) �= r. Also, since fv �= 1, we have sp(Ij′(v)) �= v1.
Thus, if sp(Ij′(v)) = vfv , then it implies either (i) j′ = r = v1 �= fv or (ii)
j′ = tv �= fv and v1 �= r. However, the latter is impossible since j′ �= 1 and
tv = 1. Thus, if (i) holds, by Eq. (3) with the condition j′ = r �= fv, we obtain
Ij′(v) = (v,v〈j′〉) = (v,v〈r〉), which is a subpath of Ij(u). �

For instance, we consider the vertex u = 3142 ∈ V (C 1
2), where r = 2,

t = 4 and fu = 3. We check I4(u) as follows. Clearly, u〈4〉 = 2143 ∈ V (C 1
2)

and fu〈4〉 = 3 = fu. Thus, by Eq. (3), we have I4(u) = (u,u〈4〉,u〈4〉〈2〉) =
(3142, 2143, 1243). Further, sp(I4(u)) = ufu = u3 = 4. Next, we consider the
vertex v = 2143 ∈ V (C 1

2), where r = 2, t = 1 and fv = 3. In this case, we have
I2(v) = (v,v〈2〉) = (2143, 1243) and sp(I2(v)) = vfv = v3 = 4. It is obvious
that I2(2143) is a subpath of I4(3142), and the two paths are consistent in T4.
According to Algorithm 1 with the amendatory scheme, we can build a multiple
spanning tree of S4 rooted at 1(= 1234) that contains T2, T3 and T4 as shown
in Fig. 2.

In what follows, we show the correctness that all spanning trees T2, T3, . . . , Tn

in the multiple spanning tree of Sn are VDSTs.

Lemma 4. For any vertex u (= u1 · · · un) ∈ V (C 1
r) where r ∈ {2, . . . , n}, the

paths Ij(u) for j ∈ {2, . . . , n} constructed by Eq. (3) are pairwise vertex-disjoint.

A Parallel Construction of VDSTs in Star Networks 49

1234

2134

3124 4132

4123 1324 3142 1432

2143 1423 2314 1342 2431

1243 2413

4213 3412

4312

3214 2341

3241 4321

3421

4231

3214

2314 4213

4312 1324 2413 1243

3412 1342 4321 3124

1432 3142 2341 2134

4132 2143

4123

1423

3421

2431

3241

4231

4231

2431 3241

3421 1432 2341 1243

4321 1423 3412 4132 1342 4213

1324 4123 2413 2134 4312 3214

3124

2143

3142

2314

T2 T3 T4

Fig. 2. A multiple spanning tree of S4 constructed by Algorithm 1 with the amendatory
scheme.

Proof. For c(u) � 2, fu is the smallest symbol in K2. For each j ∈ {2, . . . , n} \
{fu}, the symbol u1 appears in position j along the path Ij(u). Hence, for
any j, j′ ∈ {2, . . . , n} \ {fu} with j �= j′, the two paths Ij(u) and Ij′(u) are
vertex-disjoint. Furthermore, for the basic path Ifu(u), the symbol u1 appears
in positions fu, 1 and u1, successively. By Eq. (3) with the condition j �= fu
(i.e., the last three conditions), it guarantees that Ifu(u) and Ij(u) for j ∈
{2, . . . , n}\{fu, u1} are vertex-disjoint. Finally, let us consider paths Ifu(u) and
Iu1(u). Since Ifu(u) matches the basic path, if a vertex w(= w1 · · · wn) ∈ Ifu(u)
has symbol u1 in position u1, then every symbol k ∈ K2 ∪ · · · ∪ Kc(u) appears in
the right position (i.e., wk = k). By contrast, every symbol k ∈ K2 ∪ · · · ∪ Kc(u)

in a vertex w ∈ Iu1(u) appears in the same position as that in u. It follows that
Ifu(u) and Iu1(u) are vertex-disjoint.

For c(u) = 1, every vertex on the path Ij(u) for j ∈ {2, . . . , n} has symbol
u1 in position j. Hence, for any j, j′ ∈ {2, . . . , n} \ {fu} with j �= j′, the two
paths Ij(u) and Ij′(u) are vertex-disjoint. �

Theorem 1. For each vertex u ∈ V (Sn) \ {1} and any pair of integers i, i′ ∈
{2, . . . , n} with i �= i′, the two paths P [u,1], respectively, in Ti and Ti′ , are
vertex-disjoint.

Proof. Let u ∈ V (C 1
r) where r ∈ {1, . . . , n}. We use Pi[u,1] and Pi′ [u,1] to

distinguish the two paths P [u,1] in Ti and Ti′ , respectively. Without loss of
generality, we may consider the following cases:

Case 1: r = 1. From Step 2 of Algorithm1, par(Ti,u) = u〈i〉 and par(Ti′ ,u) =
u〈i′〉. Clearly, Pi[u,1] = (u,u〈i〉) ⊕ P̂ [u〈i〉,1] and Pi′ [u,1] = (u,u〈i′〉) ⊕
P̂ [u〈i′〉,1]. Since P̂ [u〈i〉,1] and P̂ [u〈i′〉,1] are basic paths in distinct trees, ver-
tices in the two paths (apart from 1) keep symbol 1 in position i and i′, respec-
tively. Hence, Pi[u,1] and Pi′ [u,1] are vertex-disjoint.

50 S.-S. Kao et al.

Case 2: r /∈ {1, i, i′}. From Step 3 of Algorithm1 with the amendatory
scheme, we suppose that i = sp(Ij(u)) and i′ = sp(Ij′(u)) for some integers
j, j′ ∈ {2, . . . , n}. Since i �= i′, it implies j �= j′. Let Ij(u) = P [u,w] and
Ij′(u) = P [u,w′], where w,w′ ∈ V (C 1

1) \ {1} and w �= w′. Thus, we have
Pi[u,1] = P [u,w]⊕(w,w〈i〉)⊕P̂ [w〈i〉,1] and Pi′ [u,1] = P [u,w′]⊕(w′,w′〈i′〉)⊕
P̂ [w′〈i′〉,1]. Lemma 4 assures that P [u,w] and P [u,w′] are vertex-disjoint. We
now show that no vertex belongs to both P [u,w] and P̂ [w′〈i′〉,1]. By Eq. (3),
each vertex in the path P [u,w] (apart from w) has symbol 1 in position r. On
the other hand, each vertex in the path P̂ [w′〈i′〉,1] has symbol 1 in position i′.
Thus, P [u,w] and P̂ [w′〈i′〉,1] are vertex-disjoint. Similarly, we can show that
no vertex belongs to both P [u,w′] and P̂ [w〈i〉,1]. Finally, similar to Case 1,
P̂ [w〈i〉,1] and P̂ [w′〈i′〉,1] are basic paths in distinct trees, and thus are vertex-
disjoint.

Case 3: r ∈ {i, i′}. Without loss of generality we assume r �= i and r = i′.
From Step 3 of Algorithm1 with the amendatory scheme, we suppose that i =
sp(Ij(u)) and i′ = sp(Ij′(u)) for some integers j, j′ ∈ {2, . . . , n} and j �= j′. Since
r �= i, we have Pi[u,1] = P [u,w]⊕(w,w〈i〉)⊕ P̂ [w〈i〉,1], where P [u,w] = Ij(u)
for w ∈ V (C 1

1)\{1}. On the other hand, since r = i′, we have Pi′ [u,1] = Ij′(u) =
P̂ [u,1]. By Lemma 4, P [u,w] and Pi′ [u,1] are vertex-disjoint. Also, P̂ [w〈i〉,1]
and Pi′ [u,1] are basic paths in distinct trees, and thus are vertex-disjoint. �

In [15], a detail of analysis for the lengths of paths in the constructed VDSTs
was given. Here we omit the analysis because, from the proof of Theorem1, it is
easy to check that the length of P [u,1] for any u ∈ V (Sn) \ {1} is at most the
length of a certain shortest path plus 4.

5 A Fully Parallelized Algorithm for Constructing
VDSTs of Sn

In this section, for the purpose of designing a more efficient way to construct
VDSTs on Sn, we propose an alternative algorithm. Technically, the newly pro-
posed algorithm relies on a function that can determine the parent of any vertex
in a spanning tree directly. Because such a function only needs to refer the label
of a vertex and the index of a tree as parameters, the advantage of this algorithm
is that it can easily be parallelized.

For i ∈ {2, . . . , n} and u(= u1 · · · un) ∈ V (Sn) \ {1}, let r be the index such
that ur = 1, let t be the index such that ut = r, and let j be the index such
that uj = i. Also, let f be the smallest symbol in K2 if c(u) � 2, and f = u1

otherwise. In the following, we give the function to determine the parent of a

A Parallel Construction of VDSTs in Star Networks 51

vertex u in Ti as follows.

par(u, i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u〈f〉 if i = r (i.e., ui = 1), (5.1)
u〈i〉 if u1 = 1, (5.2)
u〈r〉 if (i = uf �= r and u1 = r �= 1) or i = u1 /∈ {1, r}, (5.3)
u〈t〉 if i = uf �= r and u1 /∈ {1, r}, (5.4)
u〈j〉 if i /∈ {r, u1, uf} and u1 �= 1. (5.5)

Obviously, to determine the parent of a vertex u in Ti, we only need to
test two variables i and u1. Perhaps the reader will be interested in how to
derive the above function. The basic idea is that we make a composition of two
functions sp(Ij(u)) and Ij(u) defined by Eqs. (4) and (3), respectively. Then,
such a composition can assign a certain path Ij(u) (i.e., a path starting from u
to a vertex with symbol 1 in the right position) to the tree Ti. Hence, reversing
the composition, we obtain the desired function that takes the vertex u and Ti

as parameters to compute a certain path starting from u with the successor on
this path as its parent. The following lemma shows that the function par(u, i)
is well-defined.

Lemma 5. For any u(= u1 · · · un) ∈ V (Sn) \ {1} and i ∈ {2, . . . , n}, the func-
tion par(u, i) matches exactly one condition of Eqs. (5.1)–(5.5).

Proof. We first show that the union of all conditions in Eq. (5) is a tautology. To
avoid lengthy depiction, in the following we write Con(5.x) to mean the condition
of an equation labeled by (5.x). Consider the following compound statement in
disjunctive normal form:

[(i = uf) ∧ (i �= r) ∧ (u1 = r) ∧ (u1 �= 1)] // The front part of Con(5.3)
∨ [(i = u1) ∧ (u1 �= 1) ∧ (i �= r)] // The rear part of Con(5.3)
∨ [(i = uf) ∧ (i �= r) ∧ (u1 �= 1) ∧ (u1 �= r)] // Con(5.4)
∨ [(i �= r) ∧ (i �= u1) ∧ (i �= uf) ∧ (u1 �= 1)]. // Con(5.5)

Clearly, it can be reduced to i �= r and u1 �= 1. Hence, the union of Con(5.3),
Con(5.4) and Con(5.5) is logically equivalent to the complement of the union of
Con(5.1) and Con(5.2).

To complete the proof, we need to prove that all conditions in Eq. (5) are
pairwise disjoint. Clearly, Con(5.1) and Con(5.2) are disjoint because i � 2.
From above, any two conditions, one choosing from the front two and the other
choosing from the last three, are disjoint. Since the front part of Con(5.3) includes
the literal u1 = r and Con(5.4) includes the literal u1 �= r, they are disjoint. We
now show that the rear part of Con(5.3) and Con(5.4) are disjoint. Suppose not,
i.e., there exists some vertex u such that both conditions hold. Then, uf = i =
u1, and so f = 1. Since f = 1 cannot be the smallest symbol of K2 for u, by the
definition of f , we have f = u1. Hence, u1 = 1, which leads to a contradiction
since u1 /∈ {1, r} in both condition. Finally, it is easy to see that Con(5.5) and
each of Con(5.3) and Con(5.4) are disjoint, respectively. �

52 S.-S. Kao et al.

Algorithm 2. A fully parallelized algorithm
for each vertex u(= u1 · · ·un) ∈ V (Sn) \ {1} do in parallel

Compute r, t, f and j[i] for i = 1, . . . , n;
for i ← 2 to n do

Let j ← j[i];
Compute par(u, i) defined by Eq. (5);

Table 1. Computing the parent of every vertex u ∈ V (S4) \ {1} in Ti for i ∈ {2, 3, 4}.

u i r t f j u1 uf rule par(u, i) u i r t f j u1 uf rule par(u, i)
2 3 (5.1) 2134

1234 - - - - - - - - - 3124 3 2 3 3 1 3 2 (5.3) 1324
4 4 (5.5) 4123

2 2 (5.2) 2143 2 4 (5.1) 4132
1243 3 1 1 1 4 1 1 (5.2) 4213 3142 3 2 4 3 1 3 4 (5.3) 1342

4 3 (5.2) 3241 4 3 (5.4) 2143
2 3 (5.2) 3124 2 2 (5.5) 2314

1324 3 1 1 1 2 1 1 (5.2) 2314 3214 3 3 1 3 1 3 1 (5.1) 1234
4 4 (5.2) 4321 4 4 (5.5) 4213
2 4 (5.2) 3142 2 2 (5.5) 2341

1342 3 1 1 1 2 1 1 (5.2) 4312 3241 3 4 3 3 1 3 4 (5.3) 1243
4 3 (5.2) 2341 4 3 (5.1) 4231
2 3 (5.2) 4123 2 4 (5.5) 2413

1423 3 1 1 1 4 1 1 (5.2) 2413 3412 3 3 1 2 1 3 4 (5.1) 4312
4 2 (5.2) 3421 4 2 (5.3) 1432
2 4 (5.2) 4132 2 3 (5.4) 4321

1432 3 1 1 1 3 1 1 (5.2) 3412 3421 3 4 2 3 1 3 2 (5.3) 1423
4 2 (5.2) 2431 4 2 (5.1) 2431

2 1 (5.1) 1234 2 3 (5.1) 3124
2134 3 2 1 2 3 2 1 (5.5) 3124 4123 3 2 3 4 4 4 3 (5.4) 2143

4 4 (5.5) 4132 4 1 (5.3) 1423
2 1 (5.1) 4123 2 4 (5.1) 2134

2143 3 2 1 3 4 2 4 (5.5) 3142 4132 3 2 4 4 3 4 2 (5.5) 3142
4 3 (5.3) 1243 4 1 (5.3) 1432
2 1 (5.3) 1324 2 2 (5.5) 2413

2314 3 3 2 2 2 2 3 (5.1) 3214 4213 3 3 4 4 4 4 3 (5.1) 3214
4 4 (5.5) 4312 4 1 (5.3) 1243
2 1 (5.3) 1342 2 2 (5.5) 2431

2341 3 4 3 2 2 2 3 (5.4) 4321 4231 3 4 1 4 3 4 1 (5.5) 3241
4 3 (5.1) 3241 4 1 (5.1) 1234
2 1 (5.3) 1423 2 4 (5.4) 3412

2413 3 3 4 2 4 2 4 (5.1) 4213 4312 3 3 2 4 2 4 2 (5.1) 2314
4 2 (5.4) 3412 4 1 (5.3) 1342
2 1 (5.3) 1432 2 3 (5.5) 2341

2431 3 4 2 2 3 2 4 (5.5) 3421 4321 3 4 1 2 2 4 3 (5.3) 1324
4 2 (5.1) 4231 4 1 (5.1) 3421

Now, we present a fully parallelized algorithm for constructing n − 1 VDSTs
of Sn with 1 as the common root. For easily parallel implementation, every node
u(= u1 · · · un) ∈ V (Sn) \ {1} has its own private variables r, t, f and j. Since j
is dependent on i, an auxiliary array j[1..n] is also available for storing the index
where the symbol i occurs in the label of u (i.e., set uj[i] = i).

For example, we summarize the result of calculating the parent of every
vertex u ∈ V (S4) \ {1} in Ti for i ∈ {2, 3, 4} in Table 1. According to this table,

A Parallel Construction of VDSTs in Star Networks 53

a multiple spanning tree rooted at 1 constructed by Algorithm2 is the same as
that in the previous section (see Fig. 2).

Since the algorithm for constructing VDSTs in this section is followed by
the reversing rule of the amendatory scheme described in the previous section,
the correctness of Algorithm 2 directly follows from Lemma 5 and Theorem 1.
Clearly, the computation of r, t, f and j[1..n] for each vertex u ∈ V (Sn) \ {1}
in Algorithm 2 can be done in O(n) time. Also, determining the parent of each
vertex u in a spanning tree using the function par(u, i) only requires a constant
time. Therefore, the total complexity of the proposed algorithm is O(n·n!) time.
Note that, by the vertex-symmetry of Sn, the root of VDSTs constructed in
Algorithm 2 can be changed to any vertex of Sn. In addition, all VDSTs con-
structed by Algorithm 2 are indeed isomorphic to those in Algorithm1 with the
amendatory scheme, and thus the height of each spanning tree is bounded by a
shortest path of Sn plus four. As a result, we have the following theorem.

Theorem 2. Let D(Sn) stands for the diameter of Sn and r ∈ V (Sn) be an
arbitrary vertex. Then, Algorithm2 can correctly construct n − 1 VDSTs of Sn

rooted at r in O(n ·n!) time and the height of each spanning tree is at most
D(Sn) + 4. In particular, the algorithm can be parallelized to run in O(n) time
by using n! vertices of Sn as processors.

6 Concluding Remarks

The star network is an important architecture on the research of interconnection
networks and has been studied in the last three decades. Constructing VDSTs
has many applications in interconnection networks such as fault-tolerant broad-
casting and secure message distribution. In this paper, we mainly point out that
there exists a flaw in the previous algorithm for constructing VDSTs on star
networks and then provide an amendatory scheme to correct it. Moreover, we
propose another alternative algorithm that is suitable and efficient for parallel
implementation.

We close this paper by giving the following two remarks. Since there are
many interconnection networks are defined by using permutations of symbols as
vertices such that the adjacency between vertices can be described by a transposi-
tion set. For instance, bubble-sort graphs, alternating group graphs and arrange-
ment graphs are such kind of networks. However, to the best of our knowledge,
so far does not exist fully parallelized approaches for constructing VDSTs on
these networks, which is worthwhile to be addressed in a future research.

Also, a challenge of constructing spanning trees in a network as broadcasting
schemes is to pursue the goal of reducing the heights of spanning trees (e.g.,
see [12,18,19]). An instinctive question is to ask whether the heights of the con-
structed VDSTs are optimal? Since the maximum height of κ(= κ(G)) VDSTs
is bounded below by the κ-wide distance of G (i.e., the length of a longest path
in an optimal parallel routing of width κ between any two vertices u and v in G)

54 S.-S. Kao et al.

and a result in [7] showed that the κ-wide distance of Sn is D(Sn) + 4, we con-
clude that the constructed VDSTs are optimal in the sense that the maximum
height of VDSTs is minimized.

Acknowledgments. This research was partially supported by MOST grants 104-
2221-E-141-002-MY3 (Jou-Ming Chang), 105-2221-E-131-027 (Kung-Jui Pai), 106-
2221-E-141-001 (Jinn-Shyong Yang) and 104-2221-E-262-005 (Ro-Yu Wu) from the
Ministry of Science and Technology, Taiwan.

References

1. Akers, S.B., Krishnamurty, B.: A group theoretic model for symmetric intercon-
nection networks. IEEE Trans. Comput. 28, 555–566 (1989)

2. Akers, S.B., Harel, D., Krishnamurty, B.: The star graph: an attractive alterna-
tive to the n-cube. In: Proceedings of the International Conference on Parallel
Processing (ICPP 1987), University Park, pp. 393–400 (1987)

3. Akl, S.G., Qiu, K., Stojmenović, I.: Fundamental algorithms for the star and
pancake interconnection networks with applications to computational geometry.
Networks 23, 215–226 (1993)

4. Akl, S.G., Wolff, T.: Efficient sorting on the star graph interconnection network.
Telcom. Syst. 10, 3–20 (1998)

5. Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure
distributing in channel networks. In: Proceedings of 3rd International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN 1997), Taipei, pp.
472–478 (1997)

6. Chang, J.-M., Yang, T.-J., Yang, J.-S.: A parallel algorithm for constructing inde-
pendent spanning trees in twisted cubes. Discrete Appl. Math. 219, 74–82 (2017)

7. Chen, C.-C., Chen, J.: Optimal parallel routing in star networks. IEEE Trans.
Comput. 46, 1293–1303 (1997)

8. Day, K., Tripathi, A.: A comparative study of topologies properties of hypercubes
and star networks. IEEE Trans. Parallel Distrib. Syst. 5, 31–38 (1994)

9. Fragopoulou, P., Akl, S.G.: A parallel algorithm for computing Fourier transforms
on the star graph. IEEE Trans. Parallel Distrib. Syst. 5, 525–531 (1994)

10. Fragopoulou, P., Akl, S.G.: Optimal communication algorithms on star graphs
using spanning tree constructions. J. Parallel Distrib. Comput. 24, 55–71 (1995)

11. Fragopoulou, P., Akl, S.G.: Edge-disjoint spanning trees on the star network with
applications to fault tolerance. IEEE Trans. Comput. 45, 174–185 (1996)

12. Hasunuma, T., Nagamochi, H.: Independent spanning trees with small depths in
iterated line digraphs. Discrete Appl. Math. 110, 189–211 (2001)

13. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks.
Inform. Comput. 79, 43–59 (1988)

14. Qiu, K., Akl, S.G., Meijer, H.: On some properties and algorithms for the star and
pancake interconnection networks. J. Parallel Distrib. Comput. 22, 16–25 (1994)

15. Rescigno, A.A.: Vertex-disjoint spanning trees of the star network with applications
to fault-tolerance and security. Inform. Sci. 137, 259–276 (2001)

16. Sur, S., Srimani, P.K.: Topological properties of star graph. Comput. Math. Appl.
25, 87–98 (1993)

17. Yang, J.-S., Chan, H.-C., Chang, J.-M.: Broadcasting secure messages via optimal
independent spanning trees in folded hypercubes. Discrete Appl. Math. 159, 1254–
1263 (2011)

A Parallel Construction of VDSTs in Star Networks 55

18. Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Reducing the height of inde-
pendent spanning trees in chordal rings. IEEE Trans. Parallel Distrib. Syst. 18,
644–657 (2007)

19. Yang, J.-S., Luo, S.-S., Chang, J.-M.: Pruning longer branches of independent
spanning trees on folded hyper-stars. Comput. J. 58, 2979–2981 (2015)

20. Yang, J.-S., Wu, M.-R., Chang, J.-M., Chang, Y.-H.: A fully parallelized scheme
of constructing independent spanning trees on Möbius cubes. J. Supercomput. 71,
952–965 (2015)

Protein Mover’s Distance: A Geometric
Framework for Solving Global Alignment

of PPI Networks

Manni Liu and Hu Ding(B)

Department of Computer Science and Engineering, Michigan State University,
East Lansing, USA

{liumanni,huding}@msu.edu

Abstract. A protein-protein interaction (PPI) network is an unweighted
and undirected graph representing the interactions among proteins, where
each node denotes a protein and each edge connecting two nodes indicates
their interaction. Given two PPI networks, finding their alignment is a fun-
damental problem and has many important applications in bioinformat-
ics. However, it often needs to solve some generalized version of subgraph
isomorphism problem which is challenging and NP-hard. Following our
previous geometric approach [21], we propose a unified algorithmic frame-
work for PPI networks alignment. We first define a general concept called
“Protein Mover’s Distance (PMD)” to evaluate the alignment of two PPI
networks. PMD is similar to the well known “Earth Mover’s Distance”;
however, we also incorporate some other information, e.g., the functional
annotation of proteins. Our algorithmic framework consists of two steps,
Embedding and Matching. For the embedding step, we apply three dif-
ferent graph embedding techniques to preserve the topological structures
of the original PPI networks. For the matching step, we compute a rigid
transformation for one of the embedded PPI networks so as to minimize
its PMD to the other PPI network; by using the flow values of the result-
ing PMD as the matching scores, we are able to obtain the desired align-
ment. Also, our framework can be easily extended to joint alignment of
multiple PPI networks. The experimental results on two popular bench-
mark datasets suggest that our method outperforms existing approaches
in terms of the quality of alignment.

1 Introduction

Proteins are essential parts of organisms and participate in virtually every
process within cells [36]. Protein-Protein Interaction (PPI) networks provides
effective tools for studying protein complexes and understanding their functional

The research of this work was supported in part by NSF through grant CCF-1656905
and a start-up fund from Michigan State University. Ding also wants to thank Profs.
Bonnie Berger and Roded Sharan for their helpful discussions at Simons Institute,
UC Berkeley.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 56–69, 2017.
https://doi.org/10.1007/978-3-319-71150-8_5

Protein Mover’s Distance 57

Fig. 1. An example of yeast PPI network [35].

interactions, modules, and pathways, in many cellular processes. A PPI net-
work is a graph that describes the interaction of proteins, where a node repre-
sents a protein and an edge means that the two corresponding proteins interact
with each other [35]. See Fig. 1.

The current research on PPI networks mainly focus on two directions: (1)
knowledge discovery inside each individual network and (2) comparison and
integration of different networks. The first direction includes the problems of
link prediction (i.e., adding new interactions) and modules/pathways detection,
while the second one often targets finding the similarity or distinction between
two or more networks. Actually these two directions are closely related with each
other, e.g., better knowledge discovery inside each network could lead to more
accurate comparison between networks, and the integrated analysis on different
networks could improve the knowledge discovery inside each individual network.
In this paper, we focus on a fundamental problem in the latter direction, PPI
networks alignment, which is often modeled as the problem of mapping two
undirected graphs:

Let two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) denote two PPI
networks. An alignment of G1 and G2 is to compute a mapping between V1 and
V2 satisfying some given criteria, where the mapping could be one-to-one or
many-to-many.

Since it is usually a generalized NP-hard subgraph isomorphism problem,
most of the existing algorithms on PPI networks alignment are heuristic and
aimed at achieving good practical efficiency. Current research includes local and
global alignment. Local alignment algorithms are designed to find isomorphic
subgraphs of two or more PPI networks, where the popular ones include Maw-
ish [15] and AlignNemo [5]. Comparing with local alignment, global alignment

58 M. Liu and H. Ding

can better capture the global picture of how conserved substructure motifs are
organized, and consequently attracts a great deal of attentions. The well known
algorithms include IsoRank [32], MI-GRAAL [17], GHOST [25], MAGNA [29],
Prob [34], NETAL [23], and HubAlign [11]. For example, IsoRank defines the
similarity of two nodes recursively based on the similarity of their neighbors;
MI-GRAAL uses both topological and biological information, and generates the
alignment by a greedy seed-and-extend approach; GHOST defines the difference
of spectral signatures among the nodes and generates the alignment greedily;
NETAL defines the topological similarity between the nodes in a similar way to
IsoRank and tries to optimize the number of conserved edges. Moreover, some
algorithms are designed to handle joint alignment of multiple PPI networks, such
as IsoRankN [20], NetCoffee [13], SMETANA [28], BEAMS [2], ConvexAlign [9],
and NetworkBlast-M [14].

Comparing with directly solving the problem of graph isomorphism, the
aforementioned heuristic approaches can alleviate the high computational com-
plexity to certain extent. However, they still suffer several unavoidable draw-
backs. For example, their time complexities could still be relatively high (e.g.,
O(n3 log n) where n is the number of vertices [10]). Moreover, the available PPI
networks are often very sparse, and thus the alignment based on the local topol-
ogy of each vertex is not quite reliable. One way to solve this issue is to first make
use of the fact that biological networks can often be embedded into Euclidean
space (due to their intrinsic nature [12,18]; recently, Cho et al. [4] propose a new
algorithm for low-dimensional geometric representation of biological networks
called Diffusion Component Analysis), and then convert the alignment problem
from graph domain to geometry domain. Besides the lower computational com-
plexity, the geometric representations of PPI networks can also remedy the issue
caused by the sparse and noisy interactions of PPI networks [18].

Inspired by this observation, our previous work [21] provides a geomet-
ric embedding based algorithm “GeoAlign”. Roughly speaking, GeoAlign first
embeds the given two PPI networks into a Euclidean space via the method of
structure preserving embedding [31], and then computes their alignment in the
space.

1.1 Our Contributions

The goal of this paper is twofold. First, we follow and generalize our previous
work [21] to a unified algorithmic framework for PPI networks alignment. Second,
we study and compare the experimental performance of our framework with
other popular methods on two benchmark datasets.

Our algorithmic framework includes two steps: (1) embedding and
(2) matching. Given two PPI networks, we first use a graph embedding tech-
nique to represent them in some Euclidean space. As a consequence, each network
is transformed to a point set and the local topological properties (such as the
connectivity and length of shortest path between nodes) are well preserved in a
geometric form. We adopt three different embedding methods, the recent popular
deep learning based approach node2vec [8], the well studied multi-dimensional

Protein Mover’s Distance 59

scaling (MDS) [16], and structure preserving embedding (SPE) [31] which was
used in [21] (see Sect. 2 for details). Then, we use both the geometric information
and given sequence similarity scores of the proteins to establish the matching.
Note that the matching should also take into account of certain transformations
in Euclidean space, such as rigid transformation. To realize this idea, we propose
a novel concept “Protein Mover’s Distance (PMD)” to measure the match-
ing cost between two PPI networks. Moreover, our framework can be naturally
extended for joint alignment of multiple PPI networks.

Note: of course, the embedding method should not be limited to the aforemen-
tioned three algorithms in our general algorithmic framework, and we expect
a more extensive experimental study on different embedding methods in future
work.

2 Embedding Methods

In this section, we introduce three different methods for embedding PPI networks
in our framework.

2.1 Node2vec

Recently, Grover and Leskovec [8] present a new algorithm called node2vec for
feature learning. Given a graph, the key idea of node2vec is to define a novel
random walk procedure to generate the neighborhood of each node (vertex) and
maximize the likelihood for maintaining the interactions among the neighbors;
eventually, it obtains a representation of the nodes in Euclidean space. For the
sake of completeness, we briefly introduce the method below.

Let G = (V, E) be a given unweighted and undirected graph and f : V → R
d

be the (to be learned) mapping function from the nodes to a d-dimensional
space where d is a parameter that can be specified as the input. For each node
u ∈ V , node2vec defines its neighborhood NS(u) based on two classic sampling
strategies, Breadth First Sampling (BFS) and Depth First Sampling (DFS). In
BFS, the neighborhood NS(u) covers the nodes which are directly connected
with the source node u. Differently, DFS defines NS(u) to contain the nodes
which may have indirected interactions (by depth first search) with the source
node u.

Node2vec applies random walk to make a balance between BFS and DFS.
For a source node u and a given positive integer l, node2vec runs the fixed l
steps of random walk and the neighborhood NS(u) consists of all the passed
nodes. After generating the neighborhood NS(u) for each node u, node2vec is to
optimize the following objective function inspired by the Skip-gram Model [22]:

max
f

∑

u∈V

log Prob(NS(u)|f(u)). (1)

60 M. Liu and H. Ding

With the standard assumptions of conditional independence and symmetry of
feature space, the objective function (1) can be further simplified to be:

max
f

∑

u∈V

[− log Zu +
∑

ni∈NS(u)

f(ni) × f(u)] (2)

where Zu =
∑
v∈V

exp(f(u) × f(v)) (see [8] for the omitted details). Finally, the

objective function (1) is optimized by stochastic gradient descent (SGD) on
single hidden-layer feedforward neural networks.

2.2 Multi-dimensional Scaling

Multi-dimensional Scaling (MDS) is a widely used tool for embedding graph into
Euclidean space [16]. In particular, Higham et al. [12] and Kuchaiev et al. [18]
introduce the ideas based on MDS to tackle the problems of de-noising and link
prediction for PPI networks.

The input of MDS is the matrix of the n × n pairwise distances (suppose
the number of nodes is n in the given graph). To define the pairwise distance,
[12,18] adopt the length of the shortest path between each pair of nodes in the
graph (in case that the PPI network is not connected, they handle the connected
components separately). Obviously, computing the whole distance matrix could
be very costly if using Dijkstra’s or other shortest path algorithms [6]. How-
ever, since PPI networks are unweighted and usually sparse, we can directly run
breadth first search n times to obtain the n2 pairwise distances, and the total
running time is only O(n2) (also Higham et al. [12] set an upper bound for the
distances which makes the method even more practical).

Let the obtained distance between node i and j be dij and the dimension of
the desired embedding space be d. The goal of MDS is to find n points xi ∈ R

d,
i = 1, · · · , n, such that the distance between each pair (xi, xj) is roughly equal
to dij . First, we generate a positive semi-definite matrix A where each

aij = −1
2
(d2ij − 1

n

n∑

k=1

d2ij − 1
n

n∑

k=1

d2kj +
1
n2

n∑

k=1

n∑

l=1

d2kl). (3)

Consequently, we know that
XTX ≈ A. (4)

Further, we decompose the matrix A to be UTΣU where the rows of U are
the eigenvectors of A and the diagonal entries of Σ are the eigenvalues ordered
decreasingly. Finally, MDS lets X̂ =

√
ΣdU be the embedding solution where

Σd contains only the top d eigenvalues.

2.3 Structure Preserving Embedding

Given the adjacency matrix of a graph, traditional graph embedding algorithms
often need to employ a spectral decomposition of the Laplacian and take the

Protein Mover’s Distance 61

top eigenvectors as the embedding coordinates. However, a drawback of such
embedding algorithms is that they cannot efficiently preserve the topology of the
input graph. To remedy this issue, Shaw and Jebara propose a novel embedding
algorithm called structure preserving embedding (SPE) [31]. Different from the
previous spectral embedding methods, SPE learns a new positive semi-definite
kernel matrix K whose spectral decomposition can preserve the topology exactly;
moreover, the problem can be modeled as a semi-definite programming with a
set of linear constraints. For more detailed explanation on SPE, we refer the
readers to [31].

Due to the advantage on preserving topological structure, our previous
work [21] adopts SPE to embed the given PPI networks into Euclidean space for
computing their alignment.

3 Protein Mover’s Distance

Since the given PPI networks become point sets in Euclidean space after embed-
ding, the next question is how to measure their similarity. Actually, our idea
comes from the well known concept earth mover’s distance (EMD) in compu-
tational geometry which has been extensively studied in many areas [19,26,27].

Given two point sets A = {p1, p2, · · · , pn} and B = {q1, q2, · · · , qm} in R
d

with nonnegative weights αi and βj for each pi ∈ A and qj ∈ B respectively,
define the ground distance D(pi, qj) ≥ 0 for each pair of pi and qj (normally,
the ground distance is simply their (squared) Euclidean distance). The EMD
between A and B is:

EMD(A,B) =
minF

∑n
i=1

∑m
j=1 fij · D(pi, qj)

min {∑n
i=1 αi,

∑m
j=1 βj} , (5)

where F = {fij} is a feasible flow from A to B, such that ∀i, j, fij ≥ 0,∑m
j=1 fij ≤ αi,

∑n
i=1 fij ≤ βj , and

∑n
i=1

∑m
j=1 fij = min{∑n

i=1 αi,
∑m

j=1 βj}.

Intuitively, EMD can be viewed as the minimum transportation cost between
A and B, where the weights of A and B are the “supplies” and “capacities”
respectively, and the cost of an edge between any pair of points from A to B
is their ground distance (see Fig. 2(a)). Also, since EMD is associated with an

(a) (b) (c)

Fig. 2. (a) An illustration for earth mover’s distance; (b) min-cost max flow for com-
puting EMD; (c) the simplified min-cost max flow via FastEMD.

62 M. Liu and H. Ding

underlying flow F , a many-to-many matching is naturally generated via simply
matching the points that have a positive flow between them. More importantly,
EMD is based on a global optimization. That is, instead of greedily matching
local points that are close to each other, EMD finds a matching that is able to
capture the global relationship between them.

For the sake of simplicity, we also use A and B to denote the point sets, i.e.,
the two embedded PPI networks, respectively; each point pi (qj) indicates one
protein. For normalization, we let each αi = m and βj = n, and thus both the
total weights

∑n
i=1 αi and

∑m
j=1 βj are equal to nm. To measure their similarity,

a significant difference to EMD is that we have to consider both local topology
and biological information. We introduce the following definition.

Definition 1 (Protein Mover’s Distance (PMD)). Given a parameter
λ ∈ [0, 1],

PMD(A,B) = λEMDt(A,B) + (1 − λ)EMDb(A,B), (6)

where EMDt(A,B) is simply the EMD between A and B with the ground dis-
tance Dt being the squared Euclidean distance, while EMDb(A,B) is the EMD
between A and B with the ground distance Db being some decreasing function
on the given sequence similarity scores of the proteins.

Due to the embedding procedure, we know that EMDt(A,B) reveals the
similarity of local topology between A and B. Meanwhile, EMDb(A,B) shows
the similarity based on biological information, where the ground distance Db

could have different forms depending on the setting in practice. In our experi-
ment, we simply use the inverse of the similarity score as the ground distance;
if the similarity score of a pair of proteins does not exist, their ground distance
is +∞.

We can see that the parameter λ allocates the importances of local topology
and biological information in PMD. Namely, the higher (lower) λ, the more
important the local topology (biological information).

4 Our Algorithms

We first introduce our algorithm for pairwise alignment of two PPI networks in
Sect. 4.1, and then show how to extend the algorithm to handle multiple PPI
networks in Sect. 4.2.

4.1 Two PPI Networks

After embedding, the main idea of our alignment algorithm is to compute the
PMD between the two PPI networks and generate the matching between the
proteins based on the flows of the PMD. For this purpose, we need to consider
the following two technical issues.

Protein Mover’s Distance 63

(1) Registration. Note that the embedding only preserves the pairwise dis-
tances of the nodes, thus each network actually becomes a rigid structure in
the space. Consequently, we need to consider the registration between A and
B under rigid transformation. Before computing the PMD, we fix A and apply
the widely used Iterative Closest Point (ICP) [3] algorithm to find an appro-
priate position for B. ICP algorithm is an alternating minimization procedure
that each iteration fixes either the matching or the current transformation and
modifies the other to minimize the difference. ICP algorithm is guaranteed to
converge and performs quite well in practice.

(2) The computation of EMD. From Definition 1, we know that both EMDt

and EMDb need to compute the EMD between A and B but with different
ground distances. Actually, optimizing the objective function of EMD is a typical
instance of min-cost max flow problem which can be solved by linear program-
ming (Fig. 2(b)). However, the numbers of points (nodes) in the PPI networks
A and B are often thousands which make the computation complexity of lin-
ear programming extremely high. To resolve this issue, we use the approximate
algorithm FastEMD [26] instead. Roughly speaking, FastEMD deletes the flows
which have large ground distances, where the intuition is that the flows with
large ground distances are more likely to be small or even zero. In practice,
FastEMD makes the connecting graph of EMD much more sparse (Fig. 2(c))
and thus reduces the running time significantly.

Overall, our algorithm is shown in Algorithm1.

Algorithm 1. Pairwise alignment
Input: two PPI networks G1 = (V1, E1) and G2 = (V2, E2), three parameters d ∈
Z
+, 0 ≤ λ ≤ 1, and μ > 0.

Output: An alignment between G1 and G2.

1. Embed G1 and G2 into d-dimensional Euclidean space as A and B (by node2vec,
MDS, or SPE).

2. Fix A, and run ICP to registrate B to A (with a little abuse of notations, we
still use B to denote the transformed B).

3. Apply FastEMD to compute PMD(A, B) = λEMDt(A, B) + (1 −
λ)EMDb(A, B).

4. Match protein i in A to protein j in B, if the flow between them in the PMD is
larger than μ.

4.2 Multiple PPI Networks

Our method in Sect. 4.1 can be easily extended to the case with multiple net-
works. Given N PPI networks Gi = (Vi, Ei), i = 1, . . . , N , we aim to find the
alignment among all of them jointly. First, we use Algorithm1 (step 1–3) to
compute the PMD between each pair of networks, and build a N -partite graph

64 M. Liu and H. Ding

Fig. 3. Five PPI networks: we compute the PMD between each pair of networks, and
build a 5-partite graph where each network is denoted as a column of vertices and the
weight of each edge connecting two vertices from different columns is the corresponding
value of PMD flow.

(see Fig. 3 as an example); then we apply the recent proposed convex optimiza-
tion model by Hashemifar et al. [9] on the N -partite graph to find the joint
alignment.

Let Xij be the binary variable matrix indicating the alignment between Vi

and Vj , that is, Xi,j(u, v) = 1 if u ∈ Vi and v ∈ Vj are aligned with each
other; otherwise Xi,j(u, v) = 0. By using our obtained PMD between each pair
of networks, we modify the objective function from [9] to be

F =
∑

1≤i<j≤N

∑

u∈Vi,v∈Vj

fPMD(u, v)Xij(u, v) (7)

where fPMD(u, v) indicates the PMD flow from u to v. To make the opti-
mization convex, according to [9] each binary variable matrix Xij is relaxed
to satisfy the following constraints: (i) Xii is an identity matrix; (ii) Xij is posi-
tive semi-definite. Finally, we use the alternating direction of multiplier method
(ADMM) [9] to find the solution.

5 Experiments

For pairwise alignment, we compare our algorithm with IsoRank [32], MI-
GRAAL [17], GHOST [25], and NETAL [23]; for joint alignment of multi-
ple networks, we compare our algorithm with IsoRankN [20], NetCoffee [13],
SMETANA [28], and BEAMS [2]. In our algorithms, we try the three embed-
ding methods node2vec, MDS, and SPE, where the algorithms are denoted as
Geo-node2vec, Geo-mds, and Geo-spe respectively. All of the experimental
results are obtained on a Windows workstation with 2.4 GHz Intel Xeon E5-2630
v3 CPU and 32 GB DDR4 2133 MHz Memory.

Protein Mover’s Distance 65

5.1 Datasets

First, We use the popular benchmark dataset NAPAbench [30] to test the algo-
rithms for pairwise alignment. NAPAbench has three children datasets which are
generated through crystal growth (CG), duplication-mutation-complementation
(DMC), and duplication-with-random-mutation (DMR); each dataset is com-
posed of 10 pairs of PPI networks, where each pair includes a 3000-node and a
4000-node PPI network. NAPAbench also provides the sequence similarity scores
among the proteins.

To further test the algorithms for joint alignment, we use another benchmark
dataset Isobase [24] which contains multiple PPI networks. Isobase is a database
of functionally related orthologs developed from five major eukaryotic PPI net-
works; it contains five species, including H.sapiens (human), S.cerevisiae (yeast),
Drosophila melanogaster (fly), Caenorhabditis elegans (worm), and Mus mus-
culus (mouse). We use BLAST bit scores [33] as the given sequence similarity
scores for Isobase. See Table 1.

Table 1. a1: number of the proteins having interaction with other proteins; a2: number
of the proteins having BLAST bit scores with other proteins; a3: number of interactions
in the network.

a1 a2 a3

Homo sapiens (human) 10403 20313 105232

Saccharomyces cerevisiae (yeast) 5524 3764 164718

Drosophila melanogaster (fly) 7396 10336 49467

Caenorhabditis elegans (worm) 2995 10945 8639

Mus musculus (mouse) 623 21856 776

To evaluate the alignment results, we compare the obtained matchings with
the annotations gene ontology (GO) terms [1]. GO terms describe the roles of
proteins in terms of their associated biological process, molecular function, and
cellular component (CC). We exclude CC because it only annotates a small
percentage of the proteins, and moreover, the proteins with matched CC are not
usually considered to be functionally similar.

5.2 Evaluation Metrics

We use the following evaluation metrics which are widely used in the previous
articles to measure the alignment qualities.

1. Induced Conserved Structure (ICS). Let the two PPI networks be G1 =
(V1, E1) and G2 = (V2, E2), and the resulting matching be M. We denote the
subgraph induced by M in G2 as G2(M(V1)) and the corresponding edge sets as
E2(M(V1)). Also, the set of the edges conserved in the alignment is denoted as

66 M. Liu and H. Ding

M(E1, E2). Then the induced conserved structure score ICS = |M(E1,E2)|
|E2(M(V1))| [25].

ICS is a topological measurement, because it only takes into account the graph
topology.

2. Specificity. We call each connected component of the matching a cluster. A
cluster is annotated if at least two of the proteins are annotated, and we call a
cluster correct if all the annotated proteins share the same annotation. Speci-
ficity [7] measures the ratio of correct clusters to annotated clusters. Obviously,
the higher Specificity an alignment has, the more functional consistent it is.

3. Mean Normalized Entropy (MNE). The mean normalized entropy [20]
is also a measure of the consistency of the alignment. The smaller MNE an
alignment has, the more functionally coherent it is. For a cluster C induced
by the matching, the normalized entropy (NE) is defined as NE(C) = − 1

log t ·
∑t

i=1 pi · log pi, where t is the number of annotations in C and pi is the fraction
of proteins with annotation i. Then the mean normalized entropy (MNE) is
simply the average normalized entropy for all annotated clusters. We can see
that a cluster that consists of proteins with higher functional consistency will
have lower normalized entropy.

4. Conserved Orthologous Interactions (COI). COI is recently introduced
by Hashemifar et al. [9] which only considers the total number of interactions
between all pairwise correct clusters. Here we modify it to be the ratio of the
total number of interactions between all pairwise correct clusters to the total
number of aligned interactions. It measures the alignment algorithm’s ability of
detecting conserved interactions between orthologous proteins.

The latter three metrics, Specificity, MNE, and COI, are all biological mea-
surements, since they take into account the functional annotation of each protein.

5.3 Results

In our experiments, we determine the values of λ and μ (see Algorithm 1) through
optimizing Specificity score over a 10-fold cross-validation on the NAPAbench
CG dataset. For simplicity, we always set the dimensionality d = 3 in all the
embedding methods.

The average results (over 10 pairs of networks in each dataset) on pairwise
alignment are shown in Table 2, where the best results are labeled in black (for
ICS, Specificity, and COI, the higher the better; for MNE, the lower
the better). Because ICS and COI are only for pairwise alignment, we use
Specificity and MNE for joint alignment and the results are shown in Table 3.

We can see that Geo-spe always achieves the best for ICS, where we believe
that it is due to the advantage of SPE on preserving topological structure (note
that ICS is a topological measurement); for the other three evaluation metrics,
Geo-node2vec often achieves the best and significantly outperforms the second
best. For joint alignment, Geo-node2vec achieves the second best for Specificity
which is slightly lower than the best one by NetCoffee.

Protein Mover’s Distance 67

Table 2. Pairwise alignment for three NAPAbench datasets CG, DMC, and DMR.

CG IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.58 0.81 0.76 0.52 0.90 0.72 0.66

Specificity 0.78 0.83 0.80 0.21 0.82 0.85 0.80

MNE 0.21 0.17 0.20 0.79 0.17 0.15 0.19

COI 0.42 0.51 0.53 0.49 0.72 0.95 0.94

DMC IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.47 0.69 0.55 0.51 0.87 0.56 0.50

Specificity 0.76 0.81 0.78 0.33 0.79 0.86 0.80

MNE 0.23 0.19 0.22 0.67 0.17 0.14 0.19

COI 0.45 0.58 0.60 0.48 0.68 0.92 0.90

DMR IsoRank GHOST MI-GRAAL NETAL Geo-spe Geo-node2vec Geo-mds

ICS 0.56 0.79 0.62 0.55 0.85 0.62 0.57

Specificity 0.79 0.82 0.81 0.38 0.81 0.86 0.81

MNE 0.20 0.18 0.19 0.62 0.16 0.14 0.19

COI 0.44 0.55 0.59 0.46 0.71 0.94 0.93

Table 3. Joint alignment of the five PPI networks from Isobase

IsoRankN SMETANA NetCoffee BEAMS Geo-
spe

Geo-
node2vec

Geo-
mds

Specificity 0.74 0.54 0.77 0.73 0.73 0.75 0.71

MNE 0.83 0.99 0.95 0.81 0.81 0.79 0.82

6 Conclusion

In this paper, we generalize our previous work [21] and propose a unified algorith-
mic framework for PPI networks alignment. Different from previous methods,
our framework is a geometric approach which consists of embedding and match-
ing steps. The embedding step transforms the input PPI networks from graph
domain to Euclidean space, and the matching step yields the final solution for the
alignment. To efficiently solve the matching step, we define the general objective
function “protein mover’s distance”. Moreover, our framework can be naturally
extended to joint alignment of multiple PPI networks. The experimental results
suggest that our method outperforms previous methods in terms of accuracy to
certain extent.

To enrich the experimental study of our framework, it is deserved to explore
more embedding methods instead of the three that are studied in this paper.
Also, we hope that our framework can be applied to a broader range of network
problems (e.g., social network) in future.

68 M. Liu and H. Ding

References

1. Aladağ, A.E., Erten, C.: Spinal: scalable protein interaction network alignment.
Bioinformatics 29(7), 917–924 (2013)

2. Alkan, F., Erten, C.: Beams: backbone extraction and merge strategy for the global
many-to-many alignment of multiple PPI networks. Bioinformatics 30(4), 531–539
(2013)

3. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL
Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

4. Cho, H., Berger, B., Peng, J.: Diffusion component analysis: unraveling func-
tional topology in biological networks. In: Przytycka, T.M. (ed.) RECOMB 2015.
LNCS, vol. 9029, pp. 62–64. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16706-0 9

5. Ciriello, G., Mina, M., Guzzi, P.H., Cannataro, M., Guerra, C.: Alignnemo: a local
network alignment method to integrate homology and topology. PLoS ONE 7(6),
e38107 (2012)

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

7. Flannick, J., Novak, A., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Automatic
parameter learning for multiple network alignment. In: Vingron, M., Wong, L.
(eds.) RECOMB 2008. LNCS, vol. 4955, pp. 214–231. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78839-3 19

8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

9. Hashemifar, S., Huang, Q., Xu, J.: Joint alignment of multiple protein-protein
interaction networks via convex optimization. J. Comput. Biol. 23(11), 903–911
(2016)

10. Hashemifar, S., Ma, J., Naveed, H., Canzar, S., Xu, J.: Modulealign: module-based
global alignment of protein-protein interaction networks. Bioinformatics 32(17),
658–664 (2016)

11. Hashemifar, S., Xu, J.: HubAlign: an accurate and efficient method for global
alignment of protein-protein interaction networks. Bioinformatics 30(17), i438–
i444 (2014)

12. Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-
protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)

13. Hu, J., Kehr, B., Reinert, K.: NetCoffee: a fast and accurate global alignment
approach to identify functionally conserved proteins in multiple networks. Bioin-
formatics 30(4), 540–548 (2013)

14. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple
protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS,
vol. 4955, pp. 246–256. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78839-3 21

15. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama,
A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2),
182–199 (2006)

16. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage, Newbury Park
(1978)

17. Kuchaiev, O., Pržulj, N.: Integrative network alignment reveals large regions of
global network similarity in yeast and human. Bioinformatics 27(10), 1390–1396
(2011)

https://doi.org/10.1007/978-3-319-16706-0_9
https://doi.org/10.1007/978-3-319-16706-0_9
https://doi.org/10.1007/978-3-540-78839-3_19
https://doi.org/10.1007/978-3-540-78839-3_21
https://doi.org/10.1007/978-3-540-78839-3_21

Protein Mover’s Distance 69

18. Kuchaiev, O., Rasajski, M., Higham, D.J., Przulj, N.: Geometric de-noising of
protein-protein interaction networks. PLoS Comput. Biol. 5(8), e1000454 (2009)

19. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to doc-
ument distances. In: International Conference on Machine Learning, pp. 957–966
(2015)

20. Liao, C.-S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods
for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258
(2009)

21. Liu, Y., Ding, H., Chen, D., Xu, J.: Novel geometric approach for global alignment
of PPI networks. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 4–9 February 2017, San Francisco, pp. 31–37 (2017)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

23. Neyshabur, B., Khadem, A., Hashemifar, S., Arab, S.S.: NETAL: a new graph-
based method for global alignment of protein-protein interaction networks. Bioin-
formatics 29(13), 1654–1662 (2013)

24. Park, D., Singh, R., Baym, M., Liao, C.-S., Berger, B.: IsoBase: a database of
functionally related proteins across PPI networks. Nucl. Acids Res. 39(suppl 1),
D295–D300 (2011)

25. Patro, R., Kingsford, C.: Global network alignment using multiscale spectral sig-
natures. Bioinformatics 28(23), 3105–3114 (2012)

26. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE
12th International Conference on Computer Vision, pp. 460–467 (2009)

27. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

28. Sahraeian, S.M.E., Yoon, B.-J.: SMETANA: accurate and scalable algorithm for
probabilistic alignment of large-scale biological networks. PLoS ONE 8(7), e67995
(2013)

29. Saraph, V., Milenković, T.: MAGNA: maximizing accuracy in global network align-
ment. Bioinformatics 30(20), 2931–2940 (2014)

30. Sayed Mohammad, E.S., Yoon, B.-J.: A network synthesis model for generating
protein interaction network families. PLoS ONE 7, e41474 (2012)

31. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of the 26th
Annual International Conference on Machine Learning, pp. 937–944. ACM (2009)

32. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proc. Natl. Acad. Sci.
105(35), 12763–12768 (2008)

33. Tatusova, T.A., Madden, T.L.: BLAST 2 sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiol. Lett. 174(2), 247–250 (1999)

34. Todor, A., Dobra, A., Kahveci, T.: Probabilistic biological network alignment.
IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 10(1), 109–121 (2013)

35. Online Computational Biology Textbook. http://compbio.pbworks.com/w/page/
16252899/Mass

36. Protein. http://www.hemostasis.com/protein/

http://arxiv.org/abs/1301.3781
http://compbio.pbworks.com/w/page/16252899/Mass
http://compbio.pbworks.com/w/page/16252899/Mass
http://www.hemostasis.com/protein/

On the Profit-Maximizing for Transaction
Platforms in Crowd Sensing

Xi Luo1(B), Jialiang Lu1(B), Guangshuo Chen2, Linghe Kong1,
and Min-You Wu1

1 Shanghai Jiao Tong University, Shanghai, China
luoxiqqrenren@sjtu.edu.cn, jialiang.lu@sjtu.edu.cn

2 INRIA, University Paris Saclay, Paris, France

Abstract. Crowd sensing is a novel sensing paradigm, in which a chal-
lenging task is to balance benefits of various participants, i.e., data
requesters, data providers and transaction platforms for attracting suf-
ficient participants. Little attention in literature has been paid to the
transaction platform’s profit which is one of the major issues for main-
taining a crowd sensing system consistently. In this paper, we aim to
propose a mechanism design for optimizing the platform’s profit. For
that, we first model the interactions in crowd sensing by leveraging tools
of game theory, and then we prove the best strategy for maximizing
the benefit of transaction platforms with satisfying individual rational-
ity constraint and incentive compatibility constraint. Finally, we propose
two practical algorithms based on the best strategy. Our simulations
show that the algorithms are effective in terms of keeping the platform’s
profit and time efficiency.

Keywords: Crowd sensing · Bayesian game · Incentive mechanism
design · Assignment problem · Hungarian algorithm

1 Introduction

In recent years, there has been an increasing amount of literature on crowd
sensing [1]. As a new compelling paradigm, crowd sensing is to perform large-
scale sensing applications using sensors of mobile devices based on the cloud, and
allows mobile devices to be utilized not only for providing information to their
users, but also for sensing tasks. Fruitful applications have been implemented
according to the idea of crowd sensing [2–4].

One of important keys to the success of a crowd sensing system is to moti-
vate more agents to participate crowd sensing platform through incentive mech-
anisms. In recent years, two main streams of incentive mechanism designs have
been investigated: auction-based mechanism and reputation-based mechanism.
In addition to achieve this goal, the platform is obliged to earn enough bene-
fit through transactions in order to keep the system working consistently. For
that, the design of crowd sensing incentive mechanism needs to take care of
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 70–84, 2017.
https://doi.org/10.1007/978-3-319-71150-8_6

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 71

not only the social welfare and revenue but also the profit of transaction plat-
form. The formers have been frequently addressed in the literature [5–7]. Still,
a limited literature has investigated the profit maximization problem in crowd
sensing systems. Han et al. [8] construct a multistage model to maximize plat-
form’s profit by using Lyapunov optimization techniques in stochastic process.
Shah-Mansouri et al. [9] propose a profit maximizing truthful auction mecha-
nism for mobile crowd sensing systems while providing satisfactory rewards to
the smartphone users. Luo et al. [10] apply all-pay auction approach to design
incentive mechanisms, emphasizing on incomplete information, risk-averse agent,
and stochastic population.

In the above studies, the platform’s profit is formulated as the difference
between the revenue and cost of tasks. In this formulation, the profit is actually
shared by the platform and data requesters having different motivations and
behaviors. In contrast to these studies, we propose a novel profit model by lever-
aging the information asymmetry of data requesters and data providers, where
we model the platform’s own profit via commission charges.

In this paper, we model the interactions among data providers, data
requesters, and platform. We define the profit-maximizing problem and design
an incentive mechanism based on algorithms, which meets the constraints of
incentive compatibility, individual rationality, and computational efficiency. Our
contributions are summarized as follows:

– To the best of our knowledge, this is the first model taking profit of plat-
forms into consideration in crowd sensing system from the perspective of an
intermediary.

– We apply the auction-based design pattern and formalize the interactions
between data requesters, data providers, and transaction platforms as a
Bayesian game.

– Discrete mathematical deduction is given to formalize profit-maximizing
problem.

The rest of the paper is organized as follows. In Sect. 2, we model the interactions
of crowd sensing system. In Sect. 3, we define and formulate the maximization
problem of platform’s profit. In Sect. 4, we propose two algorithms to maximize
platform’s profit. In Sect. 5, we evaluate our algorithms based on simulations.
Finally, we conclude the paper with future work in Sect. 6.

2 System Model

In this section, we start with presenting the participants in crowd sensing system.
We then model the crowd sensing system from the perspective of Bayesian game.
Finally, we propose the auction-based incentive mechanism of crowd sensing
system.

72 X. Luo et al.

2.1 Crowd Sensing System

Crowd sensing involves a large group of participants. Categorized by function,
there are three roles in a crowd sensing system: data requesters, data providers,
and a platform. A data requester publishes its tasks on the platform and is
willing to pay for the sensing data. A data provider decides whether to bid for
a task regarding its cost. A platform serves as an intermediary between data
providers and data requesters.

2.2 Basic Definitions

Suppose a crowd sensing system with m data requesters and n data providers
handled by a platform. We assume that a crowd sensing system contains only
one platform. Let M = {1, 2, · · · ,m} and N = {1, 2, · · · , n} denote the sets of
data requesters and providers, respectively.

We model and formalize the auction mechanism between data requesters,
data providers, and the platform as a Bayesian game [11,12]. In a Bayesian
game, every player knows its own type, i.e., the private information of itself, but
only probabilistically of others’ type. For platform, it has neither access to data
requesters’ task value, nor access to data providers’ self-cost.

First, we present our model from the perspective of platform. Let vj ∈ [0, v̄j]
denote the value of task Tj brought by data requester j to the platform, which is
given by probability density function (PDF) fR

j : [0, v̄j] −→ R
+. We assume that

∀vj ∈ [0, v̄j], fR
j (vj) > 0 where fR

j represents a continuous function on [0, v̄j].
The cumulative distribution function (CDF) FR

j : [0, v̄j] −→ [0, 1] corresponding
to fR

j is given by FR
j (vj) =

∫ v̄j

0
fR

j (u)du.
Each data provider i evaluates costs for all tasks in the system, which is

represented by a vector ci : (ci,1, ci,2, · · · , ci,j , · · · , ci,m), where ci,j is the cost
evaluation for task Tj by provider i.

We assume that each cost evaluation is independent and follows the PDF
fW

i,j : [0, ¯ci,j] −→ R
+, so that fW

i,1 , f
W
i,2 , · · · , fW

i,m are mutually independent, where
fW

i denotes the joint density function for the vector costs. Let Vi denote the
space that ci belongs to, defined as Vi = [0, ¯ci,1] × [0, ¯ci,2] × · · · × [0, ¯ci,m]. Since
all tasks are independent, the joint density function is fW

i = fW
i,1×fW

i,2×· · ·×fW
i,m

and the CDF FW
i : Vi −→ [0, 1] corresponding to data provider i is FW

i (ci) =∫
Vci

fW
i (x)dx where Vci = [0, ci,1]× [0, ci,2]×· · ·× [0, ci,m]. The CDF for the cost

of a single task j as FW
i,j : [0, ¯ci,j] −→ [0, 1] is defined as FW

i,j (ci,j) =
∫ ci,j
0

fW
i,j (u)du.

With this formula and independence assumption, we are able to derive the fol-
lowing results, FW

i (ci) =
∏m

j=1 F
W
i,j (ci,j).

Second, we proceed with descriptions related to data requesters and data
providers. For a data requester j, its valuation for the task Tj is only known
to itself. Meanwhile, it does not know others’ valuations or costs, but has prior
knowledge to this game which is others’ distribution functions. Let VRj

represent
the space of incomplete information for data requester: VRj

=
∏m

k=1,k �=j [0, v̄k] ×
∏n

i=1 Vi. We also assume that all estimated values and costs of participants

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 73

are independent random variables. Thus, the joint density distribution function
fRj

=
∏m

k=1,k �=j f
R
k × ∏n

i=1 f
W
i .

Similarly, for each data provider i, the vector ci is the cost of task from
every data requester, only known to the data provider itself. A data provider
knows density distribution functions of all the data requesters and the other data
providers, but does not know their costs or valuations. We use VWi

to denote the
incomplete information for data provider i: VWi

=
∏j=m

j=1 [0, v̄j] × ∏n
k=1,k �=i Vk.

Based on the independence assumption, the joint density distribution for data
provider i is: fWi

=
∏m

j=1 f
R
j × ∏n

k=1,k �=i f
W
k .

Let V denote the entire space for data requesters’ valuations and data
providers’ costs: V =

∏j=m
j=1 [0, v̄j] × ∏n

k=1 Vk.

2.3 Auction Mechanism

Before defining utility functions for data requesters and data providers, we
describe the procedure of auction. Data requester j brings a task Tj to the
platform and offers detailed information about the task and reports its bid ṽj to
the platform according to its valuation vj of the task. After that, data provider
i sees the information of tasks on the platform, submits its bid for task ˜ci,j to
the platform according to its practical cost ci,j . Notice that data provider i only
needs to submit its practical cost to those tasks it is interested in. In the next
step, the platform automatically sets ¯ci,k to close infinite, and the distribution
for ci,k to Dirac distribution for data provider i to those task Tk that it has not
submitted.

Now the platform collects all bids from data requesters and data providers,
which is the profile of the game, represented by

v = (ṽ1, ṽ2, · · · , ṽj , · · · , ṽm, c̃1, c̃2, · · · , c̃i, · · · , c̃n) (1)

For data requester j, we use vj to denote the vector v except its report ṽj

to platform. For data provider i, vj denotes the vector v except its report c̃i.
Having collected all reports, the platform refreshes allocation rules and pay-

ment rules.
Let x represent the allocation rules, which is a matrix of binary variables of

every participants.

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xR
1 xR

2 · · · xR
j · · · xR

m

xW
1,1 xW

1,2 · · · xW
1,j · · · xW

1,m

xW
2,1 xW

2,2 · · · xW
2,j · · · xW

2,m
...

... · · · ... · · · ...
xW

i,1 xW
i,2 · · · xW

i,j · · · xW
i,m

...
...

xW
n,1 xW

n,2 · · · xW
n,j · · · xW

n,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

We denote xR
j as the binary variable for data requester j, xR

j equals to 1
means that data requester j gets the task Tj after the auction, which implies it

74 X. Luo et al.

does not successfully allocate its task to some data providers. Let xR
j equal to

zero: it means that the data requester j does not get the task Tj after the auction
and successfully allocate its task. We use xW

i,j to represent the binary variable
for data provider i of task Tj . Let xW

i,j equal to 1 means that data provider i is
allocated to task Tj after the auction. While xW

i,j equals to 0 means that data
provider i is not allocated to task Tj after the auction.

Let p represent the payment to every participants.

p = (pW
1 , pW

2 , · · · , pW
j , · · · , pW

n , pR
1 , p

R
2 , · · · , pR

j , · · · , pR
m) (3)

where pW
i stands for expected payment from the platform to data provider i

from the platform, and pR
j stands for the expected payment from data requester

j to the platform.
As a result, the pair (p,x) represents the auction mechanism for platform in

a Bayesian game.

3 Problem Formulation

In this section, we develop participants’ utility functions and clarify the con-
straints for formulating the platform profit maximization problem as an opti-
mization problem. Then, we deduce the final expression of the problem by using
mathematical methods.

3.1 Participants’ Utility Functions

For data requester j, it can get a profit of vj if it successfully allocates its task.
So the utility for data requester is

UR
j (vj , ṽj) = EVRj

{vj(1 − xR
j (vj , ṽj)) − pR

j (v)} (4)

For the data provider i, it will cost it ci,j when it is allocated to the task Tj .
Its utility is the difference between platform’s payment and its cost,

UW
i (ci, c̃i) = EVWi

{pR
i (vi, c̃i) −

m∑

j=1

xW
i,jci,j} (5)

3.2 Platform Profit Maximization Problem

Once the platform has collected reports from all participants, it decides the auc-
tion mechanism (p,x). Platform’s profit is hence the difference between payment
from data requesters to the platform and payment from the platform to data
providers.

Up(p,x) = EV {
m∑

j=1

pR
j (v) −

n∑

i=1

pW
i (v)} (6)

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 75

According to the revelation principle, for any Bayesian Nash equilibrium of
an auction mechanism (p,x), there exists an incentive compatible, individually
rational, direct mechanism that yields the seller and bidders to the same expected
utilities as in the original auction mechanism.

Without loss of generality, it means that we can only consider direct truthful
revelation mechanism, in which every participant reports its true type in equi-
librium. Under this circumstance, our auction mechanism design problem can be
greatly simplified. Yet, we still need to ensure that our mechanism follows basic
constraints of auction mechanism design, i.e. incentive compatibility constraint,
individual rationality constraint and allocation constraint.

Incentive compatibility constraint. At the equilibrium, the utility of data
requesters and data providers when reporting their true type is no less than
when not reporting their true types. Therefore, the constraints are

∀i ∈ N,∀u ∈ Vi, U
W
i (ci) ≥ UW

i (u) (7)

∀j ∈ M,∀v ∈ [0, v̄j], UR
j (vj) ≥ UR

j (v) (8)

Individual rationality constraint. The second constraint is that the platform
needs to assure that every participant receives non-negative utility. For data
requesters and the data providers, respectively

∀i ∈ N,UW
i (ci) ≥ 0 (9)

∀j ∈ M,UR
j (vj) ≥ 0 (10)

Allocation constraint. The allocation constraint means that task Tj can be
assigned only to either data requester j or all other data providers.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 = xR
1 +

∑
i∈N xW

i,1

1 = xR
2 +

∑
i∈N xW

i,2
...
1 = xR

m +
∑

i∈N xW
i,n

(11)

Task constraint. In order to increase the chance that a data provider is allo-
cated to a task, we assume that every data provider can be assigned at most one
task. ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

j=1

xW
1,j ≤ 1

m∑

j=1

xW
2,j ≤ 1

...
m∑

j=1

xW
n,j ≤ 1

(12)

76 X. Luo et al.

Now, we can transform Platform’s Profit Maximization Problem into a
Bayesian Nash equilibrium as an optimization problem. The mathematical
expression is given as follows:

maxUp(p,x) = EV {
m∑

j=1

pR
j (v) −

n∑

i=1

pW
i (v)} (13)

s.t. (7), (8), (9), (10), (11), (12)

3.3 Mathematical Deduction

Our deduction begins with the incentive compatibility constraints, namely (7)
and (8). A truth-telling agent will get the maximum profit, which is described
as UR

j (vj) = maxṽj
UR

j (vj , ṽj) = maxṽj
EVRj

{vj(1 − xR
j (ṽj ,vj) − pR

j (ṽj ,vj}.
We discover that UR

j (vj , ṽj) is continuous of vj . Consequently, we can have
its derivation by applying envelop theorem: d

dvj
UR

j (vj) = ∂
∂vj

UR
j (vj , ṽj = vj) =

EVRj
{(1 − xR

j (v))}. Notice that the above term is always non-negative, so the
utility for data requester UR

j (vj) is non-decreasing with vj . Integrating the above
equations, we have: UR

j (vj) = UR
j (0) +

∫ vj

0
EV−0{(1 − xR

j (u,v))}du.
As data provider i can submit its costs to several tasks, it is necessary to

respectively take costs ci,j for each task Tj in partial derivatives. The expression
of data provider i ’s utility is: UW

i (ci) = UW
i (c̄i)+

∑m
j=1

∫ ¯ci,j
ci,j

EVWi
{xW

i,j(u,vi)}du
where c̄i = (¯ci,1, ¯ci,2, · · · , ¯ci,m).

From now on, we apply the integration expression of utility function so as to
satisfy incentive compatibility constraint. In addition, notice that the integrand
terms are always non-negative, the utility of data provider i and data requester
j are consequently both non-negative if the following conditions are met,

∀i ∈ N, UW
i (c̄i) ≥ 0 (14)

∀j ∈ M, UR
j (0) ≥ 0 (15)

Lemma 1. Suppose that x : V −→ R
� maximizes

max EV {
m∑

j=1

{QR
j (vj) − xR

j (v)QR
j (vj)} −

n∑

i=1

{
m∑

j=1

QW
i,j(ci,j)xW

i,j}}

s.t. (11), (12)

with the definition of QR
j (vj) and QW

i,j(ci,j) as follows, then we have maximized
the platform’s profit.

QR
j (vj) = vj − 1 − FR

j (vj)
fR

j (vj)
(16)

QW
i,j(ci,j) =

FW
i,j (ci,j)

fW
i,j (ci,j)

+ ci,j (17)

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 77

QR
j (vj) and QW

i,j(ci,j) are interpreted as virtual valuations of data requester
j and data provider i, which are essential role of Bayesian auction. We can
discover that the virtual valuations QR

j (vj) and QW
i,j(ci,j) consist of two terms:

participant’s cost or valuation of task, and a positive term 1−FR
j (vj)

fR
j (vj)

or FW
i,j (ci,j)

fW
i,j(ci,j)

,
which is only related to participant’s distribution. For platform, it should have
charged vj from data requester j and paid ci,j for data provider i for task Tj , if
it had known their true valuation or cost in advance. Nevertheless, the platform
does not have access to participants’ true types, which gives rise to that the
platform can only charge QR

j (vj) from data requester j, and have to pay QW
i,j(ci,j)

for the data provider i, and we have QR
j (vj) ≤ vj and QW

i,j(ci,j) ≥ ci,j .
Consequently, data requester j is charged less and data provider i is paid

more in the formulation of Bayesian auction, because of incomplete information.
Lemma 1 shows that the platform decides who wins the auction according to
QR

j (vj) and QW
i,j(ci,j), not vj and ci,j .

4 Strategies and Algorithms for Platforms

In this section, we present solutions to the optimization problem (Lemma 1). It
indicates how the transaction platform can insure its maximum profit. First of
all, we study the problem where only one data requester in the system. We then
extend it to the general case of multiple data requesters. For the general case, we
propose the global optimum strategy based on Hungarian algorithm, and a local
optimum strategy with greedy algorithm. Compared with Hungarian algorithm,
the greedy algorithm achieves almost equivalent platform profit, but has much
lower time consumption.

4.1 Basic Case: One Requester and Multiple Providers

When there is only one data requester in the crowd sensing system, the objective
in Lemma 1 is simplified as follows:

max EV {QR
1 (v1) − xR

1 (v)QR
1 (v1) −

∑

i∈N

xW
i,1(v)QW

i,1(ci,1)} (18)

Before solving this problem, we introduce the rejection, in order to ensure that
the platform obtains non-negative profit. In the rejection, a requester with task
v1 is rejected if QR

1 (v1) < 0, since in the case, the platform cannot achieve
non-negative profit.

To solve the problem is equivalent to find the most competitive providers for
the task, mathematically as follows:

j = arg min
i∈{R1,W1,··· ,Wn}

{QR
1 (v1), QW

1,1(c1,1), · · · , QW
n,1(cn,1)} (19)

78 X. Luo et al.

If j = R1, the platform should not delegate the task to any providers since
it has no profit to the platform. If j �= R1, the platform should assign the
task to data provider j so it is guaranteed to get non-negative profit because
QR

1 (v1) ≥ QW
i,1(ci,1).

4.2 General Case: Multiple Requesters and Multiple Providers

We consider the case in which there are multiple requesters as well as tasks.
Similar to the basic case, it is reasonable to apply the rejection on tasks, in
order to ensure the profit of platform. Similarly, in the rejection, a task of data
requester j, which leads to QR

j (vj) < 0 is refused. After the rejection, we can
assure that

∑m
j=1 Q

R
j (vj) is non-negative.

In this case, we have the simplified equivalent problem of Lemma1 as follows:

min EV {
m∑

j=1

xR
j (v)QR

j (vj) +
n∑

i=1

m∑

j=1

QW
i,j(ci,j)xW

i,j} (20)

s.t. ∀j ∈ M,xR
j +

n∑

i=1

xW
i,j = 1

∀i ∈ N,
m∑

j=1

xW
i,j ≤ 1, ∀j ∈ M,xR

j ∈ {0, 1}

∀i ∈ N, j ∈ M,xW
i,j ∈ {0, 1}

As xR
j (v) and xW

i,j are binary variables for data requester j and data provider
i, they can only take the value 0 or 1, our problem can be regarded as a 0–1
integer programming problem [13]. The 0–1 integer programming problem is a
mathematical optimization problem in which some or all variables are restricted
to the set {0, 1}. It is proved to be NP-hard, so that we can hardly expect a
polynomial algorithm [13].

In order to find a polynomial solution, we convert our problem to an assign-
ment problem [14]. An assignment problem is to choose an optimal assignment of
n workers to m jobs assuming that numerical costs are given for each worker on
each job. The optimal assignment is one which minimizes the sum of worker’s cost
for their assigned task [14]. We discover that our optimization problem is very
similar to the assignment problem. Without the term

∑m
j=1 x

R
j (v)QR

j (vj) and
interpret the QW

i,j(ci,j) as cost for each data provider on each task, our optimiza-
tion problem is exactly the assignment problem. This term

∑m
j=1 x

R
j (v)QR

j (vj)
can be interpreted as the sum of costs for data requester to take the tasks. Thus,
we can also treat data providers as workers in the scenario of assignment prob-
lem. As data requester j only has cost QR

j (vj) for task Tj , we need to add virtual
costs as infinite to the task other than task Tj . The following matrix is the input

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 79

to the assignment problem, in which each entry of the matrix represents the cost
for each participant on each job.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

QR
1 (v1) · · · inf · · · inf
inf · · · inf · · · inf
... · · · ... · · · ...

inf · · · QR
j (vj) · · · inf

... · · · ... · · · ...
inf · · · inf · · · QR

m(vm)
QW

1,1(c1,1) · · · QW
1,j(c1,j) · · · QW

1,m(c1,m)
QW

2,1(c2,1) · · · QW
2,j(c2,j) · · · QW

2,m(c2,m)
... · · · ... · · · ...

QW
i,1(ci,1) · · · QW

i,j(ci,j) · · · QW
i,m(ci,m)

... · · · ... · · · ...
QW

n,1(cn,1) · · · QW
n,j(cnj

) · · · QW
n,m(cn,m)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

4.3 Solutions for the General Case

Hereby we propose two solutions for the problem Lemma 1 in the general case.
Recall that the objective is to assign tasks to providers while keeping the maxi-
mum profit of platform.

(1) Hungarian algorithm: As we convert our problem to an assignment prob-
lem, the Hungarian algorithm [15] can be utilized, which is a polynomial
algorithm to solve the linear assignment problem. The key point of Hungar-
ian algorithm is trying to find maximum matching in the bipartite graph
by using zero edges. The time complexity of Hungarian algorithm is O(n4).
See [15] for the detail of Hungarian algorithm.

(2) Greedy algorithm: We present an greedy algorithm in order to reduce
the time consumption. As an approximation algorithm, this greedy algo-
rithm has lower time complexity while not producing the maximum profit
of platform.

Steps of the greedy algorithm greedy approach are illustrated in Algorithm 1
as pseudo-code. The general idea is we continuously find the minimum cost in
the input matrix for those pairs who are not matched.

Although not optimal, this greedy algorithm consumes lower time than the
Hungarian algorithm does. We can prove that the time complexity of greedy
algorithm is O(n2 log n) based on quick sort or merge sort. We present the per-
formance of this two algorithms in Sect. 5.

5 Simulations

To evaluate performance of our proposed algorithms to the platform profit max-
imization problem, we implemented Hungarian algorithm and greedy approach

80 X. Luo et al.

Algorithm 1. Greedy Approach for Lemma 1
Input:

M: Cost matrix
W : data provider set
R: data requester set

Output:
A: matching set
C: total minimum cost

Main Procedure

1: A ← ∅

2: C ← 0
3: while R �= ∅ and W �= ∅ do
4: (i, j) ← arg min M

5: if ri ∈ R and Wj ∈ W then
6: A ← A ∪ {rj , wj}
7: R ← R \ ri
8: W ← W \ wj

9: C ← C + M(i, j)
10: M(i, j) ← ∞
11: end if
12: end while

against the random assignment. The performance metrics include platform profit
ratio, which is profit calculated by different algorithms or strategies divides opti-
mal profit; running time ratio, which is running time by greedy algorithm divides
that of Hungarian algorithm.

We perform three experiments based on simulations. In the experiments, we
randomly generate data collection tasks for data requesters. For each task, its
real cost ci,j follows the uniform distribution unif(10, 30). For all costs, we have
∀i ∈ N, fW

i (ci,j) = 1
20 , F

W
i (ci,j) = ci,j−10

20 . According to Lemma 1, their virtual
costs QW

j (ci,j) considered by the platform are ∀j ∈ M,QW
j (ci,j) = 2ci,j − 10.

For each task, we set its value vj declaimed by its requester follows unif(10, 100).

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Number of data requesters and data providers

R
at

io

Running time ratio
Platform profit ratio

Fig. 1. The running time ratio and the platform profit

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 81

50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

Number of data providers

P
la

tfo
rm

 p
ro

fit
 r

at
io

Hungarian algorithm with rejection
Greeady approach with rejection
Hungarian algorithm
Greedy algorithm
Random assignment

Fig. 2. The platform profit ratio regarding data providers

50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

Number of data requesters

P
la

tfo
rm

 p
ro

fit
 r

at
io

Hungarian algorithm with rejection
Greeady approach with rejection
Hungarian algorithm
Greedy algorithm
Random assignment

Fig. 3. The platform profit ratio regarding data requesters.

For all values, we have ∀j ∈ M,fR
j (vj) = 1

90 , F
R
j (vj) = vj−10

90 . Similarly, their
virtual values QR

j (vj) considered by the platform are ∀j ∈ M,QR
j (vj) = 2vj−100.

Note that each task is generated independently. The experiments are as follows:

– Experiment 1: This experiment evaluates the Hungarian algorithm and the
greedy algorithm in terms of time consumption. We apply the two algorithms
on participants from 50/50 to 500/500 data requesters/providers, and com-
pute the running time ratio and platform profit ratio.

– Experiment 2: This experiments evaluates the two algorithms that we
implement in terms of data providers. In the experiment, we fix the number
of data requesters as 200, and set the number of data providers ranging from
50 to 300. We apply four approaches: Hungarian algorithm with rejection,
Hungarian algorithm, greedy approach with rejection, and greedy approach.
We compute the platform profit ratio, as well as by the random algorithm in
which each task is assigned randomly.

– Experiment 3: This experiments evaluates the two algorithms that we
implement in terms of data requesters. Opposite to Experiment 2, we keep
the number of data provider invariant as 200, and set the number of data
requesters from 50 to 300. We also use the four approaches and compute the
platform profit ratio.

82 X. Luo et al.

Theoretically, the Hungarian algorithm consumes more time than the greedy
algorithm. Figure 1 shows that the later is approximately 10 times faster than
the former, while the platform profit ratio is always close to 1.0, indicating that
these two algorithms achieve similar platform profit. Considering that the profit
obtained by the Hungarian algorithm is theoretically the optimal solution, we
conclude that the greedy algorithm can achieve approximate optimal perfor-
mance with significantly less time consumption.

The rejection process ensures that the platform can achieve positive benefits.
Figures 2 and 3 show that for both Hungarian algorithm and our greedy algo-
rithm, one with rejection performs slightly better than without rejection. The
Hungarian algorithm achieves the best performance, ignoring time consumption,
while the greedy algorithm can achieve suboptimal profit when the numbers of
providers and requester are close. We conclude that the Hungarian algorithm
with rejection is the optimal option for the platform to get maximal profit.
When time consumption is concerned, the greedy algorithm with rejection is
preferred.

6 Conclusion

In our paper, we studied the incentive mechanism in crowd sensing system.
Because the role of platform in the workflow of the crowd sensing system needs
to be considered separately from requesters, we built a platform’s profit model by
formulating the transactions between data requesters and providers as a Bayesian
game. After mathematical deductions, we formalized an 0–1 integer program-
ming problem. Realizing the similarity of assignment problem, we transformed
the programming program and proposed two solutions, i.e., the optimal solution
and the greedy solution (suboptimal and faster).

Future work will be extending the model in terms of long-term profit. The
time period concept would be taken in to account to describe every “round” of
transactions in long-term mode.

Acknowledgements. This research was supported by 863 under grant No.
2015AA015802, NSF of China under grant No. U1401253 and No. 61373155.

Appendix: Proof of Lemma1

Proof. The original problem that we formulated is as follows,

maxUp(p,x) = EV {
m∑

j=1

pR
j (v) −

n∑

i=1

pW
i (v)} (22)

s.t. (7), (8), (9), (10), (11), (12)

We first have EV {∑m
j=1 p

R
j (v)} =

∑m
j=1

∫ v̄j

0
EVRj

{pR
j (u,vj}fR

j (u)du.

On the Profit-Maximizing for Transaction Platforms in Crowd Sensing 83

For data requester j, we discover EVRj
{pR

j (u,vj} = EVRj
{u(1−xR

j (u,vj)}−
UR

j (u) according to its utility function. Recalling in incentive compatibility con-
straint, we manage to transform utility function in to following integration form,
UR

j (u) = UR
j (0) +

∫ u

0
EVRj

{(1 − xR
j (u,vj)}du

We then substitute the term in the integration with the above two equations.

EV {
m∑

j=1

pR
j (v)} =

m∑

j=1

∫ v̄j

0

EVRj
{u(1 − xR

j (u,vj) − UR
j (u)}fR

j (u)du

=
m∑

j=1

EV {u(1 − xR
j (u,vj) − UR

j (0)}

−
m∑

j=1

∫ v̄j

0

∫ u

0

EVRj
{(1 − xR

j (x,vj)}dxfR
j (u)du

(23)

We can apply integration by parts (f ′ = fR
j (u), g =

∫ u

0
EVRj

{(1 −
xR

j (x,vj)}dx) to the second term and rewrite the above equation,
∑m

j=1

∫ v̄j

0

∫ u

0
EVRj

{(1 − xR
j (x,vj)}dxfR

j (u)du =
∑m

j=1 EV { 1−FR
j (u)

fR
j (u)

(1 −
xR

j (u,vj)}.
So, we have rewrite the payment of data requesters with definition of

QR
j (vj) = vj− 1−FR

j (vj)

fR
j (vj)

: EV {∑m
j=1 p

R
j (v)} = EV {∑m

j=1{QR
j (vj)−xR

j (v)QR
j (vj)−

UR
j (0)}.

The deduction of data providers’ payment is almost the same. We first have:
EV {∑n

i=1 p
W
i (v)} =

∑n
i=1

∫
Vi

EVWi
{pW

i (v)}fW
i (u)du. Apply again integration

form of utility function in individual rationality constraint to substitute the term
in the integration.

EV {
n∑

i=1

pW
i (v)} =

n∑

i=1

∫

Vi

{UW
i (u) + EVWi

{
m∑

j=1

xW
i,jci,j}}fW

i (u)du

=
n∑

i=1

EV {
m∑

j=1

xW
i,jci,j + UW

i (c̄i)}

−
n∑

i=1

∫

Vi

m∑

j=1

∫ ¯ci,j

ui,j

EVWi
{xW

i,j(x,v)}dx}fW
i (u)du

(24)

The second term needs to simplify further. Replace Vi and fW
i by their defini-

tion and apply integration by parts for every components in summation and fW
i,j ,

and the results is as follows: EV {∑n
i=1 p

W
i (v)} =

∑n
i=1 EV {∑m

j=1

FW
i,j (cj)

fW
i,j(cj)

xW
i,j +

∑m
j=1 x

W
i,jci,j + UW

i (c̄i)}. Let QW
i,j(ci,j) represent FW

i,j (ci,j)

fW
i,j(ci,j)

+ ci,j , we have

EV {∑n
i=1 p

W
i (v)} =

∑n
i=1 EV {∑m

j=1 Q
W
i,j(ci,j)xW

i,j +UW
i (c̄i)}. In order to satisfy

the individual rationality constraint and maximizing the profit of platform, our

84 X. Luo et al.

best choice is set all UW
i (ci) and UR

j (0) equal to zero according to Eqs. (14)
and (15).

The final problem of the platform’s profit is as follows.

max EV {
m∑

j=1

{QR
j (vj) − xR

j (v)QR
j (vj)} −

n∑

i=1

{
m∑

j=1

QW
i,j(ci,j)xW

i,j}} (25)

s.t. (11), (12)

References

1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

2. Capponi, A., Fiandrino, C., Kliazovich, D., et al.: A cost-effective distributed
framework for data collection in cloud-based mobile crowd sensing architectures.
IEEE Trans. Sustain. Comput. 2(1), 3–16 (2017)

3. Kalejaiye, G.B., Orefice, H.R., Moura, T.A., et al.: Frugal crowd sensing for bus
arrival time prediction in developing regions. In: 2017 IEEE/ACM Second Interna-
tional Conference on Internet-of-Things Design and Implementation (IoTDI), pp.
355–356. IEEE (2017)

4. Aly, H., Basalamah, A., Youssef, M.: Automatic rich map semantics identification
through smartphone-based crowd-sensing. IEEE Trans. Mob. Comput. 16, 2712–
2725 (2016)

5. Fan, Y., Sun, H., Liu, X.: Truthful incentive mechanisms for dynamic and heteroge-
neous tasks in mobile crowdsourcing. In: 2015 IEEE 27th International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 881–888. IEEE (2015)

6. Wei, Y., et al.: Truthful online double auctions for dynamic mobile crowdsourc-
ing. In: 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE
(2015)

7. Wen, Y., Shi, J., Zhang, Q., et al.: Quality-driven auction-based incentive mecha-
nism for mobile crowd sensing. IEEE Trans. Veh. Technol. 64(9), 4203–4214 (2015)

8. Han, Y., Zhu, Y.: Profit-maximizing stochastic control for mobile crowd sensing
platforms. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS), pp. 145–153. IEEE (2014)

9. Shah-Mansouri, H., Wong, V.W.S.: Profit maximization in mobile crowdsourcing:
a truthful auction mechanism. In: 2015 IEEE International Conference on Com-
munications (ICC), pp. 3216–3221. IEEE (2015)

10. Luo, T., Tan, H.P., Xia, L.: Profit-maximizing incentive for participatory sensing.
In: 2014 Proceedings of IEEE INFOCOM, pp. 127–135. IEEE (2014)

11. Harsanyi, J.C.: Games with incomplete information played by Bayesian players,
I–III: Part I. The basic model. Manag. Sci. 50(12 supplement), 1804–1817 (2004).
MLA

12. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
13. Johnson, E.L., Kostreva, M.M., Suhl, U.H.: Solving 0–1 integer programming prob-

lems arising from large scale planning models. Oper. Res. 33(4), 803–819 (1985)
14. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soci.

Ind. Appl. Math. 5(1), 32–38 (1957)
15. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist.

(NRL) 2(12), 83–97 (1955)

A New Approximation Algorithm
for the Maximum Stacking Base Pairs Problem
from RNA Secondary Structures Prediction

Aizhong Zhou1, Haitao Jiang2(B), Jiong Guo1, and Daming Zhu2

1 School of Computer Science and Technology and School of Mathematics
and System Science, Shandong University, Jinan, People’s Republic of China

398239146@qq.com, jguo@sdu.edu.cn
2 School of Computer Science and Technology, Shandong University,

Jinan, People’s Republic of China
{htjiang,dmzhu}@sdu.edu.cn

Abstract. This paper investigates the problem of maximum stacking
base pairs from RNA secondary structure prediction. The basic version
of maximum stacking base pairs problem as: given an RNA sequence, to
find a maximum number of base pairs where each base pair is involved
in a stacking. Ieong et al. showed this problem to be NP-hard, where the
candidate base pairs follow some biology principle and are given implic-
itly. In this paper, we study the version of this problem that the candidate
base pairs are given explicitly as input, and present a new approxima-
tion algorithm for this problem by the local search method, improving
the approximation factor from 5/2 to 7/3. The time complexity is within
O(n14), since we adopt 1-substitution and special 2-substitutions in the
local improvement steps.

1 Introduction

RNA are versatile molecules. To understand the functions of RNAs in biological
processes, we first need to understand their structures. An RNA folds into a
three dimensional structure by forming hydrogen bonds between nonconsecutive
bases that are complementary, such as the Watson-Crick pairs G-C and A-U
and the wobble pair G-U. The primary structure of an RNA is the sequence
of nucleotides in its single-stranded polymer. The collection of base pairs in the
tertiary structure is the secondary structure. The three-dimensional arrangement
of the atoms in the folded RNA molecule is the tertiary structure. The primary
structure can be used to establish the secondary structure through the use of
simple, robust rules of secondary folding. Next, the secondary structure can be
used to predict the tertiary contacts in the structure, following again simple
tertiary folding rules.

Actually, the secondary structure can tell us where there are additional con-
nections between the bases, and where the RNA molecule could be folded. The
folding of RNA is hierarchical, since secondary structure is much more stable
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 85–92, 2017.
https://doi.org/10.1007/978-3-319-71150-8_7

86 A. Zhou et al.

than tertiary folding structure [1], which means the tertiary folding would obey
the secondary structure mostly. Since the 3-dimensional structure determines
the function of the RNA to some extent, predicting the secondary structure of
RNA becomes a key problem to study RNA in a larger and deeper scope.

The computational study of RNA secondary structure prediction began in
1978 by Nussinov et al. [2], but this problem is still not well solved now. It can
be very hard to predict the secondary structure when pseudoknots do exist in
some RNAs. Lyngsø and Pedersen [8] have proven that determining the optimal
secondary structure possibly with pseudoknots is NP-hard under special energy
functions, and Akutsu [9] has shown that it remains NP-hard, even if the sec-
ondary structure is required to be planar. The pseudoknot is composed of two
interleaving base pairs that we arrange the RNA sequence in a linear order.
There are a lot of positive works where there are no pseudoknot. [2–7] have
computed the optimal RNA secondary structure in O(n3) time and O(n2) space
by the method of dynamic programming. And even when the size of evaluated
internal loops is bounded by k (a commonly used heuristic), the time complexity
of internal loop evaluation is O(kn2) in [7]. Akutsu in [9], Rivas and Eddy in [10],
and Uemura et al. in [11] have presented polynomial-time algorithm when the
types of pseudoknots are limited.

As an alternative, the set of candidate base pairs may be given explicitly
as input, because there could be additional conditions from comparative analy-
sis which prevent two bases forming a pair. It would generalize the maximum
stacking base pairs problem with explicit base pairs, so the problem remains NP-
hard. Jiang [15] improved the approximation factor for the maximum stacking
base pairs problem with explicit base pairs to 5

2 . The problem is similar to the
maximum base pairs stackings problem in Zhou [17]. The difference between the
two problems is that this problem calculates the number of base pairs but the
problem in [17] calculates the number of stackings. Both of these two problems
use the technique of local search, but the performance analysis are different.

In this paper, we devise a new approximation algorithm for the maximum
stacking base pairs problems with explicit base pairs. The approximation factor
reaches to 7

3 , and the time complexity is O(n14).

2 Preliminaries

Let S = s1s2 · · · sn be an RNA sequence of n bases. A secondary structure of S
is a set of base pairs (si1 , sj1), (si2 , sj2), . . . , (sir , sjr), where sik +2 ≤ sjk for all
k = 1, · · · , r. Two base pairs, such as (si, sj) and (si+1, sj−1) with i + 4 ≤ j, are
adjacent. A base pair stacking is constitute by two adjacent base pairs. A helix
of length q, Hq, is composed of q consecutive base pairs (si, sj), (si+1, sj−1), . . . ,
(si+q−1, sj−q+1), denoted by Hq = (si, si+1, . . . , si+q−1; sj−q+1, sj−q, . . . , sj). Let
Hα be the segment of {si, si+1, . . . , si+q−1} of H, symmetrically, let Hβ be the
segment of {sj−q+1, sj−q, . . . , sj } of H. Let BH be the set of bases which can

A New Approximation Algorithm for the Maximum Stacking Base Pairs 87

construct the helix H, and let B
′
H be the set of bases { si−1, si+q, sj−q, sj+1}.

Also denote the base pair (si, sj) and (si+q−1, sj−q+1) be the two terminal base
pair of helix Hq. Since each base pair should be in stacking, the length of each
helix is at least 2.

Now we present the formal definition of the problem studied in this paper.
Problem Description: Maximum Stacking Base Pairs.
Input: An RNA sequence S, and a set of candidate base pairs BP .
Output: A set of chosen base pairs to constitute stackings with maximum num-
ber of base pairs and no two base pairs share one common base (An example
shows in Fig. 1).

Fig. 1. We can choose the base pairs of (s1, s5), (s2, s4), (s6, s12), (s7, s11), (s8, s10), and
the maximum stacking base pairs is 5. The base pair (s5, s13) can not be chosen because
the base s5 has been chosen. We also can not choose base pair (s5, s13) instead of (s1, s5)
since the base pair (s2, s4) should be in a stacking.

3 Algorithm Description

In this section, we will show the details of our algorithm. The main idea of our
algorithm is a local search method. Firstly, we need to obtain an initial solution.
After that, we will perform the following 3 operations of some 1-substitutions
and some special 2-substitutions to obtain more base pairs in stackings. A base
is free if it is not involved in any base pairs we have chosen, otherwise, it is
occupied. The algorithm keeps T , a set of base pairs, as the current solution.

– Operation 1©: Find a helix Hq, replace the q base pairs in T by other q′(q′ > q)
base pairs, all of which are in stackings.

– Operation 2©: Find two helices H2 and Hq, replace the 2 base pairs of the
helix H2 and one terminal base pair of Hq by other q′(q′ > 3) base pairs, all
of which are in stackings.

– Operation 3©: Find two helices H1
2 and H2

2 of length 2, replace the 4 base
pairs of helices H1

2 and H2
2 by other q′(q′ > 4) base pairs, all of which are in

stackings.

88 A. Zhou et al.

Algorithm 1. Preprocessing
1: Repeat whenever possible: Find any helix H of length q (4 ≤ q ≤ 11) where all

bases in BH are free and put H in T .
2: Repeat whenever possible: Find any helix H of length 3 where all bases in BH are

free and put H in T .
3: Repeat whenever possible: Find any helix H of length 2 where all bases in BH are

free and put H in T .

Algorithm 2. local improvement
1: Apply the operation 1© to a helix H in T until we can not do operation 1© any

more.
2: Apply the operation 2© to the two helices in T until we can not do operation 2©

any more.
3: Apply the operation 3© to the two helices of length 2 in T until we can not do

operation 3© any more.

Theorem 1. The time complexity of Algorithm 1 and Algorithm 2 is O(n14).

Proof. In the algorithm 1, to generate an initial feasible solution, we search for
long helices of length at most 11. There are at most O(n) such helices and it
takes O(n) time to find each helix. So the time complexity of algorithm 1 is
O(n2).

In the algorithm 2, we will do 3 types of operations to the initial feasible
solution from algorithm 1. Since a helix H of length q will destroy at most
2 ∗ q + 4 base pairs. Applying the operation 1© needs to find how many helices
can be formed by these 2q+4 bases at the same time. These 2q+4 bases at most
constitute (2q + 4)/2 helices, and it takes O(n) time to constitute each helix. So
the time complexity of operation 1© is O(n14) time. Do the operation 2© to an
H2 and an Hq(q > 2), since we just think one terminal base pair of Hq, so it will
at most constitute 4 helices. Also it will have at most O(n2) such two helices.
the time complexity of operation 2© is O(n6) Do the operation 3© to two H2s,
there are 8 bases in the BH of the two helices and other 8 bases adjacent to
them may be useful. These 16 bases can at most constitute 8 helices and there
are at most O(n2) such two helices. and the time complexity of operation 3© is
O(n10).

Therefore the time complexity of our algorithm is O(n14).

4 Performance Analysis

To analyze the performance of our algorithm, we need to compare the output of
our algorithm to the optimal solution. Let B∗ = (sx, sy) be one base pair in the
optimal solution. We say the base pair B∗ is destroyed by helix H if BH contains
one base of BT ∗ , that the T ∗ is the stacking in optimal solution and contains
the base of sx or sy. Even if the base pair B∗ is also in our solution. B∗ can be
destroyed by at most 4 helices of our algorithm. Since a base pair (si, sj) can be
in two continuous stackings of (si−1, si; sj , sj+1) and (si, si+1; sj−1, sj).

A New Approximation Algorithm for the Maximum Stacking Base Pairs 89

4.1 The Analysis of Approximation Performance Ratio

Lemma 1. A helix H of length q, it will be at most 2∗q+4 base pairs destroyed
by H.

Proof. The proof is same to the Lemma 1 in [17], we omit the proof here.

Let WSH be the total weight of base pairs in optimal solution destroyed by
helix H. B∗ is singly destroyed if B∗ just be destroyed by one helix H of our
solution and then we assign the weight 1 to the WSH . B∗ is multiply destroyed
if B∗ is multiply destroyed by k(k > 1) helices H1, H2,..., and Hk, then we
assign a weight of 1/k to WSH1 , WSH2 ,..., and WSHk . From our algorithm, B∗

will be chosen in our solution or be destroyed by our solution. We say a helix
Hq is safe, if WSHq

≤ 7
3 ∗ q; otherwise it is unsafe.

Lemma 2. A helix Hq(q > 2), we can get from our algorithm finally, then Hq

must be safe.

Proof. From Lemma 1, there are at most 2 ∗ (q + 2) base pairs destroyed by the
helix Hq. Let k be the number of base pairs singly destroyed by Hq. Since we
can not do the Operation 1©, so it must be k ≤ q. So we can get that:

WSH ≤ k ∗ 1 + (2 ∗ (q + 2) − k)
2

≤ q + 2 +
k

2
≤ 3

2
∗ q + 2 <

7
3

∗ q; (1)

So each helix Hq(q > 2) must be safe.

We can also get that: When q = 2 and k ≤ 1, WSH2
2 = 8+k

4 ≤ 9
4 < 7

3 ; and
when q = 2 and k = 2, WSH2

2 = 8+k
4 ≤ 5

2 > 7
3 .

Lemma 3. A helix Hq(q ≥ 2), if two base pairs multiply destroyed by Hq and
other two helices, then this helix Hq must be safe.

Proof. Let B1 and B2 be the two base pairs multiply destroyed by Hq and other
two helices. And B1 and B2 will both distribute weight 1

3 to WSH .

WSH ≤ k ∗ 1 +
2 ∗ 1

3
+

(2 ∗ (q + 2) − 2 − k)
2

≤ q +
5
3

+
k

2

≤ 3
2

∗ q +
5
3

≤ 7
3

∗ q; (2)

So in this situation, the Hq must be safe.

Lemma 4. A helix Hq, if one base in BHq

⋃
B

′
Hq

is not in optimal solution,
then Hq must be safe.

Proof. Because one base in BHq

⋃
B

′
Hq

is not in optimal solution, then at most
2 ∗ q + 3 base pairs in optimal solution destroyed by Hq. Let k(k ≤ q) be the
number of base pairs simply destroyed by Hq. Then

WSHq
≤ k +

2 ∗ q + 3 − k

2
≤ q +

3
2

+
k

2
≤ 3

2
∗ q +

3
2

≤ 7
3

∗ q; (3)

So the Hq is safe.

90 A. Zhou et al.

From Lemmas 2 and 3, only the helix H2 that at most one base pair can
assign weight w(w ≤ 1/3) to the WSH2 may be unsafe.

– Unsafe helix H
′
2: One base pair assigns weight w to the WSH2 ≤ 29

6 and the
H2 is unsafe.

– Unsafe helix H
′′
2 : No base pair assigns weight w to the WSH2 ≤ 5 and the

H2 is unsafe.

Lemma 5. Helices H1
2 and H2

2 in our solution finally are both unsafe, then H1
2

and H2
2 can not both destroy one base pair B∗.

Proof. Because H1
2 and H2

2 are unsafe, then there will be 2 base pairs simply
destroyed by H1

2 and 2 base pairs simply destroyed by H2
2 . And the base pair

B∗ must just be destroyed by H1
2 and H2

2 (from Lemma 3). Then we can do
the operation 2© to the H1

2 and H2
2 . This contradicts to the H1

2 and H2
2 in our

solution finally.

To deal with the unsafe helices, we think the unsafe helices with other helices
together as a whole, denote as W . Let AWH be the aggregate of helix H ′ that
H and H ′ both destroy one base pair B∗.

We will constitute the each whole as follows:

– Whole type 1©: Helix H and all the helices in AWH are safe, then helix H is
a whole.

– Whole type 2©: Helix H is safe and some helices in AWH are unsafe, then
these unsafe helices and H together is a whole.

Let the safe helix be the center helix of the whole. From Lemmas 4 and 5,
one safe helix is definitely in one whole and one unsafe helix can be in one or
more wholes. Similarly, let Wi be the whole containing i base pairs and WSW

be the total weight of the whole W .

Lemma 6. For a Wq, if the length of center helix j ≥ 4 in Wq, then WSWq
≤

7
3 ∗ q.

Proof. If the Wq is whole type 1©, from Lemma 2, WSWq
= WSHj

≤ 7/3 ∗ q. If
the Wq is whole type 2©, then the key is to know how many unsafe helices are
in the whole Wq. Since 3 base pairs in optimal solution concerned with Wq will
be destroyed by at most two unsafe helices H

′
2, and each such 2 base pairs will

be destroyed by at most one helix H
′′
2 . Let r1 be the number of H

′
2, r2 be the

number of H
′′
2 and k(k ≤ j) be the number of base pairs simply destroyed by

Hj , then

r1 ∗ 3
2

+ r2 ∗ 2 ≤ 2 ∗ j + 4 − k; (4)

q = j + 2 ∗ (r1 + r2); (5)

A New Approximation Algorithm for the Maximum Stacking Base Pairs 91

So to the whole Wj , we can get:

WSWq
≤ 29r1

6
+ 5r2 + k +

2j + 4 − k − r1
2

2
+

r1
2

∗ 1
3

≤ 29r1
6

+ 5r2 + j + 2 +
k

2
− r1

12
; (6)

From (4), (5), (6) and j ≥ 4, we can get WSWq
≤ 7

3 ∗ q.

Lemma 7. A whole Wq, if the length of center helix is 3 in Wq, then WSWj
≤

7
3 ∗ q.

Proof. If the Wq is whole type 1©, from Lemma 2, WSWq
= WSH3 ≤ 7

3 ∗ q. If
the Wj is whole type 2©, then the key is to know how many unsafe helices are
in the whole Wq. Denote the center helix H3 = (si, si+1, si+2; sj−2, sj−1, sj),
and let the {si−1, si, si+1, s − i + 2} be the α segment of H3, similarly,
{sj−3, sj−2, sj−1, sj , sj+1} be the β segment of H3. Let k(k ≤ 3) be the number
of base pairs simply destroyed by H3, since some unsafe helices are in Wj , then
k at most be 1.
(1) k = 1 and assume the base in α segment, then at most 3 base pairs can be
multiply destroyed by other helices from α segment, and at most 5 base pairs
can be multiply destroyed by other helices from β segment. Then there are at
most one H

′′
2 or two H

′
2 from α segment. And there are at most two H

′′
2 or one

H
′′
2 and two H

′
2 from β segment.

WSWq

q
≤ 5 + 5 ∗ 2 + 1 + 8 ∗ 1

2

2 + 2 ∗ 2 + 3
=

20
9

<
7
3
; (7)

(2) k = 0 and both of the α segment and β segment are at most 5 base pairs
multiply destroyed by H3 and other helices. Both of the two segments at most
two H

′′
2 or one H

′′
2 and two H

′
2.

WSWq

q
≤ 5 ∗ 2 + 5 ∗ 2 + 10 ∗ 1

2

2 ∗ 2 + 2 ∗ 2 + 3
=

25
11

<
7
3
; (8)

So for a Wq, if the length of center helix is 3 in Wq, then WSWq
≤ 7

3 ∗ q.

Lemma 8. A whole Wq, if all the length of helices in the whole is 2, then
WSWq

≤ 7
3 ∗ q.

Proof. The proof is also similar to the Lemma 6, we omit due to space constraint.

Theorem 2. Our algorithm approximates the maximum stacking base pairs
within a factor 7

3 .

Proof. From Lemmas 6, 7 and 8, all the whole Wq satisfy WSWq
≤ 7

3 ∗ q. So
each helix satisfies WSH

q
′ ≤ 7

3 ∗ q
′
. Then we are done.

92 A. Zhou et al.

References

1. Tinoco Jr., I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293, 271–281 (1999)
2. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop

matchings. SIAM J. Appl. Math. 35(1), 68–82 (1978)
3. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure

of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980)
4. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using

thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)
5. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math.

Biol. 46, 591–621 (1984)
6. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-

quence problems. SIAM J. Appl. Math. 45, 810–825 (1985)
7. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of interval loops in

RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)
8. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based mod-

els. J. Comput. Biol. 7(3/4), 409–428 (2000)
9. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-

diction with pseudoknots. Discrete Appl. Math. 104(1–3), 45–62 (2000)
10. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-

diction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)
11. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars

for RNA structure prediction. Theoret. Comput. Sci. 210(2), 277–303 (1999)
12. Tinoco Jr., I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C., Crothers,

D.M., Gralla, J.: Improved estimation of secondary structure in ribonucleic acids.
Nature New Biol. 246, 40–42 (1973)

13. Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Predicting RNA sec-
ondary structure with arbitrary pseudoknots by maximizing the number of stacking
pairs. J. Comput. Biol. 10, 981–995 (2003)

14. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27836-8 77

15. Jiang, M.: Approximation algorithms for predicting RNA secondary structures
with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(2),
323–332 (2010)

16. Berman, P.: A d/2 approximation for maximum weight independent set in d-Claw
Free Graphs. Nordic J. Comput. 7, 178–184 (2000)

17. Zhou, A., Jiang, H., Guo, J., Feng, H., Liu, N., Zhu, B.: Improved Approximation
algorithm for the maximum base pair stackings problem in RNA secondary struc-
tures prediction. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp.
575–587. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4 48

https://doi.org/10.1007/978-3-540-27836-8_77
https://doi.org/10.1007/978-3-540-27836-8_77
https://doi.org/10.1007/978-3-319-62389-4_48

Approximation Algorithm and Graph
Theory

Approximation Algorithms for the Generalized
Stacker Crane Problem

Jianping Li(B), Xiaofei Liu, Weidong Li, Li Guan, and Junran Lichen

Department of Mathematics, Yunnan University,
Kunming 650091, People’s Republic of China

{jianping,weidong,guanli}@ynu.edu.cn, lxfjl2016@163.com,

hebe jie@sina.com

Abstract. The stacker crane problem is treated as one modified arc
routing problem. This problem is to find some route for stacker cranes on
a construction site such that all arcs in a mixed graph G = (V,E ∪A;w)
must be traversed at least once. In the real literature, since many dif-
ferent building materials must be handled, we consider the generalized
stacker crane (GSC) problem, and the objective of this new problem is
to determine a minimum weighted tour C traversing each arc e (in A) a
number of times between the lower demand and upper demand.

In this paper, we design two approximation algorithms for the GSC
problem. The first algorithm uses some exact algorithm to solve the inte-
gral circulation problem, and the second algorithm uses some approx-
imation algorithm to solve the metric traveling salesman problem.
Combining these two approximation algorithms, we can design a 9/5-
approximation algorithm to solve the GSC problem.

Keywords: Approximation algorithm · Stacker crane problem ·
Lower/upper demands

1 Introduction

The arc routing problem determines a minimum weighted traversal of a set
of required edges and/or arcs of a graph. Such problems are encountered in
a variety of practical situations, such as road or street maintenance, garbage
collection, mail delivery, school bus routing, and meter reading. Guan [4] was
the first to propose the Chinese postman problem (CPP), and the CPP is tasked
with finding a minimum weighted tour traversing all edges in a weighted graph
at least once. Two close problems related to the CPP are the directed Chinese
postman problem (DCPP) and the mixed Chinese postman problem (MCPP),
respectively. The first one is a variant of the CPP on digraphs, and the second one
is a generalization of the CPP. Even though Edmonds and Johnson [1] designed
two combinatorial algorithms to solve the CPP and the DCPP, respectively,
Papadimitriou [7] showed that the MCPP becomes NP-complete. As far as we
have known, the best approximation algorithm to solve the MCPP is a 3/2-
approximation algorithm [8].
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 95–102, 2017.
https://doi.org/10.1007/978-3-319-71150-8_8

96 J. Li et al.

Another practical generalization of the CPP is the rural postman problem
(RPP) that was first presented by Orloff [6], which is tasked with finding a
minimum weighted tour traversing each of the required edges in a weighted graph
at least once. Lenstra and Rinnooy Kan [5] proved that the RPP is NP-hard, and
then Frederickson [3] designed a 3/2-approximation algorithm to solve it. The
stacker crane problem which was originally addressed by Frederickson et al. [2]
is a modified version of the RPP that requires that a set of edges be traversed
at least once in a given direction. Frederickson et al. [2] proved the fact that
the stacker crane problem is NP-hard and then presented a 9/5-approximation
algorithm to solve it.

In the real literature, each workplace of construction site needs many different
kinds of building materials for performing construction mission. This means that
the stacker crane must travel in certain directions at least several times to finish
the hauling task. At the same time, if the building materials are not used up
on a single day, then these unused materials may be stored in the workplace
and then used the next day. However, for security reasons, the construction site
workplace cannot store the building materials, so the stacker crane cannot travel
in certain directions more than a certain number of times.

Motivated by the proceeding problems, we address the generalized stacker
crane problem (GSC) defined as follows. Given a weighted mixed graph G =
(V,E ∪ A;w; l, u), we have a weight function w : E ∪ A → R+ and two integral
functions l, u : A → Z+, satisfying l(a) ≤ u(a) for each arc a ∈ A. If an arc
a = 〈x, y〉 ∈ A, then there is an edge e = (x, y) ∈ E to satisfy w(〈x, y〉) =
w(x, y). We are asked to find a tour C traversing each arc a in A at least
l(a) and at most u(a) times, and the objective is to minimize the total weight
w(C) =

∑
e∈E t(e)·w(e)+

∑
a∈A t(a)·w(a), where t(e) and t(a) are the numbers of

times that the tour C traverses an edge e and an arc a, respectively. Especially,
when l(a) = 1 holds for each arc a in the mixed graph G, the GSC problem
becomes the stacker crane problem.

If there is no path from vertex xi to vertex xj on G, where any two arcs
〈xi, yi〉, 〈xj , yj〉 ∈ A, then there is no feasible tour of mixed graph G. In this
paper, we may assume that a mixed graph G is strongly connected. An illus-
tration as shown in Fig. 1, we define a triple (w(a), l(a), u(a)) to represent the
weight, lower bound and upper bound for each arc a ∈ A and w(e) for each edge
e ∈ E.

Fig. 1. (a) a graph G of the GSC problem and (b) a feasible tour of G.

Approximation Algorithms for the Generalized Stacker Crane Problem 97

Our paper is structured as follows. In Sect. 2, using an exact algorithm to
solve the integral circulation problem, we construct an approximation algorithm
GSC1 to solve the GSC problem. In Sect. 3, using an approximation algorithm
to solve the metric traveling salesman problem, we construct another approx-
imation algorithm GSC2 to solve the GSC problem. In Sect. 4, combining the
two approximation algorithms GSC1 and GSC2 to produce a better tour better
tour, we design a 9/5-approximation algorithm GSC9/5 for the GSC problem as
expected. In Sect. 5, we state our conclusion and direction for future work.

2 Algorithm GSC1

In this section, using an exact algorithm to solve the integral flow problem, we
design an approximation algorithm GSC1 to solve the GSC problem. In detail, for
a mixed graph G as an instance of the GSC problem, using the GSC1 algorithm,
we construct a feasible tour C to satisfy w(C) ≤ 3 · OPT − 2 · ∑a∈A w(a) · l(a),
where OPT is the value of an optimal tour in G.

We use the following strategy in designing an approximation algorithm GSC1.
First, construct an auxiliary network D = (V ;AD; lD, uD;wD) from a mixed
graph G = (V,E ∪ A;w; l, u), where AD = {〈x, y〉, 〈y, x〉|(x, y) ∈ E}, and then
define lower bound function lD(·), upper bound function uD(·) and length weight
function wD(·) on AD as follows:

lD(a) =
{

l(a) for an arc a ∈ A,
0 for an arc a ∈ AD − A.

uD(a) = ∞, for an arc a ∈ AD.
wD(a) = w(x, y), for an arc a = 〈x, y〉 ∈ AD − A.

Using some algorithm to find an integral circulation flow f in D, we consider
a reduced digraph D[f]. If the reduced digraph D[f] is not strongly connected,
then we may find an edge subset E1 from E with minimum-weight such that
reduced mixed graph G[f ∪E1] is strongly connected. Finally, construct a mixed
Eulerian tour C from the mixed graph G[f ∪ E1]. Algorithm GSC1 is formally
described in Algorithm 1.

For convenience, let C∗ be an optimal tour of G in the proof of following
theorem, where the C∗ traverses each arc a in A at least l(a) times and w(C∗) =
OPT the value of an optimal tour in the mixed graph G. And let C(m,n) be
the running time of the algorithm to solve the minimum cost integral circulation
problem.

Theorem 1. For a mixed graph G = (V,E ∪ A;w; l, u) for the GSC problem,
Algorithm GSC1 can produce a feasible tour C, satisfying

w(C) ≤ 3 · OPT − 2 ·
∑

a∈A

w(a) · l(a) (1)

and Algorithm GSC1 runs in time C(m,n).

98 J. Li et al.

Algorithm 1. GSC1

Input: A mixed graph G = (V,E ∪ A;w; l, u), satisfying l(a) ≤ u(a) for each arc
a ∈ A.
Output: A feasible tour C.

1: Construct a new network D = (V ;AD; lD, uD;wD) from a mixed graph G = (V,E∪
A;w; l, u) as mentioned-above.

2: Determine a minimum-cost integral circulation flow f on D.
3: If digraph D[f] is strongly connected, we can construct an Eulerian tour C from

the mixed graph D[f], and output C, stop.
4: Find an edge subset E1 from E with minimum-weight such that the reduced graph

G[f ∪ E1] is strongly connected.
5: Determine a directed Eulerian tour Ci on each strongly connected components Gi

of G[A1], where A1 = {〈x, y〉, 〈y, x〉|(x, y) ∈ E1}.
6: Using the integral circulation f and these directed Eulerian tours Ci, we construct

an Eulerian tour C, and output C, stop.

Proof. Since C∗ is an optimal tour of G, where C∗ traverses a at least l(a) and at
most u(a) times for each arc a ∈ A, i.e. we can construct an integral circulation
f∗ on D from C∗. Since f is a minimum-cost integral circulation on D, we have

wD(f) ≤ OPT. (2)

If Algorithm GSC1 stops at Step 3, then we can construct a tour C from the
minimum-cost integral circulation f , and we have w(C) = wD(f) ≤ OPT that
follows from the inequality (2), thus C is an optimal solution.

If Algorithm GSC1 stops at Step 6, then we can obtain an output tour C by
the integral circulation f and these Eulerian tours Ci.

Because C∗ is an optimal tour on G, then C∗ − A can become a tour C∗
1

traversing all strongly connected components of G[f]. Thus, we can use set C∗
1

to construct a set E∗
1 on G, where the graph G[f ∪ E∗

1] is strongly connected.
Since E1 is an edge subset of minimum weight, we thus have

w(E1) =
∑

e∈E1

w(e) ≤
∑

e∈E∗
1

w(e) = w(E∗
1) ≤ OPT −

∑

a∈A

l(a) · w(a). (3)

According to the structure of A1 at Step 5, we have

w(A1) =
∑

a∈A1

w(a) = 2 ·
∑

e∈E1

w(e) = 2 · w(E1). (4)

By the inequalities (2)–(4), we have

w(C) = wD(f) + w(A1) ≤ OPT + 2 · w(E1)

≤ 3 · OPT − 2 ·
∑

a∈A

w(a) · l(a).

It is obvious to see that the running time of Algorithm GSC1 depends on
the running time of the integral circulation flow algorithm. Consequently, the
running time of Algorithm GSC1 is C(m,n). 	

Approximation Algorithms for the Generalized Stacker Crane Problem 99

3 Algorithm GSC2

In this section, we consider a feasible tour C of a mixed graph G for the GSC
problem and let E′ = {(x, y) ∈ E | 〈x, y〉 ∈ A or 〈y, x〉 ∈ A}. Since a feasible
tour C of the GSC problem needs to traverse each connected component of
G[E′], motivating the algorithm to solve the metric traveling salesman problem
(MTSP), we design an approximation algorithm GSC2 to solve the GSC problem.
In detail, for a mixed graph G as an instance of the GSC problem, we find a
feasible tour C by using the GSC2 algorithm to satisfy w(C) ≤ 3/2 ·OPT +1/2 ·∑

a∈A w(a) · l(a).
We use the following notations. Let Di be a directed cycle on a mixed graph

G, define A+
i as the arc set in A that is traversed in the same direction on D′

i

and let A−
i be the arc set in A that is traversed in the opposite direction on D′

i.
A T-join of V ′ (⊆ V) in a graph G = (V,E) is a set J ⊆ E such that |J ∩ δG(v)|
is odd if and only if v ∈ V ′.

We denote G1, . . . , Gk to be the connected components of G[E′]. (In fact, if
k = 1, using the algorithm GSC1, we can have an optimal tour of G for the GSC
problem.) We may suppose that k > 1, and then construct a contracted graph
G1 = (V1, E1;w1) from a mixed graph G = (V,E ∪ A;w; l, u). Let Pv′

i,v
′
j

be a
shortest path from v′

i to v′
j on a graph G1 and w1(Pv′

i,v
′
j
) =

∑
e∈Pv′

i
,v′

j

w1(e).

Contracting Gi to a single vertex v′
i in V1, we shall use the following com-

plete auxiliary graph H = (V ′, EH ;wH), where V ′ = {x1, x2, . . . , xk} and
wH(xi, xj) = w1(Pv′

i,v
′
j
).

The algorithm GSC2 is formally described in Algorithm2.

Theorem 2. For a mixed graph G = (V,E ∪ A;w; l, u) for the GSC problem,
Algorithm GSC2 can produce a feasible tour C, satisfying

w(C) ≤ 3/2 · OPT + 1/2 ·
∑

a∈A

l(a) · w(a), (6)

and Algorithm GSC2 runs in time O(n3).
Proof. Using Algorithm GSC2, we can obtain an output tour C by directed cycle
Ci and these rings r(x,y).

Since C∗ is an optimal tour of G, then C∗ − A becomes a tour C∗
1 traversing

all connected components of G[E′]. Thus, we can construct a tour C∗
H by using

the set C∗
1 , where tour C∗

H traverses each vertex v in V ′ at least once. By Step 3,
a graph H is a complete graph to satisfy the triangle inequality. For convenience,
let C ′

H be the optimal tour on H for the MTSP. It is obvious that C∗
H is a feasible

tour on H for the MTSP. Thus, we have

wH(C ′
H) =

∑

e∈C′
H

wH(e) ≤
∑

e∈C∗
H

wH(e) = wh(C∗
H) (7)

By the theorem of MTSP, we have

wH(CH) =
∑

e∈CH

wH(e) ≤ 3/2 · wH(C ′
H) (8)

100 J. Li et al.

Algorithm 2. GSC2

Input: A mixed graph G = (V,E ∪ A;w; l, u), satisfying l(a) ≤ u(a) for each arc
a ∈ A.
Output: A constrained stacker crane tour C.

1: Construct a complete auxiliary graph H = (V ′, EH ;wH) as mentioned-above.
2: Find a minimum cost tour CH in H for the metric traveling salesman problem.
3: For each edge xixj in CH , denote by E1 a set consisting of such edges on these

shortest paths Pvi,vj in G. Let GH = G[E1]. And denote by VHo the set of odd-
degree vertices in GH .

4: Determine a minimum T-join ET on VHo in G[E′]. Set G′ = G[E1 ∪ ET]. And let
G′

1, . . . , G
′
q be the connected components of G′.

5: Determine a directed Eulerian tour Di on the graph G′
i, i = 1, 2, . . . , q. If

∑

a∈A−
i

w(a) >
∑

a∈A+
i

w(a), (5)

we let the directed tour Di be the opposite direction. And denote A+ =
⋃q

i=1 A
+
i

and A− =
⋃q

i=1 A
−
i . If an arc a ∈ A+, denote l′(a) := l(a)− 1, and otherwise, if an

arc a ∈ A − A+, denote l′(a) := l(a).
6: For each arc 〈x, y〉 ∈ A, construct l′(〈x, y〉) rings r(x,y) composed an arc 〈x, y〉 and

an edge (x, y). By these rings and directed cycle Ci, merge them into an Eulerian
tour C, and output tour C.

By the inequalities (7) and (8), we have

w(E1) = wH(CH) ≤ 3/2 · wH(C ′
H) ≤ 3/2 · wH(C∗

H)

≤ 3/2 · (OPT −
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉)) (9)

By Step (5) and inequality (9), we have

w(C) =
∑

i

w(Ci) +
∑

〈x,y〉∈A

(l′(〈x, y〉) · (w(〈x, y〉) + w(x, y)))

= w(E1) +
∑

a∈A+

w(a) +
∑

a∈A−
w(a) + 2 ·

∑

〈x,y〉∈A

l′(〈x, y〉) · w(〈x, y〉)

≤ w(E1) + 2 ·
∑

a∈A+

w(a) + 2 · (
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉) −
∑

a∈A+

w(a))

≤ w(E1) + 2 ·
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉)

≤ 3/2 · (OPT −
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉)) + 2 ·
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉)

≤ 3/2 · OPT + 1/2 ·
∑

〈x,y〉∈A

l(〈x, y〉) · w(〈x, y〉).

Approximation Algorithms for the Generalized Stacker Crane Problem 101

It is obvious to see that the running time of Algorithm GSC2 is dependent
on the running time of the T-join algorithm [1]. We know that the running time
of Algorithm GSC2 is O(n3). 	

4 Algorithm GSC9/5

By Theorems 1 and 2, we show that Algorithm GSC1 is more efficient than
Algorithm GSC2 if the value

∑
a∈A l(a)·w(a) is larger than 3/5·OPT , meanwhile

Algorithm GSC2 is more efficient than Algorithm GSC1 if the value
∑

a∈A l(a) ·
w(a) is smaller than 3/5 · OPT . Combining these two algorithms, we would
obtain an 9/5-approximation algorithm to solve the GSC problem.

In fact, we design the following algorithm to solve the GSC problem.

Algorithm 3. GSC9/5

Input: A mixed graph G = (V,E ∪ A;w; l, u), satisfying l(a) ≤ u(a) for each arc
a ∈ A.
Output: A constrained arc routing C.

1: Determine two tours C1 and C2 by means of Algorithm GSC1 and Algorithm GSC2,
respectively.

2: Select the lowest cost tour between two tours C1 and C2, and output the better
one.

Theorem 3. For a mixed graph G = (V,E ∪ A;w; l, u) for the GSC problem,
Algorithm GSC9/5 is a 9/5-approximation algorithm to solve the GSC problem,
and its running time is max{C(m,n), n3}.
Proof. By Algorithm GSC9/5, C1 and C2 are the output tours produced by
Algorithm GSC1 and Algorithm GSC2, respectively, then we have

w(C1) ≤ 3 · OPT − 2 ·
∑

a∈A

w(a) · l(a)

and
w(C2) ≤ 3

2
· OPT +

1
2

·
∑

a∈A

w(a) · l(a)

If
∑

a∈A w(a) · l(a) ≥ 3/5 · OPT , then Algorithm GSC1 provides a tour C1

with its cost at most

w(C1) ≤ 3 · OPT − 2 ·
∑

a∈A

w(a) · l(a) ≤ 3 · OPT − 2 · (
3
5

· OPT) =
9
5

· OPT.

If
∑

a∈A w(a) · l(a) < 3/5 · OPT , then Algorithm GSC2 provides a tour C2

with its cost at most

w(C2) ≤ 3
2

· OPT +
1
2

·
∑

a∈A

w(a) · l(a) <
3
2

· OPT +
1
2

· (
3
5

· OPT) =
9
5

· OPT.

102 J. Li et al.

It follows that Algorithm GSC9/5 has a worst-case ratio of 9/5.
It is obvious to see that the running time of Algorithm GSC9/5 is dependent

on the running time of both Algorithm GSC1 and Algorithm GSC2. Thus, we
know that the running time of the GSC9/5 algorithm is max{C(m,n), n3}. 	

5 Conclusion and Future Work

In this paper, we address a generalization of the stacker crane problem, where
each arc a in a mixed graph is traversed by a tour at least l(a) and at most u(a)
times. And we design a 9/5-approximation algorithm to solve the GSC problem.

In some future work, we would like to consider some optimization problems
in which the times that an edge or arc is traversed should be given a reasonable
range.

Acknowledgments. The work is supported in part by the National Natural Science
Foundation of China [Nos. 11461081, 61662088, 11761078] and the Natural Science
Foundation of Education Department of Yunnan Province [No. 2017ZZX235].

References

1. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math.
Program. 5, 88–124 (1973)

2. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

3. Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM
26, 538–554 (1979)

4. Guan, M.G.: Graphic programming using odd and even points (in Chinese). Acta
Mathematica Sinica 10, 263–266 (1960). [English translation: Chinese Mathematics,
1, 273–277 (1962)]

5. Lenstra, J.K., Rinnooy Kan, A.H.G.: On general routing problems. Networks 6,
273–280 (1976)

6. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4, 35–64 (1974)
7. Papadimitriou, C.H.: On the complexity of edge traversing. J. ACM 23(3), 544–554

(1976)
8. Raghavachari, B., Veerasamy, J.: A 3/2-approximation algorithm for the mixed

postman problem. SIAM J. Discrete Math. 12(4), 425–433 (1999)

Fast Approximation Algorithms for Computing
Constrained Minimum Spanning Trees

Pei Yao and Longkun Guo(B)

College of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350116, People’s Republic of China

lkguo@fzu.edu.cn

Abstract. Given an integer L ∈ Z
+ and an undirected graph with

a weight and a length associated with every edge, the constrained
minimum spanning tree (CMST) problem is to compute a minimum
weight spanning tree with total length bounded by L. The problem
was shown weakly NP-hard in [1], admitting a PTAS with a runtime

O(nO(1
ε
)(m log2 n + n log3 n)) due to Ravi and Goemans [13]. In the

paper, we present an exact algorithm for CMST, based on our devel-
oped bicameral edge replacement which improves a feasible solution of
CMST towards an optimal solution. By applying the classical round-
ing and scaling technique to the exact algorithm, we can obtain a fully
polynomial-time approximation scheme (FPTAS), i.e. an approximation
algorithm with a ratio (1 + ε) and a runtime O(mn5 1

ε2
), where ε > 0 is

any fixed real number.

Keywords: Constrained minimum spanning tree · Bicameral edge
replacement · Approximation algorithm · FPTAS

1 Introduction

Broadcasting has become a fundamental method for public information dissem-
ination in nowaday networks because of its advantages in high throughput,
energy saving, efficiency, etc. Most data broadcasting applications require to
minimize the occupied resources while guarantee customer experience simulta-
neously, which is typically to minimize the waiting time of the clients between
proposing a request and receiving the data. In the context, a link has a length
as the delay of data transmission over the link, and a weight as its occupied
resource. Then the constrained minimum spanning tree problem arises, which
is to compute a tree spanning all the nodes in the network, such that the total
edge weight of the tree is minimized and the total length is bounded by a given
threshold. Formally, we have the following definition:

Definition 1 (The Constrained Minimum Spanning Tree problem, CMST).
Given an undirected graph G = (V, E), a weight function w : E → Z

+
0 , a

length function l : E → Z
+
0 , and a length upper bound L ∈ Z

+
0 , the CMST prob-

lem is to calculate a spanning tree T with its weight sum minimized and length
sum bounded by L, i.e. to minimize

∑
e∈T w(e) subject to

∑
e∈T l(e) ≤ L.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 103–110, 2017.
https://doi.org/10.1007/978-3-319-71150-8_9

104 P. Yao and L. Guo

1.1 Related Works

The CMST problem is a basic theoretical problem attracting interest from both
research community and industry, because it has broad applications in trans-
portation networks, power grids, telephone networks, information dissemination
in network, etc. It was put forward by Aggarwal, Aneja and Nair for the first time
in the paper [1], where the problem was shown weakly NP-hard by reducing from
the knapsack problem. Then Marathe and Ravi etc. gave a (2, 2)-approximation
algorithm for the CMST problem based on Hassin’s approximation approach [9];
later Ravi and Goemans presented a (2, 1)-approximation algorithm based on
Lagrangean relaxation [13].

Some special cases of CMST have been well studied. The minimum spanning
tree (MST) problem, CMST when all edges are with length 0, is one of the most
famous optimization problems. Kruskal [7], Prim [11], Dijkstra [5] and Sollin [14]
have designed fast algorithms for the MST problem. Meanwhile, there were also
some other interesting constrained minimum spanning tree problems with differ-
ent constraints, such as the degree constrained spanning tree problem, the delay
constrained minimum spanning tree problem (or namely shallow-light minimum
spanning tree problem) and the hop constrained minimum spanning tree prob-
lem etc. The degree constrained minimum spanning tree problem, proposed in
paper [10] by Subhash C. and Cesar A. for the first time, is to compute minimum
spanning tree connecting all the vertices, with the sum of degree bounded by
a given integer. Then the problem was shown NP-complete by reducing from
the Hamiltonian path problem [3]. Later, an approximation algorithm with a
ratio (1 + ε) and a run-time O(log1+ε n) was developed [12]. At last, for the
delay constrained minimum spanning tree problem, Leggieri, Haouari and Triki
gave an exact algorithm based on Branch-and-Cut method [8]. In particular, it
is shown that even the 2-hop constrained minimum spanning tree problem, i.e.
the delay constrained minimum spanning tree problem when every edge is with
delay 1 and the given delay constraint is 2, is NP-Hard [4]. For the special case,
Alfandari and Paschos presented a 5

4 -approximation algorithm when all edge
costs are within {1, 2} [2].

1.2 Our Results

In this paper, we develop an exact algorithm for CMST based on our proposed
bicameral edge exchange method. The algorithm runs in time O(mn3l2max),
where lmax = max{l(e)|e ∈ G& l(e) ≤ L}. By employing the classical rounding
and scaling technique, the algorithm can be improved into a bi-factor FPTAS,
i.e. an approximation algorithm with ratio (1 + ε), with a run-time O(mn5 1

ε2).
This improves the run-time O(nO(1

ε)(m log2 n + n log3 n)) of the previous PTAS
that has a factor 1

ε on the shoulder of n.

Fast Approximation Algorithms for CMST 105

2 Algorithms for CMST via Bicameral Edge
Replacement

The key idea of our exact algorithm for CMST is similar to local search: initially
compute a spanning tree T and then repeatedly improve it towards an optimal
solution of CMST. Without loss of generality, we assume that the computed tree
T violates the length constraint, i.e. l(T) > L.

Actually, a naive idea of directly employing local search can be simply as:
repeat swapping an edge of T and edge out of T (with comparative smaller
length), such that the length of T decreases until the length constraint is satisfied.
Formally, for a pair of edges e and e′, e ∈ T , e′ ∈ G \ T , we say (e′, e) is a tree
edge replacement (TER) iff T \ {e}∪ {e′} remains a tree. For notation briefness,
we denote l(e′, e) = l(e′) − l(e) and w(e′, e) = w(e′) − w(e). Then obviously,
l(e′, e)
w(e′, e) is the exchanging rate between length and weight, when using (e′, e) to
improve the length of T . The edge swap simply processes as: (1) Compute a tree
edge replacement (e′, e), such that l(e′, e) < 0 and l(e′, e)

w(e′, e) attains minimum; (2)
Set T := T \ {e} ∪ {e′}. However, such a naive local search method might not
output an optimal solution when it terminates.

The traditional local search method is bad since it only swaps edges to
decrease the length of T but never allows increasing the length of T. So differ-
ent to traditional local search method, our algorithm allows necessary increment
over the length of T , and in general acts like a crafty merchant who sells or buys
items depending on whichever produces better profit. That is, the algorithm
decides to decrease or increase the length (and the weight of T will increase or
decrease accordingly) depending on whichever produces better “profit”.

2.1 Bicameral Edge Replacement

A question remains how to decide which tree edge replacement would benefit bet-
ter. Intuitionally, r(e′, e) = l(e′, e)

w(e′, e) is the exchanging rate wrt length and weight
while swapping e and e′ for T . Note that when l(e′, e) < 0 and w(e′, e) > 0, we
want to minimize r(e′, e) as it means maximizing the rate of length decrement
over weight increment; Constractly, when l(e′, e) > 0 and w(e′, e) < 0, we want
to maximize r(e′, e). For briefness, we say a TER (e′, e) is positive if l(e′, e) < 0
and w(e′, e) > 0; and the TER is negative, if l(e′, e) > 0 and w(e′, e) < 0. It
remains to choose between the best negative and positive tree edge replacement,
i.e. choose between the positive TER with minimum r(e′, e) and the negative
TER with maximum r(e′, e). For the task, inspired by the bicameral cycle can-
celation in [6], we introduce bicameral edge replacement formally as below:
Definition 2. (Bicameral Edge Replacement, BER) Let T be a spanning tree
and (e′ e) be a TER wrt T . Then we have three types of bicameral edge replace-
ments as in the following:

1. Let (e′, e) be a tree edge replacement. If l(e′, e) < 0 and w(e′, e) ≤ 0 or
l(e′, e) ≤ 0 and w(e′, e) < 0, then it is a type-I bicameral edge replacement
(BER-I);

106 P. Yao and L. Guo

2. Let (e′
1, e1) be a tree edge replacement with l(e′

1, e1) < 0 and w(e′
1, e1) > 0,

such that

r(e′
1, e1) = min

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e′, e) is a positive TER

}

;

Similarly, let (e′
2, e2) be a tree edge replacement with l(e′

2, e2) > 0 and
w(e′

2, e2) < 0, such that

r(e′
2, e2) = max

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e′, e) is a negative TER

}

.

Then if r(e′
1, e1) ≥ r(e′

2, e2), (e′
1, e1) is a type-II bicameral edge replace-

ment (BER-II); Otherwise, (e′
2, e2) is a type-III bicameral edge replacement

(BER-III).

Theorem 3. Let �L = L−
∑

e∈T l(e) and ΔW = WOPT −
∑

e∈T w(e). Assume
there exists no BER-I. Then if (e′, e) is BER-II, we have r(e′, e) ≤ ΔL

ΔW ; if (e′, e)
is BER-III, we have r(e′, e) ≥ ΔL

ΔW .

Let T be the current spanning tree and T ∗ be an optimal solution to CMST.
The key observation of the proof of Theorem 3 is that the edges of T \ T ∗ can
pair with the edges of T ∗ \ T to compose a set of disjoint edge pairs, each of
which is a tree edge replacement (TER). Then, we can show BER is better than
the average of the disjoint TERs that are composed by the set of disjoint edge
pairs regarding T \T ∗ and T ∗ \T . So first of all, we will show the edges of T \T ∗

can pair with the edges of T ∗ \ T to compose a set of disjoint TERs. Actually,
we have a more general property over the relationship of the two sets of different
edges of any two distinct spanning trees, as stated below:

Lemma 4. Let T, T ′ be two distinct spanning trees in graph that E1 = E(T) \
E(T ′) and E2 = E(T ′) \ E(T). Let H = (U, V, E) be a bipartite graph whose
vertices are U = E1 and V = E2. Let E(H) = {(e′, e)|e ∈ E1, e′ ∈ E2, T \ {e}∪
{e′} is a tree}. Then there exists a perfect matching in H.

Proof. The proof is omitted due to the length limitation. �	
Following the above lemma, we immediately have the following corollary:

Corollary 5. There exists a perfect matching M between the edges of T \ T ∗

and T ∗ \T , such that: (1)|M| = |T \T ∗| = |T ∗ \T |; (2) x∩y = ∅ for any distinct
x �= y ∈ M; (3) for any (e′, e) ∈ P, e ∈ T \ T ∗ and e′ ∈ T ∗ \ T both hold, and
T \ {e} ∪ {e′} is a tree.

Lemma 6. If there exists no BER-I, then one of the following two cases must
hold:

1. There exists a positive TER (e′, e) ∈ M, such that l(e′, e)
w(e′, e) ≤ ΔL

ΔW ; OR

2. There exist a negative TER (e′, e) ∈ M, such that l(e′, e)
w(e′, e) ≥ ΔL

ΔW .

Proof. The proof is omitted due to the length limitation. �	
From Lemma 6, we immediately have the correctness of Theorem 3.

Fast Approximation Algorithms for CMST 107

Algorithm 1. An algorithm for CMST.
Input: An undirected graph G = (V, E), a weight function w : E → Z+

0 , a length
function l : E → Z+

0 , and a length bound L ∈ R
+;

Output: An approximation solution to CMST.
0: Calculate a minimum weight spanning tree T , without considering edge length;
/*T can be computed by Prim’s algorithm [11], etc. */
1: If l(T) =

∑
e∈T l(e) ≤ L then return T ;

/*Otherwise l(T) > L, decrease l(T) as in the following.*/
2: Set i = 1, T1 := T , T := {T};
3: While true do
4: Set Ri

min := ∅ and Ri
max := ∅;

/*Ri
min and Ri

max are respectively candidates of BER-II and BER-III for Ti.*/
5: For each e′ ∈ G \ Ti do
6: For each e ∈ Ti do
7: If Ti \ {e} ∪ {e′} is a tree then /* Note that no BER-I exists. */
8: If l(e′, e) < 0, w(e′, e) > 0 then
9: Ri

min = Ri
min ∪ {(e′, e)};

10: If l(e′, e) > 0, w(e′, e) < 0 then
11: Ri

max = Ri
max ∪ {(e′, e)};

12: Endfor
13: Endfor
14: If Rj

min = Rj
max = ∅ for each j ∈ [i]+ then go to Step 34; /*Terminate. */

15: For j = 1 to i do
16: Set Rj

1 = arg min
(e′, e)∈R

j
min

{r(e′, e)}, Rj
2 = arg max

(e′, e)∈R
j
max

{r(e′, e)};

/*The rate is r(e′, e) := l(e′, e)
w(e′, e)

.*/
17: Endfor
18: Set α := arg minj{Rj

1|j = 1, . . . , i} and β := arg maxj{Rj
2|j = 1, . . . , i};

19: If r(Rα
1) > r(Rβ

2) then
20: Set Ti+1 := Tα \ {e} ∪ {e′}, where Rα

1 = (e′, e); /*R is the desired BER-II.*/
21: If Ti+1 is not new for T then
22: Set Rα

min := Rα
min \ Rα

1 ;
23: Go to Step 14;
24: Endif
25: Else
26: Set Ti+1 := Tβ \ {e} ∪ {e′}, where Rβ

2 = (e′, e); /*R is BER-III.*/
27: If Ti+1 is not new for T then
28: Set Rβ

max := Rβ
max \ Rβ

2 ;
29: Go to Step 14;
30: Endif
31: Endif
32: Set T := T ∪ {Ti+1} and i := i + 1;
33: Endwhile
34: Return arg minT {w(T)|T ∈ T & l(T) ≤ L}.

108 P. Yao and L. Guo

2.2 The Exact Algorithm

The key idea of our algorithm is first to compute a minimum weight spanning tree
T , and then compute a set of trees T based on the idea of dynamic programming,
such that each tree Ti ∈ T attains minimum weight under the length bound l(Ti).
The set T initially contains only T , and its size increases one in each iteration of
our algorithm, until an optimal solution to CMST is obtained. More precisely, if
l(T) > L, we will compute bicameral edge replacements (BERs) to construct a
new tree for T . According to the definition of BER, obviously BER-I is the first
choice as it will decrease weight (or length) without any increment on length (or
weight). However, since every Ti ∈ T is a minimum weight tree under the length
bound l(Ti), there actually exists no BER-I for every tree in T . Therefore, our
algorithm will compute active BER-II or BER-III for all the trees in T , and
choose the best one among them for further improvement as to generate a new
element of T .

To find an active BER-II or BER-III for Ti, we will find both an active
positive TER (e′

1, e1) with

r(e′
1, e1) = min

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e′, e) is an active positive TER

}

,

and an active negative TER (e′
2, e2) with

r(e′
2, e2) = max

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e′, e) is an active negative TER

}

,

where a TER (e′, e) is active if and only if Ti \{e}∪{e′} is new to T , i.e. T does
not contain a tree with the same weight and length as Ti \ {e} ∪ {e′}. Then, the
algorithm will choose (e′

1, e1) as an active BER-II if r(e′
1, e1) ≥ r(e′

2, e2); and
(e′

2, e2) as an active BER-III otherwise. The detailed algorithm is as stated in
Algorithm 1.

For the time complexity and correctness of Algorithm 1, we have:

Theorem 7. Algorithm 1 runs in time O(mn3l2max) and produces an optimal
solution to CMST, or determines the instance of CMST is infeasible, where
lmax = max{l(e)|e ∈ G& l(e) ≤ L}.
The proof of the lemma will be given in the next section, as it needs some more
properties on the relationship between T and an optimum solution of CMST.
We note that Algorithm 1 is a pseudo polynomial time algorithm, as the time
complexity contains L. However, by employing the classical scaling and rounding
technique, we can immediately obtain an FPTAS for CMST. The key idea hereby
is to set the length of every edge e as

⌊
l(e) n

εlmax

⌋
, where ε > 0 is any fixed

number. Then we have the improved time complexity and the compromised
quality of the output of algorithm as follows:

Corollary 8. The CMST problem admits an approximation algorithm with a
ratio (1 + ε) and a runtime O(mn5 1

ε2).

We omitted the proof of the corollary due to the length limitation of the paper.

Fast Approximation Algorithms for CMST 109

3 Proof of Theorem 7

In this section, we will show Algorithm 1 eventually outputs an optimal solution
in pseudo polynomial time. First we will prove Algorithm 1 will terminate in
finite steps. The key observation is that the BER we used in algorithm is not
worse than the average rate of exchanging all the edges of T \ T ∗ and T ∗ \ T .
Then, our algorithm will either improve the average rate or keep the average
rate unchanged but decrease the length of the tree.

Lemma 9. In the ith iteration in Algorithm 1, ∀i, w(Ti) is the minimum span-
ning tree with length bounded by l(Ti) in with respect to the CMST instance.

Proof. The proof is omitted due to the length limitation. �	

From the above lemma, we know that Algorithm 1 computes at most O(nlmax)
entries, where lmax = max{l(e)|e ∈ G& l(e) ≤ L}. That is, the algorithm iterates
for at most O(nlmax) times, each of which takes O(mn2lmax) time to find a
bicameral edge replacement. Hence, we have:

Lemma 10. Algorithm 1 terminates in O(mn3l2max) time.

Due to the length limitation of the paper, we omitted the proof of the lemma
above. Then it remains only to show Algorithm 1 will return an optimal solution
satisfying the length bound.

Lemma 11. If the CMST problem is feasible, then Algorithm 1 outputs a solu-
tion with length bounded by L and weight exactly being WOPT .

Proof. The proof is omitted due to the length limitation. �	

Combining Lemmas 10 and 11, we immediately have the correctness of
Theorem 7.

4 Conclusion

Based on an enhanced local search method, this paper gave an exact algorithm
for the constrained minimum spanning tree (CMST) problem with a pseudo
polynomial time O(mn3l2max), where m, n are respectively the number of edges,
the number of vertices and lmax = max{l(e)|e ∈ G& l(e) ≤ L}. By the rounding
and scaling technique, the time complexity can be improved to O(mn5 1

ε2), and
an FPTAS is obtained. We are currently investigating a further improved FPTAS
which is with an even better time complexity.

Acknowledgements. The research of the first author is supported by Natural Science
Foundation of China (Nos. 61772005, 61300025) and Natural Science Foundation of
Fujian Province (No. 2017J01753).

110 P. Yao and L. Guo

References

1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side
constraint. Comput. Operat. Res. 9(4), 287–296 (1982)

2. Alfandari, L., Paschos, V.T.: Approximating minimum spanning tree of depth 2.
Int. Trans. Oper. Res. 6(6), 607–622 (1999)

3. Boldon, B., Deo, N., Kumar, N.: Minimum-weight degree-constrained spanning
tree problem: Heuristics and implementation on an simd parallel machine. Parallel
Comput. 22(3), 369–382 (1996)

4. Dahl, G.: The 2-hop spanning tree problem. Oper. Res. Lett. 23(1), 21–26 (1998)
5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1(1), 269–271 (1959)
6. Guo, L., Liao, K., Shen, H., Li, P.: Brief announcement: efficient approximation

algorithms for computing k disjoint restricted shortest paths. In: Proceedings of
the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2015, Portland, OR, USA, 13–15 June 2015, pp. 62–64 (2015)

7. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

8. Leggieri, V., Haouari, M., Triki, C.: An exact algorithm for the steiner tree problem
with delays. Electron. Notes Discrete Math. 36, 223–230 (2010)

9. Marathe, M., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D., Hunt, H.: Bicri-
teria network design problems. In: Automata, Languages and Programming, pp.
487–49 (1995)

10. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning tree. Comput.
Oper. Res. 7(4), 239–249 (1980)

11. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs
Tech. J. 36(6), 1389–1401 (1957)

12. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Approxi-
mation algorithms for degree-constrained minimum-cost network-design problems.
Algorithmica 31(1), 58–78 (2001)

13. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In:
Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61422-2 121

14. Sollin, M.: Le trace de canalisation. In: Berge, C., Ghouilla-Houri, A. (eds.)
Programming, Games, and Transportation Networks. Wiley, New York (1965)

https://doi.org/10.1007/3-540-61422-2_121

Trajectory-Based Multi-hop Relay Deployment
in Wireless Networks

Shilei Tian, Haotian Wang, Sha Li, Fan Wu, and Guihai Chen(B)

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{tianshilei,ltwbwht,Zoey.Lee}@sjtu.edu.cn,

{fwu,gchen}@cs.sjtu.edu.cn

Abstract. In this paper, we identify a novel problem Trajectory-Based
Relay Deployment (TBRD) which aims at maximizing user connection
time as the users roam through the target area while complying with
relay resource constraints. To solve the TBRD, we first propose the con-
cept Demand Nodes (DNs). Next, we design a Demand Node Generation
(DNG) algorithm that transforms the continuous historical user trajec-
tory into a number of discrete DNs. By generating DNs, we convert the
TBRD problem into a Demand Node Coverage (DNC) problem, which is
NP-complete. After that, we design an approximation algorithm, named
Submodular Iterative Deployment Algorithm (SIDA), to solve the DNC
problem with the approximation factor 1 − 1√

e·(1−1/k)
. The simulation

on five real datasets shows that our algorithm can obtain high coverage
for users in motion, leading to better user experience.

1 Introduction

With the explosive growth of mobile users, wireless coverage has become an
increasingly challenging problem. However, due to transmission distance, limited
coverage of Access Point (AP), path loss, and so forth, the signal quality at
some locations fails to provide satisfactory Internet access [3]. Deploying relays
in multi-hop networks has become an effective method to improve the wireless
coverage and service quality [6].

In this paper, we investigate the relay deployment problem under the non-
stationary user setting. Due to limited transmission power and path loss, the
base station (BS) may fail to cover all users at all times. We hope to deploy
a limited number of relays to keep users connected to the Internet as long as
possible when they are wandering.

This work was supported in part by Program of International S&T Cooperation
(2016YFE0100300), the State Key Development Program for Basic Research of
China (973 project 2014CB340303), China NSF Projects (Nos. 61672348, 61672353,
61422208, and 61472252), and CCF-Tencent Open Research Fund.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 111–118, 2017.
https://doi.org/10.1007/978-3-319-71150-8_10

112 S. Tian et al.

Existing works designed algorithms according to the exact user locations,
they all assumed that users are stationary, which is not realistic in practice. As
a result, once a user location changes, the network performance will be affected.

In fact, the movements of users within an area are not completely random.
They are strongly affected by people’s social demands [4]. Therefore, some hot
spots, which mean locations where users often pass, or linger around, can be
inferred from the user trajectory. Therefore, we consider utilizing the historical
user trajectory to infer the tendency of the user movement and deploy the relays.

In this paper, we first define the connectivity of the network. Since relays
cannot access the Internet directly, each relay must have a path to the BS.
Then we define the Trajectory-Based Relay Deployment (TBRD) problem, which
aims at maximizing user connection time as the users roam through the target
area while complying with relay resource constraints. We introduce a concept
Demand Nodes (DNs), which are virtual weighted nodes representing locations
where users often pass or stay for a long time. Next, we propose a matrix-
based trajectory representation and design the Demand Node Generation (DNG)
algorithm. After that, the original TBRD problem is converted to a new problem
called Demand Node Coverage (DNC). We claim that a DN is covered if its
distance to an AP is less than the coverage radius of the AP. The DNC problem
is to maximize the total weight of DNs covered by deployed relays and BS.
The DNC is NP-complete, which can be reduced from a known NP-complete
problem named budget set cover (BSC) [2]. To tackle this problem, we propose
an approximation algorithm, named Submodular Iterative Deployment Algorithm
(SIDA), which has an approximation ratio of 1 − 1√

e·(1−1/k)
, where e is the

mathematical constant, and k is the relay number constraint. Finally, we use
real datasets to evaluate our algorithm. The simulation results indicate that our
algorithm can perform well.

The paper is organized as follows. The problem statement is given in Sect. 2.
Section 3 describes the DNG algorithm. Section 4 presents the SIDA. Simulations
are demonstrated in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Problem Statement

2.1 System Model

In this model, the user can either communicate with BS directly, or connect to
BS with the help of relays. Since too many hops will lead to a high delay, we
limit the number of communication hops to 2.

2.2 Problem Definition

The user trajectory set is denoted by T . PB and PR represent the set of BS and
relay candidate positions respectively. k is the number of relays we can deploy.

Definition 1 (Communication Radius). Two APs can communicate with
each other within a communication radius. We use dB and dR to denote the
communication radius of BS and relay respectively.

Trajectory-Based Multi-hop Relay Deployment in Wireless Networks 113

Definition 2 (2-Hop Relay Connectivity). Given the AP candidate position
set P = PB ∪ PR, we generate a weighted graph G = (P,E), where (pi, pj) ∈ E
if the distance between these two locations is less than the corresponding com-
munication radius. The weight of each edge is set to 1. 2-hop relay connectivity
means that in the induced graph G[F], there always exists a path between any
selected relay node and the selected BS node, while its distance is less than or
equal to 2.

Definition 3 (TBRD Problem). Given a set of trajectories T , BS candidate
locations PB, relay candidate locations PR, relay number constraint k, the TBRD
problem is to find a BS location pB ∈ PB and relay locations PS ⊂ PR to
maximize user connection time. PS must be subject to |PS | = k, and the induced
subgraph G[{pB} ∪ PS] has 2-hop relay connectivity.

As we mentioned before, hot spots can be inferred from historical user trajectory.
We introduce a novel concept called Demand Node (DN) to represent them.

Definition 4 (Demand Node). Demand Nodes (DNs) are virtual weighted
nodes representing the locations where users often pass or stay for a long time.
They are at the center of the grids which are generated by the division of the target
area. The weight is the probability of user’s appearance in the corresponding
location. The larger the weight is, it is more possible that users will pass through
or stay at the corresponding location.

Definition 5 (Coverage Radius). Coverage radius, denoted by rB for BS and
rR for a relay, is the distance threshold for the BS or relay. Only DNs whose
distance to an AP is less than its coverage radius can ensure Internet connection
for users. We say that the DN is covered by the corresponding AP.

Before we introduce the Demand Node Coverage (DNC) problem, we first give
some definitions that are used throughout this paper. We use D to denote the
DNs set, and W for the weight set of DNs.

Definition 6 (Covered DNs Set). The covered DNs set C(·) is the set of
DNs covered by a given AP. For a BS candidate location piB ∈ PB, C(piB) =
{dj |dist(dj , piB) ≤ rB} where dist(·) denotes the Euclidean distance. For a relay
candidate location piR ∈ PR, C(piR) = {dj |dist(dj , piR) ≤ rR}.
Definition 7 (Weight Function). The weight function w(·) is the sum of
weights of the covered DNs set. For an AP candidate location p ∈ PB ∪ PR,
w(p) =

∑
si∈C(p) wsi . For an AP candidate location set P , the DNs covered by

P are represented as DC = ∪pi∈PC(pi), w(P) =
∑

si∈DC
wsi .

Definition 8 (Residual Weight). Considering a selected AP candidate loca-
tion set SA, when we continue to select a AP candidate location set SB, the resid-
ual weight of SB based on SA is defined as wR(SA, SB) = w(SB) − w(SA ∩ SB).

Assume the width of the target area is w, and the height is h. There is also a
filter threshold θ, which constrains the weight of each generated DN to be larger
than θ. Now we can define the DNG problem.

114 S. Tian et al.

Definition 9 (DNG Problem). Given a user trajectory set T , the width w
and height h of the target area, and a filter threshold parameter θ, the DNG
problem is to generate a set of DNs D and a relative weight set W . The weight
of each DN is in the range of [θ, 1].

Now we can define the Demand Node Coverage (DNC) problem.

Definition 10 (DNC Problem). Given a set of DNs D and the corresponding
weight set W , BS candidate locations PB, relay candidate locations PR, relay
number constraint k, the DNC problem is to find a location pB ∈ PB, and relay
candidate locations subset PS ⊆ PR to maximize w(F), where F = {pB} ∪ PS

while |PS | = k. The induced subgraph complies with the 2-hop relay connectivity
constraint.

3 Demand Node Generation

In this section, we show how to extract “hotspots” which we refer to as Demand
Nodes (DNs) from user trajectories. The Demand Node Generation (DNG) algo-
rithm consists of three major steps: (1) trajectory matrix generation; (2) predic-
tion matrix; (3) filtering.

3.1 Trajectory Matrix Generation

Since the DNs depend on both the temporal and spatial information of the user
trajectory, we segment each trajectory according to a fixed time span t and
record the location of each segment where the user appears in the target area by
a binary matrix. Figure 1 illustrates the details of converting a trajectory into a
binary matrix. Figure 1(a) shows a trajectory in the area.

Fig. 1. An illustration of the process of a trajectory.

Firstly, we divide the trajectory into a number of segments, and each segment
shows the trajectory of a user at the corresponding time span t, as shown in
Fig. 1(b). Then, the target area is further partitioned into small sizes of grids
which are the candidate locations for the demand nodes. Figure 1(c) shows the
distribution of the upper left segment. Lastly, Fig. 1(d) shows the binary matrix

Trajectory-Based Multi-hop Relay Deployment in Wireless Networks 115

of the trajectory at one time segment. The whole trajectory area is seen as a
matrix and entries of the matrix represent the partitioned grids. If the trajectory
passes through the grid, the corresponding entry of the matrix is set to 1.

After the conversion, we obtain numerous binary matrices for the target area.

3.2 Prediction Matrix

Since the value of a grid xij is 0 or 1, we assume the probability distributions
of these grids are independent Bernoulli distributions, which can be written as
xij ∼ p(xij |μij) = μ

xij

ij (1 − μij)1−xij , where the parameter μij ∈ [0, 1] is the
probability of xij = 1.

We can estimate the μij by maximizing likelihood estimation. However, this
may lead to over-fitted results for small datasets [1]. In order to alleviate this
problem, we first introduce a prior distribution p(μij |aij , bij), beta distribution,
over the parameter μij , which is easy to interpret while having some properties.
The posterior distribution of μij is now obtained by Bayesian theorem

p(μij |Xij) =
p(Xij |μij)p(μij |aij , bij)∫

p(Xij |μij)p(μij |aij , bij)dμij
. (1)

Then, we estimate the value of μij by maximizing the posterior distribution
p(μij |xij). We see that this posterior distribution has the form

p(μij |Xij) ∝ μ
m+aij−1
ij (1 − μij)n−m+bij−1. (2)

Finally, maximizing Eq. (2) with respect to μij , we obtain the maximum
posterior solution given by μij = m+aij

n+aij+bij
.

3.3 Filtering

After the prediction matrix of the target area is determined, the DNs are at the
center of those grids with higher probabilities for 1. In our model, a threshold θ
is set, and the grids whose probabilities for 1 are not less than θ are DNs.

4 Submodular Iterative Deployment Algorithm (SIDA)

We now focus on selecting the locations for APs from the candidate location set.
It is clear that the weight function w(·) is a submodular function.

4.1 The SIDA

The main idea of SIDA is as follows. First, we construct an undirected graph
G = (P,E), where P = PB ∪ PR. For any two nodes pi, pj ∈ P , (pi, pj) ∈ E if
dist(pi, pj) is less than the corresponding communication radius. Then, we scan
each piB sequentially, and generate a subgraph with its 2-hop neighbors. The
following operations are taken within this subgraph.

116 S. Tian et al.

Algorithm 1. SIDA
Input: An instance of DNC problem, 〈PB , PR, k, w(·), wR(·)〉
Output: The final solution F

1 D ← ∅;
2 for b ∈ PB do
3 k′ ← k; S ← b; Vt ← {v : hop(v, b) ≤ 2, v ∈ PR}; // hop(v, b) is the least

hop number from v to b, the same as below.

4 while k′ > 0 and Vt 	= S do
5 j ← 0;
6 while j ≤
k′/2� do
7 Find max{wR(S, S ∪ {v}) : v ∈ Vt}; S ← S ∪ {v}; j ← j + 1;

8 for v ∈ S do
9 if v is not connected with b then

10 Vd ← {u|u is one hop neighbor of v that also one hop neighbor
of b}; Find max{wR(S, S ∪ {u}) : u ∈ Vd}; S ← S ∪ {u};

11 k′ ← k − |S|;
12 if w(F) ≤ w(S) then
13 F ← S;

14 return F ;

Next, we repeatedly select �k/2� candidate locations with maximum residual
weight in the subgraph. For each selected candidate location pi, check whether
it is the 1-hop or 2-hop neighbor of the BS. If it is a 2-hop neighbor, then we
check whether those selected locations can construct a path from pi to the BS. If
not, we need to select another one pj from the 1-hop neighbors of pi that brings
the maximum residual weight while ensuring that pi → pj → BS is a path. In
this way, the number of all selected locations is at most �k/2�× 2 ≤ k. It is very
likely that we still have available relays. Therefore, assume that we have selected
g relays, and g < k, then we run the same procedure on this subgraph with
k = k − g. Repeat this procedure and use S to record all the selected locations,
and it will terminate once |S| = k and S is a feasible solution.

Finally, choose the solution with the maximum total weight. The details of
SIDA are shown in Algorithm 1.

4.2 Performance Analysis

In this subsection, we analyze the performance guarantee of SIDA. We consider
a BS location, its 2-hop neighbors and the generated subgraph. We propose two
lemma for this subgraph.

Lemma 1. After each greedy iteration li, i = 2, . . . , t, t ≤ �k/2�, the inequality
w(Gi) − w(Gi−1) ≥ 1

k

[
w(OPT ′) − w(Gi−1)

]
holds, where Gi is the selected set

after i-th iteration, and OPT ′ is the optimal solution within the current subgraph.

Trajectory-Based Multi-hop Relay Deployment in Wireless Networks 117

Proof. First, we denote w(Gi)−w(Gi−1) as W ′
i , which is the maximum residual

weight in ith iteration according to the greedy strategy. Clearly, w(OPT ′) −
w(Gi−1) is no more than the weight of the elements covered by OPT ′, but
not covered by Gi−1, i.e. w(OPT ′) − w(Gi−1) ≤ w(OPT ′\Gi−1). Since the size
of the set OPT ′\Gi−1 is bounded by the budget k, the total weight of DNs
covered by OPT ′\Gi−1 and not covered by Gi−1, is at most kW ′

i . Hence we
get w(OPT ′) − w(Gi−1) ≤ kW ′

i . Substituting w(Gi) − w(Gi−1) for W ′
i , and

multiplying both sides by 1/k, we get the required inequality.

Lemma 2. After each iteration li, i = 2, . . . , t, t ≤ �k/2�, the inequality
w(Gi) ≥ [1 − (1 − 1/k)i]w(OPT ′) holds.

Proof. According to Lemma 1, we have:

k(w(Gi) − w(Gi−1)) ≥ w(OPT ′) − w(Gi−1) ⇒ w(Gi) − w(OPT ′)
w(Gi−1) − w(OPT ′)

≤ 1 − 1/k.

Therefore, let j = 1, 2, . . . , i, and multiply those inqualities, we can get:

i∏

j=1

w(Gj) − w(OPT ′)
w(Gj−1) − w(OPT ′)

≤ (1 − 1/k)i ⇒ w(Gi) − w(OPT ′)
w(G0) − w(OPT ′)

≤ (1 − 1/k)i.

Since G0 = ∅, thus w(G0) = 0, then we have w(Gi) ≥ [1 − (1 − 1/k)i]w(OPT ′).

Theorem 1. SIDA achieves an approximation factor of 1 − 1√
e·(1−1/k)

for the

DNC problem.

Proof. For each BS candidate location, the algorithm iterates for at least �k/2�
times. We suppose OPT is the optimal solution of the DNC problem. For the
subgraph which contains OPT , we denote the set of locations selected by SIDA
as FOPT . Then in the light of Lemma 2, we could get:

w
(
FOPT

) ≥ [1 − (1 − 1/k)�k/2�]w(OPT) ≥
[
1 − 1

√
e · (1 − 1/k)

]
w(OPT).

5 Simulations

In this section, we conduct extensive simulation experiments to evaluate our algo-
rithm via C++. We evaluate our entire procedure including trajectory process-
ing, DNG, and SIDA on five real GPS data [5] from CRAWDAD: NCSU and
KAIST, New York City, Orlando, and North Carolina state fair. We randomly
divide each dataset into training and validation group.

The parameters of each dataset are shown in Table 1. We divide the map into
grids of gB × gB and set the candidate BS locations to the center of these grids.
Similarity, the candidate relay locations are set to the center of gR × gR grids.
dB is set to rR +rB , and dR is set to 2×rR. The number of relays we can deploy

118 S. Tian et al.

Table 1. Parameters of each dataset

Dataset s rB rR gB gR θ

KAIST 200 1200 600 3000 500 0.14

NCSU 200 1200 600 3000 500 0.21

New York 400 2400 1200 6000 1000 0.21

Orlando 300 1500 1000 5000 1000 0.20

Statefair 20 150 75 350 50 0.35

is k = 5. For simplicity, both the two parameters aij and bij of beta distribution
are set to 5. The time slot is set to t = 200.

We repeated the partition of the validation set and ran the procedure for
1000 times, and then took the average. The coverage performance for the five
datasets are 95.10%, 85.83%, 62.52%, 85.44%, and 60.70%, respectively.

6 Conclusion

In this work, we have proposed the Trajectory-Based Relay Deployment (TBRD)
problem in wireless networks, which aims at maximizing user connection time as
the users roam through the target area while complying with relay resource con-
straints. We first transform the trajectories into a number of virtual weighted dis-
crete Demand Nodes (DNs). In this way, the original TBRD problem is converted
to an NP-complete problem called Demand Node Coverage (DNC) problem, which
is to maximize total covered DN weight. Then, we design an approximation algo-
rithm named Submodular Iterative Deployment Algorithm (SIDA) to solve the
DNC problem, with an approximation ratio of 1 − 1

e·
√

(1−1/k)
. The simulation on

five real datasets results show that our algorithm can obtain high coverage per-
formance and thus significantly improve the user experience. To the best of our
knowledge, we are the first to consider user trajectories for relay deployment.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

2. Hochba, D.S.: Approximation algorithms for np-hard problems. ACM SIGACT
News 28(2), 40–52 (1997)

3. Ma, L., Teymorian, A.Y., Cheng, X.: A hybrid rogue access point protection frame-
work for commodity wi-fi networks. In: IEEE International Conference on Computer
Communications (INFOCOM) (2008)

4. Musolesi, M., Hailes, S., Mascolo, C.: An ad hoc mobility model founded on social
network theory. In: MSWiM, pp. 20–24 (2004)

5. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., Chong, S.: CRAWDAD
dataset ncsu/mobilitymodels (v. 2009-07-23), July 2009. http://crawdad.org/ncsu/
mobilitymodels/20090723/GPS

6. Wang, H., Tian, S., Gao, X., Wu, L., Chen, G.: Approximation designs for cooper-
ative relay deployment in wireless networks. In: ICDCS, pp. 2270–2275 (2017)

http://crawdad.org/ncsu/mobilitymodels/20090723/GPS
http://crawdad.org/ncsu/mobilitymodels/20090723/GPS

A Local Search Approximation Algorithm
for a Squared Metric k-Facility Location

Problem

Dongmei Zhang1, Dachuan Xu2(B), Yishui Wang2, Peng Zhang3,
and Zhenning Zhang2

1 School of Computer Science and Technology, Shandong Jianzhu University,
Jinan 250101, People’s Republic of China

2 Department of Information and Operations Research, College of Applied Sciences,
Beijing University of Technology, Beijing 100124, People’s Republic of China

xudc@bjut.edu.cn
3 School of Computer Science and Technology, Shandong University, Jinan 250101,

People’s Republic of China

Abstract. In this paper, we introduce a squared metric k-facility loca-
tion problem (SM-k-FLP) which is a generalization of the squared metric
facility location problem (SMFLP) and k-facility location problem (k-
FLP). In the SM-k-FLP, we are given a client set C and a facility set F
from a metric space, a facility opening cost fi ≥ 0 for each i ∈ F , and an
integer k. The goal is to open a facility subset F ⊆ F with |F | ≤ k and
to connect each client to the nearest open facility such that the total cost
(including facility opening cost and the sum of squares of distances) is
minimized. Using local search and scaling techniques, we offer a constant
approximation algorithm for the SM-k-FLP.

Keywords: Approximation algorithm · Facility location · Local search

1 Introduction

The facility location problem (FLP) and its variants are studied widely in the
society of Theoretical Computer Science. The problem is defined as follows.
Given a client set C, a facility set F with a nonnegative opening cost for each
facility, and a connection cost for each facility-client pair, we want to choose a
subset of F to open and connect each client to the nearest open facility such
that the total cost including opening costs of facilities and connection costs
is minimized. We assume that the connection cost is a metric which satisfies
nonnegativity, symmetry, and the so-called triangle inequality.

It is well-known that the FLP is NP-hard with a lower bound 1.463 assum-
ing NP /∈ DTIME[nO(log log n)] [10]. We briefly review the approximation algo-
rithms for the FLP as follows. Shmoys et al. [15] give the first constant 3.16-
approximation algorithm which is further improved by Chudak and Shmoys [4],
Charikar and Guha [4], Jain and Vazirani [9], Jain et al. [8], Mahdian et al.
[14], and Byrka and Aardal [2]. The currently best ratio 1.488 is due to Li [12]
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 119–124, 2017.
https://doi.org/10.1007/978-3-319-71150-8_11

120 D. Zhang et al.

which combines the LP-rounding and dual-fitting techniques. Fernandes et al. [7]
study the squared metric facility location problem (SMFLP) which generalizes
the FLP. In the SMFLP, the square root of distance satisfies the so-called tri-
angle inequality comparing with that in metric space. Fernandes et al. [7] prove
that the lower bound for the SMFLP is 2.04 assuming P �= NP . Furthermore,
they obtain a 2.04-approximation which achieves the lower bound by adapting
the techniques of Li [12].

The k-median problem is another important variant of the FLP. In this
problem, each facility opening cost is zero and there is a upper bound the
number of opening facilities. The approximation algorithms for the metric k-
median problem are listed below. The first constant approximation algorithm is
offered by Charikar et al. [5] using LP rounding technique. Arya et al. [1] give
a local search (3+ ε)-approximation algorithm. Li and Svensson [13] present an
improved (1+

√
3+ε)-approximation algorithm via a novel pseudo-approximation

approach. The currently best approximation ratio 2.675 + ε is due to Byrka et
al. [3]. If each facility has an opening cost in the metric k-median problem, we
obtain the k-facility location problem (k-FLP). Zhang [16] gives a local search
(2 +

√
3 + ε)-approximation algorithm for the k-FLP.

In this paper, we introduce a squared metric k-facility location problem (SM-
k-FLP) which is a generalization of the SMFLP and k-FLP. In the SM-k-FLP,
we are given a client set C and a facility set F from a metric space, a facility
opening cost fi ≥ 0 for each i ∈ F , and an integer k. The goal is to open a
facility subset F ⊆ F with |F | ≤ k and to connect each client to the nearest
open facility such that the total cost (including facility opening cost and the sum
of squares of distances) is minimized.

The contributions of our paper are summarized as follows.

– Introduce firstly the SM-k-FLP which generalizes the SMFLP and k-FLP;
– Offer a constant approximation algorithm for the SM-k-FLP by using local

search and scaling techniques.

The organization of this paper is as follows. In Sect. 2, we present a local
search

(
22 +

√
505 + ε

)
-approximation algorithm. We give some discussions in

Sect. 3.
All the proofs are deferred to the journal version.

2 Approximation Algorithm for the SM-k-FLP

We first give some preliminaries for the SM-k-FLP in Subsect. 2.1. Then we
present a local search algorithm for the SM-k-FLP in Subsect. 2.2 along with
its analysis in Subsect. 2.3. Finally, we obtain the improved approximation ratio(
22 +

√
505 + ε

)
using scaling technique in Subsect. 2.4.

2.1 Preliminaries

Given any two points a, b ∈ C ∪ F , we define Δ(a, b) := dist2(a, b). For a client
subset C ⊆ C, a point i ∈ F , let us define the total sum of squares distances of
C with respect to i as follows, Δ(i, C) :=

∑
j∈C Δ(i, j) =

∑
j∈C dist2(i, j).

Approximation Algorithm for SOS-k-FLP 121

Let S be a feasible solution to the SM-k-FLP. We still use S to denote
the open facility set in this solution. For each client j ∈ C, we denote Sj :=
min
s∈S

Δ(j, s) and sj := arg min
s∈S

Δ(j, s). For each s ∈ S, let NS(s) be the client

subset in which each client is closer to s than to other facilities. If a client j
is at the same distance from several facilities, we arbitrarily choose one facil-
ity. The cost of S is denoted by cost(S) := Cf + Cs where Cs :=

∑
j∈C Sj =∑

s∈S Δ(j,NS(s)) =
∑

s∈S

∑
j∈NS(s) Δ(j, s) and Cf :=

∑
s∈S fs.

Let O be a global optimal solution to the SM-k-FLP. Similarly as the above
notations for S, we introduces the following notations for O. For each client
j ∈ C, we denote Oj := mino∈O Δ(j, o), oj := arg mino∈O Δ(j, o), and soj :=
arg mins∈S Δ(oj , s). For each o ∈ O, we denote NO(o) := {j ∈ C|oj = o}.
Denote cost(O) := C∗

f + C∗
s where C∗

s :=
∑

j∈C Oj =
∑

o∈O Δ(j,NO(o)) =∑
o∈O

∑
j∈NO(o) Δ(j, o); and C∗

f :=
∑

o∈O fo.

2.2 Local Search Algorithm

For any feasible solution S, we define the following three local operations.

(1) add(b). In add operation, a facility b ∈ C \ S is added to S if |S| < k.
(2) drop(a). In drop operation, a facility a ∈ S is dropped.
(3) swap(A,B). In swap operation, we are given two subsets A ⊆ S and B ⊆

C \ S with |A| = |B| = p, where p is a fixed integer. All facilities in A are
dropped out of S. Meanwhile, all facilities in B are added to S.

We define the neighborhood of S associated with the above operations as
follows,

Ngh(S) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{S ∪ {b}|b ∈ C \ S}∪
{S \ {a}|a ∈ S}∪
{S \ A ∪ B|A ⊆ S,B ⊆ C \ S, |A| = |B| = p} , if |S| < k;

{S \ {a}|a ∈ S}∪
{S \ A ∪ B|A ⊆ S,B ⊆ C \ S, |A| = |B| = p} , if |S| = k.

Alogrithm 1

Step 0. (Initialization) Arbitrarily choose a feasible solution S.
Step 1. (Local search) Compute the best solution in the neighborhood of S,

Smin := arg min
S′∈Ngh(S)

cost(S′).

Step 2. (Stop criterion) If cost(Smin) ≥ cost(S), output S. Otherwise, set
S := Smin and go to Step 1.

122 D. Zhang et al.

2.3 Analysis

In order to bound the facility/connection cost, we need the following technical
lemma.

Lemma 1 ([11]). Let S and O be a local optimal solution and a global optimal
solution to the SM-k-FLP, respectively. We have,

∑

j∈C

√
SjOj ≤

√
CsC∗

s ,

√
Δ(soj , j) ≤ √

Sj + 2
√

Oj , ∀j ∈ D.

The facility opening cost for S is estimated in the following lemma.

Lemma 2. The local optimal solution S satisfies that

Cf ≤ C∗
f + 6C∗

s + 2Cs + 8
√

C∗
sCs.

We will bound connection cost for S in the following two lemmas.

Lemma 3. Suppose that |S| ≥ |O|. The local optimal solution S satisfies that

Cs ≤ C∗
f +

(
5 +

4
p

)
C∗

s + 4
(

1 +
1
p

)√
C∗

sCs.

Lemma 4. Suppose that |S| < |O|. The local optimal solution S satisfies that

Cs ≤ C∗
f + C∗

s .

Lemma 5. The local optimal solution S satisfies that

√
Cs ≤ 2

(
1 +

1
p

)√
C∗

s +

√

C∗
f +

(
3 +

2
p

)2

C∗
s .

Then, we estimate the cost of S in the following theorem.

Theorem 6. The local optimal solution S satisfies that

Cf + Cs ≤ max
{

14 +
6
p
, 161 +

256
p

+
136
p2

+
24
p3

}
(
C∗

f + C∗
s

)
.

2.4 Further Improvement by Scaling

Noting that Lemmas 2 and 5 hold for arbitrary feasible solution U of arbitrary
instance I of SM-k-FLP, we have

Cf (I, S) ≤ Cf (I, U) + 6Cs(I, U) + 2Cs(I, S) + 8
√

Cs(I, U)Cs(I, S),

√
Cs(I, S) ≤ 2

(
1 +

1
p

)√
Cs(I, U) +

√

Cf (I, U) +
(

3 +
2
p

)2

Cs(I, U).

Approximation Algorithm for SOS-k-FLP 123

For any given integer p > 0, denote

δ0 :=
11 + 30

p
+ 20

p2
+ 4

p3
+

√(
11 + 30

p
+ 20

p2
+ 4

p3

)2
+ 16

(
3 + 2

p

)(
8 + 12

p
+ 6

p2
+ 1

p3

)

3 + 2
p

.

Using the standard scaling technique [4], we present the following algorithm.

Alogrithm 2

Step 0. Set δ := δ0.
Step 1. For any given instance I, set f ′ := δf which results in a modified

instance I ′.
Step 2. Run Algorithm1 on I ′ to obtain a local optimal solution S.
Step 3. Output S as the solution of I.

Theorem 7. The local optimal solution S produced by Algorithm2 satisfies that

Cf + Cs ≤
{

11 + 3δ0 + 2 (2 + δ0)
1
p

}
(
C∗

f + C∗
s

)
.

Using standard technique to obtain a polynomial time local search based
approximation algorithm (cf. [1,16]), we have

Theorem 8. For any fixed constant ε > 0, there is a
(
22 +

√
505 + ε

)
-

approximation algorithm for the SM-k-FLP when p is large enough.

3 Discussions

In this paper, we introduce the SM-k-FLP and present a local search (22+√
505 + ε

)
-approximation algorithm. There are several future research direc-

tions. First, it will be interesting to further improve our approximation ratio
especially using LP rounding instead of local search technique. Second, since
there are many variants for the k-means problem, it is natural to study the cor-
responding variants for the SM-k-FLP. Third, more applications of our model
and its algorithm are worth to be further investigated.

Acknowledgements. The research of the first author is supported by Higher Educa-
tional Science and Technology Program of Shandong Province (No. J15LN22). The sec-
ond author is supported by Natural Science Foundation of China (No. 11531014). The
fourth author is supported by Natural Science Foundation of China (No. 61672323) and
Natural Science Foundation of Shandong Province (ZR2016AM28). The fifth author is
supported by Beijing Excellent Talents Funding (No. 2014000020124G046).

124 D. Zhang et al.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33, 544–562 (2004)

2. Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. SIAM J. Comput. 39, 2212–2231 (2010)

3. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. In: Pro-
ceedings of SODA, pp. 737–756 (2014)

4. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location
problems. SIAM J. Comput. 34, 803–824 (2005)

5. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of STOC, pp. 1–10 (1999)

6. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM J. Comput. 33, 1–25 (2003)

7. Fernandes, C.G., Meira, L.A., Miyazawa, F.K., Pedrosa, L.L.: A systematic app-
roach to bound factor-revealing LPs and its application to the metric and squared
metric facility location problems. Math. Program. 153, 655–685 (2015)

8. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50, 795–824 (2003)

9. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 274–296 (2001)

10. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31, 228–248 (1999)

11. Kanungoa, T., Mountb, D.M., Netanyahuc, N.S., Piatkoe, C.D., Silvermand, R.,
Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geometry Theory Appl. 2, 89–112 (2004)

12. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location
problem. Inf. Comput. 222, 45–58 (2013)

13. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In: Pro-
ceedings of STOC, pp. 901–910 (2016)

14. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility loca-
tion problems. SIAM J. Comput. 36, 411–432 (2006)

15. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility loca-
tion problems. In: Proceedings of STOC, pp. 265–274 (1997)

16. Zhang, P.: A new approximation algorithm for the k-facility location problem.
Theor. Comput. Sci. 384, 126–135 (2007)

Combinatorial Approximation Algorithms
for Spectrum Assignment Problem in Chain

and Ring Networks

Guangting Chen1,2, Lei Zhang2, An Zhang2, and Yong Chen2(B)

1 Taizhou University, Taizhou 317000, Zhejiang, People’s Republic of China
2 Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018,

Zhejiang, People’s Republic of China
{gtchen,anzhang,chenyong}@hdu.edu.cn

Abstract. In this paper, we investigate the spectrum assignment (SA)
problem in chain and ring topologies, which is the key network design
and control problem in spectrum sliced elastic optical path network.
Improved algorithms with guaranteed performance ratios are provided
for several NP-hard scenarios of the SA problem. Concretely, we develop
4
3
-approximation algorithms for the SA problem in chain networks with

five or six nodes, and for the SA problem in the clockwise direction of a
bidirectional ring networks with five nodes. For the latter problem with
six nodes, we propose a 3

2
-approximation algorithm. All the algorithms

are combinatorial and constructive, whose performance ratios are strictly
smaller than the best known ones to date.

Keywords: Network design · Spectrum assignment · Approximation
algorithm · Worst-case performance ratio

Mathematics Subject Classification (2010): 68W25 · 90B35 ·
90C27

1 Introduction

The orthogonal frequency division multiplexing (OFDM) technology [2,9,12] is
the foundation of a spectrum efficient and scalable optical transport network
called spectrum-sliced elastic optical path network (SLICE) [7]. The target of
SLICE architecture is to allocate variable sized optical bandwidths that meet

G. Chen–Supported by the National Natural Science Foundation of China
(11571252).
A. Zhang–Supported by the National Natural Science Foundation of China
(11771114, 11201105) and the Zhejiang Provincial Natural Science Foundation of
China (LY16A010015).
Y. Chen–Supported by the National Natural Science Foundation of China
(11401149).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 125–132, 2017.
https://doi.org/10.1007/978-3-319-71150-8_12

126 G. Chen et al.

a range of user traffic demands. The flexibility and scalability of the OFDM
technology offers an opportunity for efficient resource utilization in SLICE. In
order to minimize the utilized spectrum, the routing and spectrum assignment
(RSA) problem [3,6,10] has emerged as the key network design and control
problem in SLICE.

The routing and spectrum assignment (RSA) problem can be informally
defined as follows [13,15]. Given a directed graph G = (V,A), where V is the
set of nodes and A is the set of arcs (directed links), a spectrum demand matrix
M = [tsd], where tsd is the amount of spectrum required to carry the traffic from
source node s to destination node d, and k alternate routes, r1sd, r

2
sd, ..., r

k
sd, from

node s to node d, our goal is to assign a route and spectrum slots to each demand
so as to minimize the total amount of spectrum used on any link in the network,
under the following three constraints: (1) each demand is assigned contiguous
spectrum (spectrum contiguity constraint), (2) each demand is assigned the same
spectrum along all links of its path (spectrum continuity constraint), and (3)
demands that share a link are assigned nonoverlapping parts of the available
spectrum (nonoverlapping spectrum constraint). If a single route is provided for
each source-destination pair (i.e., k = 1) and each traffic demand must follow
the given route, then the RSA problem reduces to the spectrum assignment (SA)
problem.

As we know, RSA problem was first proposed in [3,6,10]. After that only a
few other papers, e.g., [8,17], have done further studies on this problem. And
in general, most of these studies [8,10,17] focuses on searching integer linear
programming based solutions (for small network sizes) or heuristic solutions (for
medium and large network sizes). Approximation results for RSA were rarely
found in the literature, even when the optical network topology is as simple as a
chain or a ring, which is of particular importance in the optical domain because
of its application in metro networks and in some long haul networks.

Recently, Shirazipourazad et al. [13] proved that the RSA problem is NP-
hard even when the optical network topology is a chain or a ring. Using results
from graph coloring theory, it was shown in [13] that there exist a 2 + ε and a
4+ ε-approximation algorithm for the SA problem in the chain and ring net-
works, respectively. From the perspective of scheduling theory, soon afterwards
Talebi et al. [15] showed that the SA problem in (mesh) networks of general topol-
ogy can be viewed as a parallel machine scheduling problem in which jobs may
require more than one machine simultaneously, which is denoted by P |fixj |Cmax

and has been studied extensively in the literature [1,5]. Note that in chain (lin-
ear) networks, the route rsd of each traffic demand is uniquely determined by
its source and destination nodes. Therefore, Talebi et al. [15] proved that the
SA problem on a graph G that is a chain with four nodes can be solved in poly-
nomial time and with five nodes is NP-hard. A 3

2 -approximation algorithm was
proposed for |V | = 5 or |V | = 6 in [15], respectively. Based on the scheduling
insight, a recent paper [16] studied the spectrum assignment (SA) problem in ring
networks with shortest path routing. Under shortest path routing, they proved
the SA subproblem defined in the clockwise direction of a bidirectional ring

Combinatorial Approximation Algorithms for Spectrum Assignment Problem 127

with four nodes is solvable in polynomial time and with five nodes is NP-hard.
Moreover, a 3

2 -approximation algorithm for |V | = 5, a 2-approximation algo-
rithm for |V | = 6, 7 and a 3 + ε-approximation algorithm for |V | ≥ 8 are con-
structed respectively, where the 3 + ε-approximation algorithm for |V | ≥ 8 is
strictly smaller than the best known 4+ ε-approximation algorithm [13] to date.
Besides, several variants of the RSA problem have been studied in the litera-
ture [4,11], for a survey of spectrum management techniques and classification
of solution approaches, the reader is referred to [14].

In this paper, we study the SA problem in chain and ring networks and
propose combinatorial approximation algorithms with better guaranteed perfor-
mance ratios. More concretely, we develop 4

3 -approximation algorithms for the
SA problem in chains when the number of nodes is five or six, a 4

3 -approximation
algorithm for the SA problem in the clockwise direction of a bidirectional ring
networks with five nodes with shortest path routing and a 3

2 -approximation algo-
rithm for six nodes. All our algorithm performance ratios are strictly smaller than
the best known ones to date. The rest of the paper is organized as follows. In
Sect. 2, we provide some preliminaries, including the terminologies and notations
to be used throughout the paper. In Sect. 3, we present improved approximation
algorithm and perform its worst case analysis for SA problem in chain and ring
networks. We make conclusion in Sect. 4.

2 Preliminaries

For a SA problem in chain and ring topologies, we are given a directed graph
G = (V,A) and a spectrum demand matrix M = [tsd]. Note that in chain
networks, the route rsd of the traffic demand tsd is uniquely determined by its
source node s and destination node t. Let D be the set of all the demands. It is
clear that either the chain network or the ring network under clockwise direction
with |V | = 5 serves 10 types of demands. For simplicity, we also use di to denote
the demand that requires only link (arc) i, i.e., di = ti,i+1. Similarly let dij
denote the demands that require link i and j and let dijk denote the demands
that require link i, j and k. Besides, we denote di· as the demands that require
at least two links with respect to link i and Di to denote the total demands
on the ith link, i.e., Di = di + di·. For example, we have d1· = d12 + d123,
d2· = d12 + d23 + d123 + d234, d3· = d23 + d34 + d123 + d234, d4· = d34 + d234
in the chain networks with |V | = 5, while d1· = d12 + d51, d2· = d12 + d23,
d3· = d23 + d34, d4· = d34 + d45, d5· = d45 + d51 in the ring networks with
|V | = 5. The same notations can be similarly defined in the chain networks with
|V | = 6 and in the ring networks with |V | = 6.

Let LB = max{D1,D2,D3,D4,D5}, then the optimal value of the problem
must satisfy that OPT ≥ LB. In general, our algorithm consists of two phases.
We start with a feasible assignment σ0 of partial demands D0 ⊂ D such that
the lower bound LB is attained in the first phase, i.e., the maximum amount of
spectrum of σ0 equals exactly S0

max = LB, while the second phase inserts other
demands D \ D0 to σ0.

128 G. Chen et al.

Given a feasible assignment σ0 of D0, denote the only idle time period (gap)
on link Li(i = 1, 2, 3, 4, 5) as Gi. If there are two idle time periods (gaps) on
link Li, denote the first one as Gi1 and the second one as Gi2. We say Li(i =
1, 2, 3, 4, 5) is Safe in σ0 if one of the following two conditions is satisfied: (1)
there is only one idle time period on link Li and Gi+di· ≥ LB; (2) there are two
idle time periods on link Li and Gi1 + di· ≥ LB or Gi2 + di· ≥ LB. Otherwise,
Li is Unsafe in σ0. Obviously, by the definition we know that (1) Li is Safe in
σ0 means that di can fit into the idle time period; (2) Li is Unsafe in σ0 means
that di can not fit into the current idle time period, then we need make more
space for di. For the latter case, we use the Dragging Technique [15] to make
space, which allows us to expand the idle time periods for single-link demands
until they fit into the demands exactly.

For easy understanding of the Dragging Technique, considering a feasible
assignment σ0 which is represented in Fig. 1(a) (Note that ‘AOS’ is the abbrevi-
ation of ‘Amount of Spectrum’). Let S0

max and SA
max be the maximum amount

of spectrum of the assignment σ0 and the algorithm assignment σA, respec-
tively. Clearly, L2 and L3 are Safe and L4 might be Unsafe. If L4 is Unsafe,
then Dragging Technique is used to make enough space for d4 and we have a
new assignment σ4

0 (Fig. 1(b)) with maximum amount of spectrum defined as
S4
max = D4 + s40, where s40 ≤ LB − d4· − G4 = d123. Therefore, we have the

following lemma.

Lemma 2.1. Given a feasible assignment σ0 of D0 and LB = Di, if Li′ is
Unsafe, then Dragging Technique is used to make enough space for di′ and we
have a new assignment σi′

0 with maximum amount of spectrum defined as Si′
max =

Di′ + si
′
0 , where si

′
0 ≤ LB − di′· − Gi′ .

If two links Li′ , Li′′ are Unsafe in a given assignment σ0 of D0 and LB = Di,
then we have to use Dragging Technique twice and have the following lemma.

Lemma 2.2. Given a feasible assignment σ0 of D0 and LB = Di, if Li′ , Li′′

are Unsafe, then Dragging Technique is used twice to make enough space for di′ ,
di′′ and finally we have a new assignment σA with maximum amount of spectrum
defined as SA

max = max{Di′ + si
′
0 ,Di′′ + si

′′
0 }, where si

′
0 ≤ LB − di′· − Gi′ and

si
′′
0 ≤ LB − di′′· − Gi′′ .

d123

d234

d12

d34

d23

d1

G2

G3

G4

1

2

3

4

1

2

3

4

d12

d1

d123

d234

d4

d34

d2

d3

d23

s40

Link

AOS

Link

s40

AOS

LB LB

(a) (b)

Fig. 1. Dragging technique.

Combinatorial Approximation Algorithms for Spectrum Assignment Problem 129

3 Approximation Algorithm and Its Performance
Ratio Analysis

We should note that our algorithm and analysis of its performance ratio use some
ideas of Talebi et al. [15,16]. The main idea behind the algorithm is as follows:
First of all, we construct an initial feasible assignment σ0 based on the larger
demand first rule. Secondly, check whether all the links are Safe, if so, output
assignment σ0 and stop. Otherwise, Dragging Technique is called to expand the
constructed gaps in σ0 for single-link demands until they fit into them exactly.

As our approximation algorithm is combinatorial and constructive, we do
not give a detailed description of the algorithm. The following theorem shows
that there exists a 4

3 -approximation algorithm for the SA problem in chain with
|V | = 5 and the proof is by construction.

Theorem 3.1. There exists a 4
3 -approximation algorithm for the SA problem

in chain with |V | = 5.

Proof. For the sake of simplicity of the proof, it is assumed that the multi-
link demand d1234 is zero. This assumption does not impact the proof, in that
d1234 can be assigned first. Moreover, as this problem is symmetric, we only

d34

d123

d234

d12

d34

d23

d1

G2

G3

G4

d123

d12

d1

d23

G2

G3d234

d4

1

2

3

4

1

2

3

4

1

2

3

4

d1

d12
d123

d34

G4

G3
d23

d234

d2

(a) (b)

(c)

Link

AOS

AOSAOS

LinkLink

Fig. 2. Initial Assignment σ0.

130 G. Chen et al.

discuss the cases in which links 1 and 2 have the maximum amount of spectrum
and the results can easily be generalized to the cases where links 3 and 4 are
the busiest ones. Two possible cases are distinguished according to link 1 or 2
has the maximum amount of spectrum. Here, we only consider LB = D1 and
LB = D2 can be similarly discussed.

Let C1 = d1+d12 and C2 = d123, then D1 = C1+C2. We discuss three cases,
which are distinguished primarily by the value of C1.

Case 1: C1 ≥ 2
3LB. Clearly, C2 = d123 < 1

3LB. In the initial assignment σ0

(See Fig. 2(a)), L2 and L3 are Safe and L4 might be Unsafe. If L4 is Unsafe,
then by Lemma 2.1 Dragging Technique is used to make enough space for d4 and
we have a new assignment σ4

0 with maximum amount of spectrum defined as
S4
max = D4 + s40. As G4 + d4· + d123 = D1 and S0

max = D1, then s40 ≤ d123 and
SA
max = max{S0

max,D4 + s40} ≤ S0
max + s40 ≤ D1 + d123 ≤ 4

3LB.
Case 2: C1 < 2

3LB and d12 ≤ 1
3LB. In the initial assignment σ0 (See

Fig. 2(b)), L2 and L4 are Safe and L3 might be Unsafe. If L3 is Unsafe, then
by Lemma 2.1 Dragging Technique is used to make enough space for d3 and we
have a new assignment σ3

0 with the maximum amount of spectrum modified as
S3
max = D3 + s30. As G3 + d3· + d12 = D1 and S0

max = D1, then s30 ≤ d12 and
SA
max = max{S0

max,D3 + s30} ≤ S0
max + s30 ≤ D1 + d12 ≤ 4

3LB.
Case 3: C1 < 2

3LB and d12 > 1
3LB. In the initial assignment σ0 (See

Fig. 2(c)), L3 and L4 might be Unsafe. If L3 and L4 are Unsafe, then by
Lemma 2.2 Dragging Technique is used twice to make enough space for d3, d4 and
we have a new assignment σ34

0 with maximum amount of spectrum updated as
S34
max = max{D3+s30,D4+s40}. Obviously, C1 < 2

3LB and d12 > 1
3LB imply that

d1 ≤ 1
3LB. As G3+d3·+d1−d23−d234 = D1, G4 + d4· + d1 − d23 − d234 = D1 and

S0
max = D1, then s30 = s40 ≤ d1 − d23 − d234 ≤ d1 and SA

max = max{S0
max,D3 +

s30,D4 + s40} ≤ S0
max + s30 ≤ D1 + d1 ≤ 4

3LB. �

Similarly, we can develop 4
3 -approximation algorithms for the SA problem

in chain networks with six nodes, and for the SA problem in the clockwise
direction of a bidirectional ring networks with five nodes. Moreover, for the
latter problem with six nodes, we can propose a 3

2 -approximation algorithm.
Due to space constraint, their proof of the following theorems are omitted.

Theorem 3.2. There exists a 4
3 -approximation algorithm for the SA problem

in chain with |V | = 6.

Theorem 3.3. There exists a 4
3 -approximation algorithm for the SA problem

defined on the clockwise direction of a bidirectional ring with five nodes and
shortest path routing.

Theorem 3.4. There exists a 3
2 -approximation algorithm for the SA problem

defined on the clockwise direction of a bidirectional ring with six nodes and short-
est path routing.

Combinatorial Approximation Algorithms for Spectrum Assignment Problem 131

4 Conclusion

In this paper, we study the SA problem in chain and ring networks and pro-
pose combinatorial approximation algorithms with better guaranteed perfor-
mance ratio. More concretely, we develop 4

3 -approximation algorithms for the
SA problem in chains when the number of nodes is five or six, a 4

3 -approximation
algorithm for the SA problem in the clockwise direction of a bidirectional ring
networks with five nodes with shortest path routing and a 3

2 -approximation algo-
rithm for six nodes. All our algorithm performance ratios are strictly smaller than
the best known ones to date. In future work, we plan to design better approx-
imation algorithm to tackle the RSA problem in (mesh) networks of general
topology.

References

1. Bampis, E., Caramia, M., Fiala, J., Fishkin, A.V., Iovanella, A.: Scheduling of
independent dedicated multiprocessor tasks. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 391–402. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36136-7 35

2. Chang, R.W.: Synthesis of band-limited orthogonal signals for multichannel data
transmission. Ell Syst. Tech. J. 45, 1775–1796 (1966)

3. Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Routing and spectrum allo-
cation in OFDM-based optical networks with elastic bandwidth allocation. In:
GLOBECOM, pp. 1–6 (2011)

4. Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Elastic bandwidth allocation
in flexible OFDM - based optical networks. J. Lightwave Technol. 29(9), 1354–1366
(2011)

5. Hoogeveen, J.A., Van de Velde, S.L., Veltman, B.: Complexity of scheduling mul-
tiprocessor tasks with prespecified processor allocations. Discr. Appl. Math. 55,
259–272 (1994)

6. Jinno, M., Kozicki, B., Takara, H., Watanabe, A., Sone, Y., Tanaka, T., Hirano,
A.: Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical
path network [topics in optical communications]. IEEE Commun. Magaz. 48(8),
138–145 (2010)

7. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.:
Spectrum-efficient and scalable elastic optical path network: architecture, bene-
fits, and enabling technologies. IEEE Commun. Magaz. 47(11), 66–73 (2009)

8. Klinkowski, M., Walkowiak, K.: Routing and spectrum assignment inspectrum
sliced elastic optical path network. IEEE Commun. Lett. 15(8), 884–886 (2011)

9. Pan, Q., Green, R.J.: Bit-error-rate performance of lightwave hybrid AM/OFDM
systems with comparison with AM/QAM systems in the presence of clipping
impulse noise. IEEE Photon. Technol. Lett. 8, 278–280 (1996)

10. Patel, A.N., Ji, P.N., Jue, J.P., Wang, T.: Routing, wavelength assignment, and
spectrum allocation in transparent flexible optical WDM (FWDM) networks. Opti-
cal Switch. Netw. 9(3), 191–204 (2012)

11. Rouskas, G.N.: Routing and wavelength assignment in optical WDM networks.
Encycloped. Telecommun. 11(2), 259–272 (2003). Wiley

12. Shieh, W.: Ofdm for flexible high-speed optical networks. J. Lightwave Technol.
29(10), 1560–1577 (2011)

https://doi.org/10.1007/3-540-36136-7_35
https://doi.org/10.1007/3-540-36136-7_35

132 G. Chen et al.

13. Shirazipourazad, S., Zhou, C., Derakhshandeh, Z., Sen, A.: On routing and spec-
trum allocation in spectrum-sliced optical networks. In: INFOCOM, pp. 385–389
(2013)

14. Talebi, S., Alam, F., Katib, I., Khamis, M., Khalifah, R., Rouskas, G.N.: Spec-
trum management techniques for elastic optical networks: a survey. Optical Switch.
Netw. 13, 34–48 (2014)

15. Talebi, S., Bampis, E., Lucarelli, G., Katib, I., Rouskas, G.N.: Spectrum assignment
in optical networks: a multiprocessor scheduling perspective. J. Optical Commun.
Netw. 6(8), 754–763 (2014)

16. Talebi, S., Bampis, E., Lucarelli, G., Katib, I., Rouskas, G.N.: On routing and
spectrum assignment in rings. J. Lightwave Technol. 33(1), 151–160 (2015)

17. Wang, Y., Cao, X., Pan, Y.: A study of the routing and spectrum allocation in
spectrum-sliced elastic optical path networks. In: INFOCOM, pp. 1503–1511 (2011)

Mixed Connectivity of Random Graphs

Ran Gu1, Yongtang Shi2, and Neng Fan3(B)

1 College of Science, Hohai University,
Nanjing 210098, Jiangsu, People’s Republic of China

rangu@hhu.edu.cn
2 Center for Combinatorics and LPMC, Nankai University,

Tianjin 300071, People’s Republic of China
shi@nankai.edu.cn

3 Department of Systems and Industrial Engineering,
University of Arizona, Tucson, AZ 85721, USA

nfan@email.arizona.edu

Abstract. For positive integers k and λ, a graph G is (k, λ)-connected
if it satisfies the following two conditions: (1) |V (G)| ≥ k+1, and (2) for
any subset S ⊆ V (G) and any subset L ⊆ E(G) with λ|S| + |L| < kλ,
G − (S ∪ L) is connected. For positive integers k and �, a graph G with
|V (G)| ≥ k + � + 1 is said to be (k, �)-mixed-connected if for any sub-
set S ⊆ V (G) and any subset L ⊆ E(G) with |S| ≤ k, |L| ≤ � and
|S|+|L| < k+�, G−(S∪L) is connected. In this paper, we investigate the
(k, λ)-connectivity and (k, �)-mixed-connectivity of random graphs, and
generalize the results of Erdős and Rényi (1959), and Stepanov (1970).
Furthermore, our argument can show that in the random graph process
G̃ = (Gt)

N
0 , N =

(
n
2

)
, the hitting times of minimum degree at least

kλ and of Gt being (k, λ)-connected coincide with high probability, and
also the hitting times of minimum degree at least k + � and of Gt being
(k, �)-mixed-connected coincide with high probability. These results are
analogous to the work of Bollobás and Thomassen (1986) on classic
connectivity.

Keywords: Connectivity · Edge-connectivity · Random graph ·
Threshold function · Hitting time

1 Introduction

All graphs in this paper are undirected, finite and simple. Additionally, we make
this assumption: removal of a vertex in graph implies the removal of all its
incident edges. A graph G is k-connected if G − S is connected for any vertex
subset S with |S| < k, and a graph G is �-edge-connected if G − L is connected
for any edge subset L with |L| < �. The connectivity κ(G) of graph G is the
largest k for which the graph is k-connected. Similarly, the edge-connectivity
λ(G) of graph G is the largest � for which the graph is � edge-connected. There
are many generalizations of connectivity and edge-connectivity, and we refer to
[1,10].
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 133–140, 2017.
https://doi.org/10.1007/978-3-319-71150-8_13

134 R. Gu et al.

In 2000, Kaneko and Ota [12] introduced the (k, λ)-connectivity. For a given
graph G, let x and y be two distinct vertices. A pair (x, y) of vertices is said
to be (k, λ)-connected in G if for any subset S ⊆ V (G) − {x, y} and any subset
L ⊆ E(G) with λ|S| + |L| < kλ, the vertices x and y belong to the same
component of G − S − L. Formally, a graph G is (k, λ)-connected if it satisfies
the following conditions:

(i) |V (G)| ≥ k + 1;
(ii) for any subset S ⊆ V (G) and any subset L ⊆ E(G) with λ|S| + |L| < kλ,

G − S − L is connected.

The well known Menger’s Theorem characterizes the relationship of graph
connectivity and the minimum number of disjoint paths between any pair of
vertices. For example, the pair (x, y) of vertices is k-connected if and only if
there are k internally disjoint (or vertex-disjoint) paths between x and y. Let
(x, y)-k-fan be a union of k internally disjoint paths, and [6,12] showed that the
pair (x, y) is (k, λ)-connected in G if and only if G contains λ edge-disjoint (x, y)-
k-fans. To this end, the (k, λ)-connectivity can be considered as an extension of
the classical connectivity and the edge-connectivity, considering the conclusion
of Menger’s theorem. More specifically, (k, 1)-connected graphs are k-connected
graphs, and (1, λ)-connected graphs are λ-edge-connected graphs. In fact, we
will show that the concept of (k, 1)-connected is equivalent to k-connected, and
(1, λ)-connected is equivalent to λ-edge-connected.

As another generation of connectivity and the edge-connectivity was pro-
posed by Beineke and Harary [3] in early 1960s. To avoid confusion with
the (k, λ)-connectivity defined above, we here call this type of connectivity as
(k, λ)-mixed-connectivity. Two distinct vertices x, y are said to be (k, �)-mixed-
connected (k, � are two positive integers), if for any subset S ⊆ V (G) − {x, y}
and any subset L ⊆ E(G) with |S| + |L| < k + �, the vertices x and y belong
to the same component of G − S − L. Similarly, as generation of the conclusions
in Menger’s Theorem for (k, λ)-connectivity, [3] claimed to prove that a pair
(x, y) is (k, �)-mixed-connected if there are (k+ �) edge-disjoint paths of which k
paths are vertex-disjoint. However, Mader [13] pointed out a gap in their proof.
Recently, Sadeghi and Fan [14] modified the conclusion (by changing to k + 1
vertex-disjoint paths instead of k), and then proved it.

The two generations, (k, λ)-connectivity and (k, �)-mixed-connectivity, con-
sider both connectivity and edge-connectivity, and can be applied for vulnerabil-
ity analysis for network design. As pointed out in [14], the survivable networks,
with robustness against both vertex and edge failures, require the concepts of
mixed connectivity.

In this paper, we investigate this two concepts of connectivity in the setting
of random graphs. The Erdős-Rényi random graph model G(n, p) consists of all
graphs with n vertices in which the edges are chosen independently and with
probability p. We say an event A happens with high probability (w.h.p.) if the
probability that it happens approaches 1 as n → ∞, i.e., Pr[A] = 1 − on(1).
We will always assume that n is the variable that tends to infinity. Let G and H
be two graphs on n vertices. A property P is said to be monotone increasing if

Mixed Connectivity of Random Graphs 135

whenever G ⊆ H and G satisfies P , then H also satisfies P . For a graph property
P , a function p(n) is called a threshold function of P if:

– for every r(n) with r(n)/p(n) → ∞, G(n, r(n)) w.h.p. satisfies P ; and
– for every r′(n) with r′(n)/p(n) → 0, G(n, r′(n)) w.h.p. does not satisfy P .

Furthermore, p(n) is called a sharp threshold function of P if for any constants
0 < c < 1 and C > 1, such that:

– for every r(n) ≥ C · p(n), G(n, r(n)) w.h.p. satisfies P ; and
– for every r′(n) ≤ c · p(n), G(n, r′(n)) w.h.p. does not satisfy P .

In the extensive study of the properties of random graphs, many researchers
observed that there are threshold functions for various natural graph proper-
ties. It is well known that all non-trivial monotone increasing graph properties
have threshold functions (see [5] and [9]). In one of the first papers on random
graphs, Erdős and Rényi [7] showed that m = n log n/2 is a sharp threshold for
connectivity in G(n,m). Later, Stepanov [15] established a sharp threshold of
connectivity for G(n, p). For more results on this topic, we refer to Erdős-Rényi
[8] and Ivchenko [11]. Especially, Bollobás and Thomassen [4] proved that for
almost every graph process, the hitting time of the graph having the connectivity
κ(G) at least k is equal to the hitting time of the graph having the minimum
degree at least k. Their result builds the bridge between the connectivity and
the minimum degree.

In this paper, we extend these results for threshold functions and hitting
times to (k, λ)-connectivity and (k, �)-mixed-connectivity. First, we will general-
ize the result of Erdős and Rényi [7] and Stepanov [15], and provide the threshold
functions for (k, λ)-connectivity and (k, �)-mixed-connectivity of random graphs,
respectively.

For (k, λ)-connectivity, we obtain that

Theorem 1. For any two positive integers k and λ, if p = {log n+kλ log log n−
ω(n)}/n, then w.h.p. G(n, p) is (k, λ)-connected, if p = {log n+(kλ−1) log log n−
ω(n)}/n, then w.h.p. G(n, p) is not (k, λ)-connected, where ω(n) → ∞ and
ω(n) = o(log log n).

Considering the definition of sharp threshold functions, the following result
is an immediate consequence of Theorem 1.

Theorem 2. For any two positive integers k and λ,

p = {log n + kλ log log n − ω(n)}/n

is a sharp threshold function for the property that G(n, p) is (k, λ)-connected,
where ω(n) → ∞ and ω(n) = o(log log n).

For the mixed (k, �)-connectivity, we obtain the following results.

Theorem 3. For any two positive integers k and �, if p = {log n + (k +
�) log log n − ω(n)}/n, then w.h.p. G(n, p) is (k, �)-mixed-connected, if p =
{log n + (k + � − 1) log log n − ω(n)}/n, then w.h.p. G(n, p) is not (k, �)-mixed-
connected, where ω(n) → ∞ and ω(n) = o(log log n).

136 R. Gu et al.

Theorem 4. For any two positive integers k and �,

p = {log n + (k + �) log log n − ω(n)}/n

is a sharp threshold function for the property that G(n, p) is w.h.p. (k, �)-mixed-
connected, where ω(n) → ∞ and ω(n) = o(log log n).

In fact, we will prove something even stronger than the results above. A
random graph process on V = {1, 2, · · · , n}, or simply a graph process, is a
Markov chain G̃ = (Gt)

N
0 , N =

(
n
2

)
, which starts with the empty graph on n

vertices at time t = 0 and where at each step one edge is added, chosen uniformly
at random from those not already present in the graph, until at time N we have
a complete graph. We call Gt the state of a graph process G̃ = (Gt)

N
0 at time t.

For a monotone graph property P , the time τ at which P appears is the hitting
time of P :

τ = τP = τp(G̃) = min{t ≥ 0: Gt has property P}.

Consider the graph properties Dt, Fk,λ and Rk,� given by

Dt = {G: δ(G) ≥ t},

Fk,λ = {G: G is (k, λ)-connected},

Rk,� = {G: G is (k, �)-mixed-connected},

we prove the following results.

Theorem 5. Given k ∈ N, in the random graph process G̃ = (Gt)
N
0 , N =

(
n
2

)
,

with high probability τDkλ
= τFk,λ

.

Theorem 6. Given k ∈ N, in the random graph process G̃ = (Gt)
N
0 , N =

(
n
2

)
,

with high probability τDk+�
= τRk,�

.

The remainder of this paper is organized as follows. The results for
(k, λ)-connectivity will be shown in Sect. 2, while the results for (k, �)-mixed-
connectivity are presented in Sect. 3.

2 (k, λ)-connectivity

We will use the following theorem proved by Ivchenko [11] to give proofs of our
results.

Theorem 7 [11]. If p ≤ {log n + k log log n}/n for some fixed k, then w.h.p.
we have that

κ(G(n, p)) = λ(G(n, p)) = δ(G(n, p)).

Now we consider the (k, λ)-connectivity of random graphs. We shall prove
Theorem 1 first.

Mixed Connectivity of Random Graphs 137

2.1 Proof of Theorem 1

Let p1 = {log n + kλ log log n − ω(n)}/n, p2 = {log n + (kλ − 1) log log n −
ω(n)}/n, where ω(n) → ∞ and ω(n) = o(log log n). When considering the (k, λ)-
connectivity of a graph G, we only need to check the connectivity of G − S − L
such that λ|S|+ |L| < kλ, where S ⊆ V (G) and L ⊆ E(G). Suppose that |S| = i,
then it suffices to consider the case that 0 ≤ i ≤ k − 1 and |L| satisfying that
|L| < kλ − iλ = (k − i)λ.

Note that if G is (s + 1)-connected, i.e., G − X is connected for any vertex
subset X with |X| ≤ s, then we have that G−D is connected for any edge subset
D with |D| ≤ s. Furthermore, for any vertex subset X and edge subset D with
|S|+ |D| ≤ s, G−X −D is still connected. It is known that the minimum degree
δ(G(n, p1)) of G(n, p1) is w.h.p. equal to kλ (see [2]). Combining with Theorem
7, we get that G(n, p1) is w.h.p. kλ-connected, so the new graph obtained by
deleting any kλ − 1 vertices from G(n, p1) remains connected. Hence, for any
vertex subset S and edge subset L with |S| = i and |L| < (k−i)λ, G(n, p1)−S−L
is w.h.p. connected, where 0 ≤ i ≤ k − 1. Therefore, G(n, p1) is w.h.p. (k, λ)-
connected.

For the second part of Theorem 1, since the minimum degree of G(n, p2) is
w.h.p. equal to kλ − 1, if we let L be the set of edges incident to a vertex with
minimum degree kλ − 1 in G(n, p2), then G(n, p2) − L is disconnected. Notice
that |L| = kλ − 1 < kλ, we have that w.h.p. G(n, p2) is not (k, λ)-connected.

Let p = {log n + kλ log log n − ω(n)}/n, where ω(n) → ∞ and ω(n) =
o(log log n). From Theorem 1 and the monotonicity of (k, λ)-connectivity, it is
easy to get that for every constant c1 with c1 > 1, G(n, c1p) is w.h.p. (k, λ)-
connected. And, for every constant c2 with 0 < c2 < 1, we have that c2p <
{log n+(kλ−1) log log n−ω(n)}/n for sufficiently large n. By the second part of
Theorem 1, we get that G(n, c2p) is w.h.p. not (k, λ)-connected. Thus, Theorem
2 follows.

From the definition of (k, λ)-connected graphs, we can obtain that (k, 1)-
connected graphs are k-connected graphs, and (1, λ)-connected graphs are λ-
edge-connected graphs. Let G be a (k, 1)-connected graph, for any vertex subset
S and edge subset L such that |S|+ |L| < k, we have that G−S−L is connected.
In particular, letting L be an empty set, then G−S is connected for every vertex
subset S with |S| < k. That implies G is k-connected. Similarly, if G is (1, λ)-
connected, then for any vertex subset S and edge subset L with λ|S| + |L| < λ,
G − S − L is connected. Note that λ|S| + |L| < λ holds if and only if |S| = 0
and |L| < λ. Thus, we have that G − L is connected for any edge subset L with
|L| < λ. Therefore, G is λ-edge-connected.

Moreover, a k-connected graph G is (k, 1)-connected. As we showed in the
proof of Theorem 1, for any k-connected graph G, G − S − L is connected for
any vertex subset S and edge set L with |S| + |L| < k, which implies that G
is (k, 1)-connected. Similarly, a λ-edge-connected graph G is (1, λ)-connected. If
any vertex subset S and edge set L satisfies that λ|S| + |L| < λ, then S must
be an empty set and |L| < λ. So G − S − L is connected. Thus, if G is λ-edge-

138 R. Gu et al.

connected, then for any vertex subset S and edge subset L with λ|S| + |L| < λ,
G − S − L is connected. So we can obtain the following fact.

Corollary 1. For a graph G with more than k vertices, G is (k, 1)-connected
if and only if G is k-connected, and G is (1, λ)-connected if and only if G is
λ-edge-connected.

2.2 Proof of Theorem 5

Bollobás and Thomason [4] presented a fascinating result on the hitting time
relation between the connectivity and the minimum degree. We will use it to
prove our results.

Theorem 8 [4]. For every function k = k(n), 1 ≤ k ≤ n − 1, in the random
graph process G̃ = (Gt)

N
0 , N =

(
n
2

)
, w.h.p.

τ(κ(G) ≥ k) = τ(δ(G) ≥ k).

If G is (k, λ)-connected, then δ(G) ≥ kλ. Since otherwise, if δ(G) < kλ,
letting L be the edge subset consisting of the edges incident to a vertex with
minimum degree in G, we have that |L| < kλ, and G − L is disconnected, which
contradicts to the assumption that G is (k, λ)-connected. So we have that w.h.p.

τDkλ
≤ τFk,λ

. (1)

Let t = τDkλ
. From Theorem 8, we get that w.h.p. κ(Gt) ≥ kλ, so for any

vertex subset S with |S| < kλ, Gt − S is connected. Hence we know that for
any vertex subset S and edge subset L with |S| = i and |L| < (k − i)λ, w.h.p.
Gt − S − L is still connected, where 0 ≤ i ≤ k − 1. By the definition of (k, λ)-
connectivity, we know that Gt has been (k, λ)-connected already, which implies
that w.h.p.

τDkλ
≥ τFk,λ

. (2)
By (1) and (2), we obtain that w.h.p.

τDkλ
= τFk,λ

.

Remark 1. For λ = 1, we have that Fk,λ = Fk,1 = {G: G is k-connected } from
Corollary 1, thus Theorem 5 is just the same with Theorem 8 given by Bollobás
and Thomason. Hence Theorem 5 is a generalization of that proved by Bollobás
and Thomason.

3 (k, �)-mixed-connectivity

For the (k, �)-mixed-connectivity, Sadeghi and Fan [14] gave a necessary and
sufficient condition as follows, which will be used to prove Theorem 3.

Theorem 9 [14]. Let n ≥ k + � + 1; and k, � ≥ 1. A graph G of order n is
(k, �)-mixed-connected if and only if

(i) G is (k + 1)-connected and
(ii) G is (k + �)-edge-connected.

Mixed Connectivity of Random Graphs 139

3.1 Proof of Theorem 3

Let p1 = {log n + (k + �) log log n − ω(n)}/n, p2 = {log n + (k + � − 1) log log n −
ω(n)}/n, where ω(n) → ∞ and ω(n) = o(log log n). From Theorem 7 and the
fact that w.h.p. δ(G(n, p1)) = k + �, we have that w.h.p.

κ(G(n, p1)) = λ(G(n, p1)) = δ(G(n, p1)) = k + �.

Namely, G(n, p1) is w.h.p. (k + �)-connected and (k + �)-edge-connected. Thus,
it is clear that G(n, p1) is w.h.p. (k + 1)-connected and (k + �)-edge-connected.
By Theorem 9, it follows that G(n, p1) is w.h.p. (k, �)-mixed-connected.

For the second part of Theorem 3, since δ(G(n, p2)) is w.h.p. equal to k+�−1.
Combining with Theorem 7, w.h.p. we have that λ(G(n, p2)) = δ(G(n, p2)) =
k + � − 1 < k + �. From Theorem 9, we obtain that w.h.p. G(n, p2) is not
(k, �)-mixed-connected.

Let p = {log n + (k + �) log log n − ω(n)}/n, where ω(n) → ∞ and
ω(n) = o(log log n). For any constant c1 ≥ 1, from Theorem 3 and the
monotonicity of (k, �)-mixed-connectivity, we know that G(n, c1p) is w.h.p. (k, �)-
mixed-connected. On the other hand, for any constant 0 < c2 < 1, since
c2p < {log n+(k+�−1) log log n−ω(n)}/n for sufficiently large n, we have that
w.h.p. G(n, c2p) is not (k, �)-mixed-connected by Theorem 3 and the monotonic-
ity of (k, �)-mixed-connectivity. Thus we obtain that Theorem 4 holds.

3.2 Proof of Theorem 6

From Theorem 8, we know that

τDk+�
= τ(κ(G) ≥ k + �).

When κ(G) ≥ k + �, we have that λ(G) ≥ κ(G) ≥ k + �. Thus, we obtain that
G is (k, �)-mixed-connected by Theorem 9. So, w.h.p.

τRk,�
≤ τDk+�

. (3)

Let t = τRk,�
, we have that w.h.p. Gt is (k+�)-edge-connected from Theorem 9.

So it must hold that δ(Gt) ≥ k + �. Since otherwise, let L be the set of edges inci-
dent to a vertex with minimum degree in Gt, then |L| ≤ k + � − 1 and Gt − L
is disconnected, a contradiction to the fact that λ(Gt) ≥ k + �. That means the
minimum degree of Gt has already been at least k + �. Hence, w.h.p.

τRk,�
≥ τDk+�

. (4)

Therefore, by (3) and (4), we have w.h.p.

τRk,�
= τDk+�

.

140 R. Gu et al.

Acknowledgement. R. Gu was partially supported by Natural Science Foundation
of Jiangsu Province (No. BK20170860), National Natural Science Foundation of China,
and Fundamental Research Funds for the Central Universities (No. 2016B14214).
Y. Shi was partially supported by the Natural Science Foundation of Tianjin (No.
17JCQNJC00300) and the National Natural Science Foundation of China.

References

1. Boesch, F.T., Chen, S.: A generalization of line connectivity and optimally invul-
nerable graphs. SIAM J. Appl. Math. 34, 657–665 (1978)

2. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
3. Beineke, L.W., Harary, F.: The connectivity function of a graph. Mathematika 14,

197–202 (1967)
4. Bollobás, B., Thomason, A.: Random graphs of small order. Annals Discr. Math.

7, 35–38 (1986)
5. Bollobás, B., Thomason, A.: Threshold functions. Combinatorica 7, 35–38 (1986)
6. Egawa, Y., Kaneko, A., Matsumoto, M.: A mixed version of Menger’s theorem.

Combinatorica 11, 71–74 (1991)
7. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
8. Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta

Math. Hung. 12(1), 261–267 (1961)
9. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.

Proc. Amer. Math. Soc. 124, 2993–3002 (1996)
10. Hennayake, K., Lai, H.-J., Li, D., Mao, J.: Minimally (k, k)-edge-connected graphs.

J. Graph Theor. 44, 116–131 (2003)
11. Ivchenko, G.I.: The strength of connectivity of a random graph. Theor. Probab.

Applics 18, 396–403 (1973)
12. Kaneko, A., Ota, K.: On minimally (n, λ)-connected graphs. J. Combin. Theor.

Ser. B 80, 156–171 (2000)
13. Mader, W.: Connectivity and edge-connectivity in finite graphs. In: Bollobás, B.,

(ed.): Surveys in Combinatorics proceedings of the Seventh British Combinatorial
Conference, London Mathematical Society Lecture Note Series, vol. 38. Cambridge
University Press, Cambridge, pp. 66–95 (1979)

14. Sadeghi, E., Fan, N.: On the survivable network design problem with mixed con-
nectivity requirements (2015). http://www.optimization-online.org/DB HTML/
2015/10/5144.html

15. Stepanov, V.E.: On the probability of connectedness of a random graph Gm(t).
Theor. Probab. Applics 15, 55–67 (1970)

http://www.optimization-online.org/DB_HTML/2015/10/5144.html
http://www.optimization-online.org/DB_HTML/2015/10/5144.html

Conflict-Free Connection Numbers
of Line Graphs

Bo Deng1,2, Wenjing Li1, Xueliang Li1,2(B), Yaping Mao2, and Haixing Zhao2

1 Center for Combinatorics and LPMC, Nankai University,
Tianjin 300071, China

dengbo450@163.com, liwenjing610@mail.nankai.edu.cn, lxl@nankai.edu.cn
2 School of Mathematics and Statistics, Qinghai Normal University, Xining 810008,

Qinghai, China
maoyaping@ymail.com, h.x.zhao@163.com

Abstract. A path in an edge-colored graph is called conflict-free if it
contains a color that is used by exactly one of its edges. An edge-colored
graph G is conflict-free connected if for any two distinct vertices of G,
there is a conflict-free path connecting them. For a connected graph G,
the conflict-free connection number of G, denoted by cfc(G), is defined
as the minimum number of colors that are required to make G conflict-
free connected. In this paper, we investigate the conflict-free connection
numbers of connected claw-free graphs, especially line graphs. We use
L(G) to denote the line graph of a graph G. In general, the k-iterated
line graph of a graph G, denoted by Lk(G), is the line graph of the
graph Lk−1(G), where k ≥ 2 is a positive integer. We first show that
for an arbitrary connected graph G, there exists a positive integer k
such that cfc(Lk(G)) ≤ 2. Secondly, we get the exact value of the
conflict-free connection number of a connected claw-free graph, espe-
cially a connected line graph. Thirdly, we prove that for an arbitrary
connected graph G and an arbitrary positive integer k, we always have
cfc(Lk+1(G)) ≤ cfc(Lk(G)), with only the exception that G is isomor-
phic to a star of order at least 5 and k = 1. Finally, we obtain the exact
values of cfc(Lk(G)), and use them as an efficient tool to get the smallest
nonnegative integer k0 such that cfc(Lk0(G)) = 2.

Keywords: Conflict-free connection number · Claw-free graphs · Line
graphs · K-iterated line graphs

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow
the terminology and notation of Bondy and Murty in [3] for those not defined
here. For a connected graph G, let V (G), E(G), κ(G) and λ(G) denote the vertex

Supported by NSFC No. 11371205, 11531011 and 11701311, and NSFQH No. 2017-
ZJ-790.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 141–151, 2017.
https://doi.org/10.1007/978-3-319-71150-8_14

142 B. Deng et al.

set, the edge set, the vertex-connectivity and the edge-connectivity of G, respec-
tively. Throughout this paper, we use Pn, Cn and Kn to denote a path, a cycle
and a complete graph of order n, respectively. And we call G a star of order
r + 1, denoted by K1,r, which is a complete bipartite graph with the bipartition
V (G) = X ∪ Y satisfying |X| = 1 and |Y | = r.

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{0, 1, . . . , t}, t ∈ N, where adjacent edges may be colored with the same color.
When adjacent edges of G receive different colors by c, the edge-coloring c is
called proper. The chromatic index of G, denoted by χ′(G), is the minimum
number of colors needed in a proper coloring of G. A path in G is called a
rainbow path if no two edges of the path are colored with the same color. The
graph G is called rainbow connected if for any two distinct vertices of G, there is a
rainbow path connecting them. For a connected graph G, the rainbow connection
number of G, denoted by rc(G), is defined as the minimum number of colors that
are needed to make G rainbow connected. These concepts were first introduced
by Chartrand et al. in [5] and have been well-studied since then. For further
details, we refer the reader to a book [11] and a survey paper [10].

Motivated by the rainbow connection coloring and proper coloring in graphs,
Andrews et al. [1] and Borozan et al. [4] proposed the concept of proper-path
coloring. Let G be a nontrivial connected graph with an edge-coloring. A path
in G is called a proper path if no two adjacent edges of the path are colored with
the same color. The graph G is called proper connected if for any two distinct
vertices of G, there is a proper path connecting them. The proper connection
number of G, denoted by pc(G), is defined as the minimum number of colors
that are needed to make G proper connected. For more details, we refer to a
dynamic survey [9].

Inspired by the above mentioned two connection colorings and conflict-free
colorings of graphs and hypergraphs [12], Czap et al. [7] recently introduced the
concept of the conflict-free connection number of a nontrivial connected graph.
Let G be a nontrivial connected graph with an edge-coloring c. A path in G is
called conflict-free if it contains a color that is used by exactly one of its edges.
The graph G is conflict-free connected (with respect to the edge-coloring c) if for
any two distinct vertices of G, there is a conflict-free path connecting them. In
this case, the edge-coloring c is called a conflict-free connection coloring (CFC-
coloring for short). For a connected graph G, the conflict-free connection number
of G, denoted by cfc(G), is defined as the minimum number of colors that are
required to make G conflict-free connected. For the graph with a single vertex or
without any vertex, we assume the value of its conflict-free connection number
equal to 0.

The conflict-free connection of graphs has the following application back-
ground. In a communication network between wireless signal towers, it is fun-
damental that the network is connected. We can assign signal connection paths
between signal towers which may have other signal towers as intermediaries while
requiring a large enough number of frequencies for this communication. If a same
frequency appears more than once on a connection path between two towers A

Conflict-Free Connection Numbers of Line Graphs 143

and B, then we cannot use this frequency to communicate between A and B
along this path since mutual interference occurs, i.e., conflict happens. So we
need a connection path between the two towers A and B on which there is a
frequency that appears exactly once, and in this way we can use this unique fre-
quency to communicate between A and B along this path without any mutual
interference, i.e., conflict-free. Therefore, our goal is to allocate the minimum
number of frequencies such that any two signal towers will be able to connect in
this communication network without mutual interference, i.e., conflict-free. This
situation can be modeled by a graph. Suppose that we assign a vertex to each
signal tower, an edge between two vertices if the corresponding signal towers
are directly connected by a signal and assign a color to each edge based on the
assigned frequency used for the communication. Then, the minimum number
of frequencies needed to assign the connections between towers so that there is
always a connection path to communicate between each pair of towers with the
property that there is a frequency that appears exactly once on this path, i.e., we
can use this unique frequency to communicate between the pair of towers along
this path without mutual interference (conflict-free), is precisely the conflict-free
connection number of the corresponding graph.

The following observations are immediate.

Proposition 1. Let G be a connected graph on n ≥ 2 vertices. Then we have

(i) cfc(G) = 1 if and only if G is complete;
(ii) cfc(G) ≥ 2 if G is noncomplete;
(iii) cfc(G) ≤ n − 1.

In [7], Czap et al. first gave the exact value of the conflict-free connection
number for a path on n edges.

Theorem 1 ([7]). cfc(Pn) = �log2 n�.
Then they investigated the graphs with conflict-free connection number 2.

If the number of components of G increases after removing an edge e from G,
then e is called a cut-edge of G. Let C(G) be the subgraph of a graph G induced
by the set of cut-edges of G. A linear forest in a graph G is a subgraph each
component of which is a path.

Theorem 2 ([7]). If G is a noncomplete 2-connected graph, then cfc(G) = 2.

Theorem 3 ([7]). If G is a connected graph with at least 3 vertices and C(G)
is a linear forest whose each component is of order 2, then cfc(G) = 2.

In fact, we can weaken the condition of Theorem 2, and get that the same
result holds for 2-edge-connected graphs, whose proof is similar to that of
Theorem 3 in [7]. For completeness, we give its proof here. Before we proceed to
the result and its proof, we need the following lemmas which are useful in our
proof, and can be found in [7].

144 B. Deng et al.

Lemma 1 ([7]). Let u, v be two distinct vertices and let e = xy be an edge of
a 2-connected graph G. Then there is a u – v path in G containing the edge e.

A block of a graph G is a maximal connected subgraph of G without cut-
vertices. A connected graph with no cut-vertex therefore has just one block,
namely the graph itself. An edge is a block if and only if it is a cut-edge. A
block consisting of an edge is called trivial. Note that any nontrivial block is 2-
connected.

Lemma 2 ([7]). Let G be a connected graph. Then from its every nontrivial
block an edge can be chosen so that the set of all such chosen edges forms a
matching.

Theorem 4. Let G be a noncomplete 2-edge-connected graph. Then cfc(G) = 2.

Proof. If G is a noncomplete 2-connected graph, then we are done. So we only
consider the case that G has at least one cut-vertex. Note that G has a block
decomposition with each block having at least 3 vertices, that is, each block is
nontrivial. By Lemma2, we choose from each block one edge so that all chosen
edges create a matching S. Next we color the edges from S with color 2 and all
remaining edges of G with color 1.

Now we prove this coloring makes G conflict-free connected, that is, for any
two distinct vertices x and y, we need to find a conflict-free x – y path.

Case 1. Let x and y belong to the same block B. Then by Lemma 1, there
is an x – y path, in B, containing the edge of B colored with color 2. Clearly,
this x – y path is conflict-free.

Case 2. Let x and y be in different blocks. Consider a shortest x – y path
in G. This path goes through blocks, say B1, B2, . . . , Br, r ≥ 2, in this order,
where x ∈ V (B1) and y ∈ V (Br). Let vi be a common vertex of blocks Bi and
Bi+1, 1 ≤ i ≤ r − 1. Set y = vr. Clearly, x 	= v1. We choose an x – v1 path in B1

going through the edge assigned 2, and then a vi – vi+1 path in Bi+1 omitting
the edge colored with 2 in Bi for 1 ≤ i ≤ r − 1. Obviously, the concatenation of
the above r paths is an conflict-free x – y path.

For a general graph G with connectivity 1, the authors of [7] gave the bounds
on cfc(G). Let G be a connected graph and h(G) = max{cfc(K) : K is a
component of C(G)}. In fact, h(G) = 0 if G is 2-edge-connected. So we restate
that theorem as follows.

Theorem 5 ([7]). If G is a connected graph with at least one cut-edge, then
h(G) ≤ cfc(G) ≤ h(G) + 1. Moreover, these bounds are tight.

Line graphs form one of the most important graph classes, and there have
been a lot of results on line graphs, see [8]. In this paper we also deal with line
graphs. Recall that the line graph of a graph G is the graph L(G) whose vertex
set V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if and only if
they are adjacent in G. The iterated line graph of a graph G, denoted by L2(G),
is the line graph of the graph L(G). In general, the k-iterated line graph of a

Conflict-Free Connection Numbers of Line Graphs 145

graph G, denoted by Lk(G), is the line graph of the graph Lk−1(G), where k ≥ 2
is a positive integer. We call a graph claw-free if it does not contain a claw K1,3

as its induced subgraph. Notice that a line graph is claw-free; see [2] or [8].
This paper is organized as follows: In Sect. 2, we give some properties con-

cerning the line graphs, and based on them, we show that for an arbitrary con-
nected graph G, there exists a positive integer k such that cfc(Lk(G)) ≤ 2. In
Sect. 3, we start with the investigation of one special family of graphs, and then
classify the graphs among them with cfc(G) = h(G) + 1. Using this result, we
first get the exact value of the conflict-free connection number of a connected
claw-free graph. As a corollary, for a connected line graph G, we obtain the
value of cfc(G). Then, we prove that for an arbitrary connected graph G and an
arbitrary positive integer k, we always have cfc(Lk+1(G)) ≤ cfc(Lk(G)), with
only the exception that G is isomorphic to a star of order at least 5 and k = 1.
Finally, we obtain the exact values of cfc(Lk(G)), and use them as an efficient
tool to get the smallest nonnegative integer k0 such that cfc(Lk0(G)) = 2.

2 Dynamic Behavior of the Line Graph Operator

If one component C of C(G) is either a cut-edge or a path of order at least 3
whose internal vertices are all of degree 2 in G, then we call C a cut-path of G.

Lemma 3. For a connected claw-free graph G, each component of C(G) is a
cut-path of G.

Proof. Firstly, C(G) is a linear forest. Otherwise, there exists a vertex v ∈ C(G)
whose degree is larger than 2 in C(G). Then v and three neighbors of v in C(G)
induce a K1,3 in G, contradicting the condition that G is claw-free. Secondly,
with a similar reason, if one component of C(G) has at least 3 vertices, then all
of its internal vertices must be of degree 2 in G. So, each component of C(G)
must be a cut-path of G.

Since a line graph is claw-free, Lemma 3 is valid for line graphs.

Corollary 1. For a connected line graph G, every component of C(G) is a cut-
path of G.

In 1969, Chartrand and Stewart [6] showed that κ(L(G)) ≥ λ(G), if λ(G) ≥ 2.
So, the following result is obvious.

Lemma 4. The line graph of a 2-edge-connected graph is 2-connected.

Now, we examine the dynamic behavior of the line graph operator, and get
our main result of this section.

Theorem 6. For any connected graph G, there exists a positive integer k such
that cfc(Lk(G)) ≤ 2.

146 B. Deng et al.

Proof. If G is a 2-edge-connected graph, then by Proposition 1, Theorem 2 and
Lemma 4, we obtain cfc(L(G)) ≤ 2. In this case, we set k = 1. In the following,
we concentrate on the graphs having at least one cut-edge.

Let P be a set of paths in C(G) who have at least one internal vertex and
whose internal vertices are all of degree 2 in G. If P = ∅, then we show that L(G)
is 2-edge-connected. Suppose otherwise, if there is a cut-edge e1e2 in L(G), then
there is a path of length 2 in G whose internal vertex is of degree 2, which is a
contradiction. Thus, by Proposition 1 and Theorem 4, we have cfc(L(G)) ≤ 2.
Then we also set k = 1 in this case.

If P 	= ∅, let p be the length of a longest path among P. Notice that the
cut-paths of Li+1(G) are the same as the cut-paths of Li(G), shortened by one
edge (and no new cut-paths can appear). Then, by Corollary 1, each component
of C(Li(G)) must be a cut-path of Li(G) for 1 ≤ i ≤ p. Since L(Pj) = Pj−1

for any positive integer j ≥ 1, each component of C(Lp−1(G)) is of order 2. By
Theorem 3, we have cfc(Lp−1(G)) = 2. Thus, we set k = p − 1 in this case.

The proof is thus complete.

3 The Values cfc(Lk(G)) of Iterated Line Graphs

In this section, we first investigate the connected graphs G having at least one
cut-edge and each component of C(G) is a cut-path of G. Among them, we
characterize the graphs G satisfying cfc(G) = h(G), and the graphs G satisfying
cfc(G) = h(G) + 1. Let G be a connected graph of order n. If n = 2, G ∼= P2,
and hence cfc(G) = h(G) = 1. In the following, we assume n ≥ 3. If h(G) = 1,
then by Theorem 3, we always have cfc(G) = 2 = h(G) + 1. So we only need to
discuss the case of h(G) ≥ 2.

Theorem 7. Let G be a connected graph having at least one cut-edge, and C(G)
be its linear forest whose each component is a cut-path of G and h(G) ≥ 2. Then
cfc(G) = h(G)+1 if and only if there are at least two components of C(G) whose
conflict-free connection numbers attain h(G); and cfc(G) = h(G) if and only
if there is only one component of C(G) whose conflict-free connection number
attains h(G).

Proof. We first consider the case that there are at least two components of C(G)
whose conflict-free connection numbers attain h(G), say C1 and C2. Consider the
two vertices v1 ∈ V (C1) and v2 ∈ V (C2) such that the distance d(v1, v2) between
v1 and v2 is maximum. Assume that there exists a CFC-coloring c of G with
h(G) colors. Since any v1 – v2 path in G contains all the edges of C1 and C2,
there is no conflict-free path connecting v1 and v2. Consequently, h(G) < cfc(G).
Together with Theorem 5, we have cfc(G) = h(G) + 1 in this case.

Next, we assume that there is only one component of C(G) whose conflict-
free connection number is h(G), say C0. Now we give an edge-coloring of G.
First, we color C0 with h(G) colors, say 1, 2, . . . , h(G), just like the coloring of
a path stated in Theorem 1 of [7]. Let e0 be the edge colored with color h(G)
in C0. Similarly, we color all the other components K of C(G) with the colors

Conflict-Free Connection Numbers of Line Graphs 147

from {1, . . . , h(G) − 1}. Note that only e0 is assigned h(G) among all the edges
of C(G).

Then according to Lemma 2, we choose in any nontrivial block of G an edge
so that all chosen edges form a matching S. We color the edges from S with
color h(G), and the remaining edges with color 1.

In the following we have to show that for any two distinct vertices x and
y, there is a conflict-free x – y path. If the vertices x and y are from the same
component of C(G), then such a path exists according to Theorem 1. If they
are in the same nontrivial block, then by Lemma1, there is an x – y path going
through the edge assigned h(G). If none of the above situations appears, then x
and y are either from distinct components of C(G), or distinct nontrivial blocks,
or one is from a component of C(G) and the other from a nontrivial block.

Consider a shortest x – y path P in G. Let v1, . . . , vr−1 be all cut-vertices of
G contained in P , in this order. Set x = v0 and y = vr. The path P goes through
blocks B1, B2 . . . , Br indicated by the vertices v0 and v1, v1 and v2, . . . , vr−1 and
vr, respectively. At least one of the blocks is nontrivial. If P must go through
the edge e0, then in each block Bi, 1 ≤ i ≤ r, we choose a monochromatic
vi−1 – vi path. The path concatenated of the above monochromatic paths is
a desired one, since h(G) only appears once. Otherwise, we consider the first
nontrivial block Bi, i ∈ {1, . . . , r}. In it, we choose a conflict-free vi−1 – vi

path going through the edge of Bi colored with h(G). Then in the remaining
blocks Bj , j ∈ {1, . . . , r} \ {i}, we choose a monochromatic vj−1 – vj path. The
searched conflict-free x – y path is then concatenated of these above paths. The
resulting x – y path contains only one edge assigned h(G). Combining the fact
cfc(G) ≥ h(G), we have cfc(G) = h(G) in this case.

Therefore, from above, it is easy to see that there does not exist the case
simultaneously satisfying cfc(G) = h(G) + 1 and there is only one component
of C(G) whose conflict-free connection number attains h(G).

In contrast, if cfc(G) = h(G), there is only one component of C(G) whose
conflict-free connection number attains h(G). Otherwise, cfc(G) = h(G) + 1.

The result thus follows.

As a by product, we can immediately get the value of the conflict-free con-
nection number of a connected claw-free graph. Before it, we state a structure
theorem concerning a connected claw-free graph. Notice that a complete graph
is claw-free. Recall that for a connected claw-free graph G, each component of
C(G) is a cut-path of G. Let p(G), or simply p, be the length of a longest cut-path
of G.

Theorem 8. Let G be a connected claw-free graph. Then G must belong to one
of the following four cases:

i) G is complete;
ii) G is noncomplete and 2-edge-connected;
iii) C(G) has at least two components K satisfying cfc(K) = �log2(p + 1)�;
iv) C(G) has only one component K satisfying cfc(K) = �log2(p + 1)�.

148 B. Deng et al.

Proof. There are two cases according to whether G has a cut-edge or not. If
G has no cut-edge, we can distinguish two subcases according to whether G is
complete or not. If G has a cut-edge, then we distinguish two subcases according
to whether C(G) has only one component K satisfying cfc(K) = �log2(p + 1)�
or not. Thus, a connected claw-free graph G must be in one of the above four
subcases.

According to Lemma 3, Theorems 3, 7 and 8, we get the following result.

Theorem 9. Let G be a connected claw-free graph of order n ≥ 2. Then we
have

i) cfc(G) = 1 if G is complete;
ii) cfc(G) = 2 if G is noncomplete and 2-edge-connected, or p = 1 and n ≥ 3;
iii) cfc(G) = �log2(p+1)�+1, if C(G) has at least two components K satisfying

cfc(K) = �log2(p + 1)�; otherwise, cfc(G) = �log2(p + 1)�, where p ≥ 2.

Since line graphs are claw-free, from Theorems 8 and 9 we immediately get
the following result.

Corollary 2. Let G be a connected line graph of order n ≥ 2. Then we have

i) cfc(G) = 1 if G is complete;
ii) cfc(G) = 2 if G is noncomplete and 2-edge-connected, or p = 1 and n ≥ 3;
iii) cfc(G) = �log2(p+1)�+1, if C(G) has at least two components K satisfying

cfc(K) = �log2(p + 1)�; otherwise, cfc(G) = �log2(p + 1)�, where p ≥ 2.

Next, for a connected graph G and a positive integer k, we compare
cfc(Lk+1(G)) and cfc(Lk(G)). For almost all cases, we find that cfc(Lk+1(G)) ≤
cfc(Lk(G)). However, note that if G is a complete graph of order n ≥ 4, then
L(G) is noncomplete, since there exist two nonadjacent edges in G. In this case,
we have cfc(L(G)) ≥ 2 > 1 = cfc(G). So we first characterize the connected
graphs whose line graphs are complete graphs.

Lemma 5. The line graph L(G) of a connected graph G is complete if and only
if G is isomorphic to a star or K3.

Proof. If G is isomorphic to a star or K3, then obviously L(G) is complete.
Conversely, suppose L(G) is complete. From Whitney isomorphism theorem

of line graphs (see [8]), i.e., two graphs H and H ′ have isomorphic line graphs if
and only if H and H ′ are isomorphic, or one of them is isomorphic to the claw
K1,3 and the other is isomorphic to the triangle K3, we immediately get that G
is isomorphic to a star or K3.

By Lemma 5 we get the following result.

Theorem 10. Let G be a connected graph which is not isomorphic to a star
of order at least 5, and k be an arbitrary positive integer. Then we have
cfc(Lk+1(G)) ≤ cfc(Lk(G)).

Conflict-Free Connection Numbers of Line Graphs 149

Proof. To the contrary, we suppose that there exists a positive integer k0 such
that cfc(Lk0+1(G)) > cfc(Lk0(G)). We first claim that Lk0+1(G) has at least one
cut-edge. Otherwise, by Proposition 1 and Theorem 4, we have cfc(Lk0+1(G)) ≤
2. If Lk0(G) is complete, then it follows from Lemma 5 that Lk0(G) ∼= C3.
Then Lk0+1(G) is also complete, implying cfc(Lk0+1(G)) = cfc(Lk0(G)) = 1.
If Lk0(G) is noncomplete, then by Proposition 1, we have cfc(Lk0(G)) ≥ 2;
clearly, cfc(Lk0+1(G)) ≤ cfc(Lk0(G)) in this case. In both cases, we have
cfc(Lk0+1(G)) ≤ cfc(Lk0(G)), a contradiction.

From Corollary 1, it follows that for a positive integer i, each component
of C(Li(G)) is a cut-path of Li(G). Let pi be the length of a largest path of
C(Li(G)). Then we have pi+1 = pi − 1, meaning h(Li+1(G)) ≤ h(Li(G)). Set
h(Lk0(G)) = q. Since Lk0+1(G) has a cut-edge, we deduce that q ≥ 2. And
we know h(Lk0+1(G)) = q − 1 or h(Lk0+1(G)) = q. If h(Lk0+1(G)) = q − 1,
by Theorem 5, we have q − 1 ≤ cfc(Lk0+1(G)) ≤ q. For the same reason,
q ≤ cfc(Lk0(G)) ≤ q +1. Thus, it makes a contradiction to the supposition that
cfc(Lk0+1(G)) > cfc(Lk0(G)).

Then we have h(Lk0+1(G)) = q, cfc(Lk0+1(G)) = q+1 and cfc(Lk0(G)) = q.
By Theorem 7, there are at least two components of C(Lk0+1(G)) whose conflict-
free connection numbers are q, and there is only one component of C(Lk0(G))
whose conflict-free connection number is q. Since every cut-path of Lk0+1(G)
corresponds to a cut-path of Lk0(G), a cut-path of Lk0+1(G) is shorter than
its corresponding cut-path of Lk0(G). So there is at most one component of
C(Lk0+1(G)) whose conflict-free connection number is q, a contradiction. Thus,
we have cfc(Lk+1(G)) ≤ cfc(Lk(G)) for any positive integer k.

If G is a star of order at least 5, then Li(G) (i ≥ 2) are noncomplete and 2-
connected. The following result is easily obtained according to Theorem 2.

Theorem 11. Let G be isomorphic to a star of order at least 5, and k ≥ 2 be a
positive integer. Then we have cfc(Lk+1(G)) = cfc(Lk(G)).

Combining the above two theorems, we get a main result of this section.

Theorem 12. For an arbitrary connected graph G and an arbitrary positive
integer k, we always have cfc(Lk+1(G)) ≤ cfc(Lk(G)), with only the exception
that G is isomorphic to a star of order at least 5 and k = 1.

From Theorem 6, we know the existence of a positive integer k such that
cfc(Lk(G)) ≤ 2. From Proposition 1 we know that only complete graphs have
the cfc-value equal to 1. So, the iterated line graph Lk(G) of a connected graph
G has a cfc-value 1 if and only if G is complete for k = 0 from Proposition 1,
or G is isomorphic to a star of order at least 3 for k = 1 from Lemma 5, or G
is K3 for all k ≥ 1, or G is a path of order n ≥ 4 for k = n − 2. Next, we want
to find the smallest nonnegative integer k0 such that cfc(Lk0(G)) = 2. Let k an
arbitrary nonnegative integer. Based on Proposition 1, Theorems 1 through 4,
Lemmas 4 and 5, we begin with the investigation of the exact value of cfc(Lk(G))
when G is a path, a complete graph, a star, or a noncomplete 2-edge-connected
graph.

150 B. Deng et al.

Lemma 6. Let n ≥ 2 be a positive integer. Then cfc(Lk(Pn)) = �log2(n − k)�
if k < n − 1; otherwise, cfc(Lk(Pn)) = 0.

Lemma 7. Let G be a complete graph of order n ≥ 3. Then cfc(Lk(G)) = 1
for any nonnegative integer k if n = 3; cfc(G) = 1 and cfc(Lk(G)) = 2 for any
positive integer k if n ≥ 4.

Lemma 8. Let G be a star of order n ≥ 4. Then cfc(G) = n−1; cfc(L(G)) = 1;
for a positive integer k ≥ 2, cfc(Lk(G)) = 1 if n = 4, cfc(Lk(G)) = 2 if n ≥ 5.

Lemma 9. Let G be a noncomplete 2-edge-connected graph of order n ≥ 4.
Then cfc(Lk(G)) = 2 for a nonnegative integer k.

Let G = {G | G is a connected graph of order n ≥ 4, G has a cut-edge, G is
not a path or a star}. Except for the above four kinds of graphs in Lemmas 6
through 9, we know little about the exact values of the conflict-free connection
numbers of other connected graphs, even for a general tree. So for a graph G ∈ G,
it is difficult to give the value of cfc(Lk(G)) when k = 0. However, based on
Corollaries 1 and 2, we can give the value of cfc(Lk(G)) when k ≥ 1. Set p0
be the length of a longest cut-path of L(G), and let p0 = 0 if L(G) is 2-edge-
connected.

Lemma 10. Let G ∈ G and let k be an arbitrary positive integer. Then we have

i) cfc(Lk(G)) = 2 always holds if p0 ≤ 1 or there is only one component K of
C(L(G)) satisfying cfc(K) = h(L(G)) = 2;

ii) otherwise, for k ≤ p0 − 1, cfc(Lk(G)) = �log2(p0 − k + 2)� if there is only
one component K of C(Lk(G)) satisfying cfc(K) = �log2(p0 − k + 2)�, and
cfc(Lk(G)) = �log2(p0 − k + 2)� + 1 if there are at least two components
K of C(Lk(G)) satisfying cfc(K) = �log2(p0 − k + 2)�; for k > p0 − 1,
cfc(Lk(G)) = 2 always holds.

From Lemmas 6 through 10, we can easily get the smallest nonnegative inte-
ger k0 such that cfc(Lk0(G)) = 2.

Theorem 13. Let G be a connected graph and k0 be the smallest nonnegative
integer such that cfc(Lk0(G)) = 2. Then we have

i) for G ∈ {K2,K3,K1,3}, k0 does not exist;
ii) for a path of order 3, k0 = 0; for a path of order n ≥ 4, k0 = n − 4;
iii) for a complete graph of order at least 4, k0 = 1;
iv) for a star of order at least 5, k0 = 2;
v) for a noncomplete 2-edge-connected graph, k0 = 0;
vi) for a graph G ∈ G, k0 = 0 if cfc(G) = 2; k0 = 1 if C(L(G)) = ∅ or

C(L(G)) is a linear forest whose each component is of order 2 or there is only
one component K of C(L(G)) satisfying cfc(K) = h(L(G)) = 2; otherwise,
k0 = p0 − 2 if there is only one path of length p0 in C(L(G)) and there is no
path of length p0 − 1 in C(L(G)) with p0 ≥ 4, k0 = p0 − 1 if there is only one
path of length p0 in C(L(G)) and there is a path of length p0 − 1 in C(L(G))
with p0 ≥ 3, k0 = p0 if there are at least two paths of length p0 in C(L(G))
with p0 ≥ 2.

Conflict-Free Connection Numbers of Line Graphs 151

Proof. Obviously, we can get i) through v) from Lemmas 6 through 9.
For vi), if cfc(G) = 2, then we have k0 = 0. If C(L(G)) = ∅, then we have

L(G) is 2-edge-connected, and hence, cfc(L(G)) = 2 by Theorem 4; if C(L(G)) is
a linear forest whose each component is of order 2, then from Theorem 3 it follows
that cfc(L(G)) = 2; if there is only one component K of C(L(G)) satisfying
cfc(K) = h(L(G)) = 2, then it follows from Corollary 2 that cfc(L(G)) = 2.
Thus, in the above three cases, we obtain k0 = 1. In the following, we consider
the case that both cfc(G) ≥ 3 and cfc(L(G)) ≥ 3. First, we give a fact that
the largest integer � such that cfc(P�) = 2 is 4. Let G0 be a connected graph,
then from Corollary 2, we have cfc(G0) = 3 if there is a component K satisfying
cfc(K) = h(G0) = 3 or there are at least two components K satisfying cfc(K) =
h(G0) = 2. However, cfc(G0) = 2 if there is a path of length 3 and there is no
path of length 2 in C(G0), or if there is a path of length 2 and there is a path
of length 1 in C(G0), or if there are at least two components each of which is of
order 2 in C(G0). Correspondingly, we get our results.

Acknowledgement. The authors would like to thank the reviewers for helpful
suggestions and comments.

References

1. Andrews, E., Laforge, E., Lumduanhom, C., Zhang, P.: On proper-path colorings
in graphs. J. Combin. Math. Combin. Comput. 97, 189–207 (2016)

2. Beineke, L.W.: Characterizations of derived graphs. J. Combin. Theor. 9(2), 129–
135 (1970)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory Applications. The Macmillan Press,
London (1976)

4. Borozan, V., Fujita, S., Gerek, A., Magnant, C., Manoussakis, Y., Montero, L.,
Tuza, Z.S.: Proper connection of graphs. Discrete Math. 312, 2550–2560 (2012)

5. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Math. Bohem. 133(1), 85–98 (2008)

6. Chartrand, G., Stewart, M.J.: The connectivity of line-graphs. Math. Ann. 182,
170–174 (1969)

7. Czap, J., Jendrol’, S., Valiska, J.: Conflict-free connections of graphs, discussions
mathematics graph theory. In: press

8. Hemminger, R.L., Beineke, L.W.: Line graphs and line digraphs. In: Beineke, L.W.,
Wilson, R.J. (eds.) Selected Topics in Graph Theory, pp. 271–305. Academic Press
Inc., London (1978)

9. Li, X., Magnant, C.: Properly colored notions of connectivity - a dynamic survey,
Theor. Appl. Graphs, 0(1), Art. 2 (2015)

10. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Combin.
29, 1–38 (2013)

11. Li, X., Sun, Y.: Rainbow Connections of Graphs. SpringerBriefs in Mathematics.
Springer, New York (2012)

12. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Comb.
Probab. Comput. 18, 819–834 (2009)

The Coloring Reconfiguration Problem
on Specific Graph Classes

Tatsuhiko Hatanaka(B), Takehiro Ito, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai 980-8579, Japan

{hatanaka,takehiro,zhou}@ecei.tohoku.ac.jp

Abstract. We study the problem of transforming one (vertex) k-
coloring of a graph into another one by changing only one vertex color
assignment at a time, while at all times maintaining a k-coloring, where
k denotes the number of colors. This decision problem is known to
be PSPACE-complete even for bipartite graphs and any fixed constant
k ≥ 4. In this paper, we study the problem from the viewpoint of graph
classes. We first show that the problem remains PSPACE-complete for
chordal graphs even if the number of colors is a fixed constant. We then
demonstrate that, even when the number of colors is a part of input, the
problem is solvable in polynomial time for several graph classes, such as
split graphs and trivially perfect graphs.

1 Introduction

Recently, reconfiguration problems [13] have been intensively studied in the field
of theoretical computer science. These problems model several “dynamic” sit-
uations where we wish to find a step-by-step transformation between two fea-
sible solutions of a combinatorial (search) problem such that all intermediate
results are also feasible and each step conforms to a fixed reconfiguration rule,
that is, an adjacency relation defined on feasible solutions of the original search
problem. This framework has been applied to several well-studied combinato-
rial problems, including satisfiability, independent set, vertex cover,
dominating set, and so on. (See, e.g., a survey [12] and references in [9].)

1.1 Our Problem

In this paper, we study the reconfiguration problem for (vertex) colorings in a
graph, called the coloring reconfiguration problem, which was introduced
by Bonsma and Cereceda [3].

Let C = {c1, c2, . . . , ck} be the set of k colors. Throughout the paper, k
denotes the number of colors in C. A (proper) k-coloring of a graph G = (V,E)

This work is partially supported by JST CREST Grant Number JPMJCR1402, and
by JSPS KAKENHI Grant Numbers JP16J02175, JP16K00003, and JP16K00004,
Japan.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 152–162, 2017.
https://doi.org/10.1007/978-3-319-71150-8_15

The Coloring Reconfiguration Problem on Specific Graph Classes 153

c1

c3

c2c4

c3

c3

c2c4

c3

c3

c2c1

c3

c4

c2c1

f0 fr

Fig. 1. A reconfiguration sequence between two 4-colorings f0 and fr of G.

is a mapping f : V → C such that f(v) �= f(w) for every edge vw ∈ E. Figure 1
illustrates four 4-colorings of the same graph G; the color assigned to each vertex
is attached to the vertex.

Suppose that we are given two k-colorings f0 and fr of a graph G (e.g.,
the leftmost and rightmost ones in Fig. 1), and we are asked whether we can
transform one into the other via k-colorings of G such that each differs from
the previous one in only one vertex color assignment. This decision problem is
called the coloring reconfiguration problem. For the particular instance
of Fig. 1, the answer is “yes” as illustrated in the figure, where the vertex whose
color assignment was changed from the previous one is depicted by a black circle.
We emphatically write k-coloring reconfiguration when the number k of
colors is fixed, that is, k is not a part of input.

1.2 Known and Related Results

Coloring reconfiguration is one of the most well-studied reconfiguration
problems from various viewpoints [1–8,11,14,16,17], including the parameter-
ized complexity [4,14], (in)tractability with respect to graph classes [3,5,16],
generalized variants such as the list coloring variant [3,11,16], the H-coloring
variant [17] and the circular coloring variant [6].

Bonsma and Cereceda [3] proved that k-coloring reconfiguration is
PSPACE-complete even for (i) bipartite graphs and any fixed k ≥ 4, (ii) planar
graphs and any fixed 4 ≤ k ≤ 6, and (iii) bipartite planar graphs and k = 4. On
the other hand, Cereceda et al. [8] gave a polynomial-time algorithm to solve
coloring reconfiguration for any graph and k ≤ 3. Thus, the complexity
status of coloring reconfiguration is analyzed sharply with respect to k.

Because the problem remains PSPACE-complete even for very restricted
instances, some sufficient conditions have been proposed so that any pair of
k-colorings of a graph has a desired transformation [1,3,7]; in other words, if
a given instance satisfies one of sufficient conditions, then it is a yes-instance
(but, the opposite direction does not necessarily hold.) Bonsma and Cereceda [3]
proved that if k is at least the degeneracy of a graph G plus two, then there is a
desired transformation between any pair of k-colorings of G. Bonamy et al. [1]
gave some sufficient condition with respect to graph structures: for example,
chordal graphs and chordal bipartite graphs satisfy their sufficient condition.

154 T. Hatanaka et al.

Recently, Bonsma and Paulusma [5] gave a polynomial-time algorithm to
solve coloring reconfiguration for (k − 2)-connected chordal graphs; note
that k is not necessarily a constant in their algorithm. They posed an open
question which asks whether the problem is solvable in polynomial time for all
chordal graphs.

1.3 Our Contribution

In this paper, we study coloring reconfiguration from the viewpoint of
graph classes. More specifically, we first show that k-coloring reconfig-
uration remains PSPACE-complete for chordal graphs; note that k is some
fixed constant. Therefore, we answer the open question posed by Bonsma and
Paulusma [5]. We then demonstrate that coloring reconfiguration is solv-
able in polynomial time for several graph classes, even when k is a part of input;
such graph classes include 2-degenerate graphs, split graphs, and trivially perfect
graphs.

2 Preliminaries

In this section, we define some basic terms and notation.
Let G = (V,E) be a graph with vertex set V and edge set E; we sometimes

denote by V (G) and E(G) the vertex set and the edge set of G, respectively.
For a vertex v in G, we denote by N(G, v) and deg(G, v) the neighborhood
{w ∈ V | vw ∈ E} and the degree |N(G, v)| of v in G, respectively. We denote
by ω(G) the size of a maximum clique in G.

2.1 List coloring reconfiguration

In this subsection, we formally define coloring reconfiguration. Because
we sometimes use the notion of list colorings, we define it as a special case of
list coloring reconfiguration as follows.

In list coloring, each vertex v ∈ V (G) of a graph G has a set L(v) ⊆ C =
{c1, c2, . . . , ck} of colors, called the list of v; we sometimes call the list assignment
L : V → 2C itself a list. Then, a k-coloring f of G is called an L-coloring of
G if f(v) ∈ L(v) holds for every vertex v ∈ V (G). Thus, a k-coloring of G is
an L-coloring of G when L(v) = C holds for every vertex v in G, and hence
L-coloring is a generalization of k-coloring.

For two L-colorings f and f ′ of a graph G, a reconfiguration sequence between
f and f ′ is a sequence 〈fp, fp+1, . . . , fq〉 of L-colorings of G such that fp = f , fq =
f ′, and |{v ∈ V (G) : fi−1(v) �= fi(v)}| = 1 holds for each i ∈ {p+1, p+2, . . . , q}.
Note that any reconfiguration sequence is reversible, that is, 〈fq, fq−1, . . . , fp〉 is
a reconfiguration sequence between f ′ and f . We say that two L-colorings f and
f ′ are reconfigurable if there is a reconfiguration sequence between them. Then,
the list coloring reconfiguration problem is defined as follows:

The Coloring Reconfiguration Problem on Specific Graph Classes 155

f0 fr

{c1 , c2 , c3}

{c1 , c3 , c4} {c1 , c2 , c4}

{c2 , c3}

{c1 , c2}

c2 c3

c1

c4c3

c2 c3

c1

c2c4

G , L

Fig. 2. Example for frozen vertices: The upper three vertices are frozen on f0 and
fr because they form a clique of size three, and their lists contain only three colors
in total.

Input: A graph G, a list L, two L-colorings f0 and fr of G
Question: Determine whether f0 and fr are reconfigurable or not.

Note that list coloring reconfiguration is a decision problem, and hence
does not require the specification of an actual reconfiguration sequence.

We denote by a 4-tuple (G,L, f0, fr) an instance of list coloring recon-
figuration. Coloring reconfiguration is indeed list coloring recon-
figuration when restricted to the case where L(v) = C holds for every vertex v
in an input graph G. We thus simply denote by a 4-tuple (G, k, f0, fr) an instance
of coloring reconfiguration, and by a triple (G, f0, fr) an instance of k-
coloring reconfiguration; recall that k is fixed in the latter case.

2.2 Frozen Vertices

In this subsection, we introduce the notion of “frozen vertices.”
Let f be an L-coloring of a graph G with a list L. Then, a vertex v ∈ V (G)

is said to be frozen on f if f ′(v) = f(v) holds for every L-coloring f ′ of G which
is reconfigurable from f . Therefore, v cannot be recolored in any reconfiguration
sequence. Thus, (G,L, f0, fr) is a no-instance if f0(v) �= fr(v) holds for at least
one frozen vertex v on f0 or fr. By the definition, a frozen vertex v on an
L-coloring f stays frozen on any L-coloring which is reconfigurable from f .

Generally speaking, it is not easy to characterize such frozen vertices for
a given L-coloring. However, there is a simple sufficient condition for which a
vertex is frozen, as follows. (See Fig. 2 as an example of Observation 1.)

Observation 1. Let G be a graph with a list L, and assume that G contains a
clique VQ of size q. If |⋃v∈VQ

L(v)| = q, then all vertices v ∈ VQ are frozen on
any L-coloring of G.

3 PSPACE-Completeness

A graph is chordal if it contains no induced cycle of length at least four. In this
section, we prove the following theorem.

156 T. Hatanaka et al.

x1

y1
1

y1
2

y1
b

x2

y2
1

y2
2

y2
b

x3 xn

Fig. 3. Graph H.

Theorem 1. There exists a fixed constant k′ such that k-coloring reconfig-
uration is PSPACE-complete for chordal graphs and every k ≥ k′.

It is known that k-coloring reconfiguration belongs to PSPACE [3].
Therefore, as a proof of Theorem 1, we show that there exists a fixed constant k′

such that k-coloring reconfiguration is PSPACE-hard for chordal graphs
and any k ≥ k′, by giving a polynomial-time reduction from list coloring
reconfiguration [16].

3.1 List coloring reconfiguration

Wrochna [16] proved that there exist two constants b and m such that list
coloring reconfiguration remains PSPACE-complete even when an input
instance (H,L, g0, gr) satisfies the following conditions (see also Fig. 3):

(a) H = (X ∪ Y,E) is a bipartite graph with bipartition X and Y such that
X = {x1, x2, . . . , xn}, Y = {yj

i | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ b}, and E =
{xiy

j
i , yj

i xi+1 | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ b};
(b) the list L(v) of each vertex v ∈ V (H) is a subset of the color set C1 ∪ C2

such that C1 ∩ C2 = ∅ and |C1| = |C2| = m;
(c) L(xi) = C1 if i is odd, L(xi) = C2 otherwise; and
(d) L(y) ⊆ C1 ∪ C2 for all y ∈ Y .

The graph H above can be modified to an interval graph (and hence a chordal
graph) H ′ by adding an edge xixi+1 for each i ∈ {1, 2, . . . , n − 1}. This mod-
ification does not affect the existence and the reconfigurability of L-colorings,
because any two vertices xi and xi+1 joined by the new edge have distinct lists
C1 and C2. We note in passing that this modification gives the following theo-
rem. For an integer d ≥ 0, a graph G is d-degenerate if every subgraph H of G
has at least one vertex v such that deg(H, v) ≤ d.

Theorem 2. List coloring reconfiguration is PSPACE-complete for
2-degenerate interval graphs.

The Coloring Reconfiguration Problem on Specific Graph Classes 157

(a) H , L, g0 (b) G, f0

{c1 , c2 , c3}

{c3 , c4}

{c2 , c3}{c1 , c4}

c1 c1

c2

c4 c3

c1 c2

c4c4 c3

c3

c1 c2

c4 c3

c1 c2

c4 c3

c2

Fig. 4. (a) A graph H ′, a list L and an L-coloring g0, and (b) a constructed graph G
and k-coloring f0.

3.2 Reduction

We then construct an instance (G, f0, fr) of k-coloring reconfiguration
from the instance (H ′, L, g0, gr) above of list coloring reconfiguration, as
follows.

Let k ≥ k′ = |C1 ∪C2| = |⋃u∈V (H′) L(u)| = 2m. For each vertex u ∈ V (H ′),
we introduce a complete graph Wu with k vertices, which is called a frozen
clique gadget. (See Fig. 4 as an example, where k = 4.) The vertices in Wu are
labeled as wu

1 , wu
2 , . . . , wu

k , and each vertex wu
i corresponds to the color ci for

each i ∈ {1, 2, . . . , k}. We denote by W the set of all vertices in frozen clique
gadgets, that is, W =

⋃
u∈V (H′) V (Wu).

We next add an edge between u ∈ V (H ′) and wu
i ∈ V (Wu) if and only if

L(u) does not contain color ci. The constructed graph G is chordal, because the
addition of frozen clique gadgets does not produce any induced cycle with length
at least four.

Finally, we define f0 and fr, as follows:

f0(v) =
{

ci if v = wu
i ∈ V (Wu) for some u ∈ V (H ′);

g0(v) otherwise,

and

fr(v) =
{

ci if v = wu
i ∈ V (Wu) for some u ∈ V (H ′);

gr(v) otherwise.

Therefore, we have f0(v) = fr(v) for all vertices v ∈ W . From the construction,
we note that both f0 and fr are proper k-colorings of G.

This completes our construction of the corresponding instance (G, f0, fr) of
k-coloring reconfiguration. This construction can be done in polynomial
time.

158 T. Hatanaka et al.

3.3 Correctness of the Reduction

We note that all vertices in W are frozen on both f0 and fr, because each
frozen clique gadget Wu is a clique in G of size |V (Wu)| = k. Therefore, we
can recolor vertices only in V (H ′) = V (G) \ W . In addition, we can use colors
only in L(u) for each vertex u ∈ V (H ′); recall the construction with noting
that f0(v) = fr(v) for all vertices v ∈ W . Thus, (H ′, L, g0, gr) is a yes-instance
of list coloring reconfiguration if and only if the corresponding instance
(G, f0, fr) of k-coloring reconfiguration is a yes-instance.

This completes our proof of Theorem 1. �

4 Polynomial-Time Solvable Cases

In this section, we demonstrate that coloring reconfiguration can be solved
in polynomial time for some graph classes, even when the number k of colors is
a part of input.

We start with noting the polynomial-time solvability for 2-degenerate graphs,
which can be obtained straightforwardly by combining two known results. The
class of 2-degenerate graphs properly contains graphs with treewidth at most
two, and hence trees, cacti, outerplanar graphs, and series-parallel graphs.

Theorem 3. Coloring reconfiguration can be solved in O(nm) time for
2-degenerate graphs, where n and m are the numbers of vertices and edges in an
input graph, respectively.

Proof. Let (G, k, f0, fr) be an instance for coloring reconfiguration.
Bonsma and Cereceda [3, Theorem 11] proved that it is a yes-instance if G
is d-degenerate and k ≥ d + 2. Therefore, for 2-degenerate graphs, the answer is
always yes if k ≥ 2 + 2 = 4. On the other hand, Cereceda et al. [8, Theorem 1]
gave an O(nm)-time algorithm to solve coloring reconfiguration for any
graph if k ≤ 3. Thus, the theorem follows. �

In contrast to the polynomial-time solvability for 2-degenerate graphs even
when k is a part of input, the reduction given by Bonsma and Cereceda [3,
Theorem 3] indeed shows the following theorem.

Theorem 4 ([3]). 4-coloring reconfiguration is PSPACE-complete for 3-
degenerate planar graphs.

4.1 Split Graphs

In this and next subsections, we consider split graphs and trivially perfect graphs,
respectively, both of which are subclasses of chordal graphs. The following suf-
ficient condition for yes-instances on chordal graphs will play an important role
in those subsections.

Lemma 1 ([1]). Let (G, k, f0, fr) be an instance of coloring reconfigura-
tion such that G is a chordal graph. If ω(G) ≤ k − 1, then it is a yes-instance.

The Coloring Reconfiguration Problem on Specific Graph Classes 159

In this subsection, we consider split graphs. A graph is split if its vertex set
can be partitioned into a clique and an independent set.

Theorem 5. Coloring reconfiguration can be solved in linear time for
split graphs.

Proof. We give such a linear-time algorithm for split graphs. Let I =
(G, k, f0, fr) be a given instance of coloring reconfiguration such that
G is split. We first obtain a partition of V (G) into a clique VQ and an indepen-
dent set VI such that VQ has the maximum size ω(G). Such a partition can be
obtained in linear time [10]. Because f0 and fr are proper k-colorings of G, we
have |VQ| = ω(G) ≤ k. Therefore, there are two cases to consider.

Case 1: |VQ| < k.
In this case, |VQ| = ω(G) ≤ k − 1 holds. Since G is split and hence is a

chordal graph, Lemma 1 implies that I is a yes-instance.

Case 2: |VQ| = k.
In this case, every vertex in VQ is frozen on f0 and fr. Thus, I is a no-instance

if there exists a vertex u ∈ VQ such that f0(u) �= fr(u). Otherwise, because VI

is an independent set and both f0 and fr are proper k-colorings of G, we can
directly recolor each vertex w ∈ VI from f0(w) to fr(w); I is a yes-instance.

We finally estimate the running time of our algorithm. We can obtain desired
subsets VQ and VI in linear time [10]. Then, the algorithm simply checks if
|VQ| < k, and if f0(u) = fr(u) holds for every vertex u ∈ VQ. Therefore, our
algorithm runs in linear time. �

4.2 Trivially Perfect Graphs

In this subsection, we consider trivially perfect graphs. The class of trivially
perfect graphs has many characterizations. We here give its recursive definition.
For two graphs G1 = (V1, E1) and G2 = (V2, E2), their union G1 ∪ G2 is the
graph such that V (G1 ∪ G2) = V1 ∪ V2 and E(G1 ∪ G2) = E1 ∪ E2, while their
join G1 ∨ G2 is the graph such that V (G1 ∨ G2) = V1 ∪ V2 and E(G1 ∨ G2) =
E1∪E2∪{vw : v ∈ V1, w ∈ V2}. Then, a trivially perfect graph can be recursively
defined, as follows:

(1) a graph consisting of a single vertex is a trivially perfect graph;
(2) if G1 and G2 are trivially perfect graphs, then their union G1 ∪ G2 is a

trivially perfect graph; and
(3) if G1 and G2 are trivially perfect graphs such that G2 consists of a single

vertex u, then their join G1 ∨ G2 is a trivially perfect graph.

Notice that, by the join operation (3) above, the single vertex u in G2 becomes
a universal vertex in G1 ∨ G2.

Theorem 6. Coloring reconfiguration can be solved in linear time for
trivially perfect graphs.

160 T. Hatanaka et al.

Proof. We give such a linear-time algorithm for trivially perfect graphs. Since
any trivially perfect graph G is a cograph, we can represent G by a binary tree,
called a cotree, which can be naturally obtained from the recursive definition of
trivially perfect graphs: a cotree T = (VT , ET) of a trivially perfect graph G is
a binary tree such that each leaf of T corresponds to a single vertex in G, and
each internal node of T has exactly two children and is labeled with either union
∪ or join ∨; notice that, for each join node in T , one of the two children must
be a leaf of T . Such a cotree of G can be constructed in linear time [15]. Each
node i ∈ VT corresponds to a subgraph Gi of G which is induced by all vertices
corresponding to the leaves of T that are the descendants of i in T . Clearly,
G = G0 for the root 0 of T .

We note that the maximum clique sizes ω(Gi) for all i ∈ VT can be computed
in linear time, by a bottom-up computation according to the cotree T , as follows:

ω(Gi) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i is a leaf of T ;
max{ω(Gx), ω(Gy)} if i is a union node with children x and y;
ω(Gx) + 1 if i is a join node with children x and y

such that y is a leaf of T .

Therefore, we assume without loss of generality that we are given a trivially
perfect graph G together with its cotree T = (VT , ET) such that the maximum
clique size ω(Gi) is associated to each node i ∈ VT .

Let I = (G, k, f0, fr) be a given instance of coloring reconfiguration
such that G is a trivially perfect graph. For each node i ∈ VT and a k-coloring f
of G, we denote by f i the k-coloring of the subgraph Gi such that f i(v) = f(v)
holds for every v ∈ V (Gi). We propose the following algorithm to solve the
problem, and will prove its correctness.

Input: An instance I = (G, k, f0, fr) of coloring reconfiguration such
that G is a trivially perfect graph

Output: yes/no as the answer to I
Step 1. If |V (G)| = 1 or ω(G) < k, then return yes.
Step 2. In this step, G has more than one vertex, and hence the root of the

cotree T is either a union node or a join node. Let x and y be two
children of the root of T . Then, we execute either (a) or (b):
Case (a): The root is a union node.

Return yes if both (Gx, k, fx
0 , fx

r) and (Gy, k, fy
0 , fy

r) are
yes-instances; otherwise return no.

Case (b): The root is a join node.
Assume that Gy consists of a single vertex u. Return
no if f0(u) �= fr(u); otherwise return the answer to
(Gx, k − 1, fx

0 , fx
r).

We first verify the correctness of Step 1. If |V (G)| = 1, then we can directly
recolor the vertex w in G from f0(w) to fr(w); thus, I is a yes-instance. If
ω(G) < k, then Lemma 1 yields that I is a yes-instance because G is a trivially
perfect graph and hence is a chordal graph. Thus, Step 1 correctly returns yes.

The Coloring Reconfiguration Problem on Specific Graph Classes 161

We then verify the correctness of Step 2(a). This step is executed when the
root of T is a union node. Then, there is no edge between Gx and Gy. Therefore,
it suffices to solve each of (Gx, k, fx

0 , fx
r) and (Gy, k, fy

0 , fy
r), and combine their

answers. Thus, Step 2(a) works correctly.
We finally verify the correctness of Step 2(b). This step is executed when

the root of T is a join node. In addition, ω(G) = k holds because it is executed
after Step 1. Since u ∈ V (Gy) becomes a universal vertex in G = Gx ∨ Gy, it
is contained in any maximum clique in G. Since ω(G) = k holds, u is frozen on
f0 and fr. Thus, if f0(u) �= fr(u), then I is a no-instance. Otherwise no vertex
in V (G) \ {u} can use the color f0(u) = fr(u) in any reconfiguration sequence,
because u is a universal vertex in G and is frozen on f0 and fr. Therefore,
(G, k, f0, fr) is a yes-instance if and only if (Gx, k − 1, fx

0 , fx
r) is a yes-instance.

Thus, Step 2(b) works correctly.
Although the algorithm above is written as a recursive function, it can be

implemented so as to run in linear time, as follows: we first traverse the cotree T
of a given (whole) trivially perfect graph G from the root to leaves, and assign the
sub-instance (Gi, k, f i

0, f
i
r) to each node i ∈ VT ; we then solve the sub-instances

from leaves to the root of T by combining their children’s answers.
This completes our proof of Theorem 6. �

5 Conclusions

In this paper, we have studied coloring reconfiguration from the view-
point of graph classes. We first proved that k-coloring reconfiguration is
PSPACE-complete for chordal graphs; this answers the open question posed by
Bonsma and Paulusma [5]. We then demonstrated that coloring reconfig-
uration is solvable in polynomial time for several graph classes, even when k
is a part of input; such graph classes include 2-degenerate graphs, split graphs,
and trivially perfect graphs.

One interesting open question is whether coloring reconfiguration is
solvable in polynomial time for interval graphs or not. We note that list color-
ing reconfiguration is PSPACE-complete for 2-degenerate interval graphs,
as mentioned in Theorem 2.

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb.
Optim. 27, 132–143 (2014)

2. Bonamy, M., Bousquet, N.: Recoloring bounded tree width graphs. Electron. Notes
Discr. Math. 44, 257–262 (2013)

3. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci. 410, 5215–5226
(2009)

162 T. Hatanaka et al.

4. Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The complexity of
bounded length graph recoloring and CSP reconfiguration. In: Cygan, M.,
Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 110–121. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13524-3 10

5. Bonsma, P., Paulusma, D.: Using contracted solution graphs for solving reconfigu-
ration problems. In: Proceedings of MFCS 2016, LIPIcs 58, pp. 20:1–20:15 (2016)

6. Brewster, R.C., McGuinness, S., Moore, B., Noel, J.A.: A dichotomy theorem for
circular colouring reconfiguration. Theor. Comput. Sci. 639, 1–13 (2016)

7. Cereceda, L.: Mixing Graph Colourings. Ph.D. Thesis, London School of Economics
and Political Science (2007)

8. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
J. Graph Theory 67, 69–82 (2011)

9. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,
Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on
trees. Theor. Comput. Sci. 600, 132–142 (2015)

10. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1, 275–284
(1981)

11. Hatanaka, T., Ito, T., Zhou, X.: The list coloring reconfiguration problem for
bounded pathwidth graphs. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E98-A, 1168–1178 (2015)

12. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409 (2013)

13. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412, 1054–1065 (2011)

14. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding shortest
paths between graph colourings. Algorithmica 75, 295–321 (2016)

15. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition of directed
graphs. Discr. Appl. Math. 145, 198–209 (2005)

16. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth (2014).
arXiv:1405.0847

17. Wrochna, M.: Homomorphism reconfiguration via homotopy. In: Proceedings of
STACS 2015, LIPIcs 30, pp. 730–742 (2015)

https://doi.org/10.1007/978-3-319-13524-3_10
http://arxiv.org/abs/1405.0847

Combinatorial Optimization

Minimizing Total Completion Time of Batch
Scheduling with Nonidentical Job Sizes

Rongqi Li, Zhiyi Tan(B), and Qianyu Zhu

Department of Mathematics, Zhejiang University,
Hangzhou 310027, People’s Republic of China

tanzy@zju.edu.cn

Abstract. This paper concerns the problem of scheduling jobs with
unit processing time and nonidentical sizes on single or parallel identical
batch machines. The objective is to minimize the total completion time
of all jobs. We show that the worst-case ratio of the algorithm based on
the bin-packing algorithm First Fit Increasing (FFI) lies in the interval

[109
82

, 2+
√
2

2
] ≈ [1.3293, 1.7071] for the single machine case, and is no more

than 6+
√

2
4

≈ 1.8536 for the parallel machines case.

1 Introduction

In this paper, we study the problem of scheduling jobs with nonidentical sizes
on single or parallel identical batch machines [22]. We are given a non-empty set
of jobs J = {J1, J2, . . . , Jn}. For j = 1, . . . , n, the processing time and size of Jj

is pj and sj , respectively. There are m ≥ 1 machines M1,M2, . . . ,Mm with the
same capacity B. Each machine can simultaneously process a number of jobs
as a batch as long as the total size of jobs in the batch is no greater than B.
The processing time of a batch is the maximum of the processing times of jobs
contained in the batch. The cardinality of a batch is the number of jobs contained
in the batch. W. l. o. g., we will assume that B = 1 and sj ≤ 1 for all j. All
jobs are available at time 0 and no preemption is allowed. The objective is to
minimize the total completion time of all jobs.

Given a schedule σS of J , denote by TCS(J) the total completion time of
all jobs in σS . We will write it simply TCS when no confusion can arise. Let
σA and σ∗ be the schedule produced by algorithm A and the optimal schedule,
respectively. The worst-case ratio of algorithm A is then defined as

inf
{
α|TCA(J) ≤ αTC∗(J) for all J }

.

The worst-case ratio of an algorithm for problems with other objectives can be
defined accordingly.

Research on batch scheduling problems is motivated by burn-in operations
in semi-conductor manufacturing, and dates back to the 1980’s [13]. According

Supported by the National Natural Science Foundation of China (11671356,
11271324, 11471286).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 165–179, 2017.
https://doi.org/10.1007/978-3-319-71150-8_16

166 R. Li et al.

to the type of capacity constraint of a batch, batch scheduling problems can
be classified into three types: unbounded batch model, where the capacity of a
batch is infinity; bounded batch model with identical job sizes; and bounded batch
model with nonidentical job sizes. Problems in the last category are clearly the
most difficult ones and do have particular features. We will first briefly survey
some results on the classical batch scheduling problems belong to the first two
types. More results on other objectives and more complex paradigms such as
nonidentical release times can be found in [4,19], and references therein.

Most papers have been devoted to makespan (the maximum completion time
of all jobs) minimization. If the batch has an unbounded capacity, combining all
the jobs into a single batch is optimal for both the single and parallel machine
cases. For bounded batch model with identical job sizes, the problem is still
polynomially solvable for the single machine case. If there is more than one
machine, the problem becomes NP -hard, but it still admits a Polynomial Time
Approximation Scheme (PTAS) [17]. Problems with the objective of minimizing
the total completion time are much more difficult. If the batch has an unbounded
capacity, Brucker et al. [4] designed a polynomial time algorithm via a dynamic
programming approach for the single machine case. They also remarked that
such techniques can be applied to the parallel machine cases, and lead to a
pseudopolynomial time dynamic programming algorithm when the number of
machines is a given number. For bounded batch model with identical job sizes,
the capacity constraint of a batch can be interpreted as at most b jobs can be
packed into a batch. If b is a part of input, the complexity status is still open
despite the intense research conducted. In the absence of complexity results,
Hochbaum and Landy [12] presented an approximation algorithm with worst-
case ratio 2 for the single machine case. Later, Deng et al. [6] and Li et al. [16]
designed a PTAS for the single and parallel machines case, respectively. If b
is a fixed number, the problem can be solved in O(nb(b−1)) time for the single
machine case [4]. The time complexity was improved to O(n6b) by Poon and
Yu [18].

Batch scheduling problems with nonidentical job sizes have a close relation-
ship with the one-dimensional bin-packing problem, where a sequence of items
with sizes between 0 and 1 are required to be packed into a minimum number
of unit capacity bins. Almost all algorithms for batch scheduling consist of two
phases, batching and scheduling. The former refers to a grouping of the jobs into
batches such that the total size of all jobs in a batch does not exceed the capac-
ity. The latter determines on which machine and in what order the batches are
scheduled. Obviously, the batching phase is essentially a one-dimensional bin-
packing problem, and any algorithm of the latter can be used as a procedure for
the batching phase of a batch scheduling algorithm.

Let P denote a bin-packing algorithm. We will use CP to denote the number
of bins employed when P is applied, and C∗ to denote the number of bins
employed for a packing which uses a minimal number of bins. First Fit (FF)
and First Fit Decreasing (FFD) are two of the most fundamental algorithms
for one-dimensional bin-packing. Algorithm FF always packs the next unpacked

Minimizing Total Completion Time of Batch Scheduling 167

item of the list (according to increasing subscript) into the first opened bin that
has enough room to accommodate it. If no opened bin is suitable for this, a
new bin is opened and the item is packed there. Algorithm FFD first sorts
the items in non-increasing order of their sizes and then calls FF . In Johnson’s
pioneering work [14], it was proved that CFFD ≤ 11

9 C∗ + 4. The additive term
was gradually reduced, and eventually Dósa proved that the tight value is 6

9 [7].
Simchi-Levi [20] proved that CFFD ≤ 3

2C∗, and no polynomial-time algorithm
can have a smaller worst-case ratio unless P = NP [11]. For algorithm FF ,
Ullman [21] proved that CFF ≤ 17

10C∗ + 3. Simchi-Levi [20] proved that the
worst-case ratio of FF is at most 7

4 . This upper bound was improved to 12
7 in

[3,23] independently. Finally, Dósa and Sgall [8] proved that the worst-case ratio
of FF is exactly 17

10 .
A less popular algorithm for one-dimensional bin-packing is First Fit Increas-

ing (FFI). Algorithm FFI first sorts the items in non-decreasing order of their
sizes and then calls FF . Obviously, the worst-case ratio of FFI would not be
larger than that of FF . In fact, nor is it smaller due to the instance given in [15].
Therefore, the presorting step of FFI seems to be redundant. However, as we
will see later in our paper, FFI is superior to FFD to be adopted as a batching
procedure for problem with objective of minimizing the total completion time.

So far theoretical results on batch scheduling problems with nonidentical
job sizes were concentrated on makespan minimization. For the single machine
case, there is no polynomial-time algorithm with worst-case ratio smaller than
3
2 unless P = NP , since it contains the one-dimensional bin-packing problem
as a special case. The current best worst-case ratio is 5

3 , which can be achieved
by adopting a recently proposed algorithm of one-dimensional bin-packing [2] in
the batching phase. The proof of the worst-case ratio follows directly from the
general results established in [9]. For the case of parallel machines, Dosa et al.
[9] proved that there does not exist any polynomial-time algorithm with worst-
case ratio better than 2 unless P = NP , even if all jobs have unit processing
time. They also proposed an algorithm with worst-case ratio arbitrarily close
to 2. To the authors’ knowledge, no approximation algorithm with performance
guarantee is known for problems with the objective of minimizing the total
completion time. In [5], the authors claimed to obtain an algorithm with worst-
case ratio 2 for the parallel machines case. Unfortunately, the actual objective
of the problem they have studied is minimizing the total completion time of all
machines. Furthermore, serious errors exist in their proof, and the worst-case
ratio of their algorithm is in fact unbound for any one of the three objectives
mentioned above.

Given the considerable difficulties of the problem, we study a special case
that all jobs have the same processing time. W. l. o. g., we will assume that
pj = 1 for all j. Then the processing time of any batch is also 1, and thus the
scheduling phase becomes trivial. For the makespan minimization problem, if
we use a bin-packing algorithm P as a procedure in the batching phase, then a
schedule with makespan of �CP

m � can be easily obtained. If the worst-case ratio
of P is at most α for the classical one-dimensional bin-packing problem, then

168 R. Li et al.

we can obtain an algorithm for the batch scheduling with worst-case ratio of at
most α + m−1

m since

�CP
m �

�C∗
m � ≤

CP
m + m−1

m

�C∗
m � ≤

CP
m
C∗
m

+
m−1

m

1
≤ α +

m − 1
m

.

If α ≤ 2, then CP ≤ 2m when C∗ ≤ m. We can further tighten the bound to
max{2, α + m−1

2m }. Specifically, if we can pack jobs into a minimum number of
batches, an optimal schedule for the batch scheduling problem can be obtained
without difficulty.

The situation is similar but a little more complicated for problems with
objective of minimizing the total completion time. Given a packing of jobs into
batches, an optimal schedule can be obtained by ensuring that the batch with
larger cardinality is completed no later than the batch with smaller cardinality.
Therefore, any rational algorithm for batch scheduling is completely determined
by the algorithm of bin-packing problem used in the batching phase. Neverthe-
less, it is still unknown yet which packing is the best one since no bin-packing
variant ever studied has the same objective as minimizing the total completion
time.

A somewhat similar variant is bin-packing with general costs [1]. It differs
with classical one-dimensional bin-packing problem in that the objective is mini-
mizing the total cost of all bins, where the cost of a bin is a concave and monotone
function of the number of items assigned to it. Anily et al. [1] showed that there is
no constant worst-case ratio for either FFD or FF , while FFI has a worst-case
ratio of no more than 1.75. Later, Epstein and Levin [10] designed an Asymptotic
Fully Polynomial Time Approximation Scheme (AFPTAS). Though the objec-
tive of minimizing the total completion time of all jobs can also be interpreted
as total cost of all batches, the definitions of the cost of a batch is different in
two problems of bin-packing with general costs and batch scheduling. The cost
of a batch in the batch scheduling problem is determined not only its cardinality,
but also its completion time. The cost of two batches with the same cardinality
is identical in the former problem, but must be different in the latter problem.

In this paper, we give a first attempt to provide a worst-case performance
analysis of algorithms for scheduling jobs with unit processing time and noniden-
tical sizes on single or parallel identical batch machines. For the single machine
case, we show the worst-case ratio of algorithms based on FFD and FF are
unbounded, and the worst-case ratio of the algorithm based on FFI is no more
than 2+

√
2

2 . For the parallel machine case, we introduce an universal algorithm
RR−A which uses a bin-packing algorithm A in the batching phase. The worst-
case ratio of RR − A can be estimated by the worst-case ratio of A. As a result,
the worst-case ratio of the algorithm based on RR −FFI is no more than 6+

√
2

4
for any number of machines.

The structure of the paper is as follows. Following the introductory section,
Sect. 2 presents two important technical lemmas. Sections 3 and 4 give an outline
of single and parallel machines, respectively. Due to page limitations, the proofs
of Lemma 2 and Theorem 4 regarding parallel machines are omitted.

Minimizing Total Completion Time of Batch Scheduling 169

2 Technical Preliminaries

In this section, we present two technical lemmas that will play an essential role
when proving the worst-case ratio of the algorithm based on FFI. Let {xi}n

i=1,
{yi}n

i=1 be two nonnegative integer series. The series {xi} begins with p(≥ 2)
positive items, and ends by n − p items of 0. The series {yi} begins with q(≥ 2)
positive items, and ends by n − q items of 0. Among the q positive items, there
are r items greater than 1 and q − r items of 1. Let

k = max

{

l|
l∑

i=1

yi + l − 1 < n

}

. (1)

It follows that
k∑

i=1

yi + k − 1 < n (2)

and
k+1∑

i=1

yi + k ≥ n. (3)

For series {x′
i}n

i=1 and {y′
i}n

i=1, the corresponding values are denoted p′, q′, r′

and k′, respectively. Define

α(xi, yi) =
∑q

i=1 iyi∑p
i=1 ixi

.

Lemma 1. If series {xi}n
i=1 and {yi}n

i=1 satisfy the following conditions:

(C1)
∑p

i=1 xi =
∑q

i=1 yi = n.
(C2) y1 ≥ y2 ≥ · · · ≥ yq.
(C3) For all 1 ≤ l ≤ q,

∑l
i=1 xi ≤ ∑l

i=1 yi + (l − 1).
(C4) p ≥ q − r.

then α(xi, yi) ≤ 2+
√
2

2 .

Proof. Suppose that series {xi} and {yi} satisfy (C1)–(C4). If p > q, define a
new series {x′

i}n
i=1 such that

x′
i =

⎧
⎨

⎩

xi 1 ≤ i ≤ q − 1,∑p
l=q xl i = q,

0 q + 1 ≤ i ≤ n.

Clearly, p′ = q ≥ q − r, and
∑p′

i=1 x′
i =

∑p
i=1 xi = n. Thus {x′

i} and {yi}
satisfy (C1), (C2) and (C4). Since {xi} and {yi} satisfy (C3), we have

l∑

i=1

x′
i =

l∑

i=1

xi ≤
l∑

i=1

yi + (l − 1), l = 1, . . . , q − 1,

170 R. Li et al.

and
q∑

i=1

x′
i = n =

q∑

i=1

yi ≤
q∑

i=1

yi + (q − 1).

Hence, {x′
i} and {yi} also satisfy (C3). Note that

p′
∑

i=1

ix′
i =

q∑

i=1

ix′
i =

q−1∑

i=1

ix′
i +qx′

q =
q−1∑

i=1

ixi +q

p∑

i=q

xi <

q−1∑

i=1

ixi +
p∑

i=q

ixi =
p∑

i=1

ixi.

Therefore,

α(xi, yi) =
∑q

i=1 iyi∑p
i=1 ixi

≤
∑q

i=1 iyi
∑p′

i=1 ix′
i

= α(x′
i, yi)

It follows that to prove the lemma, it suffices to assume that p ≤ q. Under such
circumstance, we have

∑q
i=1 xi =

∑p
i=1 xi =

∑q
i=1 yi by (C1). Hence,

q∑

l=1

(
l∑

i=1

xi −
l∑

i=1

yi

)

=
q∑

l=1

l∑

i=1

(xi − yi) =
q∑

i=1

q∑

l=i

(xi − yi)

=
q∑

i=1

(q − i + 1) (xi − yi)

= (q + 1)
q∑

i=1

(xi − yi) −
q∑

i=1

i (xi − yi)

=
q∑

i=1

iyi −
p∑

i=1

ixi. (4)

Note that as long as p ≤ q, (4) remains true without (C3) and (C4). The rest of
the proof will be divided into two parts according to the value of yk.

First assume that yk = 1. Then

r ≤ k − 1. (5)

By (2), we have

k∑

i=1

yi + k − 1 < n =
q∑

i=1

yi =
k∑

i=1

yi +
q∑

i=k+1

yi =
k∑

i=1

yi + (q − k).

Hence,
q > 2k − 1 ≥ 2r + 1.

Recall that {xi} and {yi} satisfy (C3). For 1 ≤ l ≤ r,

l∑

i=1

xi ≤
l∑

i=1

yi + (l − 1).

Minimizing Total Completion Time of Batch Scheduling 171

For r + 1 ≤ l ≤ q − r, by (C4),

l∑

i=1

xi = n −
p∑

i=l+1

xi ≤ n − (p − l) ≤ n − (q − r − l)

=
q∑

i=1

yi − (q − r − l) =
l∑

i=1

yi +
q∑

i=l+1

yi − (q − r − l)

=
l∑

i=1

yi + (q − l) − (q − r − l) =
l∑

i=1

yi + r.

For q − r + 1 ≤ l ≤ q,

l∑

i=1

xi ≤ n =
q∑

i=1

yi =
l∑

i=1

yi +
q∑

i=l+1

yi =
l∑

i=1

yi + (q − l).

Hence,

q∑

l=1

(
l∑

i=1

xi −
l∑

i=1

yi

)

≤
r∑

l=1

(l − 1) +
q−r∑

l=r+1

r +
q∑

l=q−r+1

(q − l)

=
r(r − 1)

2
+ r(q − 2r) +

r(r − 1)
2

= (q − r − 1)r. (6)

On the other hand,

q∑

i=1

iyi =
r∑

i=1

iyi +
q∑

i=r+1

iyi ≥ 2
r∑

i=1

i +
q∑

i=r+1

i =
r∑

i=1

i +
q∑

i=1

i

=
r(r + 1)

2
+

q(q + 1)
2

>
q2 + r2

2
=

1
2
((q − r)2 + 2r2) + r(q − r)

≥
√

2r(q − r) + r(q − r) = (1 +
√

2)r(q − r). (7)

From (4), (6) and (7), it is easy to get

(2 +
√

2)
p∑

i=1

ixi − 2
q∑

i=1

iyi =
√

2
q∑

i=1

iyi − (2 +
√

2)

(
q∑

i=1

iyi −
p∑

i=1

ixi

)

=
√

2
q∑

i=1

iyi − (2 +
√

2)
q∑

l=1

(
l∑

i=1

xi −
l∑

i=1

yi

)

≥
√

2(1 +
√

2)r(q − r) − (2 +
√

2)(q − r − 1)r ≥ 0.

Hence,

α(xi, yi) =
∑q

i=1 iyi∑p
i=1 ixi

≤ 2 +
√

2
2

.

172 R. Li et al.

We now turn to the case of yk ≥ 2. By (C1),
∑q

i=1 yi + q −1 = n+ q −1 ≥ n,
Thus k ≤ q − 1 by the definition of k. Construct a new series {y′

i}n
i=1 with

q′ = n + k + 1 − ∑k+1
i=1 yi as follows:

y′
i =

⎧
⎨

⎩

yi 1 ≤ i ≤ k + 1,
1 k + 2 ≤ i ≤ q′,
0 q′ + 1 ≤ i ≤ n.

Clearly, y′
1 ≥ y′

2 ≥ · · · ≥ y′
q′ , and

q′
∑

i=1

y′
i =

k+1∑

i=1

y′
i +

q′
∑

i=k+2

y′
i =

k+1∑

i=1

yi + (q′ − k − 1) = n. (8)

By (3) and the definition of q′, we have

k+1∑

i=1

yi + k ≥ n =
k+1∑

i=1

yi + q′ − (k + 1).

Thus q′ ≤ 2k + 1. Since yi = y′
i for 1 ≤ i ≤ k + 1 and yi ≥ 1 ≥ y′

i for
k + 2 ≤ i ≤ q,

∑q
i=1 y′

i ≤ ∑q
i=1 yi = n, and thus q′ ≥ q. Combining above two

inequalities regarding q′ with k ≤ q − 1, we have

k + 1 ≤ q′ ≤ 2k + 1. (9)

Since {xi} and {yi} satisfy (C3),

l∑

i=1

xi ≤
l∑

i=1

yi + (l − 1) =
l∑

i=1

y′
i + (l − 1), l = 1, . . . , k,

and

l∑

i=1

xi ≤ n =
q′

∑

i=1

y′
i =

l∑

i=1

y′
i +

q′
∑

i=l+1

y′
i =

l∑

i=1

y′
i + (q′ − l), l = k + 1, . . . , q′.

Hence,

q′
∑

l=1

(
l∑

i=1

xi −
l∑

i=1

y′
i

)

≤
k∑

l=1

(l − 1) +
q′

∑

l=k+1

(q′ − l)

=
k(k − 1)

2
+

(q′ − k)(q′ − k − 1)
2

. (10)

Define

g1(γ) = 2
(

(k + 1)(k + 2) +
γ(γ + 1)

2

)
− 5

(
k(k − 1)

2
+

(γ − k)(γ − k − 1)
2

)

Minimizing Total Completion Time of Batch Scheduling 173

and

g2(γ) = 2
(

k(k + 1)
2

+
γ(γ + 1)

2

)
− 5

(
k(k − 1)

2
+

(γ − k)(γ − k − 1)
2

)

Both are quadratic functions with negative quadratic coefficients. We further
distinguish two subcases according to the value of y′

k+1.
If y′

k+1 ≥ 3, then

q′
∑

i=1

iy′
i =

k+1∑

i=1

iy′
i +

q′
∑

i=k+2

iy′
i ≥ y′

k+1

k+1∑

i=1

i +
q′

∑

i=k+2

i ≥ 3
k+1∑

i=1

i +
q′

∑

i=k+2

i

= 2
k+1∑

i=1

i +
q′

∑

i=1

i = (k + 1)(k + 2) +
q′(q′ + 1)

2
(11)

Therefore, by (4), (9), (10) and (11), we have

5
p∑

i=1

ixi − 3
q′

∑

i=1

iy′
i = 2

q′
∑

i=1

iy′
i − 5

⎛

⎝
q′

∑

i=1

iy′
i −

p∑

i=1

ixi

⎞

⎠

= 2
q′

∑

i=1

iy′
i − 5

q′
∑

l=1

(
l∑

i=1

xi −
l∑

i=1

y′
i

)

≥ g1(q′)

≥ min{g1(2k + 1), g1(k + 1)}
= min

{
k2 + 12k + 6,

k2 + 23k + 12
2

}
≥ 0. (12)

If y′
k+1 ≤ 2, by (2) and (8),

k∑

i=1

y′
i + k − 1 =

k∑

i=1

yi + k − 1 < n =
q′

∑

i=1

y′
i =

k∑

i=1

y′
i + y′

k+1 +
q′

∑

i=k+2

y′
i

≤
k∑

i=1

y′
i + 2 + (q′ − k − 1).

Hence, q′ > 2k − 2. Combining the above inequality with (9), we have

2k − 1 ≤ q′ ≤ 2k + 1. (13)

Recall that y′
k = yk ≥ 2. We have

q′
∑

i=1

iy′
i =

k∑

i=1

iy′
i +

q′
∑

i=k+1

iy′
i ≥ y′

k

k∑

i=1

i +
q′

∑

i=k+1

i ≥ 2
k∑

i=1

i +
q′

∑

i=k+1

i

=
k∑

i=1

i +
q′

∑

i=1

i =
k(k + 1)

2
+

q′(q′ + 1)
2

(14)

174 R. Li et al.

Therefore, by (4), (10), (13) and (14) we have

5
p∑

i=1

ixi − 3
q′

∑

i=1

iy′
i = 2

q′
∑

i=1

iy′
i − 5

⎛

⎝
q′

∑

i=1

iy′
i −

p∑

i=1

ixi

⎞

⎠

= 2
q′

∑

i=1

iy′
i − 5

q′
∑

l=1

(
l∑

i=1

xi −
l∑

i=1

y′
i

)

≥ g2(q′)

≥ min{g2(2k + 1), g2(2k − 1)}
= min {7k + 2, 9k − 5} ≥ 0. (15)

By the definition of q′, we have

q∑

i=k+2

(yi − 1) =
q∑

i=k+2

yi − (q − k − 1) = n −
k+1∑

i=1

yi − (q − k − 1) = q′ − q.

Hence,

q∑

i=1

iyi =
k+1∑

i=1

iyi +
q∑

i=k+2

iyi ≤
k+1∑

i=1

iyi +
q∑

i=k+2

i + q(q′ − q)

≤
k+1∑

i=1

iyi +
q∑

i=k+2

i +
q′

∑

i=q+1

i =
q′

∑

i=1

iy′
i.

Therefore, by (12) and (15),

α(xi, yi) =
∑q

i=1 iyi∑p
i=1 ixi

≤
∑q′

i=1 iy′
i∑p

i=1 ixi
≤ 5

3
≤ 2 +

√
2

2
.

The proof of the lemma is thus completed. ��
Given m is an integer. Define

β(xi, yi) =
∑q

i=1� i
m�yi∑p

i=1� i
m�xi

.

Lemma 2. If series {xi}n
i=1 and {yi}n

i=1 satisfy the following conditions:

(C0) α(xi, yi) ≤ 2,
(C1)

∑p
i=1 xi =

∑q
i=1 yi = n,

(C2) y1 ≥ y2 ≥ · · · ≥ yq,
(C2’) x1 ≥ x2 ≥ · · · ≥ xp,

then β(xi, yi) ≤ m+1
2m α(xi, yi) + m−1

m , and the bound is tight.

Minimizing Total Completion Time of Batch Scheduling 175

3 Single Machine

In this section, we present complexity results and approximation algorithms for
the single machine batch scheduling problem of minimizing the total completion
time with non-identical job sizes and unit processing times.

Theorem 1. The single machine batch scheduling problem of minimizing the
total completion time with non-identical job sizes and unit processing times is
NP -hard.

The theorem can be proved by using the reduction from the Equal Cardi-
nality Partition [11], and the detail is omitted here. Due to the NP -hardness
of the problem, we turn our attention to approximation algorithms. As we have
pointed out before, algorithms for batch scheduling with unit processing times
are completely determined by the bin-packing procedure used in the batching
phase. Therefore, we name a algorithm after the bin-packing procedure being
involved. We begin with FFD, the most commonly used algorithm for the classi-
cal bin-packing and its many variants due to its simplicity and good performance.
Unfortunately, FFD has very poor performance for problems with objective of
minimizing the total completion time.

Theorem 2. For single machine batch scheduling problem of minimizing the
total completion time with non-identical job sizes and unit processing times, the
worst-case ratio of FFD is unbounded, even if the sizes of all jobs lie in

[
0, 1

l

]
,

where l is an arbitrary integer.

Proof. For any integer l > 0, let N > l +1 be also an integer. Consider a job set
J that consists of N2 small jobs of size 1

N2 and lN large jobs of size N−1
lN . Note

that 0 < 1
N2 < N−1

lN < 1
l and (l + 1)N−1

lN = lN+N−l−1
lN > 1. Clearly, FFD packs

every l large jobs and N small jobs into a batch. Thus the schedule has totally
N batches, with each batch has a cardinality of N + l. Hence,

TCFFD(J) =
N∑

i=1

i(N + l) =
N(N + 1)(N + l)

2
.

On the other hand, FFI packs all small jobs into a single batch, and every l
large jobs into a batch. The schedule has totally N + 1 batches, with one batch
of cardinality of N2 and N batches of cardinality of l. Hence,

TCFFI(J) = N2 +
N+1∑

i=2

il = N2 +
lN(N + 3)

2
.

Therefore,

TCFFD(J)
TC∗(J)

≥ TCFFD(J)
TCFFI(J)

=
N(N+1)(N+l)

2

N2 + lN(N+3)
2

→ ∞(N → ∞). ��

176 R. Li et al.

It is not difficult to see that the packing given by FFD in fact uses a min-
imum number of batches. Therefore, use better algorithms of the classical one-
dimensional bin-packing problem is of no use. This is owing to the fundamental
difference between two objectives. On the other hand, we will see below that
FFI does have a better performance than FFD.

Denote by BS the set of batches in schedule σS . For ease of narration, we
add dummy batches of cardinality of 0 such that BS contains exactly n batches.
All dummy batches do not contain any jobs, and the objective will remain
unchanged. For batch BS

i ∈ BS , i = 1, . . . , n, the cardinality of BS
i will be

denoted by |BS
i |. Reindex the batches in non-increasing order of their cardinal-

ities, i.e., |BS
1 | ≥ |BS

2 | ≥ · · · ≥ |BS
n |. Write xi = |B∗

i | and yi = |BFFI
i | for any

1 ≤ i ≤ n. In the following lemma, we will prove that series {xi}n
i=1 and {yi}n

i=1

do satisfy conditions (C1)-(C4).

Lemma 3. Series {xi}n
i=1 and {yi}n

i=1 satisfy conditions (C1)–(C4).

Proof. Note that (C1) trivially holds. Let zi, i = 1, . . . , q be the number of jobs
packed in the first i batches of BFFI , i.e., zi =

∑i
l=1 yl. Set z0 = 0. By the

description of the algorithm, for any 1 ≤ i ≤ q, BFFI
i consists of yi jobs of

Jzi−1+1, Jzi−1+2, . . . , Jzi
, and Jzi+1 can not be packed into BFFI

i due to limit of
space. Thus

zi∑

j=zi−1+1

sj ≤ 1 <

zi+1∑

j=zi−1+1

sj . (16)

Since FFI packs the jobs in non-decreasing order of their sizes, we assume that
s1 ≤ s2 ≤ . . . ≤ sn. Hence, we have

zi+yi+1∑

j=zi+1

sj ≥
zi−1+yi+1∑

j=zi−1+1

sj =
zi+1∑

j=zi−1+1

sj > 1 ≥
zi+1∑

j=zi+1

sj .

Hence, yi+1 = zi+1 − zi < (zi + yi + 1) − zi = yi + 1, which is equivalent to
yi+1 ≤ yi. (C2) is valid.

To prove (C3), it is sufficient to prove
∑l

i=1 xi <
∑l

i=1 yi + l as both {xi}n
i=1

and {yi}n
i=1 are integer series. If zl + l > n, then

l∑

i=1

xi ≤ n < zl + l =
l∑

i=1

yi + l.

Otherwise, by (16) and s1 ≤ s2 ≤ . . . ≤ sn,
zl+l∑

j=1

sj =
zl∑

j=1

sj +
zl+l∑

j=zl+1

sj ≥
l∑

j=1

zi∑

j=zi−1+1

sj +
l∑

i=1

szi+1 =
l∑

i=1

zi+1∑

j=zi−1+1

sj > l.

It indicates that the smallest zl + l jobs has a total size greater than l. Thus,
these jobs can not be packed into l batches in any schedule. Therefore,

l∑

i=1

xi < zl + l =
l∑

i=1

yi + l,

which is the desired result.

Minimizing Total Completion Time of Batch Scheduling 177

If q − r ≤ 1, p ≥ q − r trivially holds. If there are at least two batches of
BFFI of cardinality of 1, then any two jobs belong to these batches has a total
size of greater than 1. Clearly, any two of them can not be packed into the same
batch in any schedule. (C4) is also valid. ��

Theorem 3. For single machine batch scheduling problem of minimizing the
total completion time with non-identical job sizes and unit processing times, the
worst-case ratio of FFI is at most 2+

√
2

2 , and at least 109
82 .

Proof. The upper bound of the worst-case ratio is a direct corollary of Lemmas 1
and 3. To prove the lower bound, consider a job set J given in Table 1, where
K and L are integers, ε is a sufficient small positive number. The schedule σFFI

and another feasible schedule σA are illustrated in Table 2. Thus,

TCFFI(J) = 4 + 4 +
K+2∑

i=3

2i +
3K+5∑

i=K+3

i +
3K+5+L∑

i=3K+6

i

= 4 + 4 +
2K(K + 5)

2
+

(2K + 3)(4K + 8)
2

+
L(6K + 11 + L)

2

= 5K2 + 19K + 20 +
L(6K + 11 + L)

2
.

and

TC∗(J) ≤ 3 +
3∑

i=2

3i +
2K+3∑

i=4

2i +
2K+3+L∑

i=2K+4

i

= 3 + (6 + 9) +
4K(2K + 7)

2
+

L(4K + 7 + L)
2

= 4K2 + 14K + 18 +
L(4K + 7 + L)

2
.

Hence,
TCFFI(J)
TC∗(J)

≥ 10K2 + 38K + 40 + L(6K + 11 + L)
8K2 + 28K + 36 + L(4K + 7 + L)

.

The right term achieve its maximum 109
82 ≈ 1.329 at K = 5 and L = 8. ��

Table 1. Job set J

Number of jobs Size of jobs Index of jobs

1 0.1 J1

2 0.2 J2, J3

2 0.3 − ε J4, J5

1 0.4 − ε J6

2K 0.5 − ε J7, · · · , J2K+6

2K + 3 0.5 + ε J2K+7, · · · , J4K+9

L 1 J4K+10, · · · , J4K+9+L

178 R. Li et al.

Table 2. Schedules σFFI and σA

σFFI σA

Number

of batches

Cardinality

of a batch

Index of

batches

Index of

Jobs in

batches

Number

of

batches

Cardinality

of a batch

Index

of

batches

Index of

Jobs in

batches

1 4 B1 J1, J2, J3, J4 1 3 B1 J1, J6, J2K+7

1 2 B2 J5, J6 2 3 B2 J2, J4, J2K+8

K 2 B3 J7, J8 B3 J3, J5.J2K+9

· · · · · · 2K 2 B4 J7, J2K+10

BK+2 J2K+5, J2K+6 B5 J8, J2K+11

2K + 3 1 BK+3 J2K+7 · · · · · ·
· · · · · · B2K+3 J2K+6, J4K+9

B3K+5 J4K+9 L 1 B2K+4 J4K+10

L 1 B3K+6 J4K+10 B2K+5 J4K+11

· · · · · · · · · · · ·
B3K+5+L J4K+9+L B2K+3+L J4K+9+L

4 Parallel Machines

In this section, we generalize our discussion to parallel machines. We introduce a
universal algorithm RR−A, which uses a bin-packing algorithm A in the batch-
ing phase, and then schedules all the batches on m parallel identical machines in
a round-robin way. More specifically, add dummy batches of cardinality of 0 such
that there are exactly nm batches. For any 1 ≤ t ≤ m and 1 ≤ l ≤ n, schedule
BA

t+(l−1)m as the lth batch on Mt. It is obvious that the schedule is well-defined.
The worst-case ratio of RR − A can be derived based on the worst-case ratio of
A as follows.

Theorem 4. For the batch scheduling problem of minimizing the total com-
pletion time with non-identical job sizes and unit processing times, if A is an
algorithm for the single machine case with worst-case ratio of at most α ≤ 2,
then RR − A is an algorithm for the m parallel machines case with worst-case
ratio of at most m+1

2m α + m−1
m .

By Theorems 3 and 4, we have the following corollary.

Corollary 1. For batch scheduling problem on m parallel machines of minimiz-
ing the total completion time with non-identical job sizes and unit processing
times, the worst-case ratio of RR − FFI is at most 6+

√
2

4 − 2−√
2

4m .

References

1. Anily, S., Bramel, J., Simchi-Levi, D.: Worst-case analysis of heuristics for the bin
packing problem with general cost structures. Oper. Res. 42(2), 287–298 (1994)

2. Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio
for online bin packing. In: Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1425–1438 (2015)

Minimizing Total Completion Time of Batch Scheduling 179

3. Boyar, J., Dósa, G., Epstein, L.: On the absolute approximation ratio for First Fit
and related results. Discrete Appl. Math. 160, 1914–1923 (2012)

4. Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn,
T., van de Velde, S.L.: Scheduling a batching machine. J. Sched. 1, 31–54 (1998)

5. Cheng, B., Yang, S., Hu, X., Chen, B.: Minimizing makespan and total completion
time for parallel batch processing machines with non-identical job sizes. Appl.
Math. Model. 36(7), 3161–3167 (2012)

6. Deng, X., Feng, H., Li, G., Liu, G.: A PTAS for minimizing total completion time
of bounded batch scheduling. Int. J. Found. Comput. Sci. 13, 817–827 (2002)

7. Dósa, G.: The tight bound of First Fit decreasing bin-packing algorithm is
FFD(L) ≤ 11

9
OPT (L)+ 6

9
. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE

2007. LNCS, vol. 4614, pp. 1–11. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74450-4 1

8. Dósa, G., Sgall, J.: First Fit bin packing: a tight analysis. In: Proceedings of the
30th Symposium on Theoretical Aspects of Computer Science, pp. 538–549 (2013)

9. Dósa, G., Tan, Z.Y., Tuza, Z., Yan, Y., Lányi, C.S.: Improved bounds for batch
scheduling with nonidentical job sizes. Naval Res. Logistics 61, 351–358 (2014)

10. Epstein, L., Levin, A.: Bin packing with general cost structures. Math. Program.
132(1), 355–391 (2012)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1978)

12. Hochbaum, D.S., Landy, D.: Scheduling semiconductor burn-in operations to min-
imize total flowtime. Oper. Res. 45(6), 874–8859 (1997)

13. Ikura, Y., Gimple, M.: Scheduling algorithms for a single batching processing
machine. Oper. Res. Letters 5, 61–65 (1986)

14. Johnson, D. S.: Near-optimal bin packing algorithms. Doctoral Thesis, MIT (1973)
15. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-

case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3, 299–325 (1974)

16. Li, S., Li, G., Qi, X.: Minimizing total weighted completion time on identical
parallel batch machines. Int. J. Found. Comput. Sci. 17(6), 1441–1453 (2006)

17. Li, S., Li, G., Zhang, S.: Minimizing makespan with release times on identical
parallel batching machines. Discrete Appl. Math. 148, 127–134 (2005)

18. Poon, C.K., Yu, W.: On minimizing total completion time in batch machine
scheduling. Int. J. Found. Comput. Sci. 15(4), 593–607 (2004)

19. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: a review. Eur. J. Oper.
Res. 120, 228–249 (2000)

20. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logistics 41, 579–585 (1994)

21. Ullman, J.D.: The performance of a memory allocation algorithm. Technical report
100, Princeton University (1971)

22. Uzsoy, R.: A single batch processing machine with non-identical job sizes. Int. J.
Prod. Res. 32, 1615–1635 (1994)

23. Xia, B., Tan, Z.Y.: Tighter bounds of the First Fit algorithm for the bin-packing
problem. Discrete Appl. Math. 158, 1668–1675 (2010)

https://doi.org/10.1007/978-3-540-74450-4_1
https://doi.org/10.1007/978-3-540-74450-4_1

New Insights for Power Edge Set Problem

Benoit Darties1, Annie Chateau2(B), Rodolphe Giroudeau2,
and Mathias Weller2

1 Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté,
Dijon, France

benoit.darties@u-bourgogne.fr
2 LIRMM - CNRS UMR 5506, Montpellier, France

{chateau,giroudeau,weller}@lirmm.fr

Abstract. We study the computational complexity of Power Edge
Set (PES), for restricted graph classes with degree bounded by three
(bipartite graph, Unit disk graphs and Grid graphs). This problem is
devoted to the monitoring of an electric network. The aim is to minimize
the number of edge-allocated PMUs in a network such that all vertices
are monitored according to two spreading rules. We improve known com-
plexity results using an L-reduction. We also derive some lowers bounds
according to classic complexity hypothesis (P �= NP, UGC, ET H).

1 Introduction

Motivation. In an high voltage electrical network, synchrophasors are time-
synchronized numbers that represent both the magnitude and phase angle of
the sine waves on network links. A Phasor Measurement Unit (PMU) is an
expensive measuring device used to continuously collect the voltage and phase
angle of a single electrical (sub-)station as well as the links and incident stations
connected to it. Using among others Ohm’s and Kirchhoff’s Laws, if one station
is monitored and all but one of its neighbors are too, then the unmonitored
station becomes monitored. The problem of minimizing the number of PMUs
to place on stations for complete network monitoring and known as Power
Dominating Set [16] is an important challenge for operators and has gained a
considerable attention over the past decade. We consider in this work a recent
variant of the problem [15], called Power Edge Set (PES), placing PMUs on
the network links rather than the stations.

Model. We model the electrical network with an undirected graph G = (V,E),
and will use the functional notation V (G) and E(G) to refer to respectively the
set of vertices (electrical stations) of a graph G, and its set of edges (direct links).
Let n = |V | and m = |E|. We note NG(v) the set of neighbors of v ∈ V in G and
dG(v) = |NG(v)| its degree in G. Further, we let NG[v] := NG(v) ∪ {v} denote
the closed neighborhood of v in G. The problem Power Edge Set can be seen
as a problem of color propagation on G with colors 0 (white) and 1 (black),
respectively designating the states not monitored and monitored of a vertex.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 180–194, 2017.
https://doi.org/10.1007/978-3-319-71150-8_17

New Insights for Power Edge Set Problem 181

Let c(v) be the color assigned to vertex v (abusing notation, we abbreviate⋃
v∈X c(v) =: c(X)). Before placing the PMUs, we have c(V) = 0. Given a set

E′ ⊆ E of edges on which to place PMUs, colors propagate according to the
following rules:

Rule R1: if (u, v) ∈ E′, then c(u) = c(v) = 1
Rule R2: for u, u′ with c(u) = 1, u′ ∈ NG(u) and c(v) = 1 for all v ∈

NG(u)\{u′}, then c(u′) = 1 (u′ is the only uncoloured neighbor of a colored
vertex u, then u′ is colored by color propagation from u).

The objective of Power Edge Set is to find a smallest set of edges E′ ⊆ E
on which to place the PMUs such that c(V) = {1} after exhaustive application
of Rule R1 and Rule R2. We call such a set a power edge set of G (see Fig. 1
for a guided example of Rule R1 and Rule R2 on a simple graph, leading to
an optimal solution with two PMUs).

a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g

a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g

Fig. 1. PMU propagation: before any placement, all vertices are white (a). A PMU on
{b, c} induce c(b) = c(c) = 1 (black) by Rule R1 (b). By applying Rule R2 on b, we
obtain c(a) = 1 (c). Then Rule R2 on a induces c(d) = 1 (d), and Rule R2 on c or
d induces c(e) = 1 (e). A second PMU is required to complete the coloration, i.e. on
{e, f} to obtain c(f) = 1 by Rule R1 (f). Finally, Rule R2 on e induces c(g) = 1 (g).

Related Work. The Problem Power Dominating Set is NP-complete in
general graphs [6]. A large literature is devoted to this problem, describing a
large range of approaches, either exact such as integer linear programming [5]
or branch-and-cut [13], or heuristic, such as greedy algorithm [8]. Transversely,
many studies have been led on interesting classes of graphs. For instance, the
problem is polynomial on Grids [3], but is NP-complete in Unit Disk Graphs,
and in Disk Graphs [14].

The problem of assigning a minimum number of PMUs on the links to mon-
itor the whole network, Power Edge Set, is known to be NP-hard in the

182 B. Darties et al.

general case. The authors in [15] propose the first complexity result and a lower
bound of a value 1.12 − ε with ε > 0 based on an E-reduction from Vertex
Cover. They also propose a linear-time algorithm on trees by performing a
polynomial reduction to Path Cover. Moreover, the authors in [11] develop
an exact method, a linear program with binary variables, indexed on the neces-
sary iterations using propagation Rule R1 and Rule R2, extended to a linear
program in mixed variables, with the goal of being efficient in practice.

Recently we proposed in [2] some preliminary complexity results according
to variant topologies (planar, bipartite,. . .). An interesting open question stems
from the assumption that power lines run in a bounded degree, at least in few
planes or surfaces of low genus.

Our Contribution. In this work, we address this question, developing hardness
results on (bipartite) planar graphs with bounded degree, covering both approx-
imation and parameterized complexity. This negative result is extended to Grid
Graphs and Unit Disk Graphs. Grid Graphs are defined as vertex-induced sub-
graphs of grids. PES seems to be easily solvable in grids due to the topological
properties of the grid. We show that even if a graph can be embedded in a
graph with orthogonal drawing, the problem is still hard. The motivation of
studying Unit Disk Graph comes from the possibility to extend the application
from electrical networks monitoring to data networks monitoring, voltage being
replaced by bits rates. On networks with unique (radio) interface allowing multi-
ple direct communications, monitoring some direct communication thus ensures
to reconstruct a whole map of data transfers per direct link. We also significantly
improve the preliminary results presented in [2]. Main results are summarized
in Table 1. Moreover, we prove that there is no 2o(k)nO(1) time algorithm for the
Parameterized Power Edge Set with standard parameter.

Table 1. Complexity and lower bounds results. Δ is the maximum degree of G.

Topology Complexity Lower bound (P �= NP, ET H, UGC)

Bipartite planar, Δ ≤ 3 NP-C (Theorem 1) ρ ≥ 1 +
(1−(2+Oδ(1))

log δ
log log δ

1+2δ
under UGC

(Theorem 3)

�2o(n
1
4) under ET H(Corollary 2)

Grid graph Δ ≤ 3 NP-C (Theorem 2)

Unit disk graph NP-C (Corollary 1)

Organization of the Paper. In Sect. 2, we present some properties simplifying the
presentation of the problem and the discussion on considered instances. Section 3
describes results on complexity issues, whereas Sect. 4 explores approximation
questions for restricted classes of graphs, under classical hypotheses.

New Insights for Power Edge Set Problem 183

2 Preliminaries

First we present some observations and transformations concerning parts of opti-
mal solutions to PES on a graph G.

We represent a total order < of vertices of a graph G, by a sequence
(v1, v2, . . .) such that vi occurs before vj in the sequence if and only if vi < vj .

Definition 1 (Valid total order < in PES). Given a total order < of vertices
of a graph G, < is valid for any S ⊆ E(G) if, for each v ∈ V (G), there is an
edge incident with v in S or there is some u ∈ NG(v) with NG[u] ≤ v.

Since we consider PES as a color propagation problem, a valid order
describes how vertices are consecutively colored under the propagation process
of S in G.

Claim 1. PES is stable under the operation of contracting an edge {x, y} with
dG(x) = dG(y) = 2 or with dG(x) = 2 and dG(y) = 1.

Proof. Let G = (V,E) an instance of PES.
Case 1: let x, y be two adjacent vertices of G with dG(x) = dG(y) = 2. Let x′

and y′ be respectively the unique other neighbour of x and y. Let S ⊆ E is the
set of edges corresponding to an optimal placement of PMUs on edges. If x and
y are monitored because there is a PMU on {x, y} and propagate the monitoring
to x′ and y′, then moving this PMU on {x, x′} does not affect the monitoring of
x, x′, y, y′. Thus we can suppose w.l.o.g. that {x, y} is free from PMU. There are
then two possibilities to propagate the monitoring: from x to y and then to y′,
or from y to x, and then to x′. In both cases, contracting {x, y} does not affect
the propagation from the contracted node to, respectively, y′ or x′.

Case 2: let x, y be two adjacent vertices of G with dG(x) = 2 and dG(y) = 1.
Let x′ be other neighbor of x. If {x, y} ∈ S, one can move the PMU from {x, y}
to {x, x′} and color y by application of Rule R2 on x. As x and y have no other
neighbor to color, one can contract x and y. �

Claim 2. PES is stable under the operation of splitting a vertex of degree two,
i.e. the replacement of the vertex v with N(v) = {x, y} by adjacent vertices v1

and v2 and the replacement of edges {x, v}, {y, v} by edges {x, v1}, {y, v2}.

Proof. By reciprocity of Claim 1. �

Definition 2 (Ribbon). Let G be a graph, let C be a cycle. We say that C is
a ribbon iff all but exactly one vertex v of C have degree two in G and we call
v the knot of C. Figure 2 presents an example of a ribbon.

Observation 1. Let G be a graph, let C be a ribbon with knot v and let e be an
edge of C. Then, there is an optimal power edge set S for G with S∩E(C) = {e}.

Proof. Suppose that no PMU is placed on the edges of C. Then, even if c(v) =
1, none of the neighbors of v in C can become colored and, thus, v cannot
propagate on any of them. If one PMU is placed on e, we obtain c(V (C)) = {1}
by consecutive propagation of vertices of degree two. �

184 B. Darties et al.

G

v

x

y

Fig. 2. A ribbon with knot v.

3 Complexity Results

We present here new complexity and lower bounds results for PES according to
the degree of the graph. It is clear that graph with degree bounded by two, a
trivial polynomial-time algorithm exists. It is sufficient to put one PMU on an
edge by connected component. Thus, using Rule R2 all vertices are colored.

On the other way, we show that PES remains NP-complete even if G is
a Grid Graph with bounded degree at most three (by definition planar and
bipartite graph may be representable as Unit Disk Graph). From our actual
knowledge, this is the most restricted class of graphs on which Power Edge
Set is NP-complete.

3.1 Hardness on Bipartite Planar Graphs of Degree Three

To prove these results, we use a reduction from 3-regular planar Vertex
Cover defined as follows:

3-regular planar Vertex Cover (3-RPVC)
Input: a 3-regular planar graph G = (V,E) and some k ∈ IN.
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S �= ∅?

Construction 1. First, we introduce the gadget graph Hv presented in Fig. 3.
Let G = (V,E) be 3-regular planar graph. Given a vertex v ∈ V of degree

three with NG(v) = {x, y, z}, the gadget Hv is composed of

1. An inner planar sub-graph (represented by the triangle (v1, v7, v12) in
Fig. 3), composed of five faces (v1, v31, v3, v13, v14, v10, v29, v12), (v3, v4, v16,
v15, v14, v13), (v4, v5, v6, v18, v17, v16), (v6, v7, v8, v18), and (v8, v9, v10, v14, . . . ,
v18),

2. An outer circle: vertices (v19, v20, v11, v22 . . . , v28),
3. Three paths (v1, v2, v11), (v7, v21, v30, v22) and (v12, v32, v26) connecting the

planar-subgraph to the outer circle at three points,
4. A set of three border-vertices vi for each i ∈ NG(v), connected to the external

circle with v19, resp. with v25, resp. with a path (v28, v33).

Therefore, the gadget graph Hv contains 36 vertices and 43 edges.
From any 3-regular planar graph G, we construct a planar bipartite graph G′

as follows:

New Insights for Power Edge Set Problem 185

v1

v7
v12

v19

v25

v28

v3

v6

v31

v4

v5

v8v10

v29 v9

v11

v20

v2

v22

v23

v24

v26

v27
v32

v21

v30

v14

v17

v16

v13

v15 v18

vx

vy

v33vz

xv Hx

yv Hyzv Hz

Fig. 3. Gadget Hv for a vertex v with neighbors x, y and z.

1. for each v ∈ V (G), we add Hv to G′,
2. for each {u, v} ∈ E, we add a connecting path {uv, tuv, vu} to G′, linking the

gadgets Hu and Hv

Remark 1. By construction Hv is a bipartite planar graph with vx, vy, vz in the
same sets: all the distances in Hv between all pairs of these vertices are even.
Gadgets graphs are connected together by path of length two only, using the
same planar scheme from G. As a result, clearly G′ is bipartite, planar and with
degree at most three.

Theorem 1. Power Edge Set remains NP-complete in planar bipartite
graphs of degree at most three.

Proof. Let G = (V,E) be 3-regular planar graph, and G′ the graph obtained by
Construction 1 using G as input. We show that 3-RPVC has a solution of size
k on G iff PES has a solution of size n + k on G′.

For clarity, ∀{u, v} ∈ E(G), we contract path (uv, tuv, vu) into an edge
(uv, vu) in G′ using Claim 1. Any solution to PES on G′ remains unchanged, as
tuv were introduced to guarantee only the bipartite property on G′.

⇒ Let S be a vertex cover of size k on G. We build a solution S′ to PES
on G′ as follows: for each v ∈ V (G), we add edge {v14, v15} of Hv to S′ and for

186 B. Darties et al.

each v ∈ S, we add edge {v4, v5} of Hv to S′. By considering propagation rules,
it is simple to verify that all the vertices of G′ are colored, in the order defined
below:

<v:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v4, v5, v14, v15, v6, v16, v17, v18, v3, v7, v8, v9, v10, v13, v29, v31, v1, v12, v2, v11,

v21, v30, v22, v32, v26, v20, v19, v23, v24, v25, v27, v28, v33, vx, vy, vz if v ∈ S

v14, v15, vx, vy, vz, v16, v19, v25, v33, v28, v20, v11, v27, v26, v24, v23, v22, v30,

v21, v7, v32, v12, v2, v1, v31, v3, v29, v10, v9, v8, v18, v6, v17, v4, v5, v13 if v /∈ S

(1)

Note that |S′| = n + k.
⇐ Assume that G′ possess n + k PMUs such that all vertices are colored.

We construct a valid ordering < on G′ for S′. To this end, for each v ∈ V (G)
with (x, y, z) being an arbitrary sequence of NG(v), we consider the ordering 1.
Let <∗ be an arbitrary ordering of V (G) such that u <∗ v for all u ∈ S and
v /∈ S and let < be the result of replacing each v by the sequence <v in this
ordering. Towards a contradiction, assume that < is not valid for S′ and let w
be the first vertex of < such that the subsequence of < ending with w is invalid
for S′. Let v ∈ V (G) such that w is a vertex of Hv. By construction of <v,
this is only possible if v /∈ S and w = vx for some x ∈ NG(v). However, since
S is a vertex cover, x ∈ S, implying x <∗ v and, thus, V (Hx) < w. But then,
NG′ [xv] ≤ vx for some xv ∈ V (Hx), contradicting that the subsequence of S′

ending with w is invalid.

Claim 3. S′ contains an edge incident with a vertex from {v4–v6, v8, v9, v13–
v18} for all v ∈ V (G).

Proof. Let Cv = {v4–v6, v8, v9, v13–v18}. For each v ∈ V (G), vertices set V (Sv) =
{v3, v7, v10} is a vertex separator in G′. Obviously G′[Cv] is a connected com-
ponent if v3, v7 and v10 are removed from G′. All vertices from V (Sv) have two
pairwise distinct neighbors in Cv. Thus it is impossible to produce a valid order
on G′ unless S contains at least one edge incident to a node in Cv. �

Claim 4. S′ ⊆
⋃

v∈V (G) E(Hv).

Proof. Towards a contradiction, assume that S′ contains {vx, xv} for some
{x, v} ∈ E(G). Then, we can swap {vx, xv} and the edges in S′ ∩
E(Hv) for {v4, v5} and {v14, v15} in S′, allowing us to start < with

(v4, v5, v14, v15, v6, v16, v17, v18, v3, v7, v8, v9, v10, v13, v29, v31, v1, v12, v2,
v11, v21, v30, v22, v32, v26, v20, v19, v23, v24, v25, v27, v28, v33, vx, vy, vz, xv)
assuming NG(v) = {x, y, z}. Thus vx and xv precede all w /∈ V (Hv) and the
new order is still valid in G′. �

Claim 5. Let v ∈ V (G) with |S′ ∩ E(Hv)| = 1, let x ∈ NG(v) and let w ∈
{v1 − v33} such that w is not incident with an edge of S′. Then, vx < w.

New Insights for Power Edge Set Problem 187

Claim 6. Let {x, v} ∈ E(G). Then |S′ ∩ E(Hx)| > 1 or |S′ ∩ E(Hv)| > 1.

Claim 6 implies that {v | |S′ ∩ E(Hv)| > 1} is a vertex cover of G and, by
Claim 3, its size is at most |S′| − n = k.

Thus, for any solution S′ on PES on G′, each gadget Iv contains either one
or two PMUs. By noting S the set of all vertices v such that Iv contains two
PMUs, we have proved that S is a vertex cover on G. �

3.2 Extension of Hardness Result to Grid Graphs of Degree Three
and Unit Disk Graph

In this section, we extend the results of Theorem 1 to Grid Graphs with holes
of maximum degree three using a slight modification of gadget Hv and known
results on embedding a 3-regular planar graph in a grid.

Construction 2. Let G = (V,E) be a 3-regular planar graph. We introduce the
gadget graph Iv presented in Fig. 4, and constructed from Hv (Fig. 3).

v6
v7

v8
v18

v4
v16 v3

v10v14

v22

v12

v11

v1

v25

v26

v28

v19

vy

v33 vz

vx

yv Iy

zv Iz

zv Iz

v5

v117

v217

v317

v417
v517 v9

v115

v215
v315v415v515

v615

v715

v815

v915

v1015

v1115

v1215
v1315 v1415 v1515

v113

v213

v313

v413
v513v613v713v813v913v1013v1113

v1213

v1313

v1413

v1513

v1613

v1713

v1813

v1913

v2013

v2113

v2213
v2313 v2413 v2513 v2613 v2713 v2813

v2913

v129

v229

v329

v21 v30

v131 v231

v331

v431

v531

v631

v731

v831
v931v1031v1131v1231v1331v1431v1531v1631v1731v1831v1931

v2031

v2131

v2231

v2331

v2431

v2531

v2631

v2731

v2831

v2931

v3031

v3131

v3231

v3331

v3431
v3531 v3631 v3731 v3831 v3931 v4031 v4131 v4231 v4331

v123

v223
v323 v423

v124

v224

v12

v22

v32

v42

v52

v62

v72

v82

v92

v102
v112v122v132v142v152v162v172v182v192v202v212v222v232v242v252

v262

v272

v282

v292

v302

v312

v322

v332

v342

v352

v362

v372

v382

v392

v402

v412

v422

v432

v442
v452 v462 v472 v482 v492 v502 v512 v522 v532 v542 v552 v562

v572

v120 v220

v320

v420

v520

v620

v720

v820

v920

v1020

v1120

v1220

v1320

v1420
v1520v1620v1720v1820v1920v2020v2120v2220v2320v2420v2520v2620v2720v2820v2920v3020v3120v3220v3320

v3420

v3520

v3620

v3720

v3820

v3920

v4020

v4120

v4220

v4320

v4420

v4520

v4620

v4720

v4820

v4920

v5020

v5120

v5220

v5320

v5420

v5520

v5620
v5720 v5820 v5920 v6020 v6120 v6220 v6320 v6420 v6520 v6620 v6720 v6820 v6920 v7020 v7120 v7220

v7320

v7420
v7520

v27
v132 v232 v332

Fig. 4. Illustration of a Grid Graph using in Construction 2.

188 B. Darties et al.

For a vertex v of degree two with N(v) = {x, y}, let str(v, i) be the operation
consisting to stretch v ith times, i.e. replacing v with a path (v1, v2, . . . , vi) and
the edges {v, x}, {v, y} by the edges {v1, x}, {vi, y}. Using the reciprocal of Claim
1, this operation has no incidence on any solution to PES.

Given a vertex v ∈ V (G) with NG(v) = {x, y, z} and the gadget
Hv presented in Construction 1, we copy Hv into Iv we apply str(v1, 13),
str(v2, 43), str(v11, 3), str(v15, 15), str(v17, 29), str(v20, 75) , str(v23, 4),
str(v24, 2), str(v29, 57), str(v32, 3) on Iv.

Figure 4 presents an embedding of Iv into a 2-dimensional grid with dimen-
sions 20 × 24. By construction Iv is a Grid Graph of degree at most three. We
use this embedding in the following.

From any 3-regular planar graph G, we construct a Grid Graph G′ with
maximum degree three as follows:

1. First we perform an embedding of G in a grid M1 with orthogonal drawing,
i.e. using [12]. This embedding always exists for 3-regular planar graphs. Let
(xv

G, yv
G) be the coordinates of v ∈ V (G) in the grid.

2. For each v ∈ V (G), we add a gadget Iv, and embed it in a grid M2 so that
the coordinates of v56

20 are (xv
G × 30, yv

G × 40), and the coordinates of v33
20 are

(xv
G × 30 + 19, yv

G × 40 + 23).
3. For each {u, v} ∈ E, we add connecting path (uv, ..., vu) of arbitrary length

lu,v linking the gadgets Iu and Iv. These paths can be embedded in the grid
G2 with respect to the Grid Graph constraints, as gadget Iv are sufficiently
distant in the grid G2: for each v ∈ V (G) with NG(v) = {x, y, z}, each path
among (vx, ..., xv), (vy, ..., yv) and (vz, ..., zv) can start from respectively vx,
vy, and vz, turn around Iv without crossing others paths (uncrossing path is
always possible by exchanging vx, vy and vz in Iv w.l.o.g.), then takes one of
the four directions north / south / west / east deducted from the embedding
of v and it incident edges in M1.

Figure 5 summarizes the construction and how paths connect gadgets Iv

between themselves while respecting the embedding into a grid. Clearly the
resulting graph G′ is a Grid Graph with degree at most three.

Theorem 2. Power Edge Set is NP-complete in Grid Graphs of degree at
most three.

Proof. Let G = (V,E) be 3-regular planar graph, and G′ the graph obtained by
Construction 2 using G as input. We show that 3-RPVC has a solution of size
k on G iff PES has a solution of size n + k on G′.

From G′, we contract in each Iv for v ∈ V (G) all edges {x, y} with
dG′(x) = dG′(y) = 2 excepted the edges {v4

23, v
1
24} and {v30, v21} and {v33, vz}.

We also contract in G′ the edges from paths (uv, ..., vu) for each {u, v} ∈ E(G).
Let G′′ be the graph after contracting operations. Using Claim 1, clearly any
optimal solution S′ on G′ leads to an optimal solution on G′′ with same cost,
and reciprocally.

New Insights for Power Edge Set Problem 189

a

b

c

d

e

f

a b

c

d

e

f

Ia
af
ab
ae

Ib

ba

bd
bc

Ic

cb

cd
ce

Id

df

dc
db

Ie

ea

ec
ef

If

fd

fa
fe

Fig. 5. Construction of a Grid Graph G′ from a 3-regular planar graph G. From G (a)
we produce an embedding into a grid (b). Using one gadget Iv per vertex v ∈ V (G),
we produce a Grid Graph G′ and connect the gadgets with paths turning around a
gadget to get a direction to the other gadget. (c) presents a macroscopic view of G′

and the paths linking these gadgets.

Finally, let us note that G′′ is identical to the graph constructed in Construc-
tion 1 and used in the proof of Theorem 1, and there is an immediate extension
of the result. �

As Grid Graphs are also a Unit Disk Graph, the following corollary is
immediate:

Corollary 1. Power Edge Set remains NP-complete for Unit Disk Graphs.

4 Lower Bounds

4.1 Lower Bounds for Exact and FPT Algorithms

In this section, we propose some negative results for Power Edge Set concern-
ing the existence of subexponential-time algorithms under ET H [7], and FPT
Algorithms. We introduce Parameterized Power Edge Set, the parameter-
ized version of Power Edge Set:

Parameterized Power Edge Set (PPES)
Input: Given G = (V,E), a graph and k ∈ IN∗

Question: Does it exist a set E′ ⊆ E defining a function c : V → N, with
c(u) = c(v) = 1 ∀{u, v} ∈ E′ (by Rule R2) of size k such that after
exhaustive use of Rule R2, we have c(u) = 1 ∀u ∈ V ?

Parameter: k

Since the polynomial-time transformation given in the proof of Theorem 1
(by making a slight modification of the gadget in the absence of regularity) is

190 B. Darties et al.

quadratic in the number of vertices, and since Planar Vertex Cover does
not admit a 2o(

√
n) algorithm there is no hope to find a 2o(n

1
4) time algorithm

for Power Edge Set in presence of bipartite planar graph bounded by three.
Moreover, since k ≤ n, a 2o(k)nc time algorithm directly implies a 2o(n) time

algorithm for Planar Vertex Cover. However, we know Vertex Cover is
as hard to approximate in regular graphs [4], and does not admit an algorithm
with running time 2o(n) even in planar case unless ET H fails ([9]). Therefore,
we obtain the following results.

Corollary 2. Assuming ET H, there is no 2o(n
1
4) time algorithm for Power

Edge Set, and there is no 2o(k)nO(1) time algorithm for Parameterized
Power Edge Set (even in bipartite planar of bounded at most three).

4.2 Non-approximability Results According to Complexity
Hypothesis

In this section, we derive new lower bounds based on the L-reduction.
First recall the definition of L-reduction between two difficult problems Π and

Π′, described by [10]. This reduction consists of polynomial-time computable
functions f and g such that, for each instance x of Π, f(x) is an instance of
Π′ and for each feasible solution y′ for f(x), g(y′) is a feasible solution for x.
Moreover there are constants α1, α2 > 0 such that:

1. OPTΠ′(f(x)) ≤ α1OPTΠ(x) and
2. |valΠ(g(y′)) − OPTΠ(x)| ≤ α2|valΠ′(y′) − OPTΠ′(f(x))|.

Construction 3. Let G = (V,E) be a graph of maximum degree δ. From G we
construct an instance G′ of PES as follows:

First we introduce the gadget graph Jx for every vertex x ∈ V (G):
let (y1, y2, . . . , ydx

) be an arbitrary sequence of NG(x), with dx = |NG(x)|.

– We add a chain (x1, x2, x
1
y1

, x2
y1

, x3
y1

, x4
y1

, x5
y1

, x1
y2

, x2
y2

, x3
y2

, x4
y2

, x5
y2

, . . . ,
x1

ydx−1
, x2

ydx−1
, x3

ydx−1
, x4

ydx−1
, x5

ydx−1
, x1

ydx
) to Jx.

– For every yi ∈ NG(x) we add a ribbon with knot node xr
yi

, three nodes x6
yi

,
x7

yi
, x�

yi
, and the edges (x7

yi
, x�

yi
), (x7

yi
, xr

yi
), (x6

yi
, x1

yi
) and (xr

yi
, x6

yi
).

– For every yi in the sequence excepted the last element ydx
, we add the edge

(x4
yi

, x7
yi

).

Figure 6 presents a construction of Jx for a 9-neighbors node x and the neigh-
bor sequence (y1, y2, . . . , y9).

Note that Jv is a bipartite graph with maximum degree 3.
We add all the gadgets Jv|v ∈ V (G) into G′, and we link two gadgets Jx and

Jy with an edge (x�
y, y�

x) if and only if {x, y} ∈ E(G).
Using Claims 1 and 2, we can stretch or contract edges (x�

y, y�
x) to ensure

that G′ remains bipartite for clarity in the rest of the paper we restrict the con-
struction to G′ without stretching or contracting edges, and consider that G′ is
implicitly bipartite.

New Insights for Power Edge Set Problem 191

x1
y1x

2
y1x

3
y1x

4
y1x

5
y1

x6
y1

xr
y1

x7
y1

x�
y1

y�
1x

x1
y2x

2
y2x

3
y2x

4
y2x

5
y2

x6
y2

xr
y2

x7
y2

x�
y2

y�
2x

x1
y7x

2
y7x

3
y7x

4
y7x

5
y7

x6
y7

xr
y7

x7
y7

x�
y7

y�
7x

x1
y8x

2
y8x

3
y8x

4
y8x

5
y8

x6
y8

xr
y8

x7
y8

x�
y8

y�
8x

x1
y9

x6
y9

xr
y9

x7
y9

x�
y9

y�
9x

x2x1

Fig. 6. An example of Jx-gadget for a node x with dG(x) = 9 and a sequence of
neighbors (y1, y2, . . . , y9). Here blacks nodes represent knots nodes from ribbons.

Property 1. The gadget Jx has the following properties:

1. By construction, we have 2m ribbons in G′.
2. If we place one PMU on the edge (x1, x2) and a PMU per ribbon, then the

exhaustive application of Rule R2 colors all the nodes of Jx.
3. If we place a PMU per ribbon, and have c(x�

y) = 1 for every y ∈ N(x)
(i.e. after application of Rule R2 on each node y�

x from each Jy), then the
exhaustive application of Rule R2 colors all the nodes of Jx.

4. However the coloring remains incomplete if there exists at least one neighbor
yi with c(x�

yi
) = 0.

Theorem 3. For every sufficient large integer δ, Power Edge Set is inap-

proximable to less than 1 +
(1−(2+Oδ(1)) log δ

log log δ

1+2δ under UGC, even for bipartite
graphs of maximum degree 3.

Proof. We use a reduction to Vertex Cover on simple graph of bounded degree
δ. Under UGC, this problem cannot be approximated to less than (2 − (2 +
Oδ(1)) log log δ

log δ) [1].
Given an instance I = (G, k) of Vertex Cover such that each vertex of G

as degree at most δ, an instance I ′ = (G′, k + 2m) of PES is constructed: let G′

be the bipartite graph returned by Construction 3 with G as input.
⇒ Let S ⊆ V be an optimal k-size vertex cover on G. Then one can

construct a (k + 2m) solution to PES by placing one PMU on each of the 2m
ribbons, and a PMU on the edge (x1, x2) if and only if x ∈ S. Using Property
1 item 2, all the nodes from Jx|x ∈ S are colored. Applying Rule R2 on every
x�

y,∀x ∈ S,∀y ∈ N(x) gives c(y�
x) = 1. As S is a solution to vertex cover, then we

have c(y�
x) = 1∀(x, y) ∈ E. Using Property 1 item 2, all the nodes are colored.

⇐ Let S′ be an optimal (k + 2m)-size solution to I ′. By construction,
exactly 2m PMUs require to be set on each of the 2m ribbons, using Observation
Construction 1. If two or more other PMUs are on the same gadget Jx, then the
solution cannot be optimal, as a consequence of Property 1 item 2, and we have
S′ ∩ E(Jx) = 2m or 2m + 1.

192 B. Darties et al.

In every gadget Jx with S′ ∩ E(Jx) = 2m + 1, if (x1, x2) /∈ S′, then we can
transform S′ into a solution of same cost by moving the (2m + 1)th PMU on
(x1, x2), using Property 1 item 2, and suppose in the rest of the proof that if
S′ ∩ E(Jx) = 2m + 1, then (x1, x2) ∈ S′.

Let S ⊆ V (G) be the set of nodes such that v ∈ S if and only if {v1, v2}∩S′ �=
∅. If there exists a gadget Jx with (x1, x2) /∈ S′, then we necessarily require
c(x�

y) = 1 for every y ∈ N(x), using Property 1 item 3 and Property 1 item 4,
and thus for every neighbor y we have (y1, y2) ∈ S′. As a consequence, S is a
Vertex Cover for G.

To show that the above constitutes an L-reduction, let f be a function trans-
forming any instance I of Vertex Cover into an instance I ′ of PES as above,
let S′ be any feasible solution for I ′, and let g be the function that transforms S′

into a solution S′′ that contains exactly dG(v) or dG(v)+1 edges per gadget Jv,
and then outputs the set of vertices v for which S′′ assigns dG(v) + 1 PMUs to
Jv. First, the above argument shows that g(S′) is a feasible solution for Vertex
Cover. Second, by construction,

OPT (I ′) = OPT (I) + 2m (2)

While S is a solution to Vertex Cover in I, we have m ≤
∑

v∈S dG(v),
and dG(v) ≤ δ|v ∈ S. We obtain m ≤

∑
v∈S δ and 2m ≤ 2δ.OPT (I) as |S| =

OPT (I).
We then obtain OPT (I ′) ≤ (1 + 2δ) · OPT (I). Third, by construction of g,

we have

val(g(S′)) ≤ val(S′) − 2m ≤ val(S′) − OPT (I ′) + OPT (I) (3)

Thus, we constructed an L-reduction with α1 = 1 + 2δ, α2 = 1.

val(g(S′)) ≤ val(S′) − 2m ≤ val(S′) − OPT (I ′) + OPT (I) (4)

Assuming UGC, Vertex Cover is hard to approximate to a factor of (2 −
(2 + Oδ(1)) log log δ

log δ) [1] and, thus:

val(S′) ≥ val(g(S′)) + OPT (I ′) − OPT (I)

≥ (2 − (2 + Oδ(1))
log log δ

log δ
) · OPT (I) + OPT (I ′) − OPT (I)

≥ (1 − (2 + Oδ(1))
log log δ

log δ
) · OPT (I ′)

(1 + 2δ)
+ OPT (I ′)

≥ (1 +
(1 − (2 + Oδ(1)) log log δ

log δ)

(1 + 2δ)
)OPT (I ′),

then we obtain the desired result. �

New Insights for Power Edge Set Problem 193

5 Conclusion and Perspectives

In this article, we focus on determinating the demarcation line between poly-
nomial and hardness cases according to the degree of the considered graph. We
presented several new complexity results and some lowers bounds according to
classical complexity hypothesis (P �= NP, ET H, UGC) which improved existing
results. In particular, we exhibit the most constrained classes of graphs known
so far on which Power Edge Set is NP-hard. We consider the following per-
spectives to this work. First, it would be interesting to explore some particular
class of graphs to understand in what extent the regularity of the graph affects
the complexity of the problem. Actually, we focus our work on the study of two
sub-classes of planar graphs, that is to say cactus graphs and outplanar graphs.
From preliminary results, we conjecture that the problem may be polynomial on
cactus graphs. On the other side, the problem is still open on outplanar graphs,
but may be 2-approximable.

Another interesting question concerns the development of some efficient FPT
algorithms with standard parameter, treewidth, structural parameter, or the
number of steps of Rule R2. We also plan to study how special patterns
and minors, may influence the complexity of the problem, as well as its FPT
tractability and approximability. Since approximability is complicated in the
general case, it would also be interesting to design exact methods, like branch-
and-bound exploration or meta-heuristics, hopefully sufficiently efficient on real
networks.

References

1. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent
set in bounded degree graphs. In: Proceedings of the Annual IEEE Conference on
Computational Complexity, pp. 74–80 (2009)

2. Darties, B., Chateau, A., Giroudeau, R., Weller, M.: Improved complexity for power
edge set problem. In: 28th International Workshop on Combinatorial Algorithms
(2017)

3. Dorfling, M., Henning, M.: A note on power domination in grid graphs. Discr.
Appl. Math. 154(6), 1023–1027 (2006)

4. Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical
report MCS03-15, the Weizmann Institute (2003)

5. Gou, B.: Generalized integer linear programming formulation for optimal PMU
placement. IEEE Trans. Power Syst. 23(3), 1099–1104 (2008)

6. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination
in graphs applied to electric power networks. SIAM J. Discr. Math. 15(4), 519–529
(2002)

7. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

8. Li, Y., Thai, M.T., Wang, F., Yi, C., Wan, P., Du, D.: On greedy construction of
connected dominating sets in wireless networks. Wirel. Commun. Mobile Comput.
5(8), 927–932 (2005)

194 B. Darties et al.

9. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. EATCS 105, 41–72 (2011)

10. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

11. Poirion, P., Toubaline, S., D’Ambrosio, C., Liberti, L.: The power edge set problem.
Networks 68(2), 104–120 (2016)

12. Radwan, A.: A new algorithm for orthogonal drawings of 3-planar graphs. Int. J.
Appl. Math. 6(3), 301–317 (2001)

13. Simonetti, L., Salles da Cunha, A., Lucena, A.: The minimum connected dominat-
ing set problem: formulation, valid inequalities and a branch-and-cut algorithm.
In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 162–169.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-8 21

14. Thai, M.T., Du, D.Z.: Connected dominating sets in disk graphs with bidirectional
links. IEEE Commun. Lett. 10(3), 138–140 (2006)

15. Toubaline, S., Poirion, P.-L., D’Ambrosio, C., Liberti, L.: Observing the state of a
smart grid using bilevel programming. In: Lu, Z., Kim, D., Wu, W., Li, W., Du,
D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 364–376. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26626-8 27

16. Yuill, W., Edwards, A., Chowdhury, S., Chowdhury, S.P.: Optimal PMU place-
ment: a comprehensive literature review. In: 2011 IEEE Power and Energy Society
General Meeting, pp. 1–8, July 2011

https://doi.org/10.1007/978-3-642-21527-8_21
https://doi.org/10.1007/978-3-319-26626-8_27

Extended Spanning Star Forest Problems

Kaveh Khoshkhah1, Mehdi Khosravian Ghadikolaei2, Jérôme Monnot2(B),
and Dirk Oliver Theis1

1 Institute of Computer Science, University of Tartu, Tartu, Estonia
{kavehkho,dotheis}@ut.ee

2 Université Paris-Dauphine, PSL Research University, CNRS UMR [7243]
LAMSADE, 75016 Paris, France

m.khosravian@gmail.com, jerome.monnot@dauphine.fr

Abstract. We continue the investigation proposed in [COCOA 2016,
Weller, Chateau, Giroudeau, König and Pollet “On Residual Approxi-
mation in Solution Extension Problems”] about the study of extended
problems. In this context, a partial feasible solution is given in advance
and the goal is to extend this partial solution. In this paper, we focus on
the edge-weighted spanning star forest problem for both minimization
and maximization versions. The goal here is to find a vertex partition
of an edge-weighted complete graph into disjoint non-trivial stars and
the value of a solution is given by the sum of the edge-weights of the
stars. We propose NP-hardness, parameterized complexity, positive and
negative approximation results.

1 Introduction

In [2], a diversity problem with application in the automobile industry is intro-
duced. Here, each node corresponds to a cable configuration u (cable with a set of
active option connections) and the cost wu,v between nodes u and v means that
the cable configuration v will be supplied by the cable configuration u. In this
application, a decision maker wishes to produce a set of cable configurations of
minimum global cost under the constraint, that only configurations in the form
of node-disjoint directed trees of depth at most 1 are feasible. In other words,
the feasible solutions of this problem are directed spanning star forests; also
called spanning star branchings. Several generalizations of this problem known
as Carpooling problems have been studied in the literature (see the survey on
ride-sharing [1]). One of them, called Maximum Carpool Matching models an
automatic service to match commuting trips between passengers and drivers
[11,13]. In this case, new constraints are added: each star has an upper bound
on its size. These bounds may be different for each potential driver and they rep-
resent the capacity of the car according to the number of passengers each user

K. Khoshkhah, D.O. Theis supported by the Estonian Research Council (PUT
Exploratory Grant #620); M. Khosravian Ghadikolaei supported by a DORA Plus
scholarship of the Archimedes Foundation (funded by the European Regional Devel-
opment Fund).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 195–209, 2017.
https://doi.org/10.1007/978-3-319-71150-8_18

196 K. Khoshkhah et al.

can drive if she was selected as a driver. Sometimes it is convenient to enforce
some option connections in scheduling plans for the diversity problem or pre-
select some drivers with passengers together in the carpool Matching problem
(enforcing them may be desirable for reasons outside of the scope of the model
itself). This corresponds to requiring some arcs to belong to any feasible collec-
tion of spanning star branchings. Motivated by scheduling or control networking
applications [7,9,17,18], this type of problem, which consists of extending partial
solutions, has recently drawn attention of the research community.

The undirected maximization version of the spanning star forest problem
also has several motivations in bioinformatics [6,12,14]. Subproblems involving
extending partial solutions can be used as a subroutine to design approximation
algorithms for the master problem. In particular, He and Liang in [12] define
and solve the complementary partial dominating set problem.

1.1 Graph Terminology and Definitions

Throughout this paper, we consider edge-weighed undirected graphs G = (V,E)
on n = |V | vertices and m = |E| edges without isolated vertices. Each edge e =
uv ∈ E between vertices u and v is weighted by a non-negative weight w(e) ≥ 0;
Kn denotes the complete graph on n vertices; a split graph G = (L ∪ R,E) is an
undirected graph where the vertex set L∪R is decomposable into a clique L and
a independent set R. The degree dG(v) of vertex v ∈ V in G is the number of
edges incident to v. A star S ⊂ E of a graph G = (V,E) is a tree of G where at
most one vertex has a degree greater than 1, or, equivalently, it is isomorphic to
K1,� for some � ≥ 0. The vertices of degree 1 (except the center when � ≤ 1) are
called leafs of the star while the remaining vertex is called center of the star. A
�-star is a star of � leafs; when � = 0, the star is called trivial and it is reduced to a
single vertex (the center). A spanning star forest S = {S1, . . . , Sr} ⊆ E of G is a
spanning forest into stars, that is, each Si is a non trivial star, V (Si)∩V (Sj) = ∅
and ∪p

i=1V (Si) = V . Hence in this paper, a spanning star forest of a graph G is a
collection of node disjoint non trivial stars (without isolated vertices, i.e., K1,0)
that covers all vertices of G. A matching M ⊆ E is a subset of pairwise non-
adjacent edges. A matching M of G is perfect if all vertices of G are covered by M .
A claw is a K1,3. In this paper, we will consider the following two problems:

Spanning Star forest problem
Input: A weighted complete graph (Kn, w) on n vertices where Kn = (V (Kn), E(Kn)) and
w(e) ≥ 0 for e ∈ E(Kn).
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ E.
Output: Optimizing w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

The extended version of the Spanning Star forest problem, called
Extended spanning star forest problem consists of extending a given
packing of stars into a spanning star forest. Formally, we have:

Extended Spanning Star Problems 197

Extended spanning star forest problem
Input: A weighted complete graph (Kn, w) on n vertices and a packing of stars U =

{U1, . . . , Ur} where Kn = (V (Kn), E(Kn)) and w(e) ≥ 0 for e ∈ E(Kn).
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ E containing U .
Output: Optimizing w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

The first problem is the restriction of the second to U = ∅. Given an instance
I = (Kn, w) of Spanning Star forest problem (resp., I = (Kn, w,U)
of Extended spanning star forest problem), S∗ = {S∗

1 , . . . , S∗
�∗} will

be an optimal solution with stars S∗
i and value w(S∗) = optSSF (I). The

{0, 1}-Spanning star forest problem is the restriction to binary weights
w(e) ∈ {0, 1}. For each of these problems, two possible goals will be considered
in this paper: maximization and minimization. Hence, the Max Spanning star

forest problem consists of finding a spanning star forest S = {S1, . . . , Sr} ⊆ E
maximizing its weight. For instance, in Max {0, 1}-Spanning star forest

problem the size of a spanning star forest is the number of leaves in all
its components. The goal in this case is to find the maximum-size spanning
star forest of a given graph (induced by the edges of unit weight). From
now, we assume the forced set U = MU ∪ SU is decomposed into a matching
MU = {piqi : i = 1, . . . , k′} of k′ edges and a set SU = {F1, . . . , Fk} of k vertex-
disjoint stars with at least two leafs (ci will be the center of the ith star, and
C = {c1, . . . , ck} is the set of centers). An illustration of these definitions is
depicted in Fig. 1.

c1 . . . ck p1 q1 . . . pk′ qk′

x1 x2 . . . xt

Fig. 1. Bold Edges corresponds to forced edges of U . Sets SU and MU are indicated to
the left and to the right of the figure respectively.

H-Extended Procedure. In several parts of this article, we will consider the
weighted graph I ′ = (H,wH) built from an instance I = (Kn, w,U) of the
Min Extended Spanning star forest problem where U is a packing of
stars. H = (VH , EH) is a complete weighted split graph defined as follows:

• VH = (V (Kn) \ V (U)) ∪ (R ∪ C) where R = {r1, . . . , rk′} is a new set (see
Fig. 1 for definition of C, k and k′);

• EH is the set of edges of a complete split graph where the left side is a
complete graph on V (Kn) \ V (U), the right side is an independent set on
R ∪ C and we have a complete bipartite graph between them;

198 K. Khoshkhah et al.

• wH(uv) =

⎧
⎪⎨

⎪⎩

w(uv) if u, v /∈ R ∪ C, u
= v

w(uv) if u /∈ R ∪ C, v ∈ C

min{w(upi);w(uqi)} if u /∈ R ∪ C, v = ri.

Figure 2 gives an illustration of the construction. The H-extended procedure
transforms any subset F ⊆ E(H) into a subset F ′ ⊆ E(Kn) by adding U and
replacing any edge xri ∈ F by edge xpi if w(xri) = w(xpi), else by xqi. Obviously,
these two constructions (H and H-extension procedure) are done in polynomial-
time. Figure 3 propose an example of the H-extended procedure.

c1 . . . ck r1 . . . rk′

x1 x2 . . . xt Kt

C R

Fig. 2. Illustration of the construction of the split graph H.

c1 c2 . . . ck r1 r2 . . . rk′

x1 x2 x2 . . . xt

F ⊆ EH

C R

c1 c2 . . . ck p1 q1 p2 q2 . . . p′
k q′

k

x1 x2 x2 . . . xt

F ′ ⊆ E(Kn)

Fig. 3. H-extended procedure. Bold edges are in U .

Cost Function Variants. In this paper, we will consider variants of the problem
according to the cost function w: One variant assumes that w is any non-negative
integer weight function; another that w satisfies the c-relaxed triangle inequality.
Mainly consider that the c-relaxed triangle inequality might be satisfied outside
the subgraph induced by V (U), i.e., inside V \ V (U) because the structure of
feasible solutions are strongly constrained by subset U .

Definition 1 (c-relaxed triangle inequality). For a fixed c > 1/2, a weight
function w on Kn satisfies the c-relaxed triangle inequality, if:

∀x, y, z ∈ V (Kn), w(x, y) ≤ c (w(x, z) + w(z, y)) (1)

Extended Spanning Star Problems 199

The case c = 1 is usually called in the literature triangle inequality while for
c ∈ (1/2; 1) it is called sharpened triangle inequality. Note that the extreme case
c = 1/2 becomes trivial since all edges must have the same weight. A detailed
motivation of the study of the Traveling Salesman problem satisfying sharpened
triangle inequalities is given in [4]. In the context of extended problems, Defini-
tion 1 leads to a new definition called the Extended c-relaxed triangle inequality:

Definition 2 (Extended c-relaxed triangle inequality). For a fixed c ≥ 1,
a weight function w on Kn satisfies the extended c-relaxed triangle inequality, if:

(i) w(e) = 0 for e ∈ U ;
(ii) for all {x, y, z} � V (U), w satisfies the c-relaxed triangle inequality.

Condition (i) of Definition 2 refers to the discussion in [18] which argues
that the “residue” part of a feasible solution S, i.e., the part given in S \ U , is
the most important of the valuation. Another consequence of conditions (i) and
(ii) concerns the valuation of w restricted to the subgraph induced by V (U)
(except for edges of U): this function does not satisfy any specified property.
The main reason is that they could never contribute in any spanning star forest
containing U . Finally, the reason for assuming c ≥ 1 is that condition (ii) implies
max{w(xz);w(yz)} ≤ cmin{w(xz);w(yz)} when xy ∈ U and z /∈ V (U).

1.2 Related Work

The maximization version of Spanning Star forest problem, called hereMax

star forest problem, in general graphs has been investigated intensively in
recent years for unweighted graphs. Usually, the input is an undirected graph
(weighted or not) and trivial stars are allowed as part of a feasible spanning star
forests. In [14], an APX-hardness proof with explicit inapproximability bound is
proposed, together with a polynomial-time algorithms for trees. A combinator-
ial 0.6-approximation algorithm which mainly solves the dominating set problem
is presented as well while better algorithms with approximation ratio 0.71 and
0.803 are given respectively in [6] and [3]. In contrast, for edge weighted graphs
with non-negative weights, few results are proposed in the literature. As indicated
above, trivial stars (i.e., isolated vertices) are allowed because we want to maxi-
mize the total weight of the stars. This requirement is equivalent to find a pack-
ing star forest (i.e. a collection of vertex disjoint stars): a 0.5-approximation is
given in [14] (which is the best ratio obtained so far) and polynomial-time algo-
rithms for special classes of graphs such as trees and cactus graphs are presented
in [14,15]. Negative approximation results are presented in [5,6,14]. For any ε > 0,
the unweighted version (or equivalently the Max {0, 1}-Spanning star forest

problem) is hard to approximate within a factor of 545
546 + ε unless P = NP [14].

The edge-weighted version is NP-hard to approximate within 10
11 + ε [5]. For the

Maximum Carpool Matching problem, a 0.33-approximation algorithm and
a 0.5-approximation algorithm for both the general problem and the unweighted
variant are given in [13]. To the best of our knowledge, the minimization version

200 K. Khoshkhah et al.

Min spanning star forest problem and the extended versions of both prob-
lems have not been studied in the literature.

As indicated in introduction, extending a partial solution into a feasible solu-
tion has been studied from a computational complexity for independent dom-

inating set
1, conference programs and coloration in [7,9,17] respec-

tively. Dealing with approximation algorithms with performance guarantee of
NP-hard of optimization problems, results on extension problems are given
in [7,18] for several problems including vertex cover, connected vertex

cover feedback vertex set, Steiner tree, max leaf and bin packing.
For algorithms finding an optimal solution, it often does not matter whether we
optimize the weight of whole solution S or the weight of the residue part S \ U .
However, in the context of approximation algorithms, this difference may pro-
duce important modifications as for bin packing. It is the main reason explain-
ing the works given in [18] where the authors define and propose the approxima-
tion classes FRAPX and RAPX capturing approximability of the residue. The
residue approximation of a solution S is the approximation of w(S) − w(U). In
the conclusion of their paper [18], the authors elaborate that obtaining parame-
terized complexity results [8] of extension problems parameterized by |U| leads
to challenging open problems.

1.3 Organization and Contribution

We prove the following results in this paper. In Sect. 2 the minimization ver-
sion is studied. A dichotomy result of the computational complexity is pre-
sented depending on parameter c of the (extended) c-relaxed triangle inequality
(Theorems 1 and 2). Then, a parameterized complexity showing that this ver-
sion is FPT is given. Positive and negative approximation results conclude this
section. In Sect. 4, the maximization extended version is studied. We prove that,
compared to the unextended version, the same positive approximation result is
reached, while we strengthen the negative approximation result to hold even for
the Max Extended {0, 1}-Spanning star forest problem. Table 1 summa-
rizes the results obtained in the paper.

Table 1. The results given in this paper.

w-general c-relaxed Extended c-relaxed

Min
Extended
Spanning
Star Forest

NP-hard
inapproximable at all
in FPT parameterized by
|U|

NP-hard c > 1

polynomial 1
2 ≤ c ≤ 1

in RAPX with c apx-ratio
inapproximable with
7+c
8 − ε

NP-hard c > 1

polynomial c = 1

in RAPX with c+1
2 apx-ratio

inapproximable with 7+c
8 − ε

Max
Extended
Spanning
Star Forest

in RAPX with 1
2 apx-ratio

inapproximable within 7
8 +ε

even for w(e) ∈ {0, 1}

– –

1 In this case, it is also required that some vertices are forbidden.

Extended Spanning Star Problems 201

2 Spanning Star Forest Problem: Minimization Case

We start with the unextended version.

Proposition 1. Min Spanning star forest problem is polynomial-time
solvable.

We now prove that the extended version of Min Spanning star forest prob-

lem can be much harder. Actually, we will give a dichotomy result depending
on parameter c of the (extended) c-relaxed triangle inequality.

Theorem 1. Min Extended Spanning star forest problem is NP-hard
for both c- and extended c-relaxed triangle inequality when c > 1.

Démonstration. Let c > 1 be a constant. For both cases, we propose a reduction
from SAT to the Min Extended spanning star forest problem where
the weight function satisfies both conditions. SAT is an NP-complete problem
[10] which consists of deciding if an instance I = (C,X) of SAT is satisfiable.
Here, C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables
respectively; a variable xi which appear negatively will be denoted ¬xi. From I =
(C,X), we build an instance I ′ = (K2n+m, w,U) of Min Extended spanning

star forest problem as follows:

• V (K2n+m) = V (C) ∪ V (X) where V (C) = {vj : cj ∈ C} and V (X) = {v0
i , v1

i :
i = 1, . . . , n},

• U = {v0
i v1

i : xi ∈ X} and let M = {vjv
1
i : xi ∈ cj} ∪ {vjv

0
i : ¬xi ∈ cj}.

It is clear that I ′ is built in polynomial-time. The weight function w is defined
by, ∀xy ∈ E(K2n+m),

w(xy) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if xy ∈ U ,

1 if xy ∈ M,

c if xy /∈ M, x ∈ V (C), y ∈ V (X),
2c otherwise.

We can easily verify that w satisfies the extended c-relaxed (and c-relaxed) tri-
angle inequality. We claim that I is satisfiable if and only if optSSF (I ′) ≤ m.

Suppose that I is satisfiable and let T be a truth assignment of I. For each
clause cj let xf(j) be a variable satisfying it in T ; we build a spanning star forest
S containing U such that w(S) =

∑
e∈S w(e) = m as follows: S = {v1

f(j)vj :
T (xi) = true} ∪ {v0

f(j)vj : T (xi) = false} ∪ U .
Conversely, assume that S∗ is a spanning star forest containing U with

w(S∗) = optSSF (I ′) ≤ m. Since U is a matching of size n, and by construction of
the weights, if S∗ contains � edges of weights 2c, then w(S∗) ≥ 2c�+(m − 2�) =
m − 2�(c − 1) because these � edges cover at most 2� vertices of V (C) and the
weight of any other edge is at least 1 (recall c > 1). Hence, we deduce � = 0.
Now, if S∗ contains �′ edges of weight c > 1, then these �′ edges cover exactly

202 K. Khoshkhah et al.

�′ vertices of V (C) and w(S∗) ≥ �′c + (m − �′) > m, contradiction. Hence, S∗

only contains unit weights. We can build a truth assignment T as follows: if
vjv

1
i ∈ S∗, then T (xj) = true and T (xi) = false otherwise.

Corollary 1. The Min Extended Spanning star forest problem for gen-
eral weight function w is not approximable at all unless P=NP.

Theorem 2. Min Extended Spanning star forest problem is solvable in
polynomial-time for the c-relaxed triangle inequality when 1/2 ≤ c ≤ 1 and the
extended c-relaxed triangle inequality when c = 1.

Démonstration. We only deal with the c-relaxed triangle inequality case, because
the other case is simpler. Let c be a constant with 1/2 ≤ c ≤ 1. We solve
Min Extended spanning star forest problem for the c-relaxed triangle
inequality via the help of the Min weighted lower-upper-cover problem.
This latter problem consists, given a edge-weighted graph (G,w) where G =
(V,E) and two non-negative functions a, b from V such that ∀v ∈ V , 0 ≤ a(v) ≤
b(v) ≤ dG(v), of finding a subset M ⊆ E such that the subgraph GM = (V,M)
induced by M satisfies a(v) ≤ dGM

(v) ≤ b(v) (such a solution will be called
a lower-upper-cover) and minimizing its weight w(M) =

∑
e∈M w(e) among all

such solutions (if any). Given I = (G,w) instance of the Min weighted lower-

upper-cover problem optLUC(I) denotes the value of an optimal solution.
The Min weighted lower-upper-cover problem is known to be solvable
in polynomial-time (Theorem 35.2 Chap. 35 of Volume A in [16]).

Let I = (Kn, w,U) be an instance of the Min Extended Spanning star

forest problem where w satisfies the c-relaxed triangle inequality and U is a
packing of stars. From I, we build the instance I ′ = (H,wH) described Fig. 2
of Subsect. 1.1. Moreover, we consider two functions a, b of the Min weighted

lower-upper-cover problem as follows: if v ∈ VH \ (R ∪ C), then a(v) = 1
and b(v) = 2. Otherwise, v ∈ R∪C and a(v) = 0 and b(v) = 1. Figure 4 proposes
an illustration of the construction.

c1 . . . ck p1 q1 . . . pk′ qk′

x1 x2 . . . xt

I = (Kn, U, w)

c1 . . . ck r1 . . . rk′

x1 x2 . . . xt

I ′ = (H = (VH , EH), a, b)

a(v) = 1

b(v) = 2

a(v) = 0 , b(v) = 1

Fig. 4. An instance I of the Min weighted lower-upper-cover problem is shown
on the right hand. Bold edges are in U .

Extended Spanning Star Problems 203

By construction of I ′, an optimal lower-upper-cover with parameters a, b is
{P4, C3}-free and then is an extended spanning star forest of I. Hence,

optLUC(I ′) ≥ optSSF (I) (2)

Conversely, let S∗ be an optimal extended spanning star forest of I. The
next property allow us to focus on spanning star forest claw U-free where a claw
F = K1,3 is not U-free if at least two edges of the claw F do not belongs to U ,
i.e., |F ∩ U| ≥ 2. Where a claw F = K1,3 is U-free if at most one edge of the
claw F belongs to U , i.e.., |F ∩ U| ≤ 1.

Property 1. There is an optimal extended spanning star forest of I which is claw
U-free.

Démonstration. Let S be an optimal extended spanning star forest. Assume S
is not claw U-free and let S = {uvi : i = 1, 2, 3} be a claw not U-free with
uvi /∈ U for i = 1, 2. In particular, vertices v1 and v2 are not adjacent to U ;
hence, S∗ = (S \ S) ∪ {v1v2, uv3} is an extended spanning star forest with
w(S∗) ≤ w(S). By repeating this process, we get the expected result. Note that
if c < 1, all optimal extended spanning star forests are indeed claw U-free.

Hence, we can assume that S∗ is claw U-free, and then it is a lower-upper-cover
with parameters a, b of I ′:

optSSF (I) = w(S∗) ≥ wH(S∗) ≥ optLUC(I ′) (3)

Inequalities (2) and (3) give the expected result.
We end this subsection by giving a parameterized complexity result depend-

ing on the number of forced edges.

Theorem 3. Min Extended Spanning star forest problem parameter-
ized by |U| is FPT and under ETH, Min Extended Spanning star forest

problem cannot be solved in time O∗(2s|U|) for some s > 0.

Démonstration. Let I = (Kn, w,U) be an instance of the Min Extended

Spanning star forest problem where we recall that U = MU ∪ SU with
MU = {piqi : i = 1, . . . , k′} and SU = {F1, . . . , Fk}. The set of centers is
C = {c1, . . . , ck} where ci is the center of star Fi. As in Theorem 2, we solve
several instances IJ of the Min weighted lower-upper-cover problem

for each set J ⊆ {1, . . . , k′}. At the end, we return the solution minimizing
w(SJ) = optLUC(IJ) among all possible sets J , that is S = argminJoptLUC(IJ)
where optLUC(IJ) is the optimal value of the Min weighted lower-upper-

cover problem on instance IJ .
Let I = (Kn, w,U) be an instance of the Min Extended Spanning

star forest problem where U is a packing of stars. From I and a
set J ⊆ {1, . . . , k′}, we built an instance IJ = (HJ , w) where HJ =
(VHJ

, EHJ
) is a complete subgraph of Kn and two functions aJ , bJ of the Min

weighted lower-upper-cover problem as follows: VHJ
= (V (Kn) \ V (U))∪

204 K. Khoshkhah et al.

({pj : j ∈ J} ∪ {qj : j ∈ {1, . . . , k′} \ J} ∪ C). Finally, if v ∈ V (Kn)\V (U), then
aJ(v) = 1 and bJ (v) = dHJ

(v). Otherwise, for v ∈ {pj : j ∈ J} ∪ {qj : j ∈
{1, . . . , k′} \ J} ∪ C, aJ (v) = 0 and bJ(v) = dHJ

(v). Let SJ be an optimal
solution of the Min weighted lower-upper-cover problem on (IJ , aJ , bJ)
Clearly, SJ is a spanning star forest on I and by construction there exists J∗

such that w(SJ∗) = w(S∗) = optSSF (I). The complexity of the whole algorithm
is O∗(2|MU |) = O∗(2|U|) and then Min Extended Spanning star forest

problem is FPT.
The second part of the proof is a direct consequence of Corollary 1 for the Min

Extended {0, 1}-Spanning star forest problem and use the Exponential
Time Hypothesis (ETH in short): ∃s > 0 such that 3-CNF-Sat with n variables
cannot be solved in time O∗(2sn) [8].

3 Approximation Results

From Corollary 1 and Theorem 2, we focus on the approximation of the Min

Extended Spanning star forest problem for both c- and extended c-
relaxed triangle inequality. Hence, let c > 1 be a fixed constant. In algorithm
Approx 1 we use optimal solution of the Min weighted lower-upper-cover

problem as subroutine. This latter problem consists, given a edge-weighted
graph (G,w) (not necessarily complete) where G = (V,E) and two non-negative
functions a, b from V such that ∀v ∈ V , 0 ≤ a(v) ≤ b(v) ≤ dG(v), of finding
a subset M ⊆ E such that the subgraph GM = (V,M) induced by M satisfies
a(v) ≤ dGM

(v) ≤ b(v) (such a solution will be called a lower-upper-cover) and
minimizing its weight w(M) =

∑
e∈M w(e) among all such solutions (if any).

The Min weighted lower-upper-cover problem is known to be solvable
in polynomial-time (Theorem 35.2 Chap. 35 of Volume A in [16]).

Algorithm 1. Approx 1
Input: I = (Kn, w,U) where U) is a packing of forced stars.
Output: A spanning star forest S of I containing U).

1 Build instance I ′ = (H,wH) described in Fig. 2 where
H = (V (Kn) \ V (U)), R ∪ C,EH) is a split complete graph;

2 Find an optimal solution S∗ ⊆ EH of the Min weighted

lower-upper-cover problem on (I ′, a1, b1) with a1(v) = 1 and
b1(v) = dH(v) if v ∈ VH \ (R ∪ C), a1(v) = 0 and b1(v) = 1 for v ∈ R and
a1(v) = 0 and b1(v) = dH(v) for v ∈ C;

3 Convert S∗ into S using the H-extended procedure (see Subsect. 1.1);
4 Return S.

Theorem 4. Approx 1 is a c-approximation of Min Extended Spanning

star forest problem for both c- and extended c-relaxed triangle inequality.

Corollary 2. Min Extended Spanning star forest problem is in RAPX
for both c- and extended c-relaxed triangle inequality.

Extended Spanning Star Problems 205

Algorithm 2. Approx 2
Input: I = (Kn, w,U) where U) is a packing of forced stars.
Output: A spanning star forest S of I containing U).

1 Build instance I′ = (H,wH) described in Figure 2 where
H = (V (Kn) \ V (U)), R ∪ C,EH) is a split complete graph;

2 Find an optimal solution S∗ ⊆ EH of the Min weighted lower-upper-cover
problem on (I′, a2, b2) with a2(v) = 1 and b′(v) = dH(v) if v ∈ VH \ (R ∪ C) and
a2(v) = 0 and b2(v) = dH(v) for v ∈ R ∪ C;

3 Convert S∗ into S using the H-extended procedure;
4 for (each connected component Fi of S with Li as leafs such that piqi ∈ Fi and

Li ∩ {pi, qi} = ∅) do
5 Build two stars S1

i = {pix : x ∈ (Li ∪ {qi})} and S2
i = {qix : x ∈ (Li ∪ {pi})};

6 if w(S1
i) ≤ w(S2

i) then S ← (S \ Fi) ∪ S1
i ;

7 else S ← (S \ Fi) ∪ S2
i ;

8 Return S ← S.

By construction, each connected component Fi of S with piqi ∈ Fi and
Li ∩{pi, qi} = ∅ has a diameter equals to 3 (some leafs are connected to pi while
the others leafs are connected to qi). The other connected components are stars.
Hence, S is a spanning star forest of I. Figure 5 proposes an illustration of the
construction of stars S1

i and S2
i .

pi qi

.

Li

Fi

pi qi

. . .

Li

S1
i

pi qi

. . .

Li

S2
i

Fig. 5. Illustration of construction of stars S1
i and S2

i from Fi. Bold edges are in U .

Theorem 5. Approx 2 is a c+1
2 -approximation of Min Extended Spanning

star forest problem for extended c-relaxed triangle inequality.

Theorem 6. For any ε > 0 it is NP-hard to approximate and residue approxi-
mate the Min Extended spanning star forest problem within 7+c

8 − ε for
both c and extended c-relaxed triangle inequalities.

4 Spanning Star Forest Problem: Maximization Case

In this section, we study the maximization case when the weight function w is
general, but non-negative and the graph is complete. Usually (see Subsect. 1.2),
the Spanning Star forest problem is defined in general graphs (i.e., not nec-
essarily complete), and allowing trivial stars. This assumption is not restrictive

206 K. Khoshkhah et al.

because by completing the graph by weights 0, the two problems become equiva-
lent. Moreover, by replacing the weights of required edges U by an large enough
value, then Max Spanning star forest problem and Extended spanning

star forest problem are completely equivalent from a computational com-
plexity point of view. However, these modifications affect the approximability
of the problem. Hence, here we are interested in the hardest case which corre-
sponds to w(e) = 0 for ∀e ∈ U . This means that the obtained results will be valid
for the residual approximation [18]. Recall that U = {U1, . . . , Ur} = MU ∪ SU
where r = k + k′, MU = {ei : i = 1, . . . , k′} is a matching of k′ edges and
SU = {F1, . . . , Fk} is a set of k vertex-disjoint stars with at least two leafs each.
The set of centers is C = {c1, . . . , ck} and Li are the leafs of Fi.
We study an intermediary problem called here Extended Disjoint spanning

forest because it will provide an upper bound of our problem:

Extended Disjoint spanning forest
Input: A weighted connected graph (G,w) and a packing of non trivial stars U =
{U1, . . . , Ur}.
Solution: Spanning forest S = {S1, . . . , Sr} ⊆ E of G such that Ui ⊆ Si.
Output: Maximizing w(S) =

∑
e∈S w(e) =

∑r
i=1

∑
e∈Si

w(e).

Solving Extended Disjoint spanning forest is polynomial and use the same
arguments that solving maximum weighted spanning tree.

Lemma 1. There is a linear-time algorithm that solves Extended Disjoint

spanning forest.

From I = (Kn, w,U), we delete all edges xy /∈ U with x ∈ Li for some i ≤ k
and y ∈ V (Kn). Let G = (V,E) be the resulting connected graph and I ′ =
(G,w,U) be the instance of Extended Disjoint spanning forest. Consider
the Algorithm3.
Let us formally explain how solutions are built during Step 5. Here, Ui ⊂ S∗

i ;
first we root subtree S∗

i at the center of Ui (if Ui = {piqi}, we root S∗
i at pi).

Then, we construct a first partial solution which consider edges of S∗
i \ Ui with

odd levels and another partial solution with even levels. At the end of this Step
5. we add edges of Ui for both partial solutions. Figure 6 propose an illustration
on the construction of the two spanning star forests (containing trivial stars at
this stage) S1

i and S2
i of the induced subgraph (V, S∗

i) according to the structure
of Ui.

Theorem 7. Approx 3 is a 1
2 -approximation of Max Extended Spanning

star forest problem.

Setting w(e) = 0 for e ∈ U leads to the following corollary.

Corollary 3. Max Extended Spanning star forest problem is in
RAPX.

Theorem 8. For any ε > 0 it is NP-hard to approximate and residue approxi-
mate Max Extended Spanning star forest problem within 7

8 + ε.

Extended Spanning Star Problems 207

Algorithm 3. Approx 3
Input: I = (Kn, w,U) where U is a packing of forced stars.
Output: A spanning star forest S of I containing U).

1 Build instance I ′ = (G,w,U) of Extended Disjoint spanning forest;
2 Find an optimal solution S∗

1 = {S∗
1 , . . . , S

∗
r} such that Ui ⊆ S∗

i of Extended
Disjoint spanning forest;

3 for (each subtree S∗
i) do

4 if S∗
i = Ui then S ← S ∪ S∗

i ;
5 else
6 Split S∗

i into two spanning star forest (with possibly trivial stars) S1
i

and S2
i such that S1

i ∩ S2
i = Ui and S1

i ∪ S2
i = S∗

i by dividing subtree S∗
i

into alternating levels (even and odd from center of Ui);
7 if w(S1

i) ≥ w(S2
i) then S ← S ∪ S1

i ;
8 else S ← S ∪ S2

i ;

9 Complete S into a spanning star forest by connecting each isolated vertex to
some center;

10 Return S ← S.

(a) (b)

Fig. 6. Construction of solutions S1
i and S2

i depending on S∗
i contains piqi (case (b))

or not (case (a)); bold edges are in Ui. For each case both solutions S1
i and S2

i are
indicated (at this stage, trivial stars are allowed).

5 Conclusion

In this article, we have studied two Max and Min Extended Spanning star

forest problems. We considered different types of weight function w for edges
of input graphs in Min Extended Spanning star forest problem. We have
shown for general-w, the problem is not approximable at all but for c-relaxed and
extended c-relaxed triangle, it is in RAPX. Moreover, we have shown the Min

Extended Spanning star forest problem parameterized by the cardinality
of U is in FPT. Furthermore, we proved Max Extended Spanning star

forest problem is in RAPX for general-w. It would be interesting to study
parameterized complexity of the maximizing version on the future.

208 K. Khoshkhah et al.

References

1. Agatz, N.A.H., Erera, A.L., Savelsbergh, M.W.P., Wang, X.: Optimization for
dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)

2. Agra, A., Cardoso, D., Cerfeira, O., Rocha, E.: A spanning star forest model for
the diversity problem in automobile industry. In: ECCO XVIII, Minsk (2005)

3. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Energy-
efficient communication in multi-interface wireless networks. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 102–111. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03816-7_10

4. Böckenhauer, H.-J., Hromkovic, J., Klasing, R., Seibert, S., Unger, W.: Approx-
imation algorithms for the TSP with sharpened triangle inequality. Inf. Process.
Lett. 75(3), 133–138 (2000)

5. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP. SIAM J.
Comput. 39(6), 2189–2211 (2010)

6. Chen, N., Engelberg, R., Nguyen, C.T., Raghavendra, P., Rudra, A., Singh, G.:
Improved approximation algorithms for the spanning star forest problem. Algo-
rithmica 65(3), 498–516 (2013)

7. Delbot, F., Laforest, C., Phan, R.: Graphs with forbidden and required vertices. In:
ALGOTEL 2015-17emes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications Jun 2015, Beaune (2015). https://hal.archives-ouvertes.
fr/hal-01148233

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/
978-1-4471-5559-1

9. Fotakis, D., Gourvès, L., Monnot, J.: Conference program design with single-
peaked and single-crossing preferences. In: Cai, Y., Vetta, A. (eds.) WINE 2016.
LNCS, vol. 10123, pp. 221–235. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-54110-4_16

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Hartman, I.B.-A., Keren, D., Dbai, A.A., Cohen, E., Knapen, L., Yasar, A.-U.-H.,
Janssens, D.: Theory and practice in large carpooling problems. In: Shakshuki,
E.M., Yasar, A.-U.-H. (eds.) Proceedings of the 5th International Conference on
Ambient Systems, Networks and Technologies (ANT 2014), The 4th International
Conference on Sustainable Energy Information Technology (SEIT-2014), Hasselt,
2–5 June 2014, vol. 32. Procedia Computer Science, pp. 339–347. Elsevier (2014)

12. He, J., Liang, H.: Improved approximation for spanning star forest in dense graphs.
J. Comb. Optim. 25(2), 255–264 (2013)

13. Kutiel, G.: Approximation algorithms for the maximum carpool matching problem.
In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 206–216. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58747-9_19

14. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating
the spanning star forest problem and its application to genomic sequence align-
ment. SIAM J. Comput. 38(3), 946–962 (2008)

15. Nguyen, V.H.: The maximum weight spanning star forest problem on cactus
graphs. Discrete Math. Algorithms Appl. 7(2), 1550018 (2015)

16. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Heidelberg (2003)

https://doi.org/10.1007/978-3-642-03816-7_10
https://hal.archives-ouvertes.fr/hal-01148233
https://hal.archives-ouvertes.fr/hal-01148233
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-662-54110-4_16
https://doi.org/10.1007/978-3-662-54110-4_16
https://doi.org/10.1007/978-3-319-58747-9_19

Extended Spanning Star Problems 209

17. Tuza, Z.: Graph colorings with local constraints - a survey. Discussiones Mathe-
maticae Graph Theory 17(2), 161–228 (1997)

18. Weller, M., Chateau, A., Giroudeau, R., König, J.-C., Pollet, V.: On residual
approximation in solution extension problems. In: Chan, T.-H.H., Li, M., Wang,
L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 463–476. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48749-6_34

https://doi.org/10.1007/978-3-319-48749-6_34

Faster and Enhanced Inclusion-Minimal
Cograph Completion

Christophe Crespelle1(B), Daniel Lokshtanov2, Thi Ha Duong Phan3,
and Eric Thierry1

1 University of Lyon, UCB Lyon 1, ENS de Lyon, CNRS, Inria, LIP UMR 5668,
15 Parvis René Descartes, 69342 Lyon, France

christophe.crespelle@inria.fr, eric.thierry@ens-lyon.fr
2 Department of Informatics, University of Bergen, 5020 Bergen, Norway

daniello@ii.uib.no
3 Institute of Mathematics, Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet, Hanoi, Vietnam
phanhaduong@math.ac.vn

Abstract. We design two incremental algorithms for computing an
inclusion-minimal completion of an arbitrary graph into a cograph. The
first one is able to do so while providing an additional property which is
crucial in practice to obtain inclusion-minimal completions using as few
edges as possible: it is able to compute a minimum-cardinality comple-
tion of the neighbourhood of the new vertex introduced at each incre-
mental step. It runs in O(n+m′) time, where m′ is the number of edges
in the completed graph. This matches the complexity of the algorithm
in [24] and positively answers one of their open questions. Our second
algorithm improves the complexity of inclusion-minimal completion to
O(n + m log2 n) when the additional property above is not required.
Moreover, we prove that many very sparse graphs, having only O(n)
edges, require Ω(n2) edges in any of their cograph completions. For these
graphs, which include many of those encountered in applications, the
improvement we obtain on the complexity scales as O(n/ log2 n).

1 Introduction

We consider the problem of completion of an arbitrary graph into a cograph, i.e.
a graph with no induced path on 4 vertices. This is a particular case of graph
modification problem, in which one wants to perform elementary modifications
to an input graph, typically adding and removing edges and vertices, in order
to obtain a graph belonging to a given target class of graphs, which satisfies
some additional property compared to the input. Ideally, one would like to do

This work was partially funded by the PICS program of CNRS.
This work was partially funded by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under the grant number 101.99-2016.16 and
by the Vietnam Institute for Advanced Study in Mathematics (VIASM).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 210–224, 2017.
https://doi.org/10.1007/978-3-319-71150-8_19

Faster and Enhanced Inclusion-Minimal Cograph Completion 211

so by performing a minimum number of elementary modifications. This is a
fundamental problem in graph algorithms, which determines how far is a given
graph to satisfy a property.

Here, we consider the modification problem called completion, where only one
operation is allowed: adding an edge. In this case, the quantity to be minimised,
called the cost of the completion, is the number of edges added, which are called
fill edges. The particular case of completion problems has been shown very useful
in computer science and other disciplines such as archaeology [22], molecular
biology [3] and genomics [14].

Unfortunately, finding the minimum number of edges to be added in a com-
pletion problem is NP-hard for most of the target classes of interest (see, e.g., the
thesis of Mancini [25] for further discussion and references). To deal with this
difficulty of computation, the domain has developed a number of approaches.
This includes, approximation, restricted input, parameterization and inclusion-
minimal completions. In the latter approach, one does not ask for a completion
having the minimum number of fill edges but only ask for a set of fill edges
which is minimal for inclusion, i.e. which does not contain any proper subset of
fill edges that also results in a graph in the target class. This is the approach we
follow here. In addition to the case of cographs [24], it has been followed for many
other graph classes, including chordal graphs [17], interval graphs [10,26], proper
interval graphs [28], split graphs [18], comparability graphs [16] and permutation
graphs [9].

The rationale behind the inclusion-minimal approach is that minimum-
cardinality completions are in particular inclusion-minimal. Therefore, if one is
able to sample1 efficiently the space of inclusion-minimal completions, one can
compute several of them, pick the one of minimum cost and hope to get a value
close to the optimal one. One of the reason of the success of inclusion-minimal
completion algorithms is that this heuristic approach was shown to perform quite
well in practice [2]. The second reason of this success, which is a key point for
the approach, is that it is usually possible to design algorithms of low complexity
for the inclusion-minimal relaxation of completion problems.

Modification problems into the class of cographs have already received a great
amount of attention [15,19,23,24], as well as modification problems into some of
its subclasses, such as quasi-threshold graphs [4] and threshold graphs [12]. One
reason for this is that cographs are among the most widely studied graph classes.
They have been discovered independently in many contexts [6] and they are
known to admit very efficient algorithms for problems that are hard in general.
Moreover, very recently, cograph modification was shown a powerful approach
to solve problems arising in complex networks analysis, e.g. community detec-
tion [21] and inference of phylogenomics [19]. This growing need for treating
real-world datasets, whose size is often huge, asks for more efficient algorithms

1 Usually, minimal completion algorithms are not fully deterministic. There are some
choices to be made arbitrarily along the algorithm and different choices lead to
different minimal completions.

212 C. Crespelle et al.

both with regard to the running time and with regard to the quality (number of
modifications) of the solution returned by the algorithm.

Our results. Our main contribution is to design two algorithms for inclusion-
minimal cograph completion. The first one (Sect. 4) is an improvement of the
incremental algorithm in [24]. It runs in the same O(n + m′) complexity, where
m′ is the number of edges in the completed graph, and is in addition able to
select one minimum-cardinality completion of the neighbourhood of the new
incoming vertex at each incremental step of the algorithm, which is an open
question in [24] (Question 3 in the conclusion) which we positively answer here.
It must be clear that this does not guarantee that the completion computed
at the end of the algorithm has minimum cardinality but this feature is highly
desirable in practice to obtain completions using as few fill edges as possible.

When this additional feature is not required, our second algorithm (Sect. 5)
solves the inclusion-minimal problem in O(n + mlog2n) time, which only depends
on the size of the input. Furthermore, we prove that many sparse graphs, namely
those having mean degree fixed to a constant, require Ω(n2) edges in any of their
cograph completions. This result is worth of interest in itself and implies that, for
such graphs, which have only O(n) edges, the improvement of the complexity we
obtain with our second algorithm is quite significant : a factor n/log2n.

2 Preliminaries

All graphs considered here are finite, undirected, simple and loopless. In the
following, G is a graph, V (or V (G)) is its vertex set and E (or E(G)) is its
edge set. We use the notation G = (V,E), n = |V | stands for the cardinality of
V and m = |E| for the cardinality of E. An edge between vertices x and y will
be arbitrarily denoted by xy or yx. The neighbourhood of x is denoted by N(x)
(or NG(x)) and for a subset X ⊆ V , we define N(X) = (

⋃
x∈X N(x)) \ X. The

subgraph of G induced by some X ⊆ V is denoted by G[X].
For a rooted tree T and a node u ∈ T , we denote parent(u), C(u), Anc(u)

and Desc(u) the parent and the set of children, ancestors and descendants of u
respectively, using the usual terminology and with u belonging to Anc(u) and
Desc(u). The lowest common ancestor of two nodes u and v, denoted lca(u, v), is
the lowest node in T which is an ancestor of both u and v. The subtree of T rooted
at u, denoted by Tu, is the tree induced by node u and all its descendants in T .
We use two other notions of subtree, which we call upper tree and extracted tree.
The upper tree of a subset of nodes S of T is the tree, denoted Tup

S , induced by
the set Anc(S) of all the ancestors of the nodes of S, i.e. Anc(S) =

⋃
s∈S Anc(s).

The tree extracted from S in T , denoted T xtr
S , is defined as the tree whose set

of nodes is S and whose parent relationship is the transitive reduction of the
ancestor relationship in T . More explicitly, for u, v ∈ S, u is the parent of v in
T xtr
S iff u is an ancestor of v in T and there exist no node v′ ∈ S such that v′ is

a strict ancestor of v and a strict descendant of u in T .

Cographs. One of their simpler definitions is that they are the graphs that do
not admit the P4 (path on 4 vertices) as an induced subgraph. This shows that

Faster and Enhanced Inclusion-Minimal Cograph Completion 213

S

//S

//

S

////

Fig. 1. Example of a labelled construction tree (left), the cograph it represents (centre),
and the associated cotree (right). Some vertices are decorated in order to ease the
reading.

the class is hereditary, i.e., an induced subgraph of a cograph is also a cograph.
Equivalently, they are the graphs obtained from a single vertex under the closure
of the parallel composition and the series composition. The parallel composition
of two graphs G1 = (V1, E1) and G2 = (V2, E2) is their disjoint union, i.e., the
graph Gpar =

(
V1 ∪ V2, E1 ∪ E2

)
. The series composition of G1 and G2 is their

disjoint union plus all possible edges between vertices of G1 and vertices of G2,
i.e., the graph Gser =

(
V1∪V2, E1∪E2∪{xy | x ∈ V1, y ∈ V2}

)
. These operations

can naturally be extended to an arbitrary finite number of graphs.
This gives a nice representation of a cograph G by a tree whose leaves are

the vertices of G and whose internal nodes (non-leaf nodes) are labelled //, for
parallel, or S, for series, corresponding to the operations used in the construction
of G. It is always possible to find such a labelled tree T representing G such that
every internal node has at least two children, no two parallel nodes are adjacent
in T and no two series nodes are adjacent. This tree T is unique [6] and is called
the cotree of G, see example in Fig. 1. Note that the subtree Tu rooted at some
node u of cotree T also defines a cograph, denoted Gu, whose set of vertices is
the set of leaves of Tu, denoted V (u) in the following. The adjacencies between
vertices of a cograph can easily be read on its cotree, in the following way.

Remark 1. Two vertices x and y of a cograph G having cotree T are adjacent iff
the lowest common ancestor u of leaves x and y in T is a series node. Otherwise,
if u is a parallel node, x and y are not adjacent.

The incremental approach. Our approach for computing a minimal cograph
completion of an arbitrary graph G is incremental, in the sense that we consider
the vertices of G one by one, in an arbitrary order (x1, . . . , xn), and at step i
we compute a minimal cograph completion Hi of Gi = G[{x1, . . . , xi}] from a
minimal cograph completion Hi−1 of Gi−1, by adding only edges incident to
xi. This is possible thanks to the following observation that is general to all
hereditary graph classes that are also stable by addition of a universal vertex,
which holds in particular for cographs.

Lemma 1 (see e.g. [26]). Let G = (V,E) be an arbitrary graph and let H be a
minimal cograph completion of G. Consider a new vertex x �∈ V adjacent to an

214 C. Crespelle et al.

arbitrary subset N(x) ⊆ V of vertices and denote G′ = G + x and H ′ = H + x
the graphs obtained by adding x to G and H respectively. Then, there exists a
subset M ⊆ V \ N(x) of vertices such that H ′′ = (V,E(H ′) ∪ {xy | y ∈ M})
is a cograph. Moreover, for any such set M which is minimal for inclusion,
H ′′ is an inclusion-minimal cograph completion of G′. We call such completions
(minimal) constrained completions of G + x.

For any subset S ⊆ V of vertices, we say that we fill S in H ′′ if we make all
the vertices of S \ N(x) adjacent to x in the completion H ′′ of G + x. The edges
added in a completion are called fill edges and the cost of the completion is its
number of fill edges.

The new problem. From now on, we consider the following problem, with
slightly modified notations. G = (V,E) is a cograph, and G + x is the graph
obtained by adding to G a new vertex x adjacent to some arbitrary subset N(x)
of vertices of G. Both our algorithms take as input the cotree of G and the
neighbourhood N(x) of the new vertex x. They compute the set N ′(x) ⊇ N(x)
of neighbours of x in some minimal constrained cograph completion H of G+x,
i.e. obtained by adding only edges incident to x (cf. Lemma 1). Then, the cotree
of G is updated under the insertion of x with neighbourhood N ′(x), in order to
obtain the cotree of H which will serve as input in the next incremental step.

We now introduce some definitions and characterisations we use in the fol-
lowing.

Definition 1 (Full, hollow, mixed). Let G be a cograph and let x be a vertex
to be inserted in G with neighbourhood N(x) ⊆ V (G). A subset S ⊆ V (G) is full
if S ⊆ N(x), hollow if S ∩ N(x) = ∅ and mixed if S is neither full nor hollow.
When S is full or hollow, we say that S is uniform.

We use these notions for nodes u of the cotree as well, referring to their asso-
ciated set of vertices V (u). We denote Cnh(u) the subset of non-hollow children
of a node u.

Theorem 1 below gives a characterisation of the neighbourhood of a new
vertex x so that G + x is a cograph.

Theorem 1 ([7,8]). (Cf. Fig. 2) Let G be a cograph with cotree T and let x be
a vertex to be inserted in G with neighbourhood N(x) ⊆ V (G). If the root of T
is mixed, then G + x is a cograph iff there exists a mixed node u of T such that:

1. all children of u are uniform and
2. for all vertices y ∈ V (G) \ V (u), y ∈ N(x) iff lca(y, u) is a series node.

Moreover, when such a node u exists, it is unique and it is called the insertion
node.

Remark 2. In all the rest of the article, we do not consider the case where the
new vertex x is adjacent to none of the vertices of G or to all of them. Therefore,
the root of the cotree T of G is always mixed wrt. x.

Faster and Enhanced Inclusion-Minimal Cograph Completion 215

//

S

//

S

u = insertion node

hollow

full

full

full

hollow

full

hollow
hollow

full children hollow children

Fig. 2. Illustration of Theorem 1: characterisation of the neighbourhood of a new vertex
x so that G+x is a cograph. The nodes and triangles in black (resp. white) correspond
to the parts of the tree that are full wrt. x (resp. hollow wrt. x). The insertion node u,
which is mixed, appears in grey colour.

The reason for this is that the case where the root is uniform is straightfor-
ward: the only minimal completion of G + x adds an empty set of edges and
the update of cotree T is very simple. By definition, inserting x in G with its
neighbourhood N ′(x) in some constrained cograph completion H of G+x results
in a cograph, namely H. Therefore, to any such completion H we can associate
one insertion node which is uniquely defined, from Theorem 1 and from the
restriction stated in Remark 2.

Definition 2. Let G be a cograph with cotree T and let x be a vertex to be
inserted in G. A node u of T is called a completion-minimal insertion node iff
there exists a minimal constrained completion H of G + x such that u is the
insertion node associated to H.

From now and until the end of the article, G is a cograph, T is its cotree, x is a
vertex to be inserted in G and we consider only constrained cograph completions
of G + x. We therefore omit to systematically precise it.

3 Characterisation of Minimal Constrained Completions

The goal of this section is to give necessary and sufficient conditions for a node u
of T to be a completion-minimal insertion node. From Theorem 1, the subtrees
attached to the parallel strict ancestors of the insertion node u must be hollow.
As we can modify the neighbourhood of x only by adding edges, it follows that
if u is the insertion node of some completion, then u is eligible, as defined below.

Definition 3 (eligible). A node u of T is eligible iff for all the strict ancestors
v of u that are parallel nodes, all the children of v distinct from its unique child
u′ ∈ C(v) ∩ Anc(u) are hollow.

216 C. Crespelle et al.

When a node u is eligible, there is a natural way to obtain a completion of
the neighbourhood of x, which we call the completion anchored at u.

Definition 4 (Completion anchored at u). Let u be an eligible node of T .
The completion anchored at u is the one obtained by making x adjacent to all
the vertices of V (G) \ V (u) whose lowest common ancestor with u is a series
node and by filling all the children of u that are non-hollow.

The completion anchored at some eligible node u may not be minimal but,
on the other hand, all minimal completions H are completions anchored at some
eligible node u, namely the insertion node of H.

Lemma 2. For any completion-minimal insertion node u of T , there exists a
unique minimal completion H of G+x such that u is the insertion node associated
to H and this unique completion is the completion anchored at u.

Sketch of proof. Consider a minimal completion H that has u as insertion
node (there exists one by definition). Note that the set of edges added between
x and the vertices of V (G)\V (u) is necessarily the same for all such completions:
this is the set given in the definition of the completion anchored at u. Moreover,
from Theorem 1, H must make each child of u either full or hollow. Consequently,
the children of u that were non-hollow before completion must be full after
completion. Since letting the children of u that were hollow before completion
remain hollow results in a valid completion, it follows that, by minimality, this
is what H does. Thus, H is the completion anchored at u. �	

To characterise completion-minimal insertion nodes, we will use the notion
of forced nodes. Their main property (see Lemma 3 below) is that they are full
in any completion of G + x.

Definition 5 (Completion-forced). Let G be a cograph with cotree T and let
x be a vertex to be inserted in G. A completion-forced (or simply forced) node
u is inductively defined as a node satisfying at least one of the three following
conditions:

1. u is full, or
2. u is a parallel node with all its children non-hollow, or
3. u is a series node with all its children completion-forced.

Lemma 3. Let u be a completion-forced node of T . Then, u is filled in all the
completions of G + x.

Sketch of proof. It can be proven by induction on |V (u)|. The only interesting
case is when u is parallel. Since all the children of u are non-hollow, it follows
that no node of Tu \ {u} is eligible. Moreover, u itself cannot be the insertion
node of some completion since, in this completion, u should have at least one
hollow child, which is impossible as all the children of u are already non-hollow
before completion. As a consequence, the insertion node v of any completion H
is necessarily out of Tu. And since u is not hollow, Theorem 1 implies that u is
full in H. �	

Faster and Enhanced Inclusion-Minimal Cograph Completion 217

The next remark directly follows from Theorem 1 and Lemma 2.

Remark 3. The insertion node u of any minimal completion of G + x has at
least one hollow child and at least one non-hollow child. Therefore, u is non-
hollow and non-completion-forced.

We now characterise the nodes u that contain some minimal-insertion node
in their subtree Tu (including u itself). In our algorithms, we will use this char-
acterisation to decide whether we have to explore the subtree of a given node.

Lemma 4. For any node u of T , Tu contains some completion-minimal inser-
tion node iff u is eligible, non-hollow and non-completion-forced.

Sketch of proof. A minimal insertion node is eligible and, from Remark 3,
non-hollow and non-completion forced. So are all its ancestors, proving that
the conditions of the Lemma are necessary for Tu to contain a minimal insertion
node. To show that they are sufficient, consider a node v ∈ Tu that satisfies these
three conditions and that is lower possible in Tu. By definition, the children of v
are non-eligible or hollow or forced. One can show that, whether v is parallel or
series, in both cases, v must have at least one hollow child and at least one non-
hollow child. Therefore, the completion H ′ anchored at v leaves v mixed, and
so does a minimal completion H included in H ′. Then, H also leaves u mixed,
which, from Theorem 1, is true only for completions whose insertion node is
in Tu. �	

Lemma 5 below gives additional conditions for u itself to be an insertion
node.

Lemma 5. A node u of T is a completion-minimal insertion node iff u is eligi-
ble, non-hollow and non-completion-forced and u satisfies in addition one of the
two following conditions:

1. u is a series node and u has at least one hollow child, or
2. u is a parallel node and u has no eligible non-completion-forced child.

Sketch of proof. To show that the conditions of the lemma are sufficient, we
have to show that the completion H anchored at u is minimal (cf. Lemma 2).
Because of Condition 1 when u is series and because u is non-completion forced
when u is parallel, in both cases, H leaves some child v of u hollow. Since u is
not hollow, the completions H ′ whose insertion node u′ is out of Tu must fill
u, and so v. It follows that such completions H ′ are not strictly included in H.
The same holds if u′ = u, since in this case H ′ = H from Lemma 2. Then, the
only possibility for H ′ to be strictly included in H is that its insertion node u′

is a strict descendant of u. But, in that case, if u is a parallel node, u does not
satisfy Condition 2. Consequently, u must be a series node and therefore v is not
hollow in H ′, which shows that H ′ is not included in H. Thus, H is minimal.

Conversely, if u is a minimal insertion node, then Lemma 4 gives that u is
eligible, non-hollow and non-completion-forced. Moreover, from Remark 3, Con-
dition 1 is satisfied. Finally, if u is parallel and does not satisfy Condition 2,

218 C. Crespelle et al.

then u has a child v which is eligible non-hollow and non-completion forced. By
Lemma 4, Tv contains a completion-minimal insertion node. Then, the comple-
tion H ′ anchored at v is included in the completion anchored at u, which implies
that u is not a completion-minimal insertion node. By contraposition, if u is a
parallel node, then u satisfies Condition 2. �	

4 An O(n + m′) algorithm with incremental minimum

In this section, we design an incremental algorithm whose overall time complexity
is O(n+m′), where m′ is the number of edges in the output completed cograph.
We concentrate on one incremental step, whose input is the cotree T of some
cograph G (the completion computed so far) and a new vertex x together with
the list of its neighbours N(x) ⊆ V (G). Each node u ∈ T stores its number
|C(u)| of children and the number |V (u)| of leaves in Tu. One incremental step
takes time O(d′), where d′ is the degree of x in the completion of G+x computed
by the algorithm. Within this complexity, our algorithm scans all the minimal
completions of the neighbourhood of x and select one of minimum cardinality.
Our description is in two steps.
First step. For each non-hollow node u of T we determine: (i) the list of its
non-hollow children Cnh(u), (ii) the number of neighbours of x in V (u) and (iii)
whether it is completion forced or not. To this purpose, we perform two bottom-
up searches of T from the leaves of T that are in N(x) up until the root of T .
Note that each of these searches discovers exactly the set NH(T) of non-hollow
nodes of T (for which we show later that their number is O(d′)). In the first
search, we label each node encountered as non-hollow, we build the list of its
non-hollow children and count them. In the second search, for each non-hollow
node u we determine the rest of its information, that is items (ii) and (iii) above.

For the leaves of T in N(x), it is straightforward to get this information.
Then, the bottom-up search starts in an asynchronous manner: as soon as a
node determines its information, it forwards its to its parent. When a node has
received the information from all its non-hollow children (we determined their
number in the first search), it can easily determine its own information and the
process goes on, until the root of T has determined its information.
Second step. We search the set of all non-hollow, eligible and non-completion-
forced nodes of T . For each of them, we determine whether it is a minimal
insertion node and, in the positive, we compute the number of edges to be added
in its associated minimal completion. Then, at the end of the search we select
the completion of minimum cardinality.

Since, all the ancestors of a non-hollow eligible non-completion-forced node
also satisfy these three properties, it follows that the part of T we have to search
is a connected subset of nodes containing the root. Then, our search starts by
determining whether the root is non-completion-forced. In the negative, we are
done: there exists one unique minimal completion of G +x which is obtained by
adding all missing edges between x and the vertices of G. Otherwise, if the root
is non-completion-forced (it is always eligible and non-hollow, cf. Remark 2),

Faster and Enhanced Inclusion-Minimal Cograph Completion 219

we start our search. For all the non-hollow children of the current node (we
built their list in the first step), we check whether they are eligible and non-
completion-forced and search, in a depth-first manner, the subtrees of those for
which the test is positive (cf. Lemma 4).

During this depth-first search, we compute for each node u encountered the
number of edges, denoted cost−above(u), to be added between x and the vertices
of V (G)\V (u) in the completion anchored at u. It can be determined as follows:
if the parent v of u is a parallel node, then cost − above(u) = cost − above(v);
otherwise, if the parent v of u is a series node, then cost − above(u) = cost −
above(v)+|V (v)\N(x)|−|V (u)\N(x)|. We also determine whether u is a minimal
insertion node by testing whether it satisfies Condition 1 or 2 of Lemma 5.
Importantly for the complexity, this can be done by scanning only the list of its
non-hollow children, and by using the information collected in the first step. If
u is a minimal insertion node, then we determine the number of edges cost(u)
to be added in the completion anchored at u as cost(u) = cost − above(u) +∑

v∈Cnh(u)
|V (v) \ N(x)|.

From Lemma 5, minimal insertion nodes are non-hollow, eligible and non-
completion-forced. Therefore, our search discovers all of them and returns one
that achieves the minimum cost among all completions of the neighbourhood of
x. Finally, we need to update the cotree T for the next incremental step of the
algorithm, as explained below.
Complexity. The key of the O(d′) time complexity is that we search and manip-
ulate only the set NH(T) of non-hollow nodes of T . For each of them u, we need
to scan the list of its non-hollow children Cnh(u) and to perform a constant
number of tests and operations that all take O(1) time (thanks to the infor-
mation collected in the first step). Thus, the execution of the two steps takes
O(|NH(T)|) time, which is also O(d′) as shown in [24]. Indeed, one can observe
that during completion, all non-hollow nodes are filled (see Definition 4), except
the ancestors of the insertion node u, but their number is also O(d′).

When, the insertion node u has been determined, the completed neighbour-
hood N ′(x) of x can be computed in extension by a search of the part of T
that is filled, which takes O(d′) time. Then, the cotree of the completion H of
G + x is obtained from the cotree of G (as depicted in Fig. 3) in the same time
complexity thanks to the algorithm of [7]. Overall, one incremental step takes
O(d′) time and the whole running time of the algorithm is O(n + m′).

5 An O(n + m log2n) algorithm

Even though it is linear in the number of edges in the output cograph, the
O(n + m′) complexity achieved by the algorithm in [24] and the one we pre-
sented in Sect. 4 is not necessarily optimal, as the output cograph can actually
be represented in O(n) space using its cotree. We then design a refined ver-
sion of the inclusion-minimal completion algorithm that runs in O(n+m log2 n)
time, when no additional condition is required on the completion output at each
incremental step. This improvement is further motivated by the fact that, as we

220 C. Crespelle et al.

show below, there exist graphs having only O(n) edges and which require Ω(n2)
edges in any of their cograph completions. For such graphs, the new complexity
we achieve also writes O(n log2 n) (since m = O(n)) and constitutes a signifi-
cant improvement over the O(n2) complexity of the previous algorithm (since
m′ = Ω(n2)).

Worst-case minimum-cardinality completion of very sparse graphs.
Our proof is based on vertex expander graphs (see [20] for a survey on the
topic), which require Ω(n2) edges in any of their cograph completions, as stated
by Theorem 2 below.

Definition 6. A graph G is a c-expander if, for every vertex subset S ⊆ V (G)
with |S| ≤ |V (G)|

2 we have |N(S)| ≥ c · |S|.
Theorem 2. Let c > 0 be a real number and G a c-expander. For any cograph
completion H of G, |E(H)| ≥ Ω(c2.n2).

Sketch of proof. Cographs are known to be also distance hereditary graphs,
and therefore totally decomposable by split decomposition, or equivalently of
rank-width 1. It implies (for example from a result of [27]) that H contains
a split (S, V \ S) (meaning that the graph induced by the edges crossing the
bipartition (S, V \ S) is a complete bipartite graph) such that n/3 ≤ |S| ≤ n/2.

Since G is a c-expander, then |N(S)| ≥ c.|S|. One can show that the expan-
sion property of G also implies that |N(V \ S)| ≥ c.|S|/3. Consequently, in H,
the complete bipartite graph induced by the edges crossing the split (S, V \ S)
has at least c.|S|/3 vertices in S and at least c.|S| in V \ S. Thus, it contains at
least c2.|S|2/3 ≥ c2.n2/27 edges. �	

There exist deterministic constructions of very sparse graphs that are c-
expanders, see for example the construction of 3-regular c-expanders by Alon
and Boppana [1], for some fixed c. Such graphs have only O(n) edges but, from
Theorem 2, require Ω(n2) edges in any of their cograph completions. More gen-
erally, it is part of the folklore that, for any constant a > 1, there exist c > 0
and p > 0 such that, for any n ∈ N sufficiently large, the proportion of graphs
on n vertices and a.n edges that are c-expanders is at least p. This means that
many graphs of fixed mean degree have the vertex expansion property and there-
fore require Ω(n2) edges in any cograph completion. Motivated by this frequent
worst-case for the O(n+m′) complexity, we now describe an O(n+m log2 n)-time
algorithm for inclusion-minimal cograph completion of arbitrary graphs.

Data structure. We store two distinct copies of the cotree T of G. The first
one is a basic data structure in which each node u stores its number of children
|C(u)| and a bidirectional couple of pointers to the corresponding node in the
second copy of T , so that we can move from one copy to the other one in O(1)
time. In addition, in the first copy of T , each node u stores a copy of the list of
its children using the order data structure of [11]. It allows to determine which
of two given children of u precedes the other one in the list, in O(1) time. It also
supports two update operations, delete and insert, that respectively remove

Faster and Enhanced Inclusion-Minimal Cograph Completion 221

and insert an element in the list (just after a specified element), in O(1) time as
well.

The second copy of T is stored using the dynamic data structure devel-
oped in [29]. This data structure allows to answer two kinds of query:
lowest-common-Ancestor?, which provides lca(u, v) for two given nodes u, v,
and next-step-to-descendant?, which given a node u of T and one of its
strict descendants v, provides the child of u which is an ancestor of v. These two
queries are treated in O(log n) worst-case time. To be precise, the latter query is
obtained as a combination of three other basic operations provided by [29] that
we do not use here, namely root?, evert and parent?. This data structure is
dynamic, meaning that it supports update operations on the structure of the
tree (which is actually a forest, as it is allowed to be disconnected). Operation
cut removes the edge between one given node and its parent and link makes
the root of one tree of the forest become the child of a given node in another
tree. These update operations also have O(log n) worst-case time complexity.

Algorithm. Our algorithm determines the set W of the eligible non-hollow
non-completion-forced nodes that are minimal for the ancestor relationship (i.e.
none of their descendants satisfies the considered property), and arbitrarily picks
one of them to be the insertion node of the minimal completion returned at this
incremental step. Indeed, since nodes of W satisfy the conditions of Lemma 4 and
none of their children does, it follows that nodes of W are completion-minimal
insertion nodes. In order to get the improved O(n + m log2 n) complexity, we
avoid to completely search the upper tree Tup

N(x) to determine W . Instead, we
use a limited number of lowest-common-Ancestor? queries.

Clearly, if a parallel node u of T is the lca of two leaves in N(x) then Tu \{u}
contains no eligible node. Let Pmax be the set of parallel common ancestors
of vertices of N(x) that are maximal for the ancestor relationship and let us
denote W ′ = Pmax ∪Nout, where Nout is the set of vertices of N(x) that are not
descendant of any node of Pmax, i.e. Nout = N(x) \ ⋃

p∈Pmax
V (p). Note that all

the nodes w′ ∈ W ′ are eligible, and so are their ancestors. It follows that the set
W we aim at determining is the set of the lowest non-completion-forced nodes
in the upper tree Tup

W ′ .
In order to compute the set W , we start by computing the tree T̃ = T xtr

N(x)∪Ax

extracted from (see Sect. 2) the leaves that belong to N(x) and the set Ax of
their lowest common ancestors, i.e. nodes u such that u = lca(l1, l2) for some
leaves l1, l2 ∈ N(x). Then, we search T̃ to find its parallel nodes Pmax that are
maximal for the ancestor relationship and thereby obtain the set W ′. Finally,
for each node w′ ∈ W ′ we determine its lowest non-completion-forced ancestor
nfa(w′) in T and we keep only the nfa(w′)’s that are minimal for the ancestor
relationship: this is the set W . It is worth noting from the beginning that since
T̃ has exactly d leaves and since all its internal nodes have degree at least 2,
then the size of T̃ is O(d).

We now show how to compute T̃ in O(d log2 n) time. To this purpose, we
sort the neighbours of x according to a special order of the vertices of the
cograph G called a factorising permutation [5], which is the order π in which

222 C. Crespelle et al.

the vertices of G (which are the leaves of T) are encountered when perform-
ing a depth-first search of T . One can determine whether a vertex y1 is before
or after a vertex y2 in π as follows: (1) find u = lca(y1, y2) and the two chil-
dren u1 and u2 of u that are respectively the ancestor of y1 and y2, and (2)
determine whether u1 is before or after u2 in the list of children of u. Opera-
tion (1) can be implemented by one lowest-common-ancestor? query and two
next-step-to-descendant? queries, which takes O(log n) time. Operation (2)
can be executed in O(1) time using the order data structure of [11]. Therefore,
since one comparison takes O(log n) time, the neighbours of x can be sorted
according to π in O(d log d log n) = O(d log2 n) time.

The benefit of doing so is that T̃ can be built efficiently by considering the
neighbours of x one by one in the order x1, x2, . . . , xd in which they appear in
π (we say from left to right). At each step, we build the tree Ti extracted from
{x1, . . . , xi} and their lowest common ancestors, then, at the end Td = T̃ . When
inserting xi+1 in Ti, at most one new internal node vi+1 is created in Ti+1.
Because we consider the xi’s in the order they appear in π, we have necessarily
vi+1 = lcaT (xi, xi+1) and vi+1 must be inserted in the rightmost branch of Ti,
or it already appears in this branch if vi+1 ∈ Ti. Consequently, we climb up
the rightmost branch of Ti, starting from the father of xi, and for each node v
encountered we determine whether vi+1 is above v by computing lca(v, vi+1).
The total number of lca queries needed to build the whole tree T̃ is proportional
to its size, since every time we pass above a node v on the rightmost branch,
v leaves this branch for ever and will then never participate again to any lca
query (cf. [13]). Since the size of T̃ is O(d) and each query takes O(log n) time,
building T̃ from the sorted list of neighbours of x takes O(d log n) time.

Once T̃ is built, a simple search starting from its root determines the set
Pmax of its parallel nodes that are maximal for the ancestor relationship, and
we cut off from T̃ all the subtrees rooted at the children of nodes in Pmax. The
leaves of the resulting tree are precisely the nodes of W ′. As T̃ has size O(d),
this step takes O(d) time. Then, for each w′ ∈ W ′, we determine its lowest
non-completion-forced ancestor nfa(w′) in T . From the definition of Pmax, the
lowest parallel ancestor of w′ is non-completion-forced. Then, nfa(w′) cannot
be higher in T than the grand-parent of w′. It follows that we have to check the
non-completion-forced condition only for w′ and its parent, which can be done,
for each of them u, in O(|Cnh(u)|) time. Then, we remove the nfa(w′)’s that are
not minimal for the ancestor relationship to obtain the set W , this takes O(d)
time, and we arbitrarily pick one node w in W . The minimal completion of the
neighbourhood of x returned is the one anchored at w and the total complexity
of one incremental step is O(d + d log n + d log2 n) = O(d log2 n).

Updating the data structure. After the insertion node w has been deter-
mined, the cotree T must be modified as shown in Fig. 3, and the data structure
of [29] must be updated accordingly. The key for preserving the complexity is
to perform operations involving only the non-hollow children of w. After the
insertion of x, w is split into two new nodes wh and wnh in T ′, which are par-
ent of respectively the hollow children of w and the non-hollow children of w.

Faster and Enhanced Inclusion-Minimal Cograph Completion 223

T T’ T T’

x

a) series insertion node w

x

b) parallel insertion node w

S //

S

S

//

//

//

S+x +x
w wx

whigh = wnh

wlow = wh wlow = wnh

w

whigh = wh

wx

Fig. 3. Modification of the cotree under the insertion of x at insertion node w. The
triangles in black (resp. white) correspond to the parts of the tree that are filled (resp.
that remain hollow) in the completion anchored at w.

To form these two nodes, we cut from w its non-hollow children to obtain wh,
still linked to the hollow children, and we link the non-hollow children to a new
node wnh. This takes O(d log n) as it requires O(d) cut and link operations.
The rest of the operations to build T ′ are less sensitive and, for lack of space,
we do not describe them.

As a conclusion, the complexity of one incremental step of the algorithm is
O(d log2 n) and overall, the complexity of the whole algorithm is O(n+m log2 n).

References

1. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)
2. Berry, A., Heggernes, P., Simonet, G.: The minimum degree heuristic and the

minimal triangulation process. In: Bodlaender, H.L. (ed.) WG 2003. LNCS,
vol. 2880, pp. 58–70. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-39890-5 6

3. Bodlaender, H., Downey, R., Fellows, M., Hallett, M., Wareham, H.: Parameterized
complexity analysis in computational biology. Comput. Appl. Biosci. 11, 49–57
(1995)

4. Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast Quasi-threshold edit-
ing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 251–262.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 22

5. Capelle, C., Habib, M., de Montgolfier, F.: Graph decompositions and factorizing
permutations. Discrete Math. Theoret. Comput. Sci. 5(1), 55–70 (2002)

6. Corneil, D., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete
Appl. Math. 3(3), 163–174 (1981)

7. Corneil, D., Perl, Y., Stewart, L.: A linear time recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985)

8. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for
directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

9. Crespelle, C., Perez, A., Todinca, I.: An O(n2) time algorithm for the mini-
mal permutation completion problem. In: Mayr, E.W. (ed.) WG 2015. LNCS,
vol. 9224, pp. 103–115. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53174-7 8

10. Crespelle, C., Todinca, I.: An O(n2)-time algorithm for the minimal interval com-
pletion problem. Theor. Comput. Sci. 494, 75–85 (2013)

https://doi.org/10.1007/978-3-540-39890-5_6
https://doi.org/10.1007/978-3-540-39890-5_6
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1007/978-3-662-53174-7_8
https://doi.org/10.1007/978-3-662-53174-7_8

224 C. Crespelle et al.

11. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: 19th ACM
Symposium on Theory of Computing (STOC 1987), pp. 365–372. ACM (1987)

12. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the thresh-
old of intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 411–423. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48350-3 35

13. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry
problems. In: 16th ACM Symposium on Theory of Computing (STOC 1984), pp.
135–143. ACM (1984)

14. Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical
mapping of DNA. J. Comput. Biol. 2, 139–152 (1995)

15. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial
kernels for Pl-free edge modification problems. Algorithmica 65(4), 900–926 (2012)

16. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions
of arbitrary graphs. Discrete Appl. Math. 156(5), 705–718 (2008)

17. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time
O(nα log n) = o(n2.376). SIAM J. Discrete Math. 19(4), 900–913 (2005)

18. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math.
157(12), 2659–2669 (2009)

19. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.P., Middendorf, M., Stadler,
P.F.: Phylogenomics with paralogs. PNAS 112(7), 2058–2063 (2015)

20. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Society 43(4), 439–561 (2006)

21. Jia, S., Gao, L., Gao, Y., Nastos, J., Wang, Y., Zhang, X., Wang, H.: Defining and
identifying cograph communities in complex networks. New J. Phys. 17(1), 013044
(2015)

22. Kendall, D.: Incidence matrices, interval graphs, and seriation in archeology. Pacific
J. Math. 28, 565–570 (1969)

23. Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for
cograph editing. Theoret. Comput. Sci. 461, 45–54 (2012)

24. Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and computing
minimal cograph completions. Discrete Appl. Math. 158(7), 755–764 (2010)

25. Mancini, F.: Graph modification problems related to graph classes. Ph.D. thesis,
University of Bergen, Norway (2008)

26. Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation
of a graph to obtain an interval graph. J. Comput. Syst. Sci. 22(1), 60–97 (1981)

27. Oum, S., Seymour, P.D.: Testing branch-width. J. Comb. Theory Ser. B 97(3),
385–393 (2007)

28. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Inf.
Process. Lett. 106(5), 195–202 (2008)

29. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

https://doi.org/10.1007/978-3-662-48350-3_35
https://doi.org/10.1007/978-3-662-48350-3_35

Structure of Towers and a New Proof
of the Tight Cut Lemma

Nanao Kita(B)

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan

kita@nii.ac.jp

Abstract. In the first part of our study, we extend the theory of basilica
canonical decomposition by introducing new concepts known as towers
and tower-sequences. The basilica canonical decomposition is a recently
proposed tool in matching theory that can be applied non-trivially even
for general graphs with perfect matchings. When studying matchings,
the structure of alternating paths frequently needs to be considered. We
show how a graph is made up of towers and tower-sequences, and thus
obtain the structure of alternating paths in terms of the basilica canonical
decomposition. This result provides a strong tool for analyzing general
graphs with perfect matchings.

The second part of our study is a new graph theoretic proof of the
so-called Tight Cut Lemma derived from the first part of our study. To
derive a characterization of the perfect matchings polytope, Edmonds,
Lovász, and Pulleyblank introduced the Tight Cut Lemma as the most
challenging aspect of their work. The Tight Cut Lemma in fact claims
bricks as the fundamental building blocks that constitute a graph and
can be referred to as a key result in this field. Although the Tight Cut
Lemma itself is a purely graph theoretic statement, there was no known
graph theoretic proof for decades until Szigeti provided such a proof
using Frank-Szigeti’s optimal ear decomposition theory.

By contrast, we provide a new proof using the extended theory of
basilica canonical decomposition as the only preliminary result, and
accordingly proposes a new strategy for studying bricks and tight cuts
or matching theory in general. Our proof shows how the discussions on
alternating paths construct the Tight Cut Lemma from first principles
via the basilica canonical decomposition, even without using barriers,
that is, the dual notion of matchings. The distinguishing features of our
proof are that it is purely graph theoretic, purely matching (cardinality
1-matching) theoretic, and purely “primal” with respect to matchings.

1 Introduction

In this paper, we extend the theory of basilica canonical decomposition [8,10,11]
by introducing towers and tower-sequences and then use this extension to provide

Supported by JSPS KAKENHI Grant Number 15J09683.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 225–239, 2017.
https://doi.org/10.1007/978-3-319-71150-8_20

226 N. Kita

a new graph theoretic proof of the Tight Cut Lemma originally proposed and
proved by Edmonds, Lovász, and Pulleyblank [5].

The basilica canonical decomposition [8,10,11] is a new tool in match-
ing theory that has been recently proposed. As the term “canonical” con-
ventionally means in the mathematical context, canonical decompositions are
a standard tool to analyze graphs in matching theory [18]. Several types of
canonical decompositions have been known, and each canonical decomposition
partitions a graph into substructures in a way determined uniquely for the
graph, and thus describes the structure of all maximum matchings in the graph
using this partition. The classically known canonical decompositions are the
Gallai-Edmonds [4,7], Kotzig-Lovász [13–16], and Dulmage-Mendelsohn [1–3].
However, they target particular classes of graphs or are too sparse to provide
sufficient information; the Kotzig-Lovász and Dulmage-Mendelsohn decompo-
sitions are applicable to factor-connected graphs and bipartite graphs, respec-
tively, whereas the Gallai-Edmonds decomposition is so sparse that any graph
with perfect matchings falls into an irreducible case and cannot be decomposed
nontrivially. Therefore, no known canonical decomposition could be used to ana-
lyze general graphs with perfect matchings, until Kita [8,10,11] introduced a
new one: the basilica canonical decomposition. This decomposition is applicable
nontrivially to general graphs with perfect matchings, and therefore provides a
refinement of the Gallai-Edmonds decomposition.

The first contribution of this paper is an extension of the theory of basilica
canonical decomposition by the introduction of new tools: towers and tower-
sequences. A tower is a type of subgraph defined using the basilica canonical
decomposition. In studying matchings, the structure of alternating paths1 in a
given graph often needs to be considered. The structure of alternating paths in a
single tower is rather easy to observe [8,9,12], and a graph with perfect matchings
can be viewed as being constructed by “gluing” towers together. Hence, we
introduce a notion of a tower-sequence to capture the interrelationship between
towers, that is, how towers are “glued” to each other in a graph. Thus, we are able
to analyze alternating paths in an entire graph. This provides the structure of
alternating paths in terms of the basilica canonical decomposition, and therefore
can be a strong tool for studying matchings. This contribution is applicable to
general graphs with perfect matchings.

The second contribution of this paper is a new proof of the Tight Cut Lemma
derived from the first contribution. Edmonds et al. [5] introduced the Tight
Cut Lemma as a key result in their paper to characterize the perfect matching
polytope. They stated that proving the Tight Cut Lemma was the most difficult
part of their study.

Tight Cut Lemma. Any tight cut in a brick is trivial.

1 Regarding the duality of the maximum matching problem, alternating paths are
essential to the primal optimality and algorithms. Hence, we say that alternating
paths have a “primal” nature regarding matchings, in contradistinction to barriers.

Structure of Towers and a New Proof of the Tight Cut Lemma 227

A graph is a brick if deleting any two vertices results in a connected graph with
a perfect matching. A cut is tight if it shares exactly one edge with any perfect
matching. A tight cut is trivial if it is a star cut.

The Tight Cut Lemma is in fact a characterization of bricks as the fundamen-
tal building blocks that constitute a graph in the polyhedral study of matchings.
Provided a given graph has a non-trivial tight cut, we can decompose it into two
smaller graphs by contracting each shore; this operation is the tight cut decompo-
sition. Naddef [19] proved that the property of the perfect matching polytope of
a graph is determined by the set of small graphs obtained by repeatedly apply-
ing the tight cut decomposition until it gets stuck. Therefore, the question of
what type of graphs are the irreducible class of the tight cut decomposition is
inevitable, and the answer is bricks, according to the Tight Cut Lemma. It is
easily observed from known facts that if a graph is not a brick, then it has a
non-trivial tight cut. Hence, the Tight Cut Lemma proves the essential part of
the above characterization.

Since it was proposed, the Tight Cut Lemma has directed the study of the
perfect matching polytope. From the Tight Cut Lemma, Edmonds et al. [5]
derived the dimension of the perfect matching polytope using as a parameter the
number of bricks that constitute a given graph. Consequently, they determine
the minimal set of inequalities that defines the perfect matching polytope. Since
the work of Edmonds et al. [5], the study of bricks and the consequential results
on the perfect matching polytope (and lattice) have flourished; see Lovász [17]
or the surveys [18,20].

To contribute to the theoretical basis of combinatorial optimization, this
paper focuses on how to derive the Tight Cut Lemma. When we wish to further
develop a systematic theory, we need to understand clearly how it is organized,
and this requires a close examination of the way in which important theorems
can be derived. In recent decades, polyhedral combinatorics has succeeded using
matchings as an archetypal problem [18,20]; that is, matching theory is a branch
with a special meaning that can affect the entire field of combinatorial optimiza-
tion, and the Tight Cut Lemma is definitely one of its milestones. A good proof
of the Tight Cut Lemma will provide us with a technique to handle bricks and
tight cuts.

There is more than one proof of the Tight Cut Lemma. The original proof
by Edmonds et al. [5] used a linear programming argument. As the Tight Cut
Lemma itself is a purely graph theoretic statement, a purely graph theoretic
proof has been awaited. Szigeti [22,24] later provided a purely graph theoretic
proof using Frank-Szigeti’s optimal ear decomposition theory [6,21,23].

By contrast, we derive a new graph theoretic proof of the Tight Cut Lemma
from the extended theory of basilica canonical decomposition. To prove the Tight
Cut Lemma, we need to detect an “alternating circuit” in a brick, and this can be
reduced to the task of detecting an alternating path with a certain condition in a
graph with perfect matchings. As this graph does not fall into any of the classes
targeted by classical canonical decompositions, the device of tower-sequences is
effective for solving our problem.

228 N. Kita

Our poof method is novel in that we use the basilica canonical decomposi-
tion theory as the only preliminary result, and that our proof shows how the
Tight Cut Lemma is constructed from first principles via the basilica canoni-
cal decomposition by combinatorial discussions on alternating paths; our proof
does not even use barriers. In the following, we explain these in more detail.
The basilica canonical decomposition is established from first principles by dis-
cussing the structure of alternating paths in graphs, and our results on towers
and tower-sequences are derived from the basilica canonical decomposition by
discussing the structure of alternating paths. Furthermore, our proof of the Tight
Cut Lemma is derived from these results by discussing the structure of alter-
nating paths. In this entire process, no other known results are used. Hence,
our proof shows how discussions on alternating paths construct the Tight Cut
Lemma from first principles.

Therefore, our proof has distinguishing features that it is purely matching
(cardinality 1-matching) theoretic and purely “primal” with respect to match-
ings, in addition to that it is purely graph theoretic. Besides alternating paths,
barriers, which are a combinatorial notion that corresponds to the dual of match-
ings, are frequently used in matching theory discussions2; barriers are defined
by a min-max theorem called the Berge formula, in which cardinality maximum
1-matchings are the optimizers on one side of this formula, whereas barriers are
the optimizers of the other side. Hence, regarding the study of matchings, dis-
cussions of alternating paths and barriers can be referred to as primal and dual
methods, respectively. Each known proof of the Tight Cut Lemma uses barri-
ers. In fact, Szigeti [22,24] made use of barriers in his proof of the Tight Cut
Lemma, in addition to Frank-Szigeti’s optimal ear decomposition theory, which
also uses barriers. The proof by Edmonds et al. [5] also uses barriers, as they uses
Lovász’s result [16]. By contrast, our proof does not use barriers directly or indi-
rectly and is purely primal. Frank-Szigeti’s optimal ear decomposition theory is
established using T -join theory, therefore Szigeti’s proof indirectly uses T -joins.
By contrast, our proof uses results closed within the cardinality 1-matching the-
ory; this seems reasonable considering the statement of the Tight Cut Lemma,
which is also regarding cardinality 1-matchings.

These features indicate that our proof provides a new direction for how to
proceed in the study of bricks and tight cuts, or matching theory.

The remainder of this paper is organized as follows. Section 2 presents pre-
liminary definitions and results: Sect. 2.1 explains fundamental notation and def-
initions; Sect. 2.2 introduces the canonical decomposition given by Kita [10,11].
Section 3 introduces new results of us; here, we further develop a device to ana-
lyze the structure of graphs with perfect matchings, which will be used in Sect. 4.
Section 4 gives the new proof of the Tight Cut Lemma.

2 We believe that almost all substantial results regarding cardinality 1-matchings use
barriers. This may be problematic because, as Lovász and Plummer state [18], not so
much is known about barriers and therefore the limitation of our knowledge about
barriers can be the limitation of our ability to proceed in studying matchings.

Structure of Towers and a New Proof of the Tight Cut Lemma 229

2 Preliminaries

2.1 Notation and Definitions

For standard notation and definitions on sets and graphs, we mainly follow
Shcrijver [20]. In this section, we list those that are exceptional or non-standard.
We denote the vertex set and the edge set of a graph G by V (G) and E(G). We
sometimes refer to the vertex set of a graph G simply as G. We treat paths and
circuits as graphs. Given a path P and two vertices x and y in V (P), xPy denotes
the connected subgraph of P , which is of course a path, that has the ends x and
y. In referring to graphs obtained by usual graph theoretic operations such as
contractions and taking subgraphs, we often identify items such as vertices and
edges with the naturally corresponding items of old graphs.

Let G be a graph, and let X ⊆ V (G). The subgraph of G induced by X
is denoted by G[X]. The notation G − X denotes the graph G[V (G) \ X]. The
contraction of G by X is denoted by G/X. Let Ĝ be a supergraph of G, and
let F ⊆ E(Ĝ). The notation G + F and G − F denotes the graphs obtained by
adding and by deleting F from G. Given another subgraph H of Ĝ, the graph
G + H denotes the union of G and H. In referring to graphs obtained by these
operations, we often identify their items such as vertices and edges with the
naturally corresponding items of old graphs.

The set of neighbors of X ⊆ V (G) in a graph G is denoted by NG(X);
namely, NG(X) := {u ∈ V (G) \ X : ∃v ∈ X s.t. uv ∈ E(G)}. Given X,Y ⊆
V (G), EG[X,Y] denotes the set of edges of G that join X and Y . We denote
EG[X,V (G) \ X] by δG(X). We often omit the subscripts “G” in using this
notation.

Given a graph, a matching is a set of edges in which any two are disjoint.
A matching is a perfect matching if every vertex of the graph is adjacent to one
of its edges. A graph is factorizable if it has a perfect matching. An edge of a
factorizable graph is allowed if it is contained in a perfect matching. A graph
G is factor-critical if it has only a single vertex or for, any v ∈ V (G), G − v is
factorizable.

Given a set of edges M , a circuit C is M -alternating if E(C)∩M is a perfect
matching of C. A path P with two ends x and y is M -saturated (resp. M -exposed)
between x and y if E(P)∩M (resp. E(P)\M) is a perfect matching of P . A path
P with ends x and y is M -forwarding from x to y if E(P)∩M is a matching of P
and, among the vertices in V (P), only y is disjoint from the edges in E(P)∩M .
We define a trivial graph, i.e., a graph with a single vertex and no edges, as an
M -forwarding path.

Given a set of vertices X, an M -exposed path is an M -ear relative to X if
the ends are in X while the other vertices are disjoint from X; also, a circuit C
is an M -ear relative to X if V (C)∩X = {x} holds and C −x is an M -saturated
path. In the first case, we say the M -ear is proper. Even in the second case, we
call x an end of the M -ear for convenience. An M -ear is trivial if it consists of
only a single edge. We say an M -ear traverses a set of vertices Y if it has a
vertex other than the ends that is in Y .

230 N. Kita

2.2 Canonical Decomposition for General Factorizable Graphs

We now introduce the basilica canonical decomposition [10,11], which will be
used in Sects. 3 and 4 as the only preliminary result to derive the Tight Cut
Lemma. The principal results that constitute the theory of this canonical decom-
position are Theorems 1, 2, and 3. In this section, unless otherwise stated,
G denotes a factorizable graph.

Definition 1. Let M̂ be the union of all perfect matchings of G. A factor-
component of G is the subgraph induced by V (C), where C is a connected com-
ponent of the subgraph of G determined by M̂ . The set of factor-components of
G is denoted by G(G). That is to say, a factorizable graph consists of factor-
components and edges joining distinct factor-components. A separating set of G
is a set of vertices that is the union of the vertex sets of some factor-components
of G. Note that if X ⊆ V (G) is a separating set, then δG(X) ∩ M = ∅ for any
perfect matching M of G.

Definition 2. Given G1, G2 ∈ G(G), we say G1 �G G2 if there is a separating
set X ⊆ V (G) such that V (G1) ∪ V (G2) ⊆ X holds and G[X]/V (G1) is a
factor-critical graph. We sometimes denote �G simply by �.

The next theorem is highly analogous to the known Dulmage-Mendelsohn decom-
position for bipartite graphs [18], in that it describes a partial order over G(G):

Theorem 1 (Kita [10,11]). In any factorizable graph, � is a partial order over
G(G).

Under Theorem 1, we denote the poset of � over G(G) by O(G). For H ∈ G(G),
the set of upper bounds of H in O(G) is denoted by U∗

G(H). The union of vertex
sets of all upper bounds of H is denoted by U∗

G(H). We denote U∗
G(H) \ {H} by

UG(H) and U∗
G(H) \ V (H) by UG(H). We sometimes write them by omitting

the subscripts “G”.

Definition 3. Given u, v ∈ V (G), we say u ∼G v if u and v are contained in
the same factor-component and G − u − v has no perfect matching.

Theorem 2 (Kita [10,11]). In any factorizable graph G, ∼G is an equivalence
relation on V (G). Each equivalence class is contained in the vertex set of a
factor-component.

Given H ∈ G(G), we denote by PG(H) the family of equivalence classes of ∼G

that are contained in V (H). Note that PG(H) gives a partition of V (H). The
structure given by Theorem 2 is called the generalized Kotzig-Lovász partition
as it is a generalization of the results given by Kotzig [13–15] and Lovász [16].

Even though Theorems 1 and 2 were established independently, a natural
relationship between the two is shown by the next theorem.

Theorem 3 (Kita [10,11]). Let G be a factorizable graph, and let H ∈ G(G).
Let K be a connected component of G[UG(H)]. Then, there exists S ∈ PG(H)
with NG(K) ∩ V (H) ⊆ S.

Structure of Towers and a New Proof of the Tight Cut Lemma 231

Intuitively, Theorem 3 states that each proper upper bound of a factor-
component H is tagged with a single member from PG(H). As a result of
Theorem 3, the two structures given by Theorems 1 and 2 are unified natu-
rally to produce a new canonical decomposition that enables us to analyze a
factorizable graph as a building-like structure in which each factor-component
serves as a floor and each equivalence class serves as a foundation.

As given in Theorem 3, for H ∈ G(G) and S ∈ PG(H), we define UG(S) ⊆
UG(H) as follows: I ∈ UG(H) is in UG(S) if the connected component K of
G[UG(H)] with V (I) ⊆ V (K) satisfies NG(K) ∩ V (H) ⊆ S. The union of vertex
sets of factor-components in UG(S) is denoted by U∗

G(S). The sets U∗
G(S) \ S

and U∗
G(H) \ U∗

G(S) are denoted by UG(S) and �UG(S), respectively. Note that
the family {U∗(S) : S ∈ PG(H)} (resp. {U(S) : S ∈ PG(H)}) gives a partition
of U∗(H) (resp. U(H)). We sometimes omit the subscript “G” if the meaning is
apparent from the context.

Fig. 1. A graph G and its factor-components G1, . . . , G6: Thick edges indicate allowed
edges.

Fig. 2. The Hasse diagram of (G(G), �) Fig. 3. The generalized Kotzig-Lovász
partition of G.

232 N. Kita

Example 1. As for the graph G given in Fig. 1, the poset O(G) is described by
the Hasse diagram in Fig. 2. The generalized Kotzig-Lovász partition P(G) is
described in Fig. 3.

In the remainder of this section, we present some pertinent properties that
will be used in later sections.

Lemma 1 (Kita [9,12]). Let G be a factorizable graph and M be a perfect
matching of G, and let H ∈ G(G). Let S ∈ PG(H), and let T ∈ PG(H) be such
with S 	= T .

(i) For any x ∈ U∗(S), there exists y ∈ S such that there is an M -forwarding
path from x to y whose vertices except for y are in U(S).

(ii) For any x ∈ S and any y ∈ T , there is an M -saturated path between x and
y whose vertices are in U∗(H) \ U(S) \ U(T).

(iii) For any x ∈ S and any y ∈ �U(S), there is an M -forwarding path from x
to y whose vertices are in U∗(H) \ U(S).

(iv) For any x ∈ U∗(S) and any y ∈ U∗(T) there is an M -saturated path between
x and y whose vertices are in U∗(H).

Lemma 2 (Kita [10,11]). Let G be a factorizable graph, and let M be a perfect
matching of G. If there is an M -ear relative to H1 ∈ G(G) and traversing H2 ∈
G(G), then H1 � H2 holds.

From Lemma 2, the next lemma is easily derived.

Lemma 3 (Kita [10,11]). Let G be a factorizable graph and M be a perfect
matching of G. Let x ∈ V (G), and let H ∈ G(G) be the factor-component that
contains x. If there is an M -ear P relative to {x}, then the connected components
of P − E(H) are M -ears relative to H. Accordingly, if I ∈ G(G) has common
vertices with P , then H � I holds.

Lemma 4 (Kita [10,11]). Let G be a factorizable graph, and M be a perfect
matching of G. If G1 ∈ G(G) is an immediate lower-bound of G2 ∈ G(G) with
respect to �, then there is an M -ear relative to G1 and traversing G2.

Remark 1. The results presented in this section are obtained without using any
known results via a fundamental graph theoretic discussion on matchings.

3 Towers and Tower-Sequences

The remainder of this paper introduces the new results. In this section, We
define and explore the notions of towers, arcs, and tower-sequences by further
developing the theory given in Sect. 2.2, and obtain a new device to capture the
structure of factorizable graphs. The results in this section will be used in Sect. 4.

In this section, unless otherwise stated, let G be a factorizable graph and M
be a perfect matching. The set of minimal element in the poset O(G) is denoted
by MinO(G).

Structure of Towers and a New Proof of the Tight Cut Lemma 233

Fig. 4. An abstract image of a tower-sequence with k = 4

Definition 4. Let H ∈ G(G). A tower over H is the subgraph G[U∗(H)] and is
denoted by TG(H) or simply by T (H). Given H1,H2 ∈ G(G) such that neither
H1 � H2 nor H2 � H1 holds, we say T (H1) and T (H2) are tower-adjacent or
t-adjacent if U(H1) ∩ U(H2) 	= ∅ or E[U∗(H1), U∗(H2)] 	= ∅ holds. Here, for
each i, j ∈ {1, 2} with i 	= j, Si ∈ PG(Hi) is a port of this adjacency if U(Si) ∩
U(Hj) 	= ∅ or E[U∗(Si), U∗(Hj)] 	= ∅ hold.

Definition 5. Let H1,H2 ∈ G(G) be two distinct factor-components. An M -
exposed path P is an M -arc between H1 and H2 if the ends of P are in H1 and
H2 whereas the internal vertices are disjoint from H1 and H2.

The next lemma states that t-adjacency implies an M -arc with a certain
property.

Lemma 5. Let G be a factorizable graph, and M be a perfect matching of G.
Let H1,H2 ∈ G(G) be such that neither H1 �H2 nor H2 �H1 hold. If T (H1) and
T (H2) are t-adjacent, with ports S1 ∈ PG(H1) and S2 ∈ PG(H2), then there is
an M -arc between H1 and H2, whose ends are in S1 and S2 whereas the internal
vertices are contained in U(S1) ∪ U(S2).

Proof. Let uv ∈ E[U∗(S1), U∗(S2)\U∗(S1)], where u ∈ U∗(S1) and v ∈ U∗(S2)\
U∗(S1). By Lemma 1 (i), there is an M -forwarding path P2 from v to a vertex
w ∈ S2 with V (P2)\{w} ⊆ U(S2). Also, there is an M -forwarding path P1 from
u to a vertex z ∈ S2 with V (P1) \ {z} ⊆ U(S1). By Lemma 3, we have that
P1 + uv + P2 is a desired M -arc.
�

Definition 6. Let H1, . . . , Hk ∈ G(G), where k ≥ 1. For each i ∈ {1, . . . , k},
let S+

i , S−
i ∈ PG(Hi) be such with S+

i 	= S−
i . We say H1, . . . , Hk is a tower-

sequence, from H1 to Hk, if k = 1 holds or if k > 1 holds and for each i ∈
{1, . . . , k − 1}, T (Hi) and T (Hi+1) are t-adjacent with ports S+

i and S−
i+1.

See Fig. 4, which describes an abstract image of a tower-sequence.

Theorem 4. Let G be a factorizable graph, and M be a perfect matching of
G. Let H1, . . . , Hk ∈ MinO(G), where k > 1, be a tower-sequence with ports
S+
i , S−

i ∈ PG(Hi) for i ∈ {1, . . . , k}. Then,

234 N. Kita

(i) Hi 	= Hj holds for any i, j ∈ {1, . . . , k} with i 	= j, and
(ii) there is an M -arc between H1 and Hk whose ends are in S+

1 and S−
k and

which, if k ≥ 3 holds, traverses each H2, . . . , Hk−1.

Proof. We proceed by induction on k. If k = 2, then (i) and (ii) hold by
the definition of a tower-sequence and by Lemma 5. Let k > 2, and suppose
(i) and (ii) hold for 1, . . . , k − 1. By applying the induction hypothesis to the
substructures H1, . . . , Hk−1 and H2, . . . , Hk, we obtain that Hi 	= Hj holds
for any i, j ∈ {1, . . . , k} with i 	= j and {i, j} 	= {1, k}. Consider the subse-
quence H1, . . . , Hk−1. There is an M -arc P̂ between H1 and Hk−1 that satisfies
(ii). Let ŝ ∈ S+

1 and t̂ ∈ S−
k−1 be the ends of P̂ . By Lemma 5, there is an M -arc

P between Hk−1 and Hk, whose ends are s ∈ S+
k−1 and t ∈ S−

k , such that its ver-
tices, except for s and t, are in U(S+

k−1)∪U(S−
k). By Lemma 1 (ii), there is an M -

saturated path Q between t̂ and s with V (Q) ⊆ U∗(Hk−1) \ U(S−
k−1) \ U(S+

k−1).
Let Q̂ := P + Q; then, Q̂ is an M -forwarding path from t̂ to t that traverses
Hk−1. By Lemma 3, P̂ + Q̂ is an M -exposed path that traverses H2, . . . , Hk−1.
If H1 = Hk holds, then P̂ + Q̂ is an M -ear relative to H1. This is a contradiction
by Lemma 2, because H2, . . . , Hk−1 ∈ MinO(G). Hence, we obtain H1 	= Hk,
and so H1, . . . , Hk are all mutually distinct. Accordingly, P̂ + Q̂ is an M -arc
satisfying the statement.
�

Definition 7. A factor-component H ∈ MinO(G) is a border of G if T (H)
is t-adjacent with no other tower or if exactly one member S from PG(H) can
be a port by which T (H) is t-adjacent with other towers, i.e., E[U∗(S), V (G) \
U∗(H)] 	= ∅ and E[U∗(T), V (G) \ U∗(H)] = ∅ for any T ∈ PG(H) \ {S} hold.
Here, S is the port of the border H. We denote the set of borders of G by ∂O(G).

Definition 8. We say a tower-sequence H1, . . . , Hk ∈ MinO(G), where k ≥ 1,
is spanning if H1 and Hk are borders of G. An M -arc between H ∈ G(G) and
I ∈ G(G) is spanning if H and I are borders of G.

As Theorem 4 (i) states that no memebers are repeated in any tower-
sequence, the next theorem follows:

Theorem 5. Let G be a factorizable graph. For a tower-sequence H1, . . . , Hk ∈
MinO(G), there is a spanning tower-sequence I1, . . . , Il ∈ MinO(G) with l ≥ k
and Ii = H1, . . . , Ii+k = Hk for some i ∈ {1, . . . , k − l}.

4 A New Proof of the Tight Cut Lemma

4.1 Shared Definitions, Assumptions, Lemmas

In Sect. 4, we introduce our new proof of the Tight Cut Lemma.

Formal Statement of the Tight Cut Lemma. Let Ĝ be a brick, and Ŝ ⊆
V (Ĝ) be such with 1 < |Ŝ| < |V (Ĝ)| − 1. Then, there is a perfect matching with
more than one edge in δĜ(Ŝ).

Structure of Towers and a New Proof of the Tight Cut Lemma 235

In the following, we prove the above. Let M̂ be a perfect matching of G. If
|δĜ(Ŝ) ∩ M̂ | > 1 holds, then we have nothing to do. Hence, in the following,
we assume |δĜ(Ŝ) ∩ M̂ | = 1 and prove Ŝ is not a tight cut by finding an Ŝ-fat
perfect matching, i.e., a perfect matching with more than one edge in δĜ(Ŝ).

Let Ŝc be V (Ĝ) \ Ŝ. Let u ∈ Ŝ and v ∈ Ŝc be such that δĜ(Ŝ) ∩ M̂ = {uv}.
We denote Ĝ − u − v by G, Ŝ − u by S, Ŝc − v by Sc, and M̂ − uv by M .

Note that G is connected and has a perfect matching M . Also, δG(S)∩M = ∅
holds in G. If S is not a separating set, then of course δĜ(Ŝ) is not a tight cut
in G, and we are done. So, in the following, we assume that S is a separating
set of G and prove the Tight Cut Lemma for this case.

Without loss of generality, we also assume in the following that G has a
border whose vertices are contained in S.

In the following, we present lemmas that will be used in Sects. 4.2 and 4.3
when we find a cut vertex in G. They are relatively easy to confirm.

Lemma 6. Let x be a cut vertex of G, and let C be one of the connected com-
ponents of G − x. Then, NĜ(w) ∩ V (C) 	= ∅ holds for each w ∈ {u, v}.

Lemma 7. Let x be a cut vertex of G, and let C be one of the connected compo-
nents of G−x. If V (C)∪{x} is a separating set of G, then, for each w ∈ {u, v},
there exists y ∈ V (C) ∩ NĜ(w) such that G has an M -saturated path between x
and y.

4.2 When There Exists a Factor-Component in MinO(G)
Whose Vertices are in Sc

Here in Sect. 4.2, we assume that MinO(G) has a factor-component whose vertex
set is contained in Sc, and prove the Tight Cut Lemma for this case, using mainly
the results obtained in Sect. 3.

Lemma 8. If G has a spanning M -arc with an edge in EG[S, Sc], then Ĝ has
an Ŝ-fatperfect matching.

Proof. Let P be a spanning M -arc, between two borders H1 and H2. Let S1

and S2 be the ports of H1 and H2, respectively, and let s1 ∈ S1 and s2 ∈ S2

be the ends of P . Let i ∈ {1, 2}, and let w1 := v and w2 := u. If |Si| = 1, then
by Lemma 6, there exists xi ∈ NĜ(wi) ∩ �UG(Si). Otherwise, by considering
an M -saturated path between two vertices in Si, we again obtain wi ∈ NĜ(v) ∩
�UG(Si). By Lemma 1 (iii), there is an M -saturated path Qi between xi and
si. Whether x1 ∈ S holds or not, Q1 has an edge in EG[S, Sc]. Hence, Q1 + P +
Q2 + x2u + uv + vx1 is an M -alternating circuit with more than one edges in
EG[S, Sc]. Thus an Ŝ-fatmatching is obtained.
�

As Lemma 8 is obtained, we give the following two lemmas to find such a
spanning M -arc. They treat the cases that are counterparts to each other.

Lemma 9. If G also has a border whose vertices are in Sc, then there is a
spanning M -arc that has an edge in EG[S, Sc].

236 N. Kita

Proof. Define H1 ⊆ MinO(G) (resp. H2 ⊆ MinO(G)) as follows: H ∈ MinO(G)
is in H1 (resp. H2) if there is a tower-sequence from a border whose vertex set
is contained in S (resp. Sc) to H.

By Theorem 5, H1 ∪ H2 = MinO(G).

Claim 1. There is a spanning tower-sequence from a border whose vertex set is
contained in S to a border whose vertex set is contained in Sc.

Proof. As G is connected, there exists H ∈ H1 ∩ H2. By H ∈ H1, there is a
tower-sequence from H1 ∈ ∂O(G) to H with V (H1) ⊆ S. Hence, by Theorem 5,
there is a spanning tower-sequence H1, . . . , Hk ∈ MinO(G) with k ≥ 2 and
H = Hi for some i ∈ {1, . . . , k}. If V (Hk) ⊆ Sc holds, we are done. Thus, let
V (Hk) ⊆ S. By H ∈ H2, there is a tower-sequence I1, . . . , Il ∈ MinO(G) with
l ≥ 1, I1 ∈ ∂O(G), V (I1) ⊆ Sc, and Il = H. Either H1, . . . , Hi = H = Il, . . . , I1
or Hk, . . . , Hi = H = Il, . . . , I1 forms a spanning tower-sequence, satisfying the
statement of this claim.
�

By Theorem 4 and Claim 1, we obtain a desired spanning M -arc.
�

Lemma 10. Assume every border of G has the vertex set that is contained in
S. If there exists a non-border element of MinO(G) whose vertex set is contained
in Sc, then there is a spanning M -arc that has some edges in EG[S, Sc].

Proof. Let H be such a non-border element. Applying Theorems 4 (ii) and 5 to
H, this lemma is proved.
�

By combining Lemmas 9 and 10 with Lemma 8, the Tight Cut Lemma is
proved for the case of Sect. 4.2.

4.3 When Every Factor-Component in MinO(G) has the Vertex
Set Contained in S

Shared Assumptions and Lemmas. Here in Sect. 4.3, we assume that the
vertex set of any factor-component in MinO(G) is contained in S, which is
namely the counterpart case to Sect. 4.2. Let S0 ⊆ S be the inclusion-wise max-
imal separating subset of S such that {H1, . . . , Hp} is a lower-ideal of O(G−S),
where S0 = V (H1)∪̇ · · · ∪̇V (Hp). Choose arbitrarily a connected component C
of G − S0. Note that V (C) is a separating set in G and C is factorizable. The
following two lemmas will be used in both of the succeeding case analyses. The
first one is obtained rather easily from Lemma 4.

Lemma 11. For each H ∈ MinO(C), G has an M -ear, PH , relative to S0 and
traversing H.

Under Lemma 11, for each H ∈ MinO(C), choose and fix arbitrarily an M -ear
relative to S0 and traversing H; in the rest of this paper, we denote it by PH .

Lemma 12. Let y ∈ V (C), and let H ∈ MinO(C) be such that y ∈ U∗
C(H).

Then, there is an M -forwarding path Qy
H from y to xH , one of the ends of the

M -ear PH , with V (Qy
H) \ {xH} ⊆ V (C).

Structure of Towers and a New Proof of the Tight Cut Lemma 237

Proof. Let R := PH [U∗
C(H)]; then, R is an M -saturated path. Let z1 and z2

be its ends. By Lemma 1 (iv), for either z1 or z2, say, for z1, there is an M -
saturated path Q between y and z1 whose vertices are in U∗

C(H). By taking
one of the connected components L of PH − E(R) appropriately, Q + L forms a
desired path.
�

After the above, in the rest of this paper, for each H ∈ MinO(C) and each
y ∈ U∗

C(H), let Qy
H be the path as given in Lemma 12, and let xH be the end of

the M -ear PH that is the end of Qy
H .

Case with |NG(C) ∩ S0|=1. Here, we assume that there exists x0 ∈ S0 with
NG(C)∩S0 = {x0}, and prove the Tight Cut Lemma under this assumption. Of
course, xH = x0 holds for each H ∈ MinO(C).

Lemma 13. If |NG(C) ∩ S0| = 1 holds, then Ĝ has an Ŝ-fatperfect matching.

Proof. According to Lemma 7, there exists z ∈ NĜ(v) such that there is an M -
saturated path R between x0 and z with V (R) ⊆ S0. By Lemma 6, there exists
y ∈ V (C)∩NĜ(u). Let H ∈ MinO(C) be such with y ∈ U∗

C(H), and take a path
Qy

H as given in Lemma 12. Let K := R + zv + uv + vy + Qy
H . Note that K is

an M̂ -alternating circuit of Ĝ. Note zv ∈ EĜ[Ŝ, Ŝc] \ M̂ . Regardless of y ∈ Ŝ or
y ∈ Ŝc, Qy

H + uy has an edge in EĜ[Ŝ, Ŝc] \ M̂ . Hence, this lemma is proven.
�

From Lemma 13, the proof of the Tight Cut Lemma for the case analysis of
Sect. 4.3 is completed.

Case with |NG(C) ∩ S0| >1. Here, we treat the counterpart to the previous
case analysis; namely, we assume |NG(C) ∩ S0| > 1. We use the next lemma as
the main strategy to obtain a desired perfect matching:

Lemma 14. If G has a proper M -ear relative to S0 and traversing Sc, then Ĝ
has an Ŝ-fat perfect matching.

Proof. Let P be such an M -ear, and let x and y be its ends. As Ĝ is a brick,
there is an M -saturated path Q between x and y with uv ∈ E(Q). By Lemma 3,
P + Q forms an M -alternating circuit. As this circuit has more than one edge
in δĜ(Ŝ), this lemma is proved.
�

As given in Lemma 14, we aim to find such a proper M -ear. If the M -ear PH

is proper for some H ∈ MinO(C), then Lemma 14 gives an Ŝ-fatmatching of Ĝ.
Hence, in the rest of this proof, we assume that PH is not proper, having the
unique end xH . The next two lemmas finds desired M -ears and so Ŝ-fat perfect
matchings under the assumptions that are counterparts to each other. The first
one comes rather immediately from Lemma 12.

Lemma 15. Let H ∈ MinO(C). If NG(U∗
C(H)) ∩ S0 contains a vertex other

than xH , then Ĝ has an Ŝ-fatmatching.

Lemma 16. If NG(U∗
C(H)) ∩ S0 = {xH} holds for any H ∈ MinO(C), then Ĝ

has an Ŝ-fatperfect matching.

238 N. Kita

Proof. As C is connected, there exist H, I ∈ MinO(C) such that TC(H) and
TC(I) are t-adjacent. Under Lemma 5, take an M -arc P between H and I. Let
x ∈ V (H) and y ∈ V (I) be the ends of P . Then, by Lemmas 3, Qx

H + P + Qy
I is

a desired M -ear.
�

By Lemmas 15 and 16, the last remaining case is proved. This completes the
whole proof of the Tight Cut Lemma.

References

1. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math.
10, 517–534 (1958)

2. Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finte
exterior dimension. Trans. Roy. Soc. Can. Sect. III(53), 1–13 (1959)

3. Dulmage, A.L., Mendelsohn, N.S.: Two algorithms for bipartite graphs. J. Soc.
Ind. Appl. Math. 11(1), 183–194 (1963)

4. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)
5. Edmonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the match-

ing rank of graphs. Combinatorica 2(3), 247–274 (1982)
6. Frank, A.: Conservative weightings and ear-decompositions of graphs. Combina-

torica 13, 65–81 (1993)
7. Gallai, T.: Maximale systeme unabhängiger kanten. A Magyer Tudományos

Akadémia: Intézetének Közleményei 8, 401–413 (1964)
8. Kita, N.: A new canonical decomposition in matching theory, under review
9. Kita, N.: A canonical characterization of the family of barriers in general graphs.

CoRR abs/1212.5960 (2012)
10. Kita, N.: A partially ordered structure and a generalization of the canonical par-

tition for general graphs with perfect matchings. In: Chao, K.-M., Hsu, T., Lee,
D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 85–94. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35261-4 12

11. Kita, N.: A partially ordered structure and a generalization of the canonical par-
tition for general graphs with perfect matchings. CoRR abs/1205.3 (2012)

12. Kita, N.: Disclosing barriers: a generalization of the canonical partition based on
Lovász’s formulation. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013.
LNCS, vol. 8287, pp. 402–413. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03780-6 35

13. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. I. Mat. časopis 9(2),
73–91 (1959)

14. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. II. Mat. časopis 9(3),
136–159 (1959)

15. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. III. Mat. časopis 10(4),
205–215 (1960)

16. Lovász, L.: On the structure of factorizable graphs. Acta Math. Hungarica 23(1–2),
179–195 (1972)

17. Lovász, L.: Matching structure and the matching lattice. J. Comb. Theory, Ser. B
43(2), 187–222 (1987)

18. Lovász, L., Plummer, M.D.: Matching theory, vol. 367. American Mathematical
Soc. (2009)

https://doi.org/10.1007/978-3-642-35261-4_12
https://doi.org/10.1007/978-3-319-03780-6_35
https://doi.org/10.1007/978-3-319-03780-6_35

Structure of Towers and a New Proof of the Tight Cut Lemma 239

19. Naddef, D.: Rank of maximum matchings in a graph. Math. Program. 22(1), 52–70
(1982)

20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer Science & Business Media, Heidelberg (2003)

21. Szigeti, Z.: On a matroid defined by ear-decompositions of graphs. Combinatorica
16(2), 233–241 (1996)

22. Szigeti, Z.: On optimal ear-decompositions of graphs. In: Cornuéjols, G., Burkard,
R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 415–428. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8 31

23. Szigeti, Z.: On generalizations of matching-covered graphs. Eur. J. Comb. 22(6),
865–877 (2001)

24. Szigeti, Z.: Perfect matchings versus odd cuts. Combinatorica 22(4), 575–589
(2002)

https://doi.org/10.1007/3-540-48777-8_31

On the Complexity of Detecting k-Length
Negative Cost Cycles

Longkun Guo1(B) and Peng Li2(B)

1 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
lkguo@fzu.edu.cn

2 Amazon Web Services, Amazon.com Inc., Seattle, WA, USA
lipeng.net@gmail.com

Abstract. Given a positive integer k and a directed graph G with a
real number cost on each edge, the k-length negative cost cycle (kLNCC)
problem that first emerged in deadlock avoidance in synchronized stream-
ing computing network [14] is to determine whether G contains a negative
cost cycle of at least k edges. The paper first shows a related problem of
kLNCC, namely the fixed-point trail with k-length negative cost cycle
(FPTkLNCC) problem which is to determine whether there exists a
negative closed trail enrouting a given vertex as the fixed point and con-
taining only cycles with at least k edges, is NP-complete in multigraphs
even when k = 3 by reducing from the 3SAT problem. Then as the
main result, we prove the NP-completeness of kLNCC by giving a more
sophisticated reduction from the 3 Occurrence 3-Satisfiability (3O3SAT)
problem, a known NP-complete special case of 3SAT in which a vari-
able occurs at most three times. The complexity result is surprising, since
polynomial time algorithms are known for both 2LNCC (essentially no
restriction on the value of k) and the k-cycle problem with k being fixed
which is to determine whether there exists a cycle of at least length k
in a given graph. This closes the open problem proposed by Li et al. in
[14,15] whether kLNCC admits polynomial-time algorithms.

Keywords: k-length negative cost cycle · NP-complete · 3 occurrence
3-satisfiability · 3-satisfiability

1 Introduction

We define the following k-length negative cost cycle problem (kLNCC):

Definition 1. Given a fixed integer k and a directed graph G = (V, E), in which
each edge e ∈ E is with a cost c(e) → R and a length l(e) = 1, kLNCC is to
determine whether there exists a cycle O with total length l(O) =

∑
e∈O l(e) ≥ k

and total cost c(O) < 0.

This research work is supported by Natural Science Foundation of China #61772005,
#61300025 and Natural Science Foundation of Fujian Province #2017J01753.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 240–250, 2017.
https://doi.org/10.1007/978-3-319-71150-8_21

On the Complexity of Detecting k-Length Negative Cost Cycles 241

The kLNCC problem arises in deadlock avoidance for streaming computing,
which is widely used in realtime analytics, machine learning, robotics, and com-
putational biology, etc. A streaming computing system consists of networked
nodes communicating through finite first-in first-out (FIFO) channels, and a data
stream referring to data transmitted through a channel. In streaming comput-
ing, a compute node might need to synchronize different incoming data streams.
If the synchronized streams have different rates (e.g. due to filtering [14]), the
computing network might deadlock. Several deadlock avoidance algorithms have
been proposed in [14], which rely on inserting heartbeat messages into data
streams. When to insert those heartbeat messages, however, depends on the
network topology and buffer size configurations. An open problem is deciding
whether a given heartbeat message schedule can guarantee deadlock freedom,
which raises the negative-cost cycle detection problem. Further, we are only
interested in the negative-cost cycle with length at least k ≥ 3, as deadlocks
of few nodes can be easily eliminated. This raises the above kLNCC problem.
Besides, in many cases, we are also interested in whether a particular node in a
streaming computing system is involved in a deadlock or not, which brings the
fixed-point trail with k-length negative-cost cycle problem (FPTkLNCC):

Definition 2. Given a graph G = (V, E) in which each edge e ∈ E is with a
cost c(e) → R and a length l(e) = 1, a fixed integer k, and a fixed point p ∈ G,
the FPTkLNCC problem is to determine whether there exists a closed trail T
containing p, such that c(T) < 0 and l(O) =

∑
e∈O l(e) ≥ k for every O ⊆ T

(with c(O) < 0), where a closed trail is a trail which begins and ends on the same
vertex.

Note that c(O) < 0 makes no difference for the above definition, as a negative
cost closed trail must contain at least a negative cost cycle. Further, if G contains
a vertex p as a fixed point such that the FPTkLNCC problem is feasible, then G
must contain at least a cycle O with c(O) < 0 and

∑
e∈O l(e) ≥ k, and vice versa.

So if FPTkLNCC admits a polynomial-time algorithm, then kLNCC is also
polynomially solvable. That is because we can run the polynomial-time algorithm
as a subroutine to verify whether G contains a vertex p wrt which FPTkLNCC
is feasible, and then to verify whether kLNCC is feasible. Conversely, if the
NP-completeness of kLNCC is proven, it can be immediately concluded that
FPTkLNCC is also NP-complete.

Throughout this paper, by walk we mean an alternating sequence of vertices
and connecting edges; by trail we mean a walk that does not pass over the same
edge twice; by path we mean a trail that does not include any vertex twice; and
by cycle we mean a path that begins and ends on the same vertex.

1.1 Related Works

The kLNCC problem generalizes two well known problems: the negative cycle
detection problem of determining whether there exist negative cycles in a given
graph, and the k-cycle problem (or namely the long directed cycle problem [2])
of determining whether there exists a cycle with at least k edges. The former

242 L. Guo and P. Li

problem is known polynomially solvable via the Bellman-Ford algorithm [1,5]
and is actually kLNCC of k = 2. The latter problem, to determine whether a
given graph contains a cycle O with l(O) ≥ k or not, is in fact kLNCC when
c(e) = −1 for every e ∈ E. The problem is shown fixed parameter tractable
in [7], where an algorithm with a time complexity kO(k)nO(1) is proposed. The
runtime is then improved to O(cknO(1)) for a constant c > 0 by using repre-
sentative sets [4], and later to 6.75knO(1) independently by [3,17]. Compared
to the two results above, i.e. negative cycle detection and the k-cycle problem
with k being fixed are both polynomially solvable, it is interesting that 3LNCC
is NP-complete because 3LNCC is exactly a combination of the two problems
that belonging to P.

Besides negative cycle detection and k-cycle, kLNCC also generalizes the
Hamiltonian cycle problem which, for a given graph, is to determine whether
there exists a cycle containing all the vertices. Apparently, the Hamiltonian
cycle problem is in fact kLNCC when k equals n, the number of vertices in the
graph. It is known that the Hamiltonian cycle problem is NP-complete [9], so
kLNCC is also NP-complete for general k.

Except for applications in deadlock avoidance for steaming computing and
its self-own theoretical value, the hardness results over the kLNCC problem can
also shed some light on related problems whose currently existing algorithms are
mainly based on computing bicriteria cost cycles. For example, the k-disjoint
constrained shortest path (kCSP) problem, to compute k disjoint paths between
a pair of specified vertices such that the total cost of the paths is minimized
while the length sum is bounded by a given integer, was first proposed by Orda
et al. [16] and known admits single factor approximation ratio O(ln n) [10,13]
and bifactor ratio O(1+ε, 2+ε) [11]. These approximation algorithms are mainly
based on cycle cancellation method, so the hardness results of kLNCC indicate
the difficulty of further improving the approximation ratio by merely canceling
bicriteria cost cycles.

1.2 Our Results

The main result of this paper is proving the NP-completeness of kLNCC in
a simple directed graph. Since the proof is constructive and complicated, we
will first accomplish an easier task of proving the NP-completeness of the
FPTkLNCC problem in multigraphs by simply reducing from the 3-Satisfiability
(3SAT) problem. A multigraph is a graph that allows multiple edges between
two nodes.

Lemma 3. For any fixed integer k ≥ 3, FPTkLNCC is NP-complete in multi-
graphs.

Then following a main idea similar to that of the proof of Lemma 3 while acquir-
ing more sophisticated details, we will prove the NP-completeness of kLNCC
(and hence also FPTkLNCC) in a simple directed graph.

Theorem 4. For any fixed integer k ≥ 3, kLNCC is NP-complete in a simple
graph.

On the Complexity of Detecting k-Length Negative Cost Cycles 243

2 The NP-completeness of FPTkLNCC in Multigraphs

In this section, we will prove Lemma 3 by reducing from 3SAT that is known
to be NP-complete [8]. In an instance of 3SAT, we are given n variables
{x1, . . . , xn} and m clauses {C1, . . . , Cm}, where Ci is the OR of at most three
literals, and each literal is an occurrence of the variable xj or its negation. The
3SAT problem is to determine whether there is an assignment satisfying all the
m clauses.

For any given instance of 3SAT, the key idea of our reduction is to construct
a digraph G, such that G contains a negative cost closed trail with only cycles
of length at least 3 and enrouting a given vertex iff the instance of 3SAT is
satisfiable. The construction is composed with the following three parts. First,
for each variable xi with ai occurrences of xi and bi occurrences of xi in the
clauses, we construct a lobe1 which contains two vertices, denoted as yi and zi,
and ai+bi edges of cost −1 between the two vertices, i.e. ai copies of edge (yi, zi)
and bi copies of (zi, yi) (A lobe is depicted as in the dashed circles in Fig. 1). For
briefness, we say an edge in the lobes is a lobe-edge. Then, for each clause Cj ,
add two vertices ui and vi, as well as edge (vi, ui+1), 1 ≤ i ≤ m − 1, with cost 0
and edge (vm, u1) with cost m − 1. Last but not the least, for the relationship
between the variables and the clauses, say variable xj occurs in clause Ci, we
add two edges with cost 0 to connect the lobes and the vertices of clauses:

– If Ci contains xj , then add two edges (ui, yj), (zj , vi);
– If Ci contains xj , then add two edges (ui, zj), (yj , vi).

An example of the construction for a 3SAT instance is depicted in Fig. 1.
Then since FPTkLNCC is clearly in NP, the correctness of Lemma 3 can

be immediately obtained from the following lemma:

Lemma 5. An instance of 3SAT is satisfiable iff in its corresponding auxiliary
graph G there exists a negative-cost closed trail containing u1 but no length-2
cycles.

Proof. Suppose there exists a negative-cost closed trail T , which contains u1

but NO negative cost length-2 cycle. Then let τ be a true assignment for the
3SAT instance according to T : if T goes through (yi, zi), then set τ(xi) = true;
Otherwise, set τ(xi) = false. It remains to show such an assignment will satisfy
all the clauses. Firstly, we show that the path P = T \ {(vm, u1)} must go
through all vertices of {vi|i = 1, . . . , m}. Since T contains u1, T has to go
through edge (vm, u1), as the edge is the only one entering u1. Then because T
is with negative cost and the cost of edge (vm, u1) is m−1, P has to go through
at least m edges within the n lobes, as only the edges of lobes has a negative
cost −1. According to the construction of G, between two lobe-edges on P , there
must exist at least an edge of {vi, ui+1|i = 1, . . . , m − 1}, since vi has only one
out-going edge (vi, ui+1) while every edge leaving a lobe must enter a vertex of
1 The term lobe was used to denote an unit of the auxiliary graph constructed for an

instance of SAT, as in [12] and many others [6,19].

244 L. Guo and P. Li

Fig. 1. The construction of G for an 3SAT instance (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨
x2 ∨ x4).

{vi|i = 1, . . . , m−1}. So P = T \{vm, u1} has to go through all the m−1 edges of
{vi, ui+1|i = 1, . . . , m−1}, and hence through all vertices of {vi|i = 1, . . . , m}.
Secondly, assume vj and vj′ are two vertices of {vi|i = 1, . . . , m}, such that
P (vj , vj′)∩{vi|i = 1, . . . , m} = {vj , vj′}. Again, because there must be at least
an edge of {vi, ui+1|i = 1, . . . , m − 1} between two lobe-edges, there must be
at least a lobe-edge appearing on P (vj , vj′), otherwise there will be at most
m − 1 lobe-edges on T . That is, there must be exactly a lobe edge, say (yi, zi),
on P (vj , vj′). Then according to the construction of graph G, xi appears in Cj ,
and hence τ(xi) = true satisfies Cj . The case for (zi, yi) appears on P (vj , vj′)
is similar. Therefore, the 3SAT instance is feasible as it can be satisfied by τ .

Conversely, suppose the instance of 3SAT is satisfiable, and a true assignment
is τ : x → {true, false}. Then for clause Ck, there must exist a literal, say wk,
such that τ(wk) = true. If wk is an occurrence of xi, then set the corresponding
subpath as Pk = uk − yi − zi − vk; otherwise set Pk = uk − zi − yi − vk. Then
clearly, P = {Pk|k = 1, . . . , m}∪{(vh, uh+1)|h = 1, . . . , m−1} exactly composes
a path from u1 to vm with a cost of −m, as it contains m lobe-edge and other
edges of cost 0. So T = P ∪ {vm, u1} is a negative cost closed trail of length at
least 3. Besides, since τ(xi) must be either true or false, there exist no length-2
cycles on P . This completes the proof. 	

However, the above proof can not be immediately extended to prove the NP-
completeness of kLNCC, since there are two tricky obstacles. Firstly, in the above
proof, there might exist negative cycles with length at least three but without
going through u1. Thus, in Lemma 5, containing u1 is mandatory. Secondly,

On the Complexity of Detecting k-Length Negative Cost Cycles 245

Lemma 5 holds only for multigraphs as some of the lobes are already multi-
graphs. Thus, to extend the proof to kLNCC, we need to eliminate negative
cycles bypassing u1 and to transform the (multigraph) lobes to simple graphs.

3 The NP-completeness Proof of kLNCC

In this section, to avoid the two obstacles as analyzed in the last section, we will
prove Theorem 4 by reducing from the 3 occurrence 3SAT (3O3SAT) problem
that is known NP-complete [18]. Similar to 3SAT, in an instance of 3O3SAT
we are also given m clauses {C1, . . . , Cm} and n variables {x1, . . . , xn}, and the
task is to determine whether there is an assignment satisfying all the m clauses.
The only difference is, however, each variable xi (including both literal xi and
xi) appears at most 3 times in all the m clauses. To simplify the reduction, we
assume that the possible occurrences of a variable x in an instance of 3O3SAT
fall in the following three cases:

– Case 1: All occurrences of x are all positive literal x;
– Case 2: The occurrences of x are exactly one positive literal and one negative

literal;
– Case 3: The occurrences of x are exactly two positive literals and one negative

literal.

The above assumption is without loss of generality. We note that there are still
two other cases:

– Case 4: All occurrences of x are negative literals;
– Case 5: Exactly two occurrences of negative literals and one positive literal.

However, Cases 4 and 5 can be respectively reduced to Cases 1 and 3, by replacing
occurrences of x and x respectively with y and y. Therefore, we need only to
consider 3O3SAT instances with variables satisfying Case 1–3.

The key idea of the proof is, for any given instance of 3O3SAT, to construct
a graph G, such that there exists a cycle O with c(O) < 0 and l(O) ≥ 3 in G if
and only if the instance is satisfiable. An important fact used in the construction
is that every variable appears at most 3 times in a 3O3SAT instance. In the
following, we will show how to construct G according to clauses, variables, and
the relation between clauses and variables.

1. For each Ck:
Add to G two vertices uk and vk, as well as edge (vk, uk+1), 1 ≤ k ≤ m − 1
with cost 0, and edge (vm, u1) with cost −1.

2. For each variable xi, construct a lobe according to the occurrences of xi and
xi (The construction a lobe is as depicted in Fig. 2):

– Case 1: All occurrences of xi in are positive literal xi, such as x4 in
Fig. 3.
For the jth occurrence of xi, add a directed edge (yj

i , z
j
i) and assign cost

−2m to it.

246 L. Guo and P. Li

y1
1
(z3

1
) z1

1
y2
1 z2

1
(y3

1
)

Cost −2m edge Cost 1
2m+2 edgeCost 0 edge

Fig. 2. A lobe for x1 with respect to an instance of 3O3SAT (x1 ∨x3)∧ (x1 ∨x2 ∨x4)∧
(x1 ∨ x2 ∨ x4).

– Case 2: Exactly one occurrence for each of positive literal xi and negation
xi, such as x2 in Fig. 3.
(a) Add two vertices zj2i = yj1

i and yj2
i = zj1i , and connect them with

directed edges (yj1
i , zj1i) and (yj2

i , zj2i).
(b) Assign edge (yj1

i , zj1i) with cost −2m and (yj2
i , zj2i) with cost 1

m+1 ;
– Case 3: Exactly 2 occurrences of xi and one occurrence xi, such as x1

in Fig. 3.
(a) For the two positive literals of xi, say the j1th and j2th occurrence of

xi, j1 < j2, add four vertices yj1
i , zj1i , yj2

i , zj2i , and two directed edges
(yj1

i , zj1i), (yj2
i , zj2i) connecting them with cost −2m;

(b) For the negation xi, say the j3th occurrence, set zj3i = yj1
i and yj3

i =
zj2i , and add three directed edges (yj3

i , yj2
i), (yj2

i , zj1i), (zj1i , zj3i) with
costs 1

2m+2 , 0 and 1
2m+2 , respectively.

3. For the relation between the variables and the clauses, say Ck is the clause
containing the jth occurrence of xi, i.e. Ck is the jth clause xi appears in,
add directed edges (uk, y

j
i) and (zji , vk). If the occurrence of xi in Ck is a

positive literal, assign the newly added edges with cost m; Otherwise, assign
them with cost 0. Note that no edges will be added between lobes and uk, vk
if xi does not appear in Ck.

An example of the construction of G according to F = (x1 ∨ x3) ∧ (x1 ∨ x2 ∨
x4) ∧ (x1 ∨ x2 ∨ x4) is as depicted in Fig. 3.

As kLNCC is apparently in NP, it remains only to prove the following lemma
to complete the proof of Theorem 4.

Lemma 6. An instance of 3O3SAT is feasible iff the corresponding graph G
contains a cycle O with l(O) ≥ 3 and c(O) < 0.

Let U = {ui, vi|i = 1, . . . , m} be the set of vertices that correspond to the
clauses. We first prove a proposition that if a path from uh to vl (h = l) does
not enroute any other u ∈ U , the cost of the path is at least m.

On the Complexity of Detecting k-Length Negative Cost Cycles 247

u1
v1 u2 v2

u3 v3

Cost −2m edge Cost 1
2m+2 edge

Cost 0 edgeCost m edge Cost −1 edge

x1 x2 x3 x4

y1
1
(z3

1
) z1

1
y2
1

z2
1
(y3

1
) y1

2
(z2

2
) z1

2
(y2

2
) y1

3
z1
3 y1

4
z1
4

z2
4y2

4

Cost 1
m+1 edge

Fig. 3. The construction of G for an 3O3SAT instance (x1 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x1 ∨
x2 ∨ x4).

Proposition 7. Let P (u, v) be a path from u to v. For any path P (uh, vl) that
satisfies P (uh, vl) ∩ U = {uh, vl}, if h = l, then c(p(uh, vl)) ≥ m.

Proof. For every edge (y, z) with cost −2m, clearly there exists only one edge
e1 entering y, and only one edge e2 leaving z. Furthermore, e1 = (uh′ , y) and
e2 = (z, vh′). So P (uh, vl), h = l, as in the proposition can not go through any
cost −2m edge. That is, P (uh, vl), h = l, can only go through the non-negative
cost edges. It remains to show P (uh, vl), h = l, must go through at least one
cost m edge.

Suppose P (uh, vl), h = l does not go through any cost m edges. Let (uh, yj1
i),

(zj2i , vl) ∈ P (uh, vl) be the two edges leaving uh and entering vl, respectively.
Then yj1

i and zj2i must incident to two edges that corresponds to the negation of
the two variables. Further, the two variable must be identical, since vertices of
two distinct lobes will be separated by U , and hence for P (yj1

i , zj2i) ⊂ P (uh, vl),
P (yj1

i , zj2i) ∩ U = ∅. This contradicts with P (uh, vl) ∩ U = {uh, vl}. 	

Proposition 8. In graph G \ e(vm, u1), every path P (u, v), u, v ∈ U , has a
non-negative cost.

Proof. Apparently, in G\e(vm, u1), every edge with negative cost is exactly with
cost −2m. Let (yj

i , zji) be such an edge with cost −2m. From the structure of
G, there exists exactly one edge entering yj

i , and exactly one leaving zji , each of
which is with exactly cost m. So for every path P (u, v), u, v ∈ U , if it contains
edge (yj

i , zji), then it must also go through both the edge entering yj
i and the

248 L. Guo and P. Li

edge leaving zji . That is, the three edges must all present or all absent in P (u, v),
and contribute a total cost 0. Therefore, c(P (u, v)) ≥ 0 must hold. 	

Now the proof of Lemma 6 is as below:

Proof. Suppose that there exists an assignment τ : x → {true, false} satisfying
all the m clauses. Since c(vm, u1) = −1, we need only to show there exists a
u1vm-path with cost smaller than 1 by construction such one path. For a satisfied
clause Ck, there must exist a literal, say wk with τ(wk) = true. If wk is the jth
occurrence of xi, then set the corresponding subpath as Pk = uk − yj

i − zji − vk.
We need only to show P = {Pk|k = 1, . . . , m} ∪ {(vh, uh+1)|h = 1, . . . , m − 1}
exactly composes a path from u1 to vm with cost smaller than 1. For the first,
P is a path. Because τ is an assignment, τ(xi) = true and τ(xi) = true can
not both hold, and hence P contains no length-2 cycle. For the cost, according
to the construction, if τ(wk) = τ(xi) = true then the subpath Pk is with cost
exactly equal to 0; otherwise, i.e. τ(wk) = τ(xi) = true, the subpath Pk is with
cost exactly equal to 1

m+1 . Meanwhile, c(e(vh, uh+1)) = 0 for each h. Therefore,
the total cost c(P) ≤ m

m+1 < 1, where the maximum is attained when all clauses
are all satisfied by negative of the variables.

Conversely, assume that there exists a negative-cost cycle O, which contains
NO negative cost length-2 cycle. According to Proposition 8, e(vm, u1) must
appears on O, so that c(O) < 0 can hold. Let P = O \ e(vm, u1) and τ be a true
assignment according to P : if P goes through literal xi, set τ(xi) = false and
set τ(xi) = true otherwise. It remains to show such the assignment according to
P satisfies all the clauses. To do this, we shall firstly show P will go through all
the vertices of U in the order u1 ≺ v1 ≺ · · · ≺ ui ≺ vi ≺ · · · ≺ um ≺ vm; and
secondly show that P (uh, vh) has to go through exactly a subpath corresponding
to a literal, say w, for which if τ(w) = true, then Ch is satisfied. Then from the
fact that P contains no negative cost length-2 cycle, τ is a feasible assignment
satisfying all the clauses.

For the first, according to Proposition 7, if P (ui, vj) ∩ U = {ui, vj}, then
j = i (i.e. vj = vi) must hold. Since otherwise, according to Proposition 7
c(P (ui, vj)) ≥ m must hold; while according to Proposition 8, the other parts
of P is with c(P (u1, ui)) ≥ 0 and c(P (vj , vm)) ≥ 0. That is, c(P) ≥ m. On
the other hand, since c(e(vm, u1)) = −1 and c(O) < 0, we have c(P) < 1,
a contradiction. Furthermore, since there exists only one edge leaving vi, i.e.
(vi, ui+1), P must go through every edge e(vi, ui+1) incrementally on i, i.e.
in the order of u1 ≺ v1 ≺ · · · ≺ ui ≺ vi ≺ · · · ≺ um ≺ vm. For the sec-
ond, according to the structure of G and c(P) < 1, c(P (uh, vh)) ≤ 1

m+1 must
hold. Then c(P (uh, vh)) has to go through exactly a subpath corresponding to a
literal. 	

Note that, a simple undirected graph does not allow length-2 cycles. Anyhow,
by replacing length-2 cycles with length-3 cycles in the above proof, i.e. replac-
ing every edge (yj , zj) with two edges (yj , wj) and (wj , zj) of the same cost,
and ignoring the direction of the edges, we immediately have the correctness of
Corollary 9.

On the Complexity of Detecting k-Length Negative Cost Cycles 249

Corollary 9. For any fixed integer k ≥ 4, kLNCC is NP-complete in a simple
undirected graph.

4 Conclusion

In this paper, we have shown the NP-completeness for both the k-length nega-
tive cost cycle (kLNCC) problem in a simple directed graph and the fixed-point
trail with k-length negative cost cycle (FPTkLNCC) problem in a directed
multigraph, which have wide applications in parallel computing, particularly in
deadlock avoidance for streaming computing systems. Consequently, it can be
concluded that kLNCC is also NP-complete in a simple undirected graph. In
future, we will investigate approximation algorithms for the two problems.

Acknowledgment. The authors would like to thank the anonymous reviewers of
COCOA 2017 for their insightful comments, which helped us improve the quality of the
paper. Part of the work was completed when Peng Li was with Washington University
in St. Louis as a PhD candidate.

References

1. Bellman, R.: On a routing problem. Technical report, DTIC Document (1956)
2. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,

Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

3. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets
of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS,
vol. 8737, pp. 443–454. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44777-2 37

4. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact algorithms. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
142–151. SIAM (2014)

5. Ford, L.R.: Network flow theory (1956)
6. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-

lem. Theoret. Comput. Sci. 10(2), 111–121 (1980)
7. Gabow, H.N., Nie, S.: Finding a long directed cycle. ACM Trans. Algorithms

(TALG) 4(1), 7 (2008)
8. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory

of NP-completeness (1979)
9. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-

lems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Com-
puting, pp. 47–63. ACM (1974)

10. Guo, L.: Efficient approximation algorithms for computing k disjoint constrained
shortest paths. J. Comb. Optim. 32(1), 144–158 (2016)

11. Guo, L., Liao, K., Shen, H., Li, P.: Efficient approximation algorithms for com-
puting k disjoint restricted shortest paths. In: Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
OR, USA, 13–15 June, pp. 62–64 (2015)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-44777-2_37
https://doi.org/10.1007/978-3-662-44777-2_37

250 L. Guo and P. Li

12. Guo, L., Shen, H.: On finding min-min disjoint paths. Algorithmica 66(3), 641–653
(2013)

13. Guo, L., Shen, H., Liao, K.: Improved approximation algorithms for computing k
disjoint paths subject to two constraints. J. Comb. Optim. 29(1), 153–164 (2015)

14. Li, P., Agrawal, K., Buhler, J., Chamberlain, R.D.: Deadlock avoidance for stream-
ing computations with filtering. In: Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 243–252 (2010)

15. Li, P., Beard, J.C., Buhler, J.D.: Deadlock-free buffer configuration for stream
computing. Int. J. High Perform. Comput. Appl. 31(5), 441–450 (2017)

16. Orda, A., Sprintson, A.: Efficient algorithms for computing disjoint qos paths. In:
INFOCOM 2004. Twenty-Third Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 1. IEEE (2004)

17. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform
matroids with applications. CoRR, abs/1402.3547 (2014)

18. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math.
8(1), 85–89 (1984)

19. Xu, D., Chen, Y., Xiong, Y., Qiao, C., He, X.: On the complexity of and algorithms
for finding the shortest path with a disjoint counterpart. IEEE/ACM Trans. Net-
working 14(1), 147–158 (2006)

A Refined Characteristic of Minimum
Contingency Set for Conjunctive Query

Dongjing Miao(B) and Zhipeng Cai

Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
dmiao1@student.gsu.edu

Abstract. Given a database instance d, a self join free conjunctive query
q and its result q(d), contingency set Γ(q, d) is a set of tuples from d such
that q(d \ Γ) is false but q(d) is true initially. Finding minimum con-
tingency set Γmin(q, d) is an important problem in database area. An
important dichotomy for this problem was identified in the most recent
result, Freire et al. showed that Γmin(q�, d) is NP-complete if the input
query includes a triad of form “Rxy, Syz, Tzx” in a particular manner,
PTime otherwise. However, we have two observations: (a) if two clauses
have a common variable, then this database instance should be too com-
plex, formally speaking, the visualization of its query result will not be of
planarity, this requirement is too strict, (b) there is no limitation on the
length of every circle in the visualization of the query result. This makes
the previous theorem of dichotomy too weak. Therefore, the natural ques-
tion is that, if the query result of input database is not of planarity or
there is a fixed limitation on the length of every circle, is it Γmin(q�, d)
still NP-complete? To this end, we strengthen the hardness result, that
Γmin(q�, d) is still NP-complete, if the input database instance is of pla-
narity, or the maximum length of every circle is limited. Our theorems
also generalize the result of triangle edge deletion problem defined on
general graph into directed graph, make a contribution to graph theory.

Keywords: Minimum contigency set · Database · Complexity

1 Introduction

The problem of making query result empty by tuple deletion from the corre-
sponding source database can be stated as follows [1],

MINIMUM CONTINGENCY SET Γmin(q, d)

INPUT Given a database d, a natural number k, and a boolean
conjunctive query q, its corresponding query result q(d) is true
(say, not empty) initially.
OUTPUT Yes, if there exists a contingency set Γ ⊆ d of size k
such that q(d \ Γ) is false (say, empty).

This work is supported by the National Science Foundation (NSF) under grant NOs
1252292, 1741277 and 1704287.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 251–264, 2017.
https://doi.org/10.1007/978-3-319-71150-8_22

252 D. Miao and Z. Cai

To understand this problem, consider an example of the Minimum Contin-
gency Set problem. A database instance d is given as follows (Fig. 1),

R :

x y

1 a

2 a

1 b

S :

y z

a α

b α

b β

b γ

T :

z x

α 1

β 1

α 2

q(d) :

x y z

1 a α

1 b α

1 b β

2 a α

q(d) :− R(x, y), S(y, z), Z(z, x)

|Γmin(q, d)| = 2 : {(1, b), (a, α)}

R :

x y

1 a

2 a
S :

y z

b α

b β

b γ

T :

z x

α 1

β 1

α 2

q(d) : ∅, is false

Fig. 1. Example of contingency set corresponding to (q, d)

Here, if the given query defined as the shown in the figure, then for given
instance (q, d), a contingency set could be Γ(q, d) = {(1, a), (2, a), (1, b)}, because
its absence is able to make query becoming false. However, if to find a minimum
contingency set, it must be Γ(q, d) = {(a, α), (1, b)} of size 2, which can not be
less than 2.

Minimum Contingency Set problem is a fundamental problem of minimum
side-effect deletion propagation, complexity of it and its related problem has
been widely studied, previous works [1–4] on source side effect decision prob-
lem show some complexity results on the source side-effect problem on both
data and combined complexity. Basically, Freire et al. show that for Γmin(q, d)
studied in this paper is PTime if q is a conjunctive query without structure of
triad, NP-complete otherwise. They also extend the dichotomy condition ‘triad ’
into a more general one ‘fd-induced triad ’ for case with presence of functional
dependencies. Besides research on view side effect, there are previous work on
complexity results on the view side effect free problem [2–7]. On the data com-
plexity of deletion propagation, Kimelfeld et al. [5] showed the dichotomy ‘head
domination’ for every conjunctive query without self join, deletion propagation
is either APX-hard or solvable (in polynomial time) by the unidimensional algo-
rithm. For functional dependency restricted version, it is radically different from
the case without functional dependency, they also showed the corresponding

A Refined Characteristic of Minimum Contingency Set 253

dichotomy of ‘fd-head domination’ [6]. For multiple or group deletion [7], they
especially showed the trichotomy for group deletion a more general case includ-
ing level-k head domination and so on; On the combined complexity of deletion
propagation, Cong et al. [2,3] showed the variety results for different combina-
tion of relational algebraic operators. At the same time, Miao et al. [8] studied
the functional dependency restricted version deletion propagation problem and
showed the tractable and intractable results on both data and combined com-
plexity aspects.

In this paper, we study the data complexity of problem Γmin(q�, d). Data
complexity is different from combined complexity [9], it is the complexity mea-
sured in terms of the size of the database only. We consider two conditions on the
input database instance: (a) the input database is more general that its query
result is of planarity and any value occurs in at most 7 tuples in the result,
(b) circles in the visualization of the query result has a length of no more than
3. We examine the impact of such two conditions on computational complexity
of this problem and show they can still make problem Γmin(q�, d) hard, so the
result of complexity is strengthened.

2 Preparation

We first given an introduction of some necessary terms and notations.

Database. A database schema is a finite set {R1, . . . , Rm} of distinct relations.
Each relation Ri has ri attributes, say {A1, . . . , Ari

}, where ri is the arity of Ri.
Each attribute Aj has a corresponding domain dom(Aj) which is a set of valid
values. A domain dom(Ri) of a relation Ri is a set dom(A1) × · · · × dom(Ari

).
Any element of dom(Ri) is called a fact. A database d can be written as
{D; R1, . . . , Rm}, representing a schema over certain domain D, where D is
a set dom(R1) × · · · × dom(Rm).

Conjunctive query. By datalog-style notation, a boolean conjunctive query can
be written as following

q :−Ri1(x̄1), Ri2(x̄2), . . . , Rik(x̄k)

where each x̄i has an arity of ri1 consisting of constants and variables. Query
result q(d) is true if there exists facts {t1, t2, . . . , tk} in d can be mapped to build-
in variables x̄1, x̄2, . . . , x̄k consistently, say consistent with constants in each x̄1;
Otherwise, q(d) is false. Intuitively, the {t1, t2, . . . , tk} is a witness such that
q is true. From the perspective of relational algebra, conjunctive query writ-
ten as a paradigm with combination of selection, projection and join operation
equivalently. A special case in this paper is conjunctive query of form

q� :−R(x, y), S(y, z), T (z, x)

which is the same query as the example figure above.

254 D. Miao and Z. Cai

Boolean queries. A boolean query q is a function mapping database d to
{true, false}, it is true if query result of q(d) is not empty, i.e., there exists
at least a witness in d such that t |= q. We limit our study inside the first order
query language, so that queries can be written by a certain fragment of the
first order query language. We consider the most important query fragments,
the conjunctive query mentioned above, because it is the key fragment in the
dichotomy of the data complexity of Minimum Contingency Set.

2.1 Analysis of Previous Work

We next point out the limitation of an important previous result before intro-
ducing our results.

Triad. Freire et al. identified a trichotomy of conjunctive query with triad [1]
where triad is a set of three atoms that are connected in a special way,

q� :−R(x, y), S(y, z), T (z, x)

Roughly speaking, if there is no triad existing in those rewritten queries in some
simple way, Minimum Contingency Set problem for these queries is in PTime,
otherwise it is in NP-complete. That is to say, triad makes queries hard, and this
can be formally stated as the following theorem,

Theorem 1 (dichotomy of Minimum Contingency Set [1]). Let q be a
self join free conjunctive query and let q′ be the result of making all dominated
atoms exogenous. If q′ has a triad, then Γmin(q, d) is NP-complete in terms of
data complexity, otherwise it is in PTime.

However, the input is not only the query, but also the input database instance,
however, if we consider both input parameters, the instance built in the proof of
theorem above is too strict, so that the condition is somehow too weak. Before
we strengthen the theorem, we first revisit the instance built constructed in their
proof.

Reduction in dichotomy of Minimum Contingency Set. The reduction is made
from 3SAT to Γmin(q�, d). Then it immediately follows that Γmin(q�, d) is NP-
complete. Given 3SAT instance φ with n variables xi (1 ≤ i ≤ n) and m clauses
Cj (0 ≤ j < m), they build a Γmin(q�, d) instance (Dφ, kφ) such that q�(Dφ) is
true, then the goal is to guarantee

φ ∈ 3SAT ⇔ (Dφ, kφ) ∈ Γmin(q�, d)

The basic idea of the proof is to build circles corresponding to variables
made up of triangles satisfying the q�, and then connected those circles in a
triangle manner to mimic those clauses, then guarantee that all results will be
destroying by deleting only kφ tuples if φ ∈ 3SAT. Concretely, speaking in a way
of visualization, insert triads of form R(a, b), S(b, c) and T (c, a) into database Dφ,

A Refined Characteristic of Minimum Contingency Set 255

so that an triangle is formed by each witness (a, b, c) if dφ |= q�, and each tuple
could be seen as an edge. To guarantee that a minimum contingency set for
Dφ refers to a corresponding truth assignment of the variables xi (1 ≤ i ≤ n)
in φ, so that the only way to remove all triangles depends on contingency set
constructed for q�. Database instance Dφ contains one circular gadget gi for
each variable xi. The circle consists of 12m edges, half of them labeled xi and
the other half labeled xi. Therefore, 12m triangles are formed by this and they
can be minimally broken by choosing the 6m xi edges or the 6m x̄i edges.
Any other way would require more edges removed. Therefore, set the instance
parameter kφ = 6mn, such that there exists a contingency set of size kφ in Dφ

for q� if and only if φ ∈ 3SAT. Based on this, a logically way to connect all the
circles gi is designed. Let clause Cj = x1 + x̄2 + x3, adding 3 tuples to connect
circles of g1, g2 and g3, this also form a triangle with edges labeled x1, x2 and
x3, specifically using edges (b14j+1, b

2
4j+1) of g1 and g2, (c24j+1, c

3
4j+1) of g2 and

g3, and (a3
4j+2, a

1
4j+1) of g3 and g1. In order to do this in Dφ, let a1

4j+1 in g1
also be a3

4j+2 in g3, say they are the same value from the domain of Dφ. This
triangle is destroyed if and only if the chosen variable assignment satisfies Cj .

Here we consider if there are clauses C0 : (x1+x̄2+x3) and C1 : (x1+x4+x5),
then we will have a construction as Fig. 2.

Fig. 2. Example for the simple reduction.

Now, we claim that the database instance got by such reduction will not be
of planarity. According to the construction, we first build circles g1, g2 and g3.
To mimic C0, we have that a1

1 should be a3
2 of g3 and b11 should be b21 of g2,

also g2 and g3 should share a common vertex. Thus, due to the “chain-like” way
of connections in g1, in order to avoid breaking the planarity, g2 and g3 should
locate inside the face of either (a1

1, b
1
1, c

m
4m) or (a1

1, b
1
1, c

1
1). However, no matter

which face is chosen, when mimicking C1, there must be a vertex, say a1
3, shared

by g1 and g3. Then, one can easily verify that, there is no way to do this while
preserving the planarity.

256 D. Miao and Z. Cai

So we have two observations: (a). If two clauses have a common variable,
then query result of this database instance will not be of planarity and degree
of vertex is unbounded, (b). There is no limitation on the length of every circle.
These requirements are too strict, such database instance should be too complex.
Therefore, a natural question is raised here: “What if the input database is not
of planarity or there is a fixed limitation on the length of every circle, is the
problem Γmin(q�, d) still NP-complete?”

3 Results

To answer such questions, we provide the following results to strengthen the
hardness result of Γmin(q�, d).

Theorem 2. Let q be an self join free conjunctive query, If q has a triad and
input database is not of planarity, then finding Γmin(q, d) is still NP-complete.

Proof. To strengthen the hardness result for query with triad, construct a Karp-
reduction from the NP-complete Vertex Cover problem to Γmin(q�, d).

VERTEX COVER

INPUT Given graph G(V,E), an natural number k.
OUTPUT Yes, if there exists an independent set C ⊆ V of size k
such that every vertex of C is not adjacent to any other of C.

Vertex Cover is still NP-complete even if the input graph is planar, and cubic,
i.e., very vertex has a degree of three. Based on this, our reduction can also ensure
that the database built is also of planarity.

Given an instance (G, k) of VERTEX COVER, where G = (V,E) is a planar
graph, we construct an instance (dG, kG) of Γmin(q�, d) as follows, for each u
of V , suppose its neighbors are x, y, z, say N(u) = {x, y, z}. Build a gadget of
planarity, g(u) as a combination of two parts gab(u) and gc(u), where each part
has tow possible instances.

First, we show the instance of gab(u) (Fig. 3),

R

x y

1u 2u

1u 4u

1u 6u

ux 2u

uy 6u

S

y z

2u 3u

4u 3u

4u 5u

6u 5u

2u u(x)

6u u(y)

T

z x

3u 1u

5u 1u

u(x) ux

u(x) 1u

u(y) 1u

u(y) uy

Fig. 3. Gadget for the instance of ga,b(u).

A Refined Characteristic of Minimum Contingency Set 257

and its counterpart (Fig. 4),

R

x y

2u 1u

4u 1u

2u ux

6u 1u

6u uy

S

y z

1u 3u

1u 5u

1u u(x)

ux u(x)

1u u(y)

uy u(y)

T

z x

3u 2u

3u 4u

5u 4u

5u 6u

u(x) 2u

u(y) 6u

Fig. 4. Gadget for the counterpart instance of ga,b(u).

To illustrate the intuition of the instance, we provide the visualization of part
gab(u) and its counterpart as following (Fig. 5),

Fig. 5. Gadget visualization for ga,b(u) and its counterpart.

And we also should show the instance of second part gc(u) as following, the
counterpart of it can be shown as following (Figs. 6 and 7),

R

x y

2u 7u

uz 7u

S

y z

7u 6u

7u 8u

7u u(z)

T

z x

6u 2u

6u uz

8u uz

u(z) uz

Fig. 6. Gadget for the instance of gc(u).

258 D. Miao and Z. Cai

R

x y

2u 6u

uz 6u

uz 8u

uz u(z)

S

y z

6u 7u

8u 7u

u(z) 7u

T

z x

7u 2u

7u uz

Fig. 7. Gadget for the counterpart instance of gc(u).

We also show a visualization of part gc(u) and its counterpart as following
(Fig. 8),

Fig. 8. Gadget visualization for gc(u) and its counterpart.

Observation: each directed edge is a tuple in database instance d, and each
directed triangle is a tuple of q�(d).

To build a complete gadget g(u), merge gab and gc with node 2u and 6u,
equivalent to a union operation in d. Then, the gadget graph also has three
“docking” edges, namely (1, 2), (1, 6), and (6, 7), (or the opposite directions),
which are used for connecting the edge gadgets. Note that for each edge (u, y),
build a triangle �uy : {uy, u(y), y(u)} showed as a dash lined triangle in the
following Fig. 9.

The idea is similar to [10], the triangle is then attached to the vertex gad-
gets g(u) and g(y) as follows. For triangle �uy and vertex gadget g(u), add the
edges y(u), u(y) by inserting a tuple y(u), u(y) into the next corresponding atom,
where (1, 6) is a docking edge that has not been used before. Vertex gadget g(y)
is attached analogously. By taking no account of direction consistency, since G
is cubic, the three docking edges that each vertex gadget provides suffice and
each docking edge is used. Planarity could be ensured when taking no account

A Refined Characteristic of Minimum Contingency Set 259

Fig. 9. Gadget connection visualization.

of direction consistency, by using the docking edges of u according to the rel-
ative order of neighbors of u given by an embedding of G into database. Since
all gadgets are planar, this yields a planar graph when taking no account of
directions.

The intuition of this construction is the following. Each edge (u, y) of the
original graph G must have at least one of its endpoints in the vertex cover.
Correspondingly, for each triangle �uy at least one edge must be deleted. Con-
sider the graph κ(u) induced by the vertex set

{1, 2, 3, 4, 5, 6, 7, 8} ∪ {ux, u(x), uy, u(y), uz, u(z)},

the minimum number of edge deletions to make κ(u) triangle-free is six.
However, if one of the outer edges (ux, u(x)), (uy, u(y)), (uz, u(z)) is deleted,

it is possible to delete the other two outer edges while only deleting seven edges.
Note that this is the minimum number of edge deletions, equals to the size
of minimum contingency set, to make κ(u) triangle-free, say query result is
∅, under the constraint of having to use one of the outer edges. If we do so,
all triangles in edge gadgets for edges incident to u are destroyed. Conversely,
if there is a solution for the constructed instance of Γmin(q�, d), there always
is an optimal solution for Γmin(q�, d) which does not contain the third edge
(u(y), y(u)) and consequently activates κ(u) or κ(y), making the deletion of all
the outer edges of one of these two graphs possible. There are at most k vertex
gadgets corresponding to members of the vertex cover, then we set

kd := 8k + 6(|V |k) = 6|V | + 2k

then, it follows immediately that Γmin(q�, d) is NP-complete.

260 D. Miao and Z. Cai

However, we can not ignore the consistency of edge direction in each common
triangle. We denote the docking edge (1, 2) as A-edge, (1, 6) as B-edge, and (7, 6)
as C-edge one by one. A local view of connecting two vertices can be shown as
following (Fig. 10),

Fig. 10. Local view of connecting two gadgets.

Observation: inside every gadget g, the direction of B-edge is the same as that
of A-edge, and for two adjacent gadgets g and g′ connected by no C-edges, the
directions of A- and B-edge of g are different from that of g′.

This brings a problem that the consistency of directed edges after connecting
all these gadgets in a casual manner while keeping planarity. Consider such an
odd circle as following (Fig. 11),

Fig. 11. Conflict resulting from odd circle of connecting gadgets.

Obviously, according to the observation mentioned above, there is a conflict
of the directions of A3-edge and B3-edge. It is infeasible to implement this in

A Refined Characteristic of Minimum Contingency Set 261

Γmin(q�, d) if do not change the manner of connection. However, a good news
is that, an observation is that the C-edge of each gadget could be used to tol-
erate either, so that each C-edge provide a chance to solve a conflict. We can
connect these gadgets consistently by a careful arrangement of the neighbor of
every C-edge. To do this, we distribute the C-edges to resolve all the direction
conflict greedily. That is, for each vertex u ∈ V and at least two adjacent edges
(u, x1), (u, x2) of u are unlabeled, if there is an adjacent vertex, say xi, whose
C-edge is unused yet, label (u, xi) by C-edge connection, repeat until the edge
labeled graph Gd is obtained.

Pumping algorithm. To reset the graph to be planar, we design this algorithm
to reset the layout of the gadgets corresponding to all vertices. The basic idea is
based on an observation that, gc of every gadget g can be set as either clockwise
or anticlockwise direction, therefore, the gadget of the vertex adjacent to gc part
can be set up in any manner without resulting in a conflict.

C-edge Pumping Algorithm

INPUT - cubic graph G
OUTPUT - edge labeled graph Gd of directed consistency

1: for each vertex u ∈ V and at least two adjacent edges
(u, x1), (u, x2) of u are unlabeled do

2: if there is an adjacent vertex, say xi, whose C-edge is unused
yet then

3: label(u, xi) ← xi.c
4: return the edge labeled graph Gd

We observe that pumping algorithm could deal with the arrangement of not
only cubic graph but also non-planar 3-regular graph. An example solution on
Peterson graph well known as a 3-regular non-planar graph as following, where
the number is the order to distribute the C-edges to the corresponding position
of three alternatives.
Here we claim that:

(a) the pumping algorithm distributes the C-edges in polynomial time O(|d|);
(b) by means of clockwise rotating and vertical flipping, every gadget g(u) will

keep the planarity after rearrangement of connecting manner (In fact, gab

and gc could be two separated part of g(u), then the planarity could never
be violated);

(c) after C-edge rearrangement, there is no odd circle in which every edge is not
connected by C-edge (Fig. 12).

Here the claim accomplishes this proof. �

We also have the following results for limitation on the length of circle.

262 D. Miao and Z. Cai

Fig. 12. Example of result on Peterson graph.

Theorem 3. The problem Γmin(q�, d) is still NP-complete, if all the circles has
a fixed length less than 4.

This result follows by a simple reduction from the triangle edge deletion
problem, which is still NP-complete even each circle is of length no more than 3,
to Γmin(q�, d). We omit the detail here.

Next we show the upper bound of this problem is fixed-parametric tractable,
and provide a kernelization algorithm.

Theorem 4. The problem Γmin(q�, d) admits a problem kernel with vertices less
than 121k2 tuples, which can be computed in O(kn

√
n).

We here provide a kernelization algorithm, one for instances of planarity
property, which produces a kernel consisting of 11k tuples. This kernelization for
instance of planarity is based on idea for kernelizing triangle edge deletion [10].
We show the reductions in the following.

Reduction 1. Remove all tuples that are not included in any witness of any
query result t ∈ q�(d).

We here apply this simple data reduction, and it follows immediately. Then
the second reduction rule is very powerful.

Reduction 2. If a witness of some query result in q�(d) contains only one tuple
t contained in a witness of another different query result, delete t, and reduce
k by 1; If a witness of some query result does not contain a tuple which is in
a witness of another query result, then delete an arbitrary tuple of this witness,
and reduce k by 1.

The correctness of this reduction can be easily verified. One tuple of the
three tuples r, s, t in a witness of any query result has to be removed. Then this
reduction always chooses a tuple r, which covers all witness covered by s or t.

A Refined Characteristic of Minimum Contingency Set 263

Let any two tuples (u, a), (u, b) ∈ d be a dock of cell c iff {(u, c, a), (u, c, b)} ⊆
q�(d) or {(a, u, c), (b, u, c)} ⊆ q�(d) or {(c, a, u), (c, b, u)} ⊆ q�(d). The cell
contained in both edges of a dock is called the dock cell of c.

We have following property identifying a structure which holds in the data-
base instance of planarity: Let d be a database instance and S is the solution of
Γmin(q�, d), let cell set M including all the cells included in S, and for each cell
c ∈ M , let |S[u]| be the number of tuples in S including u. Then, let |S[u]| ≥ 2.
If then d is of planarity, then cell set C excluding M , say C \ M should contain
less than 2|S[u]| − 1 cells with a dock B ⊆ S with u as the dock cell.

For simplicity, we first suppose each tuple t only occurs once in the database.
Thus there are at most 2|S[u]|1 neighbors of u, and they are contained in C \M
and have a dock B ⊆ S with u as the base vertex. As already shown, every
vertex c ∈ C \ M has a dock B ⊆ S, and this implies that the corresponding
dock cell is in M . It follows that

|C \ M | ≤ 2|S[u]| − 2 ≤ 4|S| − 2|M |
We used the fact that the sum over all |S[u]| counts every edge in S exactly

two times. The cell set C is partitioned into M and C \ M , hence

|C| ≤ |M | + |C \ M | ≤ 4|S| − |M |.
Due to the planarity of database instance, then we have the Eulers formula
implying that

|S| ≤ 3|M | − 6.

Therefore we have
|M | ≥ |S| + 2.

Using this, we obtain an upper bound

|C| ≤ 4|S| − |S| − 2 ≤ 11|S| − 2 ≤ 11k

Then, for the general case, we know that each tuple t occurs at most three
times in the database, and distributes in the three tables. Therefore, the final
results of the kernel size should be

|d′| ≤ (3|C|)2 ≤ 121k2.

4 Conclusion

We studied the data complexity of Minimum Contingency Set problem for triad
conjunctive query. If two clauses have a common variable, then this database
instance should be too complex, formally speaking, the visualization of its query
result will not be of planarity, this requirement is too strict. And there is no
limitation on the length of every circle in the visualization of the query result.
This makes the previous theorem of dichotomy weak. To answer such questions,
we provide the following results to strengthen the hardness result, that the data

264 D. Miao and Z. Cai

complexity of Γmin(q�, d) is still NP-complete, if the input database instance is
of planarity, or the maximum length of every circle is limited. Our theorems also
generalize the result of triangle edge deletion problem defined on general graph
into directed graph, make a contribution to graph theorem.

References

1. Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: The complexity of
resilience and responsibility for self-join-free conjunctive queries. Proc. VLDB
Endow. 9(3), 180–191 (2015)

2. Cong, G., Fan, W., Geerts, F., Li, J., Luo, J.: On the complexity of view update
analysis and its application to annotation propagation. IEEE Trans. Knowl. Data
Eng. 24(3), 506–519 (2012)

3. Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving
views. In: Proceedings of the 15th ACM International Conference on Information
and Knowledge Management, CIKM 2006, pp. 632–641. ACM, New York (2006)

4. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annota-
tions through views. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 150–158.
ACM, New York (2002)

5. Kimelfeld, B., Vondrák, J., Williams, R.: Maximizing conjunctive views in deletion
propagation. ACM Trans. Database Syst. 37(4), 24:1–24:37 (2012)

6. Kimelfeld, B.: A dichotomy in the complexity of deletion propagation with func-
tional dependencies. In: Proceedings of the 31st Symposium on Principles of Data-
base Systems, PODS 2012, pp. 191–202. ACM, New York (2012)

7. Kimelfeld, B., Vondrák, J., Woodruff, D.P.: Multi-tuple deletion propagation:
approximations and complexity. Proc. VLDB Endow. 6(13), 1558–1569 (2013)

8. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted
database repair of functional dependency violations. Theoret. Comput. Sci. 609,
594–605 (2016)

9. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC 1982, pp. 137–146. ACM, New York (1982)

10. Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs.
Electron. Notes Discrete Math. 32, 51–58 (2009)

Generalized Pyramidal Tours
for the Generalized Traveling Salesman Problem

Michael Khachay1,2(B) and Katherine Neznakhina1

1 Krasovsky Institute of Mathematics and Mechanics, Ural Federal University,
Ekaterinburg, Russia

mkhachay@imm.uran.ru, eneznakhina@yandex.ru
2 Omsk State Technical University, Omsk, Russia

Abstract. In this paper, we introduce the notion of l-quasi-pyramidal
and l-pseudo-pyramidal tours extending the classic notion of pyrami-
dal tours to the case of the Generalized Traveling Salesman Problem
(GTSP). We show that, for the instance of GTSP on n cities and k clus-
ters with arbitrary weights, l-quasi-pyramidal and l-pseudo-pyramidal
optimal tours can be found in time O(4ln3) and O(2lkl+4n3), respec-
tively. Consequently, we show that, in the most general setting, GTSP
belongs to FPT for parametrizations induced by these special kinds of
tours. Also, we describe a non-trivial polynomially solvable subclass of
GTSP, for which the existence of l-quasi-pyramidal optimal tour (for
some fixed value of l) is proved.

1 Introduction

The Traveling Salesman Problem (TSP) is the famous combinatorial optimiza-
tion problem having many valuable applications in operations research and
attracting interest of scientists for decades (see e.g. [14,19,21]).

It is known that TSP is strongly NP-hard and hardly approximable in its
general setting [22]. At the same time, the problem remains intractable in metric
and Euclidean settings, but can be approximated well in these cases, admitting
fixed-ratio algorithms for an arbitrary metric [10] and Polynomial Time Approx-
imation Schemes (PTAS) for Euclidean spaces of any fixed dimension [1]. Many
generalizations of TSP, e.g. Cycle Cover Problem [13,15,16], Peripatetic Sales-
man Problem [2,12], have the similar approximation behaviour.

Algorithmic issues of finding optimal restricted tours, for several kinds of
restrictions, e.g. precedence constraints, are also actively investigated (see, e.g.
[4,5,9]). Among others, restriction of TSP to considering so called pyramidal
tours (see e.g. [8]) seems to be especially popular. A pyramidal tour respects the
initial order defined on the nodeset of a given graph and, for some r, has the
form

1 = vi1 , vi2 , . . . , vir = n, vir+1 , . . . , vin ,

where vij < vij+1 for any j ∈ {1, . . . , r − 1} and vij > vij+1 for any j ∈ {r +
1, . . . , n − 1}.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 265–277, 2017.
https://doi.org/10.1007/978-3-319-71150-8_23

266 M. Khachay and K. Neznakhina

It is widely known [18] that an optimal pyramidal tour can be found in time
of O(n2) for any weighting function. Recently it was shown [6] that, for the
Euclidean setting, an optimal pyramidal tour can be found in time O(n log2 n).
In papers [11,20], several generalizations of pyramidal tours, for which optimal
tour can also be found efficiently were introduced. Despite their fame, pyramidal
tours have one shortcoming. Known settings of TSP and its generalizations, for
which the existence of optimal pyramidal tours is proven, remain very rare so
far. Actually, they are mostly exhausted with settings satisfying the well known
sufficient conditions by Demidenko and van der Veen (see e.g. [14]) and some
other special cases [3,7,19].

The contribution of this paper is two-fold. First, we introduce (in Sect. 2)
notion of generalized pyramidal tours, we call them l-quasi- and l-pseudo-
pyramidal, extending the classic notion of pyramidal tours and results of [20]
to the case of Generalized Traveling Salesman Problem (GTSP). We show that
l-pseudo-pyramidal and l-quasi-pyramidal optimal tours can be found in time
O(2lkl+4n3) and O(4ln3), respectively. Then, in Sect. 3, we describe a non-trivial
polynomially solvable subclass of GTSP, for which the existence of on optimal
l-quasi-pyramidal tour (for some fixed l) is proved.

2 Generalized Pyramidal Tours

We proceed with the common setting of the Generalized Traveling Salesman
Problem (GTSP). An instance of the GTSP is defined by a complete edge-
weighted graph G = (V,E,w) with weighting function w : E → R+, and by a
given partition V1 ∪ . . . ∪ Vk = V of the nodeset V = V (G) of the graph G.
Feasible solutions are cyclic tours τ = (vi1 , . . . , vik) visiting each cluster Vi once.
Hereinafter, we call such routes Clustered Hamiltonian tours or CH-tours. The
problem is to find a CH-tour of the minimum weight1.

In this section, we extend the well-known notion of a pyramidal tour to the
case of partial orders defined implicitly by the orderings of clusters. Indeed,
(linearly) ordered finite set (V1, . . . , Vk) of clusters induces a partial order on the
nodeset V of the graph G as follows: For any u ∈ Vi and v ∈ Vj , u ≺ v if i < j.

Definition 1. Let τ be a CH-tour

v1, vi1 , . . . , vir , vk, vjk−r−2 , . . . , vj1 , 0 ≤ r ≤ k − 2

such that vt ∈ Vt for any t. We call τ an l-quasi-pyramidal tour, if ip − iq ≤ l
and jp′ − jq′ ≤ l for any 1 ≤ p < q ≤ r and 1 ≤ p′ < q′ ≤ k − r − 2.

The following theorems extend the results proposed in [20] for the classic TSP.

Theorem 1. For any weighting function w : E → R+, a minimum cost l-quasi-
pyramidal CH-tour can be found in time of O(4ln3).

1 In this paper, we restrict ourselves to the case of undirected graphs. Nevertheless,
the analogous argument can be provided to the case of digraphs and asymmetric
weighting functions w.

Generalized Pyramidal Tours for the Generalized Traveling 267

Fig. 1. Path from u to v through the clusters Vtj , tj ∈ S.

Proof. We start with some necessary notation. For any integers i > j, we use
the common shortcuts [j, i], [j, i), and (j, i) for intersections with N of the sets
{j, . . . , i}, {j, . . . , i−1}, {j +1, . . . , i−1}, respectively. For any nodes u ∈ Vi and
v ∈ Vj , i �= j, and an arbitrary subset S ⊂ [i− l, i)\{1, j} or S ⊂ [j− l, j)\{1, i},
let g(v, S, u) be the weight of a shortest (|S| + 1)-edge path from u to v visiting
all the clusters {Vt : t ∈ S} (see Fig. 1). Values of the function g can be easily
calculated recursively, since g(v, ∅, u) = w({v, u}) and

g(v, S, u)

⎧
⎨

⎩

= min
m∈S

min
v′∈Vm

{g(v, S \ {m}, v′) + w({v′, u})}, if S ⊆ [j − l, j) \ {1, i},

= min
m∈S

min
v′∈Vm

{w({v, v′}) + g(v′, S \ {m}, u)}, if S ⊆ [i − l, i) \ {1, j}.

(1)

Further, for any 1 ≤ j < i ≤ k, let f(u, v, T) be the weight of a shortest
path P from u ∈ Vi to v ∈ Vj visiting all the clusters with numbers from
([1, i) ∪ [1, j)) \ T, where T ⊆ ([i − l, i) ∪ [j − l, j)) \ {1, i, j}, and the path P has
the form

u = vi0 , vi1 , . . . , vir = v̄ = vj0 , vj1 , . . . , vjs = v,

for pairwise defferent indexes i0, . . . , ir, j1, . . . , js, such that v̄ ∈ V1, it < i for
1 ≤ t ≤ r, jt′ < j for 0 ≤ t′ ≤ s − 1, and

iq − ip ≤ l, (0 < p < q ≤ r),
jp′ − jq′ ≤ l, (0 ≤ p′ < q′ ≤ s).

As with the function g, values of the function f can be obtained recursively.
We start with values f(u, v, (1, t)) = w({u, v}) for any u ∈ V1 and v ∈ Vt,
2 ≤ t ≤ l + 2. All other necessary values f(u, v, T) for any u ∈ Vi, v ∈ Vj and
any T ⊂ ([i − l, i) ∪ [j − l, j)) \ {1, i, j} can be computed in ascending order by
i and j < i as follows. Let m be the maximum number of the cluster (excluding
i and j) visited by the path P . If m > j, then f(u, v, T) can be calculated by
formula

f(u, v, T) = min
S⊆[m−l,m)\(T∪{1,j})

min
u′∈Vm

{g(u, S, u′) + f(u′, v, T ∪ S)}, (2)

268 M. Khachay and K. Neznakhina

and otherwise by

f(u, v, T) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
S⊆[m−l,m)\(T∪{1})

min
u′∈Vm

{g(u, S, u′) + f(u′, v, T ∪ S)},

if m ∈ {i1, . . . , ir−1}
min

S⊆[m−l,m)\(T∪{1})
min

u′∈Vm

{f(u, u′, T ∪ S) + g(u′, S, v)},

if m ∈ {j1, . . . , is−1}.

(3)

Finally, we obtain f(u, v, T) for any u ∈ Vk and v ∈ Vk−1 and for any T ⊆
[k − l − 1, k − 1). Weight of an optimal l-quasi-pyramidal tour (see Fig. 2) is
given by

min
T⊆[k−l−1,k−1)

min
u∈Vk

min
v∈Vk−1

{f(u, v, T) + g(v, T, u)}.

We compute a näıve upper bound for time complexity of the algorithm. At
first, we calculate the necessary values g(v, S, u) by formula (1) in time O(2ln3).
Then, the initial values f(u, v, (1, t)) can be computed in O(n2). Further, for
any fixed u, v and T , the complexity of Eqs. (2) and (3) does not exceed O(2ln).
Since, formulas (2) and (3) are invoked at most O(2ln2) times, the overall time
complexity bound is O(4ln3), which completes our proof.

Fig. 2. Constructing a minimum weight l-quasi-pyramidal tour

Remark 1. Evidently, result of Theorem 1 can be considered in the context of
parameterized complexity. Actually, Theorem 1 claims that, in the most gen-
eral setting, GTSP is fixed-parameter tractable with respect to parametrization
induced by quasi-pyramidal tours.

Generalized Pyramidal Tours for the Generalized Traveling 269

In Sect. 3, we describe a subclass of geometric GTSP, each of whose instance has
l-quasi-pyramidal optimal tours for some fixed l. Nevertheless, this class seems
to be very specific, and the scheme proposed can hardly be extended to more
general settings. To overcome this gap, we propose a more common notion of
pyramidal-like tours. We call them pseudo-pyramidal.

Definition 2. Let τ be a CH-tour v1, vi1 , . . . , vir , vk, vjk−r−2 , . . . , vj1 such that
vt ∈ Vt for any t. We call τ an l-pseudo-pyramidal tour, if ip − ip+1 ≤ l and
jq − jq+1 ≤ l for any 1 ≤ p ≤ r − 1 and 1 ≤ q ≤ k − r − 3.

It easy to verify that any l-quasi-pyramidal tour is an l-pseudo-pyramidal as
well.

Theorem 2. For any weighting function w : E → R+, a minimum cost l-
pseudo-pyramidal CH-tour can be found in time of O(2lkl+4n3).

Fig. 3. Auxiliary graph Hθ,u induced by the tour θ = {1, i1, . . . , ik−1} and the node
u ∈ V1

Proof. Our argument consists of two stages.
At the first stage, we enumerate all l-pseudo-pyramidal tours in an auxiliary

complete graph H = Kk with vertex set {1, . . . , k}, which we call graph of
clusters. Denote the set of these tours by Θl.

Then, at the second stage, for any tour θ = (1, i1, . . . , ik−1) ∈ Θl and any
node u ∈ V1, we find a shortest u-u-path ρ(θ, u) in the appropriate auxiliary
(k + 1)-partite graph Hθ,u, which is defined as follows. Denote parts of Hθ,u by
π0, . . . , πk. Then, as it is shown at Fig. 3, π0 = πk = {u} and, for any j ∈ [1, k),
πj coincides with the cluster Vij of the graph G, i.e. πj = Vij . For any j ∈ [0, k),
the subgraph Hθ,u〈πj ∪ πj+1〉 induced by πj and πj+1 is a complete bipartite
graph. The edges of the graph Hθ,u inherit the edge weights of the given graph G.

Evidently, any u-u-path in the graph Hθ,u is equivalent to the appropriate
CH-tour in the graph G. Therefore, a minimum cost l-pseudo-pyramidal CH-tour
in the graph G is defined by a shortest path ρ(θ∗, u∗), i.e.

w(ρ(θ∗, u∗)) = min{w(ρ(θ, u)) : θ ∈ Θl, u ∈ V1}.

270 M. Khachay and K. Neznakhina

The time complexity of both stages does not exceed the product of the com-
plexity T (Θl) of the l-pseudo-pyramidal tours enumeration procedure for the
graph H (construction of the set Θl), the size of V1, and the complexity of the
shortest-path problem in graphs H(θ, u), i.e. O(k · n2). Hence, the overall time
complexity will be at most T (Θl) · O(n3), since, without loss of generality, we
can assume that |V1| = min{|Vi| : i ∈ [1, k]} ≤ n/k.

To estimate T (Θl) we augment the dynamic programming procedure devel-
oped in [20].

We introduce two sets Θ+
l and Θ−

l of partial simple (possibly closed) paths
in the graph H. Each element of Θ+

l is a path θ+ = (i1, . . . , ic) such that
ip − ip+1 ≤ l for any p ∈ [1, c). Similarly, each element θ− = (j1, . . . , jd) ∈ Θ−

l

satisfies the equation jq+1 − jq ≤ l for any q ∈ [1, d).
The current state of the recursive procedure is encoded by a triple (i, S,E),

whose entries is defined as follows. The number i ∈ [1, k − 1] denotes depth of
recursion. The set S = {p1, . . . , pm} consists of signed pairs (i, j) ∈ [1, k]2 such
that

(i) p1 = (1, s)+ and p2 = (t, 1)− for some {s, t} ⊂ [1, k]
(ii) there exists a set Θ(i, S) of partial paths θ1, . . . , θm, for which

– θa is a simple path from ia to ja

– θa ∈
{

Θ+
l , if pa = (ia, ja)+

Θ−
l , if pa = (ia, ja)−

– let Ia be the nodeset of the path θa; then, I1 ∩ I2 = {1}, and Ia ∩ Ib = ∅

for any other a and b
– I1 ∪ . . . ∪ Im = [1, i].

Finally, the set E is an arcset of the l-pseudo-pyramidal tour to be constructed
(for the convenience, we store edges of this tour with their bypass directions).
Denote

Q =
⋃{{ia, ja} : pa ∈ S

}
.

The recursion starts from the following set of initial states (see Fig. 4)
{
(k − 1, {(1, s)+, (t, 1)−}, {(s, k), (k, t)}) : {s, t} ⊂ [1, k)

}
.

Any time, when i > 1, there are the following six options. Consider them
separately.

Case 1. There exists p = (i, i)+ ∈ S (or (i, i)−). In this simple case, we make a
recursive call with the state (i − 1, S \ {p}, E) immediately.

Case 2. There exists pa = (i, j)+ ∈ S. Then, in the path θa ∈ Θ+
l , the node i

has a successor t ∈ [i − l, i − 1]. We make a recursive call with the state

(i − 1, (S ∪ {(t, j)+}) \ {pa}, E ∪ {(i, t)})

for any t ∈ [i − l, i − 1] \ (Q \ {j}).

Generalized Pyramidal Tours for the Generalized Traveling 271

Case 3. There exists pa = (i, j)− ∈ S. Then, in the path θa ∈ Θ−
l , there is a

successor t ∈ [1, i − 1], and we call the recursion with the state

(i − 1, (S ∪ {(t, j)−}) \ {pa}, E ∪ {(i, t)})

for each t ∈ [1, i − 1] \ (Q \ {j}).

Case 4. There is p = (j, i)+ ∈ S. This can be treated similarly to Case 3.

Case 5. There is p = (j, i)− ∈ S. This is similar to Case 2.

Case 6. In this case, i �∈ Q, and we should try iteratively all elements of the set
S. Suppose, i belongs to path θa assigned to the pair pa = (ia, ja)+ ∈ S such
that s ∈ [1, i − 1] is its predecessor, and t ∈ [i − l, i − 1] is a successor. Then we
should call the recursion with the state

(i − 1, S ∪ {(ia, s)+, (t, ja)+}, E ∪ {(s, i), (i, t)})

for each s ∈ [1, i − 1] \ (Q \ {ia}) and t ∈ [i − l, i − 1] \ (Q \ {ja}). Similarly, for
the pair pa = (ia, ja)−, we make a recursive call with states

(i − 1, S ∪ {(ia, s)−, (t, ja)−}, E ∪ {(s, i), (i, t)})

for each s ∈ [i − l, i − 1] \ (Q \ {ia}) and t ∈ [1, i − 1] \ (Q \ {ja}).
If i = 1, then S = {(1, 1)+, (1, 1)−}, and the state (1, S, E) is final. In this

case, E contains arcs of an l-pseudo-pyramidal tour, which can be decoded in
time O(k).

Since, as it is shown in [20] the time complexity of the recursive procedure
above is O(2lkl+3), the overall complexity bound of finding the minimum cost
l-pseudo-pyramidal tour is

O(2lkl+3) × O(k) × O(n3) = O(2lkl+4n3).

Thus, the theorem is proved.

Remark 2. As with Theorem 1, Theorem 2 states that, for any weighting func-
tion, GTSP belongs to FPT with respect to parameters k and l. Also, since
O(2l(log n)l+4n3) asymptotically does not exceed 2O(l3) ·O(n4), the problem has
FPT algorithms with respect to parameter l only any time when k = O(log n).

3 Polynomial Time Solvable Subclass of GTSP on Grid
Clusters

In this section, we describe a polynomially solvable subclass of the Generalized
Traveling Salesman Problem on Grid Clusters, GTSP-GC for short. In this spe-
cial case of the GTSP, an undirected edge-weighted graph G = (V,E,w) is given

272 M. Khachay and K. Neznakhina

Fig. 4. Example of the initial recursion state

Fig. 5. An instance of the Euclidean GTSP-GC and its optimal solution

where the set of vertices V correspond to a set of points in the planar rectan-
gular grid. Every nonempty 1 × 1 cell of the grid forms a cluster. The weighting
function is induced by distances between the respective points with respect to
some metric. To simplify it, we consider Euclidean distances, but similar results
can be easily obtained for some other metrics, e.g. for l1. In Fig. 5, we present
an instance of the Euclidean GTSP-GC with 6 clusters.

For two special cases of the problem, when the number k of clusters is O(log n)
or n−O(log n), polynomial time approximation schemes (PTAS) were proposed
in [17]. Meanwhile, the question of a systematic description of polynomial time
solvable subclasses of GTSP-GC, which is closely related to complexity analysis
of the Hamiltonian cycle problem on grid graphs, is still far from its complete
answer.

Let H and W be height and width (number of rows and columns) of the given
grid, respectively. We consider a special case of the GTSP-GC, for which one of
these parameters, say H does not exceed 2 (while the other one is unbounded).
We call this case GTSP-GC(H2). We show that any instance of GTSP-GC(H2)
has an l-quasi-pyramidal optimal CH-tour for some l independent on n. There-
fore, this subclass of GTSP-GC is polynomially solvable due to Theorem 1.

Generalized Pyramidal Tours for the Generalized Traveling 273

Our argument is based on the Tour straightening transformation (Algorithm
1), which is closely related to the well-known class of local search heuristics and
is introduced in the following.

Algorithm 1. Tour straightening transformation
Outer Parameter: t.
Input: an instance of GTSP-GC(H2) and a CH-tothe τ .
Output: a CH-tour τ ′ without t-zigzags.

1: set τ ′ := τ
2: while τ ′ has t-zigzag do
3: assume that equation (5) is valid (without loss of generality, we assume that

cp − cq = t − 1), the case of (6) can be treated similarly;
4: let C be the set of columns with numbers cq, . . . , cp (see Fig. 6);
5: let Y = (y1, . . . , y2t+4) be ordinate sequence of the nodes visited by τ in C

augmented by ordinates of left and right crossing points;
6: find an optimal 2-medians the clustering for Y with medians m1 and m2;
7: replace segments of tour τ ′ belonging to C by horizontal lines at height m1 and

m2 connected to all points mentioned in Step 5 by line segments (Fig. 7)
8: end while
9: output the CH-tour τ ′.

To describe the transformation, assign to columns of the grid defining the
given instance of GTSP-GC(H2), integer numbers 1, 2, . . . , W (from the left to
the right). Consider an arbitrary CH-tour τ . Assigning to each node vi of τ the
number ci of the column it belongs to, obtain a sequence σ of column numbers
presented in the order induced by the tour τ . Without loss of generality, assume
that σ has the form

1 = c1, c2, . . . , cr = W, cr+1 . . . , cs (4)

for some appropriate numbers r and s.

Fig. 6. Segment of τ with t-zigzag

274 M. Khachay and K. Neznakhina

Suppose, for some integer number t, whose value will be specified later, there
exist indices

1 ≤ p < q ≤ r, such that cp − cq ≥ t − 1, or (5)
r + 1 ≤ p′ < q′ ≤ s, such that cq′ − cp′ ≥ t − 1. (6)

In this case, we say that the tour τ has a t-zigzag (Fig. 6). Obviously, any l-
quasi-pyramidal tour contains no t-zigzags, for t ≥ l. Algorithm 1 replaces all
segments of the tour τ having t-zigzags with subtours of a special kind.

Fig. 7. Replacing t-zigzag with tour segments of the special kind

To specify the value of t, notice that the weight of eliminated segments of τ
has an evident lower bound

t + 2(t − 1) + t − 2 = 4t − 4.

Meanwhile, the weight of their replacement in Step 7 at any iteration of Algo-
rithm 1 is at most 2t + 2F (Y, S2), where F (Y, S2) is an optimum value of the
2-medians clustering objective function for a sample Y taken from the line seg-
ment S2 = {y : 0 ≤ y ≤ 2}.

To estimate an upper bound for F (Y, S2) we need the following technical
lemma.

Lemma 1. For any sample ξ = (p1, . . . , pn), pi ∈ S1 = {p : 0 ≤ p ≤ 1} there
exist numbers m1 and m2 ∈ S1 such that

F (ξ, S1) =
n∑

i=1

min{|pi − m1|, |pi − m2|} ≤ n/6. (7)

We give a short sketch of the proof of Lemma 1 postponing its full version to
the forthcoming paper. Without loss of generality, we assume that any sample
ξ = (p1, . . . , pn) contains points pi in ascending order. Moreover, we assume that
any cluster C = {i1, . . . , iμ} ⊂ [1, n] inherites this property, i.e. pi1 ≤ . . . ≤ piµ

and pi ≤ pj holds for any partition C1 ∪ C2 = [1, n] and any i ∈ C1 and j ∈ C2.
Then, for the median m of a μ-points cluster C we obtain

μ∑

t=1

|pit − m| =
�μ/2	∑

t=1

(m − pit) +
μ∑

t=
μ/2�+1

(pit − m) = −
�μ/2	∑

t=1

pit +
μ∑

t=
μ/2�+1

pit .

Generalized Pyramidal Tours for the Generalized Traveling 275

Therefore, for a given sample ξ, the value F (ξ, S1) depends on the choice of a
partition C1 ∪ C2 = [1, n] ultimately and obeys the equation

F (ξ, S1) = min

{
∑

i∈C1

|pi − m1| +
∑

i∈C2

|pi − m2| : C1 ∪ C2 = Nn

}

= min

⎧
⎨

⎩
−

�μ1/2�∑

i=1

pi +

μ1∑

i=�μ1/2�+1

pi −
�μ2/2�∑

i=1

pi+μ1 +

μ2∑

i=�μ2/2�+1

pi+μ1 : μ1 + μ2 = n

⎫
⎬

⎭
.

Thus, supξ∈Sn
1

F (ξ, S1) coincides with an optimum value q∗(n, S1) of linear
program (8)

q∗(n, S1) = max q
s.t.

−
�μ1/2	∑

i=1

pi +
μ1∑

i=
μ1/2�+1

pi

−
�μ2/2	∑

i=1

pi+μ1 +
μ2∑

i=
μ2/2�+1

pi+μ1 ≥ q, (μ1 + μ2 = n),

0 ≤ p1 ≤ . . . ≤ pn ≤ 1.
(8)

Applying to program (8) the recurrent variable elimination technique, it is easy
to verify that q∗(n, S1) ≤ n/6, which completes the sketch of our proof.

Getting back to discussion of Algorithm 1, we obtain from Lemma 1 that

F (Y, S2) ≤ 2 · q∗(2t + 4, S1) ≤ 2 · (2t + 4)/6.

Therefore, at any iteration of Algorithm 1, the tour τ ′ becomes cheeper if

2t + 4t/3 + 8/3 ≤ 4t − 4, i.e. t ≥ 10.

Fig. 8. Cluster ordering

Further, let the cells of the grid be ordered as in Fig. 8 (i.e., top-down and
left-right). For t = 10, any CH-tour of the given GTSP-GC(H2) instance can
be transformed to l-quasi-pyramidal CH-tour for l = 20 without increasing its
weight. Hence, we have proved the following theorem.

276 M. Khachay and K. Neznakhina

Theorem 3. Any instance of GTSP-GC(H2) has an optimal 20-quasi-pyrami-
dal CH-tour.

As a consequence of Theorems 1 and 3, we obtain that GTSP-GC(H2) can
be solved to optimality in time O(n3).

4 Conclusion

In this paper, the new notions of l-quasi-pyramidal and l-pseudo-pyramidal tours
extending the classic notion of pyramidal tours are introduced. We show that,
similar to the case of pyramidal tours and TSP, an optimal l-quasi-pyramidal
tour for the Generalized Traveling Salesman Problem can be found efficiently (for
an arbitrary weighting function). Also, we describe a non-trivial polynomially
solvable geometric special case of GTSP. Each instance of the problem in question
has an l-quasi-pyramidal tour as an optimal solution. Actually, an instance of
this problem is defined by the unit 2-row rectangular grid on the Euclidean plane.
However, the trick with 2-medians can not be applied straightforward even to
the case h = 3, we believe that we can soon prove the existence of l-pseudo-
pyramidal optimal tours for the case of GTSP-GC(Hh) defined by a grid of an
arbitrary fixed height h.

Acknowledgements. This research was supported by Russian Science Foundation,
project no. 14-11-00109.

References

1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45, 753–783 (1998)

2. Baburin, A., Della Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.T.: Approx-
imation algorithms for the 2-Peripatetic salesman problem with edge weights 1 and
2. Discrete Appl. Math. 157(9), 1988–1992 (2009)

3. Baki, M.F.: A new asymmetric pyramidally solvable class of the traveling salesman
problem. Oper. Res. Lett. 34(6), 613–620 (2006). http://www.sciencedirect.com/
science/article/pii/S0167637706000022

4. Balas, E.: New classes of efficiently solvable generalized Traveling Salesman Prob-
lems. Ann. Oper. Res. 86, 529–558 (1999)

5. Balas, E., Simonetti, N.: Linear time dynamic-programming algorithms for new
classes of restricted TSPs: a computational study. INFORMS J. Comput. 13(1),
56–75 (2001). https://doi.org/10.1287/ijoc.13.1.56.9748

6. de Berg, M., Buchin, K., Jansen, B.M.P., Woeginger, G.: Fine-grained complex-
ity analysis of two classic TSP Variants. In: Chatzigiannakis, I., Mitzenmacher,
M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 55, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2016). http://drops.dagstuhl.de/opus/volltexte/
2016/6277

http://www.sciencedirect.com/science/article/pii/S0167637706000022
http://www.sciencedirect.com/science/article/pii/S0167637706000022
https://doi.org/10.1287/ijoc.13.1.56.9748
http://drops.dagstuhl.de/opus/volltexte/2016/6277
http://drops.dagstuhl.de/opus/volltexte/2016/6277

Generalized Pyramidal Tours for the Generalized Traveling 277

7. Burkard, R.E., Glazkov, Y.V.: On the traveling salesman problem with a
relaxed monge matrix. Inform. Process. Lett. 67(5), 231–237 (1998). http://www.
sciencedirect.com/science/article/pii/S0020019098001197

8. Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger, G.J.:
Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev.
40(3), 496–546 (1998)

9. Chentsov, A.G., Khachai, M.Y., Khachai, D.M.: An exact algorithm with linear
complexity for a problem of visiting megalopolises. Proc. Steklov Ins. Math. 295(1),
38–46 (2016). https://doi.org/10.1134/S0081543816090054

10. Christofides, N.: Worst-case analysis of a new heuristic for the Traveling Salesman
Problem. In: Symposium on New Directions and Recent Results in Algorithms and
Complexity, p. 441 (1975)

11. Enomoto, H., Oda, Y., Ota, K.: Pyramidal tours with step-backs and the asym-
metric Traveling Salesman Problem. Discrete Appl. Math. 87(1–3), 57–65 (1998)

12. Gimadi, E.K., Glazkov, Y., Tsidulko, O.Y.: Probabilistic analysis of an algorithm
for the m-planar 3-index assignment problem on single-cycle permutations. J. Appl.
Ind. Math. 8(2), 208–217 (2014)

13. Gimadi, E.K., Rykov, I.A.: On the asymptotic optimality of a solution of the
euclidean problem of covering a graph by m nonadjacent cycles of maximum total
weight. Dokl. Math. 93(1), 117–120 (2016)

14. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Springer, Boston (2007)

15. Khachai, M., Neznakhina, E.: Approximability of the problem about a minimum-
weight cycle cover of a graph. Doklady Math. 91(2), 240–245 (2015)

16. Khachay, M., Neznakhina, K.: Approximability of the minimum-weight k-Size cycle
cover problem. J. Glob. Optim. 66(1), 65–82 (2016). https://doi.org/10.1007/
s10898-015-0391-3

17. Khachay, M., Neznakhina, K.: Towards a PTAS for the generalized TSP in
grid clusters. AIP Conf. Proc. 1776(1), 050003 (2016). https://doi.org/10.1063/1.
4965324

18. Klyaus, P.: Generation of testproblems for the Traveling Salesman Problem.
Preprint Inst. Mat. Akad. Nauk. BSSR (16) (1976). (in Russian)

19. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley Series
in Discrete Mathematics & Optimization. Wiley, Chichester (1985)

20. Oda, Y., Ota, K.: Algorithmic aspects of pyramidal tours with restricted jump-
backs. Interdisc. Inform. Sci. 7(1), 123–133 (2001)

21. Pardalos, P., Du, D., Graham, R.: Handbook of Combinatorial Optimization.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1

22. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23, 555–565
(1976)

http://www.sciencedirect.com/science/article/pii/S0020019098001197
http://www.sciencedirect.com/science/article/pii/S0020019098001197
https://doi.org/10.1134/S0081543816090054
https://doi.org/10.1007/s10898-015-0391-3
https://doi.org/10.1007/s10898-015-0391-3
https://doi.org/10.1063/1.4965324
https://doi.org/10.1063/1.4965324
https://doi.org/10.1007/978-1-4419-7997-1

The 2-Median Problem on Cactus Graphs
with Positive and Negative Weights

Chunsong Bai1 and Liying Kang2(B)

1 College of Mathematics, Fuyang Normal University,
Fuyang 236041, People’s Republic of China

csbai@fync.edu.cn
2 Department of Mathematics, Shanghai University,

Shanghai 200444, People’s Republic of China
lykang@shu.edu.cn

Abstract. This paper studies the problem of locating two vertices in
a cactus with positive and negative vertex weights. The problem has
objective to minimize the sum of minimum weighted distances from every
vertex of the cactus to the two medians. We develop an O(n2) algorithm
for the 2-median problem, where n is the number of vertices of the cactus.

Keywords: Location problem · Median problem · Cactus graphs ·
Obnoxious facility

1 Introduction

For the classical p-median problem, we are given an undirected graph G = (V,E)
with vertex set V and edge set E. The aim is to locate p facilities on edges or
vertices of G so as to minimize the overall sum of the weighted distances of the
vertices to the respective closest facility. In reality, some vertices are desirable
and others are undesirable, the problem is referred to as the semi-obnoxious
location problem. Burkard et al. [4] considered 2-medians problems in trees with
positive or negative (pos/neg-) weights, and formulated two objective functions:
(1) the sum of the minimum weighted distances over all vertices (MWD); (2) the
sum of the weighted minimum distances over all vertices (WMD). Benkoczi [1]
and Benkoczi et al. [2] considered the pos/neg-weighted 2-median problem on
trees.

In this paper, we consider the pos/neg-weighted 2-median problem on cacti
for the MWD model. In Sect. 2, we give some notations and preliminaries, which
will be used throughout this paper. Section 3 provides some results of 1-median
problems on a kind of special graphs. In Sect. 4, we show that the 2-median
problem can be solved in O(n2) time.

Research was partially supported by NSFC (grant numbers 11571222, 11471210,
61672006).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 278–285, 2017.
https://doi.org/10.1007/978-3-319-71150-8_24

The 2-Median Problem on Cactus Graphs 279

2 Notations and Preliminaries

Let G = (V,E) be a connected graph. Each vertex v ∈ V (or vi ∈ V) has a real
weight w(v) (or wi) and each edge e = (vi, vj) ∈ E has a length l(e) ≥ 0. If
the weight of v is given by w(v) + t, where t ≥ 0 is a parameter, then w(v) and
w(v) + t are called the original and dynamic weight of v, respectively. A cycle
is a sequence (v1, . . . , vk, vk+1 = v1) of k, k > 2, distinct vertices supplemented
by vk+1 = v1 such that (vj , vj+1) is an edge, j = 1, . . . , k. A graph G is a cactus
graph is any two arbitrary cycles in G have at most one vertex in common.

Let C = (V (C), E(C)) be a cycle in the cactus G. Denote by L(C) :=∑
e∈E(C) l(e) the length of C. Obviously, each vertex v ∈ V (C) has exactly one

point op(v) ∈ C such that d(v, op(v)) = L(C)
2 holds, i.e., op(v) is opposite to v

in C. As in [5], the opposite points op(v) for all vertices v which lie in a cycle
can be found in O(n) time.

For a given point x, and a pair {x, y} of points, the sum of the minimum
weighted distances are defined as follows:

f(x) :=
n∑

i=1

w(vi)d(vi, x),

F (x, y) :=
n∑

i=1

min
(
w(vi)d(vi, x), w(vi)d(vi, y)

)
.

The corresponding two optimization problems are:

(L1) Find a location of the point x in G such that f(x) is minimized.
(L2) Find a location of points x, y in G such that F (x, y) is minimized.

As shown in [5], the so-called Vertex Optimality Property holds for the prob-
lems L1 and L2 on a modified cactus graph G.

Given a tree T0 rooted at v1, in which vi has a positive weight wi while
i = 2, . . . , n, whereas v1 has pos/neg-weight w1. Let e = (va, vb) be an edge of
T0. Note that T0 \ e has exactly two connected components, whose vertex sets
will be denoted by Va and Vb respectively, where va ∈ Va and vb ∈ Vb. Denote
by W (Va) and W (Vb) the total weights of vertices in Va and Vb, respectively.
Furthermore, we define

D(va, vb) := W (Va) − W (Vb).

Lemma 1. Let e = (va, vb) be an edge of T0. If v1 ∈ Va and D(va, vb) ≤
min{0, 2w1}, then there exists a vertex v∗ ∈ Vb which is an optimal solution
to the problem L1 on T0.

280 C. Bai and L. Kang

Proof. By the definition of L1, we have

f(vb) − f(va) =
∑

u∈Va∪Vb

w(u)d(u, vb) −
∑

u∈Va∪Vb

w(u)d(u, va)

=
∑

u∈Va

w(u)d(u, va) + W (Va)l(e) +
∑

u∈Vb

w(u)d(u, vb)

− (∑

u∈Va

w(u)d(u, va) +
∑

u∈Vb

w(u)d(u, vb) + W (Vb)l(e)
)

= D(va, vb)l(e) ≤ min{0, 2w1}l(e) ≤ 0.

(1)

Note that for each vertex v ∈ Va, we have

f(va) − f(v) =
∑

u∈Va

w(u)d(u, va) +
∑

u∈Vb

w(u)d(u, va)

− (
∑

u∈Va

w(u)d(u, v) +
∑

u∈Vb

w(u)d(u, va) +
∑

u∈Vb

w(u)d(va, v)
)

=
∑

u∈Va

w(u)
(
d(u, va) − d(u, v)

)− W (Vb)d(va, v)

=
∑

u∈Va\{v1}
w(u)

(
d(u, va) − d(u, v)

)
+ w1

(
d(u, va) − d(u, v)

)− W (Vb)d(va, v)

≤
∑

u∈Va\{v1}
w(u)d(va, v) + |w1|d(va, v) − W (Vb)d(va, v)

=
∑

u∈Va

w(u)d(va, v) − W (Vb)d(va, v) + (|w1| − w1)d(va, v)

= D(va, vb)d(va, v) + (|w1| − w1)d(va, v)
≤ (min{0, 2w1} + |w1| − w1)d(va, v) = 0.

(2)

Combining (1) with (2), we have

f(v) ≥ f(vb)

for each vertex v ∈ Va. It follows that there exists a vertex v∗ ∈ Vb which is an
optimal solution to the problem L1 on T0.

Theorem 1. A vertex v∗ is an optimal solution to the problem L1 on T0 if and
only if, for each neighbor va of v∗: (1) D(v∗, va) ≥ max{0,−2w1} holds for the
case v1 ∈ Va; and (2) D(v∗, va) ≥ 0 holds for the case v1 �∈ Va.

3 Parametric Problems L1 on Graphs

In this section, our aim is to develop algorithms for parametric problems L1 on
a cycle, a tree and a cactus, respectively.

The 2-Median Problem on Cactus Graphs 281

3.1 A Parametric Problem L1 on a Cycle

Given a cycle C ′ = (V,E) with n vertices, in which vi has a nonnegative weight
wi while i = 2, . . . , n, whereas v1 has a dynamic weight w1 + t, t ≥ 0. The task
is to solve problems L1 on C ′ for every parameter value t.

Recall that the objective function value of vertex vi, for i = 1, . . . , n is given by

fi(t) :=
n∑

j=1

wjd(vi, vj) + d(vi, v1) · t.

Then the task of the parametric problem L1 on C is to find the function

F (t) := mini=1,...,nfi(t)

and the corresponding arguments t.

Lemma 2. F (t) is a continuous, concave and piecewise linear function with at
most n breakpoints.

Based on Lemma 2, the parametric problem L1 can be solved in linear time as
in [6].

3.2 A Parametric Problem L1 on a Tree

Given a tree T ′ = (V,E) with n vertices, in which vi has a nonnegative weight
wi while i = 2, . . . , n, whereas v1 has a dynamic weight w1 + t, t ≥ 0 and has
the degree of one. The task is again to solve the problem L1 on T ′ for every
parameter value t ≥ 0.

Lemma 3. Let v∗ ∈ V be the optimal solution to the problem L1 on T ′ for
t = 0. Then, for every parameter value t > 0, there exists a vertex on the path
from v∗ to v1 which is an optimal solution.

Based on Lemma 3, in order to solve the parametric problem L1, we only have to
consider vertices on the path from v∗ to v1. It is easy to see that the parametric
problem L1 on T ′ can be solved in linear time.

3.3 A Parametric Problem L1 on a Cactus

Finally, we show how to solve the considered problem on a cactus G with dynamic
vertex v1, by using of the idea for solving the parametric 1-median problem
proposed in [6].

The method consists of two steps. In step 1, we solve the parametric problem
L1 on the tree structure of the cactus, and obtain optimal solutions for every
parameter value t ≥ 0. In step 2, we compute the corresponding optimal solution
in G. Based on Theorem 1, if a vertex of the tree structure which was not a vertex
in a cycle is optimal for all t ∈ [t1, t2] (or [t1,∞)) the corresponding vertex in
the cactus is also optimal for the same values of t. If v was obtained by shrinking

282 C. Bai and L. Kang

some cycle C is optimal for all t ∈ [t1, t2] (or [t1,∞)), then there exists a vertex
in C which is optimal for a parameter value in [t1, t2] (or [t1,∞)). In this case,
we need to solve a parametric problem L1 on C for all t ∈ [t1, t2] (or [t1,∞)).
It is shown in [6] that this problem can be solved in linear time for all cycles in
the cactus. Therefore, it can be said that the considered parametric problem L1

on a cactus can be solved in linear time.

4 Problems L2 on Cactus Graphs

In this section we deal with the problem L2 on a cactus G = (V,E). Without loss
of generality, we assume that each vertex of G is contained in at most one cycle.
We first consider the case that the problem has an optimal solution consisting
of two distinct vertices.

4.1 Local 1-Median Problems

Let {m1,m2} be an optimal solution. Let m be the midpoint of the path from
m1 to m2, and let e = (vi, vj) be the edge that contains m. Assume that vi lies
on the path from vj to m1. Note that if the edge e is contained in a cycle C,
then there exists another point m′ in C such that d(m1,m

′) = d(m2,m
′). Let

e′ = (vi′ , vj′) be the edge that contains m′. Assume that vi′ lies on the path
from vj′ to m1. The edges e and e′ are called critical edges.

Let C = (V (C), E(C)) be a cycle of G with l vertices. By deleting all edges
E(C) from G, we obtain l cacti G1 = (V1, E1), . . . , Gl = (Vl, El), where we
assume that vi ∈ Vi for i = 1, . . . , l. Let V +

i and V −
i , i = 1, . . . , l, be the vertices

in Vi with nonnegative weights and negative weights, respectively. For each vi
and Gi, i = 1, . . . , l, we introduce two notations:

W+
i :=

∑

u∈V +
i

w(u), W−
i :=

∑

u∈V −
i

w(u),

and two functions:

f̄+(vi) :=
∑

u∈V +
i

w(u)d(u, vi), f̄−(vi) :=
∑

u∈V −
i

w(u)d(u, vi).

It is easy to see that the values W+
i and W−

i for all i = 1, . . . , l can be
computed in linear time, and the values f̄+(vi) and f̄−(vi) for all i = 1, . . . , l
can also be computed in linear time as in [3].

Furthermore, we introduce the following notations:

W+(k1, k2) :=
k2∑

i=k1

W+
i , W−(k1, k2) :=

k2∑

i=k1

W−
i ,

where 1 ≤ k1 ≤ k2 ≤ l + 1. We can calculate all W+(k1, k2) and W−(k1, k2) for
1 ≤ k1 ≤ k2 ≤ l + 1 by passing through all Gi and cost O(n2) time.

The 2-Median Problem on Cactus Graphs 283

For each pair of edges e1, ek ∈ E(C), 2 ≤ k ≤ l, construct two cacti G1
k and

G2
k, which differ from G only in the weights of the vertices, respectively. Denote

by X2k and Yk+1,1 the sub-cacti of G which are obtained by deleting e1 and ek ,
where v2, vk ∈ X2k and vk+1, v1 ∈ Yk+1,1. The weights of the vertices in G1

k are
defined as

w1
i =

{
wi if [(vi ∈ X2k ∧ wi ≥ 0) or (vi ∈ Yk+1,1 ∧ wi ≤ 0)],
0 if [(vi ∈ X2k ∧ wi < 0) or (vi ∈ Yk+1,1 ∧ wi > 0)].

Then the task of the local 1-median problem P 1
k on G1

k is to find a vertex v∗ ∈ X2k

such that
f(v∗) = min

v∈X2k
f(v).

Similarly, we can define the graphs G2
k and the corresponding problems P 2

k for
edges e1, ek ∈ E(C), k = 2, . . . , l.

Furthermore, the parametric problems L1 on Gi are solved for all i =
1, 2, . . . , l in a preprocessing procedure, where the weight of vertex vi ∈ C
depends on the parameter t > 0, i.e., wi(t) := wi + t. It is easy to see that
these problems can be solved in linear time.

4.2 Algorithm for Local 1-Median Problems

In this subsection we show how to solve the problems P 1
k , 2 ≤ k ≤ l in linear

time. In order to make this procedure more clear it is useful to define some
function values

f̂+
k (vi) :=

i−1∑

j=2

∑

u∈V +
j

w(u)d(u, vi), f̂−
k (vi) :=

l+1∑

j=op(i)

∑

u∈V −
j

w(u)d(u, vi),

and

f̌+
k (vi) :=

k∑

j=i+1

∑

u∈V +
j

w(u)d(u, vi), f̌−
k (vi) :=

op(i)−1∑

j=k+1

∑

u∈V −
j

w(u)d(u, vi),

for all i = 2, . . . , k. Using these definitions, the objective function value of the
vertex vi ∈ V (C) is given by

fk(vi) = f̂+
k (vi) + f̂−

k (vi) + f̌+
k (vi) + f̌−

k (vi) + f̄+(vi) (3)

for all i = 2, . . . , k.
Given a vertex u ∈ Vi \ vi, the formula

fk(u) = f̂+
k (vj) + f̂−

k (vj) + f̌+
k (vj) + f̌−

k (vj) + f̄+(u)
+

(
W+(2, i − 1) + W−(op(i + 1), l + 1)

+ W+(i + 1, k) + W−(k + 1, op(i))
)

· d(vi, u)

(4)

284 C. Bai and L. Kang

holds for all i = 2, . . . , k.
Note that the optimal solution to the problem P 1

2 on G1
2 is already known

from the preprocessing procedure and f̂+
2 (v2) = f̌+

2 (v2) = 0 holds. Suppose that
the problem P 1

k on G1
k has already been solved and assume that the optimal

solution v∗ is in Gk′ , 2 ≤ k′ ≤ k.
Consider the problem P 1

k+1 on G1
k+1. Obviously, we have

f̂+
k+1(vk′) = f̂+

k (vk′)

and
f̂−
k+1(vk′) = f̂−

k (vk′).

Moreover, we have

f̌+
k+1(vk′) = f̌+

k (vk′) + f̄+(vk+1) + W+
k+1 · d(vk+1, vk′)

and
f̌−
k+1(vk′) = f̌−

k (vk′) − f̄−(vk+1) − W−
k+1 · d(vk+1, vk′),

where d(vk+1, vk′) is the distance of the path from vk+1 to vk′ in counter-
clockwise direction.

Note that, once all vertices in Vk+1 with positive weights are added, the
optimal solution v∗∗ will in some sense move in the direction to the vertices
in Vk+1. Furthermore, according to Lemma 1, v∗∗ can never locate in Vj \ vj
for j = k′ + 1, . . . , k. Therefore, v∗∗ can locate either in (i) Gk′ ; or (ii) vertices
vk′+1, . . . , vk; or (iii) Gk+1.

In the case (i), the optimal solution v∗∗ can be found by solving the para-
metric problem L1 on Gk′ , where the dynamic weight of vk′ is increased by

W+
k+1 − W−

k+1.

Then the optimal objective function value fk+1(v∗∗) can be computed by using
Eq. (3).

In the case (ii), we first compute the function values for vk′+1:

f̂+
k+1(vk′+1) = f̂+

k+1(vk′) + f̄+(vk′) + W+(2, k′) · l(vk′ , vk′+1), (5)

f̂−
k+1(vk′+1) = f̂−

k+1(vk′) − f̄−(op(vk′)) − W−
op(k′) · L(C)

2

+ W−(op(k′ + 2), l + 1) · l(vk′ , vk′+1)
(6)

and

f̌+
k+1(vk′+1) = f̌+

k+1(vk′) − f̄+(vk′+1) − W+(k′ + 1, k + 1) · l(vk′ , vk′+1), (7)

f̌−
k+1(vk′+1) = f̌−

k+1(vk′) + f̄−(op(vk′)) + W−
op(k′) · d(op(vk′), vk′+1)

− W−(k + 2, op(k′)) · l(vk′ , vk′+1).
(8)

Combining Eqs. (5)–(8) with (4), the objective function value fk+1(vk′+1) can
be obtained. This is repeated for the vertices vk′+2, . . . , vk, and then choose a
vertex from vk′+1, . . . , vk with minimal function value as v∗∗.

The 2-Median Problem on Cactus Graphs 285

In the case (iii), it suffices to solve the parametric problem L1 on Gk+1, where
the dynamic weight of vk+1 is given by

wk+1(t) = wk+1 + W+(2, k) + W−(k + 2, l + 1).

Then we need to add f̂+
k+1(vk+1) and f̂−

k+1(vk+1) to the optimal objective func-
tion value of the parametric problem to obtain the optimal value fk+1(v∗∗).
Thus, we have solved the 1-median problem on G1

k+1 and then we apply the
same procedure for the graph G1

k+2, . . . , G
1
l .

Note that the updates given in Eqs. (5)–(8) can be done in constant
time for each vertex. Moreover, all the remaining computations can be done
in constant time. Thus, all corresponding median problems can be solved
in linear time for the fixed critical edge e1. Since there are O(n) con-
tained edges in a cycle, the computation of minvs∈X

∑
v∈X+∪Y − w(v)d(v, vs) +

minvt∈Y

∑
v∈Y +∪X− w(v)d(v, vt) can be completed for all pairs (X,Y) with two

critical edges in O(n2) time.
In the case that a pair (X,Y) has just one bridge edge, we can solve the two

corresponding pos/neg-weighted 1-median problems in linear time by using the
algorithm proposed in [3]. Thus,

min
vs∈X

∑

v∈X+∪Y −
w(v)d(v, vs) + min

vt∈Y

∑

v∈Y +∪X−
w(v)d(v, vt)

can be solved for all pairs (X,Y) in O(n2) time. Summarizing we get the following
theorem.

Theorem 2. The problem L2 on cactus graphs can be solved in O(n2) time.

References

1. Benkoczi, R.: Cardinality constrained facility location problems in trees. Ph.D. The-
sis, Simon Fraser University (2004)

2. Benkoczi, R., Breton, D., Bhattacharya, B.: Efficient computation of 2-medians in
a tree network with positive/negative weights. Discrete Math. 306(14), 1505–1516
(2006)

3. Burkard, R.E., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on cactus. Computing 60(3), 193–215 (1998)

4. Burkard, R.E., Çela, E., Dollani, H.: 2-median in trees with pos/neg weights. Dis-
crete Appl. Math. 105(14), 51–71 (2000)

5. Burkard, R.E., Hatzl, J.: Median problems with positive and negative weights on
cycles and cacti. J. Comb. Optim. 20(1), 27–46 (2010)

6. Hatzl, J.: Median problems on wheels and cactus graphs. Computing 80(4), 377–393
(2007)

The Eigen-Distribution of Weighted Game Trees

Shohei Okisaka(B), Weiguang Peng(B), Wenjuan Li(B),
and Kazuyuki Tanaka(B)

Mathematical Institute, Tohoku University, Sendai, Japan
shohei.okisaka@gmail.com, pwgedu@163.com, wenjuanli1701@gmail.com,

tanaka.math@tohoku.ac.jp

Abstract. This paper is devoted to the ongoing study on the equilib-
rium points of AND-OR trees. Liu and Tanaka (2007, 2007a) character-
ized the eigen-distributions that achieve the distributional complexity,
and among others, they proved the uniqueness of eigen-distribution for
a uniform binary tree. Later, Suzuki and Nakamura (2012) showed that
the uniqueness fails if only directional algorithms are allowed. Peng et
al. (2016) extended the studies on eigen-distributions to balanced multi-
branching trees of height 2. But, it remains open whether the uniqueness
still holds or not for general multi-branching trees. To this end, we intro-
duce the weighted trees, namely, trees with weighted cost depending
on the value of a leaf. Using such models, we prove that for balanced
multi-branching trees, the uniqueness of eigen-distribution holds w.r.t.
all deterministic algorithms, but fails w.r.t. only directional algorithms.

Keywords: Game trees with weight · Leaf cost function · Alpha-beta
pruning algorithm · Computational complexity

1 Introduction

The AND-OR (OR-AND) game tree is a crucial and primary representative
model for Boolean functions. Its root is labelled by AND (OR), internal nodes
are alternatively labelled by either OR or AND, and leaves are associated with
Boolean value 1 and 0. The value of each AND (OR) node is evaluated as the
maximum (minimum) among all the values of its children. The value of a tree
is the value of its root. The height of a node is the length of the path from the
root to this node. Obviously, the height of the root is 0. The height of a tree is
the largest height of the leaves.

An algorithm is carried out to query the leaves until it can determine the value
of the tree. The standard cost to compute a tree is the total cost of all the leaves that
are queried during the execution of an algorithm. The so-called alpha-beta pruning
depth-first algorithm is characterized by following property: while it is querying
the leaves of a subtree, it will stop querying it when and only when it determines
the value of the subtree, and after that it will move on to querying other subtrees.
See [4] for more details. Throughout this paper, by a deterministic algorithm, we
always mean such an alpha-beta pruning depth-first algorithm.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 286–297, 2017.
https://doi.org/10.1007/978-3-319-71150-8_25

The Eigen-Distribution of Weighted Game Trees 287

A randomized algorithm is a distribution over a family of deterministic algo-
rithms. The randomized complexity is defined to be the minimum cost to com-
pute the worst assignment for a tree over randomized algorithms. From a game-
theoretic perspective, Yao [12] observed that the randomized complexity is equiv-
alent to the distributional complexity, that is,

min
AR

max
ω

cost(AR, ω)
︸ ︷︷ ︸

Randomized complexity

= max
d

min
AD

cost(AD, d)
︸ ︷︷ ︸

Distributional complexity

,

where AR runs over randomized algorithms, ω over assignments for leaves
(namely, the sequence of values for leaves), d over distributions on assignments
and AD over deterministic algorithms.

Subsequently, Liu and Tanaka [2] characterized the eigen-distribution that
achieves the distributional complexity, namely a distribution δ which satisfies

min
AD

cost(AD, δ) = max
d

min
AD

cost(AD, d).

Assuming that a probability distribution d on the assignments to the leaves is
an independent distribution (ID), they claimed that for any uniform AND-OR
tree, if such a distribution can achieve the equilibrium, it turns out to be an
independent and identical distribution (IID). Suzuki and Niida [10] proved the
claim for uniform binary trees. Recently, Peng et al. [6] proved that the claim
holds for balanced multi-branching trees.

In [2,3], Liu and Tanaka defined i-set (i = 0, 1) for the reluctant assign-
ments, and Ei-distribution as a distribution on i-set with the same cost for
all deterministic algorithms. Then they proved that for a uniform binary tree,
Ei-distribution is the unique eigen-distribution, which is the uniform distribu-
tion on the i-set (the Liu-Tanaka theorem).

In sequel, Suzuki and Nakamura [11] showed the Liu-Tanaka theorem holds
for a class of algorithms that are closed under transposition, and they also showed
that the uniqueness of eigen-distribution fails if only directional algorithms are
considered. In fact, if we restrict the algorithms to be directional ones, there are
uncountable many distributions that can achieve the distributional complexity.

Peng et al. [7] extended the studies on the uniqueness of eigen-distribution of
[2,11] from uniform binary trees to balanced multi-branching trees. They showed
the equivalence between the eigen-distribution and Ei-distribution for balanced
multi-branching trees. For the uniqueness of eigen-distribution in this context,
they only proved the height 2 case w.r.t. all deterministic algorithms, but the
case of general height has not been solved. A survey concerning origin and recent
studies on eigen-distribution can be found in [9].

Thus, the following problems have been open till now: for general balanced
multi-branching trees, is the eigen-distribution unique w.r.t. all deterministic
algorithms? Or not unique w.r.t. some class of algorithms?

Notice that the arguments for the uniform binary trees in [2,11] can not be
applied directly to even n-branching trees for n ≥ 3, where all internal nodes
have n children. A general balanced multi-branching setting makes the proof
rather intricate, since it requires induction not only on the height of a tree,

288 S. Okisaka et al.

but also the number of children of a node. In this paper, we solve the above
problems by introducing the notion of balanced multi-branching weighted trees.
By weighted trees, we mean the trees in which the cost is weighted depending
on the value of the leaves. That is, for the leaves with value 1, they have cost
weight a > 0, while with value 0 their cost weight is b > 0. Note that if we take
a = b = 1, these trees are nothing but usual ones with the unit cost.

On the other hand, the weighted tree itself is also very interesting in the
sense that, it characterizes the value dependent cost models. Such models have
wide range of applications in both theoretical and applied computer science
[1]. The weighted tree was used by Saks and Wigderson to compute the exact
lower bound for randomized complexity [8], where they called them “trees with
leaf-cost function pair”. Cicalese and Milanic [1] treated the function evalua-
tion problems when the cost of querying a variable depends on the value of
the variable in the framework of priced information, and also suggested further
investigation on value dependent models.

By Ei(a, b)-distribution, we denote the Ei-distribution for trees with cost
weight pair (a, b), where i = 0, 1. Note that we can show that for AND-OR (resp.,
OR-AND) balanced multi-branching weighted trees, the eigen-distribution is
equivalent to E1(a, b)-distribution or E0(a, b)-distribution by the same method
in [7]. Therefore, in the following we just treat Ei(a, b)-distribution. We prove the
uniqueness of Ei(a, b)-distribution holds w.r.t. deterministic algorithms, but fails
if we restrict ourselves to directional algorithms for AND-OR (resp., OR-AND)
balanced multi-branching weighted trees.

We again mention that the solutions to the above problems for general multi-
branching trees follow from our results, by setting the weight pair a = b = 1.
Recall that for AND-OR binary trees of height 2, E0-distribution w.r.t. Adir is
unique [11]. However, our results imply that even for AND-OR balanced multi-
branching trees of height 2, the uniqueness E0-distribution no longer holds. More
precisely, E0-distribution is unique if and only if the root of an AND-OR multi-
branching tree has no more than 2 children.

The remainder of this paper is organized as follows. Section 2 presents some
basic terminology and notion. In Sect. 3, the first half is dedicated to the proof
of the uniqueness of Ei(a, b)-distribution w.r.t. the class of all deterministic
algorithms, while the second half shows the failure of the uniqueness of Ei(a, b)-
distribution when we only consider directional algorithms.

2 Preliminary

To begin with, we define some terminology and notation.

Definition 1. Given a tree T, each node is labelled by a finite sequence from N

as follows.

• The root is labelled by the empty sequence ε.
• For a nonterminal node labelled v, its n children are labelled v0, v1, . . . , v(n− 1)
from left to right.

The Eigen-Distribution of Weighted Game Trees 289

Fig. 1. The labelling for T 2
3

We often identify the node with its label, so we can see T as a subset of finite
sequences from N (Fig. 1).

An assignment for T is a function ω from the set of leaves to {0, 1}. Note
that by identifying each leaf with its value, an assignment ω can also be seen as
a 0-1 sequence, whose length is the number of leaves.

An algorithm to evaluate T is called directional if it queries the leaves in a
fixed order, independent from the query history [5]. By AD, we denote the set
of all deterministic algorithms, and by Adir the set of all directional algorithms.
If an algorithm proceeds depending on its history, we say it is a non-directional
algorithm.

Let C(A,ω) denote the cost of an algorithm A under an assignment ω. Given
a set of assignments Ω, a distribution d on Ω (i.e., a function from Ω to [0, 1]
such that

∑

ω∈Ω

d(ω) = 1), and A ∈ AD, then the expected cost by A w.r.t. d is

defined by C(A, d) =
∑

ω∈Ω

d(ω) · C(A,ω).

Definition 2 (i-set [2]). Given T , i ∈ {0, 1}, i-set for T consists of assign-
ments such that

• the root has value i, and
• if an AND-node has value 0 (or OR-node has value 1), just one of its children
has value 0 (1), and all the other children have 1 (0).

By Ω∧,h
i and Ω∨,h

i , we denote the i-set for AND-OR and OR-AND trees of
height h, respectively.

Definition 3 (Ei-distribution [2]). Suppose A is a subset of AD. A distrib-
ution d on i-set is called an Ei-distribution w.r.t. A if there exists c ∈ R such
that for any A ∈ A, C(A, d) = c.

For general balanced multi-branching trees of height 2, we showed the unique-
ness of Ei-distribution w.r.t. AD in [7] as follows

Theorem 1 ([7]). For any balanced multi-branching tree T of height 2,
Ei-distribution w.r.t. AD is unique.

It is mentioned in [7] that for general height > 2, Ei-distribution w.r.t. AD

is also unique.

290 S. Okisaka et al.

3 Main Results

In this section, we investigate the Ei-distribution for balanced multi-branching
weighted trees.

Definition 4. Let A be an algorithm, ω an assignment, �1(A,ω) (resp.,
�0(A,ω)) denote the number of leaves probed by A and assigned 1 (resp., 0)
on ω. For any positive real number a, b,

C(A,ω; a, b) := a · �1(A,ω) + b · �0(A,ω),

is called a generalized cost weighted with (a, b). It is obvious that C(A,ω) =
C(A,ω; 1, 1).

For a distribution d on Ω, the expected generalized cost

C(A, d; a, b) :=
∑

ω∈Ω

d(ω)C(A,ω; a, b).

We may say that T is a weighted tree if we consider the generalized cost.

Definition 5. For any subset A ⊆ AD, a distribution d on i-set is called an
Ei(a, b)-distribution w.r.t. A if there exists c ∈ R such that for any A ∈ A,
C(A, d; a, b) = c.

3.1 The Uniqueness of Ei(a, b)-Distribution w.r.t AD

Our goal of this subsection is to show that if d is an Ei(a, b)-distribution w.r.t.
AD, then d is a uniform distribution on i-set (i = 0, 1). For simplicity, we here
only treat the n-branching trees, since our arguments and results can be extended
straightforwardly to general balanced multi-branching weighted trees.

Definition 6. Let Ai be a depth-first algorithm for the game tree T hi
n (i = 1, 2).

The depth-first algorithm A1 × A2 for T h1+h2
n , as illustrated in Fig. 2, is defined

as follows:

(1) Evaluate the value of nodes at height h2 according to the order of A2.
(2) Probe the leaves of each subtree T h1

n according to the order of A1.

Note that it suffices to use the above algorithm A1 × A2 to demonstrate the
uniqueness of Ei(a, b)-distribution w.r.t. AD, since if we assume Ei(a, b), the
choice of algorithm makes no difference to the cost. It is also worth remarking
that such an algorithm in fact transfers the weight of leaves to the nodes at
height h2 so that all the leaves have weight pair (a, b) but the nodes at height
h2 are possibly equipped with a different weight pair (a′, b′).

The Eigen-Distribution of Weighted Game Trees 291

Fig. 2. A game tree of height h1 + h2

For an assignment ω ∈ Ωh1+h2 , we partition it into nh2 assignments ωj

(1 ≤ j ≤ nh2) for T h1
n , and denote ω = ω1ω2 . . . ωnh2 . If xj is the value for T h1

n

on ωj (1 ≤ j ≤ nh2), x1x2 . . . xnh2 defines the assignment for T h2
n induced by ω,

denoted by ω �h2 . For an ω2 ∈ Ωh2 , we set Ωω2 :=
{

ω ∈ Ωh1+h2 : ω �h2= ω2

}

.
To solve the final goal of this subsection, we only need to consider the case h1 = 1
and h2 = h.

We first show that if ω1 = ω1
1ω

2
1 . . . ωnh

1 and ω2 = ω1
2ω

2
2 . . . ωnh

2 are in Ωh+1
i

and the values of ωj
1 and ωj

2 are the same for all j ≤ nh, then d(ω1) = d(ω2) for
an Ei(a, b)-distribution d w.r.t. AD.

Lemma 1. Let d be an Ei(a, b)-distribution w.r.t. AD for T h+1
n . Suppose ω1,

ω2 ∈ Ωh+1
i and ω1 �h= ω2 �h. Then d(ω1) = d(ω2).

Proof. W.l.o.g., we may assume that h is even and the label of root is ∧. Suppose
that ω1, ω2 ∈ Ωh+1

i and ω1 �h= ω2 �h.
Let d be an E1(a, b)-distribution on the 1-sets. For an assignment ω ∈ Ω∧,h+1

1 ,
we can find a directional algorithm Aω which probes all the leaves with an
assignment ω. We call such an algorithm eigen. Note that an eigen algorithm is
not unique.

Let T1, . . . , Tnh be the subtrees with height 1 of T h+1
n , listed in the order

where Aω1 evaluates them on ω1, and ωj be the restriction of ω to Tj . We say
that ωj is a 0-part of ω if it assigns 0 to the root of Tj . We can see each ωj as
an element in Ω∧,1

0 ∪ Ω∧,1
1 . So, if ωj is a 0-part, it consists of one 0 and (n − 1)

many 1’s, and otherwise n many 1’s. Moreover, the number of 0-parts does not
depend on the choice of ω ∈ Ω∧,h+1

1 .
We show by induction on l that if ωj

1 = ωj
2 for all j ≤ nh − l, and ωj

1 ∼ ωj
2

for all j ≥ nh − l + 1, then d(ω1) = d(ω2). By ω ∼ ω′, we mean that ω′ is a
permutation of ω.

For the case l = 0, the statement is trivial since ω1 = ω2. For the induction
step (l > 0), we assume that ∀j ≤ nh − l, ωj

1 = ωj
2, ωnh−l+1

1
= ωnh−l+1
2 and

∀j ≥ nh − l + 1 (ωj
1 ∼ ωj

2). Next we describe the nondirectional algorithm A′ as
follows:

292 S. Okisaka et al.

• A′ works the same as Aω1 except for assignments starting with ω1
1ω

2
1 . . . ωnh−l

1 .
Note the A′ can check whether the first part of the assignment is
ω1
1ω

2
1 . . . ωnh−l

1 or not while simulating Aω1 on that part.
• Only if the first part is ω1

1ω
2
1 . . . ωnh−l

1 , A′ switches to A
ωnh−l+1

2
and then back

to Aω1 to the end.
• Here we may assume that A

ωnh−l+1
2

coincides with A
ωnh−l+1

1
on any ω(∈

Ω∧,1
0)
= ωnh−l+1

1 , ωnh−l+1
2 . Namely, the two algorithms exchange the probing

order only where 0 appears in ωnh−l+1
1 or ωnh−l+1

2 .

Since d is an E1(a, b)-distribution, we have

C(Aω1 , d; a, b) − C(A′, d; a, b)

=
∑

ω∈X

d(ω)
(

C(Aω1 , ω; a, b) − C(A′, ω; a, b)
)

+
∑

ω∈Y

d(ω)
(

C(Aω1 , ω; a, b) − C(A′, ω; a, b)
)

= 0,

where

X :=
{

ω ∈ Ω∧,h+1
1 : ∀j ≤ nh − l + 1 (ωj = ωj

1) & ∀j > nh − l + 1 (ωj ∼ ωj
1)

}

,

Y :=
{

ω ∈ Ω∧,h+1
1 : ∀j ≤ nh − l + 1 (ωj = ωj

2) & ∀j > nh − l + 1 (ωj ∼ ωj
2)

}

.

By the induction hypothesis, d(ω) = d(ω1) for ω ∈ X and d(ω) = d(ω2) for
ω ∈ Y . Moreover, there is a bijection from X to Y , then we can get
∑

ω∈X

(

C(Aω1 , ω; a, b) − C(A′, ω; a, b)
)

=
∑

ω∈Y

(

C(A′, ω; a, b) − C(Aω1 , ω; a, b)
)

.

Thus,

C(Aω1 , d; a, b) − C(A′, d; a, b)

=
(

d(ω1) − d(ω2)
) ∑

ω∈X

(

C(Aω1 , ω; a, b) − C(A′, ω; a, b)
)

= 0.

Because for any ω ∈ X, C(Aω1 , ω; a, b) > C(A′, ω; a, b), we get d(ω1) = d(ω2).
Then the proposition follows from the case l = nh.

To show the first proposition, we will give more observations.

Lemma 2. Let Ai be a depth-first algorithm for T hi
n (i = 1, 2). Let ω2 ∈ Ω∧,h2

1 .
Then we have

The Eigen-Distribution of Weighted Game Trees 293

∑

ω∈Ωω2

C(A1 × A2, ω; a, b) =
∑

ω1∈Ω
∗,h1
1

C(A1, ω1; a, b)
|Ωω2 |

|Ω∗,h1
1 |

�1(A2, ω2)

+
∑

ω1∈Ω
∗,h1
0

C(A1, ω1; a, b)
|Ωω2 |

|Ω∗,h1
0 |

�0(A2, ω2),

where ∗ is the label of nodes at height h2.

Proof. Assume h2 is even. In this case, ∗ is ∧. We first observe that the number
of subtrees of height h1 checked by A1 × A2 and their orders depend only on A2

and ω2 ∈ Ω∧,h2
1 .

Suppose that ω2 assigns 1 to the root of a subtree T h1
i . For an ω1 ∈ Ω∧,h1

1 ,
the number of ω ∈ Ωω2 which assigns ω1 to the leaves of T h1

i is |Ωω2 |
|Ω∧,h1

1 | . Since ω1

runs over all the assignments in Ω∧,h1
1 , the total cost to evaluate each subtree of

height h1 whose root has value 1 is

∑

ω1∈Ω
∧,h1
1

C(A1, ω1; a, b)
|Ωω2 |

|Ω∧,h1
1 |

.

And similarly, the total cost to evaluate each subtree of height h1 whose root
has value 0 is

∑

ω1∈Ω
∧,h1
0

C(A1, ω1; a, b)
|Ωω2 |

|Ω∧,h1
0 |

.

Therefore we have the equation of the lemma.

The following proposition states the relation between the cost weight pair of
leaves and the nodes at height h2 as we mentioned in Definition 6 for the case
of h2 = h and h1 = 1. To show it, we also need the following notion. Let d be an
Ei(a, b)-distribution on Ω∧,h+1

i . Now we define the distribution ˜d on Ω∧,h
i by

˜d(ω) :=
∑

ω′∈Ωω

d(ω′)

where Ωω is the subset of Ω∧,h+1
i that assigns ω to the sequence of nodes at

height h.
By Lemma 1, we can also define ˜d(ω) = |Ωω|d(ω′) for any ω′ ∈ Ωω.

Proposition 1. If d is an E1(a, b)-distribution on Ω∧,h+1
1 , then ˜d is an

E1(na, b + (n−1)a
2)-distribution on Ω∧,h

1 .

Proof. Let A be any (nondirectional) algorithm for T h
n and A0 the left-to-right

algorithm for T 1
n . We define a (nondirectional) algorithm ˜A := A0 ×A for T h+1

n .

294 S. Okisaka et al.

Then,

C(˜A, d; a, b) =
∑

ω∈Ω∧,h+1
1

d(ω)C(˜A,ω; a, b) =
∑

ω∈Ω∧,h
1

∑

ω′∈Ωω

d(ω′)C(˜A,ω′; a, b)

=
∑

ω∈Ω∧,h
1

˜d(ω)
|Ωω|

∑

ω′∈Ωω

C(˜A,ω′; a, b)

(1)
=

∑

ω∈Ω∧,h
1

˜d(ω)
|Ωω|

⎛

⎝

∑

ω1∈Ω∧,1
1

C(A0, ω1; a, b)
|Ωω|

|Ω∧,1
1 |

�1(A,ω)

+
∑

ω1∈Ω∧,1
0

C(A0, ω1; a, b)
|Ωω|

|Ω∧,1
0 |

�0(A,ω)

⎞

⎠

(2)
=

∑

ω∈Ω∧,h
1

˜d(ω)
|Ωω|

(

na|Ωω|�1(A,ω) +
(

b +
(n − 1)a

2

)

|Ωω|�0(A,ω)
)

=
∑

ω∈Ω∧,h
1

˜d(ω)C(A,ω;na, b +
(n − 1)a

2
) = C(A, ˜d;na, b +

(n − 1)a
2

)

The equality (1) follows from Lemma 2, and (2) from

C(A0, ω1; a, b) = na for ω1 ∈ Ω∧,1
1 ,

∑

ω1∈Ω∧,1
0

C(A0, ω1; a, b) = nb +
n(n − 1)

2
a, and

|Ω∧,1
0 | = n.

Since d is an E1(a, b)-distribution, ˜d is an E1(na, b + (n−1)a
2)-distribution.

Note that the cases with an odd h and/or E0-distribution can be treated in
a similar way.

Theorem 2. For any balanced multi-branching weighted tree T , the Ei(a, b)-
distribution w.r.t. AD is a uniform distribution on i-set.

Proof. It is proved by induction on height h. Assume that a tree T is an AND-
OR tree, and the OR-AND case can be treated similarly.

We first investigate the base case h = 1. Since the 1-set for T 1
n is a single-

ton, the E1(a, b)-distribution is trivially unique. The 0-set for T 1
n consists of n

assignments ω1, . . . , ωn, where for each i ≤ n, ωi assigns 0 to the i-th leaf and
1 to the rest. Let d be an E0(a, b)-distribution and pi := d(ωi). We will show
for any i, j ≤ n, pi = pj . Let A(i, j) be the algorithm that probes the leaves
from left to right skipping over the i-th and j-th leaves, and probes them at the
end in this order: probes the i-th leaf next to last and finally the j-th one. For
example, let n = 6, then A(5, 3) = 124653, as illustrated in Fig. 3.

The Eigen-Distribution of Weighted Game Trees 295

Fig. 3. The example of A(i, j)

Note that C(A(i, j), ωi; a, b) = (n− 2)a+ b, C(A(i, j), ωj ; a, b) = (n− 1)a+ b
and for k
= i, j, C(A(i, j), ωk; a, b) = C(A(j, i), ωk; a, b). Since d is an E0(a, b)-
distribution, we have

C(A(i, j), d; a, b) − C(A(j, i), d; a, b)

= pi

(

C(A(i, j), ωi; a, b) − C(A(j, i), ωi; a, b)
)

+ pj

(

C(A(i, j), ωj ; a, b) − C(A(j, i), ωj ; a, b)
)

= a(pj − pi) = 0.

We get pi = pj since a
= 0.
For the induction step, we assume d is an E1(a, b)-distribution on T of height

h + 1. By Proposition 1, ˜d is an E1(na, b + (n−1)a
2)-distribution for T of height

h. By the induction hypothesis, ˜d is a uniform distribution on Ω∧,h
1 . Since d can

also be represented by d(ω) =
˜d(ω′)
|Ωω| for any ω′ ∈ Ωω, d is also uniform.

3.2 The Uniqueness of Ei(a, b)-Distribution Fails w.r.t Adir

In this subsection, we will show that for balanced multi-branching trees, the
uniqueness of Ei(a, b)-distribution no longer holds if we restrict the algorithms to
Adir, and in particularly we show that E0-distribution for AND-OR n-branching
trees, namely T h

n , is not unique for h ≥ 2 and n ≥ 3. It worth remarking that,
however, for AND-OR trees T 2

2 , E0-distribution w.r.t. Adir turns out to be
unique (Sect. 4 of [11]).

Theorem 3. For any tree T h
n (h ≥ 2, n ≥ 3), there are more than one Ei(a, b)-

distributions (i = 0, 1) w.r.t. Adir.

Proof. We show this by induction on height h of AND-OR trees, and the OR-
AND case can be treated in the same way. Before giving the proof for case h = 2,
we define some notations.

For i = 1, . . . , n, let ω[i] denote the assignment for the subtree of height 1
such that value 1 only appears in the i-th position of ω[i], and ω[0] denote the

296 S. Okisaka et al.

assignment for the subtree of height 1 such that all the values are 0. Then we
can see that any assignment ω = ω1 . . . ωn in Ω∧,2

0 ∪ Ω∧,2
1 can be represented

by a sequence from such ω[i]’s, where ωj is the assignment for the j-th subtree
of T 2

n .
We only consider E0-distribution, since the case for E1-distribution can be

treated in the same way. Let

Ωk,j :=

{
ω[i1] . . . ω[in] ∈ Ω∧,2

0 : ij = 0, is �= 0 if s �= j, and
n∑

s=1

is = k mod n

}

for 0 ≤ k < n.

Then Ω∧,2
0 =

n
⊔

j=1

n−1
⊔

k=0

Ωk,j and we can easily observe that the number of ω in

Ωk,j such that ωl is ω[i] does not depend on k for any i, j, l. Thus, we can show
that for any k, k′, j, and A ∈ Adir,

∑

ω∈Ωk,j

C(A,ω; a, b) =
∑

ω∈Ωk′,j

C(A,ω; a, b).

Let pk (k < n) be any reals such that
∑

k<n

pk = 1
nn−1 . We define the distrib-

ution d on Ω∧,2
0 by d(ω) = pk for ω ∈ Ωk,j . Then, for any A ∈ Adir,

C(A, d; a, b) =
n

∑

j=1

n−1
∑

k=0

∑

ω∈Ωk,j

pkC(A,ω; a, b)

=
1

nn−1

n
∑

j=1

1
n

n−1
∑

k=0

∑

ω∈Ωk,j

C(A,ω; a, b)

=
1
nn

∑

ω∈Ω∧,2
0

C(A,ω; a, b).

Since a uniform distribution on 0-set is an E0-distribution, C(A, d; a, b) does not
depend on A ∈ Adir. Now pk is any real such that

∑

k<n

pk = 1
nn−1 , then there are

uncountably many E0-distribution w.r.t. Adir.
For the induction step, we consider OR-AND tree of height h+1. Let d0 and

d1 be an E0(a, b)-distribution and an E1(a, b)-distribution for AND-OR tree T h
n ,

respectively. Then we can construct an Ei(a, b)-distribution w.r.t. Adir for an
OR-AND tree T h+1

n as follows.

• For E0(a, b)-distribution, we define the distribution d on Ω∨,h+1
0 by

d(ω0 . . . ωn−1) =
n−1
∏

i=0

d0(ωi),

where each ωi ∈ Ω∧,h
0 is the assignment for the i-th subtree of height h. Then

we can show d is an E0(a, b)-distribution.

The Eigen-Distribution of Weighted Game Trees 297

• For E1(a, b)-distribution, d is defined by

d(ω0 . . . ωn−1) =
1
n

d1(ωi) ·
∏

j �=i

d0(ωj),

where ωi ∈ Ω∧,h
1 and ωj ∈ Ω∧,h

0 for j
= i.

By the induction hypothesis, the above d’s are not uniform.

Acknowledgement. We would like to express our sincere appreciations for Prof.
ChenGuang Liu (Northwestern Polytechnical University) for his original insight and
helpful suggestions on this topic. We are also grateful to Prof. Yue Yang (National Uni-
versity of Singapore) for his useful discussions and valuable comments. This work was
supported in part by the JSPS KAKENHI Grant Numbers 26540001 and 15H03634,
and by National Natural Science Foundation of China Grant Number 11701438.

References

1. Cicalese, F., Milanic, M.: Computing with priced information: when the value
makes the price. In: International Symposium on Algorithms and Computation,
pp. 378–389 (2008)

2. Liu, C.G., Tanaka, K.: Eigen-distribution on random assignments for game trees.
Inf. Process. Lett. 104(2), 73–77 (2007a)

3. Liu, C.G., Tanaka, K.: The computational complexity of game trees by eigen-
distribution. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS,
vol. 4616, pp. 323–334. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73556-4 34

4. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975)

5. Pearl, J.: Asymptotic properties of minimax trees and game-searching procedures.
Artif. Intell. 14(2), 113–138 (1980)

6. Peng, W., Peng, N., Ng, K., Tanaka, K., Yang, Y.: Optimal depth-first algorithms
and equilibria of independent distributions on multi-branching trees. Inf. Process.
Lett. 125, 41–45 (2017)

7. Peng, W., Okisaka, S., Li, W., Tanaka, K.: The uniqueness of eigen-distribution
under non-directional algorithms. IAENG Int. J. Comput. Sci. 43(3), 318–325
(2016)

8. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity
of evaluating game trees. In: Proceedings of 27th Annual IEEE Symposium on
Foundations of Computer Science, pp. 29–38 (1986)

9. Suzuki, T.: Kazuyuki Tanaka’s work on AND-OR trees and subsequent develop-
ments. Ann. Japan Assoc. Philos. Sci. 25, 79–88 (2017)

10. Suzuki, T., Niida, Y.: Equilibrium points of an AND-OR tree: under constraints
on probability. Ann. Pure Appl. Log. 166(11), 1150–1164 (2015)

11. Suzuki, T., Nakamura, R.: The eigen-distribution of an AND-OR tree under direc-
tional algorithms. IAENG Int. J. Appl. Math. 42(2), 122–128 (2012)

12. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: Proceedings of 18th Annual IEEE Symposium on Foundations of Computer
Science, pp. 222–227 (1977)

https://doi.org/10.1007/978-3-540-73556-4_34
https://doi.org/10.1007/978-3-540-73556-4_34

A Spectral Partitioning Algorithm for Maximum
Directed Cut Problem

Zhenning Zhang1, Donglei Du2, Chenchen Wu3, Dachuan Xu1,
and Dongmei Zhang4(B)

1 College of Applied Sciences, Beijing University of Technology, Beijing 100124,
People’s Republic of China

2 Faculty of Business Administration, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada

3 College of Science, Tianjin University of Technology, Tianjin 300384,
People’s Republic of China

4 School of Computer Science and Technology, Shandong Jianzhu University,
Jinan 250101, People’s Republic of China

zhangdongmei@sdjzu.edu.cn

Abstract. In this paper, we study the maximum directed cut (MaxDC)
problem. In the MaxDC, we are given a directed graph with nonnegative
edge weights. Our goal is to obtain a bipartition of the vertices such that
the total edge weight of the directed cut is maximized. By exploring the
combinatorial characteristics of the optimal solution, we offer a 0.272-
approximation algorithm based on the technique of spectral partitioning
rounding.

Keywords: Maximum directed cut · Spectral graph theory · Spectral
partitioning rounding · Approximation algorithm

1 Introduction

Semidefinite programming (SDP) is a powerful approach for combinatorial opti-
mization, in particular graph partition problems. For the maximum cut (Max
cut) problem, Goemans and Williamson [1] give a 0.87856-approximation algo-
rithm by SPD, and this ratio cannot be improved under the unique game conjec-
ture. Although SDP is solvable in polynomial time, it is highly time-demanding
for large-scale problems. Therefore approximation algorithms without invoking
SDP are sometimes more attractive and preferred, even with worse approxima-
tion ratios.

Approximation algorithms for the Max cut problem without using SDP
include (1) Trevisan [2] who offers a 0.531-approximation algorithm; (2) Soto [3]
who improves the bound to 0.614247; and (3) Kale and Seshadhri [4] who propose
a combination approximation algorithm based on random walk with approxima-
tion ratio Õ(nb) (b > 1.5). For example, if the running times of the algorithm are
Õ(n1.6), Õ(n2) and Õ(n3), the corresponding approximations are 0.5051, 0.5155
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 298–312, 2017.
https://doi.org/10.1007/978-3-319-71150-8_26

A spectral partitioning algorithm for MaxDC 299

and 0.5727, respectively. If the value of b is big enough, the approximation ratio
of the combination algorithm converges to that in [3]. Recently, Nikiforov [6]
considers the bound of the spectral approximation algorithm.

In this work, we consider the maximum directed cut problem. Suppose that
there is a directed graph G = (V,A) with a weight wij : A → R

+ on each
directed arc (i, j) ∈ A. The maximum directed cut problem is that of partitioning
V into two sets S and V − S such that the total weight of the edges with their
tails in S and their heads in V − S are maximized.

Several approximation algorithms exist for the maximum directed cut prob-
lem. Randomly assigning a node to a cut yields a simple 1/4-stochastic approx-
imation algorithm. A 0.79607-approximation algorithm is available via SDP [1].
Using the prerounding rotations and skewed distributions of hyperplanes, Lewin
et al. [5] improve the approximation ratio to 0.874. A special family of random-
ized algorithms for the maximum directed cut problem with an approximation
ratio of at least 0.483 is also proposed in [7].

We investigate the maximum directed cut problems following the spectral
partitioning method. The main idea is to design a rounding for the optimal
solution of the relaxation of the MaxDC to derive a tripartition (V+, V0, V−) of
the set of vertices V at intermediate steps, where V0 �= V is the set of “undecided”
vertices. The recursive algorithm runs until every vertex is decided to yield a cut.
For the tripartition of the directed graph at each step, we define the following
notations.

– A(V+ : V−): the set of the right cut edges from V+ to V−;
– A(V− : V+): the set of the left cut edges from V− to V+;
– A(V+ : V0) + A(V0 : V−): the set of the right cross edges from V+ to V0 and

V0 to V−;
– A(V− : V0) + A(V0 : V+): the set of the left cross edges from V− to V0 and V0

to V+;

Therefore, we introduce the cut edges (the union of the right cut and the left
cut), the cross edges (the union of the right cross and the left cross edges) and
the incident edges (at least one vertex involved in V+ ∪ V−). We observe that
the desired edges are at least half of the cut and cross edges at each iteration.
We introduce the recoverable ratio to express the proportion of the desired edge
weight to the incident edge weight.

Formulating the MaxDC in matrix form allows us to explore the properties of
the optimal value of MaxDC in virtue of the corresponding eigenvector which can
be derived in polynomial time. We then devise a spectral partitioning rounding
for the MaxDC based on some special characteristics of the optimal solution.
We show the recoverable ratio of the tripartition at every iteration, leading to
the 0.272-approximation ratio of spectral partitioning algorithm for the MaxDC.
The paper shows that the spectral partitioning technique is applicable to many
graph partitioning problems.

300 Z. Zhang et al.

The paper is organized as follows. In Sect. 2 we describe the MaxDC prob-
lem. In Sect. 3 we explore the properties of the optimal solution. Using the spec-
tral partitioning rounding, we obtain the recoverable ratio at every iteration.
In Sect. 4 we present the spectral partitioning algorithm and derive the 0.272-
approximate ratio.

The omitted proofs in this paper are deferred to the journal version.

2 Maximum Directed Cut Problem

The maximum directed cut problem can be formulated as the following integer
program:

max
x∈{−1,1}|V |+1

1
4

∑

(i,j)∈A

wij (1 + x0xi − x0xj − xixj) , (1)

where x = (x0, x1, . . . , xn) ∈ {−1, 1}|V |+1, x0 is regarded as an index for the
partition, |V | is the number of the vertices.

Evidently, (1) is equivalent to the following quadratic integer program:

max
x∈{−1,1}V +1

1
8

∑

(i,j)∈A

wij

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)
.

Or in matrix form:
max

x∈{−1,1}|V |+1

1
8
xT Mx,

where M =
∑

(i,j)∈A M{i,j}, and each M{i,j} ∈ R
(n+1)×(n+1) is associated with

the quadratic form:

xT M{i,j}x = wij

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)
. (2)

According to (2), the real symmetric matrix M{i,j} is expressed as

0 · · · i · · · j · · ·

M{i,j} =

0
...
i
...
j
...

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · wij · · · −wij · · ·
...

...
...

...
...

...
wij · · · 1

2wij · · · −wij · · ·
...

...
...

...
...

...
−wij · · · −wij · · · 1

2wij · · ·
...

...
...

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A spectral partitioning algorithm for MaxDC 301

with i < j, and

0 · · · j · · · i · · ·

M{i,j} =

0
...
j
...
i
...

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · −wij · · · wij · · ·
...

...
...

...
...

...
−wij · · · 1

2wij · · · −wij · · ·
...

...
...

...
...

...
wij · · · −wij · · · 1

2wij · · ·
...

...
...

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with j < i.
M =

∑
(i,j)∈A M{i,j} can be considered as the generalized adjacent matrix

of the directed graph G, which is given by

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 dout1 − din1 · · · douti − dini · · · doutn − dinn
dout1 − din1

1
2

(
din1 + dout1

) · · · −w1i · · · −w1n

...
...

. . .
...

...
...

douti − dini −w1i · · · 1
2

(
dini + douti

) · · · −wni

...
...

...
...

. . .
...

doutn − dinn −w1n · · · −wni · · · 1
2

(
dinn + doutn

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where dini (i = 1, 2, · · · , n) denote the weight of the edges whose head vertex is
i, and douti (i = 1, 2, · · · , n) denote the weight of the edges whose tail vertex is i.

Analogously, the total weight of the directed graph is introduced by

W (A) =
∑

(i,j)∈A

wij

=
1
2

∑

(i,j)∈A

wij

(
x2

i + x2
j

)

=
1
2
xT Dx,

where D =
∑

(i,j)∈A D{i,j} and each D{i,j} ∈ R
(n+1)×(n+1) is associated with

the quadratic form:
xT D{i,j}x = wij

(
x2

i + x2
j

)
. (4)

302 Z. Zhang et al.

The diagonal matrix D{i,j} with respect to (4) is given by

0 · · · i · · · j · · ·

D{i,j} =

0
...
i
...
j
...

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 · · ·
...

. . .
...

...
...

...
0 · · · wij · · · 0 · · ·
...

...
...

. . .
...

...
0 · · · 0 · · · wij · · ·
...

...
...

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with i < j, and

0 · · · j · · · i · · ·

D{i,j} =

0
...
j
...
i
...

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 · · ·
...

. . .
...

...
...

...
0 · · · wij · · · 0 · · ·
...

...
...

. . .
...

...
0 · · · 0 · · · wij · · ·
...

...
...

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

with j < i.
As D =

∑
(i,j)∈A D{i,j}, the real diagonal matrix D ∈ R

(n+1)×(n+1) is

D = diag
{
0, din1 + dout1 , · · · , dini + douti , · · · , dinn + doutn

}
. (5)

2.1 Spectral Partitioning Rounding

In this section, we investigate the properties of the optimal solution. By using
the spectral partitioning rounding technique, at every iteration we get the recov-
erable ratio of the tripartition (Lemma 3), which will be used later to obtain the
approximation ratio for the spectral partitioning algorithm.

Lemma 1. Let OPTMaxDC ≥ (1 − ε)W (A), there exists a vector x =
(x0, x1, . . . , xn)T whose first component x0 is nonzero and the other components
can not be zero simultaneously, such that

xT Mx

xT Dx
≥ 4(1 − ε),

that is,
∑

(i,j)∈A

wij

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

) ≥ 4(1 − ε)
∑

(i,j)∈A

wij

(
x2

i + x2
j

)
.

(6)
Moreover, x0 can take any value in R\{0}.

A spectral partitioning algorithm for MaxDC 303

We now express an algorithm to show how to obtain a vector x satisfying (6).

Algorithm 1

Step 1. For a parameter δ, it is possible to find a vector z in polynomial time
such that

zT D−1/2MD−1/2z ≥ λ1(1 − δ)zT z.

Step 2. The associated vector x̃ is given by x̃ = D−1/2z
Step 3. Search every component of x̃ to find the smallest nonzero |x̃i|; exchange

the first component of x̃ by sgn(x̃i)minx̃ |x̃i|; and denote the new vector by x.

We introduce the spectral partitioning rounding based on the associated vec-
tor x obtained by Algorithm 1.

Algorithm 2. The spectral partitioning rounding:

Input: For a vector x given by Algorithm 1, without loss of generality, let
‖x‖∞ = 1.

Output: A vector y ∈ {sgn(x0), 0,−sgn(x0)}V \{0}V .
Step 1. Generate a random variable t following the uniform distribution in

(0, 1).
Step 2. For each i ∈ {1, . . . , |V |}, Set

yi =

⎧
⎨

⎩

sgn(x0), xix0 >
√

t,

−sgn(x0), xix0 < −√
t,

0, |xix0| ≤ √
t.

(7)

The set of vertices can be divided into three parts by Algorithm 2., that is,

V+ ={i | yi = sgn(x0)},

V− ={i | yi = −sgn(x0)},

V0 ={i | yi = 0}.

By the indicator vector y, the weight of the right cut edges, the right cross edges,
the left cut edges, the left cross edges, the uncut edges and the incident edges
are defined as follows,

−−→
Cut(y) :=w[A(V+ : V−)],

−−−→
Cross(y) :=w[A(V+ : V0)] + w[A(V0 : V−)],

←−−
Cut(y) :=w[A(V− : V+)],

←−−−
Cross(y) :=w[A(V− : V0)] + w[A(V0 : V+)],

Uncut(y) :=wout[A[V+]] + wout[A[V−]].

Let Incident(y) be the total weight of the directed edges whose endpoints (tail
or head) lie in V+ or V− at least once, where wout[A[V+]] denotes the out-degree
of the edges with both ends in V+. Define further Cut(y) and Cross(y) as follows

Cut(y) : =
−−→
Cut(y) +

←−−
Cut(y),

Cross(y) : =
−−−→
Cross(y) +

←−−−
Cross(y).

304 Z. Zhang et al.

From the definition of the Incident(y), we have

Incident(y) = Cut(y) + Cross(y) + Uncut(y). (8)

At every iteration, by the indicator vector y, the weight of desired edges are
at least 1

2

(
Cut(y) + 1

2Cross(y)
)
. The recoverable ratio is defined as the weight

of the desired edges with respect to the weight of the incident edges, that is

Desired(y)
Incident(y)

≥
1
2Cut(y) + 1

4Cross(y)
Incident(y)

.

To find the optimal recoverable ratio of the spectral algorithm, we give the
following lemma first.

Lemma 2. Let

C(i, j) =Pr

{(
yi

yj

)
∈

{(
sgn(x0)

−sgn(x0)

)
,

(−sgn(x0)
sgn(x0)

)}}

and

X(i, j) =Pr

{(
yi
yj

)
∈
{(

sgn(x0)
0

)
,

(
0

−sgn(x0)

)
,

(−sgn(x0)
0

)
,

(
0

sgn(x0)

)}}

be the probabilities that an edge is a cut edge or a cross edge induced by the
indicator vector y as in (7). Then for all 0 ≤ β ≤ 1, we have

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .
(9)

Proof. The probability of a cut edge is given by

C(i, j) =P

{(
yi

yj

)
∈

{(
sgn(x0)

−sgn(x0)

)
,

(−sgn(x0)
sgn(x0)

)}}

=P

{
x0xi >

√
t, x0xj < −√

t or x0xi < −√
t, x0xj >

√
t
}

=P

{√
t < x0xi,

√
t < −x0xj or

√
t < −x0xi,

√
t < x0xj

}

=P

{√
t < min{x0xi,−x0xj} or

√
t < min{−x0xi, x0xj}

}
.

(10)

Similarly, the probability of a crossing edge can be obtained by

X(i, j) =P

{(
yi
yj

)
∈
{(

sgn(x0)
0

)
,

(
0

−sgn(x0)

)
,

(−sgn(x0)
0

)
,

(
0

sgn(x0)

)}}

=P

{
x0xi >

√
t, |x0xj | ≤ √

t or |x0xi| ≤ √
t, x0xj < −√

t

or x0xi < −√
t, |x0xj | ≤ √

t or |x0xi| ≤ √
t, x0xj >

√
t
}

=P

{
|x0xj | ≤ √

t < x0xi or |x0xi| ≤ √
t < −x0xj

or |x0xj | ≤ √
t < −x0xi or |x0xi| ≤ √

t < x0xj

}
.

(11)

A spectral partitioning algorithm for MaxDC 305

In the following, we prove Eq. (9). Note that the vector x is derived by Algo-
rithm 1. We will discuss the following three cases.

Case 1. If xi and xj (i, j ∈ {1, 2, . . . , n}) are both equal to zero, (9) holds
obviously.

Case 2. If exactly one of xi and xj is zero, then for symmetry, assume that xi

is zero.
Case 2.1. xj �= 0 and xjx0 ≥ 0. We obtain C(i, j) = 0 and X(i, j) = x2

0x
2
j .

Then, we have

C(i, j) + βX(i, j) ≥ β(1 − β)x2
0x

2
j

= β(1 − β)x2
0

(
x2

j − 2x0xj

)
+ 2β(1 − β)x3

0xj

≥ β(1 − β)x2
0

(
x2

j − 2x0xj

) − 2β(1 − β)x2
0x

2
j

Case 2.2. xj �= 0 and xjx0 ≤ 0. We easily obtain C(i, j) = 0 and X(i, j) =
x2
0x

2
j . Since −x0xj ≤ x2

j , we get

C(i, j) + βX(i, j) ≥ β(1 − β)x2
0x

2
j

= β(1 − β)x2
0(x

2
j − 2x2

0xj) + 2β(1 − β)x3
0xj

≥ β(1 − β)x2
0(x

2
j − 2x2

0xj) − 2β(1 − β)x2
0x

2
j

Equation (9) holds in these cases.
Case 3. xixj �= 0. According to the signs and the sizes of xi and xj , we consider

eight cases in the following.
Case 3.1. x0xi > 0, x0xj > 0, and |x0xj | ≤ |x0xi|(x0xj ≤ x0xi). Then we

have
C(i, j) = 0,

X(i, j) =P

{
|x0xj | ≤ √

t < x0xi

}
= x2

0x
2
i − x2

0x
2
j ,

and

C(i, j) + βX(i, j) = β
(
x2
0x

2
i − x2

0x
2
j

)

= β (x0xi + x0xj) (x0xi − x0xj)

≥ β(1 − β) (x0xi − x0xj)
2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

Since x2
0 ≤ x0xi + x0xj , we get

2x2
0 (x0xi − x0xj) ≤2 (x0xi + x0xj) (x0xi − x0xj)

=2
(
x2
0x

2
i − x2

0x
2
j

)
= 2X(i, j).

306 Z. Zhang et al.

Therefore,

−β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ − β(1 − β)2X(i, j)

= − β(1 − β)2X(i, j) − β(1 − β)4C(i, j).

Finally,

C(i, j) + βX(i, j) ≥ β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.2. xi, xj and x0 all have the same sign, and |x0xi| ≤ |x0xj |(x0xi ≤
x0xj). Then, we have

C(i, j) = 0,

X(i, j) =P

{
|x0xi| ≤ √

t < x0xj

}
= x2

0x
2
j − x2

0x
2
i ,

and

C(i, j) + βX(i, j) = β
(
x2
0x

2
j − x2

0x
2
i

)

= β (x0xj + x0xi) (x0xj − x0xi)

≥ β(1 − β) (x0xj − x0xi)
2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

Since x0xi − x0xj ≤ 0, we have −β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0. More-

over, − (x0xj + x0xi) ≤ 0. Therefore

− β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0

≥ −β(1 − β)x2
0 (2x0xi − 2x0xj) [− (x0xi + x0xj)]

≥ −β(1 − β)2
(
x2
0x

2
j − x2

0x
2
i

)

= −β(1 − β)2X(i, j)
= −β(1 − β) [2X(i, j) + 4C(i, j)] .

Finally,

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.3. x0xi < 0, x0xj < 0 and |x0xj | ≤ |x0xi|(x0xi ≤ x0xj). Then, we
have

C(i, j) = 0,

X(i, j) =P

{
|x0xj | ≤ √

t < −x0xi

}
= x2

0x
2
i − x2

0x
2
j ,

A spectral partitioning algorithm for MaxDC 307

and

C(i, j) + βX(i, j) =β
(
x2
0x

2
i − x2

0x
2
j

)

≥β(1 − β) |x0xi + x0xj | |x0xi − x0xj |
≥β(1 − β) (x0xi − x0xj)

2

=β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

=β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

Because of |x0xi − x0xj | ≤ |x0xi + x0xj |, the third inequality follows
from the second one. Since (x0xi − x0xj) ≤ 0, we have

−β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0.

Moreover (x0xi + x0xj) ≤ 0, we have

− β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0

≥ −β(1 − β)x2
0 (2x0xi − 2x0xj) (x0xi + x0xj)

≥ −β(1 − β)2
(
x2
0x

2
i − x2

0x
2
j

)

= −β(1 − β) [2X(i, j) + 4C(i, j)] .

Therefore,

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.4. x0xi < 0, x0xj < 0, and |x0xi| ≤ |x0xj |(x0xj ≤ x0xi). Then, we
have

C(i, j) = 0,

X(i, j) =P

{
|x0xi| ≤ √

t < −x0xj

}
= x2

0x
2
j − x2

0x
2
i ,

and

C(i, j) + βX(i, j) = β
(
x2
0x

2
j − x2

0x
2
i

)

≥ β(1 − β) |x0xi + x0xj | |x0xi − x0xj |
≥ β(1 − β) (x0xj − x0xi)

2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj)

Because of |x0xi − x0xj | ≤ |x0xi + x0xj |, the third inequality follows
from the second one. Meanwhile, from x2

0 ≤ − (x0xi + x0xj) and

x2
0 (2x0xi − 2x0xj) ≤ − (x0xi + x0xj) (2x0xi − 2x0xj)

= 2
(
x2
0x

2
j − x2

0x
2
i

)

= 2X(i, j),

308 Z. Zhang et al.

we offer

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.5. x0xi > 0, x0xj < 0, and |x0xj | ≤ |x0xi|(−x0xj ≤ x0xi). Then, we
have

C(i, j) =x2
0x

2
j ,

X(i, j) =P

{
|x0xj | ≤ √

t < x0xi

}
= x2

0x
2
i − x2

0x
2
j .

The inequality [8],

(1 − β)a2 + βb2 ≥ β(1 − β)(a + b)2

holds for a, b ≥ 0, and 0 ≤ β ≤ 1. Since x0xi > 0, −x0xj > 0, we obtain
that

C(i, j) + βX(i, j) = x2
0x

2
j + β

(
x2
0x

2
i − x2

0x
2
j

)

= βx2
0x

2
i + (1 − β)x2

0x
2
j

≥ β(1 − β) (x0xi − x0xj)
2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

Since x0xi > 0 and x0xj < 0, we have x0xi − x0xj > 0, x0xi + x0xj > 0,
and

x2
0 (2x0xi − 2x0xj) ≤ − x0xj (2x0xi − 2x0xj)

= 2
(
x2
0x

2
j + x0xi(−x0xj)

)

≤ 2
(
x2
0x

2
j + x2

0x
2
i)

)

= 2
(
x2
0x

2
j + x2

0x
2
i − x2

0x
2
j + x2

0x
2
j)

)

= 2X(i, j) + 4C(i, j).

Therefore,

−β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ −β(1 − β) [2X(i, j) + 4C(i, j)] .

Finally,

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.6. x0xi > 0, x0xj < 0, and |x0xi| ≤ |x0xj |(x0xi ≤ −x0xj). Then, we
have

C(i, j) = x2
0x

2
i ,

X(i, j) =P

{
|x0xi| ≤ √

t < −x0xj

}
= x2

0x
2
j − x2

0x
2
i ,

A spectral partitioning algorithm for MaxDC 309

and

C(i, j) + βX(i, j) =x2
0x

2
i + β

(
x2
0x

2
j − x2

0x
2
i

)

=βx2
0x

2
j + (1 − β)x2

0x
2
i

≥β(1 − β) (x0xj − x0xi)
2

=β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

=β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

It is easy to get x0xi − x0xj > 0, x0xi + x0xj > 0, and

x2
0 (2x0xi − 2x0xj) ≤x0xi (2x0xi − 2x0xj)

= 2
(
x2
0x

2
i + x0xi(−x0xj)

)

≤ 2
(
x2
0x

2
i + x2

0x
2
j

)

= 2
(
x2
0x

2
i + x2

0x
2
j − x2

0x
2
i + x2

0x
2
i

)

= 2X(i, j) + 4C(i, j).

Therefore,

−β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ −β(1 − β) [2X(i, j) + 4C(i, j)] .

Finally,

C(i, j) + βX(i, j) ≥β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.7. x0xi < 0, x0xj > 0, and |x0xj | ≤ |x0xi|(x0xj ≤ −x0xi). Then, we
have

C(i, j) = x2
0x

2
j ,

X(i, j) =P

{
|x0xj | ≤ √

t < −x0xi

}
= x2

0x
2
i − x2

0x
2
j ,

and

C(i, j) + βX(i, j) = x2
0x

2
j + β

(
x2
0x

2
i − x2

0x
2
j

)

= βx2
0x

2
i + (1 − β)x2

0x
2
j

≥ β(1 − β) (x0xi − x0xj)
2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

310 Z. Zhang et al.

Since x0xi + x0xj ≤ 0, we have

− β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0

≥ −β(1 − β)x2
0 (2x0xi − 2x0xj) (x0xi + x0xj)

≥ −β(1 − β)2
(
x2
0x

2
i − x2

0x
2
j

)

= −β(1 − β)2X(i, j)
≥ −β(1 − β) [2X(i, j) + 4C(i, j)] .

Therefore,

C(i, j) + βX(i, j) ≥ β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] .

Case 3.8. xix0 < 0, xjx0 > 0, and |x0xi| ≤ |x0xj |(−x0xi ≤ x0xj). Then, we
have

C(i, j) = x2
0x

2
i ,

X(i, j) =P

{
|x0xi| ≤ √

t < −x0xj

}
= x2

0x
2
j − x2

0x
2
i ,

and

C(i, j) + βX(i, j) = x2
0x

2
i + β

(
x2
0x

2
j − x2

0x
2
i

)

= βx2
0x

2
j + (1 − β)x2

0x
2
i

≥ β(1 − β) (x0xj − x0xi)
2

= β(1 − β)
(
x2
0x

2
i + x2

0x
2
j − 2x2

0xixj

)

= β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β)x2
0 (2x0xi − 2x0xj) .

Since x0xi + x0xj ≥ 0, and − (x0xi + x0xj) ≤ 0, we have

− β(1 − β)x2
0 (2x0xi − 2x0xj) ≥ 0

≥ −β(1 − β)x2
0 (2x0xi − 2x0xj) [− (x0xi + x0xj)]

≥ −β(1 − β)2
(
x2
0x

2
j − x2

0x
2
i

)

= −β(1 − β)2X(i, j)
≥ −β(1 − β) [2X(i, j) + 4C(i, j)] .

Therefore,

C(i, j) + βX(i, j) ≥ β(1 − β)x2
0

(
x2

i + x2
j + 2x0xi − 2x0xj − 2xixj

)

− β(1 − β) [2X(i, j) + 4C(i, j)] . ��
By virtue of Lemma 2, we can derive the lower bound of the recoverable ratio

of the spectral partitioning algorithm at every iteration.

A spectral partitioning algorithm for MaxDC 311

Lemma 3. Given a vector x obtained by Algorithm 1, for some 0 ≤ ε ≤ 3/4, the
indicator vector y ∈ {sgn(x0), 0,−sgn(x0)}n\{0}n given by Algorithm 2. satisfies

Desired(y)
Incident(y)

≥ f(ε) =

⎧
⎪⎨

⎪⎩

1

2
(
2
√

2ε(1−2ε)+1
) , 0 < ε ≤ 0.1773,

8(1−ε)2+2(1−ε)
√

16(1−ε)2+1

(7−4ε)
√

16(1−ε)2+1+16ε2−44ε+29
, 0.1773 ≤ ε < 0.75.

(12)

Remark 1. From Lemmas 1 and 3, we obtain that for a given directed graph
G with OPTMaxDC ≥ (1 − ε)W (A), a tripartition (V+, V0, V−) can be found by
the spectral partitioning algorithm. The recoverable ratio of the tripartition is
at least f(ε). The function f(ε) beats 1/4 when ε = 0.2113.

3 The Spectral Partitioning Algorithm

The spectral partitioning algorithm for the maximum directed cut problems is
depicted as Algorithm 3. below.

Algorithm 3. We present the spectral partitioning algorithm of the MaxDC
problem as follows.

Input: A directed graph (V,A), with nonnegative weight w : E → R
+.

Output: A bipartition (V+, V−) of V .
Step 1. Obtain a vector x by using Algorithm 1;
Step 2. Using Algorithm 2, we get an indicator vector

y ∈ {sgn(x0), 0,−sgn(x0)}V \{0}V .
1. If

1
2

(
Cut(y) +

1
2
Cross(y)

)
<

1
4
Incident(y)

then return a bipartition (V+, V−) of V such that the weight of desired
edges is at least a quarter of w(A) (a random cut suffices) else let
(V+, V0, V−) be the tripartition induced by y.

2. If V0 = ∅ then return (V+, V−) else set (W+,W−) ← ALG(V0, A[V0]).
3. Return the best of (V+ ∪ W+, V− ∪ W−), (V+ ∪ W−, V− ∪ W+), (V− ∪

W−, V+ ∪ W+) and (V− ∪ W+, V+ ∪ W−)
4. end if
5. end if

Theorem 1. For a given directed graph with OPTMaxDC = (1 − ε)W (A) >
0, a bipartition (V+, V−) can be finally returned by iterating Algorithm 1. The
indicator vector y ∈ {sgn(x0),−sgn(x0)}V of the final bipartition satisfies

Desired(y)
W (A)

≥
∫ 1

0

max
(

1
4
, f

(ε

r

))
dr,

where f(·) is in the form of (12).

Theorem 2. Algorithm 3. is a 0.272-approximation algorithm for the maximum
directed cut problems.

312 Z. Zhang et al.

4 Discussions

We propose an approximation algorithm for the maximum directed cut problem
based on spectral partitioning, which is expected to have wider application to
other graph partitioning problems, such as Max-SAT.

Acknowledgments. The first author is supported by Beijing Excellent Talents Fund-
ing (No. 2014000020124G046). The second author’s research is supported by Natural
Sciences and Engineering Research Council of Canada (NSERC) grant 283106. The
third author’s research is supported by NSFC (No. 11501412). The fourth author’s
research is supported by NSFC (No. 11531014). The fifth author is supported by Shan-
dong Jianzhu University grant Z0013.

References

1. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. ACM 42,
1115–1145 (1995)

2. Trevisan, L.: Max cut and the smallest eigenvalue. SIAM. Comput. 41, 1769–1786
(2012)

3. Soto, A.: Improved analysis of max-cut algorithm based on spectral partitioning.
SIAM J. Diecrete Math. 29, 259–268 (2015)

4. Kale, S., Seshadhri, C.: Combinatorial approximation algorithms for MaxCut using
Random Walks. preprint, arXiv:1008.3938 (2010)

5. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT Problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO
2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47867-1 6

6. Nikiforov, V.: Max k-cut and the smallest eigenvalue. Linear Algebra Appl. 504,
462–467 (2016)

7. Feige, U., Jozeph, S.: Oblivious algorithms for the maximum directed cut problem.
Algorithmica 71, 409–428 (2015)

8. Beckenbach, E., Bellman, R.: An Introduction to Inequalities. Random House,
New York (1961)

http://arxiv.org/abs/1008.3938
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1007/3-540-47867-1_6

Better Approximation Ratios for the
Single-Vehicle Scheduling Problems

on Tree/Cycle Networks

Yuanxiao Wu and Xiwen Lu(B)

East China University of Science and Technology, Shanghai, China
yxwu0212@163.com, xwlu@ecust.edu.cn

Abstract. We investigate the single vehicle scheduling problems based
on tree/cycle networks. Each customer, assumed as a vertex on the given
network, has a release time and a service time requirements. The single
vehicle starts from the depot and aims to serve all the customers. The
objective of the problem is to find the relatively optimal routing schedule
so as to minimize the makespan. We provide a 16

9
-approximation algo-

rithm and a 48
25
-approximation algorithm for the tour-version and the

path-version of single vehicle scheduling problem on a tree, respectively.
For the tour-version of single vehicle scheduling problem on a cycle, we
present a 5

3
-approximation algorithm.

Keywords: Vehicle · Routing · Scheduling · Network · Approximation
algorithm

1 Introduction

The single vehicle scheduling problem (SVSP) consists of a set of customers situ-
ated at different vertices on a given network and a single vehicle initially located
at a fixed depot. Each customer has a release time before which it cannot be
served, and a service time which the vehicle has to spend in serving the cus-
tomer. The vehicle, required to serve all the customers, takes a travel time when
it travels from one customer to another. The completion time of a customer is
defined as the time by which it has been served completely, while the completion
time of the vehicle means the time by which it has served all the customers and
returned to its initial location. A permutation of the customers, which implies
the customer service order and can specify the routing of the vehicle, is con-
sidered as a schedule for the problem. The problem aims to find a schedule to
minimize the makespan. We distinguish two versions. In the first one, which is
called tour-version, the makespan is defined as the completion time of the vehi-
cle. In the other one, which is known as path-version, the makespan means the
completion time of the last served customer. For convenience, when the network
is restricted to a line (resp. tree, cycle), we denote the single vehicle scheduling
problem by L-SVSP (resp. T-SVSP, C-SVSP). When the service time of each
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 313–323, 2017.
https://doi.org/10.1007/978-3-319-71150-8_27

http://orcid.org/0000-0003-4068-7233
http://orcid.org/0000-0002-4728-6048

314 Y. Wu and X. Lu

customer is zero, SVSP is known as single vehicle routing problem (SVRP) in
some paper. Thus we denote SVRP on a line, tree and cycle by L-SVRP, T-SVRP
and C-SVRP, respectively.

There are plenty of results on VRP and VSP. [1] showed that both the
tour-version and the path version of L-SVSP are ordinarily NP-hard. [2] pre-
sented polynomial time algorithms for both versions of L-SVRP. [3] provided a
3
2 -approximation algorithm for the tour-version of L-SVSP in the case that the
vehicle initial locates at an extreme vertex, and [4] gave a 5

3 -approximation algo-
rithm for the counterpart in which the initial location of the vehicle is arbitrary.
[5,6] presented a 3

2 -approximation algorithm for the tour-version of L-SVSP and
a 5

3 -approximation algorithm for the path-version of L-SVSP with no constraint
on the initial location of the vehicle, and [6] also provided examples to show
that the performance ratios are tight. When it comes to multi-vehicle scheduling
problem (MVSP), [7] provided a 2-approximation algorithm for the path-version
of the general L-MVSP in which the initial location of each vehicle is arbitrary.
[8] showed that both the tour-version and path-version of L-MVRP can be solved
in polynomial time.

It has been shown in [9] that both the tour-version and the path-version of
T-SVRP (and hence T-SVSP) are ordinarily NP-hard. For the tour-version of
T-SVSP, they showed that the problem can be exactly solved in O(n log n) time if
adding a constraint that the vehicle has to process all tasks in a depth-first man-
ner, and the O(n log n) time algorithm can be considered as a 2-approximation
algorithm for the T-SVSP without the depth-first constraint. [10] ultimately
proved that both versions of T-SVSP are strongly NP-hard. For the tour-version,
they provided a O(nb) time DP algorithm where b is the number of leaves.
[5] introduced an improved 11

6 -approximation algorithm for the tour-version of
T-SVSP. In their algorithm, they partitioned the set of customers into two
subsets. The vehicle first serves part of customers in one subset, and then
serves all the remaining customers. They also presented a 9

5 -approximation
algorithm with a similar method for the tour-version of C-SVSP. [11] provided
a 9

5 -approximation algorithm and a 27
14 -approximation algorithm for the tour-

version and the path-version of T-SVSP, respectively. For both tour-version
and path-version of C-SVSP, they provided a 12

7 -approximation algorithm. [12]
presented polynomial time approximation schemes for both versions of SVSP
on a tree with a constant number of leaves. [13] presented a 3-approximation
algorithm for MVSP on a tree and a (5 − 2

m)-approximation algorithm for that
on a general network.

In this paper, we consider both the tour-version and the path-version of
T-SVSP and the tour-version of C-SVSP. For each problem, we propose an
approximation algorithm and prove its performance ratio. Our algorithms are
improvements on those in [11].

The rest of this paper is structured as follows. In Sect. 2, we introduce the
formulation of T-SVSP and some notations. In Sect. 3, we present approxima-
tion algorithms for two versions of T-SVSP and analyse the performance ratio. In
Sect. 4, we describe an approximation algorithm for the tour-version of C-VSP and
prove the performance ratio. Finally we give some concluding remarks in Sect. 5.

Better Approximation Ratios 315

2 Problem Formulation and Preliminaries

The SVSP discussed in this paper is mathematically defined as follows. Let
G = (V ∪ {0}, E) be an undirected network where V = {1, 2, ..., n} is a vertex
set and E is a set of edges. An edge e ∈ E is an unordered pair (j, k) of two
vertices in V , where j, k are called the endpoints of e. The travel time of the
vehicle is tj,k ≥ 0, which is the time to traverse edge e = (j, k) from j to k, and
tk,j = tj,k. When (j, k) /∈ E, tk,j denotes the travel time for the vehicle travelling
along the shortest path from j to k. There is a unique customer i at each vertex
i ∈ V . Unless ambiguity would result, we do not distinguish between vertex
and customer. There is a vehicle initially located at the depot 0 to serve all the
costumers. Each customer i is associated with a release time ri and a service time
pi. It means that the vehicle cannot start serving customer i before ri, and needs
pi time units to finish its service. The vehicle arriving at a vertex i before ri either
waits until ri to serve the customer vi, or moves to other vertices without serving
vi if it is more advantageous (in this case, the vehicle has to come back to i later
to serve customer i). A routing schedule of the vehicle is specified by a sequence
π = (π(1), π(2), ..., π(n)) of customers to be served, i.e. the vehicle travels along
a shortest path from 0 to π(1) in G, taking the travel time of the length of
the path, waits until rπ(1) if the arrival time is before t = rπ(1) and serve the
customer π(1). After serving π(1), it immediately moves to π(2), waits until rπ(2)

if the arrival time is before t = rπ(2) and serve the customer π(2), and so on. In
the following, for any feasible schedule π, we always assume π(0) = π(n+1) = 0.
Let C[i](π) denote the service completion time of customer π(i) in π, and set
C[0](π) = 0. Then, C[i](π) equals to max{rπ(i), C[i−1](π) + tπ(i−1),π(i)} + pπ(i)

for all i = 1, 2, ..., n. The makespan of π is donoted by Ctour
max(π) in the tour-

version, and Cpath
max (π) in the path-version. Then, Ctour

max(π) = C[n](π) + t0,π(n),
Cpath

max (π) = C[n](π).
We now introduce some notations to be used throughout the article. Let

tmax = max1≤i≤nt0,i

L =
∑

(i,j)∈E ti,j
rmax = max1≤i≤nri

P =
∑n

i=1 pi

(1)

and for 0 ≤ t ≤ rmax,
V (t) = {i ∈ V | ri ≥ t}
P (t) =

∑
i∈V (t) pi

V ′(t) = {i ∈ V | ri > t}
P ′(t) =

∑
i∈V ′(t) pi

(2)

Note that P (t) and P ′(t) are piecewise constant functions of t, and different
only at rj(j = 1, 2, ..., n).

For 0 ≤ t ≤ rmax, let v(t) and v′(t) denote the farthest vertices from vertex
0 in V (t) and V ′(t), respectively. We also define

θ: the shortest travelling tour over V ∪ {0}
δ′
0(t): the shortest travelling path over V ′(t) ∪ {0} starting from the depot 0.

316 Y. Wu and X. Lu

When G = (V ∪ {0}, E) is a tree, for any U ⊂ V ∪ {0}, we define the spanning
subtree on U as the smallest subtree of G which contains all the vertices in U . Fur-
thermore, for 0 ≤ t ≤ rmax, we let T (t), T ′(t), T̂ (t) and T̂ ′(t) denote the spanning
subtree on the vertex sets V (t), V ′(t), V (t) ∪ {0} and V ′(t) ∪ {0}, respectively.

In the following, a symbol denoting a subgraph of G also be considered as
its length, i.e. if G′ is a subgraph of G, then G′ =

∑
(j,k)∈G′ tj,k.

3 SVSP on Tree Network

In this section we consider T-SVSP. Without loss of generality, we consider the
depot 0 as the root of the tree. A 16

9 -approximation algorithm for the tour-version
is presented in Sect. 3.1, and a 48

25 -approximation algorithm for the path-version
is provided in Sect. 3.2.

3.1 Tour-Version of T-SVSP

Karuno et al. [3] provided a 11
6 -approximation algorithm for the tour-version of

T-SVSP. They first gave several different candidate schedules and then chose the
best one as the approximation solution. Yu and Liu [6] proved that the tour ver-
sion of T-SVSP has an r-approximation algorithm if the tour version of T-SVRP
has. Then they presented a 9

5 -approximation algorithm for the tour-version of
T-SVRP. We will adopt a similar approach and show the approximation ratio
can be reduced to 16

9 .

Algorithm 1 for the tour-version of T-SVRP

Step 1. We define σ as a tour on the tree in which the vehicle starts out from the
depot 0 and visits v(0) first, and then visits other customers in a depth-first
sequence, and finally returns to the depot. Construct a schedule π1 such that
the service order of the customers is the same as the visiting order of the
customers in σ.

Step 2. Let x denote the point that is L + tmax

2 time units away from the depot
0 along σ. Let t∗ = max{2L, rmax}. Construct a schedule π2 such that the
vehicle first waits at vertex 0 for t∗−L− tmax

2 time units, and then travels along
σ without serving any customer until it arrives at v(0), and then travels along
σ from vertex v(0) to point x to serve the customers in V \V ′(t∗ − L + tmax

2),
and then travels to vertex 0 to serve all the remaining customers in a depth-
first sequence.

Step 3. Construct a schedule π3 such that the vehicle first waits at vertex 0 for
t∗ −L+ tmax

2 time units, and then travels reverse of σ to point x to serve the
customers in V \V ′(t∗ − L + tmax

2), and then travels to vertex 0 to serve all
the remaining customers in a depth-first sequence.

Step 4. Choose the best one among π1,π2 and π3 as the approximation solution π.

Better Approximation Ratios 317

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1, π2 and π3, and then prove that Algorithm 1 is a 16

9 -
approximation algorithm to the tour-version of T-SVSP. Let π∗ denote the opti-
mal schedule for the tour-version of T-SVRP.

Theorem 1. Algorithm 1 is a 16
9 -approximation algorithm to the tour-version

of T-SVRP.

Proof. The proof will be presented in three steps.
Step 1: We prove an upper bound on Ctour

max(π1).
In π1, the vehicle either waits at some customers for their release or doesn’t

wait at any vertex. If the vehicle waits at some customers, assume customer j is
the last customer where the vehicle waits. Because the first served customer is
v(0), the travel time of the vehicle before it arriving at j is at least t0,v(0)+tv(0),j .
The total travel time of the vehicle in π1 is 2L. Then, the travel time of the vehicle
after it serves customer j is no more than 2L − t0,v(0) − tv(0),j . Thus,

Ctour
max(π1) ≤ rj + 2L − t0,v(0) − tv(0),j

= rj + t0,j + 2L − t0,v(0) − tv(0),j − t0,j

≤ 2Ctour
max(π∗) − 2tmax

(3)

where the last equality follows rj + t0,j ≤ Ctour
max(π∗), 2L ≤ Ctour

max(π∗) and
tmax = t0,v(0) ≤ tv(0),j + t0,j .

If the vehicle doesn’t wait at any vertex, then

Ctour
max(π1) = 2L

= Ctour
max(π∗)

≤ 2Ctour
max(π∗) − 2tmax

(4)

Combing the above two cases, we conclude that

Ctour
max(π1) ≤ 2Ctour

max(π∗) − 2tmax. (5)

Step 2: We show an upper bound on min{Ctour
max(π2), Ctour

max(π3)}.
We first consider the total waiting time of the vehicle in π2 and π3. In both

π2 and π3, the time of the vehicle arriving at point x is t∗. Since t∗ ≥ rmax,
the vehicle does not wait at any customer in the later process. Thus, the total
waiting time of the vehicle in π2 is t∗ −L− tmax

2 , and that in π3 is t∗ −L+ tmax

2 .
The total waiting time of the vehicle in π2 and π3 is 2t∗ − 2L.

Now we turns to provide an upper bound of the total travel time of the vehicle
in π2 and π3. Let T1 and T2 be subtrees visited in π2 and π3, respectively. It is
easy to see that the travel times of the vehicle in π2 and π3 are no more than
2L + 2((T1\T2) ∩ T̂ ′(t∗ − L + tmax

2)) and 2L + 2((T2\T1) ∩ T̂ ′(t∗ − L + tmax

2)),
respectively. Since 2((T1\T2)∩T̂ ′(t∗−L+ tmax

2))+2((T2\T1)∩T̂ ′(t∗−L+ tmax

2)) ≤
2T̂ ′(t∗ − L + tmax

2), the total travel time of the vehicle in π2 and π3 is at most
4L+2T̂ ′(t∗ −L+ tmax

2), which is no more than 4L+2T̂ ′(L+ tmax

2) for t∗ −L ≥ L.

318 Y. Wu and X. Lu

Combing the above two discussion,

Ctour
max(π2) + Ctour

max(π3) ≤ 2t∗ − 2L + 4L + 2T̂ ′(L + tmax

2)
= 2t∗ + 2L + 2T̂ ′(L + tmax

2)
(6)

A straightforward conclusion of the inequality above is showed as follows.

min{Ctour
max(π2), Ctour

max(π3)}
≤ 1

2 (Ctour
max(π2) + Ctour

max(π3))
≤ t∗ + L + T̂ ′(L + tmax

2)
≤ t∗ + L + (Ctour

max(π∗) − L − tmax

2 + t0,v(L+ tmax
2))/2

≤ 7
4Ctour

max(π∗) + tmax

4

(7)

where the second inequality follows Ctour
max(π∗) ≥ t + 2T̂ (t) − t0,v(t) and T̂ ′(t) ≤

T̂ (t), the last inequality follows t0,v(L+ tmax
2) ≤ tmax and Ctour

max(π∗) ≥ t∗ ≥ 2L.
Step 3: We prove the correctness of Theorem 1.
Combining the conclusion of the above two steps,

min{Ctour
max(π1), Ctour

max(π2), Ctour
max(π3)}

≤ min{2Ctour
max(π∗) − 2tmax, 7

4Ctour
max(π∗) + tmax

4 }
≤ 16

9 Ctour
max(π∗)

(8)

This completes the proof of Theorem 1. �	
[11] showed that, in linear time, each instance I of the tour-version of

T-SVSP can be transformed into an instance I ′ of the tour-version of T-
SVRP such that any r-approximation schedule π′ of I ′ also can be transformed
into an r-approximation schedule of I. Therefore, we design the following 16

9 -
approximation algorithm for the tour-version of T-SVSP.

Algorithm 2 for the tour-version of T-SVSP

Step 1. Given an instance I = (T = (V ∪ {0}, E), r, t, p) of T-SVSP, construct
an auxiliary instance I ′(T ′ = (V ′ ∪ {0}, E′), r′, t′) of T-SVRP as follows.
V ′ = V ∪ ⋃n

i=1 n + i, E′ = E ∪ ⋃n
i=1 (i, n + i), t′j,k = tj,k for each edge

(j, k) ∈ E, t′i,n+i = pi

2 , r′
i = ri and r′

n+i = ri + pi

2 for each i ∈ V .
Step 2. Call Algorithm 1 to solve auxiliary instance I ′ of T-SVRP and obtain a

schedule π′.
Step 3. Construct a schedule π such that customer i is served before customer j

if customer n + i is served before customer n + j in π′ for each pair i, j ∈ V .

Theorem 2. Algorithm 2 is a 16
9 -approximation algorithm to the tour-version

of T-SVSP.

Proof. Theorem 2 is a direct inference of Theorem 1. �	

Better Approximation Ratios 319

3.2 Path-Version of T-SVSP

When it comes to the path-version of T-SVSP, notice that the gap between
the makespan of a schedule for the tour-version of T-SVSP and that of the
same schedule for the path-version of T-VSP is no more than tmax. Therefore,
the approximation algorithm for the tour-version of T-VSP can also be used to
solve the path-version of T-SVSP.

Algorithm 3 for the path-version of T-SVSP

Step 1. Call Algorithm 2 to obtain a schedule π1 for the corresponding tour-
version of T-SVSP.

Step 2. Let P0,v(0) indicate the unique path between the vertices 0 and v(0) in
the tree G. It is easy to see that t0,v(0) = tmax. We assume that there are m+2
vertices 0, 1, 2, ...,m + 1 = v(0) on path P0,v(0). Then, deleting the edges in
P0,v(0), we obtain m+2 subtrees, which can be described as T i(0 ≤ i ≤ m+1)
such that T i is connected with vertex i. Let V i denote the vertex set of T i.
Solving the auxiliary L-SVRP on the path P0,v(0), where the release time
of vertex i is redefined as max{rj | j ∈ V i}, by the dynamic programming
algorithm of [2], we obtain a service order of V is. Then, serving the customers
in each V i in an arbitrary depth-first order, we obtain a schedule π2.

Step 3. Choose the best one between π1 and π2 as the approximate solution π.

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1 and π2, and then prove that Algorithm 3 is a 48

25 -
approximation algorithm to the path-version of T-SVSP. Let π′ and π∗ denote
the optimal schedule for the tour-version of T-SVSP and the path-version of
T-SVSP, respectively.

Theorem 3. Algorithm 3 is a 48
25 -approximation algorithm to the path-version

of T-SVSP.

Proof. The proof will be presented in three steps.
Step 1. We prove an upper bound on Cpath

max (π1).
Let j denote the last customer served by the vehicle in π∗. It is easy to see

that Ctour
max(π∗)−Cpath

max (π∗) ≤ t0,j , and t0,j ≤ tmax. Then, we obtain Ctour
max(π∗) ≤

Cpath
max (π∗) + tmax. Thus,

Cpath
max (π1) ≤ Ctour

max(π1) ≤ 16
9 Ctour

max(π′)
≤ 16

9 Ctour
max(π∗)

≤ 16
9 Cpath

max (π∗) + 16
9 tmax

(9)

Step 2. We show an upper bound on Cpath
max (π2).

It is easy to see that the optimal makespan of the auxiliary L-SVRP is a
lower bound of Cpath

max (π∗). Compared with the optimal makespan of L-SVRP,

320 Y. Wu and X. Lu

the makespan of π2 increases at most 2(L − tmax) + P time units for travelling
the subtrees T 0, T 1, ..., Tm+1 and serving all the customers. Then, we obtain

Cpath
max (π2) ≤ Cpath

max (π∗) + 2(L − tmax) + P
≤ 2Cpath

max (π∗) − tmax
(10)

Step 3. We prove the correctness of Theorem 3.

min{Cpath
max (π1), Cpath

max (π2)}
≤ min{ 16

9 Cpath
max (π∗) + 16

9 tmax, 2Cpath
max (π∗) − tmax}

≤ 48
25Cpath

max (π∗)
(11)

This completes the proof of Theorem 3. �	

4 SVSP on Cycle Network

We now turn to the tour version of C-SVSP. Let G = (V ∪{0}) be a cycle, where
the vertices in V ∪{0} are numbered increasingly in the counterclockwise order.
In the following of this section, we consider vertex n + 1 as vertex 0.

Recall the definitions of L, θ, δ′
0(t) in Sect. 2. We assume that there is no

edge (i, i + 1) such that ti,i+1 ≥ 1
2L. Otherwise there exists an optimal schedule

which never goes through the edge (i, i+1), thus the tour-version of C-SVSP can
be considered as a tour-version of L-SVSP. Since [6] showed a 3

2 -approximation
algorithm for the tour-version of L-SVSP, we focus on the situation satisfying
ti,i+1 < 1

2L for all i = 0, 1, ..., n, which implies θ = L. Suppose that V ′(t) =
{i1, i2, ..., ik} with i1 < i2 < ... < ik, and i0 = ik+1 = 0. Then δ′

0(t) is the
shortest one among the following paths:

(i) for 0 ≤ j ≤ k − 1, the paths first from i0 to ij in the counterclockwise
direction, and then from ij to ij+1 in the clockwise direction;

(ii) for 2 ≤ j ≤ k + 1, the paths first from i0 to ij in the clockwise direction,
and then from ij to ij−1 in the counterclockwise direction.

Then, we provide a 5
3 -approximation algorithm for the tour-version of C-SVSP

as follows.

Algorithm 4 for the tour-version of C-SVSP

Step 1. Solve the corresponding C-SVRP by the dynamic programming algorithm
of [10] to generate a schedule π1.

Step 2. Find t∗(0 ≤ t∗ ≤ rmax) such that P ′(t∗) + δ′
0(t

∗) ≤ 2t∗ ≤ P (t∗) +
δ0(t∗). Partition the customers into V \V ′(t∗) and V ′(t∗). Let vδ′

0(t
∗) denote

the other end point differing from vertex 0 in path δ′
0(t

∗). Construct π2 in
which the vehicle first travels to vδ′

0(t
∗) and waits until t∗(if necessary), then

goes through the cycle to serve all the customers in V \V ′(t∗) before it arrives
vδ′

0(t
∗) again, and travels along δ′

0(t
∗) to serve the customers in V ′(t∗).

Step 3. Choose the best one among π1 and π2 as the approximate solution π.

Better Approximation Ratios 321

In the proof of the following theorem, we first propose several upper bounds
on the makespan of π1 and π2, and then prove that Algorithm 4 is a 5

3 -
approximation algorithm to the tour-version of T-SVSP. Let π∗ denote the opti-
mal schedule for the tour-version of C-SVSP.

Theorem 4. Algorithm 4 is an 5
3 -approximation algorithm to the tour-version

of C-SVSP.

Proof. The proof will be presented in three steps.
Step 1. We show that Ctour

max(π1) ≤ Ctour
max(π∗) + P .

The optimal makespan of the C-SVRP is a lower bound of Ctour
max(π∗). As a

solution to C-SVSP, π1 increases at most P time units in makespan than as an
optimal solution to C-SVRP. Then, Ctour

max(π1) ≤ Ctour
max(π∗) + P .

Step 2. We prove that Ctour
max(π2) ≤ max{ 7

3Ctour
max(π∗) − P, 5

2Ctour
max(π∗) −

3
2P, 5

3Ctour
max(π∗)}.

The vehicle does not wait at any customer in V \V ′(t∗), because it starts out
from vertex vδ′

0(t
∗) at or later than time t∗. If the vehicle does not wait at any

customer in V ′(t∗), we have

Ctour
max(π2) ≤ max{t∗, t0,vδ′

0(t∗)
} + θ + δ′

0(t
∗) + P

≤ max{ 1
3Ctour

max(π∗), 1
2θ} + 2θ + P

≤ max{ 7
3Ctour

max(π∗) − P, 5
2Ctour

max(π∗) − 3
2P}

(12)

where the second inequality follows from Ctour
max(π∗) ≥ t∗ + δ0(t∗) + P (t∗) ≥ 3t∗,

t0,v′(t∗) ≤ 1
2θ and δ′

0(t
∗) ≤ θ, and the last inequality follows from Ctour

max(π∗) ≥
θ + P .

If the vehicle waits at some customer in V ′(t∗), let k be the last customer
where the vehicle waits. Then we have

Ctour
max(π2) ≤ rk + P ′(t∗) + δ′

0(t
∗)

≤ 5
3Ctour

max(π∗) (13)

where the last inequality follows from Ctour
max(π∗) ≥ ri + t0,i, for any i ∈ V and

Ctour
max(π∗) ≥ t∗ + δ0(t∗) + P (t∗) ≥ 3

2 (δ′
0(t

∗) + P ′(t∗)).
Step 3. We prove the minimum one between the makespans of π1 and π2 is

at most 5
3Ctour

max(π∗).

min{Ctour
max(π1), Ctour

max(π2)}
≤ min{Ctour

max(π∗) + P,max{ 7
3Ctour

max(π∗) − P, 5
2Ctour

max(π∗) − 3
2P, 5

3Ctour
max(π∗)}}

= 5
3Ctour

max(π∗)
(14)

This completes the proof. �	

5 Conclusions

In this paper, we consider the single-vehicle scheduling problems on a tree and a
cycle, and all of these problems are known to be NP-hard. For the tour-version

322 Y. Wu and X. Lu

and the path-version of T-SVSP, we present a 16
9 -approximation algorithm and

a 48
25 -approximation algorithm, respectively. We also consider the tour-version of

single-vehicle scheduling problem on a cycle, and give a 5
3 -approximation algo-

rithm. Our algorithms improve the previous best results in the literature. The
main idea used in the improved algorithms is to utilize the structure character-
istics of tree and cycle to antedate the department time of the vehicle.

There are some issues that are still unsolved. We would like to know whether
the approximation bounds obtained in this paper are tight. As a natural exten-
sion of this paper, researchers may study SVSP on a general network. If the
general network satisfies the triangle inequality, it is straightforward to design a
5
2 -approximation algorithm. A better approximation bound is desirable.

Acknowledgement. The authors would like to thank the associated editor and the
anonymous referees for their constructive comments and kind suggestions. This research
was supported by the National Natural Science Foundation of China under Grant No.
11371137.

References

1. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems
with time windows. Networks 22, 263–282 (1992). https://doi.org/10.1002/net.
3230220305

2. Psaraftis, H.N., Solomon, M.M., Magnanti, T.L., Kim, T.-U.: Routing and schedul-
ing on a shoreline with release times. Manage. Sci. 36, 212–223 (1990). https://
doi.org/10.1287/mnsc.36.2.212

3. Karuno, Y., Nagamochi, H., Ibaraki, T.: Better approximation ratios for the single-
vehicle scheduling problems on line-shaped networks. Networks 39(4), 203–209
(2002). https://doi.org/10.1002/net.10028

4. Gaur, D.R., Gupta, A., Krishnamurti, R.: A 5
3
-approximation algorithm for

scheduling vehicles on a path with release and handling times. Inform. Process.
Lett. 86, 87–91 (2003). https://doi.org/10.1016/S0020-0190(02)00474-X

5. Bhattacharya, B., Carmi, P., Hu, Y., Shi, Q.: Single vehicle scheduling problems
on Path/Tree/Cycle Networks with release and handling times. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 800–811.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 70

6. Yu, W., Liu, Z.: Single vehicle scheduling problems with release and service times
on a line. Networks 57, 128–134 (2011). https://doi.org/10.1002/net.20393

7. Karuno, Y., Nagamochi, H.: 2-approximation algorithms for the multi-vehicle
scheduling prbolem on a path with release and handling times. Discrete Appl.
Math. 129, 433–447 (2003). https://doi.org/10.1016/S0166-218X(02)00596-6

8. Yu, W., Liu, Z.: Vehicle routing problems on a line-shaped network with release
time constraints. Oper. Res. Lett. 37, 85–88 (2009). https://doi.org/10.1016/j.orl.
2008.10.006

9. Karuno, Y., Nagamochi, H., Ibaraki, T.: Vehicle scheduling on a tree with release
and handling times. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 486–495. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57568-5 280

https://doi.org/10.1002/net.3230220305
https://doi.org/10.1002/net.3230220305
https://doi.org/10.1287/mnsc.36.2.212
https://doi.org/10.1287/mnsc.36.2.212
https://doi.org/10.1002/net.10028
https://doi.org/10.1016/S0020-0190(02)00474-X
https://doi.org/10.1007/978-3-540-92182-0_70
https://doi.org/10.1002/net.20393
https://doi.org/10.1016/S0166-218X(02)00596-6
https://doi.org/10.1016/j.orl.2008.10.006
https://doi.org/10.1016/j.orl.2008.10.006
https://doi.org/10.1007/3-540-57568-5_280

Better Approximation Ratios 323

10. Nagamochi, H., Mochizuki, K., Ibaraki, T.: Complexity of the single vehicle
scheduling problem on graphs. Inform. Syst. Oper. Res. 35, 256–276 (1997).
https://doi.org/10.1080/03155986.1997.11732334

11. Bao, X., Liu, Z.: Approximation algorithms for single vehicle scheduling problems
with release and service times on a tree or cycle. Theoret. Comput. Sci. 434, 1–10
(2012). https://doi.org/10.1016/j.tcs.2012.01.046

12. Augustine, J.E., Seiden, S.S.: Linear time approximation schemes for vehicle
scheduling problems. Theoret. Comput. Sci. 324, 147–160 (2004). https://doi.org/
10.1016/j.tcs.2004.05.013

13. Bhattacharya, B., Hu, Y.: Approximation algorithms for the multi-vehicle schedul-
ing problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS,
vol. 6507, pp. 192–205. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17514-5 17

https://doi.org/10.1080/03155986.1997.11732334
https://doi.org/10.1016/j.tcs.2012.01.046
https://doi.org/10.1016/j.tcs.2004.05.013
https://doi.org/10.1016/j.tcs.2004.05.013
https://doi.org/10.1007/978-3-642-17514-5_17
https://doi.org/10.1007/978-3-642-17514-5_17

An Efficient Primal-Dual Algorithm for Fair
Combinatorial Optimization Problems

Viet Hung Nguyen1 and Paul Weng2,3,4(B)

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
Hung.Nguyen@lip6.fr

2 SYSU-CMU Joint Institute of Engineering, Guangzhou, China
3 School of Electronics and Information Technology, SYSU, Guangzhou, China

paweng@mail.sysu.edu.cn
4 SYSU-CMU Joint Research Institute, Shunde, China

Abstract. We consider a general class of combinatorial optimization
problems including among others allocation, multiple knapsack, match-
ing or travelling salesman problems. The standard version of those prob-
lems is the maximum weight optimization problem where a sum of values
is optimized. However, the sum is not a good aggregation function when
the fairness of the distribution of those values (corresponding for exam-
ple to different agents’ utilities or criteria) is important. In this paper,
using the Generalized Gini Index (GGI), a well-known inequality mea-
sure, instead of the sum to model fairness, we formulate a new general
problem, that we call fair combinatorial optimization. Although GGI
is a non-linear aggregating function, a 0, 1-linear program (IP) can be
formulated for finding a GGI-optimal solution by exploiting a lineariza-
tion of GGI proposed by Ogryczak and Sliwinski [21]. However, the time
spent by commercial solvers (e.g., CPLEX, Gurobi...) for solving (IP)
increases very quickly with instances’ size and can reach hours even for
relatively small-sized ones. As a faster alternative, we propose a heuris-
tic for solving (IP) based on a primal-dual approach using Lagrangian
decomposition. We demonstrate the efficiency of our method by eval-
uating it against the exact solution of (IP) by CPLEX on several fair
optimization problems related to matching. The numerical results show
that our method outputs in a very short time efficient solutions giving
lower bounds that CPLEX may take several orders of magnitude longer
to obtain. Moreover, for instances for which we know the optimal value,
these solutions are quasi-optimal with optimality gap less than 0.3%.

Keywords: Fair optimization · Generalized Gini Index · Ordered
weighted averaging · Matching · Subgradient method

1 Introduction

The solution of a weighted combinatorial optimization problem can be seen
as the selection of n values in a combinatorial set X ⊂ R

n. The maximum
weight version of such a problem consists in maximizing the sum of these n

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 324–339, 2017.
https://doi.org/10.1007/978-3-319-71150-8_28

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 325

values (e.g.,
∑n

i=1 ui). For instance, in a matching problem on a graph, the sum
of weights that is optimized corresponds to the sum of weights of the edges
selected in a matching. In practice, the vector of weights (u1, u2, . . . , un) could
receive different interpretations depending on the actual problem. In a multi-
agent setting, each value ui represents the utility of an agent i, as in a bi-partite
matching problem where n objects have to be assigned to n agents. In a multi-
criteria context, those n values can be viewed as different dimensions to optimize.
For example, in the travelling salesman problem (TSP) with n cities, a feasible
solution (i.e., Hamiltonian cycle) is valued by an n-dimensional vector where
each component represents the sum of the distances to reach and leave a city.

In both interpretations, it is desirable that the vector of values
(u1, u2, . . . , un) be both Pareto-optimal (i.e., not improvable on all components
at the same time) and balanced (or fair). We call optimization with such con-
cerns fair optimization by adopting the terminology from multi-agent systems.
In this paper, we focus on the fair optimization version of a class of combinatorial
problems (including allocation, general matching, TSP...). Note that optimizing
the sum of the values (i.e., maximum weight problem) yields a Pareto-optimal
solution, but does not provide any guarantee on how balanced the vector solution
would be.

Various approaches have been proposed in the literature to provide such a
guarantee with different models for fairness or “balancedness” (see Sect. 2 for an
overview). In this paper, our approach is based on an inequality measure called
Generalized Gini Index (GGI) [29], which is well-known and well-studied in eco-
nomics and can be used to control for both Pareto-efficiency and fairness. Indeed,
fairness has naturally been investigated in economics [17]. In this literature, two
important requirements have been identified as essential for fairness: equal treat-
ment of equals and efficiency. The first notion implies that two agents with the
same characteristics (notably the same preferences) have to be treated the same
way, while the second entails that a fair solution should be Pareto-optimal. GGI
satisfies both requirements, as it is symmetric in its arguments and increasing
with Pareto dominance. The notion of fairness that GGI encodes is based on the
Pigou-Dalton transfer principle, which states that a small transfer of resource
from a richer agent to a poorer one yields a fairer distribution.

To the best of our knowledge, fair optimization in such general combinatorial
problems has not been considered so far, although the GGI criterion has been
investigated before in some specific problems (allocation [12], capital budget-
ing [11], Markov decision process [19,20]...). The difficulty of this combinatorial
optimization problem lies in the fact that the objective function is non-linear.
The contribution of this paper is fourfold: (1) we introduce a new general combi-
natorial problem (e.g., fair matching in general graph or fair TSP have not been
studied so far); (2) we provide an optimality condition and an approximation
ratio; (3) we propose a fast general heuristic method based on a primal-dual app-
roach and on Lagrangian decomposition; (4) we evaluate this method on several
problems related to matching to understand its efficiency. Although our general
combinatorial formulation covers problems whose maximum weight version is

326 V.H. Nguyen and P. Weng

NP-hard, we leave for a follow-up work the integration of our fast heuristic with
approximation algorithms to solve those NP-hard problems.

The paper is organized as follows. Section 2 gives an overview of related work.
Section 3 provides a formal definition of our problem, which can be solved by a
0, 1-linear program. As a faster alternative, we present a heuristic primal-dual
solving method based on Lagrangian decomposition in Sect. 4 and evaluate it
experimentally in Sect. 5. Finally, we conclude in Sect. 6.

2 Related Work

Fair optimization is an active and quite recent research area [14,18] in multi-
objective optimization. Fairness can be modeled in different ways. One simple
approach is based on maxmin, so called Egalitarian approach, where one aims
at maximizing the worse-off component (i.e., objective, agent...). Due to the
drowning effects of the min operator, vectors with the same minimum cannot
be discriminated. A better approach [24] is based on the lexicographic maxmin,
which consists in considering the minimum first when comparing two vectors,
then in case of a tie, focusing on the second smallest values and so on. However,
due to the noncompensatory nature of the min operator, vector (1, 1, . . . , 1)
would be preferred to (0, 100, . . . , 100), which may be debatable. To take into
account this observation, one can resort to use a strictly increasing and strictly
Schur-concave (see Sect. 3.2 for definition) aggregation function f (see [18] for
examples) that evaluates each vector such that higher values are preferred.

In this paper, we focus on the Generalized Gini Index (GGI) proposed in the
economics literature [29], because it satisfies natural properties for encoding fair-
ness. GGI is a particular case of a more general family of operators known as
Ordered Weighted Averaging (OWA) [31]. Much work in fair optimization has
applied the OWA operator and GGI in multiobjective (continuous and combina-
torial) optimization problems. To cite a few, it was used in network dimensioning
problems [22], capital budgeting [11], allocation problems [12], flow optimization in
wireless mesh networks [10] and multiobjective sequential decision-making under
uncertainty [19,20].One common solving technique is based on a linearization trick
of the nonlinear objective function based on GGI [21]. Recently, [9] considered a
similar setting to ours, but tries to solve its continuous relaxation.

In multicriteria decision-making, fair optimization is related to compromise
optimization, which generally consists in minimizing a distance to an ideal point
[27]. More generally, the ideal point can be replaced by any reference point
that a decision maker chooses, as in the reference point method [30]. In this
context, a judiciously chosen reference point can help generate a solution with
a balanced profile on all criteria. One main approach is based on minimizing
the augmented weighted Tchebycheff distance. This method has been applied in
many multicriteria problems, for instance, in process planning [25], in sequen-
tial decision-making under uncertainty [23], in discrete bicriteria optimization
problems [6], in multiobjective multidimensional knapsack problems [15].

Note that our combinatorial optimization problem should not be confused
with the multicriteria version of those problems where each scalar weight

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 327

becomes vectorial and the value of a solution is obtained by aggregating the
selected weight vectors with a componentwise sum. For instance, Anand [1]
investigated a multicriteria version of the matching problem and proved that
the egalitarian approach for vector-valued matching leads to NP-hard problems.
In our problem, the weights are scalar and the value of a solution is not obtained
by summing its scalar weights, but by aggregating them with GGI.

3 Model

In this section, we formally describe the general class of combinatorial problems
considered in this paper and provide some concrete illustrative examples in this
class. Then we recall the generalized Gini index as a measure of fairness and
define the fair combinatorial optimization problems tackled in this paper. We
start with some notations. For any integer n, [n] denotes the set {1, 2, . . . n}. For
any vector x, its component is denoted xi or xij depending on its dimension.

3.1 General Model

We consider a combinatorial optimization problem (e.g., allocation, multiple
knapsack, matching, travelling salesman problem...), whose feasible solutions
X ⊆ {0, 1}n×m can be expressed as follows:

Az ≤ b

z ∈ {0, 1}n×m

where A ∈ Z
p×(nm), b ∈ Z

p, n, m and p are three positive integers,
and z is viewed as a one-dimensional vector (z11, . . . , z1m, z21, . . . , z2m, . . .,
zn1, . . . , znm)ᵀ.

Let uij ∈ N be the utility of setting zij to 1. The maximum weight problem
defined on combinatorial set X can be written as a 0, 1-linear program (0, 1-LP):

max.
∑

i∈[n]

∑

j∈[m]

uijzij

s.t.z ∈ X
Because this general problem includes the travelling salesman problem

(TSP), it is NP-hard in general. As mentioned before, this objective function
provides no control on the fairness of the obtained solution. Although possibly
insufficient, one simple approach to fairness consisting in focusing on the worse-
off component is the maxmin problem defined on set X , which can also be written
as a 0, 1-LP:

max. v

s.t. v ≤
∑

j∈[m]

uijzij ∀i ∈ [n]

z ∈ X

328 V.H. Nguyen and P. Weng

Even for some polynomial problems like allocation, this version is NP-hard in
general [4]. To avoid any confusion, in this paper, allocation refers to matching
on a bi-partite graph and matching generally implies a complete graph.

For illustration, we now present several instantiations of our general model
on allocation and matching problems, some of which will be used for the exper-
imental evaluation of our proposed methods in Sect. 5.

Example 1 (Allocation). Let G = (V1 ∪ V2, E, u) be a valued bipartite graph
where V1 and V2 are respectively an n-vertex set and an m-vertex set with V1 ∩
V2 = ∅, E ⊆ {{x, y} | (x, y) ∈ V1 × V2

}
is a set of non-directed edges and

u : E → R defines the nonnegative utility (i.e., value to be maximized) of an
edge. As there is no risk of confusion, we identify V1 to the set [n] and V2 to
the set [m]. An allocation of G is a subset of E such that each vertex i in V1 is
connected to αi to βi vertices in V2 and each vertex in V2 is connected to α′

j to
β′

j vertices in V1 where (α,β) ∈ N
n×n and (α′,β′) ∈ N

m×m.
The assignment problem where n tasks need to be assigned to n agents is a

special case where n = m and αi = βi = α′
j = β′

j = 1 for i ∈ [n] and j ∈ [n].
The conference paper assignment problem where m papers needs to be reviewed
by n reviewers such that each paper is reviewed by 3 reviewers and each reviewer
receives at most 6 papers can be represented with αi = 0, βi = 6, α′

j = 3 and
β′

j = 3 for i ∈ [n] and j ∈ [m]. The Santa Claus problem [3] where m toys needs
to be assigned to n children with n ≤ m is also a particular case with αi = 0,
βi = m, α′

j = β′
j = 1 for i ∈ [n] and j ∈ [m].

The maximum weight problem can be solved with the following 0, 1-LP:

max.
∑

i∈[n]

∑

j∈[m]

uijzij

s.t. αi ≤
∑

j∈[m]

zij ≤ βi ∀i ∈ [n] (3a)

α′
j ≤

∑

i∈[n]

zij ≤ β′
j ∀j ∈ [m] (3b)

z ∈ {0, 1}n×m

Interestingly, its solution can be efficiently obtained by solving its continuous
relaxation because the matrix defining its constraints (3a)–(3b) is totally uni-
modular [26]. However, the maxmin version is NP-complete [4].

Example 2 (Matching). Let G = (V,E, u) be a valued graph where V is a
2n-vertex set (with n ∈ N\{0}), E ⊆ {{x, y} | (x, y) ∈ V 2, x �= y

}
is a set of

non-directed edges and u : E → R defines the nonnegative utility of an edge. A
matching M of G is a subset of E such that no pair of edges of M are adjacent,
i.e., they do not share a common vertex: ∀(e, e′) ∈ E2, e �= e′ ⇒ e ∩ e′ = ∅. A
perfect matching M is a matching where every vertex of G is incident to an edge
of M . Thus, a perfect matching contains n edges. Without loss of generality, we
identify V to the set [2n] and denote ∀e = {i, j} ∈ E, uij = u(e) when convenient.

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 329

The standard maximum weight perfect matching problem aims at finding a
perfect matching for which the sum of the utilities of its edges is maximum. Let
δ(i) = {{i, j} ∈ E | j ∈ V \{i}} be the set of edges that are incident on vertex i.
It is known [13] that this problem can be formalized as a 0, 1-LP (where zij’s for
i > j are unnecessary and can be set to 0):

(PM)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max.
∑

i∈[2n]

∑

j∈[2n],j>i

uijzij

s.t.
∑

{i,j}∈δ(k),i<j

zij = 1 ∀k ∈ [2n]

zij ∈ {0, 1} ∀i ∈ [2n], j = i + 1, . . . , 2n

(4a)

(4b)

(4c)

where (4b) states that in a matching only one edge is incident on any vertex.
This problem can be solved as an LP by considering the continuous relaxation

of PM and adding the well-known blossom constraints (5b) in order to remove
the fractional solutions introduced by the relaxation:

(RPM)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max.
∑

i∈[2n]

∑

j∈[2n],j>i

uijzij

s.t.
∑

{i,j}∈δ(k),i<j

zij = 1 ∀k ∈ [2n]

z(δ(S)) ≥ 1 ∀S ⊂ V, |S| odd, |S| ≥ 3
0 ≤ zij ≤ 1 ∀i ∈ [2n], j = i + 1, . . . , 2n

(5a)

(5b)
(5c)

where z(δ(S)) =
∑

{i,j}∈δ(S),i<j zij and δ(S) = {{i, j} ∈ E | i ∈ S and j ∈ V \S}.
Constraints (5a)–(5c) define the so-called perfect matching polytope. In practice,
this problem can be efficiently solved with the Blossom algorithm proposed by
Edmonds [8]. To the best of our knowledge, the maxmin version of the matching
problem (on complete graph) has not been investigated so far.

In this paper we focus on a variant of those combinatorial problems: search
for a solution z whose distribution of values

(∑
j∈[m] uijzij

)
i∈[n]

is fair to its
components (e.g., different agents’ utilities or criteria). To model fairness we use
a special case of the ordered weighted averaging operator that we recall next.

3.2 Ordered Weighted Average and Generalized Gini Index

The Ordered Weighted Average (OWA) [31] of v ∈ R
n is defined by:

OWAw(v) =
∑

k∈[n]

wkv↑
k

where w = (w1, . . . , wn) ∈ [0, 1]n is the OWA weight vector and v↑ =
(v↑

1 , . . . , v
↑
n) is the vector obtained from v by rearranging its components in

330 V.H. Nguyen and P. Weng

an increasing order. OWA defines a very general family of operators, e.g., the
sum (for wk = 1, ∀k ∈ [n]), the average, the minimum (for w1 = 1 and wk = 0,
∀k > 1), the maximum (for wn = 1 and wk = 0, ∀k < n), the leximin when
differences between OWA weights tends to infinity or the augmented weighted
Tchebycheff distance [20].

Let the Lorenz components [2] of v be denoted by (L1(v), . . ., Ln(v)) and be
defined by ∀k ∈ [n], Lk(v) =

∑
i∈[k] v

↑
i . Interestingly, OWA can be rewritten as:

OWAw(v) =
∑

k∈[n]

w′
kLk(v) (6)

where ∀k ∈ [n], w′
k = wk − wk+1 and wn+1 = 0. With this rewriting, one can see

that OWA is simply a weighted sum in the space of Lorenz components.
The notion of fairness that we use in this paper is based on the Pigou-Dalton

principle [16]. It states that, all other things being equal, we prefer more “bal-
anced” vectors, which implies that any transfer (called Pigou-Dalton transfer)
from a richer component to a poorer one without reversing their relative posi-
tions yields a preferred vector. Formally, for any v ∈ R

n where vi < vj and for
any ε ∈ (0, vj −vi) we prefer v+ε1i−ε1j to v where 1i (resp. 1j) is the canonical
vector, null everywhere except in component i (resp. j) where it is equal to 1.

When the OWA weights are strictly decreasing and positive [29], OWA is
called the Generalized Gini Index (GGI) [29] and denoted Gw. It encodes both:

efficiency: Gw is increasing with respect to Pareto-dominance (i.e., if v ∈ R
n

Pareto-dominates1 v′ ∈ R
n, then Gw(v) > Gw(v′)); and

fairness: Gw is strictly Schur-concave, i.e., it is strictly increasing with Pigou-
Dalton transfers (∀v ∈ R

n, vi < vj , ∀ε ∈ (0, vj − vi), Gw(v + ε1i − ε1j) >
Gw(v)).

The classic Gini index, which is a special case of GGI with wi = (2(n − i) +
1)/n2 for all i ∈ [n], enjoys a nice graphical interpretation (see Fig. 1). For a
given distribution v ∈ R

n
+, let v̄ denote the average of the components of v, i.e.,

v̄ = 1
n

∑n
i=1 vi. Distribution v can be represented by the curve going through

the points (0, 0) and (k
n , Lk(v)) for k ∈ [n]. The most equitable distribution with

the same total sum as that of v (i.e., nv̄) can be represented by the straight line
going through the points (0, 0) and (k

n , kv̄) for k ∈ [n]. The value 1 − Gw(v)/v̄
is equal to twice the area between the two curves.

Interestingly, the Lorenz components of a vector can be computed by LP
[21]. Indeed, the k-th Lorenz component Lk(v) of a vector v can be found as the
solution of a knapsack problem, which is obtained by solving the following LP:

(LPk)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min.
∑

i∈[n]

aikxi

s.t.
∑

i∈[n]

aik = k

0 ≤ aik ≤ 1 ∀i ∈ [n]
1 Vector v Pareto-dominates vector v′ if ∀i ∈ [n], vi ≥ v′

i and ∃j ∈ [n], vj > v′
j .

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 331

0 20 40 60 80 100
0

20

40

60

80

100

cumulative population (in %)

cu
m

u
la

ti
v
e

va
lu

e

Fig. 1. Lorenz curves

Equivalently, this can be solved by its dual:

(DLk)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max. krk −
∑

i∈[n]

dik

s.t. rk − dik ≤ vi ∀i ∈ [n]
dik ≥ 0 ∀i ∈ [n]

The dual formulation is particularly useful. Contrary to the primal, it can be
integrated in an LP where the vi’s are also variables [21]. We will use this tech-
nique to formulate a 0, 1-LP to solve our general combinatorial optimization
problem.

3.3 Fair Combinatorial Optimization

The problem tackled in this paper is defined by using GGI as objective function:

max. Gw

((∑

j∈[m]

uijzij

)
i∈[n]

)
s.t.

{
Az ≤ b
z ∈ {0, 1}n×m

Following Ogryczak and Sliwinski [21], we can combine the rewriting of OWA
based on Lorenz components (6) and LPs (DLk) for k ∈ [2n] to transform the
previous non-linear optimization program into a 0, 1-LP:

max.
∑

k∈[n]

w′
k(krk −

∑

i∈[n]

dik) (9a)

s.t. Az ≤ b (9b)

z ∈ {0, 1}n×m (9c)

rk − dik ≤
∑

j∈[m]

uijzij ∀i ∈ [n],∀k ∈ [n] (9d)

dik ≥ 0 ∀i ∈ [n],∀k ∈ [n] (9e)

332 V.H. Nguyen and P. Weng

Due to the introduction of new constraints (9d)–(9e) from LPs (DLk), the relax-
ation of this 0, 1-LP may yield fractional solutions. The naive approach to solve
it would be to give it to a 0, 1-LP solver (e.g., Cplex, Gurobi...). Our goal in
this paper is to propose an adapted solving method for it, which would be much
faster than the naive approach by exploiting the structure of this problem.

4 Alternating Optimization Algorithm

Before presenting our approach, which is a heuristic method based on a primal-
dual technique using a Lagrangian decomposition, we first make an interesting
and useful observation. The dual of the continuous relaxation of the previous
0, 1-LP (9) is given by:

min. bᵀv +
∑

i∈[n]

∑

j∈[m]

tij (10a)

s.t. (vᵀA)ij + tij −
∑

k∈[n]

uijyik ≥ 0 ∀i ∈ [n],∀j ∈ [m] (10b)

n∑

i=1

yik = kw′
k ∀k ∈ [n] (10c)

0 ≤ yik ≤ w′
k ∀i ∈ [n],∀k ∈ [n] (10d)

vj ≥ 0 ∀j ∈ [p] (10e)
tij ≥ 0 ∀i ∈ [n],∀j ∈ [m] (10f)

Interestingly, with fixed yik’s, the dual of the previous program can be written
in the following form, which is simply the continuous relaxation of the original
program with modified weights:

max.
∑

i∈[n]

(∑

k∈[n]

yik

) ∑

j∈[m]

uijzij (11a)

s.t.Az ≤ b (11b)

z ∈ [0, 1]n×m (11c)

Therefore, solving this program with discrete z yields a feasible solution of
the original problem. We denote (Py) the 0, 1-LP (11) defined with y =
(yik)i∈[n],k∈[n].

4.1 Optimality Condition and Approximation Ratio

Next we express an optimality condition so that an integer solution z∗ computed
from a dual feasible solution y∗ of (10) is optimal for program (9). First, note
that any extreme solution (v, t,y) of program (10) is such that either yik = 0 or
yik = w′

k for all i ∈ [n] and k ∈ [n].

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 333

Theorem 1. Let (v, t,y∗) be an extreme solution of (10) and let z∗ be the
optimal solution of program (Py∗). Let T ∗

i =
∑

j∈[m] uijz
∗
ij for all i ∈ [n] and

assume without loss of generality that T ∗
1 ≥ T ∗

2 ≥ . . . ≥ T ∗
n .

If for all k ∈ [n], y∗
ik = w′

k for all i ≥ n + 1 − k and y∗
ik = 0 for all i ∈ [n − k]

then z∗ is an optimal solution of program (9).

Proof. Let (v∗, t∗) be the dual optimal solution associated with z∗ when solv-
ing (Py∗). Composing them with y∗, we obtain a feasible solution (v∗, t∗,y∗) of
(10). By duality theory of linear programming, the objective value of this solu-
tion is equal to

∑
i∈[n](

∑
j∈[i] w

′
n+1−j)T

∗
i . Let us now build a feasible solution

(r∗,d∗,z∗) of (9) based on z∗ as follows. For all k ∈ [n],

• r∗
k = T ∗

n+1−k and

• d∗
ik =

{
r∗
k − T ∗

i if i ≥ n + 1 − k
0 otherwise for all i ∈ [n].

We now show that (r∗,d∗) satisfy constraints (9d). For any i ∈ [n] and k ∈ [n],
if i ≤ n + 1 − k then as r∗

k = T ∗
n+1−k ≤ T ∗

i and d∗
ik = 0, we have

r∗
k − d∗

ik ≤ T ∗
i =

∑

j∈[m]

uijz
∗
ij .

If i ≥ n + 1 − k then as d∗
ik = r∗

k − T ∗
i , r∗

k − d∗
ik = T ∗

i =
∑

j∈[m] uijz
∗
ij . Hence

(r∗,d∗,z∗) is a feasible solution of (9). For any k ∈ [n], kr∗
k − ∑

i∈[n] d
∗
ik =

kr∗
k − ∑n

i=n+1−k d∗
ik = kr∗

k − (kr∗
k − ∑n

i=n+1−k T ∗
i) =

∑n
i=n+1−k T ∗

i). Then it is
easy to see that the objective value of this solution, which is

∑
k∈[n] w

′
k(kr∗

k −
∑

i∈[n] d
∗
ik) is equal to

∑
k∈[n] w

′
k

∑n
i=n−k+1 T ∗

i . This sum is just a rewriting of
∑

i∈[n](
∑

j∈[i] w
′
n+1−j)T

∗
i . Thus, by duality of linear programming, the solution

(r∗,d∗,z∗) is optimal for program (9). ��
Theorem 1 provides an optimality condition for any feasible solution z∗, but

does not indicate how to find “good” solutions. Yet, one may be interested in
the quality of some special solutions, e.g., the optimal solution of the maximum
weight version. The following theorem establishes an approximation ratio for the
latter, which also applies to our method as discussed later.

Theorem 2. Let z̄ be an optimal solution of the maximum weight version. Let
T̄i =

∑
j∈[m] uij z̄ij for all i ∈ [n] and assume without loss of generality that

T̄1 ≥ T̄2 ≥ . . . ≥ T̄n. Let w′
max = maxk∈[n] w

′
k. Then the GGI value of z̄ is at

worst max(2w′
n

(n+1)w′
max

, nT̄n

(
∑

i∈[n] T̄i))
) of the optimal objective value of program (9).

Proof. Let vector ȳ ∈ R
n×n be defined as ȳik = k

nw′
k for i, k ∈ [n], which is

feasible for program (10). The objective function of (Pȳ) satisfies:
∑

i∈[n]

(∑

k∈[n]

ȳik

) ∑

j∈[m]

uijzij =
∑

i∈[n]

∑

j∈[m]

(
∑

k∈[n]

k

n
w′

k)uijzij

≤
∑

i∈[n]

∑

j∈[m]

(
∑

k∈[n]

k

n
w′

max)uijzij (12)

334 V.H. Nguyen and P. Weng

Program (11) with objective (12) corresponds to the maximum weight version
scaled by a constant. It is equal to

∑
k∈[n](kw′

max/n)× ∑
i∈[n](T̄i) for solution

z̄, which is an upperbound of the objective value associated with ȳ of (10) and
hence an upperbound for the optimal value of (9).

Proceeding as for Theorem 1, we define a feasible solution of (9) based on z̄:

• r̄k = T̄n+1−k for all k ∈ [n], and

• d̄ik =
{

r̄k − T̄i if i ≥ n + 1 − k
0 otherwise for all i ∈ [n], for all k ∈ [n].

The objective value of this solution
∑

i∈[n](
∑

j∈[i] w
′
n+1−j)T̄i (see proof of The-

orem 1) is to be compared with upperbound
∑

i∈[n](
∑

k∈[n] kw′
max/n)T̄i.

By comparing term by term w.r.t. T̄i for i ∈ [n], we can see that the worst case
happens to the term associated with T̄1 with the ratio w′

n/(
∑

k∈[n] kw′
max/n).

Therefore, we obtain the ratio 2w′
n

(n+1)w′
max

. This ratio is consistent since when
n = 1, the optimal solution of the maximum weight version coincides with the
optimum solution of (9).

By comparing term by term with respect to w′
k for k ∈ [n], we can see

that the worst case happens to the term associated with w′
1 with the ratio

nT̄n/(
∑n

i=1 T̄i), which can be interpreted as the ratio of the smallest utility over
the average utility in the optimal solution of the maximum weight version. This
ratio is consistent since in the case of equal utilities in the optimal solution of
the maximum weight version, the latter coincides with the optimum solution of
(9). ��

4.2 Iterative Algorithm

The previous discussion motivates us to design an alternating optimization algo-
rithm that starts with a feasible y for (10), computes the associated z and uses
the latter to iteratively improve y. Formally, it can be sketched as follows:

1: t ← 0
2: compute y(0)

3: repeat
4: t ← t + 1
5: solve 0, 1-LP (Pyt−1) to obtain feasible solution z(t)

6: update y(t) based on y(t−1) and z(t)

7: until max iteration has been reached or change on y
(t)
ik is small

8: return z(t) with highest GGI

Interestingly, lines 2 and 6 can be performed in different ways. For line 2, an
initial y(0) can be obtained by solving the dual LP (10). Another approach is to
solve the maximum weight version of our combinatorial problem and get the dual
solution variables for y(0). Note that Theorem 2 then provides a guarantee on the
final solution, as it is at least as good as that of the maximum weight problem.
For line 6, one approach is to solve (9) with z fixed to z(t) in order to get dual

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 335

solution variables y(t). A better approach as observed in the experiments and
explained next is based on Lagrangian relaxation.

The Lagrangian relaxation of (9) with respect to constraint (9d) can be
written as follows with Lagrangian multipliers λ = (λik)i∈[n],k∈[n]:

L(λ) = max.
∑

k∈[n]

(w′
kk −

∑

i∈[n]

λik)rk −
∑

k∈[n]

∑

i∈[n]

(w′
k − λik)dik (13a)

+
∑

i∈[n]

(∑

k∈[n]

λik

) ∑

j∈[m]

uijzij (13b)

s.t.Az ≤ b (13c)

z ∈ {0, 1}n×m (13d)
dik ≥ 0 ∀i ∈ [n],∀k ∈ [n] (13e)

The Lagrangian dual of (13) is then given by:

min.L(λ) s.t. λik ≥ 0 ∀i ∈ [n],∀k ∈ [n] (14)

For an optimal solution z∗, r∗,d∗ of the 0, 1-LP (9), we have for any λ ∈ R
n×n
+ :

∑

k∈[n]

w′
k(kr∗

k −
∑

i∈[n]

d∗
ik) ≤

∑

k∈[n]

(w′
kk −

∑

i∈[n]

λik)rk −
∑

k∈[n]

∑

i∈[n]

(w′
k − λik)dik

+
∑

i∈[n]

(∑

k∈[n]

λik

) ∑

j∈[m]

uijzij ≤ L(λ)

The first inequality holds because of the nonnegativity of λ and the feasibility
of z∗, r∗,d∗. The second is true because of the maximization in (13). Therefore
the best upperbound is provided by the solution of the Lagrangian dual (14),
though this problem is not easy to solve due to the integrality condition over z.

An inspection of program (13) leads to two observations: (i) it can be decom-
posed into two maximization problems, one over z and the other over r and d; (ii)
for program (13) to yield a useful upperbound, λ should satisfy two constraints
(otherwise L(λ) = ∞):

∑

i∈[n]

λik = kw′
k ∀k ∈ [n] and λik ≤ w′

k ∀i ∈ [n],∀k ∈ [n]

Interestingly, in the above decomposition, the maximization problem over z cor-
responds to (Pλ) and therefore λ can be identified to the dual variable y.

Based on those observations, line 6 can be performed as follows. Given λ
(or y), the upperbound L(λ) can be improved by updating λ so as to decrease
(13a), which can be simply done by a projected sub-gradient step:

λ′
ik ← λik − γ(rk − dik −

∑

j∈[m]

uijzij) ∀i ∈ [n], k ∈ [n] (15)

λ ← arg min
λ∈L

||λ′ − λ|| (16)

336 V.H. Nguyen and P. Weng

where γ is the sub-gradient step and (16) is the Euclidean projection of λ′ on
L = {λ ∈ R

n×n
+ | ∀k ∈ [n],

∑
i∈[n] λik = kw′

k,∀i ∈ [n], λik ≤ w′
k}.

Projection (16) can be performed efficiently by exploiting the structure of L:

arg min
λ∈L

||λ′ − λ|| = arg min
λ∈L

||λ′ − λ||2 = arg min
λ∈L

∑

i∈[n]

∑

k∈[n]

(λ′
ik − λik)2

=
(
arg min

λk∈Lk

∑

i∈[n]

(λ′
ik − λik)2

)
k∈[n]

=
(
arg min

λk∈Lk

∑

i∈[n]

(
λ′

ik

w′
k

− λik

w′
k

)2
)
k∈[n]

(17)

where Lk = {λk ∈ R
n
+ | ∑

i∈[n] λik/w′
k = k,∀i ∈ [n], λik/w′

k ≤ 1}. Equation (17)
states that projection (16) can be efficiently performed by n projections on
capped simplices [28]. The complexity of this step would be in O(n3), which is
much faster than solving the quadratic problem (16). Besides, the n projections
can be easily computed in a parallel way.

We can provide a simple interpretation to the variable λ (or y). Considering
programs (10) and (11), we can observe that y corresponds to an allocation of
weights w′

k’s over the different component i’s. Indeed, an optimal solution of (10)
would yield an extreme point of L (for a given k ∈ [n], exactly k terms among
(y1k, . . . , ynk) are equal to w′

k and the other ones are null). The projected sub-
gradient method allows to search for an optimal solution of our fair combinatorial
problem by moving inside the convex hull of those extreme points.

5 Experimental Results

We evaluated our method on two different problems: assignment and matching.
The LPs and 0, 1-LPs were solved using CPLEX 12.7 on a PC (Intel Core i7-6700
3.40 GHz) with 4 cores and 8 threads and 32 GB of RAM. Default parameters of
CPLEX were used with 8 threads. The sub-gradient step γt is computed following
the scheme: γt := (val(zt)−bestvalue)ρt

sqn where val(zt) is the objective value of the
program (11) with solution zt, bestvalue is the best known objective value of the
program (9) so far and sqn is the square of the Euclidean norm of the subgradient
vector. The parameter ρt is divided by two every 3 consecutive iterations in which
the upperbound L(λ) has not been improved. The GGI weights were defined as
follows: wk = 1/k2 for k ∈ [n] so that they decrease fast in order to enforce more
balanced solutions.

Assignment. To demonstrate the efficiency of our heuristic method, we generate
hard random instances for the assignment problem. A random instance of this
problem corresponds to a random generation of the uij ’s, which are generated
as follows. For all i ∈ [n], ui1 follows a uniform distribution over [100] and for all
j ∈ [n], uij = ui1+ε where ε is a random variable following a uniform distribution
over integers between −d and d (with d a positive integer parameter). With such
a generation scheme, agents’ preferences over objects are positively correlated
and the solution of the fair optimization problem is harder due to the difficulty
of finding a feasible solution that satisfies everyone.

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 337

Table 1. Numerical results for (left) assignment and (right) general matching problems

Instance CPLEX AlterOpt

CPU1 CPU2 CPU Gap

v50-20 1.02 1.02 0.23 0%
v50-30 3.14 3.14 0.26 0%
v50-40 64.95 14.26 0.45 0.28%
v50-50 1054.14 100.23 0.65 0.26%
v30-20 0.89 0.89 0.2 0%
v30-30 8.83 8.83 0.3 0.015%
v30-40 590.66 45.93 0.48 0.13%
v10-20 1.55 1.55 0.18 0%
v10-30 342.78 342.78 0.94 0%

Instance CPLEX AlterOpt

CPU1 CPU2 CPU Gap

v50-30 0.86 0.86 0.79 0%

v50-40 2.43 2.43 1.42 0%

v50-50 5.14 5.14 2.67 0%

v50-60 148.5 25.45 13.43 0.01%

v50-70 2406.02 1282.8 17.71 0.005%

v30-30 1.15 1.15 0.78 0%

v30-40 7.13 7.13 1.44 0%

v30-50 81.75 75.5 2.45 0.01%

v30-60 1003.69 615.16 12.8 0.036%

v10-30 5.33 5.33 0.76 0%

v10-40 1325.7 806.8 1.4 0.06%

v10-50 29617.78 3370.7 2.48 0.053%

Matching. We use the lemon library [7] for solving the maximum weight match-
ing problem. For the generation of the matching problem (in a complete graph
with 2n nodes), we follow a similar idea to the assignment problem. Recall we
only need uij (and zij) for i < j. For all i ∈ [n], for all j ∈ [n] with i < j,
uij = −1000. For all i ∈ [n], ui,n+1 follows a uniform distribution over [100] and
for all j ≥ max(i + 1, n + 2), uij = ui,n+1 + ε where ε is defined as above.

Explanations. The name of the instances is of the form “vd-x” where d denotes
the deviation parameter mentioned above and x the number of the vertices
of the graphs (i.e., n = x/2). Column “CPLEX” regroups CPLEX’s results.
Subcolumn “CPU1” reports the time (in seconds) that CPLEX spent to solve
program (9) to optimal. Subcolumn “CPU2” reports the times needed by the
primal heuristic of CPLEX to obtain a feasible integer solution that is better
than or equal to the solution given by our algorithm. Column “AlterOpt” reports
our algorithm’s results. Subcolumn “CPU” is the time spent by our algorithm.
Subcolumn “Gap” reports the gap in percentage between Sol and Opt, which is
equal to (Opt − Sol) × 100/Opt% where Opt is the optimal value and Sol is the
value of the solution given by our algorithm. The times and the gaps reported
are averaged over 10 executions corresponding to 10 random instances.

Table 1 shows that the CPU time spent by CPLEX (subcolumn CPU1) for
solving program (9) increases exponentially with n and can quickly reach up to
around 10 h. Moreover, the smaller the deviation x, the more difficult the prob-
lem. For example, for x = 50, we cannot solve instances with more than 50 and
more than 70 vertices for respectively the fair assignment and general matching
problems within 10 h of CPU time. For x = 10, this limit is respectively 30 and
50 vertices. In contrast, the CPU time spent by our algorithm (subcolumn CPU)
seems to increase linearly with n and remains within tens or so seconds. The
quality of the solutions output by our algorithm is very good as the gap is at
maximum around 0.3% for fair assignment. This is even better for fair general

338 V.H. Nguyen and P. Weng

matching, in all cases the gap is smaller than 0.1%. Moreover, the CPU time
that CPLEX needs to find a feasible integer solution of similar quality by primal
heuristic is much longer than the CPU time of our algorithm (up to hundreds
times longer). It is interesting to notice that the fair assignment seems to be
more difficult in our experiments than the fair general matching. This contrasts
with the classical maximum weight version where the assignment problem is
generally easier than the general maximum matching.

6 Conclusion

We formulated the fair optimization with the Generalized Gini Index for a large
class of combinatorial problem for which we proposed a primal-dual algorithm
based on a Lagrangian decomposition. We demonstrated its efficiency on several
problems. We also provided some theoretical bounds on its performance. As
future work, we plan to improve those bounds and investigate other updates
for the Lagrangian multipliers. Another interesting direction is to consider other
linearization techniques such as the one proposed by Chassein and Goerigk [5].
Finally, we will also apply our method to problems whose maximum weight
version is NP-hard.

References

1. Anand, S.: The multi-criteria bipartite matching problem (2006)
2. Arnold, B.: Majorization and the Lorenz Order. Springer, New York (1987).

https://doi.org/10.1007/978-1-4615-7379-1
3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC, pp. 31–40 (2006)
4. Bezakova, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exch. 5(3),

11–18 (2005)
5. Chassein, A., Goerigk, M.: Alternative formulations for the ordered weighted aver-

aging objective. Inf. Process. Lett. 115, 604–608 (2015)
6. Dachert, K., Gorski, J., Klamroth, K.: An augmented weighted Tchebycheff

method with adaptively chosen parameters for discrete bicriteria optimization
problems. Comput. Oper. Res. 39(12), 2929–2943 (2012)

7. Dezs, B., Juttner, A., Kovacs, P.: LEMON - an open source C++ graph template
library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011)

8. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res.
Natl. Bur. Stand. 69B, 125–130 (1965)

9. Gilbert, H., Spanjaard O.: A game-theoretic view of randomized fair multi-agent
optimization. In: IJCAI Algorithmic Game Theory Workshop (2017)

10. Hurkala, J., Sliwinski, T.: Fair flow optimization with advanced aggregation oper-
ators in wireless mesh networks. In: Federated Conference on Computer Science
and Information Systems, pp. 415–421 (2012)

11. Kostreva, M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multiple
criteria analysis. Eur. J. Oper. Res. 158, 362–367 (2004)

12. Lesca, J., Perny, P.: LP solvable models for multiagent fair allocation problems.
In: ECAI (2011)

13. Lovész, L., Plummer, M.: Matching Theory. North Holland, Amsterdam (1986)

https://doi.org/10.1007/978-1-4615-7379-1

An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization 339

14. Luss, H.: Equitable Resource Allocation. Wiley, Hoboken (2012)
15. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a

survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)
16. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,

Cambridge (1988)
17. Moulin, H.: Fair Division and Collective Welfare. MIT Press, Cambridge (2004)
18. Ogryczak, W., Luss, H., Pióro, M., Nace, D., Tomaszewski, A.: Fair optimization

and networks: a survey. J. Appl. Math. 2014, 25 (2014)
19. Ogryczak, W., Perny, P., Weng, P.: On minimizing ordered weighted regrets in mul-

tiobjective Markov decision processes. In: Brafman, R.I., Roberts, F.S., Tsoukiàs,
A. (eds.) ADT 2011. LNCS (LNAI), vol. 6992, pp. 190–204. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24873-3 15

20. Ogryczak, W., Perny, P., Weng, P.: A compromise programming approach to mul-
tiobjective Markov decision processes. IJITDM 12, 1021–1053 (2013)

21. Ogryczak, W., Sliwinski, T.: On solving linear programs with the ordered weighted
averaging objective. Eur. J. Oper. Res. 148, 80–91 (2003)

22. Ogryczak, W., Sliwinski, T., Wierzbicki, A.: Fair resource allocation schemes and
network dimensioning problems. J. Telecom. Inf. Technol. 2003(3), 34–42 (2003)

23. Perny, P., Weng, P.: On finding compromise solutions in multiobjective Markov
decision processes. In: ECAI (short paper) (2010)

24. Rawls, J.: The Theory of Justice. Havard University Press, Cambridge (1971)
25. Rodera, H., Bagajewicz, M.J., Trafalis, T.B.: Mixed-integer multiobjective process

planning under uncertainty. Ind. Eng. Chem. Res. 41(16), 4075–4084 (2002)
26. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
27. Steuer, R.: Multiple Criteria Optimization. Wiley, New York (1986)
28. Wang, W., Lu, C.: Projection onto the capped simplex (2015). arXiv:1503.01002
29. Weymark, J.: Generalized Gini inequality indices. Math. Soc. Sci. 1, 409–430 (1981)
30. Wierzbicki, A.: A mathematical basis for satisficing decision making. Math. Model.

3, 391–405 (1982)
31. Yager, R.: On ordered weighted averaging aggregation operators in multi-criteria

decision making. IEEE Trans. Syst. Man Cyber. 18, 183–190 (1988)

https://doi.org/10.1007/978-3-642-24873-3_15
http://arxiv.org/abs/1503.01002

Efficient Algorithms for Ridesharing
of Personal Vehicles

Qian-Ping Gu1(B), Jiajian Leo Liang1, and Guochuan Zhang2

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
{qgu,jjl24}@sfu.ca

2 College of Computer Science and Technology,
Zhejiang University, Hangzhou, China

zgc@zju.edu.cn

Abstract. Given a set of trips in a road network, where each trip has
a vehicle, an individual and other requirements, the ridesharing problem
is to deliver all individuals to their destinations by a subset of vehicles
satisfying the requirements. Minimizing the total travel distance of the
vehicles and minimizing the number of vehicles are major optimization
goals. These minimization problems are complex and NP-hard because
each trip may have many requirements. We study simplified minimization
problems in which each trip’s requirements are specified by the source,
destination, vehicle capacity, detour distance and preferred path para-
meters. We show that both minimization problems can be solved in poly-
nomial time if all of the following conditions are satisfied: (1) all trips
have the same destination; (2) no detour is allowed and (3) each trip
has one unique preferred path. It is known that both minimization prob-
lems are NP-hard if any one of the three conditions is not satisfied. Our
results and the NP-hard results suggest a clear boundary between the
polynomial time solvable cases and NP-hard cases for the minimization
problems.

Keywords: Ridesharing problem · Optimization problems · Polynomial
time algorithms

1 Introduction

We consider the following ridesharing problem: given a set of trips, where each
trip has a vehicle, an individual (the owner of the vehicle), a source and des-
tination in a road network, and other requirements, select a subset of vehicles
to deliver all individuals to their destinations satisfying the requirements of the
trips. When a vehicle is selected in the delivery, the owner of the vehicle is called
a driver and an individual other than a driver is called a passenger. Minimiz-
ing the total travel distance of drivers and minimizing the number of drivers
are major optimization problems in the ridesharing. The ridesharing has many
advantages including saving the total cost of all trips and reducing the traffic
congestion, fuel consumption and air pollution [6,13,14]. According to [3], the
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 340–354, 2017.
https://doi.org/10.1007/978-3-319-71150-8_29

Efficient Algorithms for Ridesharing 341

estimated cost of congestion in the United States is around $121 billion per year.
The congestion roughly translates to 5.5 billion hours of time wasted in traffic
and 2.9 billion gallons of fuel burned. The side effects of the congestion are the
extra vehicular emissions.

Despite these advantages, the ridesharing was usually organized in an ad
hoc way in small scales and the ridesharing coordination was not fully regulated
and organized in industry. The shared use of personal vehicles has decreased in
the past decades [7] and the average occupancy rate of personal vehicles in the
United States is 1.6 persons per vehicle based on reports in 2011 [8,16]. Major
technical challenges for organizing the ridesharing in a large scale include efficient
algorithms for selecting drivers and scheduling the delivery, and convenient com-
munication schemes among the individuals of the trips. Privacy, safety, pricing
and social discomfort may be the other hurdles for the ridesharing in large scale.
Recently, systems for ridesharing in large scale emerged due to improvements
in communication technologies, for example, GPS-enabled mobile phones with
wireless networks make the communication among the ridesharing participants
much easier. Based on these infrastructures, there are systems known as mobility
on demand (MoD) systems by companies such as Uber and Lyft for rideshar-
ing in large scale [3,12,15]. Developing efficient algorithms for selecting drivers
remains a challenging issue for the ridesharing in large scale. The surveys in [2,7]
review the methods for general ridesharing and approaches for encouraging the
participation of the ridesharing.

The minimization problems in the ridesharing are complex and NP-hard
because each trip may have many parameters. A general approach for solving
the problems formulates the problems as an Integer Programming (IP) or Mixed
Integer Programming (MIP) problem and solves the IP or MIP problem by an
exact method or heuristics [3,4,11]. Many heuristics for solving the minimization
problems in a practical environment are also known [1,12,15]. Computational
studies on comparing heuristics with some general approaches such as branch
and bound algorithms and IP (MIP) are given in [12]. The computational stud-
ies are based on a data set from Shanghai taxis. Computational studies on a
data set from New York taxis are given in [3,15]. IP or MIP based exact algo-
rithms are time consuming and not practical for ridesharing problems of large
scale, while heuristics do not have a guarantee on the quality of solutions. Many
previous works also focus on developing efficient exact algorithms for simplified
variants of the minimization problems such as a single passenger at a time, at
most two passengers of a driver’s trip, single pick-up of a driver’s trip, ignoring
social parameters like pricing and so on [3–5]. A recent work in [9] gives an algo-
rithmic analysis on exploring to what extend the simplification would make the
minimization problems polynomial time solvable.

In general, a trip in the ridesharing problem has a vehicle, an individual
(the owner of the vehicle), and requirements specified by many parameters such
as source/destination in a road network, departure/arrival time, preferred path
of the vehicle owner, distance/time detour limit the vehicle owner can tolerate
for serving passengers, vehicle capacity, price, and so on. To realize a trip is
to arrange a vehicle to deliver the individual in the trip to his/her destination

342 Q.-P. Gu et al.

satisfying the trip requirements. Due to a large number of parameters, the mini-
mization problems are complex and NP-hard. The problem can be simplified by
dropping some parameters. However, most previous works do not have a clear
model for analyzing the relations between the complexity of the problem and
the parameters. Recently, a new model is introduced in [9] for analyzing the
relations between the complexity of the problem and the parameters of source,
destination, vehicle capacity, detour distance limit, and preferred paths. This
model provides a formal platform for algorithmic analysis of the simplified prob-
lem specified by the above parameters. It is shown in [9] that if any one of
the following three conditions is not satisfied then both minimization problems
remain NP-hard: (1) all trips have the same destination; (2) no detour is allowed
and (3) each trip has a unique preferred path. When all of three conditions are
satisfied, the work in [9] shows that a special case of minimizing the number
of drivers can be solved in polynomial time: in this special case, the preferred
paths of all trips lie on a same path of the road network. It is open whether
each of the minimization problems is polynomial time solvable or not when all
three conditions above are satisfied. In this paper, we follow the model in [9] and
give positive answers for the open problems. More specifically, we give efficient
algorithms for both minimization problems. Let M be the size of a ridesharing
instance which contains a road network and l trips, every trip has a source, a
destination, a vehicle capacity, a distance detour limit and a preferred path (a
sequence of links in the road network). Our results are as follows:

– There is a dynamic programming algorithm that, given a ridesharing instance
of l trips and size M satisfying Conditions (1), (2) and (3), finds a solution for
the instance with the minimum total travel distance in O(M + l3) time. The
algorithm also finds a solution for the instance with the minimum number of
drivers in O(M + l3) time.

– There is a greedy algorithm that, given a ridesharing instance of l trips and
size M satisfying Conditions (1), (2) and (3), finds a solution for the instance
with the minimum number of drivers in O(M + l2) time.

There are some novel ideas in the dynamic programming algorithm: We intro-
duce a serve relation between trips and process each trip to select drivers in an
order based on the serve relation. A trip is called a source trip if it can not be
served by any other trip. We work out partial solutions by selecting drivers from
a subset R1 of trips (starting from R1 with a single source trip) and then expand
the solutions to partial solutions by drivers from a subset R2 with R1 ⊂ R2. Our
processing order guarantees that an optimal solution can be found by at most
l solution expansions. To bound the number of solutions in each expansion, we
introduce a dominating relation between the solutions: a solution S dominates
another solution S′ if S serves at least as many trips as S′ does and the total
travel distance of S is at most that of S′. Then we only need to consider the
solutions that are not dominated in each expansion. This makes each expan-
sion in polynomial time possible. In the greedy algorithm, we find one partial
solution by selecting drivers from a subset R1 of trips (starting from R1 with a
single source trip). Then we try to expand the partial solution to another partial

Efficient Algorithms for Ridesharing 343

solution to serve more trips by including a new driver with the largest capacity
selected from a subset R2 of trips with R1 ⊂ R2. This reduces the running time
by a factor of l compared to the dynamic programming approach.

Our algorithms and the NP-hardness results in [9] give a clear boundary
between the polynomial time solvable cases and NP-hard cases of the mini-
mization problems. Our algorithms may be applied to applications such as the
mixed evacuation scheduling [10]. Our algorithms may also be applied to improve
heuristics for more complex ridesharing problems by providing driver-passenger
matchings for a subset of participants.

The rest of this paper is organized as follows. Section 2 gives the preliminaries
of the paper. In Sect. 3, we show a dynamic programming algorithm for minimiz-
ing the total travel distance. Section 4 gives a greedy algorithm for minimizing
the number of drivers. The final section concludes the paper.

2 Preliminaries

A graph G (undirected) consists of a set V (G) of vertices and a set E(G) of edges,
where each edge {u, v} of E(G) is a set of two vertices in V (G). A digraph H
consists of a set V (H) of vertices and a set E(H) of arcs, where each arc (u, v)
of E(H) is an ordered pair of vertices in V (H). A graph G (digraph H) is
weighted if every edge of G (arc of H) is assigned a real number as the edge
length. When the edge (arc) length is not specified, the length is one. A path
between vertex v0 and vertex vk in graph G is a sequence e1, .., ek of edges, where
ei = {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ k and no vertex appears more than once
in the sequence. A path from vertex v0 to vertex vk in a digraph H is defined
similarly with each ei = (vi−1, vi) an arc in H. The length of a path, denoted by
dist(P), is the sum of the lengths of the edges (arcs) in P . We express a road
network by a weighted graph G with non-negative edge length: V (G) is the set
of locations in the network, an edge {u, v} is a road between u and v, and the
length of {u, v} is the cost to use the road (e.g., the length of the road).

In the ridesharing problem, we assume that the individual of every trip can
be a driver or passenger. In general, in addition to a vehicle and individual, each
trip has a source, a destination, an earliest departure time, a latest arrival time,
a preferred path (e.g., a shortest path) to reach the destination, a limit on the
detour distance/time from the preferred path to serve other individuals and a price
limit the individual can pay if served. If all of these parameters are considered, the
ridesharing problem is complex. The ridesharing problem can be simplified by con-
sidering a subset of the parameters. In an algorithmic analysis of the ridesharing
problem [9], a simplified variant of the ridesharing problem is defined, where each
trip has only the source, destination, vehicle capacity, distance detour limit and
preferred path parameters. For the simplified problem, each trip is expressed by
an integer label i and specified by (si, ti, ni, di,Pi), where

– si is the source (start location) of i (a vertex in G),
– ti is the destination of i (a vertex in G),
– ni is the number of seats (capacity) of i available for passengers,
– di is the detour distance limit i can tolerate for offering services, and

344 Q.-P. Gu et al.

– Pi is a set of preferred paths of i from si to ti in G.

We use the ridesharing problem for the simplified ridesharing problem in the
rest of the paper unless otherwise stated.

When the vehicle of a trip i delivers the individual of a trip j, we say trip i
serves trip j and call i a driver and j a passenger. A trip i can serve i itself and
can serve a trip j �= i if i and j can arrive at their destinations such that j a
passenger of i and the detour of i is at most di. A trip i can serve a set σ(i) of
trips if trip i can serve all trips of σ(i) and the total detour of i is at most di.
At any specific time point, a trip i can serve at most ni + 1 trips. If trip i serves
some trips after serving some other trips (known as re-take passengers in previous
studies), trip i may serve more than ni + 1 trips. Let (G,R) be an instance of
the ridesharing problem, where G is a weighted graph and R = {1, .., l} is a set
of trips. (S, σ), where S ⊆ R is a set of drivers and σ is a mapping S → 2R, is a
partial solution of (G,R) if

– for each i ∈ S, i can serve σ(i),
– for each pair i, j ∈ S with i �= j, σ(i) ∩ σ(j) = ∅, and
– σ(S) = ∪i∈Sσ(i) ⊆ R.

When σ(S) = R, (S, σ) is called a solution of (G,R). For a (partial) solution
(S, σ) we sometimes simply call S a (partial) solution when σ is clear from the
context or not related to the discussion.

Given a (partial) solution (S, σ) of an instance, for every driver i ∈ S, let
dist(i) be the travel distance of i for serving σ(i) and dist(S) =

∑
i∈S dist(i) be

the total travel distance of S. We consider the problem of minimizing dist(S)
(the total travel distance of the drivers) and the problem of minimizing |S| (the
number of drivers) in a solution (S, σ) for the ridesharing problem. To analyze
the time complexity of the minimization problems, the following conditions are
introduced in [9]:

(1) Unique destination: all trips have the same destination, that is, ti = D for
every i ∈ R.

(2) Zero detour: each trip can only serve others on his/her preferred path, that
is, di = 0 for every i ∈ R.

(3) Fixed path: Pi has a unique preferred path Pi.

It is shown in [9] that both minimization problems are NP-hard if any of Condi-
tions (1), (2) and (3) is not satisfied. Notice that it is implicit in [9] that the serve
relation is transitive, that is, if trip i can serve trip j and j can serve trip k then
i can serve k. The NP-hard results hold when the serve relation is transitive. In
this paper, we assume that the serve relation is transitive.

To deal with the trips with zero vehicle capacity (ni = 0), we introduce a
pseudo serve relation in an instance (G,R): trip i can pseudo serve trip j if

– ni > 0 and i can serve j or
– ni = 0 and a preferred path of j is a subpath of a preferred path of i.

Efficient Algorithms for Ridesharing 345

s6s5

s4
s3s2

s1

t1=t2=t3=t4=t5=t6=t7D

D

(a)

s7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(b) (c)

Fig. 1. (a) A set R = {i|1 ≤ i ≤ 7} of seven trips with the same destination D, (b) the
digraph with the short cuts (expressed by dashed arcs) and (c) the inverse tree in the
digraph HR.

The pseudo serve relation becomes the serve relation when ni > 0 for every
i ∈ R. The pseudo serve relation can be expressed by a digraph such that the
digraph has R as the vertex set and there is an arc (i, j) in the digraph if trip
i can pseudo serve trip j. An arc (i, j) in the digraph is called a short cut if
after removing (i, j) from the digraph, there is a path from i to j in the digraph.
We remove all short cuts from the digraph to get a digraph HR to express the
pseudo serve relation in R: trip i can pseudo serve trip j if there is a path from
i to j in HR. A trip i in HR is called a source (resp. sink) if there is no arc (j, i)
(resp. (i, j)) in HR. A connected component of HR is called a tree if the graph
obtained from replacing every arc (i, j) in the component by an edge {i, j} is a
tree. When Conditions (2) and (3) are satisfied, if i can pseudo serve j then the
preferred path of j is a subpath of the preferred path of i, implying the pseudo
serve relation is transitive. When all of Conditions (1), (2) and (3) are satisfied,
every connected component of HR is a tree and we call the component an inverse
tree as it has one unique sink and at least one source. Figure 1 gives a set R of
trips, the digraph with the short cuts and the inverse tree in the digraph HR for
the pseudo serve relation in R.

Given a ridesharing instance (G,R), for any two connected components T1

and T2 in the pseudo serve relation digraph HR, any trip in T1 can not pseudo
serve any trip in T2 and vice versa. Let (S1, σ1) and (S2, σ2) be optimal solutions
for trips in T1 and trips in T2, respectively, for each of the minimization problems.
Let S = S1 ∪ S2 and σ(i) = σ1(i) for i ∈ S1 and σ(i) = σ2(i) for u ∈ S2. Then
(S, σ) is an optimal solution for trips in T1 and trips in T2 for each of the
minimization problems. So we assume that HR has one connected component
T (V (T) = R) because if HR has more than one connected component, we can
solve the minimization problems for each component independently.

The following notations will be used. Let T be a component of HR for a
ridesharing instance (G,R). For trips i and j in T ,

– i is a parent of j if arc (i, j) is in T ;
– i is an ancestor of j if there is a path from i to j in T ;
– i is a child of j if arc (j, i) is in T (each trip has at most one child) and
– i is a descendant of j if there is a path from j to i in T .

346 Q.-P. Gu et al.

For every trip i in T ,

– Ai is the set of ancestors of i and i (i ∈ Ai), and
– Di is the set of descendants of i and i (i ∈ Di).

Notice that all trips of Di are in the path from i to the sink of T .

3 Dynamic Programming Algorithm

Given an instance (G,R) of the ridesharing problem, where R = {1, .., l}, and the
digraph HR for the pseudo serve relation in R, let T be the connected component
(an inverse tree) of HR. We rearrange the labels of the trips in T by Procedure
Preprocessing in Fig. 2. In the rest of this section, each trip in T is expressed by
the label assigned in the procedure. Notice that trip l is a source in T , trip 1 is
the sink in T , and if trip i can pseudo serve trip j then i > j for every i �= j.
The following notations will be used in this section.

– For R = {1, .., l} and 1 ≤ i ≤ j ≤ l, R(i, j) = {i, i + 1, .., j}.
– For a set S of drivers, S(i, j) = S ∩ R(i, j).
– For a trip i ∈ R, vi is the ancestor of i with the largest label.

Notice that Ai = R(i, vi) and vi is a source. R(i, vi) is called a branch of T . A
trip i is called a merge point if i has at least two parents in T . A branch is simple
if it does not have any merge point. A branch R(i, vi) is maximal if the child of
i is a merge point or i = 1 is the sink. For a (partial) solution (S, σ) of R and
1 ≤ i ≤ j ≤ l, S is called a solution of R(i, j) if R(i, j) ⊆ σ(S).

We give a dynamic programming algorithm for minimizing the total travel
distance. We process trips to find solutions for simple branches of T , expand these
solutions to solutions of branches consisting of simple branches, and expand

Procedure Preprocess
Input: An inverse tree T of HR of l trips.
Output: A distinct integer label i, 1 ≤ i ≤ l, for each trip in T .
begin

i := l; let ST be a stack; push the sink of T into ST;
mark every arc in T un-visited;
while ST �= ∅ do

let u be the trip at the top of ST;
if there is an arc (v, u) in T un-visited then

push v into ST; mark (v, u) visited;
else

remove u from ST; assign u integer label i; i := i − 1;
endif

endwhile
end.

Fig. 2. Procedure for assigning integer labels to trips in T .

Efficient Algorithms for Ridesharing 347

solutions of branches to solutions of larger branches. We process trips in the
decreasing order of their labels. This processing order guarantees that at most
l expansions is enough. To make the number of solutions in each expansion
small, we introduce a dominating relation between the solutions and only keep
the non-dominated solutions for each expansion. For a solution (S, σ) of R(i, j),
let dist(S) =

∑
i∈S dist(Pi) be the cost of S, where dist(Pi) is the length of

the preferred path Pi of trip i. For two solutions (S, σ) and (S′, σ′) of R(i, j),
S dominates S′ if |σ(S)| ≥ |σ(S′)| and dist(S) ≤ dist(S′). Two solutions are
non-dominating if none of them dominates the other. A set X of solutions is
non-dominating if every pair of solutions in X is non-dominating.

3.1 Algorithm

There are three major functions in our algorithm:

– Process each trip i from l to 1. If i is a source, a set X (i, i) of one solution S =
{i} is computed. When we process i which is not a source, a set X (i+1, vi+1)
of solutions for R(i+1, vi+1) has been computed. For each S ∈ X (i+1, vi+1),
we compute a solution (S′, σ′) with S′ = S ∪ {i} to find a set X (i, vi) of
solutions for R(i, vi). Our algorithm makes σ′(i) to serve as many trips in Di

that are not in σ(S) and are closest to i as possible. More formally, we define
N(i, c, S) to be the set of c trips in Di such that N(i, c, S) ⊆ (Di \ σ(S))
and for any trip u in N(i, c, S) and any trip v in Di \ (σ(S) ∪ N(i, c, S)),
dist(i → u) < dist(i → v), where i → u (i → v) is the path from i to
u (from i to v) in T . Let c = min{ni + 1, |Di \ σ(S)|}. In our algorithm,
σ′(i) = N(i, c, S).

– Merge solutions. By processing trips, we can find a set X (i, vi) of solutions
for each maximal simple branch R(i, vi). For a merge point i − 1, let i1, .., ir
be the parents of i − 1 such that ia < ib if a < b (see Fig. 3). Notice that
vir = vi−1 and i1 = i. After trip i is processed, all of X (ia, via), 1 ≤ a ≤ r,
have been computed. We merge X (ia, via), 1 ≤ a ≤ r, into a set X (i, vi−1)
of solutions for R(i, vi−1). The merge is realized by including S′′ = S ∪ S′

in X (ia−1, vi−1) for every S ∈ X (ia−1, via−1) and every S′ ∈ X (ia, vi−1) for
1 < a ≤ r (see Fig. 3).
By processing trips and merging solutions, we find a set X (i, vi) of solutions
for each maximal branch R(i, vi) and finally a set X (1, l) of solutions for R.

– Remove dominated solutions. When we compute a set of solutions, we remove
each solution in the set that is dominated by another one in the same set.

The pseudo code of our algorithm is given in Fig. 4. Below is an example
explaining major steps of the algorithm. Let R = {i|1 ≤ i ≤ 7} be the set
of trips in Fig. 1. Assume that the capacity ni and travel distance dist(Pi) are
as follows: (n1 = 1,dist(P1) = 2), (n2 = 0,dist(P2) = 4), (n3 = 1,dist(P3) =
4.5), (n4 = 1,dist(P4) = 5), (n5 = 0,dist(P5) = 2.5), (n6 = 1,dist(P6) =
4), (n7 = 1,dist(P7) = 5). The algorithm processes branch R(5, 7) first and
branch R(2, 4) next. For i = 7 (source), X (7, 7) has one solution (S = {7}, σ(7) =

348 Q.-P. Gu et al.

i-1

v = vi-1ir

ir
iaia-1i =i1

i+1

via
via-1v = vi1 i

R(i ,v)a i-1
R(i ,v)a-1 ia-1

i-1

v = vi-1ir

ir
iaia-1i =i1

i+1

via
via-1v = vi1 i

R(i ,v)a-1 i-1

(a) before merge (b) after merge

Fig. 3. Merge X (ia−1, via−1) (solutions of R(ia−1, via−1)) and X (ia, vi−1) (solutions
of R(ia, vi−1)) into X (ia−1vi−1) (solutions of R(ia−1, vi−1)) for some 1 < a ≤ r. (a)
R(ia−1, via−1) and R(ia, vi−1), and (b) R(ia−1, vi−1).

{7, 6})} denoted by ({7}; {7, 6}). For i = 6 (non-source), X (6, v6) = X (6, 7),
X (7, v7) = X (7, 7) and solution ({7}; {7, 6}) is included in X (6, 7). Then solu-
tion ({7, 6}; {7, 1}, {6, 5}) is included in X (6, 7). Since the two solutions of
X (6, 7) are non-dominating, they are kept in X (6, 7). For i = 5 (non-source),
X (5, v5) = X (5, 7). Solutions of X (6, 7) are included in X (5, 7). Then solutions
({7, 5}; {7, 6}, {5}) and ({7, 6, 5}; {7, 1}, {6}, {5}) are included in X (5, 7). Next,
solutions ({7}; {7, 6}) (not a solution of R(5, 7)) and ({7, 6, 5}; {7, 1}, {6}, {5})
(dominated by the solution ({7, 6}; {7, 1}, {6, 5})) are removed from X (5, 7).
So X (5, 7) has two solutions ({7, 5}; {7, 6}, {5}) and ({7, 6}; {7, 1}, {6, 5}). By
processing branch R(3, 4), the algorithm computes X (2, 4) which has two solu-
tions ({4, 2}; {4, 3}, {2}) and ({4, 3}; {4, 1}, {3, 2}). The solutions of X (2, 4) and
solutions of X (5, 7) are merged to get solutions of X (2, 7). In the merge, four
driver sets {4, 2}∪{7, 5}, {4, 2}∪{7, 6}, {4, 3}∪{7, 5} and {4, 3}∪{7, 6} are com-
puted. Solutions with driver sets {4, 2, 7, 6} and {4, 3, 7, 6} are dominated and
removed, and X (2, 7) has two solutions ({4, 2, 7, 5}; {4, 3}, {2}, {7, 6}, {5}) and
({4, 3, 7, 5}; {4, 1}, {3, 2}, {7, 6}, {5}). Finally, for i = 7, X (1, 7) has one solution
({4, 3, 7, 5}; {4, 1}, {3, 2}, {7, 6}, {5}) which is an optimal solution for R.

3.2 Analysis of Algorithm

Lemma 1. Let R(i, vi) be any maximal simple branch in T . For any solution
S∗ of R, there is a solution S in X (i, vi) such that S dominates S∗(i, vi).

Proof. We prove the lemma by induction for i ≤ a ≤ vi. Since vi is a source in
T , vi can be served only by itself. So any solution S∗ of R contains vi, implying
S∗(vi, vi) = {vi}. From this and S = {vi} ∈ X (vi, vi), the lemma holds for
a = vi. Assume that the lemma is true for i < a ≤ vi and we prove it for

Efficient Algorithms for Ridesharing 349

Algorithm 1 Find Minimum Cost Solution
Input: An inverse tree T of HR of l trips.
Output: A solution (S, σ) for R with dist(S) minimized.
begin

for i := l to 1 do /* process every trip of T , l is a source */
if i is a source of T then /* process a source trip*/

S := {i}; c := min{ni + 1, |Di \ σ(S)|}; σ(i) := N(i, c, S); X (i, i) := {(S, σ)};
else /* process a non-source trip */

X (i, vi) := X (i + 1, vi+1); /* compute X (i, vi) */
for every (S, σ) ∈ X (i + 1, vi+1) do

S′ := S ∪ {i}; σ′(S′) :=Serve(i, S, σ); X (i, vi) := X (i, vi) ∪ {(S′, σ′)};
endfor /* end of computing X (i, vi) */
for every solution S in X (i, vi) do /* make X (i, vi) non-dominating */

if S is not a solution of R(i, vi) then remove S from X (i, vi);
if S is dominated by some S′ in X (i, vi) then remove S from X (i, vi);

endfor
if i − 1 is a merge point then /* merge solutions */

let i1, .., ir be the parents of i − 1 with ia < ib for a < b;
for a := r to 2 do X (ia−1, vi−1) :=Merge(X (ia−1, via−1), X (ia, vi−1));

endif
endif /* end of processing a non-source trip */

endfor /* end of processing every trip of T */
Let (S, σ) be a solution in X (1, l) with the minimum dist(S);

end.
Procedure Serve(i, S, σ)
begin

σ′(j) := σ(j) for every j ∈ S; c := min{ni + 1, |Di \ σ(S)|}; σ′(i) := N(i, c, S);
if i ∈ σ(S) then

let k ∈ S s.t. i ∈ σ(k); σ′(k) := σ′(k) \ {i}; σ′(k) := σ′(k) ∪ N(k, 1, S′);
endif

end.
Procedure Merge(X (ia−1, via−1), X (ia, vi−1))
begin

include S′′ = S ∪ S′ in X (ia−1, vi−1) for S ∈ X (ia−1, via−1) and S′ ∈ X (ia, vi−1);
dist(S′′) := dist(S) + dist(S′);
set |σ′′(S′′)| to min{|R(ia−1, vi−1)| + |Di−1|, |σ(S)| + |σ(S′)|};
remove S′′ from X (ia−1, vi−1) if S′′ is dominated;
for every S′′ ∈ X (ia−1, vi−1) do

σ′′(j) := σ′(j) for j ∈ S′; σ′′(j) := σ(j) \ σ′(S′) for j ∈ S;
for every j ∈ S do cj := |σ(j) ∩ σ′(S′)| and σ′′(j) := σ′′(j) ∪ N(j, cj , S

′′);
endfor

end.

Fig. 4. Algorithm for finding a solution of R with the minimum dist(S).

350 Q.-P. Gu et al.

a − 1. By the induction hypothesis, there is a solution S in X (a, vi) such that S
dominates S∗(a, vi). Let S′ = S∪{a−1} be the solution obtained in Algorithm 1.
If a − 1 ∈ S∗(a − 1, vi) then from the fact that S dominates S∗(a, vi),

|σ(S′)| = min{|Dvi
|, |σ(S)| + na−1 + 1}

≥ min{|Dvi
|, |σ∗(S∗(a, vi))| + na−1 + 1} ≥ |σ∗(S∗(a − 1, vi))|

and

dist(S′) = dist(S) + dist(a − 1)
≤ dist(S∗(a, vi)) + dist(a − 1) = dist(S∗(a − 1, vi)).

Therefore, S′ dominates S∗(a − 1, vi).
Assume that a−1 �∈ S∗(a−1, vi). Because S∗ is a solution of R, a−1 is served

by some trip in S∗. Further, a − 1 can be served only by trips in R(a − 1, va−1)
and va−1 = vi. Therefore, S∗(a, vi) is a solution of R(a−1, vi). Since S dominates
S∗(a, vi), S is a solution of R(a − 1, vi). If S is in X (a − 1, vi) then the lemma
is true. Otherwise, S is removed from X (a − 1, vi) because S is dominated by a
solution S′ ∈ X (a − 1, vi). This implies that S′ dominates S∗(a − 1, vi) and the
lemma is proved. �

Lemma 2. Let i − 1 be a merge point in T such that there is no merge point in
Ai−1 \ {i − 1}. For any solution S∗ of R, there is a solution S in X (i − 1, vi−1)
computed by Algorithm 1 such that S dominates S∗(i − 1, vi−1).

Proof. Let i1, .., ir be the parents of i − 1 such that ia < ib if a < b. Then via is
the unique source ancestor of ia for each 1 ≤ a ≤ r, vir = vi−1 and i1 = i. We
prove the following statement by induction: for every a with 1 ≤ a ≤ r, there is
a solution S ∈ X (ia, vi−1) such that S dominates S∗(ia, vi−1). For a = r, from
Lemma 1, the statement holds. Assume that the statement is true for 1 < a ≤ r
and we prove it for a − 1. From Lemma 1, there is a solution S in X (ia−1, via−1)
such that S dominates S∗(ia−1, via−1). From the induction hypothesis, there is
a solution S′ ∈ X (ia, vi−1) such that S′ dominates S∗(ia, vi−1). Let S′′ = S ∪ S′

as computed in Algorithm 1. Let c = |R(ia−1, vi−1)| + |Di−1|. Then

|σ′′(S′′)| = min{c, |σ(S)| + |σ(S′)|}
≥ min{c, |σ∗(S(ia−1, via−1))| + |σ∗(S∗(ia, vi−1))|} = |σ∗(S∗(ia−1, vi−1))|

and

dist(S′′) = dist(S) + dist(S′)
≤ dist(S∗(ia−1, via−1)) + dist(S∗(ia, vi−1)) = dist(S∗(ia−1, vi−1)).

That is, S′′ dominates S∗(ia−1, vi−1). Therefore, there is a solution S in
X (i, vi−1) such that S dominates S∗(i, vi−1). By a similar argument for prov-
ing Lemma 1, there is a solution S in X (i − 1, vi−1) such that S dominates
S∗(i − 1, vi−1). �

Efficient Algorithms for Ridesharing 351

Lemma 3. For any solution (S∗, σ∗) of R, there is a solution (S, σ) ∈ X (1, l)
computed by Algorithm 1 such that S dominates S∗.

Proof. If there is no merge point in T , then by Lemma 1, the lemma holds.
If there is one merge point i − 1 in T , then by Lemma 2, there is a solution
S ∈ X (i − 1, vi−1) such that S dominates S∗(i − 1, vi−1). Since i − 1 is the only
merge point of T , vi−1 = l, Di−1 is the path consisting of all trips from i − 1 to
1. By a similar argument for proving Lemma1, there is a solution S in X (1, l)
such that S dominates S∗.

Assume that u1, .., us, 1 < s, are the merge points in T such that ua < ub if
a < b. For each ua, 1 ≤ a ≤ s, if the child of ua is a merge point then let wa = ua,
otherwise let wa be the trip in Dua

such that R(wa, vwa
) is a maximal branch

and there is no merge point other than ua in the path from ua to wa in T . We
prove the following statement by induction: for 1 ≤ a ≤ s, there is a solution S
in X (wa, vwa

) such that S dominates S∗(wa, vwa
). For a = s, Aua

\{ua} does not
contain any merge point. By Lemma 2, there is a solution S ∈ X (ua, vua

) such
that S dominates S∗(ua, vua

). Then by a similar argument for proving Lemma1,
there is a solution S in X (wa, vwa

) such that S dominates S∗(wa, vwa
), implying

the induction base. Assume that the statement holds for 1 < a ≤ s and we prove
it for a−1. If Aua−1 \{ua−1} does not have any merge point then by Lemma2 and
a similar argument for proving Lemma1, the statement holds for a − 1. Assume
that Aua−1 \ {ua−1} has some merge point. Notice that for every merge point
uj ∈ Aua−1 \{ua−1}, a ≤ j. Let i1, .., ir be the parents of ua−1. By the induction
hypothesis and a similar argument for proving Lemma1, for every 1 ≤ b ≤ r,
there is a solution S in X (ib, vib) such that S dominates S∗(ib, vib). By a similar
argument for proving Lemma2, there is a solution S in X (ua−1, vua−1) such that
S dominates S∗(ua−1, vua−1). Then by a similar argument for proving Lemma1,
there is a solution S in X (wa−1, vwa−1) such that S dominates S∗(wa−1, vwa−1).
Therefore, the statement holds, implying the lemma. �

Theorem 1. There is an algorithm that, given a ridesharing instance (G,R)
of size M and l trips satisfying all of Conditions (1), (2) and (3), computes a
solution (S, σ) for R with dist(S) minimized in O(M + l3) time.

Proof. Let S∗ be a solution for R with the minimum dist(S∗). By Lemma 3,
Algorithm 1 finds a solution S with dist(S) ≤ dist(S∗) in X (1, l). Algorithm 1
computes X (i, vi) for every trip i. Since X (i + 1, vi+1) is non-dominating, the
solutions of X (i + 1, vi+1) can be listed as S1, S2, .. such that |σ(Sa)| < |σ(Sb)|
and dist(Sa) > dist(Sb) for a < b. So there are O(l) solutions in X (i + 1, vi+1)
because |σ(Sa)| ≤ l for every Sa in X (i + 1, vi+1). For every Sa ∈ X (i + 1, vi+1),
the solution S′

a ∈ X (i, vi) can be computed in O(l) time. So, it takes O(l2)
time to compute all solutions in X (i, vi). It takes O(l) time to make X (i, vi)
non-dominating. Therefore, it takes O(l3) time to process all of the l trips.

In Algorithm 1, Procedure Merge is called O(l) times. We play a small trick
to reduce the running time of the procedure: we compute |σ′′(S′′)| before σ′′(j)
is actually decided for each j ∈ S′′. This allows us to get a non-dominating
set of solutions. Then we decide σ′′(j) only for non-dominating solutions (O(l)

352 Q.-P. Gu et al.

many) instead of all S′′ = S ∪ S′ (O(l2) many). In each call, it takes O(l)
time to compute |R(ia−1, vi−1)| + |Di−1| and there are O(l2) solutions S ∪ S′

for S ∈ X (ia−1, via−1) and S′ ∈ X (ia, vi−1) because each of X (ia−1, via−1) and
X (ia, vi−1) is non-dominating and thus has O(l) solutions. It takes O(1) time
to compute dist(S′′) and |σ′′(S′′)|. Therefore, it takes O(l2) time to compute
O(l2) solutions for X (ia−1, vi−1) and O(l2) time to make X (ia−1, vi−1) non-
dominating. Then there are O(l) non-dominating solutions in X (ia−1, vi−1). For
each S′′ ∈ X (ia−1, vi−1), it takes O(l) time to compute σ′′(j) for every j ∈ S′′.
Therefore, each execution of Procedure Merge takes O(l2) time and total time
for merge operations is O(l3) time. So the total time of Algorithm 1 is O(l3).

It takes O(M) time to compute HR. The preprocessing for rearranging labels
of trips takes O(l) time. Therefore, the theorem holds. �

If we set dist(Pi) = 1 for every i ∈ R then by Theorem 1, the following result
holds.

Theorem 2. There is an algorithm that, given a ridesharing instance (G,R)
of size M and l trips satisfying all of Conditions (1), (2) and (3), computes a
solution (S, σ) for R with |S| minimized in O(M + l3) time.

4 Greedy Algorithm for Minimizing Number of Drivers

We give an O(M + l2) time algorithm for minimizing the number of drivers. This
algorithm is more efficient than the O(M + l3) time algorithm in Theorem2.
Given a component T of HR and a partial solution (S, σ) for R, let AT be the
set of sources in T . Our algorithm processes every trip in T starting from a trip
in AT . When a trip x in AT is processed, x is included in a partial solution (S, σ)
and x serves as many trips in Dx that are not served by S and are closest to x
as possible. Recall that N(x, c, S) is the set of c such trips as defined in Sect. 3.1.
When x is processed, σ(x) = N(x, c, S), where c = min{nx + 1, |Dx \ σ(S)|}.
A trip x is marked if x is assigned as a driver or a passenger by the algorithm.
Each trip x �∈ AT is processed only if all ancestors of x have been marked by the
algorithm and |σ(v)| = nv + 1 for every v ∈ S ∩ Ax. When trip x is processed,
a trip u with the largest capacity nu is selected from Ax \ S as a driver and
included in S. Our algorithm makes u serve as many trips in Du that are not
served by S and are closest to u as possible, that is, σ(u) = N(u, c, S), where
c = min{nu +1, |Du \σ(S)|}. At any execution point of the algorithm, whenever
a trip is assigned to be a driver, it remains as a driver throughout the algorithm.
On the other hand, an assigned passenger can be changed to a driver when a
new trip is processed. The pseudo code of the algorithm is given in Fig. 5. For
the algorithm, we have the following result (proof omitted due to space limit).

Lemma 4. Given a ridesharing instance (G,R) satisfying all of Conditions (1),
(2) and (3), Algorithm 2 finds a solution (S, σ) for R with the minimum |S|.

Efficient Algorithms for Ridesharing 353

Algorithm 2 Find Minimum Number of Drivers.
Input: An inverse tree T of HR of l trips.
Output: A solution (S, σ) for T with |S| minimized.
begin

S := ∅; let AT be the set of sources in T ;
for every trip v ∈ AT do

x := v; /* initialization */
while (x ∈ AT) or (all trips in Ax \ {x} are marked) do

let u be a trip in Ax \ S with the largest nu;
if u �= x then

let k ∈ S s.t. u ∈ σ(k); σ(k) := (σ(k) \ {u}) ∪ {x}; mark x;
endif
c := min{nu + 1, |Du \ σ(S)|}; S := S ∪ {u};
σ(u) := N(u, c, S); mark all trips in σ(u);
if (all trips in Du are marked) then

break the while loop;
else

let x be the unmarked trip in Du with the minimum dist(u → x) in T ;
endif

endwhile
endfor

end.

Fig. 5. Algorithm for minimizing the number of drivers.

Theorem 3. There is an algorithm that, a ridesharing instance of size M and l
trips satisfying Conditions (1), (2) and (3), computes a solution for the instance
with the minimum number of drivers in O(M + l2) time.

Proof. By Lemma 4, Algorithm 2 finds an optimal solution for an input instance.
It takes O(l) time to find an unmarked x, O(l) time to check if all vertices in
Ax \ {x} are marked, O(l) time to find u with the largest nu and O(l) time to
compute σ(u) in each iteration of the while loop. Therefore, the running time of
Algorithm 2 is O(l2). It takes O(M) time to compute HR. Thus, the theorem
holds. �

5 Concluding Remarks

We proposed polynomial time algorithms for minimizing the total travel distance
of drivers and minimizing the number of drivers for the simplified rideshar-
ing problem satisfying Conditions (1), (2) and (3). It is known that if any
one of the three conditions is not satisfied then both minimization problems
are NP-hard. These results suggest a clear boundary between the polynomial
time solvable cases and NP-hard cases of simplified ridesharing problems. It is
worth developing approximation algorithms for the NP-hard cases and exploring
the algorithmic complexity of other simplified variants of ridesharing problem.

354 Q.-P. Gu et al.

It is interesting to study the applications of our algorithms to more complex
ridesharing problems and other problems such as the evacuation problems.

Acknowledgement. The authors thank anonymous reviewers for their constructive
comments. The work was partially supported by Canada NSERC Engage/Discovery
Grants and China NSFC Grant 11531014.

References

1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Dynamic ride-sharing: a simula-
tion study in metro atlanta. Transp. Res. Part B 45(9), 1450–1464 (2011)

2. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. Eur. J. Oper. Res. 223, 295–303 (2012)

3. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad.
Sci. (PNAS) 114(3), 462–467 (2017)

4. Baldacci, R., Maniezzo, V., Mingozzi, A.: An exact method for the car pooling
problem based on Lagrangean column generation. Oper. Res. 52(3), 422–439 (2004)

5. Calvo, R.W., de Luigi, F., Haastrup, P., Maniezzo, V.: A distributed geographic
information system for daily car pooling problem. Comput. Oper. Res. 31(13),
2263–2278 (2004)

6. Chan, N.D., Shaheen, S.A.: Ridesharing in North America: past, present, and
future. Transp. Rev. 32(1), 93–112 (2012)

7. Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M., Wang, X., Koenig, S.:
Ridesharing: the state-of-the-art and future directions. Transp. Res. Part B
Methodol. 57, 28–46 (2013)

8. Ghoseiri, K., Haghani, A., Hamedi, M.: Real-time rideshare matching problem.
Final Report of UMD-2009-05, U.S. Department of Transportation (2011)

9. Gu, Q.-P., Liang, J.L., Zhang, G.: Algorithmic analysis for ridesharing of per-
sonal vehicles. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016.
LNCS, vol. 10043, pp. 438–452. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48749-6 32

10. Hanawa, Y., Higashikawa, Y., Kamiyama, N., Katoh, N., Takizawa, A.: The mixed
evacuation problem. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016.
LNCS, vol. 10043, pp. 18–32. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48749-6 2

11. Herbawi, W., Weber, M.: The ridematching problem with time windows in dynamic
ridesharing: a model and a genetic algorithm. In: Proceedings of ACM Genetic and
Evolutionary Computation Conference (GECCO), pp. 1–8 (2012)

12. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. Proc. VLDB Endow. 7(14), 2017–2028 (2014)

13. Kelley, K.: Casual carpooling enhanced. J. Pub. Transp. 10(4), 119–130 (2007)
14. Morency, C.: The ambivalence of ridesharing. Transportation 34(2), 239–253

(2007)
15. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C.: Quantifying

the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci.
(PNAS) 111(37), 13290–13294 (2014)

16. Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., Liss, S.: Summary of travel
trends: 2009 national household travel survey. Technical report, US Department of
Transportation Federal Highway Administration (2011)

https://doi.org/10.1007/978-3-319-48749-6_32
https://doi.org/10.1007/978-3-319-48749-6_32
https://doi.org/10.1007/978-3-319-48749-6_2
https://doi.org/10.1007/978-3-319-48749-6_2

Cost-Sharing Mechanisms for Selfish
Bin Packing

Chenhao Zhang and Guochuan Zhang(B)

College of Computer Science, Zhejiang University, Hangzhou, China
{zchrea,zgc}@zju.edu.cn

Abstract. The selfish bin packing problem (SBP) considers the clas-
sical bin packing problem in a game-theoretic setting where each item
is controlled by a selfish agent. It is well-known that the classical bin
packing problem admits an asymptotic fully polynomial-time approxi-
mation scheme (AFPTAS). However, all previously-studied cost-sharing
mechanisms for the selfish bin packing problem (SBP) have PoA greater
than 1.6. Obviously, there is quite a big gap between the results of the
two highly-related problems. In this paper, we revisit the SBP and find
more efficient mechanisms for SBP to narrow the gap. We first present
a simple mechanism with PoA = 1.5, which significantly improves pre-
vious bounds. We observe that for a large class of mechanisms for the
SBP, 1.5 is actually a lower bound of PoA. Finally, we propose new rules
for the SBP which lead a better mechanism with PoA ≤ 1.467.

1 Introduction

Suppose we are given a set of items N = {1, 2, . . . , n} and sufficiently many bins
of unit capacity 1. The item i has size si ∈ (0, 1], for i = 1, 2, . . . , n. The load
s(B) of a bin B is defined to be the total size of items packed in it. In the classical
bin packing problem which was first introduced in the 1970s [7,11], we need to
pack the items into as few bins as possible while ensuring the load of each bin
does not exceed its capacity. The classical bin packing problem is shown to be
NP-hard, yet there exists an asymptotic fully polynomial-time approximation
scheme [6], which has an asymptotic approximation ratio arbitrarily close to 1.

The selfish bin packing problem (SBP) considers bin packing in a game-
theoretic setting. In the SBP, each bin has unit cost 1 which is shared by all
items in it. Each item is controlled by a selfish agent who wants to minimize the
shared cost. An item chooses freely a bin it resides in as long as the capacity
constraints are not violated. In order to minimize the social cost (i.e. the number
of bins used), the design of cost-sharing mechanisms is critical.

To measure the efficiency of a mechanism, the price of anarchy (PoA) [8] is
commonly used. The PoA is defined to be the supremum of the ratio between
the social cost of the worst equilibrium and the optimal solution without self-
ish behavior over all instances, which resembles the approximation ratio in the

Research partially supported by NSFC (11531014, 11671355).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 355–368, 2017.
https://doi.org/10.1007/978-3-319-71150-8_30

356 C. Zhang and G. Zhang

analysis of the approximation algorithms. Let BP be the set of all instances of
the SBP. Let OPT (G) be the number of bins used in the optimal solution of the
instance G, n(π) be the number of bins used in the packing π and NEc(G) be
the set of all Nash equilibria (NE) of G under a given mechanism c. The PoA
of the mechanism c is defined formally [4] as

PoA(c) = lim sup
OPT (G)→∞

sup
G∈BP

max
π∈NEc(G)

n(π)
OPT (G)

.

Previous Results. The SBP was first studied by Bilò [2] with applications in the
bandwidth cost sharing problem in non-cooperative networks. He analyzed the
proportional cost-sharing rule, under which an item with size s in a bin B has
a cost s/s(B). He proved that any feasible packing always converges to an NE
in finite steps and the PoA is in between 1.6 and 1.67. Epstein and Kleiman [4]
later improved the results by showing that PoA is in between 1.6416 and 1.6428.
Yu and Zhang [12] also independently obtained the same lower bound and an
upper bound of 1.6575. Epstein et al. [5] proved that for the parametric case
where all items have size at most 1

t (t is a positive integer), PoA is upper
bounded by

2t3 + t2 + 2
(2t + 1)(t2 − t + 1)

.

Particularly, if all items have size no greater than 1
2 , i.e., when t = 2, the upper

bound of PoA is 22/15 ≈ 1.467.
Ma et al. [10] studied the equally sharing mechanism for SBP, under which

the cost of a bin is equally shared among all items in it regardless of their size.
They proved that the mechanism has PoA = 1.7.

There are other research topics [1,3,9] focusing on different aspects or vari-
ants of the problem. However, none of the previous research provides a mech-
anism with PoA ≤ 1.64 for the original SBP, despite that 1 + ε is well known
to be asymptotically reachable in non-selfish environments. Therefore, designing
mechanisms for SBP with a smaller PoA is of great significance.

Our Contribution. Note that the proportional cost-sharing rule works better
if item sizes are small. It advises us to pay attention to large items (those of
size larger than 1/2). More specifically, we aim at mechanisms under which
small items are willing to share a bin with a large item. Along this line, in this
paper, we first propose a simple mechanism with PoA = 1.5, which significantly
improves the previous results. We strengthen the result by proving that 1.5 is
a lower bound PoA for a large class of mechanisms. We then figure out several
key properties which a mechanism with a smaller PoA needs to satisfy. Based
on this, we derive a better mechanism achieving a PoA ≤ 1.467, which clearly
moves the bottleneck of the general case to the special case with only small
items.

Cost-Sharing Mechanisms for Selfish Bin Packing 357

2 A Simple Mechanism

Let the item set be N = {1, 2, . . . , n}, where the item i has size si ∈ (0, 1]. In
a slight abuse of notation, we also use si to denote the item i. A packing π
is defined to be a partition of the items N = B(1) � B(2) · · · � B(m) such that
s(B(i)) ≤ 1, i = 1, . . . ,m where s(B(i)) =

∑
s∈B(i)

si. Each B(i) denotes a bin
and also the set of items in that bin. A bin B is full if s(B) = 1. We use Bj and
B′

j to denote, respectively, the bin in two packings π and π′ in which j resides.
Let m = n(π) be the social cost of the packing π.

Given a mechanism, let ci denote the cost of item i under the mechanism
in the corresponding packing. In this paper, all mechanisms we discussed are
cost-sharing mechanisms which satisfy

∑
i∈B ci = 1 for all packings.

Let π′ be a packing and c′
i be the cost of item i in π′. π′ is said to be a selfish

improvement of another packing π with respect to si if

B′
j = Bj , ∀j �= i and c′

i < ci,

in other words, si can pay strictly less by unilaterally moving from Bi to B′
i. A

packing π∗ is an NE under the mechanism if it has no selfish improvement with
respect to any item.

We call an item si a large item if si > 1
2 , otherwise we call it a small item.

We call a bin B a large bin if B contains a large item, otherwise we call it a
small bin. These definitions apply to any feasible packing.

We propose the Large-Pay-Pubic (LPP) mechanism that encourages small
items to be packed with the large ones by requiring the large items to pay for
the unoccupied space of the bins they reside in. The cost-sharing scheme of the
LPP mechanism is stated as follows.

Large-Pay-Pubic Mechanism

Given a packing, if si is packed in a large bin Bi,

ci =

{
1 − s(Bi) + si si > 1

2

si si ≤ 1
2 .

If si is packed in a small bin Bi,

ci =
si

s(Bi)
.

The intuition of the mechanism is simple: For every large bin, the large item pays
for the public space (the unoccupied space) and its private space. Each small
item pays for its private space. For every small bin, the cost is shared using the
proportional rule. From another point of view, every large item is required to
pay for a whole bin first, then it “subleases” the remaining space to small items.

358 C. Zhang and G. Zhang

Remark. Under the LLP mechanism, a small item prefers to stay in a large bin
than any non-full small bin. For two small bins, a small item prefers to stay
in the one with greater load. A large item always prefers to stay in a bin with
greater load.

We now show that, an NE always exists under the LPP mechanism.

Theorem 1. Under the LPP mechanism, any packing π will converge to an NE
packing π∗ in a finite number of selfish improving steps.

Proof. We define a vector-valued potential function P (·) on the set of all pack-
ings. Given any packing π = {B(1), B(2), . . . , B(m)},

P (π) = (s(B′
(1)), . . . , s(B

′
(l)), s(B

′
(l+1)), . . . , s(B

′
(m))),

where B′
(1), . . . , B

′
(l) are large bins in non-increasing order of their load and

B′
(l+1), . . . , B

′
(m) are small bins in non-increasing order of their load.

We define an order � on the set of vectors. For two vectors u = (u1, . . . , us)
and v = (v1, . . . , vt), u � v if s < t or s = t but u is lexicographically greater
than v.

If π is not an NE, let π′ be a selfish improvement of π with respect to si. If si

is a large item, then P (π′) � P (π) since it must be the case that s(B′
i) > s(Bi).

If si is a small item, then either B′
i is large and Bi is small or s(B′

i) > s(Bi).
This also means that P (π′) � P (π). Since the number of packings is finite, π
will always converge to an NE in a finite number of steps.

It is not hard to show that the LPP mechanism has PoA ≤ 1.5. Let G be any
instance of the SBP and OPT (G) be number of bins used by an optimal solution.

Lemma 1. In any NE packing, all small bins except the one with smallest load
contain at least two items.

Proof. If the lemma is not true, there is a bin B other than the one B̂ with
smallest load, containing a single item. Both of B and B̂ have load at most 1

2 .
Hence, the items in B̂ have incentive to move to B. It is a contradiction.

Lemma 2. The LPP mechanism has PoA ≤ 1.5.

Proof. Consider any NE packing π∗. Let nL denote the number of large bins and
nS denote the number of small bins used in π∗.

Case 1. nL ≥ 2nS . Since OPT (G) ≥ nL, we have

n(π∗) = nL + nS ≤ 3
2
nL ≤ 3

2
OPT (G).

Cost-Sharing Mechanisms for Selfish Bin Packing 359

Fig. 1. Reordered bins

Case 2. nL ≤ 2nS − 1. We reorder all bins in π∗ as in Fig. 1: We place all large
bins before the small bins and arrange the small bins in non-increasing order of
their load. We call the small bin containing a single item B′ and put it aside if
such a bin exists.

We group two bins from the left and one bin from the right in the list until
there are at most 2 bins left. Let k be the number of groups. We claim that each
such group has a total load at least 2. Since nL ≤ 2nS − 1, there are at most
2 large bins in any group and hence the rightmost bin in each group must be a
small bin.

If the rightmost bin in a group is full, it is obvious that the group has a load
greater than 2 as the left two bins in the group must have a total load greater
than 1.

Now suppose the rightmost bin in a group is not full. By Lemma1, it contains
at least 2 items. Since π∗ is an NE, each item in the rightmost bin does not fit
in any of the left bins, otherwise they would have incentive to move under the
LPP mechanism. Hence the total load of the group must be greater than 2.

Therefore, the total size of items in the k groups is larger than 2k. We now
take the ungrouped bins into account.

1. Suppose there is no bin except B′ left ungrouped. The total size of the items is
strictly greater than 2k taking the item in B′ into account. Thus, OPT (G) ≥
2k + 1 and n(π∗) = nL + nS = 3k + 1. Therefore

n(π∗) ≤ 3k + 1
2k + 1

OPT (G) ≤ 3
2
OPT (G)

2. Suppose there is one bin left besides B′. Since π∗ is an NE under the LPP
mechanism, the item in B′ can not fit in the bin left. Hence the total size
of the items is strictly greater than 2k + 1. Thus, OPT (G) ≥ 2k + 2 and
n(π∗) = nL + nS = 3k + 2. Therefore

n(π∗) ≤ 3k + 2
2k + 2

OPT (G) ≤ 3
2
OPT (G)

360 C. Zhang and G. Zhang

3. Suppose there are two bins left besides B′. Since π∗ is an NE under the LPP
mechanism, the item in B′ can not fit in either of the bins. Hence the total
size of the items is strictly greater than 2k + 1 too. Thus, OPT (G) ≥ 2k + 2
and n(π∗) = nL + nS = 3k + 3. Therefore

n(π∗) ≤ 3k + 3
2k + 2

OPT (G) ≤ 3
2
OPT (G)

It is easy to show the same result using the similar arguments if B′ does not
exist.

3 A Lower Bound of PoA

By giving a family of instances, we now show that the PoA = 1.5 is tight for
the LPP mechanism. This family of instances also applies to a large class of
mechanisms, providing a lower bound of PoA for the class.

Consider the following instances: for any positive integer k, let ε = 1
2k . The

item set contains 2k large items with size 1
2 + ε and 2k2 small items with size ε.

There exists an NE packing π∗ that uses 3k bins as shown in Fig. 2. In π∗,
each large item occupies a bin alone and every set of 2k small items stays together
in a full bin. The cost of each small item is ε, which is exactly the same as its
size. Thus, none of small items will be strictly better off by moving to the bins
with large items under the LLP mechanism.

However, the optimal packing shown in Fig. 3 only uses 2k + 1 bins. In this
packing, each large item is packed with k − 1 small items. The remaining 2k
small items have total size 2k · 1

2k = 1 and they fit in a single bin.
Since

lim
k→∞

n(π∗)
OPT (G)

= 1.5,

we conclude the following theorem.

Lemma 3. The LLP mechanism has PoA = 1.5.

Fig. 2. n(π∗) = 3k Fig. 3. OPT (G) = 2k + 1

Cost-Sharing Mechanisms for Selfish Bin Packing 361

It is easy to see that, the family of instances above also holds for any mech-
anism under which an item has cost no smaller than its size.

Theorem 2. Any cost-sharing mechanism under which ci ≥ si,∀i in all pack-
ings has PoA ≥ 1.5.

Proof. We only need to show that π∗ in the previous instance is an NE for
all such mechanisms as well. Obviously, any large item can move nowhere to
reduce its cost. If any small item in a full bin has cost at least ε, then the cost
must be exactly ε, otherwise the total cost of items in that bin would exceed
1, which contradicts the property of cost-sharing mechanisms. Hence, all small
items already have the smallest possible cost under such mechanisms, and they
have no incentive to move.

In order to design better mechanisms, we need to find out what kind of
properties such a mechanism should have. The following property is justified by
our previous discussions.

Observation 1. A small item should be offered a discount, i.e., it should have
cost strictly less than its size, when packed with a large item.

Now suppose we let a small item pay an amount less than its size when packed
with a large item. However, it does not work if we simply let the small item pay
nothing when packed with a large item. As we shall see, a mechanism still has
PoA ≥ 1.5 as long as a small item gets a constant discount regardless of the
load of the bin it resides in.

Consider the following family of instances: let k be any positive integer and
ε = 1

2k . The item set contains 2k large items with size 1
2 + ε, 2k small items

with size 1
2 − ε and 2k small items with size ε.

The packing π∗ shown in Fig. 4 uses 3k bins. It’s not hard to see that π∗ is
an NE for any mechanism under which a small item gets a constant discount
when staying with a large one. The items with size ε have no incentive to get
together while the items with size 1

2 − ε do not fit in the large bins.
We have the optimal packing shown in Fig. 5 which uses 2k + 1 bins. In this

packing, the 2k small items with size ε are packed in a single bin as their total
size is 1. Therefore, we know that 1.5 is still a lower bound of the PoA.

Fig. 4. n(π∗) = 3k Fig. 5. OPT (G) = 2k + 1

362 C. Zhang and G. Zhang

Observation 2. A small item should get greater discount when it is packed in
a large bin with greater load.

The two properties above are all in the interest of small items. However, if
we can not guarantee that a large item gets better off when the load of the bin
it resides gets greater, it may “escape” to a bin with smaller load to reduce its
cost. Some small items, of course, will then follow it to the new bin. The large
item may then escape again. The instability of such mechanisms may lead to
the non-existence of NE. Hence, in addition to the two properties above, we also
force mechanisms to have the property that a large item pays less when it resides
in a bin with greater load.

Observation 3. The cost of a large item should be lower when it is packed in
a bin with greater load.

4 A Better Mechanism

Based on our discussions in the previous section, we now propose the Discount-
Sharing (DS) mechanism for the SBP.

Discount-Sharing Mechanism

Let β ∈ (0, 2
3] and the discount factor f(x) = 1 − βx. Given a packing, if si is

packed in a large bin Bi,

ci =

{
1 − f(s(Bi)) · (s(Bi) − si) si > 1

2

si · f(s(Bi)) si ≤ 1
2 .

If si is packed in a small bin Bi,

ci =
si

s(Bi)
.

Under the DS mechanism, a small item in a large bin pays the amount of cost that
equals its size multiplied by the discount factor. The discount factor decreases as
the load of the bin increases. The large item in the bin pays the remaining cost.
The cost in a small bin is still shared by all its small items using the proportional
rule.

We claim that the DS mechanism has the following properties that we dis-
cussed in the last section (assuming Bi and B′

i are the two bins accommodating
the item si in different packings):

1. For a small item si, if Bi is a large bin and B′
i is a small bin then ci < c′

i.
2. For a small item si, if Bi and B′

i are of the same type (both are large or
small), then s(Bi) > s(B′

i) ⇔ ci < c′
i.

3. For a large item si, s(Bi) > s(B′
i) ⇔ ci < c′

i.

Cost-Sharing Mechanisms for Selfish Bin Packing 363

The first two properties hold trivially according to the definition of the DS
mechanism. It remains to show that the property 3 holds.

Lemma 4. For any large item si under the DS mechanism, if s(Bi) > s(B′
i),

then ci < c′
i.

Proof. Consider the cost ci of the large item si. Let b = s(Bi).

ci = 1 − (1 − βb) · (b − si) = βb2 − (1 + βsi)b + si + 1.

Differentiate ci with respect to b

dci

db
= 2βb − (1 + βsi).

Since si > 1
2 , we have

dci

db
= 2βb − (1 + βsi) < 2βb − (1 + β · 1

2
).

From b ≤ 1, we know that

dci

db
< 2β − (1 + β · 1

2
) =

3
2
β − 1.

As β ∈ (0, 2
3], we have

dci

db
≤ 0,

which implies that the cost decreases as the bin load increases. The lemma holds.

By using the same potential function as Sect. 2, it’s easy to show that any
packing under the DS mechanism will converge to an NE in a finite number
of selfish-improving steps. Note that the DS mechanism is reduced to the known
proportional cost-sharing rule if only small items are present. Recall that the
proportional rule has a PoA ≤ 1.467 for this special case [5]. In this section, we
show that the DS mechanism has a PoA ≤ 1.467 as well for the general case,
which pushes the bottleneck to the special case.

We use similar techniques as that in [5]. The main tool is the weight function
method. Given any NE packing, we assign a weight to each item according to
its size and the bin it resides in. We then prove that all but a constant number
of bins in the NE packing each have a total weight at least 1. Since an optimal
solution must also pack all the items, we get an upper bound of the PoA by
upper-bounding the average weight of each bin in the optimal solution.

Consider any NE packing π∗ under the DS mechanism. We classify the bins
of π∗ as follows: for a large bin, we call it an L-bin if it is occupied by a large
item alone, otherwise we call it an M-bin. For a small bin, we call it an X-bin if
it has load no less than 5

6 , otherwise we call it a Y-bin.

Lemma 5. In an NE packing, all but at most 1 large bins with load not exceeding
3
4 are L-bins.

364 C. Zhang and G. Zhang

Proof. Suppose there are two large bins with load not exceeding 3
4 and neither

of them is an L-bin. Each of them contains a small item besides the large item.
Each small item has size at most 3

4 − 1
2 = 1

4 . Hence, the small item in the bin with
smaller load will move to the one with greater load, contradicting the property
of an NE.

Case 1. All but at most two small bins have load at least 3
4
. We leave

the two special bins out if necessary. We define the following weighting function
on the items in the rest bins.

w(si) =

⎧
⎪⎪⎨

⎪⎪⎩

1 Bi is an L-bin (I)
1 − 8

9 (s(Bi) − si) si > 1
2 , Bi is an M-bin (II)

8
9si si ≤ 1

2 , Bi is an M-bin (III)
4
3si si ≤ 1

2 , Bi is a small bin (IV)

First we claim that all bins (except for a constant number of bins) in NE has a
weight at least 1.

– For any L-bin, the claim holds trivially.
– For any M-bin, its weight is competed to 1.
– For any small bin, the claim holds as it has load at least 3

4 .

Next we consider bins in OPT and show that any bin in OPT has a weight at
most 13/9 < 1.467.

For a small bin in OPT, as all small items from (III) or (IV) have weight
no greater than 4

3 ≈ 1.334, the total weight is bounded by 4
3 . For a large bin in

OPT, we consider the following cases.

Case 1a. The large item comes from an L-bin in the NE.
The large item can not share the bin with any item from (IV), otherwise

such a small item would fit in the L-bin in NE. Hence, only items from (III) can
share the same bin with it. The total weight of the bin is at most

1 +
8
9

· 1
2

=
13
9

≈ 1.445.

Case 1b. The large item comes from an M-bin in the NE.
We need to determine the largest possible weight such a bin may have. Since

items from (IV) have larger weights than items from (III), the remaining space
of the bin should all be filled with items from (IV).

Let si be the size of the large item and Bi be the M-bin it comes from. Given
si and Bi, the weight of the bin is

w ≤ 1 − 8
9
(s(Bi) − si) +

4
3
(1 − si) =

7
3

− 8
9
s(Bi) − 4

9
si.

By Lemma 5, all but at most one M-bin have load greater than 3
4 . Hence we have

s(Bi) > 3
4 . Since si > 1

2 , the largest possible weight of such bins is at most

7
3

− 8
9

· 3
4

− 4
9

· 1
2

=
13
9

≈ 1.445.

Cost-Sharing Mechanisms for Selfish Bin Packing 365

Case 2. All but at most two small bins have load at least 17
24

and there
exists at least three small bins with load less than 3

4
.

Lemma 6. In any NE packing, there are at most two small bins with load less
than 2

3 .

Proof. Suppose there are three small bins with load less than 2
3 . Two of them

must have load greater than 1
2 , otherwise items from the bin with smallest load

will move. Since these two small bins have load greater than 1
2 (but less than

2
3), they both must contain at least two items. One of the two items has size
less than 1

3 . Therefore, an item in the bin with smaller load will move to the bin
with greater load, contradicting the fact that the packing is an NE.

Consider the small bins with load less than 3
4 . By Lemma 6, all but at most

two of them have loads at least 2
3 . We leave the two special bins out if necessary.

Since small bins contain only small items, the smallest item in the bin has size
at most 3

4 · 1
2 = 3

8 . Hence, all L-bins must have load at least 1− 3
8 = 5

8 , otherwise
such a small item would move there.

w(si) =

⎧
⎪⎪⎨

⎪⎪⎩

1 Bi is an L-bin (I)
1 − 96

85 (s(Bi) − si) si > 1
2 , Bi is an M-bin (II)

96
85si si ≤ 1

2 , Bi is an M-bin (III)
24
17si si ≤ 1

2 , Bi is a small bin (IV)

By the same argument as Case 1 we can prove that all bins in NE have a weight
at least 1.

For a small bin in OPT, since all small items from (III) or (IV) have a weight
no greater than 24

17 ≈ 1.412. The weight of the small bin is also upper bounded
by 24

17 .
For a bin in OPT that contains a large item, we consider the following cases.

Case 2a. The large item comes from an L-bin in the NE. The large item can not
share the bin with any item from (IV), otherwise such a small item would fit in
the L-bin in NE. Hence, only items from (III) can share the same bin with it.

Since all L-bins have load at least 5
8 by the discussion above, the total weight

of the bin is at most

1 +
96
85

· (1 − 5
8
) = 1 +

96
85

· 3
8

=
121
85

≈ 1.424.

Case 2b. The large item comes from an M-bin in the NE.
Given the large item si and the M-bin Bi where it comes from, by the same

argument as Case 1b, the largest possible weight of such bins should be

w = 1 − 96
85

(s(Bi) − si) +
24
17

(1 − si) =
41
17

− 96
85

s(Bi) − 24
85

si.

Again, by Lemma 5, all but at most one M-bin have load greater than 3
4 .

Hence we have s(Bi) > 3
4 . Since si > 1

2 , the largest possible weight of such bins
is at most

w =
41
17

− 96
85

· 3
4

− 24
85

· 1
2

=
121
85

≈ 1.424.

366 C. Zhang and G. Zhang

Case 3. There exists at least three small bins with load less than 17
24

.

Lemma 7 ([5]). In an NE packing, all bins that are filled by less than 5
6 , except

for maybe a constant number of bins, contain exactly two items with size in
(7
24 , 1

2].

Since the cost of each small bin is still shared using the proportional rule
under the DS mechanism, the above lemma still holds for Y-bins in any NE
under the DS mechanism.

We define the following weighting function on the items.

w(si) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 si is in an L-bin (I)

1 − 6
5
(s(Bi) − si) si > 1

2 , Bi is an M-bin (II)
6
5
si si ≤ 1

2 , Bi is an M-bin (III)
6
5
si si ≤ 1

2 , Bi is an X-bin (IV)

6
5
si +

1 − 6
5s(Bi)
2

si ≤ 1
2 , Bi is a Y-bin (V)

First we claim that all bins (except for maybe a constant number of bins) in
NE has weight ≥ 1.

– For any L-bin, the claim holds trivially.
– For any M-bin, its weight is completed to 1
– For X-bins and Y-bins, the claim holds by Lemma7 [5].

We now show that in OPT, the average weight of bins does not exceed 1.467 as
OPT (G) → ∞.

We first consider all small bins in OPT. Items of a small bin in OPT come
from (III), (IV) or (V). We assign items from (III) the same weight as items
from (IV). By the same argument as [5], the average weight of a small bin is at
most 22

15 ≈ 1.467 as OPT (G) → ∞.
For a bin in OPT that contains a large item, we consider the following cases.

Case 3a. The large item comes from an L-bin in the NE. The large item can
not share the bin with any item from (IV) and (V), since otherwise such a small
item would fit in the L-bin in NE. Hence, only items from (III) can share the
same bin with it.

Now consider a bin with load less than 17
24 . By Lemma 7, we know that it

contains exactly 2 items. Since it has load less than 17
24 , the size of the smaller

item of the two must be less than 17
48 . Hence, the unoccupied space of any L-bin

must be less than 17
48 . Therefore, the total weight of the bin is at most

w = 1 +
17
48

· 6
5

= 1.425.

Cost-Sharing Mechanisms for Selfish Bin Packing 367

Case 3b. The large item comes from an M-bin in the NE.
Let si denote the size of the large item and Bi denote the bin it comes from.

If the remaining space of the bin are all occupied by small items from (III) or
(IV), by the same argument as Case 1b or Case 2b, the largest possible weight
of the bin should be

w = 1 − 6
5
(s(Bi) − si) +

6
5
(1 − si) =

11
5

− 6
5
s(Bi) ≤ 1.3.

The last equation is due to Lemma 5, saying that the M-bin has a load greater
than 3

4 .
We now turn to the situation where items from (V) are involved. All Y-bins

(except for a constant number of bins) contain exactly two items with sizes in
(7
24 , 1

2]. Only one of such items can fit in the remaining space of the bin mentioned
above. Using Lemma 6, we know that the additive term in the weight of that
item is at most 1− 2

3
2 = 1

6 . Hence, the weight of items in the remaining space is
at most

wr =
6
5
(1 − si) +

1
6
,

and the total weight of the bin is

w = 1 − 6
5
(s(Bi) − si) + wr = 1 − 6

5
s(Bi) +

41
30

≤ 22
15

.

It has been shown that in any case, the average weight of the bins in OPT
is at most 22/15. We thus arrive at the following conclusion.

Theorem 3. The Discount-Sharing mechanism has PoA ≤ 22/15 ≈ 1.467.

5 Concluding Remarks

In this paper, we discussed the cost-sharing mechanism design for the selfish
bin packing problem. We designed the LPP mechanism with PoA = 1.5 which
significantly improves the previous results. We also proved that 1.5 is a lower
bound of PoA for a large class of mechanisms. We studied the properties to
further improve the bound. Finally, we proposed a better mechanism with PoA ≤
1.467 which pushes the bottleneck of the SBP to the case with only small items.

An obvious question is left to deal with small items more efficient than the
proportional rule. A more fundamental question asks the possibility to design a
family of mechanisms that have PoA arbitrarily close to 1, which resembles the
AFPTAS in environments without selfish behaviors.

In addition, if we are not strictly restricted to the cost-sharing mechanisms,
say, items in a bin may be charged a little more than the cost of the bin, does
there exist any more efficient mechanism?

368 C. Zhang and G. Zhang

References

1. Adar, R., Epstein, L.: Selfish bin packing with cardinality constraints. Theor. Com-
put. Sci. 495, 66–80 (2013)

2. Bilò, V.: On the packing of selfish items. In: Proceedings of 20th International
Parallel and Distributed Processing Symposium, 9 pp. IEEE (2006)

3. Cao, Z., Yang, X.: Selfish bin covering. Theor. Comput. Sci. 412(50), 7049–7058
(2011)

4. Epstein, L., Kleiman, E.: Selfish bin packing. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 368–380. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87744-8 31

5. Epstein, L., Kleiman, E., Mestre, J.: Parametric packing of selfish items and the
subset sum algorithm. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp.
67–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10841-9 8

6. de La Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ ε in linear
time. Combinatorica 1(4), 349–355 (1981)

7. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3(4), 299–325 (1974)

8. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

9. Li, W., Fang, Q., Liu, W.: An incentive mechanism for selfish bin covering. In:
Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 641–
654. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 46

10. Ma, R., Dósa, G., Han, X., Ting, H.-F., Ye, D., Zhang, Y.: A note on a selfish bin
packing problem. J. Glob. Optim. 56(4), 1457–1462 (2013)

11. Ullman, J.D.: The performance of a memory allocation algorithm. Technical report
100, Princeton University, Princeton (1971)

12. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S.
(eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-92185-1 50

https://doi.org/10.1007/978-3-540-87744-8_31
https://doi.org/10.1007/978-3-540-87744-8_31
https://doi.org/10.1007/978-3-642-10841-9_8
https://doi.org/10.1007/3-540-49116-3_38
https://doi.org/10.1007/978-3-319-48749-6_46
https://doi.org/10.1007/978-3-540-92185-1_50

Application

Modelling and Solving Anti-aircraft Mission
Planning for Defensive Missile Battalions

Trang T. Nguyen(B), Trung Q. Bui(B), Bang Q. Nguyen(B), and Su T. Le(B)

Command, Control, Communications, Computers, and Intelligent Department,
Viettel Research and Development Institute, Hanoi, Vietnam

{trangntl1,trungbq5,bangnq,sult2}@viettel.com.vn

Abstract. The theater defense distribution is an important problem in
the military that determines strategies against a sequence of offensive
attacks in order to protect his targets. This study focuses on develop-
ing mathematical models for two defense problems that generate anti-
aircraft mission plans for a group of missile battalions. While the Anti-
aircraft Mission Planning problem maximizes the defender’s effective-
ness using all his available battalions, the Inverse Anti-aircraft Mission
Planning problem computes necessary weapon resources (battalions and
their missiles) to obtain a given defensive effectiveness value. The pro-
posed formulations are Mixed Integer Programs that describe not only
the positions of missile battalions, but also engage battalions to fleets of
attacking aircrafts. We additionally prove that these problems are NP-
hard. A comprehensive set of experiments is then evaluated to show that
these proposed programs can be applied to solve fast real-life instances
to optimality.

Keywords: Military · Theater defense distribution · Anti-aircraft
mission planning · Mixed integer program

1 Introduction

The Theater Distribution Model (TDM) is specifically designed to support the
combatant commander to ensure his effective plans within area of operations [12].
At the operational level of war, the senior commander is responsible for develop-
ment of the distribution and ultimately for transportation system. A theater dis-
tribution system is comprised of facilities, installations, methods, and procedures
designed to receive, store, maintain, distribute, and control the flow of materi-
als between exogenous inflows to that system and distribution to end-user activ-
ities and units within the theater. Most of researches in the literature focus on
the military theater distribution problem associated with determining positions
of defender’s missile battalions within a potentially geographical region [11].

1.1 Related Works

The TDM has been motivated and validated for both defensive side and offensive
side in general. Some of these studies have been developed into mathematical
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 371–385, 2017.
https://doi.org/10.1007/978-3-319-71150-8_31

372 T.T. Nguyen et al.

models which can be classified as the Theater Distribution and Vehicle Routing
Problem (TDVRP), the Theater Attacking Model (TAM), and the Defender-
Attacker Model (DAM).

One of the most popular transportation model in the TDM is the TDVRP,
a generalization of vehicle routing problem, that is concerned with constructing
optimal routes and schedules to satisfy transportation requests at multiple loca-
tions. An exact formulation for the TDVRP is introduced in [9] that has a very
large number of variables and constraints. In order to solve the TDVSP effec-
tively in practice, the authors utilize advanced Tabu search techniques, includ-
ing reactive Tabu search and group theory, to develop a heuristic procedure for
solving specific situation of location routing pickup and delivery problem. The
TDVRP is also considered in [3], in which the authors describe a flexible group
theoretic Tabu search framework which evaluates the routing and scheduling of
theater transportation assets at the individual asset operational level to provide
efficient time-definite delivery of cargo to customers.

Among attacking models, the authors in [6] describe TAM as a large-scale
linear program used to aid commanders in making tough budget procurement
decisions for the United States Air Force. The objective function of this model
maximizes the total target value destroyed by the aircraft and munitions in its
scenarios. The model uses decision variables to represent each sortie which is
defined by a particular aircraft and ordnance combination to maximize target
value destroyed for a given target, weather, time period, and distance to the
target. In TAM model, the aircraft sorties are not grouped into strike packages
and as a result, the advantages of mutual support and mass are not presented
in this model. The Air Force Studies and Analysis Agency [13] describes TAC
Thunder which is a combat model simulating air war, ground war, and resupply.
The TAC Thunder’s network linear program and meta-heuristics are designed
to optimize sorties’ allocations in term of mission effectiveness against a target
list. The TAC Thunder model is then applied as a package to the Future The-
ater Level Model (FTLM) in [1]. The air mission planning algorithm for FTLM
results in a linear program that allocates the optimal number and type of aircraft
and munitions against each target. Although the air mission planning algorithm
provides fast, approximated solution; the FTLM problem omits many details in
actual aircrafts.

Another important class of the TDM that has been studied in the litera-
ture, is the DAM. An instance of DAM in a fast theater model is introduced
in [10], which is built upon the existing air model. In this research, the authors
study a joint theater level attrition model combining ground combat with opti-
mized air strikes. The air strike attacker’s main objective is maximizing target
value destroyed by killing as many targets with high values as possible, while
the ground combat wants to minimize its own losses. The resulting model is a
Mixed Integer Program (MIP) finding an optimal, actively defensive actions by
the ground force that can significantly reduce the air attacker’s effectiveness.
The defender-attacker (pursuer-evader) problem is continued studying in [8], in
which a new methodology for strategy optimization under uncertainty has been

Modelling and Solving Anti-aircraft Mission Planning 373

proposed. The authors describe the implementation of a genetic programming
algorithm to determine an optimized evasion strategy for the extended two-
dimensional pursuer-evader problem under conditions of uncertainty about the
type of pursuer. The DAM model is also applied to defender’s risk assessment
and mitigation. For instance, [2] formulates a defender-attacker-mitigator prob-
lem as a min-max-min model, in which defender minimizes an objective function
of a maximization problem, the optimal solution invests to reduce the expected
damage, given the future mitigation capability. Beside the DAM, a defensive
model is also studied such as the Joint Theater Ballistic Missile Defense model
in [4], in which the authors express the enemy course of action as a mathemati-
cal optimization to maximize expected damage, then use Bender’s decomposition
technique to optimize the defensive interceptor pre-positioning to minimize the
maximum achievable expected damage.

1.2 Objective, Contribution, and Outline

In most cases, the defender faces with so many risks from terrorist attacks of all
kinds. The work we research here is directly motivated by such one risk assess-
ment: surface-to-air missile battalions defense against many fleets of penetrating
aircraft. Beside the role of specializing anti-aircraft, missile battalions in an air
defense system also protect a target such as capital, political area, economy or
military center. The Department of Air Defense and Air Force has conducted
some risk assessment exercises and estimated risks of many attack possibilities.
One area that is still undeveloped is an algorithm for determining an intelligent
package of missile battalion’s actions to aircraft attack. A missile battalion pack-
age consisting of only one missile type might be ineffective but when several types
of missiles are combined properly, they confidently destroy the attacking aircraft
and protect their target. More precisely, we develop mathematical formulations
for anti-aircraft mission planning effectively for a group of missile battalions. A
missile battalion is considered as a fundamental tactical building block which
recruits or conscripts in one geographical area assigned by a feudal lord. Given
some threat, the defender must decide where to locate defensive missile battal-
ions among potential locations and how they should engage fleets of attacking
aircraft. We express the defender’s courses of action as following mathematical
optimization problems. Given an attacking plan, Anti-aircraft Mission Planning
problem (AMP) finds optimal battalions’ locations, and a launching assignment
(i.e., number of missiles should be launched from a battalion to a fleet), such
that the defensive effectiveness is maximized. While Inverse Anti-aircraft Mission
Planning problem (IAMP) computes necessary weapon resources, battalions’
locations, and a launching assignment to obtain a given effectiveness threshold.

The most valuable contribution of this paper comes from the statements
and practical mathematical formulations for two crucial problems in TDM class.
While the AMP arises naturally in the context of limited weapon resources, the
IAMP is necessarily tackled when the protected target should not be fallen in any
cases. Although these problems are proven NP-hard, the computational results
show the efficient of our formulation since it can be applied directly to solve fast

374 T.T. Nguyen et al.

real-life instances to optimality. The message here is that, with the validation
of Vietnamese veterans, we have gained confidence that the formulations have
significant implementation in any defender’s combat field.

The rest of paper is organized as follows. In Sect. 2, we state the problems,
formulate them as mixed integer programs and as well as prove their hardness.
The experimental results are reported and analyzed in Sect. 3. Finally, we con-
clude the paper and draw some future directions in Sect. 4.

2 Problem Formulations

In this section, we state and formulate the anti-aircraft mission planning prob-
lems. The complexity of these problems is also discussed.

Fig. 1. An example of an attacking plan

2.1 Problem Statement

Suppose that the attacker’s plan can be observed by an intelligence system of
the defender and is described as follows. In the offensive side, the attacker strikes
the target by a group of fleets of attacking aircraft. For a sake simplicity, from

Modelling and Solving Anti-aircraft Mission Planning 375

Fig. 2. An example of an attacking fleet

now on, the term “fleet” is used stead of “fleet of attacking aircraft”. Each fleet
is organized by a group of aircraft which have same missions such as carry-
ing bombs or making radar noise; enter the theater at same height, direction;
and fly with same velocity. Each fleet is associated with a weight of impor-
tance depending mainly on its mission. Figure 1 illustrates an attacking plan,
in which the horizontal axis represents the directions of the fleets, considered
as angles between attacking directions and a predefined axis; while the vertical
axis represents the height of the fleets. There are seven fleets at different heights,
directions and velocities, drawn by seven arrows. The color of the arrows reflects
the fleets’ weights. For instance, the darkest arrow describes the fleet with the
highest weight, carrying bombs such as B52, B1, B2. Further, flying positions of
aircraft in a fleet must be captured in detail, for example, a flying position of a
four-aircraft fleet is illustrated in Fig. 2.

In the defensive side, the defender’s responsibility is to engage fleets to protect
its point target. In order to formulate the AMP and the IAMP, we take into
account following factors. The first one is critical radius corresponding to each
fleet that defines a critical circle centered at the target. The defender has to make
a defensive plan such that no attacking aircraft in that fleet is able to get inside
that circle. This critical radius is computed depending on the height, velocity of
that fleet and type of bombs carried by that fleet. For instance, in Fig. 3, the point
target is described by the green rectangle with critical radius OX corresponding
to a fleet coming from AO direction. The second factor is action range of a
battalion corresponding to a fleet that can be understood as a fleet’s flying
path where the fleet will be intercepted by that battalion. In Fig. 3, the action
range of battalion B1 is CD segment, where D is the intersection of attacking
direction AO and the critical circle, and C is the intersection of the direction AO
and the circle centered at B1 of radius B1C which is defined as the long range
of missiles belonging to that battalion. Similarly, the action range of battalion
B2 is BD segment. The third factor maximum launches representing firepower
capabilities of a battalion can be seen as maximum number of missiles that can
be launched from the battalion to the fleet in its action range. This number is
calculated basing on the type of missile, number of missiles in that battalion, as
well as the shortest time between two successive launches. The fourth factor is
expected number of killed aircraft of a fleet caused by a battalion in a number
of launches. This value can be estimated by number of missiles, probability of
kill, defensive mode related to each fleet, and set of coefficients corresponding
to each missile battalion such as technical coefficient, control coefficient, and
complex coefficient of combat. Lastly, a minimum distance between each pair of

376 T.T. Nguyen et al.

Fig. 3. An example of influence of battalion’s locations on their firepower capabilities
(Color figure online)

battalions is required to avoid radar jamming between missiles in the battalions.
Note that if two battalions locate at a same position, this constraint can be
ignored.

As a defender, we would like to measure the result of our defense. An effec-
tive criterion is then introduced as defensive effectiveness, calculated by fraction
between value of killed aircraft and value of all aircraft in attacking fleets. The
effectiveness is strongly influenced by battalions’ locations, that motivates us
to study an adaptable, efficient, and cost-effective process to analyse missile
battalion defense against aircraft threats. Suppose that in both the AMP and
the IAMP, the defender observes an attacking plan that includes all informa-
tion about the offensive side stated as above. In the AMP, the defender seeks to
allocate a limited number of battalions and missiles to distribute a defensive mis-
sion plan that maximizes his defensive effectiveness. We consider now somewhat
inverse version of the AMP, the IAMP. Assume, in particular, that the defender
has a set of battalions, in stead of using all battalions to maximize his defensive
effectiveness, one generates a defensive mission plan such that the corresponding
effectiveness is greater than or equal to a given value. Intuitively, one would like
to locate defensive battalions as well as compute number of missiles with the
lowest cost such that its effectiveness is at least γ (such as γ = 0.5, 0.6, ...). The
detailed mathematical formulations for these problems are proposed as follows.

2.2 Mathematical Formulations

For a simplicity of presentation, we first introduce some notations.

Modelling and Solving Anti-aircraft Mission Planning 377

Notations

– B: set of missile battalions;
– F : set of fleets of attacking aircraft;
– L: set of potential locations for battalions;
– For a battalion b ∈ B, denote m(b) and c(b) by number of missiles distributed

to b and cost of a missile of b, respectively;
– For a fleet f ∈ F , denote n(f) and w(f) by number of aircraft in fleet f and

weight of that fleet, respectively;
– For each pair (b, l) of a battalion b ∈ B and a location l ∈ L, c(b, l) refers to

cost of allocating battalion b at location l;
– For each pair of locations (li, lj) (li, lj ∈ L), denote d(li, lj) by geometric

distance between li and lj ; for a pair of battalions (bi, bj) (bi, bj ∈ B), denote
d(bi, bj) by minimum distance between bi and bj if they are located at two
different positions;

– For each triple (b, l, f) (b ∈ B, l ∈ L, f ∈ F), denote t(b, l, f) by maximum
number of missiles that battalion b located at l is able to launch to fleet f in
its action range;

– Last, for a triple (b, f, t) (b ∈ B, f ∈ F and t ∈ Z
+), denote e(b, f, t) by

expected number of killed aircraft in fleet f caused by t missiles launched
from battalion b to fleet f .

AMP Mathematical Formulation
This formulation defines three categories of variables. First, binary variables
xb,l where b ∈ B, l ∈ L, indicate whether battalion b locates at location l or
not. Second, binary variables yb,l,f,t where b ∈ B, l ∈ L, f ∈ F and t ∈ Z

+,
state if t missiles are launched from battalion b located at location l to fleet
f . Lastly, continuous variables uf where f ∈ F , represent expected number of
killed aircraft in fleet f .

Max
∑

f∈F

w(f)uf

w(f)n(f) (1a)

s.t.
∑

l∈L

xb,l = 1, ∀b ∈ B (1b)

∑

l∈L

∑

f∈F

t(b,l,f)∑

t=1

tyb,l,f,t ≤ m(b), ∀b ∈ B (1c)

(1 − xbi,li)∞ + (1 − xbj ,lj)∞ + xbi,lid(li, lj) ≥ d(bi, bj),

∀bi, bj ∈ B, bi �= bj ,∀li, lj ∈ L, li �= lj (1d)

uf −
∑

l∈L

∑

b∈B

t(b,l,f)∑

t=1

e(b, f, t)yb,l,f,t = 0, ∀f ∈ F (1e)

uf ≤ n(f), ∀f ∈ F (1f)

∑

f∈F

t(b,l,f)∑

t=1

yb,l,f,t ≤ xb,l, ∀b ∈ B, l ∈ L (1g)

378 T.T. Nguyen et al.

xb,l; yb,l,f,t ∈ {0, 1}, ∀b ∈ B, l ∈ L, f ∈ F, t ∈ {1, . . . , t(b, l, f)} (1h)

uf ≥ 0, ∀f ∈ F. (1i)

In this formulation, the defender’s objective is maximizing its effectiveness (1a)
which is the sum of fractions of expected number of killed aircraft uf and
number of aircraft n(f) for all fleets while considering additionally the impor-
tance weights of these fleets. Constraints (1b) simply limit each missile battalion
to one location. Constraints (1c) stipulate that the number of launches from
each battalion should not be greater than its given number of missiles. Con-
straints (1d) show that if two missile battalions bi and bj are at locations li
and lj where li �= lj , respectively, the distance between these battalions must
be greater than a required minimum distance d̄(bi, bj). Constraints (1e) express
uf as the expected number of killed aircraft in fleet f , while constraints (1f)
define upper bounds for uf , f ∈ F , which are number of aircraft in these fleets.
Constraints (1g) tell us that there are some missiles launched from a location
to a fleet if and only if there exists at least one missile battalion located at
that location. Lastly, constraints (1h) and (1i) indicate that xb,l, yb,l,f,t where
b ∈ B, l ∈ L, f ∈ F, t ∈ {1, . . . , t(b, l, f)} are binary variables, while uf where
f ∈ F are non-negative continuous variables.

IAMP Mathematical Formulation
In addition to variables used in the AMP mathematical formulation, the IAMP
mathematical formulation introduces more integer variables zb ∈ Z

+, indicating
number of missiles launched from battalion b ∈ B.

Min
∑

b∈B

∑

l∈L

c(b, l)xb,l +
∑

b∈B

c(b)zb (2a)

s.t.
∑

l∈L

xb,l ≤ 1, ∀b ∈ B (2b)

Constraints(1d), (1e), (1f), (1g), (1h), (1i) (2c)
∑

f∈F

w(f)uf

w(f)n(f)
≥ γ (2d)

zb −
∑

l∈L

∑

f∈F

t(b,l,f)∑

t=1

tyb,l,f,t = 0, ∀b ∈ B (2e)

zb ≤ m(b)
∑

l∈L

xb,l, ∀b ∈ B (2f)

zb ∈ Z+, ∀b ∈ B (2g)

where γ ∈ [0, 1] is a given effectiveness value.
The objective of this formulation is to minimize the total cost (2a) that

is calculated by sum of establishing battalion cost and launched missile cost
on these battalions. Constraints (2b) are different from (1b) since not every
missile battalion is required to locate at some location. Constraint (2d) requires
the obtained effectiveness be at least a given value, γ. The number of missiles

Modelling and Solving Anti-aircraft Mission Planning 379

on each battalion is set at constraints (2e) while its upper bound has been
given in constraints (2f). The other constraints are similar to ones in the AMP
formulation, except that number of launched missiles are integer variables as
in (2g).

Note here that, the AMP always results in an optimal solution with the
effectiveness belonging to [0, 1], while the IAMP sometimes returns no solution
in case the weapon resources are not sufficiently available to reach the expected
effectiveness.

2.3 NP-Hardness

The NP-completeness is indicated as the complexity of the AMP and the IAMP
in this section.

Theorem 1. The IAMP is NP-complete.

Proof. To prove this, we reduce the 3-Partition Problem (3PP) to the IAMP
since the 3PP is known as NP-complete [5].

Recall that in the 3PP, we are given a multi-set S of 3b positive integers
i1, i2, . . . , i3b, where the value of every element in the set belongs to interval
(C
4 , C

2), for a positive integer C; and we are asked to decide if there are b disjoint
subsets of S such that sum of all elements in each subset equals to C.

For any instance of the 3PP, an instance of the IAMP is simultaneously
created as follows: The set of battalion B is initialized by b missile battalions;
each battalion is allocated 3 missiles; the set of potential locations L just contains
only one location; the set of fleets includes 3b fleets, f1, f2, . . . , f3b (each positive
integer in the 3PP instance corresponds to a fleet in the IAMP instance); each
fleet is formed by just one aircraft; each battalion can launch at most one missile
to each fleet; the expected number of killed aircraft is ik

C (ik
C ∈ (14 , 1

2)) when one
missile is launched from any battalion to a fleet fk; for all k ∈ [1, 2, . . . , 3b], and
the lower bound on the effectiveness is set to 1.

As a result, the 3PP instance has a partition into b disjoint subsets, sum of
elements in each subset is equal to C, if and only if all battalions located at the
unique location, each battalion launches exactly 3 missiles to 3 fleets and the
defender’s effectiveness reaches to its ideal value of 1 or all fleets are destroyed
completely. Thus 3PP reduces to the question whether the IAMP has a solution
or not. Thus, a pseudo polynomial reduction has been given, showing that the
IAMP is NP-complete. �

A similar pseudo polynomial reduction is also applied to prove the NP-
completeness of AMP by reducing the 3PP to the decision problem of the AMP.

3 Experiments

This section dedicates to report and analyze experimental results on variety of
instances for both AMP and IAMP. For each problem, we generated randomly

380 T.T. Nguyen et al.

20 instances with the help of experienced soldiers to make them real and reli-
able. The coefficients used to generate instances were carefully extracted from
the historical data and technical guides of missiles S-75 and S-125. The math-
ematical formulations for the AMP and the IAMP were implemented in C++
programming language, using IBM Ilog Cplex Concert Technology, version 12.5.
The standard cuts of Cplex were automatically added. Since the number of con-
straints (1c) is large and they belong to Miller-Tucker-Zemlin class [7], these
constraints are treated as lazy constraints to reduce the computation time as
follows. At the beginning of resolution, these constraints are all relaxed. Each
time, an integer feasible solution is counted at a node in the search tree, this
solution is checked for the satisfiability of all these constraints, all violated con-
straints are injected more in the model. This cut-addition strategy always ensures
the returning solution is correct since all constraints (1c) are strictly respected.
All computations were performed in multi-thread mode on a computer with an
Intel Core i7-479 CPU, 3.6 GHz, and 4 GB RAM running Ubuntu version 16.4,
64 bits. A time limit of 2 h of CPU time was set for each instance resolution.

All computational results for the AMP and the IAMP are respectively indi-
cated in Tables 1 and 2. The columns in the tables have the following meanings.

– No.: Instance number
– # Battalions: Number of missile battalions
– # Missiles: Number of missiles of each battalion
– # Locations: Number of potential locations
– # Fleets: Number of attacking aircraft fleets
– Gap: Gap between the optimal solution of the integral relaxation of an integer

program and integer feasible solution of that program found so far
– Effectiveness: Defensive effectiveness value
– # Nodes: Number of nodes in the search tree
– Time (s): Overall CPU time in seconds

In reality, the practical AMP usually allocates a missile regiment of 4 to 6
missile battalions to protect an important target which is attacked by 5 to 8
attacking aircraft fleets. Instances of those sizes can be solved so fast by our
formulation as report in the first five rows of Table 1, specially instances (1, 4, 5)
of these sizes were solved in less than one second. This result motivates us to
increase the size of test instances up to 10 battalions, 100 locations and 10 fleets
to evaluate the tackling ability of the formulation. In the time limit of 2 h, the
10 easy instances among 15 instances were completely solved to optimality, most
of them take less than 1 min; while the 5 hard instances were solved nearly to
optimality since the gaps are so small (0.01%–0.07%). The resolution of the hard
instances generated huge search trees containing a millions of nodes, for example
there are 6328326 nodes in the search tree in instance 9. Although 15 last test
instances have same sizes in term of the number of battalions, the number of
fleets and the number of locations, the computational difficulty is different. This
diversification comes from the geographic of the potential locations. In com-
parison to defensive effectiveness of easy instances, the hard ones have greater
effectiveness.

Modelling and Solving Anti-aircraft Mission Planning 381

Table 1. Experimental results for AMP

Instances Experimental results

No. # Battalions # Missiles # Locations # Fleets Gap (%) Effectiveness # Nodes Time (s)

1 7 12 38 8 0 0.72 0 0.6

2 6 12 80 5 0 0.92 304447 508.9

3 6 12 58 8 0 0.62 2969 1.5

4 7 12 50 5 0 1.00 0 0.5

5 5 12 83 8 0 0.49 0 0.7

6 10 12 100 10 0 1.00 0 7.7

7 10 12 100 10 0 0.67 197 5.3

8 10 12 100 10 0 0.70 327289 212.9

9 10 12 100 10 0.02 0.91 6328326 72001.4

10 10 12 100 10 0 0.63 21336 49.8

11 10 12 100 10 0 0.78 35296 172.6

12 10 12 100 10 0 0.70 327289 212.9

13 10 12 100 10 0 0.70 2940 7.1

14 10 12 100 10 0 0.90 30780 11.6

15 10 12 100 10 0.05 0.94 835158 7211.4

16 10 12 100 10 0 0.69 3555 30.1

17 10 12 100 10 0.07 0.91 2683626 7217.5

18 10 12 100 10 0 0.74 49427 8.9

19 10 12 100 10 0 0.73 49952 34.8

20 10 12 100 10 0.01 0.71 2622249 7201.8

Sets of available missile battalions in IAMP instances were generated around
20 battalions that are larger than the ones used in Table 1. Among 20 instances
in Table 2, there are 12 easy instances solved to optimality in less than 30 s, while
7 hard instances were not completely solved in the time limit, and one instance
(No. 18) returned to “Out of memory” error during the resolution. Similar to
hard AMP instances, the hard IAMP instances generate very large search trees
that may cause no feasible solution. It is essentially seen that the easy IAMP
instances correspond to reasonable effectiveness values, while the hard IAMP
instances usually are associated with high effectiveness values. These experimen-
tal results were validated and recommended by the experienced soldiers that this
formulation should be packaged for the purpose of training and integrated into
a C4I system.

We next evaluate the performance of the defensive effectiveness value in the
IAMP programs on his weapon resources in the instance No. 15 with 20 available
battalions, recorded in Table 3. The effectiveness values were generated uniformly
at random between 0 and 1. It is obviously that the total cost increases when
the defensive effectiveness increases, but it is not linear dependent. Further, we
observe that when the effectiveness is less than 0.6, it takes less than 8 min to
obtain its optimal values, and the number of battalions needed is also less than 7,

382 T.T. Nguyen et al.

Table 2. Experimental results for IAMP

Instances Experimental results

No. # Battalions # Missiles # Locations # Fleets Effectiveness Gap (%) # Nodes Time (s)

1 21 12 56 11 0.72 0 7337 18.6

2 21 12 56 11 0.82 0 30706 26.7

3 21 12 41 11 0.81 0 0 5.6

4 22 12 42 12 0.97 0.83 356981 7209.9

5 21 12 46 11 0.74 0 41059 15.0

6 20 12 45 10 0.52 0 3231 11.7

7 21 12 51 11 0.57 0 2245 20.5

8 24 12 54 14 0.98 0.05 9374445 7213.7

9 22 12 52 12 0.84 0.20 1554149 7227.9

10 23 12 48 13 0.46 0 0 9.8

11 23 12 58 13 0.91 0.12 1897796 7210.6

12 22 12 47 12 0.71 0 14763 22.1

13 21 12 41 11 0.56 0 5293 29.8

14 23 12 48 13 0.94 0.12 1609379 7225.7

15 20 12 55 10 0.84 0.09 2305688 7217.6

16 22 12 47 12 0.44 0 614 8.6

17 22 12 47 12 0.65 0 26379 15.2

18 22 12 57 12 0.60 Out of memory

19 20 12 55 10 0.60 0.03 3006774 7203.5

20 22 12 47 12 0.45 0 474 11.2

Table 3. Influences of weapon resources on effectiveness

Effectiveness Objective value # Battalions # Total missiles Gap # Nodes Time (s)

0.1 220 1 12 0 68 157.0

0.2 440 2 24 0 0 102.2

0.3 703 3 35 0 685 337.7

0.4 1039 5 50 6.42 59620 7214.6

0.5 1337 6 66 0 16811 472.7

0.6 1664 7 94 0 1775 131.9

0.7 2087 9 101 1.77 53792 7210027.0

0.8 2567 11 123 3.57 10405 7280.6

0.9 3156 13 151 2.11 7900 7331.5

1.0 4660 19 215 4.89 7449 7287.2

except the instance with the effectiveness of 0.4. And, if the required effectiveness
is greater than 0.7 while the available weapon resources are extremely excessive,
the optimal solution can not be obtained in the time limit. Note here that in
the last row of Table 3, the defender must use almost all his weapon resources

Modelling and Solving Anti-aircraft Mission Planning 383

to completely protect his target. The nonlinear dependence of the effectiveness
on the weapon resources in IAMP can be essentially explained by the diversity
of launching modes.

4 Conclusion

In this paper, we formulated the AMP and the IAMP problems, the defensive
missile battalions mission planning against aircraft attack model, that support
defensive decision makers not only decide where to locate their missile battalions,
but also point out that how many missiles should be launched from each bat-
talion to each attacking aircraft fleet. The mathematical formulations are MIPs,
proved as NP-hard. These mathematical programs were implemented and exper-
imented on test instances generated basing on the help of experienced veterans,
in which parameters on probability of kill, maximum number of launches, as well
as minimum distance between two battalions, were pre-processed for a particular
set of defensive battalions and aircraft attack. The numerical results provide the
incidence that the proposed formulations should be widely applied in real-life
combat field. As future works, we intend to formulate and tackle other variance
of the defensive distribution models.

Acknowledgment. We would like to thank Mr. Dung Nguyen, the advisor of Viet-
namese Department of Defense Air and Air Force, and his team for their support in
the problem definition and the result validation.

A Appendix

A.1 Compute e(b, f, t)

Suppose that a battalion b ∈ B plan to launch t missiles to fleet f ∈ F that has
n(f) aircrafts. We are given coefficient corresponding to each missile battalion
b ∈ B, cb = cb

tc
b
cc

b
d, where cb

t is technical coefficient, cb
c is control coefficient and

cb
d is combat complex coefficient. The probability of kill of each missile launched

from battalion b to fleet f is known as p (p ∈ [0, 1]). Based on defensive mode,
we consider following situations:

1. Disperse mode: Suppose that each time a battalion decides to launch 2 missiles
to an aircraft of a fleet. Since the probability of kill is p(b, f) = p for all
b ∈ B, f ∈ F , expected number of killed aircraft is e(b, f, t) = t(1 − (1 − p)2).

2. Focus mode: Suppose that battalion b launches t times focusing on fleet f ,
where t = n(f)t1+t2, then probability of kill on each aircraft in t1 launches is
1− (1− p)t1 . Battalion b has t2(t2 < n(f)) launches left, inferring probability
of kill on one aircraft in each launch is p(1−p)n(f)−1. Then, expected number
of killed aircraft can be estimated by eb, f, t = n(f)(1 − (1 − p)t1) + t2p(1 −
p)n(f)−1.

384 T.T. Nguyen et al.

3. Random mode: Let Xi where i = 1, 2, ..., n(f), be random variables defined

by Xi =

{
1 if aircraft i ∈ f is killed
0 otherwise

While probability of kill on aircraft i in fleet f is 1 − (1 − p
n(f))

t, expected

number of killed aircraft can be approximated as e(b, f, t) = E(
∑n(f)

i=1 Xi) =
n(f)E(Xi) = n(f)(1 − (1 − p

n(f))
t).

A.2 Compute t(b, l, f)

Value t(b, l, f) is maximum number of launches that a battalion b located at
location l can launch to fleet f . This number depends on following quantities.
For a fleet f , we let v(f), h(f) and l(f) be its velocity, height and length,
respectively. In an attack, fleet brings different type of bomb that can be verified
as tb(f) = 1 if fleet f brings nuclear bomb and tb(f) = 0 if fleet f brings regular
bomb. For a battalion b, we denote dmax and rb by long range of missile on
battalion b and distance between that battalion and the target, respectively. We
suppose that the shortest time between two consecutive launches, tas, as well
as obscured coefficient, δ, are known. Furthermore, angle of battalion location,
αb, and angle of in-coming fleet, αf , are parameters. Function t(b, l, f) can be
computed as follows:

1. Compute critical radius rs = 5000tb(f) + v(f)
√

2h(f)
g − Δ where 5000 m is

active radius of nuclear bomb, g ≈ 9.8 m/s2 is gravity acceleration, Δ =
0.25h(f) if v(f) ≤ 300 m/s, Δ = 0.4h(f) if v(f) > 300 m/s.

2. Compute shape time of fleet tfs: tfs = l(f)
v(f)

3. Compute launching time of battalion tbs:
(a) Angle between battalion’s location and fleet ϕ: ϕ = |αf − αb|.
(b) If (rb + rs > dmax and rb + dmax > rs and rs + dmax > rb) then

i. If ϕ > ϕ∗ then t(b, l, f) = 0 where ϕ∗ = arccos(r2
b+r2

s−d2
max

2rbrs
).

ii. If ϕ ≤ ϕ∗ then tbs = x−rs

v(f) where x is root of equation x2+r2b −d2max =
2xrb cos ϕ.

(c) If (dmax ≥ rb + rs) then tbs = y−rs

vf
where y is root of equation y2 + r2b −

d2max = 2yrb cos ϕ.
(d) If (rs ≥ dmax + rb) then t(b, l, f) = 0.
(e) If (rb ≥ dmax + rs) then

i. If ϕ > ϕ∗ then t(b, l, f) = 0 where ϕ∗ = arcsin(dmax

rb
).

ii. If ϕ ≤ ϕ∗ then tbs = 2
√

d2
max−r2

b sin2 ϕ

vf
.

4. Compute t(b, l, f) = 1 + δtbs+tfs

tas
.

Modelling and Solving Anti-aircraft Mission Planning 385

References

1. Brian, J.: An air mission planning algorithm for a theater level combat model.
Master thesis, Air force Institute of Technology (1994)

2. Brown, G., Carlyle, M., Wood, K.: Applying defender-attacker optimization to
terror risk assessment and mitigation. Calhoun, The NPS Institutional Archive
(2008)

3. Crino, J., Moore, J.: Solving the theater distribution vehicle rounting and schedul-
ing problem using group theoretic tabu search. Math. Comput. Model. 39(6), 599–
616 (2004)

4. Diehl, D.D.: How to optimized joint theater ballistic missile defense. Master Thesis,
Naval Postgraduate School Monterey, CA (2004)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

6. Jackson, J.: A taxonomy of advanced linear programming techniques and the the-
ater attack model. Master thesis, Air Force Institute of Technology (1989)

7. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4), 326–329 (1960)

8. Moore, F.W.: A methodology for missile countermeasures optimization under
uncertainty. Evol. Comput. 10(2), 129–149 (2002)

9. Robert, E.: An adaptive tabu search heuristic for the location rounting pickup and
delivery problem with time windows, a theater distribution application. Doctoral
Thesis, Air force Institute of Technology (2006)

10. Seichter, S.: The fast theater model optimization of air-to ground engagements as
a defender-attacker model. Master thesis, Naval Postgraduate School (2005)

11. Shalikashvili, G.: Joint tactics, techniques, and procedures for movement control.
Chairman of the Joint Chiefs of StaffJoint Publication, Washington 4–01.2 (1993)

12. Shalikashvili, G.: Joint tactics, techniques, and procedures for movement control.
Chairman of the Joint Chiefs of StaffJoint Publication, Washington 4–01.3 (6 1996)

13. Air Force Studies and Analysis Agency: TAC thunder analysis manual. CACI Prod-
ucts Company, Arlington (1992)

Perspectives of Big Data Analysis in Urban
Railway Planning: Shenzhen Metro Case Study

Keke Peng1, Caiwei Yuan2, and Wen Xu3(B)

1 Shenzhen City Traffic Planning Design Research Center, Guangdong, China
jack gaga@126.com

2 Department of Computer Science and Technology,
Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China

caiwei yuan@163.com
3 Department of Mathematics and Computer Science,
Texas Woman’s University, Denton, Texas 76204, USA

wxu1@twu.edu

Abstract. Urban railway system is of great importance to public trans-
portation and economic development. However, due to the fast develop-
ment of urban cities and time-consuming construction, it is quite chal-
lenging to plan a successful metro railway system beforehand. In this
paper, we propose perspectives of evaluating traffic efficiency of metro
railway systems from various factors such as the total railway traffic flow,
the structure of the traffic system and the spatial distribution of work-
and-home. We evaluate the implementation effect of Shenzhen railway
system (particular the second phase construction) based on historical
and real-time data reported by 28,000 passengers, which will provide
insightful suggestions for Shenzhen metro construction in the future.

Keywords: Traffic efficiency · Railway evaluation · City dynamics

1 Introduction

Since 2000s, urban railway investment increased significantly in China. Accord-
ing to statistics, by 2013, there are 16 cities in China whose railway transit
length has reached 2213 km, 35 cities whose rail transit length under construc-
tion reached 2760 km. Beijing, Shanghai, Guangzhou, Shenzhen and other major
large cities are speeding up the following network planning and construction.

These investments were in general planned due to the acceleration of urban-
ization and the increasing demand for residents traveling, but very few have
been successful in improving the transport and the urban environment. Previ-
ous research has shown that while most of the new generation urban rail systems
could be enhanced if the co-ordination between transport planning and urban
planning be stronger. However, coordination is very difficult to achieve within
the constantly changing social dynamics and fragmented planning system.

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 386–400, 2017.
https://doi.org/10.1007/978-3-319-71150-8_32

Perspectives of Big Data Analysis in Urban Railway Planning 387

Recently, big data reflecting city dynamics have become widely available
[2,5,10], e.g., traffic flow, human mobility, and population survey, enabling us
to solve this challenging problem from a data perspective. According to existing
studies [13], these data have a strong correlation with railway successfulness.

This paper explores ways of making new urban rail systems more successful
using big data analysis. It develops a methodology for analyzing the success of
systems, identifying the factors behind the success, and enhancing the success.
Taking Shenzhen City as an example, the paper utilizes both survey and real-
time data of Phase II of rail transit reported by 28,000 passengers for analysis, an
evaluation framework is developed based on the analysis. From the perspectives
of the utilization efficiency of the railway system, the organizational efficiency
of the urban transportation and residential structure [1], the framework helps
planners to evaluate and increase the success of their systems [4].

The framework has two main functions: it evaluates the success of railway
systems, and makes recommendations on how their success can be enhanced.
While the framework addresses many factors that may affect success, there is a
special focus on exploring methods for providing and sustaining co-ordination
between transport and urban planning.

The main contributions of this article are:

– We propose specific criteria to measure the performance of the system. The
more criteria the system fulfill, the more successful it is regarded as in this
work. The criteria are presented in Sect. 3 based on the indicators listed above.
Other potential indicators of success are also discussed in order to try to avoid
any bias that may result from the choice of criteria.

– During the analysis of the indicators that the criteria are based on, the per-
formance of Shenzhen urban rail systems has been evaluated comprehensively
based on historical and real-time data reported by 28,000 passengers.

– Throughout the analysis, possible reasons for success or failure are discussed,
and links are suggested between the success of the systems and the various
factors reflecting the planning background and the planning process.

2 Urban Railway Datasets

As the first special economic zone in China, Shenzhen’s urban transportation
infrastructure has maintained a rapid development trend. The city vigorously
promoted the construction of urban rail transit and opened 5 railway lines with
the length about 178 km in June 2011 for the World University Games.

Shenzhen railway transit construction has gone through a long period. The
“overall urban plan” constructed in 1995 proposed a long-term railway network
and Phase I route scheme. The Railway Phase I was opened to public in 2004,
including Metro Line 1 (Luohu Port - Window of the World), Line 4 (Fukuda
Port Station - Children’s Palace Station), with overall length about 21.4 km, 20
stations, and daily traffic about 42 million people. In June 2011, Railway Phase
II was opened to public, including the extension part of Metro Line 1 and Line 4,

388 K. Peng et al.

Table 1. Summary of Shenzhen metro rail lines.

Line

numer

Line

name

Length

(km)

Station

number

Starting point–end

point

Description

1 Luobao

line

40.9 30 Lo Wu Station to

Airport East Station

A trunk line which goes through the

central city from east to west,

connecting the city center and the

western development axis.

2 Shekou

line

35.8 29 Xinxiu station to

Chiwan station

A line which connects the city center

area, Nanshan sub-central area and

Shekou area.

3 Longgang

line

41.6 30 Shuang Long station

to Yitian station

The passenger trunk which connects the

city center and the eastern development

axis.

4 Longhua

line

20.3 15 Futian Port Station

to Qinghu Station

The north-south trunk line which

connects the Futian Port, the downtown

area, and the Longhua Development

Area.

5 Ring

center

line

40 27 Huang Beiling to

Qianhaiwan Station

A line which connects the West, Central

and East development axises of

Shenzhen, including Shenzhen logistics

center, high-tech area, University Town.

etc.

Total 178 131

and part of Metro Line 2, Line 3 and Line 5, with overall length about 156.5 km.
After Phase II, a 178 km rail transit network with 131 stations has been formed.
The details of five metro lines in Shenzhen are summarized in Table 1.

In order to accurately evaluate the implementation effect, this study selected
52 sites of the network (see Fig. 1) and took the sample size by 2% of the traffic
during working days. The survey investigation was conducted on 21, 23, 25 and
26 May 2012, in which 3 days for working days, 1 day for weekend day. 27,300
questionnaires were distributed and 23,300 valid questionnaires were collected.

The data used in this study are basically from the following two categories: (1)
Survey data, which include the full travel chain information of 2.3 million railway
passengers, and traffic data of 20 roads parallel to the railway. (2) Dynamic card
data, which are provided by Shenzhen Railway Company.

2.1 Data of Passenger Travel Behavior

(1) Travel Chain Data. A trip of the railway passenger can be described in
the following travel chain mode: Departure - Railway site - Transfer site (1-n) -
Railway site - Arrival. The data describes inside trips, lines transfers, outbound
connections, vehicle changes and personal characteristics.

(2) Parallel Traffic Data. Road sections paralleled with the railway line may
decentralize passenger flow, therefore the corresponding road traffic data are
collected and analyzed.

Perspectives of Big Data Analysis in Urban Railway Planning 389

Fig. 1. Shenzhen metro transit map studied.

2.2 Dynamic Railway Card Data

Shenzhen Railway Company provides electronic card data of the railway passen-
gers, which includes unique passenger identifier, credit card transaction types,
inbound sites, inbound times, outbound sites, and outbound time.

3 Methodology

In this section, we present a set of indicators and criteria, which help to evaluate
the efficiency of new railway system. A general framework is also proposed to
evaluate the success of railway systems.

In this paper, we mainly adopt the perspective of traffic efficiency and define
it from three aspects. First, from the perspective of the rail traffic itself, we
evaluate the passenger flow growth, the ability that the new rail transit attracts
residents to use it [14,19], for which the main indicators used is the rail transit
strength. Secondly, from the perspective that the rail transit contributes to the
entire public transport system, we analyze the relationship between the rail
transit and the conventional traffic, the relationship between the rail transit
and the urban traffic structure. Finally, from the perspective of rail transit to
guide the urban travelling structure and urban spatial structure, we analyze
the organizational efficiency of new urban traffic distribution. Three aspects to
evaluate traffice efficiency are summerized in Table 2.

390 K. Peng et al.

Table 2. Perspectives of studying traffic efficiency of Shenzhen metro system.

Efficiency Object Connotation Main indicators

The utilization
efficiency of rail
transit

Rail transit
facilities

The utilization and
intensity characteristics
of rail transit
(space-time
characteristics)

Strength of passenger
flow; Site traffic;
Exchange passenger
flow

Organizational
efficiency of traffic
system matching

Rail transit and
other modes of
transport

Pathway and bus lines
and access matching,
the backbone and
feeding situation

Motorized traffic
structure; Public
transport connection

Organizational
efficiency of
work-and-home
travel

Rail transit and
space organization

Rail traffic guide the
distribution of jobs and
household, travel
distance and shape etc

Travel distance of rail
transit; Second Line
Hub

In the following subsections we will discuss the criteria to evaluate the per-
formance of new railway systems and corresponding results in detail.

(1) UE. The Utilization Efficiency (UE) of rail transit is the most important fac-
tor of performance of railway systems and is mainly considered in three aspects:
Strength of passenger flow (SPF); Site traffic (ST) and Exchange passenger ratio
(EPR).

The SPF of a city can be calculated as follow:

SPF =
Passenger Traffic(million passengers/day)

Length(km)

where the Passenger Traffic refers to the total passenger flow volume of the
whole city’s rail system during one day and Length refers to the length of the
rail system.

The ST of a city can be calculated as follow:

ST =
Passenger Traffic(million passengers/day)

Station(s)

where Station refers to the total number of stations in railway system.
The EPR of a city can be calculated as follow:

EPR =
1
n

n∑

i=1

TRi

where TRi is the Transfer Ratio of the i-th transfer station, and n is the total
number of transfer stations.

Thus, the utilization efficiency (UE) of the city can be calculated as:

UE = SPF + ST + EPR

the bigger UE means the better utilization efficiency of railway system

Perspectives of Big Data Analysis in Urban Railway Planning 391

(2) OETSM. The Organization Efficiency of Traffic System Matching
(OETSM) is also an important factor of railway systems performance and is
mainly considered in two aspects: Motorized traffic structure (MTS); Public
transport connection (PTC). While the Non-motorized connection factor is also
discussed.

The traffic structure determines the operational efficiency of urban traffic.
Higer proportion of public transportation would leads to the shirnk of individual
traffic, smoother road system [7], and reduce traffic congestion [17]. The MTS
of a city is defined as follow:

MTS = CB + RT × 2 − IT

where the CB refers to the ratio of conventional bus, RT refers to the ratio of
railway transportation and IT refers to the ratio of individual transportation
(CB + RT + IT = 1). Bigger MTS means better road condition.

The PTC of a station is defined as follow:

PTC = Accommodate− (Opened + Passby × 0.2)

where Accommadate refers to the amount of lines that station can accommodate,
Opened refers to the number of lines station has been opened, and Passby means
the number of lines just passby the station. The PTC of a station greater than
0 means the space resources are underutilized, and when the value is less then 0
means the road is overload and may prone to traffic jam phenomenon. The PTC
of a city is calculated by the standard deviation of every railway station’s PTC.

(3) DOW. The Distribution of Work-and-home (DOW) affects residents’ daily
travel distance directly, and due to the Second Line Hub, the traffic pressure
of original SAR and Baoan District ect. is kind of heavy. So it’s necessary to
evaluate the railway system from these aspects to figure out whether the Second
Phase meet the daily needs of residents or not. The imbalance of daily traffic is
also discussed in this part.

3.1 Utilization Efficiency of Rail Transit Analysis

(1) Strength of Passenger Flow (SPF). The Strength of Passenger Flow
(SPF) is an important factor to reflect the situation of railway utilization. The
SPF of Shenzhen is growing rapidly after the operation of Phase II. Compared
with the cities that have been operating for many years [2,6], the scale of the
initial passenger flow capacity is basically the same or even slightly better, but
the traffic utilization efficiency still can be improved.

One year after Phase II opened, the average daily traffic flow of Shenzhen
track increased from 610,000 to 2.13 million. The increase percentage reached
249%. Compared to Beijing, Shanghai, Guangzhou and other cities that have run
railways for many years with initial passenger flow around 2 million person per
day, Shenzhen has reached 213 million passengers per day only one year after its
track opening (see Table 3). It is obvious that Shenzhen passenger growth rate
is higher than the above-mentioned cities in China.

392 K. Peng et al.

Table 3. Summary of the development of major cities in 2011.

Index City

Shanghai Beijing Guangzhou Hong Kong Tokyo Shenzhen

Number of lines
(bars)

11 15 8 9 13 5

Length (km) 424 370 236 175 305 178

Station (s) 266 191 144 82 250 118

Passenger traffic
(million
passengers/day)

640 693 520 440 1091 213

SPF (million
passengers/km)

1.5 1.9 2.2 2.5 3.6 1.2

ST (million
passengers/station)

2.4 3.6 3.6 5.4 4.4 1.8

(2) Site Traffic (ST). Comparing with some international track developed
cities, there is a quite big space for Shenzhen railway system to grow in terms of
the track utilization efficiency. In 2010, the passenger track strength of Shenzhen
is 18,000 passengers/km, while after opening the whole network the passenger
track strength is 12,000 passengers/km. Compared with Hong Kong and Tokyo,
which are dominated by public transport, Shenzhen traffic flow is only 48% of
Hong Kong and 33% of Tokyo, and at the same time, with site traffic (ST) only
33% of Hong Kong and 41% of Tokyo (see Table 3).

The reason of reduction is, on the one hand, the running time of Shenzhen
Phase II railway is not long and the passenger flow has potential to grow, on the
other hand, there are large differences among the five lines of the new railway in
terms of passenger flow efficiency. From Table 4, it is clearly to see that the Luo
Bao line has the highest passenger strength which has reached 19,000 passen-
gers/km. That’s because this line is coupled with the city axis, the area with the
largest population and job gathering. However other lines has a big gap in the
coverage of the population [8,14], the use of land, and access conditions com-
pared with BaoLuo line. Especially for the SheKou line, which connects Nanshan
and the central city, the passenger strength of it is only 0.6 million people/km.

(3) Exchange Passenger Ratio (EPR). The lack of transfer facilities is
an important factor affecting the operation of rail transit. After the Phase II
opened, the rapid growth of passenger flow caused great pressure on the transfer
facilities. The transfer coefficient of the railway network increased from 1.05 to
1.47, the passenger flow increased from 30,000 per day to 1.33 million. Especially
at some transfer hubs, the transfer passenger flow is more than inbound (out-
bound) passenger flow. For instance, the average transfer passenger traffic of the
Convention and Exhibition Center is 120,000 per day, which is four times as the
inbound (outbound) passenger flow of the station. At other transfer hubs such

Perspectives of Big Data Analysis in Urban Railway Planning 393

Table 4. Statistics of length and passenger strength of five metro lines.

Name of lines Length (km) Strength of passenger
flow (Million
passengers/km)

Luo Bao line 41a 1.9

Shekou line 36 0.6

Longgang line 41 1.1

Longhua line 20 1.3

Ring center line 40 0.8

total 178 1.2
aThe data is based on the AFC Auto-ticket-selling data
provided by Shenzhen Tong Company on May 20, 2012.

as Old street, Phuket, Shenzhen North Station, the daily transfer passenger flow
is more than 60,000. Therefore in order to make railway system run successfully
[18], it is necessary to improve the station transfer facilities, such as reducing the
length of transferring channels, and increasing number of elevators. The exchange
passenger ratio of several transfer station are summarized in Table 5, and the
total EPR of Shenzhen can be caculated: EPR = 1

13

∑13
i=1 TRi = 0.69. And at

the same time, the utilization efficiency(UE) of Shenzhen can be calculated from
Tables 3 and 5: UE = SPF + ST + EPR = 1.2 + 1.8 + 0.69 = 3.69.

3.2 Organization Efficiency of Traffic System Matching

(1) Motorized Traffic Structure (MTS). After the opening of the track
[16], the proportion of rail transit in motorized transportation rose from 3% to
9%. The percentage of public transportation (conventional bus plus rail traffic)
in the motorized transportation increased to 43%. The percentage of private
car use in the motorized transportation reduced to 40% [15]. Furthermore, the
proportion of public transportation exceeded personal travel for the first since
2005. The average speed of road traffic during peak hours (morning and night) in
central city is 1.0 km/h and 0.8 km/h faster respectively. Hence the new railway
system plays a critical role in improving the average speed of road traffic. The
MTS before Phase II in 2010 is: MTS2010 = PT + RT × 2 − IT = −0.21, and
the MTS after Phase II in 2012 is: MTS2010 = PT + RT × 2 − IT = −0.04.
The opening of Phase II optimized the traffic structure of Shenzhen in a certain
extend (Table 6).

(2) Public Transport Connection (PTC). After the opening of Phase II,
there are totally 23 bus stations and 30 bike stations built around the track sites,
which basically cover all bus stops.

The Table 7 shows the statistics of connecting stations of the Shenzhen rail-
way system. According to Table 7, the PTC of the stations varies from −6.6 to

394 K. Peng et al.

Table 5. The exchange passenger flow of transfer station.

Serial
number

Transfer station The
number
of people
entering
this site

Actual
passenger
volume

Transfer
ratio

Transfer
number
(Allocation
method)

Transfer
number
(Rail
Office)

1 Lao Jie station 50651 139008 64% 88357 120000

2 Exhibition
center station

25198 112555 78% 87357 120000

3 Baoan center
station

7813 68321 89% 60508 58000

4 Bu Ji station 17147 76540 78% 59393 60000

5 Shenzhen north
station

18943 78286 76% 59343 60000

6 Shimin center
station

7794 46121 83% 38327 30000

7 Children’s
palace station

12836 50780 75% 37944 30000

8 Huang Beling
station

17144 49612 65% 32468 40000

9 Window of the
world

28796 61118 53% 32322 45000

10 Grand theater
station

47793 77862 39% 30069 30000

11 Fu Tian station 9345 29006 68% 19661 20000

12 Shopping park
station

23948 42789 44% 18841 10000

13 Qianhaiwan
station

209 1389 85% 1180 10000

4.2, which means that the structure of public transport connection is kind of
imbalance, and still can be optimized. There has opened 50 connecting lines,
while the station can accommodate up to 64 lines, which means the site resources
have not been fully exploited [9]. On the other hand, there are a large number
of buses passing by the stations (113 lines), causing the congestion of the road
traffic to a certain extent. In order to reduce waste of resources and relieve bus
traffic, it is highly recommended to fully utilize connecting stations and bike
usage [9].

In addition to the transfers inside railway stations, the transfer between rail-
way stations and bus stations also increased rapidly. The transfer passenger flow
between railway stations and bus stations reached 320,000 people per day in
2012. The growth is nearly 10 times compared to time when system not opened.

In Shenzhen railway system, the transfer distance between railway station
and bus station is generally within 250 m. For example, the distance of Window
of the World, Airport station in Line 1 and connecting bus terminal (including

Perspectives of Big Data Analysis in Urban Railway Planning 395

Table 6. The percentages of motorized transportation of Shenzhen over years.

Year Public transit(%) Car (%) Other (%)b Motor vehicle
(Ten
thousand)

Conventional bus Railway Total

2000 37% - 37% 18% 45% 32

2005 42% 2% 44% 35% 21% 81

2010 35% 3% 38% 44% 18% 171

2012 34% 9% 43% 40% 17% 223
bThe other(%) from the table includes motorcycles, electric cars, taxis and work
unit buses etc. The data in the table comes from the Shenzhen residents travel
survey in 2001, 2005, 2010, and survey after the Railway Phase II opened in 2011.
The motor vehicle data in 2012 is as of November 2012.

Table 7. The number of lines of the popular stations of Shenzhen metro system Phase
I and Phase II.

Station Name The amount of
lines that station
can accommodate

The number of
lines station has
been opened

The number of
lines passby the
station

Window of the world 8 8 9

Shopping park 6 10 13

Science Museum 3 3 9

Huaqiang North 2 3 2

Xin’an 5 0 4

Airport East 6 7 7

Nanlian 3 3 15

Hongshan 3 2 4

Qinghu 3 4 6

Shangtang 4 1 3

Minzhi 2 0 1

Dayun 6 7 15

Baigelong 4 0 4

Liuyue 3 2 13

Gushu 6 0 8

total 64 50 113

396 K. Peng et al.

the vertical distance and horizontal distance) is within 200 m. But there are also
several bus connecting stations are far from the rail stations with about 400 m
due to the reasons for the use of land. Long transfer distance between railway
stations and bus connecting stations greatly increased the transfer time and
decrease the transfer efficiency directly. Therefore the connection facility and
the transfer distance should be taken into account, in order to make the whole
railway system perform more efficiently.

(3) Non-motorized Connection. The rapid growth of the transition between
the railway and walk & bike has a great impact on the efficiency of the traffic
organization as well [12]. 78.1% of passenger flow chose walking as a transiting
and connecting way. Observing peak hours of passenger flow, 20% of the site
passengers all day long may be concentrated in an hour. That is, the number
of pedestrians on the road around the railway sites in peak hour will increase
dramatically. It can be foreseen that the larger number of the road bikes, electric
cars, and pedestrians in peak hours will undoubtedly bring a severe test to the
surrounding road traffic organization [11].

3.3 Organization Efficiency from the Distribution
of Work-and-Home

(1) Travel Distence of Rail Transit. After the Phase II opened, long distance
travel become dominant in all travels. Transfer travels account for 60% of the
total track travel. The average track travel distance is increased from 5.8 km to
12.9 km. The rail traffic shares daily access of all passenger flow of the second
line by 20%–33%. Figure 3 shows the distribution of residents travel distance,
the orbital travel is mainly distributed in the center area within 20–30 km range.

At present, the average travel time between two railway stations in the whole
city is about 30 min. 92% of the railway travel takes within one hour (see Fig. 3).

Fig. 2. Residents travel distance distribution

Perspectives of Big Data Analysis in Urban Railway Planning 397

Fig. 3. Track trave time (Min)

The railway can meet the service requirement of one-hour trip. And the railway
backbone is becoming more and more prominent.

Learning from the experience of foreign cities such as Tokyo, the development
of urban space and the backbone of city transportation should be matched with
each other. Railway traffic is the main transportation for the commuters of
Tokyo. Among the citizens working in the central city (Tokyo district), 85% of
the people live within 30 km to the city center. The commute travel is basically
dependent on the railway line solution; and the average length of railway lines
is 24.3 km.

When the city Shenzhen expanding to the Pingshan, Guangming and
Dakonggang and other peripheral areas in the future, residents’ travel distance
will be further grow, the existing speed and structure of railway system will be
difficult to meet the requirement of one hour trip from city center to peripheral
area. So faster railways or new lines should be considered to meet the fast travel
needs of residents.

(2) Second Line Hub. With the accelerated integration in Shenzhen, the
inside and outside of original SAR are getting closer, average daily travels across
the second line hub increased to 2.9 million people, almost 10 times from 2000.

As shown in Fig. 4, the opening of the second phase greatly relieved the daily
traffic pressure of the Second Line Hub. According to the survey, LuoBao Line
and the Ring Center Line share 33% daily passenger flow of the western Second
Line Hub. Longhua Line shares 20% daily passenger flow of the central Second
Line Hub. Longgang Line and Ring Center Line share 26% daily passenger flow
of the eastern Second Line Hub, reducing the road traffic of the western and
central Second Line Hub by 16% and 8%. However the road traffic increases by
23% in eastern area due to strong demand growth.

398 K. Peng et al.

Fig. 4. Passenger flow distribution in 2011 and 2012.

(3) Imbalance. Due to the tide and peak accumulation of passenger flow, the
utilization of axial railway is low. On the one hand, the main trip purpose of
passengers is simply commuting to work, leading to the huge passenger flow in
peak hours. Take Longhua Line for example, the passenger flow in the four hours
during morning and evening peak takes about two-thirds of all day traffic. On
the other hand, a large number of tidal commuters come and go between the
city center and new town area. As a result, during the morning peak hour, the
imbalance coefficient of Longhua Line is 7:1, and the imbalance coefficient of
Longgang Line is 5:1.

The imbalance distribution of living and working areas along the stations
of railways of the original SAR is the main reason for the passenger tide and
peak accumulation. According to statistics, within 500 m of the original SAR
site, the office and commercial area takes 35%. 500 m away from the original
SAR, residence buildings take 70%, while office and commercial areas take only
9% [19].

From Table 8 we can see that there is a big difference in site traffic during
peak hours [20]. Peak hour coefficient is 11%–13%. Different types of sites vary
widely on coefficient, with the maximum 23% and the minimum 5%.

Table 8. Peak hour traffic of metro lines.

Line name Peak hour average coefficient Peak hour coefficient range

Luobao line 13% 6%–23%

Shekou line 13% 5%–21%

Longgang line 11% 6%–22%

Longhua line 13% 8%–16%

Huanzhong line 12% 9%–22%

Perspectives of Big Data Analysis in Urban Railway Planning 399

4 Conclusion

The rail transit network needs to be improved continuously to cover the city’s
major transportation hubs. Based on condition that the basic network of city
railway system is established, set target of establish the overall rail transit trunk
plus the connecting public transport system, exploit the advantages of public
transport to the full, and enhance the service level of public transport. To achieve
such a goal, it needs to make efforts in the backbone, access, and transfer, making
each link interlocking and collectively effective.

The next step is integrate the public transportation fare system and promote
traffic facilities according to residents needs. The recent proposal is to further
expand the peak commuting time, reduce peak intension, reduce traffic pressure,
and improve the utilization rate of axial orbit.

References

1. Zhang, Y., Guo, L.: Study on coordinated relationship between urban railtransit
and land-use. LISS, pp. 1–5 (2016). https://doi.org/10.1109/LISS.2016.7854339

2. Yang, X., Chen, A., Ning, B., Tang, T.: Measuring route diversity for urban rail
transit networks: a case study of the beijing metro network. IEEE Trans. Intell.
Transp. Syst. 18, 259–268 (2017)

3. He, Z., Huang, J., Du, Y., Wang, B., Yu, H.: The prediction of passenger flow
distribution for urban rail transit based on butil-factor model. ICITE, pp. 128–132
(2016). https://doi.org/10.1109/ICITE.2016.7581320

4. Zhang, H., Song, M., Zhang, M.: An energy efficient optimized control algrorithm
for urban rail transit system. CCC (2016). https://doi.org/10.1109/ChiCC.2016.
7554972

5. Guan, H., Yin, Y., Yan, H., Han, Y., Qin, H.: Urban railway accessibility. Tsinghua
Science and Technology, vol. 12, pp. 192–197 (2007)

6. Caracciolo, F., Fumi, A., Cinieri, E.: Managing the italian high-speed railway net-
work: provisions for reducing interference between electric traction systems. IEEE
Electrification Mag. 4, 42–47 (2016)

7. Boreiko, O., Teslyuk, V.: Structural model of passenger counting and public trans-
port tracking system of smart city. In: 2016 XII International Conference on Per-
spective Technologies and Methods in MEMS Design (2016)

8. Huang, R., Liu, Z., Wang, D., Ma, L.: Organization mode of suburban railways
in urban rail transit system. In: 5th Advanced Forum on Transportation of China
(2009). https://doi.org/10.1049/cp.2009.1601

9. Tian, Z., Weston, P., Hillmansen, S., Roberts, C., Zhao, N.: System energy opti-
misation of metro-transit system using Monte Carlo Algorithm. ICIRT (2016).
https://doi.org/10.1109/ICIRT.2016.7588768

10. Liu, L.: How does rail transit promote the sustainable development of Beijing
metropolitan area? IEIS. IEEE Conference Publications (2016). https://doi.org/
10.1109/IEIS.2016.7551863

11. Li, H.: Dynamic location optimization methodology for urban transfer centers. In:
2015 Ninth International Conference on Frontier of Computer Science and Tech-
nology (2015). https://doi.org/10.1109/FCST.2015.19

https://doi.org/10.1109/LISS.2016.7854339
https://doi.org/10.1109/ICITE.2016.7581320
https://doi.org/10.1109/ChiCC.2016.7554972
https://doi.org/10.1109/ChiCC.2016.7554972
https://doi.org/10.1049/cp.2009.1601
https://doi.org/10.1109/ICIRT.2016.7588768
https://doi.org/10.1109/IEIS.2016.7551863
https://doi.org/10.1109/IEIS.2016.7551863
https://doi.org/10.1109/FCST.2015.19

400 K. Peng et al.

12. Meng, M., Li, S., Lam, S.H., Wong, Y.D.: Public transit coordination under
different strategies between operators. MT-ITS (2015). https://doi.org/10.1109/
MTITS.2015.7223276

13. Meng, B., Zheng, L., Yu, H., Me, G.: Spatial characteristics of the residents’ com-
muting behavior in Beijing. In: 2011 19th International Conference on Geoinfor-
matics (2011). https://doi.org/10.1109/GeoInformatics.2011.5981020

14. Zhao, K., Tarkoma, S., Liu, S., Vo, H.: Urban human mobility data mining: an
overview. In: 2016 IEEE International Conference on Big Data (Big Data) (2016).
https://doi.org/10.1109/BigData.2016.7840811

15. Li, C., Chiang, A., Dobler, G., Wang, Y., Xie, K., Ozbay, K., Ghandehari, M., Zhou,
J., Wang, D.: Robust vehicle tracking for urban traffic videos at intersections. AVSS
(2016). https://doi.org/10.1109/AVSS.2016.7738075

16. Glickenstein, H.: New developments in land transportation [Transportation Sys-
tems]. IEEE Veh. Technol. Mag. 5, 17–20 (2010)

17. Yang, X., Li, X., Ning, B., Tang, T.: A survey on energy-efficient train operation
for urban rail transit. IEEE Trans. Intell. Transp. Syst. 17(1), 2–13 (2016)

18. Cadarso, L., Maróti, G., Maŕın, Á.: Smooth and controlled recovery planning of
disruptions in rapid transit networks. IEEE Trans. Intell. Transp. Syst. 16, 2192–
2202 (2015)

19. Souza, E.S., Barbosa, J.D.C., Millian, F.M., Torres, M., Ambrosio, P.S.: Tracking
system for urban buses with people flow management. IEEE Lat. Am. Trans. 16,
944–949 (2011)

20. Hong, L., Li, Y., Xu, Z., Jiang, Y., Li, F., Lin, L., Ling, J., Chen, X.: A service
benefit analysis of the urban rail transit. ICSSSM (2015). https://doi.org/10.1109/
ICSSSM.2015.7170163

https://doi.org/10.1109/MTITS.2015.7223276
https://doi.org/10.1109/MTITS.2015.7223276
https://doi.org/10.1109/GeoInformatics.2011.5981020
https://doi.org/10.1109/BigData.2016.7840811
https://doi.org/10.1109/AVSS.2016.7738075
https://doi.org/10.1109/ICSSSM.2015.7170163
https://doi.org/10.1109/ICSSSM.2015.7170163

Cloning Automata: Simulation and Analysis
of Computer Bacteria

Chu Chen1, Zhenhua Duan1(B), Cong Tian1(B), and Hongwei Du2

1 ICTT and ISN Laboratory, Xidian University, Xi’an 710071,
People’s Republic of China

zhhduan@mail.xidian.edu.cn, ctian@mail.xidian.edu.cn
2 Department of Computer Science and Technology, Harbin Institute of Technology,

Shenzhen 518055, People’s Republic of China

Abstract. In order to simulate the self-replication of computer bacteria,
a new model named cloning automata is put forward. It can simulate the
self-replication in two different ways: fusion and fission. Properties such
as the self-replicating velocity and the threshold time for denial of service
are analyzed. Also, methods for interrupting the self-replicating behavior
are presented. As an example, a concrete computer bacterium i.e. fork
bomb is simulated and analyzed with cloning automata.

Keywords: Self-replication · Computer bacteria · Model · Cloning
automata · Fusion · Fission

1 Introduction

Malicious software (Malware) such as computer bacteria (also known as germs),
worms, viruses, spyware, Trojan horses, ransomware and so forth are main
threats to computer and cyber systems in the world today [4,5]. Different mal-
ware adopt different malicious behavior for different purposes. As the origin of
malware, computer bacteria replicate themselves continually just like the repro-
duction of biological rabbits. The self-replication consumes system resources
such as the time of a central processing unit (CPU), the space of a random
access memory (RAM) and the space of a disk [12]. The continual self-replication
makes computer systems become ever slower and denial of service (DoS) occurs
when systems cannot respond to users before a deadline. Worms replicate them-
selves through networks and keep one copy active in the memory of each host
machine [14]. Thus worms consume both network and system resources to some
extent. Unlike bacteria or worms, viruses often insert possibly evolved copies of
themselves at the beginning, in the middle or at the end of host files and do some
damage [7,17]. Spyware try their best to be invisible to users and steal important
files or data [19] while Trojan horses usually work differently from what they look
like [16]. Different from computer bacteria, worms and viruses, neither spyware
nor Trojan horses replicate themselves. Others such as ransomware [8], down-
loader [15] and rootkit [9] behave differently and do not replicate themselves.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 401–416, 2017.
https://doi.org/10.1007/978-3-319-71150-8_33

402 C. Chen et al.

In order to understand structures and working principles of malware, it is
necessary to model them mathematically. However, malware are so capricious as
mentioned above that it is too hard to build one universal model to simulate all
of them. One feasible way is to build a model for one category of malware with
similar behavior. As for self-replication, John Von Neumann [11] and Stanislaw
Ulam [13] built the cellular automata model for biological cells in the 1940s. In
the 1980s, Stephen Wolfram studied models produced by 256 rules of elemen-
tary cellular automata [18]. Different from cellular automata, a new model with
name “cloning automata” is put forward to simulate the continual self-replicating
behavior of computer bacteria.

The remainder is arranged as follows. The new model and two different ways
to realize the self-replication are introduced in the following section. After that,
properties of cloning automata including the self-replicating velocity and the
threshold time for DoS are analyzed in Sect. 3. Methods for interrupting the
process of self-replication are presented according to this model in Sect. 4. As
a concrete example of computer bacteria, fork bomb is simulated with cloning
automata via fusion and the analysis of its important properties is made in
Sect. 5. Finally, Sect. 6 gives a brief conclusion of this work.

2 Cloning Automata

Cloning automata (CA) are systems used to model the self-replicating behav-
ior of computer bacteria. Every element of this system is a single cloning
automaton which comprises two parts within its structure. Each part con-
sists of an automaton with a stack which is mainly used to store the other
part. This structure offers the opportunity to realize the self-replication either
in the way of fusion or in the way of fission. The formal definition of this
new model is given as follows. Cloning automata are defined as a 5-tuple:
CA=(

⋃2n

i=20 Q2i−1 ∪ Q2i,
⋃2n

i=20 Σ2i−1 ∪ Σ2i,
⋃2n

i=20 Γ2i−1 ∪ Γ2i,
⋃2n

i=20 δ2i−1,2i, S),
where (1) Q2i−1 ∪ Q2i is a non-empty set of states of the ith cloning automa-
ton which is denoted by CAi; (2) Σ2i−1 ∪ Σ2i is an input alphabet of CAi; (3)
Γ2i−1∪Γ2i is a stack alphabet of CAi: ∀j ∈ {2i−1, 2i}, Γj = Σj∪{#, $}∪{Ak|k =
j−1, if (j mod 2) = 0; k = j+1, otherwise}; (4) δ2i−1,2i is a transition function:
Q2i−1×(Σ2i−1∪{ε})×Γ2i−1×Q2i×(Σ2i∪{ε})×Γ2i → 2Q2i−1×Γ ∗

2i−1×Q2i×Γ ∗
2i ; (5) S

is the set of initial states. The internal automaton Ak with its stack can be defined
by A2i−1 = (Q2i−1, Σ2i−1, Γ2i−1, δ2i−1, p

2i−1
0) and A2i = (Q2i, Σ2i, Γ2i, δ2i, q

2i
0).

For brevity, superscripts and subscripts are omitted where there is no ambigu-
ity. In general, δ can be defined as δ(pm, a, b; qn, c, d) = {(ps, α; qt, β)}, which
means that when A2i−1 reads the input a at the state pm with b on the top
of A2i−1’s stack and A2i reads the input c at the state qn with d on the top
of A2i’s stack, A2i−1 goes to the state ps with its stack changed to α and A2i

goes to the state qt with its stack changed to β. Under the assumption that α′

is the content of A2i−1’s stack and that β′ is the content of A2i’s stack before
this transition, α and β may be changed from α′ and β′ by executing several
actions such as pop and push, respectively. Sometimes, more attention is paid

Cloning Automata: Simulation and Analysis of Computer Bacteria 403

to the result of reading a string than the detailed process of each symbol of this
string. At this time, the detail is neglected and δ is written in brief like this:
δ∗(pm, ω1, b; qn, ω2, d) = {(ps, α; qt, β)}, which can be obtained by several stan-
dard δ’s. Semicolons are used here to separate A2i−1’s part from A2i’s part. Con-
trary to this brief form, sometimes the detail is more concerned and δ can be writ-
ten in detail. For example, δ(pm, ε, top(α); qn, ε, top(β)) = {(ps, γ; qt,nil)} after
δ∗(px, ω1, b; qy, ω2, d) = {(pm, α; qn, β)} expresses that the contents of A2i−1’s
stack is changed from α to γ and that the content of A2i’s stack from β to
empty. The symbol “nil” here indicates that the corresponding stack is empty.
For convenience, details of stack operations are neglected except for some oper-
ations related to important symbols. The detailed definition of δ is based on the
way in which one CA replicates itself. With respect to CA, fusion and fission
are two ways to realize the self-replication, thus two δ’s are defined in different
ways in the following two subsections.

2.1 Fusion

As for the structure of a CA, each part can use its stack to store a copy of
the other part and these two parts which are stored in stacks can be com-
bined to produce a new CA with the original CA’s structure left unchanged.
This way of self-replication is called fusion. With the CA model considered
only, the corresponding δ which reflects this process is defined as follows.
∀pj ∈ Q2i−1, qj ∈ Q2i,∃p(j+1)mod 3 ∈ Q2i−1, q(j+1)mod 3 ∈ Q2i, j = 0, 1, 2: (1)
δ(p0, ε,nil; q0, ε,nil) = {(p1, A2i#; q1, A2i−1#)}; (2) δ(p1, ε, A2i; q1, ε, A2i−1) =
{(p2,#A2i−1A2i#; q2,nil)}; (3) δ(p2, ε,#; q2, ε,nil) = {(p0,nil; q0,nil)}. The first
part of the definition of δ specifies conditions under which copies of A2i−1 and
A2i can be stored in stacks. The second part of the definition of δ combines two
parts which are stored in stacks by moving the part in A2i’s stack into A2i−1’s
stack. The third one pops up the combined parts as a new CA. The same result
can be arrived at by moving the part in A2i−1’s stack into A2i’s stack and then
popping up it. The corresponding definition of δ is: δ(p1, ε, A2i; q1, ε, A2i−1) =
{(p2,nil; q2,#A2iA2i−1#)} and δ(p2, ε,nil; q2, ε,#) = {(p0,nil; q0,nil)}. In order
to avoid chaos, the combination operation will be done in A2i−1’s stack in the
following. Additionally, combinational stack operations instead of basic ones
are used for brevity. For instance, (push A2i#, stackA2i−1) is used instead of
(push #, stackA2i−1) and then (push A2i, stackA2i−1), similarly (pop stackA2i−1 ,
#A2i−1A2i#) instead of (pop stackA2i−1 , #), (pop stackA2i−1 , A2i−1), (pop
stackA2i−1 , A2i) and then (pop stackA2i−1 , #). Parentheses are used here to
delimit every operation.

The self-replication via fusion is shown by Algorithm 1. The process is written
in an infinite loop and it can be executed if there are enough resources available
for a new CA and the process table is not saturated. The condition that the
process table is not saturated always holds if the number of processes is not
limited.

Figure 1 briefly shows the first cycle of this algorithm. When both stacks of
A1 and A2 (i = 1) are empty, under the assumption that A1’s state is p0 and

404 C. Chen et al.

Algorithm 1: Fusion
Input: one cloning automaton
Output: numerous cloning automata

1 while 1 do
2 if available(resources)≥size(CA) and unsaturated(process table) then
3 (push A2i#, stackA2i−1) and (push A2i−1#, stackA2i) in parallel if

(empty(stack(A2i−1)) and empty(stack(A2i)));
4 (pop stackA2i , A2i−1#) if (top(stackA2i)==A2i−1);
5 (push #A2i−1, stackA2i−1);
6 (pop stackA2i−1 , #A2i−1A2i#) if (top(stackA2i−1)==#);

7 end

8 end

Fig. 1. A process of self-replication via fusion

that A2’s state is q0, A1 pushes # and a copy of A2 into A1’s own stack and
goes to the state p1, A2 pushes # and a copy of A1 into A2’s own stack and
goes to the state q1. Here, # is at the bottom of each stack. When A2 is on the
top of stack of A1 and A1 is on the top of stack of A2, A2 pops up A1 and #
from its stack and pushes them into A1’s stack in order, with states of A1 and

Cloning Automata: Simulation and Analysis of Computer Bacteria 405

A2 changed to p2 and q2 respectively. At this point, # under A2 and # above
A1 can be regarded as the right and the left boundaries of “A1A2”, respectively.
When # is on the top of A1’s stack, A1 pops up “#A1A2#” from its stack and
a new CA comes into being, with states of A1 and A2 changed to p0 and q0. At
this time, these two #’s “tie” “A1A2” up as a whole and distinguish it from any
other CA.

2.2 Fission

Similar to the self-replication via fusion, each part of a CA uses its stack to
store a copy of the other part. Different from the fusion, each part with its
stack storing a copy of the other part breaks away from the original CA and
constitutes a new CA with the other part popped up from its stack. Thus two
new cloning automata are created with the original CA’s structure broken up.
This way of self-replication is referred to as fission. With the CA model consid-
ered only, the corresponding δ which reflects this process is defined as follows.
(1) For p0 ∈ Q2i−1, q0 ∈ Q2i,∃p1 ∈ Q2i−1, q1 ∈ Q2i : δ(p0, ε,nil; q0, ε,nil) =
{(p1, A2i; q1, A2i−1)}; (2) for p1 ∈ Q2i−1, q1 ∈ Q2i,∃q′

0 ∈ Q′
2i, p

′
0 ∈ Q′

2i−1 :
δ(p1, ε, A2i; q1, ε, A2i−1) = {(p0,nil; q′

0,nil), (p′
0,nil; q0,nil)}. The first part of the

definition of δ is similar in conditions to that of Sect. 2.1. The second part of
the definition of δ splits the original CA into two new cloning automata. In the
second part of the definition, q′

0 and Q′
2i are the initial state and the set of states

of the other part popped up from A2i−1’s stack, respectively. Similarly, p′
0 and

Q′
2i−1 are the initial state and the set of states of the other part popped up

from A2i’s stack, respectively. The symbol “′” here is used as a mark to dis-
tinguish the states and sets from those which exist before this break-up. For
brevity, combinational stack operations as mentioned in Sect. 2.1 are used in the
following.

The self-replication via fission is shown by Algorithm 2. The process is also
written in an infinite loop and is similar in conditions to that of Algorithm 1.

Algorithm 2: Fission
Input: one cloning automaton
Output: numerous cloning automata

1 while 1 do
2 if available(resources)≥size(CA) and unsaturated(process table) then
3 (push A2i, stackA2i−1) and (push A2i−1, stackA2i) in parallel if

(empty(stack(A2i−1)) and empty(stack(A2i)));
4 A2i−1 and A2i break away from the original CA if

((top(stackA2i−1)==A2i) and (top(stackA2i)==A2i−1));
5 (pop stackA2i−1 , A2i) and (pop stackA2i , A2i−1) in parallel;

6 end

7 end

406 C. Chen et al.

The first cycle of this algorithm is shown briefly in Fig. 2. When both stacks
of A1 and A2 (i = 1) are empty, under the assumption that A1’s state is p0 and
that A2’s state is q0, A1 pushes a copy of A2 into A1’s own stack and goes to
the state p1; A2 pushes a copy of A1 into A2’s own stack and goes to the state
q1. When A2 is on the top of stack of A1 and A1 is on the top of stack of A2,
A1 and A2 break away from the original CA and the original CA does not exist
anymore. A1 pops up A2 from its stack and goes to the state p0. A1 and the new
A2 which is just popped up from A1’s stack constitute a new CA. A2 pops up A1

from its stack and goes to the state q0. A2 and the new A1 which is just popped
up from A2’s stack form the other new CA. Thus, two new cloning automata
are created.

Fig. 2. A process of self-replication via fission

3 Analysis of Cloning Automata

An analysis of malware can help us to understand them better and further to
fight against them more effectively. As abstract representations of concrete mal-
ware, models of malware are convenient to analyze with precision for general
purposes. CA is one useful model of self-replicating malware and the analysis
of CA is the basis of analyses of concrete computer bacteria. As for computer
bacteria, properties such as the self-replicating cycle, frequency, velocity, volume
and the time for DoS are concerned. These properties will be analyzed theoret-
ically according to the CA model. Different ways to realize self-replication lead
to slightly different analytical results. So, analyses will be made respectively.

For convenience, symbols to be used are explained in Table 1.

Cloning Automata: Simulation and Analysis of Computer Bacteria 407

T
a
b
le

1
.
E

x
p
la

n
a
ti

o
n

o
f
sy

m
b
o
ls

S
y
m

b
o
l

E
x
p
la

n
a
ti

o
n

T
O

n
e

se
lf
-r

ep
li
ca

ti
n
g

cy
cl

e;

Δ
t p

u
sh

(t
a
r
g
e
t)

T
h
e

ti
m

e
n
ee

d
ed

to
p
u
sh

ta
rg

et
in

to
a

st
a
ck

;

Δ
t p

u
sh

(t
a
r
g
e
t 1

||t
a
r
g
e
t 2

)
T

h
e

m
a
x
im

u
m

ti
m

e
n
ee

d
ed

to
p
u
sh

ta
rg

et
1

a
n
d

ta
rg

et
2

in
to

st
a
ck

s
in

p
a
ra

ll
el

;

Δ
t p

o
p
(t
a
r
g
e
t)

T
h
e

ti
m

e
n
ee

d
ed

to
p
o
p

u
p

ta
rg

et
fr

o
m

a
st

a
ck

;

Δ
t m

a
l

T
h
e

ti
m

e
n
ee

d
ed

fo
r

o
th

er
m

a
li
ci

o
u
s

b
eh

av
io

r;

f
T

h
e

se
lf
-r

ep
li
ca

ti
n
g

fr
eq

u
en

cy
;

v o
n
e

T
h
e

se
lf
-r

ep
li
ca

ti
n
g

v
el

o
ci

ty
o
f
o
n
e

fa
th

er
C

A
;

v
ol

(t
)

T
h
e

v
o
lu

m
e

o
r

th
e

to
ta

l
si

ze
a
t

th
e

ti
m

e
t;

v i
(t

)
T

h
e

in
st

a
n
ta

n
eo

u
s

se
lf
-r

ep
li
ca

ti
n
g

v
el

o
ci

ty
o
f
th

e
C

A
sy

st
em

;

a
(t

)
T

h
e

se
lf
-r

ep
li
ca

ti
n
g

a
cc

el
er

a
ti

o
n

o
f
th

e
C

A
sy

st
em

;

v a
(t

)
T

h
e

av
er

a
g
e

se
lf
-r

ep
li
ca

ti
n
g

v
el

o
ci

ty
o
f
th

e
C

A
sy

st
em

;

s
T

h
e

si
ze

o
f
a

C
A

;

r
T

h
e

th
re

sh
o
ld

ra
ti

o
o
f
D

o
S
;

m
a
x

T
h
e

m
a
x
im

u
m

re
so

u
rc

es
av

a
il
a
b
le

;

408 C. Chen et al.

3.1 Analysis of Fusion

As defined in Sect. 2.1 and shown in Fig. 1, one cycle of fusion consists of three
steps: the first step is to push # and a copy of A2 into A1’s stack and to
push # and a copy of A1 into A2’s stack in parallel; the second step is to
pop up A1 and # from A2’s stack and then to push them into A1’s stack;
the third step is to pop up #, A1, A2 and # from A1’s stack. The time
needed for the first step is Δtpush(A2#||A1#). Serial can be regarded as a spe-
cial kind of parallel and Δtpush(A2#||A1#) = Δtpush(A2#) + Δtpush(A1#) when
these two actions are executed serially. The second step can be optimized as
follows: pop up A1 from A2’s stack, and then push A1 into A1’s stack and
pop up # from A2’s stack in parallel, finally push # into A1’s stack. So the
time needed for the second step is Δtpop(A1) + Δtpush(A1)||pop(#) + Δtpush(#) =
Δtpop(A1) + max{Δtpush(A1),Δtpop(#)} + Δtpush(#). The maximum time needed
for the second step is Δtpop(A1)+Δtpush(A1)+Δtpop(#)+Δtpush(#) when pop(#)
happens after push(A1). The time needed for the third step is Δtpop(#A1A2#).
Apart from the self-replication, CA can be extended to model other malicious
behavior and the corresponding time for this optional extension is expressed
by [+Δtmal]. The pure time needed for the self-replication via fusion Δtfusion
is: Δtpush(A2#||A1#) + Δtpop(A1) + max{Δtpush(A1),Δtpop(#)} + Δtpush(#) +
Δtpop(#A1A2#)[+Δtmal]. It is assumed that Δtapu is the average time allocated
to CA by the operating system per unit time. One cycle T in such a system is
Δtfusion for Δtfusion ≤ Δtapu or Δtfusion

Δtapu
for Δtfusion > Δtapu.

Obviously, f = 1
T and it means the number of clones generated by one father

CA per unit time. The self-replicating velocity of one father CA is defined as the
size of cloning automata generated by this father CA per unit time: vone = s · f ,
which shows the ability of a father CA to generate direct descendants. If time
starts at 0, there are t

T or (t · f) cycles at the time t. Volume is defined as
the total size of all cloning automata at the time t: vol(t) = s · 2

t
T = s · 2t·f .

The instantaneous self-replicating velocity of the CA system is the total size
of cloning automata generated directly and indirectly by the ancestor per unit
time with respect to the time t: vi(t) = (vol(t) − vol(t − 1))/(t − (t − 1)) =
vol(t)−vol(t−1) = s ·(2t·f −2(t−1)·f) = s ·(2t·f −2t·f ·2−f) = s ·2t·f (1−(1/2)f),
which represents the instantaneous fusion ability of the whole CA system at the
time t. The self-replicating acceleration of the CA system with respect to the
time t is: a(t) = Δvi(t)/Δt = (vi(t)−vi(t−1))/(t−(t−1)) = (s·2t·f (1−(1/2)f)−
s · 2(t−1)·f (1 − (1/2)f))/1 = s · 2t·f (1 − (1/2)f)(1 − 2−f) = s · 2t·f (1 − (1/2)f)2,
which is the accelerating reproduction ability of the whole CA system. The
average self-replicating velocity of the CA system with respect to the time t:

va(t) = vol(t)
t = s·2 t

T

t = s·2t·f
t , which represents the average ability of the whole

CA system to generate direct and indirect descendants.
The analysis above relates to DoS attacks launched by computer bacteria.

With the self-replication of computer bacteria, available resources become less
and less and computer systems become busier and busier. At a time, it is too
hard for the system to respond to users’ request before a deadline and DoS

Cloning Automata: Simulation and Analysis of Computer Bacteria 409

occurs: vol(tDoS)
max ≥ r ⇒ s·2tDoS·f

max ≥ r ⇒ 2tDoS·f ≥ max·r
s ⇒ tDoS ·f ≥ log max·r

s ⇒
tDoS ≥ T · log max·r

s . That is, DoS occurs after T · log max·r
s if no countermeasures

are adopted. In the case that there is a limit to the maximum processes of the
process table and there is no limit to the number of processes created by one user,
the operating system’s process table will be saturated by processes of bacteria
after maxpt

2t·f = 1 ⇒ t = T · log maxpt, where maxpt is the maximum processes of
the process table.

3.2 Analysis of Fission

As defined in Sect. 2.2 and depicted in Fig. 2, one cycle of fission consists of two
steps: the first step is to push a copy of A2 into A1’s stack and to push a copy
of A1 into A2’s stack; the second step is that A1 and A2 break away from the
original CA and that A1 pops up a new A2 from A1’s own stack and A2 pops up
a new A1 from A2’s own stack in parallel. The time needed for the first step is
Δtpush(A2||A1) and Δtpush(A2||A1) = Δtpush(A2) + Δtpush(A1) when the two push
actions are executed serially. The time needed for the second step is Δtpop(A2||A1)

and Δtpop(A2||A1) = Δtpop(A2) + Δtpop(A1) in the serial case. Except for fission,
the CA model can be extended to simulate optional malicious behavior and the
corresponding time is [+Δtmal]. So, the pure time needed for one clone via fission
is: Δtfission = Δtpush(A2||A1)+Δtpop(A2||A1)[+Δtmal]. If Δtapu is the average time
allocated to CA every unit time, one cycle of fission can be obtained: T = Δtfission
when Δtfission ≤ Δtapu, otherwise T = Δtfission

Δtapu
.

The frequency of fission is f = 1
T , which is defined as the number of break-ups

of an ancestor CA per unit time. The self-replicating velocity of one ancestor CA
is defined as the size of new cloning automata split off from this ancestor CA per
unit time: vone = s·2f . If the starting time is 0, there exist t

T or (t·f) cycles at the
time t. Volume is defined as the total size of all existing cloning automata at the
time t: vol(t) = s ·2 t

T = s ·2t·f . The instantaneous self-replicating velocity of the
CA system is the total size of new cloning automata per unit time with respect to
the time t: vi(t) = s · 2t·f (1 − (1/2)f), which represents the instantaneous fission
ability of the CA system. The self-replicating acceleration of the CA system with
respect to the time t is: a(t) = s · 2t·f (1 − 2−f)2. a(t) is the accelerating fission
ability of the whole CA system. The average self-replicating velocity of the CA
system with respect to the time t: va(t) = s·2t·f

t
Properties analyzed above are relevant to the analysis of DoS caused by the

fission. The final result of the analysis of DoS caused by the fission is similar in
form to that caused by the fusion, but may be different in content for different
T ’s: tDoS ≥ T · log max·r

s . Similarly, the operating system’s process table will be
saturated by processes of bacteria after t = T · log maxpt, where maxpt is the
maximum processes of the process table.

4 Interruption of the Self-replication

By the analysis in Sect. 3, it is clear that cloning automata deplete resources
quickly and launch DoS attacks. So it is necessary to interrupt the self-replicating

410 C. Chen et al.

processes and then to clean them. Before cleaning, interruption methods should
be found out to stop the self-replicating processes which deplete resources. Once
all self-replicating processes are stopped, resources occupied by cloning automata
would not increase anymore and this is the foundation of cleaning.

According to the CA model, two of the three steps in the fusion process
can be interrupted. When both stacks of A2i−1 and A2i are empty, conditions
for the first step to be executed are satisfied. In order to hinder the execu-
tion of the first step, symbols like $ should be pushed into empty stacks and
δ(p0, ε,nil; q0, ε,nil) = {(p1, A2i#; q1, A2i−1#)} will not be executed since con-
ditions are not satisfied. Without the execution of the first step, A2i will not
be on the top of A2i−1’s stack and A2i−1 will not be on the top of A2i’s stack
either. So the second step δ(p1, ε, A2i; q1, ε, A2i−1) = {(p2,#A2i−1A2i#; q2,nil)}
cannot be executed. Without the execution of the second step, # will not be
on A2i−1’s stack and the third step δ(p2, ε,#; q2, ε,nil) = {(p0,nil; q0,nil)} will
not be executed either. All cloning automata will be stopped immediately in
the case that they are synchronous. In the case that they are asynchronous for
some reason, that is, some cloning automata will execute the first step, some
will execute the second step and the remainder will execute the third step. In
the asynchronous case, all of them will be stopped after one or two steps. Thus
after two steps at most, resources will not be depleted anymore. The other way
to stop the fusion processes is to replace every # with $ and this hinders the
third step δ(p2, ε,#; q2, ε,nil) = {(p0,nil; q0,nil)}. In the synchronous case, all
cloning automata will be stopped at once. In the asynchronous case, after two
steps at most, all cloning automata will be stopped by this interruption method.

According to the CA model, the first of the two steps in the fission
process can be obstructed by pushing # or $ into stacks whenever empty.
δ(p0, ε,nil; q0, ε,nil) = {(p1, A2i; q1, A2i−1)} will not be executed. In the synchro-
nous case, all cloning automata will be stopped immediately. In the asynchronous
case, some cloning automata will execute the first step while others will execute
the second step. So after one step at most, all cloning automata will be stopped
and resources will not be depleted anymore.

All methods mentioned above may be changed with situations, but it is fixed
that the basic principle is to wreck conditions of the self-replicating process.

5 Simulation and Analysis of Fork Bomb

Unlike worms, wabbits [1] are a form of self-replicating malware which do not
spread across networks but merely generate numerous copies of themselves on
the local system. As an instance of wabbits, processes of fork bomb continually
replicate themselves exponentially to deplete system resources available. The
self-replication causes resource starvation and in some cases brings a denial of
service [2,3,6,10]. As a computer bacterium, fork bomb can be modeled by CA.
As defined in Sect. 2, CA can also model other malicious behavior as well as the
self-replication. At this point, fork bomb does not have other malicious behavior
except for the self-replication. Thus CA can model it in a brief way.

Cloning Automata: Simulation and Analysis of Computer Bacteria 411

5.1 Operational Principles of Fork Bomb

There are many variants of fork bomb in different operating systems such as
“:(){ :|:& };:” in Unix-like shells, “%0|%0” in Microsoft Windows and so on. Nev-
ertheless, a basic implementation of fork bomb is an infinite loop that repeatedly
launches the same process. In traditional Unix-like operating systems, fork bomb
is usually written to use the fork system call. The fork system call creates a new
process which is in essence a copy of the parent process. Details of the fork sys-
tem call are connected with the process structure. In Unix, a process consists of
a process control block (PCB), a shared-text segment, a data segment (or data
area), and a working segment (or working area). PCB has the proc structure
which contains basic control information and the user structure which contains
information not related to the run of a process. The working segment consists of
a kernel stack whose working space is at the kernel state and a user stack whose
working space is at the user state. In Linux, a process has the following seg-
ments: code, data, heap and stack. The code segment, data segment, heap and
stack segments in Linux are similar to the shared-text segment, data segment
and working segment in Unix, respectively. For convenience, the structure of a
process in Unix-like operating systems is considered as follows: a shared-text seg-
ment, a data segment and a working segment. In traditional Unix-like operating
systems, the fork system call copies the virtual address space of the shared-text
segment of the current process to the new process called a forked process and
the forked process has a pointer to the physical space of the current process.
The forked process has no physical space of its own unless executing a different
image. Different from the operation on the shared-text segment, the fork system
call copies the virtual address space of the data segment to the forked process
and creates a physical space for the forked process. Thus, the forked process has
a pointer from its virtual space to its own physical space. Similar to the opera-
tion on the data segment, the fork system call copies the virtual address space of
the working segment to the forked process and creates a physical space for the
forked process. The forked process has a pointer from its virtual space to its own
physical space. The detail of the fork system call in traditional Unix-like oper-
ating systems can be depicted in Fig. 3 (“ ” stands for “copy to” and “ ”
stands for “point to”). As forked processes are copies of the original process,
they also seek to create copies of themselves upon execution. This cycle has the
effect of causing an exponential growth in processes. Fork bombs work both by
consuming CPU time in the process of forking and by saturating the operating
system’s process table.

5.2 Simulation of Fork Bomb with CA

Based on the operational principles, fork bomb can be modeled by CA via fusion
as follows. ForkBombs = (

⋃2n

i=20 Q2i−1 ∪ Q2i,
⋃2n

i=20 Σ2i−1 ∪ Σ2i,
⋃2n

i=20 Γ2i−1 ∪
Γ2i,

⋃2n

i=20 δ2i−1,2i, S), where for j = 2i − 1 and k = 2i, (1) Qj = {pj
m|0 ≤

m ≤ 6} and Qk = {qk
m|0 ≤ m ≤ 6}; (2) Σj = {ε,w, d, s} and Σk

= {ε,aw, ad, as}; (3) Γj = {#, $} ∪ Σj ∪ Σk and Γk = {#, $} ∪ Σk; (4)

412 C. Chen et al.

P1
virtual
space

physical
space

physical
space

virtual
space P2

shared-text
segment

data
segment

working
segment

shared-text
segment

data
segment

working
segment

Fig. 3. The fork system call in traditional Unix-like OSs

δ2i−1,2i is the transition function, which will be explained in detail later;
(5) S is the set of initial states. Thus, a forkbomb consists of internal
automata with stacks: A2i−1=(Q2i−1, Σ2i−1, Γ2i−1, δ2i−1, p

2i−1
0) and A2i =

(Q2i, Σ2i, Γ2i, δ2i, q
2i
0). Superscripts and subscripts are omitted where no ambi-

guity exits.
The simulation via fusion is an infinite loop based on Algorithm 1 and con-

sists of the following seven steps: (1) A2i−1 is at its initial state p0 and A2i

is at its initial state q0. When the process table is not saturated and virtual
spaces for the shared-text segment, the data segment and the working segment
and physical spaces for the latter two segments are ready to be allocated for
the new process, all virtual and physical spaces are allocated. Virtual spaces of
the data segment and the working segment of the new process have pointers
to corresponding physical spaces. The virtual space of the shared-text segment
has a pointer to the physical space of the current process. Contents of virtual
spaces of the shared-text segment, the data segment and the working segment
are denoted by s, d and w, respectively. The corresponding addresses of virtual
spaces of the three segments above are denoted by as, ad and aw, respectively.
A2i−1 reads w and pushes #, w and $ into its stack, with A2i−1 going to the
state p1. A2i reads aw and pushes $, aw and $ into its stack, with A2i going to the
state q1. The corresponding δ is δ(p0, w,nil; q0, aw,nil) = {(p1, $w#; q1, aw)}.
(2) A2i pops up $, aw and $ from its stack and pushes aw and $ into A2i−1’s
stack. A2i−1 and A2i go to p2 and q2, respectively. The corresponding δ is:
δ(p1, ε, $; q1, ε, $) = {(p2, aww#; q2,nil)}. (3) When A2i−1’s state is p2 and
A2i’s state is q2, A2i−1 reads d and then pushes d and $ into its stack, with its
state changed to p3. A2i reads ad and then pushes $, ad and $ into its stack,
with its state changed to q3. The corresponding δ is δ(p2, d, $; q2, ad,nil) =
{(p3, daw$w#; q3, ad)}. (4) A2i pops up $, ad and $ from its stack and
pushes ad and $ into A2i−1’s stack. A2i−1 and A2i go to p4 and q4, respectively.
δ is defined by δ(p3, ε, $; q3, ε, $) = {(p4, addaww#; q4,nil)}. (5) A2i−1 reads
s and then pushes s and $ into its stack, with its state changed to p5. A2i

reads as and pushes #, as and $ into its stack, with its state changed to q5.

Cloning Automata: Simulation and Analysis of Computer Bacteria 413

The corresponding δ is δ(p4, s, $; q4, as,nil) = {(p5, saddaw$w#; q5, $as#)}.
(6) A2i pops up $, as and # from its stack and pushes as and # into A2i−1’s
stack in order. States of A2i−1 and A2i are changed to p6 and q6, respectively.
The corresponding δ is δ(p5, ε, $; q5, ε, $) = {(p6,#as$saddaww#; q6,nil)}.
(7) When # is on the top of A2i−1’s stack, A2i−1 pops up “#assaddaw$w#”
from its stack and writes the contents to virtual spaces of the shared-text seg-
ment, the data segment and the working segment of the new process according
to the corresponding addresses, respectively. A2i−1 goes to the state p0 and A2i

goes to the state q0. Information about the new process is written to the process
table. The corresponding δ is δ(p6, ε,#; q6, ε,nil) = {(p0,nil; q0,nil)}. This sim-
ulation of fork bomb using CA via fusion can be depicted briefly in Fig. 4.

5.3 Analysis of Fork Bomb

Based on the simulation, let Δtvp denote the time needed for the allocation of
virtual and physical spaces, Δtcs, Δtcd and Δtcw for copying the virtual spaces of
the shared-text segment, the data segment and the working segment respectively,
and Δtca for copying addresses of virtual spaces. Δtw denotes the time needed
for writing the virtual spaces of the data, working and shared-text segments
and the time to write the process table. Thus, the pure time for creating a new
process is: Δtpure = Δtvp + Δtcs + Δtcd + Δtcw + Δtca + Δtw.

It is assumed that the target machine has m (m ≥ 1) CPUs (or equal execu-
tors) and that one process can only be executed on one CPU at a moment. For
convenience, it is also assumed that no other process will be executed except
for processes pid = 0, pid = 1 and fork bomb, and that the ratio of time used
for process to switch to the time slice is rs. Without limitation of maximum
processes, there will be n = m· t·(1−rs)

Δtpure
processes of fork bomb at the time t. Fork

bomb will eat up all memory available after maxm·Δtpure
s·m·(1−rs)

, where maxm denotes
the maximum memory available and s denotes the size of memory allocated to
one process (e.g. 8 KB in Linux). If there is one upper bound on the number
of processes, fork bomb will saturate the operating system’s process table after
(maxpt−2)·Δtpure

m·(1−rs)
, where maxpt denotes the maximum number of processes.

5.4 Interruption of Fork Bomb

According to Fig. 3, the key to the self-replication is that the new process share
the malicious shared-text segment with the current process which is reflected by
the fifth step of Fig. 4. In order to interrupt the self-replication of new processes,
a safe virtual space of the shared-text segment s′ which points to a safe physical
space of the shared-text segment instead of s will be pushed into the stack.
For example, the simplest s′ does nothing. Thus, new processes cannot replicate
themselves. In order to interrupt the self-replication of current processes, all
shared-text segments including infinite loops or recursions depicted by the last
two steps of Fig. 4 should be found out and then should be replaced with a safe
shared-text segment. By the two ways, fork bomb will be interrupted entirely.

414 C. Chen et al.

Fig. 4. Simulation of fork bomb using CA via fusion

Cloning Automata: Simulation and Analysis of Computer Bacteria 415

6 Conclusion

A new model named cloning automata is constructed to model computer bacteria
in two ways: fusion and fission. The analysis of important properties related
to fusion and fission is made for a better understanding of computer bacteria.
Methods for interrupting the self-replicating process of the CA model are given.
Simulation of fork bomb and corresponding analysis show the effectiveness of
this model. In the future, it will be investigated that how to judge any software
whether it has features of computer bacteria or not and how to clean the CA
model. Further more, it will be considered how to extend cloning automata to
model hybrid malicious behavior to solve more complex problems.

Acknowledgments. This research was supported by NSFC with Grant Nos. 61732013
and 61420106004.

References

1. https://www.virusbtn.com/resources/glossary/wabbit.xml
2. https://www.virusbtn.com/resources/glossary/fork bomb.xml
3. https://en.wikipedia.org/wiki/Fork bomb
4. Mcafee labs threats report, May 2015. http://www.mcafee.com/us/resources/

reports/rp-quarterly-threat-q1-2015.pdf
5. Symantec: 2015 internet security threat report, vol. 20. http://www.symantec.

com/security response/publications/threatreport.jsp
6. Bohra, A., Neamtiu, I., Gallard, P., Sultan, F., Iftode, L.: Remote repair of oper-

ating system state using backdoors. In: Proceedings, International Conference on
Autonomic Computing, pp. 256–263, May 2004

7. Cohen, F.: Computer viruses. Comput. Secur. 6(1), 22–35 (1987)
8. Gazet, A.: Comparative analysis of various ransomware virii. J. Comput. Virol.

6(1), 77–90 (2010)
9. Joy, J., John, A., Joy, J.: Rootkit detection mechanism: a survey. In: Nagamalai,

D., Renault, E., Dhanuskodi, M. (eds.) PDCTA 2011. CCIS, vol. 203, pp. 366–374.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24037-9 36

10. Matthews, J.N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamilton,
G., McCabe, M., Owens, J.: Quantifying the performance isolation properties of
virtualization systems. In: Proceedings of the 2007 Workshop on Experimental
Computer Science, ExpCS 2007. ACM, New York (2007)

11. Neumann, J.V., Burks, A.W.: Theory of Self-reproducing Automata. University of
Illinois Press, London (1966)

12. Pelaez, C., Bowles, J.: Computer viruses. In: Twenty-Third Southeastern Sympo-
sium on System Theory, Proceedings, pp. 513–517, March 1991

13. Pickover, C.A.: The Math Book: From Pythagoras to the 57th Dimension, 250 Mile-
stones in the History of Mathematics. Sterling Publishing Company, Inc. (2012)

14. Qing, S., Wen, W.: A survey and trends on internet worms. Comput. Secur. 24(4),
334–346 (2005)

15. Rossow, C., Dietrich, C., Bos, H.: Large-scale analysis of malware downloaders. In:
Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp.
42–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8 3

https://www.virusbtn.com/resources/glossary/wabbit.xml
https://www.virusbtn.com/resources/glossary/fork_bomb.xml
https://en.wikipedia.org/wiki/Fork_bomb
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp
https://doi.org/10.1007/978-3-642-24037-9_36
https://doi.org/10.1007/978-3-642-37300-8_3

416 C. Chen et al.

16. Mohd Saudi, M., Abuzaid, A.M., Taib, B.M., Abdullah, Z.H.: Designing a
new model for trojan horse detection using sequential minimal optimiza-
tion. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee,
N.C. (eds.) Advanced Computer and Communication Engineering Technology.
LNEE, vol. 315, pp. 739–746. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-07674-4 69

17. Spafford, E.H.: Computer viruses as artificial life. Artif. Life 1(3), 249–265 (1994)
18. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Modern Phys. 55(3),

601 (1983)
19. Wu, M.W., Wang, Y.M., Kuo, S.Y., Huang, Y.: Self-healing spyware: detection,

and remediation. IEEE Trans. Reliab. 56(4), 588–596 (2007)

https://doi.org/10.1007/978-3-319-07674-4_69
https://doi.org/10.1007/978-3-319-07674-4_69

Research on Arrival Integration Method
for Point Merge System in Tactical Operation

Yannan Qi1,2(&), Xinglong Wang1, and Chen Chen3

1 Civil Aviation University of China,
Tianjin, China

yannan.qi@yahoo.com
2 International Civil Aviation Organization,

Montreal, Canada
3 East China Normal University, Shanghai, China

Abstract. In this paper, a Point Merge arrival integration method of tactical
operation is introduced under current Communication, Navigation and
Surveillance technologies. In present research, the multi-agent theory is used to
build and stimulate the arrival integration system. Agents involved in point
merge operation and action modules are designed to realize automatic trajectory
generating, adjustment, sequencing and conflict detection. The architecture of
point merge operation is obtained as well. In order to verify the method, his-
torical ADS-B data is analyzed and the point merge procedures are designed for
single runway and two runway arrival separately for different verification. The
outcome proves the correctness and efficiency of the method and demonstrates
the advantage of Point merge procedure on reducing flight time, fuel con-
sumption, delay time and ATC workload.

Keywords: Arrival integration � Point merge � Continuous descent approach �
Multi-agent system

1 Introduction

Point Merge System (PMS) provides systematic method of sequencing arrival flows
instead using heading vector. Both efficient sequencing and optimum descent are
achieved simultaneously with a built-in continuous descent (CDA) [1]. Along with the
capacity and efficiency taken from point merge system, poor trajectory prediction
ability is a vital problem in density TMA implementation.

A PMS is defined as an RNAV STAR, transition or initial approach procedure, or a
portion thereof, and is characterized by the following feature [5]:

Q. Yannan—This project was Supported by National Natural Science Foundation of China (Grant
No. 61571441); National Key Basic Research Program of China (2016YFB0502405);
Fundamental Research Funds for the Central Universities (ZXH2012M002, 3122014D036,
3122015C024); State Key Laboratory of Air Traffic Management System and Technology, NO:
SKLATM201705 for this project are gratefully acknowledged.

© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 417–425, 2017.
https://doi.org/10.1007/978-3-319-71150-8_34

• A single point – denoted ‘merge point’ (MP), is used for traffic integration;
• Pre-defined legs – denoted ‘sequencing legs’, equidistant from the merge point, are

dedicated to path stretching/shortening or each inbound flow (Fig. 1).

Using PMS and CDA in Arrival integration refers to sequencing, level/vertical
trajectory preplanning and spacing maintenance. Current research is primarily con-
cerned with 3 aspects: performance assessment, trajectory optimization and air flow
integration in TMA. [1] reports on flight simulation of Point merge procedure, and the
outcome shows good performance on environmental adaptability and ATC conve-
nience. [2, 3] present the time based arrival control concept. As for the trajectory
optimization, [6–8] introduce vertical trajectory optimization method based on optimal
control theory; [3, 9] use controlled time and geometry method to detect and solve the
conflict; [10] researches the trajectory prediction uncertainty modeling for CDA. In
2014, LiangMan introduced an agent-based approach to automated merge 4D arrival,
but only outline is presented [4].

The main purpose of this paper is to introduce PMS in TMA to improve the arrival
efficiency and capacity. Multi-agent technique is adopted in solving arrival integration
for PMS in Tactical Operation, and detailed algorithm is presented.

2 Construction of Multi-agent System for Merge Point
Arrival

In this chapter, the overall architecture and agents are introduced to give a description
of agents and information transfer process. The realization algorithms of each agent are
put forward.

Arrival aircraft control implicates arrival time management, sequencing, conflict
detection and space maintenance as well as information exchange between aircraft and
air traffic controller. Five agents are designed: aircraft agent (AA), vertical trajectory
agent (VTA), runway control agent (RCA), arrival trajectory agent (ATA), space
maintain agent (SMA).

The information interaction process is showed in Fig. 2.

Common Path

Merge point

Envelop of
possible Path

Entry point

Entry point

Arrival route

Arrival route

Sequencing legs(at iso-distance
from the merge point)

Fig. 1. Point merge system

Flight
Plan

Runway
Available
slot

Next
available
MP time

Modified PMS
enter time

Conflict
detection

Estimated PMS
enter time

Actual PMS
enter time

Estimated PMS
enter time

Runway
Available
slot Conflict

detection

Fig. 2. Information interaction process

418 Y. Qi et al.

2.1 Aircraft Agent (AA)

Aircraft agent manages arrival flights in PMS. Each flight contains: flight no.,
estimated/actual enter PMS time, pre-planned runway, enter PMS speed, aircraft speed,
aircraft position, Direct-to time, Direct-to speed, pass MP time, sequencing leg No.,
PM No., wake turbulence category (Cat) and predefined trajectory. AA stores infor-
mation on all arrival aircraft and transit information with other agents.

2.2 Runway Control Agent (RCA)

Runway Control agent is designed to control the runway usage through limiting the
merge point passing time according to specific runway operation strategy. In RCA,
merge point available slot module is responsible for calculating the available slot of a
runway according to flight plan and runway operation strategy.

2.3 Vertical Trajectory Agent (VTA)

The objective of VTA is to adjust the vertical trajectory, and calculate the estimated MP
passing time and earliest Direct-to time for succeeding aircraft. VTA incorporate air-
craft performance database.

In VTA vertical trajectory adjustment module is to generate the optimized descend
trajectory for each aircraft. Vertical trajectories optimization is commonly formulated
as optimal control problems with a fixed range [6–8]. In this paper, we use a multiple
phase optimal control problem with respect to two performance indicators, minimum
arrival time and minimum fuel consumption. The state x ¼ VT xs h½ �T , and the
control input u ¼ T l½ �, where VT is true airspeed, xs is along track distance, h is
altitude, T is the thrust force, l is aerodynamic roll angle. A pseudospectral method is
used to obtain the optimal trajectory for a CDA operation in this paper.

2.4 Arrival Trajectory Agent (ATA)

Arrival trajectory agent is designed to determine the sequence and adjust trajectory in
sequencing leg. With regard to multi-merge system, each point merge system is a
separate agent, and they are parallel and in charge of aircraft operation in PM system
respectively. In the process of operation, deviation caused by environment and oper-
ation will change the actual Direct-to time and passing MP time of leading aircraft.
Then, new earliest Direct-to time will be compared with the estimated Direct-to time.
There are two situations:

The difference does not exceed a time threshold. If aircraft should be delayed, ATA
will assess if the delay time could be mitigated with the help of speed adjustment. If
not, next waypoint along the sequencing leg is chosen as the Direct-to point.

The difference exceeds a time threshold. If there is available time slot from other
runway, the pre-planned runway of the aircraft will be changed in AA, and this aircraft
will be delivered to available runway. There are two modules in Arrival trajectory
agent: sequence generation module and trajectory adjustment module.

The detailed model is illustrated in Sect. 3.

Research on Arrival Integration Method for Point Merge System 419

2.5 Space Maintain Agent (SMA)

Space maintain agent is designed to detect conflicts in sequencing and descending
phase, which receives the estimated trajectories from ATA and VTA to assess the
conflict and transmit the results to ATA and VTA as the basis for trajectory adjustment.

3 Module Design

3.1 Trajectory Generation Module

We apply single-objective optimization problem to achieve the goal of minimum
overall complete time for trajectory generation problem. The trajectory for an aircraft is
expressed as a waypoint sequence. With each waypoint, the speed limitation is
attached. We assume speed adjustment only happen on waypoints.

Suppose there are n waypoints on leg l, waypoints set is denoted as
wpl ¼ wpl1;wp

l
2; . . .:;wp

l
m; . . .

� �
. A trajectory of aircraft is expressed as a string, and

the length of a trajectory string is decided by the number of waypoints on leg.
wpl ¼ fðDi

p1; v
i
p1Þ; ðDi

p2; v
i
p2Þ; . . .:; ðDi

pm; v
i
pmÞ; . . .g.

Di
pm designates the action when aircraft i passing waypoint m, m = (1, 2, …, M), if

turning at m, Di
pm ¼ 1, else Di

pm ¼ 0.

The speed of aircraft i at waypoint m is designated as vipm, m = (1, 2, …, M).

Suppose tedi , tedj are direct-to time on a sequencing leg, m � M, teei is the estimated
PMS enter time, Si is the distance between two neighboring waypoints, if Di

pm 6¼ 0, N is

the number of Direct-to waypoint. For aircraft i, the Direct-to time is tedi :

tedi ¼
XN
n¼1

Si
vpi

þ teei ð1Þ

A Polar coordinate system is set up with the merge point as the origin, and the first
link is the polar axis. Because the waypoints are scattered on sequence leg evenly, so
the coordinate of m’s waypoint could be calculated easily:

xpm ¼ r � cos h ð2Þ

ypm ¼ r � sin h ð3Þ

At given time t, the coordinates of aircraft i could be expressed as:

xci ðtÞ ¼ r � cos m � hþ
t � Pm�1

j¼1

Si
vpj

 !
vpm

prn

0
BBBB@

1
CCCCA ð4Þ

420 Y. Qi et al.

yci ðtÞ ¼ r � sin m � hþ
t � Pm�1

j¼1

Si
vpj

 !
vpm

prn

0
BBBB@

1
CCCCA ð5Þ

rl is the radius of sequencing leg l, Sl is the distance between neighboring way-
points on sequencing leg l, xpm is the closest waypoint before current position of aircraft
i. The single-objective optimization problem is build as:

Minimum overall complete time To.

min To ¼ min
XN
i¼1

tedi � teei
�� �� ð6Þ

Constraints:

vipm � vipm�1

��� ����Dv ð7Þ

vimin � vipm � vimax ð8Þ

XN
m¼2

vipm � vipm�1

Dv

�����
�����

& ’
� nv ð9Þ

vimin and vimax are the minimum and maximum aircraft performance limited speed of
aircraft i. Dv is the increment or decrement for each speed adjustment, nv is the limited
time for speed change for each trajectory.

3.2 Trajectory Adjustment Module

In our research, maximum arrival flow speed is considered as the main objective in the
premise of conflict free. Due to closed path and level flight on sequencing leg, only
speed adjustment and changing Direct-to waypoint are used in trajectory adjustment
process. If the delay or advanced time cannot be consumed by both speed (exceed the
performance of aircraft) or Direct-to point adjustment (overflow sequencing leg), flow
management is activated through adjusting the enter PMS time of succeeding aircraft.

• Direct-to point changing
Suppose N is the maximum number of waypoints on sequencing leg j, original
Direct-to waypoint is wp j

m with speed vp j
m; trd .

Research on Arrival Integration Method for Point Merge System 421

Direct-to point changing
1 initialization: p=0; 5End Direct-to point adjustment, change

and save trajectory;
2 p=p+1, vp= j

m
vp ; 6 Else

3 If
0

()
p

rd
i p

S
t

v=

≥∑ is satisfied
7 Flow management module is activated

8 Else

4 If p≤N 9 n=n+1, and go to step 2.

• Speed adjustment
When leading aircraft need delay, speed adjustment module is activated to conduct
speed adjustment for succeeding aircraft i. Speed adjustment is processed step by
step, assume Dv is the amount of speed change for each adjustment, trd is the
required delay time, the process of speed adjustment is as below.

• Flow management module

teei ¼ teei þ trd

speed adjustment
1 initialization: k=0, vk=0, Reverse
check from Direct-to waypoint, and
obtain the waypoint (j

mwp) with

maximum speed (j

mvp), vk= j

mvp

6 Else

7 End speed adjustment failed

8 Else
9 If current way point is the entry waypoint:

2 k=k+1; 10 End speed adjustmentfailed;

3 If
0

()
k

rd
i k k

S S
t

v v v=

− ≥
− Δ

∑ is satisfied
11 Else

12 check from current waypoint, and obtain
the waypoint j

mwp with maximum speed
j

mvp , vk= j

mvp , and go to step 2.

4 If min max()kv v v v≤ − Δ ≤ is satisfied

5 End speed adjustment, change and
save trajectory;

3.3 Conflict Detection Module

Two types of conflicts can happen through analyzing the structure of PMS: catch-up
(direct-to from same waypoint) and merging (direct-to from different waypoint) conflict
could be occur.

With regard to catch-up conflict in sequencing leg, distance based radar separation
is used. For aircraft i and j, (i, j 2 F) in same sequencing leg. Assume Dij as the distance
between aircraft i and j, Sepr is the radar separation minima, so on the sequencing leg:

422 Y. Qi et al.

Dij ¼
ffi
ðxiðtÞ � xjðtÞÞ2 þðyiðtÞ � yjðtÞÞ2

q
� Sepr ð10Þ

For catch-up conflict, time based separation is used to control the aircraft separation
passing by the merge point. For aircraft i, j, assume tvi , t

v
j are the flight duration on

descend link.
tepi , tepj are the estimated passing time on merging point, tedi , tedj are the

tepi � tepj � Sepw ð11Þ

tepi ¼ tedi þ tvi ð12Þ

tepj ¼ tedj þ tvj ð13Þ

4 Verification

Simulation is made in Tianjin airport, and 3 scenarios on RWY 16 are designed to
verify different aspect of the new method: current operation scenario, PM procedure for
single runway and PM procedure for parallel runways (Independent operation mode).
Historical flight data is used to extract current operation scenario (Fig. 3) and traffic
distribution (Table 1). The PM procedures are designed according to traffic
distribution.

Simulation of multi-agent system is conducted on NetLogo 5.3, the vertical tra-
jectory generation and adjustment is achieved with the help of GPOSP toolbox in
Matlab. Genetic Algorithm is adopted to solve the objective problem in trajectory
generation module.

In experiment, the fuel consumption, complete time, and ATC workload are
compared to prove the performance of point merge procedure. The instruction number
is calculated to denote the ATC workload simply. In scenario 1, the instruction number

Table 1. Arrival distribution

Enter point Flow distribution

VYK 41%
NIRON 32%
KALBA 17%
HCX 10%

Fig. 3. Heat-map of arrival trajectories

Research on Arrival Integration Method for Point Merge System 423

is obtained through historical data statistics. And in scenario 2 and 3, the instruction
contains the speed adjustment, direct to instruction, runway change instruction and link
to other PMS instruction. So, the ATC workload is obtained by counting the
instructions.

According to outcome of experiment (Table 2), conflict free trajectories are
obtained both in scenario 2 and scenario 3. Compared with scenario 1, the fuel con-
sumption is reduced by 25% and 21%, and the flight time and distance reduced 24%,
14% and 8.3%, –2.8% separately. Compare to flight fuel consumption, the flight dis-
tance does not reduce too much. The reason is that the PMS contains arcs with relative
large radius for better maneuvering ATC ability, and the fuel consumption rate is pretty
low in descend flight in terminal airspace. Consequently, PMS shows good perfor-
mance to reduce the level flight in TMA. In scenario 3, there are 5 aircraft change
landing runway from runway 16R to 16L and 8 aircraft from west change enter time
because the main arrival flow is from west and exceed the capacity of PMS.

5 Conclusions

In this paper, point merge arrival integration method has been studied, and a
multi-agent based modeling and simulation approach is proposed to improve the effi-
ciency and environmental performance of point merge operation. 5 agents are designed
and modules that lead to the achievement of trajectory generation and adjustment,
sequencing, conflict detection and data exchange are presented. In order to verify the
correctness and efficiency of the method, we focus on Tianjin airport. Three scenarios
are designed to display different situations. Historical flight data is analyzed in scenario 1
to illustrate the current situation. In scenario 2 and 3, the point merge procedures are
designed for single runway arrival and two runway arrival situation. Comparison is
made on aspect of flight time, fuel consumption and ATC workload. The results show
the good performance of Point merge procedure on arrival management efficiency,
reduced environment impact and less air-ground communication requirement.

Table 2. Experimental results

Experimental results Scenario 1 Scenario 2 Scenario 3

Average fuel consumption per flight (kg) 958.43 718.4 758.4
Average flight time per flight (min) 22 16.8 18.9
Average flight distance in TMA per flight (km) 165.32 151.45 169.87
Runway change – – 5
Enter time change – – 8
Average ATC instruction number per flight 12 7 8

Initial Parameters: Enter PMS speed = 210kt; Lateral Separation = 3NM; Initial weight
(A330) = 160T; Initial weight (A320/B737/A319) = 60T; Speed adjustment increment =
±20kt; Maximum speed change for one trajectory = ±20kt

424 Y. Qi et al.

References

1. Favennec, B., Hoffman, E., Trzmiel, A., Vergne, F., Zeghal, K.: The point merge arrival flow
integration technique: towards more complex environments and advanced continuous
descent. In: 9th AIAA-6921, South Carolina (2009)

2. Klooster, J.K., de Smedt, D.: Controlled time of arrival spacing analysis. In: Proceedings of
the Ninth USA/Europe Air Traffic Management Research and Development Seminar, Berlin
(2011)

3. Man, L.: An agent-based approach to automated merge 4D arrival trajectories in busy
terminal maneuvering area. In: 2014 Asia-Pacific International Symposium on Aerospace
Technology (2014)

4. Eurocontrol: Point merge integration of arrival flows enabling extensive RNAV application
and continuous descent operational services and environment definition, version 2.0 (2010)

5. Park, S.G., Clarke, J.-P.: Vertical trajectory optimization for continuous descent arrival
procedure. In: AIAA Guidance, Navigation, and Control Conference (AIAA 2012-4757),
Minneapolis, Minnesota (2012)

6. Zhao, Y., Tsiotras, P.: Analysis of energy-optimal aircraft landing operation trajectories.
J. Guid. Control Dyn. 36, 833–845 (2013)

7. Park, G., Clarke, J.-P.: Trajectory generation for optimized profile descent using hybrid
optimal control. In: AIAA Guidance, Navigation, and Control Conference (2013)

8. Delahaye, D., Puechmorel, S., Tsiotras, P., Feron, E.: Mathematical models for aircraft
trajectory design: a survey. In: Electronic Navigation Research Institute (ed.) Air Traffic
Management and Systems. LNEE, vol. 290, pp. 205–247. Springer, Tokyo (2014). https://
doi.org/10.1007/978-4-431-54475-3_12

9. Patel, R.B., Goulart, P.J.: Trajectory generation for aircraft avoidance maneuvers using
online optimization. J. Guid. Control Dyn. 34(1), 218–230 (2011)

10. Enea, G., Vivona, R., Karr, D., Cate, K.: Trajectory prediction uncertainty modeling for
continuous descent. In: 27th Congress of International Council of the Aeronautical Sciences,
Nice, Paper ICAS 2010-11.11.1 (2010)

Research on Arrival Integration Method for Point Merge System 425

http://dx.doi.org/10.1007/978-4-431-54475-3_12
http://dx.doi.org/10.1007/978-4-431-54475-3_12

Repair Position Selection for Inconsistent Data

Xianmin Liu1(B), Yingshu Li2, and Jianzhong Li1

1 Harbin Institute of Technology, Harbin, China
{liuxianmin,lijzh}@hit.edu.cn

2 Georgia State University, Atlanta, USA
yili@gsu.edu

Abstract. Inconsistent data indicates that there is conflicted informa-
tion in the data, which can be formalized as the violations of given seman-
tic constraints. To improve data quality, repair means to make the data
consistent by modifying the original data. Using the feedbacks of users to
direct the repair operations is a popular solution. Under the setting of big
data, it is unrealistic to let users give their feedbacks on the whole data
set. In this paper, the repair position selection problem (RPS for short)
is formally defined and studied. Intuitively, the RPS problem tries to find
an optimal set of repair positions under the limitation of repairing cost
such that we can obtain consistent data as many as possible. First, the
RPS problem is formalized. Then, by considering three different repair
strategies, the complexities and approximabilities of the corresponding
RPS problems are studied.

Keywords: Inconsistent data · Repair · Position selection · RPS

1 Introduction

Managing inconsistent data is a key problem in the area of data quality and
database management. Since dirty data has been widely viewed in practical
applications and caused many research interests [16], many works focus on the
data quality problems [3,4,7,21] and a central problem in this area is how to
make data consistent. In this paper, we focus on the inconsistencies caused by
FD and consider the corresponding data repair problem.

The following example can be used to explain the inconsistent data problem
caused by FD.

Example 1. An FD rule ϕ = AB → C defined over relation R = {A,B,C} has
the following semantics. For any two tuples in the instance IR over relation R, if

This work was supported in part by the General Program of the National Natural
Science Foundation of China under grants 61502121, 61402130, 61772157, U1509216,
the China Postdoctoral Science Foundation under grant 2016M590284, the Funda-
mental Research Funds for the Central Universities (Grant No. HIT.NSRIF.201649),
and Heilongjiang Postdoctoral Foundation (Grant No. LBH-Z15094).

c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 426–438, 2017.
https://doi.org/10.1007/978-3-319-71150-8_35

Repair Position Selection for Inconsistent Data 427

their have equal values on attributes A and B, they must also have equal values
on attribute C. For consistent data, it is required that the given FD rules are
valid on each pair of data tuples. Consider an instance IR, assume that there are
two tuples t1 = {A : x,B : a,C : m} and t2 = {A : x,B : a,C : n} in IR, also,
we assume that m �= n. Then, we have IR does not satisfy the rule ϕ. That is,
there are inconsistencies caused by t1 and t2 under limitation of the FD rule ϕ.

The inconsistencies shown in Example 1 indicate that there are errors in the
data which violate the semantic defined by the FD rule ϕ. To eliminate such
inconsistencies, a common method is to repair data by operations according to
the users’ feedback [19]. Therefore, under the constraints of limited computing
resources, how to select the set inconsistent tuples for users to review such that
maximum benefits will be obtained becomes a challenge and key problem.

In this paper, to meet the new challenges introduced above, we study the
Repair Position Selection Problem (RPS for short) under the constraints defined
by FD rules. Intuitively, given a database instance IR and a set of FD rules Σ,
RPS aims to find a subset S of IR with limited size such that we can repair
the data as many as possible after receiving the feedbacks of users. For special
IR, Σ and S, which data can be repaired also depends on the repair strategies
adopted. Three repair strategies are considered in this paper, simple deletion
(SD for short), full modify (FM for short) and half modify (HM for short).
We are not aware of any previous works on the RPS problem. Therefore, we
firstly give the formal definition of the RPS problem and study its complexities
and approximabilities under three different repair strategies. The main results
obtained by us can be summarized as follows: RPSSD is NP-complete even
assuming |Σ| = 2, it can be solved in PTime when |Σ| = 1 and its general version
can be approximated with ratio 2; RPSFM is NP-complete even if |Σ| = 3, and
it can be approximated within ratio O(n

1
3); RPSHM is NP-complete and it can

be approximated within ratio (1 − 1/e).

2 Preliminary

2.1 Basic Notations

In this paper, we use R to represent a relation schema, and use attri(R) to rep-
resent the attribute set of R, which is also denoted as R with clear context. The
symbol IR is usually used to represent an instance of given relation schema R.
For any attribute A ∈ R, dom(A) denotes the domain of attribute A in R. For
given relation R = {A1, A2, ..., An}, instance IR is composed of one set of tuples,
where each tuple t belongs to dom(A1) × dom(A2) × ... × dom(An). Assuming
that t is a tuple of IR and S ⊆ R, t[S] is the restriction of t over S.

A FD rule ϕ can be represented by (R : X → Y) (or X → Y when the
context is clear), where (1) both X and Y are subsets of R and (2) X ∩ Y = ∅.
Given IR and a FD rule ϕ = X → Y , consider two tuples t1 and t2 in IR
satisfying t1[X] = t2[Y]. If t1[Y] = t2[Y], they satisfy the rule ϕ, otherwise, they
are called to be a violation of ϕ, denoted by (t1, t2) � ϕ.

428 X. Liu et al.

Given IR and a dependency rule set Σ, we can use the set C =
{(t1, t2)|(t1, t2) � ϕ, s.t. ϕ ∈ Σ} to represent the inconsistencies of IR under
the constraints defined by Σ. If C is not empty, we say that IR is inconsistent
and there are inconsistencies in IR.

Some useful notations are also needed here. Given a dependency rule ϕ, L(ϕ)
represents the set of attributes involved in the left side of ϕ and R(ϕ) represents
the set of attributes on the right side of ϕ. A dependency rule is called to be
standard if and only if the right side only involves one attribute. For example,
the FD rule A → B is standard but the rule A → BC is not.

2.2 Data Repair Strategies and the Repair Position Selection
Problem

In this paper, to solve the problem of inconsistent data, data repair means elimi-
nating the inconsistencies by special repairing strategies. Using feedback of users
on inconsistent data is a popular method for data repair. Generally speaking, a
repair position is represented by one tuple or one attribute of some tuple which
representation is used depends on special repairing strategies. To collect the
feedbacks of users, a set S of positions will be offered to the users and they will
return us the correct decisions (such as deleting some tuples, modifying some
values and so on) to fix inconsistencies. The following three repairing strategies
will be considered by this paper.

– Simple Deletion (SD for short). Given the repairing position S where each
position is one tuple in IR, the tuples in S will be determined by users whether
or not to be removed from the whole data set IR. Here, we assume that the
feedbacks on different repairing positions made by users are independent from
each others. Intuitively, removing all tuples in S from IR will eliminate the
most inconsistencies, and all inconsistencies involving positions in S can be
eliminated trivially by removing all tuples from S. However, usually, we do
not need to remove the whole S but only some of them. Therefore, a good
simple deletion strategy will eliminate inconsistencies as many as possible
while remove tuples from IR as few as possible.

– Full Modify (FM for short). In this strategy, a repairing position in S is
explained to be one tuple t ∈ IR. For special FD rule X → Y where |Y | = 1,
the users will eliminate the inconsistencies by modifying the value of t[Y]
or t[X]. The main idea of FM strategy is to try to fix the inconsistent data
in worst cases, intuitively, for two tuples s and t which are inconsistent, the
inconsistency may be caused by either side of the FD rule, therefore, the
inconsistency can be removed only after s[X ∪ Y] and t[X ∪ Y] are both
repaired by the feedbacks of users. Of course, there is an implicit assumption
behind the FM strategy that the users know the true values of t[X ∪ Y]
and s[X ∪ Y]. Obviously, when limiting the size of S, an optimal full modify
strategy will eliminate inconsistencies as many as possible.

– Half Modify (HM for short). This strategy is similar with the full modify
strategy, but one position in HM strategy can be treated to be an attribute

Repair Position Selection for Inconsistent Data 429

on some tuple. The main difference is that there is an additional assumption
that the inconsistencies caused by ϕ : X → Y can be always repaired by
modifying the values of Y . This assumption can be satisfied in many real
applications and is utilized in most previous research works. In the half modify
strategy, after receiving all repairs from users, further repairs can be made
by refining the dependency rules based on the repairs provided by users. For
example, let ϕ to be A → B, two tuples s and t satisfying s[A,B] = {1, x}
and t[A,B] = {1, y} are inconsistent obviously. Suppose the users repair s to
be s[A,B] = {1, z}, then another rule ϕ′ with more details can be generated
to be A = 1 → B = z. Directed by the new rule ϕ′, more tuples such as t can
be repaired. Finally, an optimal half modify strategy will choose the position
set S which eliminate the most inconsistencies.

According to the details of the three repairing strategies above, obviously,
selecting different S for users will obtain different repairing results, and the
choice of S which can produce the most consistent data is preferred. Therefore,
the optimization goals of the RPS considered by this paper is to choose a perfect
S such that the inconsistencies eliminated by repairing strategies are maximized.
Suppose we have defined a function f such that f(S) can measure how many
inconsistencies are repaired for given S, we can give the following general formal
definition of the RPS problem.

Definition 1 (Repair Position Selection Problem, RPS for short).
Given database IR and dependency rule set Σ and integer k, find a subset S
of IR with k repairing positions such that the repair gain f(S) is maximized.

In the following parts, for different data repairing strategies, the complexities
and approximabilities of the corresponding RPS problems are studied.

3 RPS Problem for Simple Deletion Strategy

We first consider the repair position selection problem for simple deletion strat-
egy. Given a tuple set S, the experts will determine whether to delete the tuples
in S from the whole data IR. In this followings, it is assumed that all tuples
will be removed by experts with the same probability p independently. Let V (S)
be the set of inconsistent tuples pairs which involve at least one tuple in S.
Then, for SD strategy, we can define the function value of fSD(S) to be the
expected number of inconsistencies reduced by randomly removing S from IR,
that is fSD(S) = |V (S)| · p. In this part, when the context is clear we will use
f to represent fSD, and the definition fSD(S) = |V (S)| will be adopted for the
simplicity since p is a constant value.

It is easy to verify that the RPSSD problem is NP-hard by making a direct
reduction from vertex cover problem. Here, we give a stronger complexity result
of RPS problem by limiting the size of dependency rules.

430 X. Liu et al.

Theorem 1. The RPSSD problem is NP-complete even for the case |Σ| = 2.

Proof (sketch). The proof can be finished by making a reduction from the classic
3SAT problem to the decision version of RPSSD problem. 	

Since the general RPSSD is NP-complete, efficient approximation algorithms
are needed in the practical applications. Here, we give the approximation algo-
rithm by greedy idea as shown in Fig. 1.

Algorithm GreedySD
Input: Database IR, rule set Σ and an integer m
Output: The repair position set S
1. Let V = {(t, i)|t ∈ IR, 1 ≤ i ≤ |R|};
2. Let graph G = (V, E = ∅);
3. for each pair {(t, i), (s, j)} ∈ V × V do
4. if (t, i) and (s, j) are inconsistent according to ϕ ∈ Σ then
5. add the edge ((t, i), (s, j)) to E;
6. Remove all nodes with degree 0 from V ;
7. if |V | ≤ m then return V ;
8. Let S = ∅;
9. while m > 0 do
10. Let (t, i) ∈ V be the node with maximum degree in G;
11. insert (t, i) to S;
12. remove (t, i) from V and update G;
13. m = m − 1;
14.return S;

Fig. 1. Greedy Algorithm for RPSSD

Theorem 2. The Algorithm GreedySD is a 2-approximation algorithm for RPS
problem under SD strategy.

Proof. It can be proved simply by using the similar analysis with approximation
algorithms for the minimum vertex cover problem. The details are omitted in
this paper. 	

4 RPS Problem for Full Modify Strategy

In this part, we consider the repair position selection problem for full modify
strategy. Under the full modify strategy, each item v in the repair position set
S indicates a tuple t and an attribute index i. Given the set S, the experts
will repair the data by modifying the values on repair positions in S, then the
inconsistency caused by (t1, i1) and (t2, i2) is repaired if both of them belong to
S. Let I(S) be the set of inconsistent pairs of repair positions in S. Then, for
FM strategy, we can define the function value of fFM (S) to be the size of I(S),

Repair Position Selection for Inconsistent Data 431

that is fFM (S) = |I(S)|. In this part, when the context is clear we will use f to
represent fFM .

In this part, we utilize the dense k-subgraph (DkS) maximization problem
[11], of computing the dense k-vertex subgraph of a given graph. Given a graph G
and a parameter k, the DkS problem is to find a set of k vertices with maximum
average degree in the subgraph induced by this set. It is still NP-hard even when
restricted to bipartite graphs of maximum degree 3 [12].

Theorem 3. The problem RPSFM is NP-complete even if there are only 3
rules in Σ.

Proof (sketch). We can show the RPSFM problem is NP-complete by a reduction
from the DkS problem whose definition is given as follows. DkS problem: given
a bipartite graph G = (V,E) of maximum degree 3 and two integer parameters
k and m, the DkS problem is to determine whether there is a set S of k vertices
such that the edge size of the induced graph GS is not smaller than m. 	

The following lemma will show the correctness of Property PI used in the
proof of Theorem 3.

Lemma 1 (Property PI). Given a bipartite graph G with maximum degree 3,
the MatchE3 Algorithm will output a maximum matching M such that all nodes
with degree 3 will be included in M .

Proof. As shown in Fig. 2, the main idea of MatchE3 Algorithm can be described
as follows. First, a maximum matching M̂ of G is built by using the Hungarian
Algorithm [15] whose running time can be bounded by O(|VG| · |EG|) (line 1).
Then, let V1 be the set of nodes with degree 3 which are not covered by M̂
(line 2–3). Then, to cover V1, M̂ is modified to M by using an idea similar with
searching augmenting paths used in Hungarian Algorithm (line 4–24). The node
in V1 is processed iteratively. For each node s ∈ V1, we will search M-extending
path starting at s (line 6–18). An M-extending path P is a path with even edges
whose edges alternate between EM and EG \ EM . Also, if we label all nodes on
P sequentially as {n1 = s, n2, . . . , n2k+1}, all nodes in {n2i+1|0 ≤ i < k} are
required to have degree 3 and the degree of the node n2k+1 is required to be less
than 3. Intuitively, after finding such a path P , we can use (EP \EM)∪(EM \EP)
to construct a new matching M ′ such that (1) |M ′| = |M |, (2) M ′ covers node
s, and (3) the nodes with degree 3 covered by M can be still covered by M ′ (line
19–23). Therefore, after all nodes in V1 are processed, the final matching M will
satisfied the conditions required and be outputted (line 25).

The process of searching M-extending paths starting from s can be explained
as follows. Since G is a bipartite graph, we can assume that VG = X∪Y such that
EG ⊆ X × Y . Also, without loss of generality, we assume that s ∈ X. During the
procedure of searching M-extending paths, we use S to represent the set of nodes
visited in X, vR to represent the set of nodes visited in Y . The set pre includes
all edges visited when searching M-extending paths. Finally, if an M-extending
path is found, we use t to represent the ending node of that path. The set S \vS

432 X. Liu et al.

Algorithm MatchE3
Input: Graph G
Output: a maximum matching M of G

1. Let M̂ be a maximum matching of G;
2. Let V1 = VG \ VM̂ ;
3. Remove nodes with degree less than 3 from V1;

4. M = M̂ ;
5. while V1 is not ∅ do
6. Let s be some node in V1;
7. S = {s}; vS = ∅; vR = ∅; pre = ∅; t = null;
8. while |S| �= |vS| do
9. if there is a node v ∈ S \ vS satisfying deg(v) < 3 then
10. t = v;
11. break ;
12. for each node v ∈ S \ vS do
13. insert v to vS;
14. for each node r ∈ neighbor(v) \ vR do
15. Let u be the node satisfying (r, u) ∈ M ;
16. insert r to vR;
17. insert u to S;
18. insert (v, r) and (r, u) to pre;
19. while t! = s do
20. Let x be the node satisfying (x, t) ∈ pre;
21. Let y be the node satisfying (y, x) ∈ pre;
22. M = (M/(x, t)) ∪ (y, x);
23. t = y;
24. Remove s from V1;
25.return M ;

Fig. 2. MatchE3 Algorithm for graph G

represent the nodes visited in the last iteration step. MatchE3 tries to find the
M-extending path by extending the paths through adding edges starting from
nodes in S \vS. In details, for each node v ∈ S \ vS and each unvisited neighbor
node r of v, we can find an edge (r, u) ∈ M and use (v, r) and (r, u) to extend
the current path. If the new added node u satisfies deg(u) < 3, an M-extending
path is found and let t = u.

The correctness of MatchE3 can be obtained by following results.
(1) When MatchE3 is trying to extend the paths by adding edges, for node

r ∈ neighbor(v) \ vR, there must be a node u satisfying (r, u) ∈ M . We prove
this by contradiction. Suppose there is a node r such that there does not exist
a node u satisfying (r, u) ∈ M . That is we find a path P connecting s and
r. P is composed of edges alternating between EM and EG \ EM , and both
the first edge and the last edge on P belong to EG \ EM . Intuitively, P is an
augmenting path in the Hungarian Algorithm, and we can construct a maximum
matching M ′ by letting M ′ = (EP \EM)∪ (EM \EP) satisfying |M ′| = |M |+1.

Repair Position Selection for Inconsistent Data 433

That is a contradiction, since M is a maximum matching found by the Hungarian
Algorithm.

(2) After MatchE3 has finished the steps of searching M -extending paths
(line 8–18), t must be a node in G such that the path between s and t is an M-
extending path. There are two possible ways for MatchE3 to quit the loop control
defined between line 8 and 18. The first one is that t is assigned to be a node v
satisfying deg(v) < 3, and the second one is that |S| = |vS|. In the followings,
we will show that the second way is impossible by contradiction. Suppose that
|S| = |vS| and t = null. Obviously, we have S = vS. Let consider the induced
graph GSR of G on vertex set vS ∪ vR. According to the definition of vS and
vR, obviously, all nodes in vS have degree 3 in GSR. In addition, the maximum
matching M can be divided into two parts M1 and M2, where M1 includes all
edges of M also belonging to GSR and M2 includes all other edges. Consider
a maximum matching MSR of GSR. According to the König-Egerváry theorem
[22], |MSR| = |V C(GSR)|, where V C(GSR) is the minimum vertex cover of
GSR. Since the maximum node degree in GSR is 3 and GSR is a bipartite graph,
we have 3V C(GSR) ≥ |EGSR

|. Then, we have |MSR| ≥ |EGSR
|/3. According

to the definition of GSR, |EGSR
| = 3|vS|. Thus, |MSR| ≥ |EGSR

|/3 = |vS|.
Since GSR is connected and bipartite, we have |MSR| = |vS|. According to
the definition of vS, expect s, every node in vS has an incoming edge in M1.
Therefore, |M1| = |vS|−1. Consider M ′ = MSR ∪M2, we will show that M ′ is a
matching of G which is a contradiction since M is assumed to be the maximum
matching and |M ′| = |M | + 1. To show that M ′ is a matching of G, we only
need to verify that all edges in MSR and M2 are disjoint. Consider some node x
satisfying there is an edge (x, y) ∈ M2. First, x can not belong to vR, otherwise,
y will belong to S and (x, y) will belong to GSR which is a contradiction with
the assumption. Additionally, x can not belong to S, otherwise, according to the
Algorithm MatchE3, y and (x, y) will belong to vR and GSR respectively which
is a contradiction also.

(3) After using the M-extending path to modify the maximum matching M
(line 19–23), the new matching M ′ will cover one more vertex with degree 3
in G. Consider the M-extending path between s and t. All nodes except t on
path P have degree 3. Let N(M) and N(M ′) be the nodes covered by matching
M and M ′ respectively. Obviously, we can obtain N(M ′) by replacing t with
s in N(M). According to the Algorithm MatchE3, deg(t) = 2 and deg(s) = 3.
Therefore, M ′ covers one more node with degree 3 in G.

Finally, after showing the previous 3 properties, the correctness of Algorithm
MatchE3 can be proved. 	

We can build an approximation algorithm for the RPSFM problem by giving
a reduction from RPSFM to DkS problem.

Theorem 4. The RPSFM problem can be approximated within ratio O(n
1
3).

Proof. Given an RPSFM instance I = {IR, Σ,m, k}, a linear reduction to the
DkS instance I ′ = {G,m, k} can be built by following steps. First, for each tuple
t ∈ IR and each attribute A ∈ R, build one node vtA in V . Then, for tuples t

434 X. Liu et al.

and t′, if there is a rule ϕ ∈ Σ such that t and t′ are inconsistent on attribute
X, add one edge (vtX , vt′X) into E. It is easy to verify that the reduction shown
above is a linear reduction from RPSFM to DkS problem. Finally, since DkS
problem can be approximated within ratio O(n

1
3) [11], the RPSFM problem can

be approximated within ratio O(n
1
3) also. 	

5 RPS Problem for Half Modify Strategy

In this part, we consider the RPS problem for HM (Half Modify) strategy. For
HM strategy, we can define the function value of fHM (S) to be size of tuples
which can be repaired by S in IR. In this part, when the context is clear, we
also use f to represent fHM .

Before analyzing the RPSHM problem, one property about the Half Modify
strategy is introduced which actually shows how the HM strategy is utilized to
repair the inconsistent data.

Proposition 1. Given relational instance IR and a standard dependency rule
ϕ : X → Y , for a special tuple t, the set St is defined to be {t′|t′ ∈ IR ∧
t′[X] = t[X]}. Using the HM strategy, if the tuple t is repaired, the tuples in St

can also be repaired automatically.

Proof. After t has been repaired, no matter what value the expert give to the
Y attribute of t, it essentially refines the rule ϕ to the form R : X = t[X] →
Y = t[Y]. The new refined rule has only constant values in the both sides of the
rule, therefore, the tuples in St can also be repaired. 	

Theorem 5. The problem RPSHM is NP-complete.

Proof (sketch). It can be proved by a reduction from VC (vertex cover for short)
problem. 	

In the followings, a greedy algorithm is introduced to approximate the
RPSFM problem.

Theorem 6. The Algorithm GreedyHM is a (1− 1/e)-approximation algorithm
for RPS problem under HM strategy.

Proof. Using the similar ideas in [10], we can simply obtain the approximation
ratio (1 − 1/e). As shown in Fig. 3, the first step of Algorithm GreedyHM is
to construct the set rel (line 1–12) which is composed of items with structure
(key, val). After that, for each item e ∈ rel, e.key is composed of equivalent
repair positions where “equivalent” means that the data sets finally repaired
by repairing any one of them are same, and e.val is the data set that can be
repaired by e.key. Let the set of all possible repairing positions be Ω. By rel,
we can define Fp ⊆ Ω for each repair position p such that Fp = e.val where
p ∈ e.key. The second step in Algorithm GreedyHM is a greedy iteration during
which the position p with maximal uncovered Fp is selected (line 13–19). Suppose

Repair Position Selection for Inconsistent Data 435

Algorithm GreedyHM
Input: Database IR, rule set Σ and an integer k
Output: The repair position set S
1. Initialize rel to be ∅;
2. Initialize res and S to be ∅;
3. for each rule r : X → y in Σ do
4. for each inconsistent pair of positions (t[y], s[y]) of r do
5. Let T = {[t′, y]|t′ ∈ IR ∧ t′[X] = t[X]};
6. Let tmp.key = T , tmp.val = T ;
7. for each item e ∈ rel do
8. if e.key ∩ tmp.key �= ∅ then
9. Insert (key = e.key ∩ tmp.key, val = e.val ∪ tmp.val) into rel;
10. e.key = e.key \ tmp.key;
11. tmp.key = tmp.key \ e.key;
12. Insert tmp to rel;
13.for i ∈ [1, k] do
14. Let e ∈ rel such that |e.val| is maximized;
15. Add e.key to res;
16. Remove e from rel;
17. for each e′ ∈ rel do
18. e′.val = e′.val \ e.val;
19. Select arbitrary p ∈ e.key and add p to S;
20.return S;

Fig. 3. Greedy Algorithm for RPSHM

Sopt be the optimal solution and let Copt be the set ∪p∈Sopt
Fp. Let C be the set

∪p∈SFp, and let Ci be the set ∪p∈Si
Fp where Si is the set of positions collected

after the ith iteration. We have that

|Ci| − |Ci−1| ≥ |Copt| − |Ci−1|
k

,

since Algorithm GreedyHM is greedy based and the optimal solution
can be repaired by selecting k positions only. Finally, we have |Ck| ≥
|Copt|(1 − (1 − 1/k)k), that is |Ck|/|Copt| ≥ 1 − 1/e (Fig. 3). 	

6 Related Work

Inconsistency is a common data quality problem, which is also the main focus
of data quality research area. There are several kinds of methods to solve the
inconsistency problem. An intuitive idea is to fix the inconsistencies using sophis-
ticated tools. Data repair aims to find a repair with a minimum modifications on
the given database, where usually a repair can be defined to be a minimal set of
repair operations (such as insert, delete and so on) which can make the database
consistent. In [2], a database repair is defined to be a set of value modifications,
based on the cost model defined over database repair, the minimum-cost repair

436 X. Liu et al.

problem is shown to be NP-complete and heuristic algorithms are designed to
solve this problem in practical applications. [6] studies the problem of minimal-
change integrity maintenance using tuple deletions. [18] considers the problem
of repairing a database that is inconsistent with respect to a set of integrity con-
straints by updating numerical values. Based on an unified cost model, heuristic
algorithms are designed to repair data under the unified cost model in [5]. The
limitation of those methods is that there may be many different optimal repairs
which is hard to explain when using the intuitive idea that optimal repair is the
correct repair. In [14], to help decide which repair is preferred by users or sys-
tems, a repair is defined to be a set of insertion and deletion, and a function f is
used to measure the score of each repair (for example, f just computes the size
of insertions). Then, based on the f a logical method is proposed to compute all
preferred repairs and answers over repairs. In [8], without the usual assumption
that database is consistent before updates, the researchers give an extended def-
inition of sound and complete inconsistency check and show whether previous
methods involving integrity check satisfy those conditions. The second kind of
method is consistent query answering. The main idea of consistent query answer-
ing (CQA) is to answer the queries on inconsistent databases without repairing
them first. It is similar with the certain answers over incomplete database. [1]
studies the problem of the logical characterization of the notion of consistent
answer in a relational database. A method for computing consistent answers is
given and its soundness and completeness (for some classes of constraints and
queries) are proved. In [17], the algorithmic and complexity theoretic issues of
CQA under database repairs that minimally depart from the original database
are investigated. To solve CQA problem, one important strategy is to rewrite
the queries according to the inconsistencies and constraints [9,13,20]. Since auto-
matic repair methods can not guarantee to find the true values when repairing
errors in database, using the information of experts is a possible way to solve
this problem. [19] considers to use the feedback on query results from users to
guide the data repairing so that a more reasonable repairing solutions can be
obtained. Under different query classes, both the data and combined complexi-
ties of the data repairing problem are studied. Some close related works are in
the name of view update or delete propagation. The view update problem is to
translate given updates on a fixed view into a series corresponding updates over
the original data.

7 Conclusion

In this paper, to develop the idea of using user feedbacks to guide the data repair,
the RPS problem is studied under three different data repairing strategies, SD,
FM and HM. To our best knowledge, this is the first work on the RPS problem.
We firstly give the formal definition of the RPS problem and study its complex-
ities and approximabilities. All corresponding RPS problems under the three
repairing strategies are shown to be NP-complete, and efficient approximation
algorithms for them are also designed.

Repair Position Selection for Inconsistent Data 437

References

1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 1999), New York, pp. 68–
79. ACM (1999)

2. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data (SIGMOD
2005), New York, pp. 143–154. ACM (2005)

3. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: 2007 IEEE 23rd International Conference
on Data Engineering, pp. 746–755, April 2007

4. Cai, Z., Heydari, M., Lin, G.: Iterated local least squares microarray missing value
imputation. J. Bioinform. Computat. Biol. 4, 935–958 (2006)

5. Chiang, F., Miller, R.J.: A unified model for data and constraint repair. In: Pro-
ceedings of the 2011 IEEE 27th International Conference on Data Engineering
(ICDE 2011), Washington, DC, pp. 446–457. IEEE Computer Society (2011)

6. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197, 90–121 (2005)

7. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency
and accuracy. In: Proceedings of the 33rd International Conference on Very Large
Data Bases (VLDB 2007), pp. 315–326. VLDB Endowment (2007)

8. Decker, H., Martinenghi, D.: Inconsistency-tolerant integrity checking. IEEE
Trans. Knowl. Data Eng. 23, 218–234 (2011)

9. Eiter, T., Fink, M., Greco, G., Lembo, D.: Repair localization for query answering
from inconsistent databases. ACM Trans. Database Syst. 33, 10:1–10:51 (2008)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

11. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29, 410–421 (2001)

12. Feige, U., Seltser, M.: On the densest k-subgraph problems, technical report, The
Weizmann Institute, Jerusalem, Israel (1997)

13. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73, 610–635 (2007)

14. Greco, S., Sirangelo, C., Trubitsyna, I., Zumpano, E.: Preferred repairs for inconsis-
tent databases. In: Proceedings of the Seventh International Database Engineering
and Applications Symposium, pp. 202–211, July 2003

15. Kuhn, H.: The Hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2, 83–97 (1955)

16. Li, J., Liu, X.: An important aspect of big data: data usability. J. Comput. Res.
Dev. 50, 1147–1162 (2013)

17. Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in data-
bases under cardinality-based and incremental repair semantics. In: Schwentick,
T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 179–193. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11965893 13

18. Lopatenko, A., Bravo, L.: Efficient approximation algorithms for repairing inconsis-
tent databases. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 216–225, April 2007

https://doi.org/10.1007/11965893_13

438 X. Liu et al.

19. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted
database repair of functional dependency violations. Theor. Comput. Sci. 609,
594–605 (2016)

20. Staworko, S., Chomicki, J.: Consistent query answers in the presence of universal
constraints. Inf. Syst. 35, 1–22 (2010)

21. Wang, Y., Cai, Z., Stothard, P., Moore, S., Goebel, R., Wang, L., Lin, G.: Fast
accurate missing SNP genotype local imputation. BMC Res. Notes 5, 404 (2012)

22. West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (2001)

Unbounded One-Way Trading on Distributions
with Monotone Hazard Rate

Francis Y.L. Chin1, Francis C.M. Lau2, Haisheng Tan3, Hing-Fung Ting2,
and Yong Zhang4(B)

1 Hang Seng Management College, Shatin, Hong Kong
francischin@hsmc.edu.hk

2 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong

{fcmlau,hfting}@cs.hku.hk
3 School of Computer Science and Technology,

University of Science and Technology of China, Hefei, China
hstan@ustc.edu.cn

4 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

zhangyong@siat.ac.cn

Abstract. One-way trading is a fundamental problem in the online algo-
rithms. A seller has some product to be sold to a sequence of buyers
{u1, u2, . . . } in an online fashion and each buyer ui is associated with his
accepted unit price pi, which is known to the seller on the arrival of ui.
The seller needs to decide the amount of products to be sold to ui at the
then-prevailing price pi. The objective is to maximize the total revenue
of the seller. In this paper, we study the unbounded one-way trading, i.e.,
the highest unit price among all buyers is unbounded. We also assume
that the highest prices of buyers follow some distribution with monotone
hazard rate, which is well-adopted in Economics. We investigate two vari-
ants, (1) the distribution is on the highest price among all buyers, and (2)
a general variant that the prices of buyers is independent and identically
distributed. To measure the performance of the algorithms, the expected
competitive ratios, E[OPT]/E[ALG] and E[OPT/ALG], are considered
and constant-competitive algorithms are given if the distributions satisfy
the monotone hazard rate.

1 Introduction

Revenue maximization is an important problem studied by researchers in the
fields of economics, mathematics and computer science. This problem has many
variations but generally involves the question of how to sell or assign products
(goods or services) to various buyers. The assignment of products includes deter-
mining both the price and the amount of products sold to each buyer, which is a
fundamental problem related to markets and market mechanisms in economics.
Accordingly, there are two ways for a seller to maximize revenue: controlling the
selling price and controlling the amount sold.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 439–449, 2017.
https://doi.org/10.1007/978-3-319-71150-8_36

440 F.Y.L. Chin et al.

In this paper, we focus on the design of an online strategy to determine how
much should be sold at the prevailing market price (which cannot be controlled
by the seller) at different times. This problem was first studied by El-Yaniv et
al. [12,13], which was called named one-way trading. In the one-way trading
problem, a player has some initial asset (e.g., dollar) to be changed to a target
asset (e.g., yen). The exchange rate fluctuates over time. To maximize the rev-
enue, the player must decide the amount of the initial asset to be changed when
the exchange rate on each day is known. The offline version of this problem is
straightforward as the seller can know all the future information: the seller can
simply exchange all initial assets to the target asset on the day with the highest
exchange rate. However, in the online version where the player has no knowledge
of the future, at no point will the player be sure that the prevailing exchange
rate is the highest one. The key features of the one-way trading problem are: (1)
the player has no control of the exchange rate which fluctuates over time; (2)
the player has no knowledge, or incomplete knowledge, of the future; and (3) the
player can decide the amount to be changed only upon the arrival of each rate.

The one-way trading problem studied in [13] is the bounded version, i.e.,
the range of the exchange rate is in [m,M], where m and M are fixed val-
ues. Based on the relationship between m and M , El-Yaniv et al. presented an
optimal online algorithm by using a threat-based policy, of which the compet-
itive ratio is Θ(log(M/m)). If the highest possible rate is unbounded, even for
a fixed number of transactions, the threat-based policy cannot be implemented
since the ratio between any two rates can be arbitrary large. In the bounded
one-way trading problem, the remaining amount of the initial asset after the
last transaction will be changed to the target asset with the minimum rate m.
However, if the highest possible rate is unbounded, in the worst case, the total
revenue is dominated by the revenue from high rates and the revenue from the
remaining asset using the minimum rate is very tiny and ignoring this part
will hardly affect the performance. For the one-way trading with unbounded
value, Chin et al. [10] gave a near optimal algorithm with competitive ratio
O(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ε) if the value of r∗ = p∗/p1, the
ratio between the highest market price p∗ = maxi pi and the first price p1, is
large and satisfies log(h) r∗ > 1, where log(i) x denotes the application of the log-
arithm function i times to x; otherwise, the algorithm has a constant competitive
ratio. A lower bound was also proved in [10]. Given any positive integer h and
any one-way trading algorithm A, a sequence of buyers σ with log(h) r∗ > 1 exist
such that the ratio between the optimal revenue and the revenue obtained by A
is at least Ω(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)).

In some sense, the one-way trading problem can be regarded as a time series
search problem, the objective of which is to find the maximum (or the minimum)
value among a sequence of values in an online fashion. For the 1-max-search
variant, i.e., determining the highest value among the whole sequence in an online
fashion, El-Yaniv et al. [13] presented a randomized O(log M/m)-competitive
algorithm if the values fluctuate between m and M ; when M/m is unknown in
advance, a randomized online algorithm with competitive ratio O(log(M/m) ·

Unbounded One-Way Trading on Distributions with Monotone Hazard Rate 441

log1+ε(log(M/m)) can be achieved. In [16], Lorenz et al. gave an optimal online
algorithm for the k-search problem, in which the player’s target is to find the
k highest (or lowest) values among all values in a sequence and the values are
chosen from [m,M].

In this paper, we assume that items can be sold fractionally, thus, the amount
of items can be normalized to be 1. A sequence of buyers come one after one
and each buyer i is associated with a price pi, which is his accepted unit price
for buying the items. Only upon the arrival of a buyer i will his accepted price
pi be known to the seller, who will immediately determine the amount of items
to be sold to the buyer with unit price pi. The objective is to maximize the
total revenue of the seller. In the unbounded one-way trading, the range of the
accepted prices is in (0,+∞).

In all previous studies, if there is no information about the future prices,
no algorithm achieved a competitive ratio better than a logarithm factor. How-
ever, given some partial information about the prices, the performance could be
improved greatly. In this paper, we assume that the distribution of the highest
accepted price is the partial information that is known. Firstly, assume that the
distribution is on the highest price among all buyers, i.e., maxi pi. We then con-
sider a general variant where the sequence of prices of buyers is independent and
identically distributed (i.i.d.).

To measure the performance of the online algorithm, the competitive ratio is
often used, which denotes the ratio between the result form the online algorithm
and the optimal offline algorithm. For the online algorithm with distributions,
we use the expected competitive ratio for evaluation. There are mainly two kinds
of expectation of competitive ratio, i.e., E[OPT]

E[ALG] and E[OPT
ALG]. Both of them are

considered with respect to different situations and the values of them may vary
a lot. For the former measure, since the expected value of the optimal solution
is independent of the algorithm solution, the target is to maximize the expected
output of the algorithm.

The paper is organized as follows: Sect. 2 describes the one-way trading with
distributions and the measurement of the algorithm; in Sect. 3, constant com-
petitive algorithms are given if the distribution is on the highest price among
all buyers; in Sect. 4, we prove that the variant with i.i.d. distribution on each
buyer can be reduced to the variant in Sect. 3, and thus constant-competitive
algorithms can be obtained too.

2 One-Way Trading with Distribution

In the one-way trading problem, we may regard the first price as a unit value.
This assumption is reasonable since in the remaining part of the price sequence,
values lower than the first one could be ignored and will not affect the perfor-
mance. Let f be the density function and F be the accumulated distribution
with respect to the highest price among all buyers. We assume that f and F are
continuous in [1,+∞). Given F , the expected revenue received from the optimal

442 F.Y.L. Chin et al.

algorithm is

E[OPT] =
∫ +∞

1

xdF (x) =
∫ +∞

1

xf(x)dx.

El-Yaniv et al. showed that for the bounded one-way trading problem, the
adversary can choose the worst distribution on the highest selling price and force
the online algorithm to achieve the competitive ratio no less than Ω(log M/m)
(Theorem 7 in [13]), where the highest price p ∈ [m,M]. This result can be
extended to the unbounded one-way trading problem.

Fact 1. There exists the worst distribution F such that no online algorithm can
solve the unbounded one-way trading problem with the competitive ratio better
than a logarithm factor if the highest price is drawn from F .

Proof. The distribution on the bounded one-way trading can be also used as
the distribution on the unbounded version such that the probabilities on the
highest price higher than M and lower than m are both zero. Thus, setting the
distribution F to be the worst distribution w.r.t. the bounded one-way trading
implies the competitive ratio of any online algorithm cannot be better than a
logarithm factor. ��

This negative result is unimportant in reality since most frequently used dis-
tributions in economics are far from the worst distribution. If the highest price
among all buyers is uniformly distributed, Fujiwara et al. [14] considered the sell-
ing strategy according to several measures, e.g., E[ALG/OPT], E[OPT/ALG],
E[ALG]/E[OPT], E[OPT]/E[ALG]. The algorithms for the average case analysis
of the bounded one-way trading are based on the threat-based policy. However,
such a strategy does not work for the unbounded variant since the lowest price
m and highest price M may not be known in advance.

The hazard rate, a.k.a. the failure rate, is the probability of observing an
outcome within a neighborhood of some value x, conditional on the outcome
being no less than x. The concept of the hazard rate is well-adopted in economics.
For example, in English auctions, the hazard rate on x denotes the probability
of the auction ending at x, conditional on the bidders’ prices reach x. In this
paper, we consider the monotone hazard rate, which is reasonable and also has
been considered in theoretical computer science [8,17]. Formally speaking,

Definition 1 (Monotone Hazard Rate). A distribution F with density f is said
to satisfy the monotone hazard rate (MHR) if 1−F (x)

f(x) is monotonically non-
increasing for all x > 0.

3 Distribution on the Highest Price Among All Buyers

In this part, we consider the variant that the distribution on the highest price
among all buyers is known in advance and satisfies the monotone hazard rate.

Unbounded One-Way Trading on Distributions with Monotone Hazard Rate 443

3.1 Measure of E[OPT]
E[ALG]

The following two lemmas from Chawla et al. [8] and Dhangwatnotai et al. [11]
respectively can be regarded as the consequences of Myerson’s optimal strat-
egy [18]. They also gave the idea to maximize the algorithm’s expected revenue.

Lemma 1 ([8]). If the distribution F with density f satisfies MHR, then there
exists x0 such that (1) x0(1 − F (x0)) is maximized, (2) for any x0 < x1 < x2,
x0(1 − F (x0)) > x1(1 − F (x1)) > x2(1 − F (x2)) and, (3) for any x0 > x1 > x2,
x0(1 − F (x0)) > x1(1 − F (x1)) > x2(1 − F (x2)).

From Lemma 1, it is natural to assign all products to any buyer with value
no less than x0. With probability 1−F (x0), all products are assigned with price
no less than x0, which means the expected revenue from the algorithm is at least
x0 · (1 − F (x0)).

Lemma 2 ([11]). E[OPT] = O(x0 · (1 − F (x0)))

According to the above two lemmas, the algorithm can be simply described
as follows.

Algorithm 1. Online Selling for the measure of E[OPT]/E[ALG]
1: Let x0 = arg maxx x · (1 − F (x))
2: Sell the whole product to the first buyer with price no less than x0.

Thus, we have the following conclusion.

Theorem 1. When considering the measure of E[OPT]
E[ALG] , the expected competitive

ratio of Algorithm1 is a constant.

3.2 Measure of E[OPT
ALG

]

For the measure of E[OPT
ALG], the competitive ratio of Algorithm1 is unbounded

since the seller does not assign any product to the buyer with price less than
arg maxx x(1−F (x)) and the ratio in such case is unbounded. Thus, we have to
investigate the intrinsic property and find other way to achieve good performance
for this measurement.

Lemma 3. Given a distribution F satisfying MHR, h(x) = 1−F (x)
1−F (2x) is

monotone non-decreasing.

Proof.

h′(x) =
−(1 − F (2x))f(x) + 2(1 − F (x))f(2x)

(1 − F (2x))2

=
2f(2x)(1 − F (x)) − f(x)(1 − F (2x))

(1 − F (2x))2

=
2f(2x)

1 − F (2x)
· 1 − F (x)
1 − F (2x)

− f(x)
1 − F (2x)

444 F.Y.L. Chin et al.

Since F satisfies MHR, i.e., 1−F (x)
f(x) ≥ 1−F (2x)

f(2x) , we have h′(x) ≥ 0, which means
that h(x) is monotone non-decreasing. ��

From Lemma 1, we know that if the distribution of the highest price satisfies
MHR, there exists p such that p · (1−F (p)) is maximized. W.l.o.g., assume that
2k ≤ p < 2k+1. As mentioned before, if the coming price is no less than p, selling
the whole item to this buyer is a good idea. But for the remaining case that
the highest price is strictly less than p, the assignment is also critical. In our
algorithm, the item is partitioned with respect to the range of the price. Upon
the arrival of a buyer, if his price is the first in some range, the corresponding
amount of item will be assigned to him. The description of the algorithm is
shown in Algorithm2.

Algorithm 2. Online Selling for the measure of E[OPT/ALG]
1: if v is the first value no less than p then
2: Assign 1/2 product to this buyer.
3: else
4: if v is the first value within [2−i · p, 21−i · p) then
5: Assign 2−i−1 product to this buyer.
6: end if
7: end if

Theorem 2. When considering the measure of E[OPT
ALG], the expected competitive

ratio of the above algorithm is a constant.

Proof. For a sequence of buyers, suppose that the highest price among all buyers
is x. The maximal revenue for this sequence is x by assigning the whole product
to the buyer with the highest price. Let ALG(x) be the revenue received by the
online algorithm on a buyer sequence with the highest price x.

According to the online algorithm, if x ≥ p, the algorithm assigns 1/2 of
a product to a buyer with price no less than p; if x ∈ [2−i · p, 21−i · p), the
algorithm assigns 2−i−1 products to a buyer with price no less than 2−i · p. For
any sequence of buyers, the total amount of products assign to buyers is at most
1/2 + 1/4 + · · · < 1. The whole product is sufficient to be assigned to all buyers
according to the algorithm.

The expected competitive ratio is

E[
OPT

ALG
] =

∫ +∞

1

x

ALG(x)
dF (x)

= (
∫ 2−k·p

1

+
−1∑
−k

∫ 2i+1·p

2i·p
+

+∞∑
0

∫ 2i+1·p

2i·p
)

x

ALG(x)
dF (x)

≤ (
−1∑

−k−1

∫ 2i+1·p

2i·p
+

+∞∑
0

∫ 2i+1·p

2i·p
)

x

ALG(x)
dF (x)

Unbounded One-Way Trading on Distributions with Monotone Hazard Rate 445

The above formula has two parts and we analyze them as follows.

(i) −k − 1 ≤ i ≤ −1.

In this case, ALG(x) ≥ 2i−1 · 2i · p while x ≤ 2i+1 · p. Thus,

∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 22−i

∫ 2i+1·p

2i·p
dF (x) = 22−i(F (2i+1 · p) − F (2i · p))

(ii) i ≥ 0.

In this case, ALG(x) ≥ p/2 while x ≤ 2i+1 · p. Thus,

∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 2i+2

∫ 2i+1·p

2i·p
dF (x) = 2i+2(F (2i+1 · p) − F (2i · p))

From Lemma 1, if i ≥ 0, we have 2i ·p(1−F (2i ·p)) > 2i+1 ·p(1−F (2i+1 ·p)).
Thus, 1−F (2i+1 ·p) < (1−F (2i ·p))/2 and F (2i+1 ·p)−F (2i ·p) > (1−F (2i ·p))/2.
Let 1−F (2i+1 ·p) = (1−F (2i ·p))·δi and F (2i+1 ·p)−F (2i ·p) = (1−F (2i ·p))·γi,
where δi < 1/2, γi > 1/2 and δi + γi = 1.

From Lemma 3, 1−F (2x)
1−F (x) is monotone non-increasing when x > p, thus, δi is

monotone non-increasing and γi is monotone non-decreasing when i increasing.
Thus, if i ≥ 0,

∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 2i+2(F (2i+1 · p) − F (2i · p))

= 2i+2 · (1 − F (2i · p)) · γi

= 2i+2 · (1 − F (p)) ·
i−1∏
k=0

δk · γi

≤ 2i+2 · (1 − F (p)) · δi
0

= 4 · (1 − F (p)) · (2δ0)i

∫ +∞

p

x

ALG(x)
dF (x) ≤ 4 · (1 − F (p)) ·

∑
i

(2δ0)i (1)

=
4 · (1 − F (p))

1 − 2δ0

From Lemma 1, if i ≤ −1, we have 2i ·p(1−F (2i ·p)) < 2i+1 ·p(1−F (2i+1 ·p)).
Thus, 1−F (2i+1 ·p) > (1−F (2i ·p))/2 and F (2i+1 ·p)−F (2i ·p) < (1−F (2i ·p))/2.
Let 1−F (2i+1 ·p) = (1−F (2i ·p))·μi and F (2i+1 ·p)−F (2i ·p) = (1−F (2i ·p))·νi,
where μi > 1/2, νi < 1/2 and μi + νi = 1.

446 F.Y.L. Chin et al.

From Lemma 3, 1−F (x)
1−F (2x) is monotone non-decreasing when 2x < p, and

thus, μi is monotone non-decreasing and νi is monotone non-increasing when
i increases.

Since

F (2i+2 · p) − F (2i+1 · p) = (1 − F (2i+1 · p)) · νi+1

= (1 − F (2i · p)) · μi · νi+1

= (F (2i+1 · p) − F (2i · p)) · μi · νi+1/νi.

We have

F (2i+1 · p) − F (2i · p) = (F (2i+2 · p) − F (2i+1 · p)) · νi

μi · νi+1
.

Thus, if i ≤ −1,

∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 22−i(F (2i+1 · p) − F (2i · p))

= 22−i · (F (2i+2 · p) − F (2i+1 · p)) · νi

μi · νi+1

= 22−i · (F (p) − F (p/2)) · νi

ν0
· 1∏0

k=i μk

≤ 8 · (F (p) − F (p/2)) · 1∏0
k=i 2μk

≤ 8 · (F (p) − F (p/2)) · (
1

2μ0
)i+1

Therefore,
∫ p

1

x

ALG(x)
dF (x) ≤ 8 · (F (p) − F (p/2)) ·

∑
i

(
1

2μ0
)i (2)

=
8 · (F (p) − F (p/2))

1 − 1/(2μ0)

Combining the inequalities (1) and (2), we can say that the excepted com-
petitive ratio of the algorithm is

E[
OPT

ALG
] ≤ 4 · (1 − F (p))

1 − 2δ0
+

8 · (F (p) − F (p/2))
1 − 1/(2μ0)

= O(1).

��

4 Distribution on the Highest Price of Each Buyer

In the previous part, we study the case that the distribution is on the highest
price among all buyers. Now we assume that the distribution on the price of

Unbounded One-Way Trading on Distributions with Monotone Hazard Rate 447

each buyer is known in advance, and the distribution on the buyers is under the
i.i.d. assumption. We also assume that the number of buyers is bounded by n.
Otherwise, even for a distribution with a very tiny value in some high price, the
adversary can force the probability of the high price to be close to 1 by sending
sufficiently large number of buyers.

Formally speaking, there are at most n buyers who will come to the seller to
buy products; the price of each buyer is drawn from the accumulated distribution
F (x) with the density function f(x), where f(x) is derivable.

For this variant, if the distribution of the highest price among all buyers also
satisfies the MHR property, the algorithms in Sect. 3 can be implemented. This
gives us a heuristic to reduce this variant to the previous one. Let F̃ (x) and
f̃(x) be the accumulated distribution and density function on the highest price
among all buyers, thus, F̃ (x) = Fn(x) and f̃(x) = nFn−1(x)f(x), respectively.

Lemma 4. If f(x) satisfies the monotone hazard rate, then f̃(x) also satisfies
the monotone hazard rate.

Proof. If f(x) satisfies the monotone hazard rate (MHR), i.e., 1−F (x)
f(x) is non-

increasing, we have (1−F (x)
f(x))′ ≤ 0, thus, f ′(x) ≤ f2(x)

F (x)−1 . Now we consider 1−F̃ (x)

f̃(x)
.

If (1−F̃ (x)

f̃(x)
)′ ≤ 0, this lemma is true.

(
1 − F̃ (x)

f̃(x)
)′

= (
1 − Fn(x)

nFn−1(x)f(x)
)′

=
−(nFn−1(x)f(x))2 − (1 − Fn(x))[n(n − 1)Fn−2(x)f2(x) + nFn−1(x)f ′(x)]

(nFn−1(x)f(x))2

=
−nFn(x)f2(x) − (n − 1)f2(x) − F (x)f ′(x) + (n − 1)Fn(x)f2(x) + Fn+1(x)f ′(x)

nFn(x)f2(x)

=
−Fn(x)f2(x) − (n − 1)f2(x) + (Fn+1(x) − F (x))f ′(x)

nFn(x)f2(x)

≤
−Fn(x)f2(x) − (n − 1)f2(x) + (Fn+1(x) − F (x)) f2(x)

F (x)−1

nFn(x)f2(x)

=
−Fn+1(x) + Fn(x) − (n − 1)F (x) + (n − 1) + Fn+1(x) − F (x)

nFn(x)(F (x) − 1)

=
(F (x) − 1)(Fn−1(x) − 1) − (n − 1)(F (x) − 1) + Fn−1(x) − 1

nFn(x)(F (x) − 1)

=
Fn−1(x) − 1 − (n − 1) + Fn−2(x) + Fn−3(x) + · · · + 1

nFn(x)

=
Fn−1(x) + Fn−2(x) + · · · + F (x) − (n − 1)

nFn(x)

≤ 0

448 F.Y.L. Chin et al.

Therefore, f̃(x) also satisfies the monotone hazard rate. ��
Since F̃ (x) and f̃(x) satisfy the monotone hazard rate, Algorithms 1 and 2

can be used to handle this variant. Thus, we have the following conclusion.

Theorem 3. In the unbounded one-way trading problem, if the number of buyers
is bounded, the distribution on price of each buyer is i.i.d. and satisfies the
monotone hazard rate, online algorithms with constant competitive ratios can be
obtained under the measures of E[OPT/ALG] and E[OPT]/E[ALG].

5 Concluding Remark

Design selling mechanisms to maximize the seller’s revenue is well-studied in
the field of economy whereas related research in theoretical computer science
is relatively more recent and ongoing. Many variants of the problem have been
found to be computationally difficult when cast in a realistic setting. The chal-
lenge has been to identify special cases for which a solution can be efficiently
computed while keeping their relevance to real-life situations. Traditional worst
case analyses in which the algorithm designer usually knows nothing about the
future may not match the reality well. Average case analysis of the expected
ratio is a direct measure of performance. This paper is an attempt to model the
real case where the seller has some partial information about the buyers. For
future research, it may be worthwhile to determine which information is critical
and how to fully utilize the partial information to design selling strategies.

Acknowledgements. This research is supported by National Key Research and
Development Program of China under Grant 2016YFB0201401, China’s NSFC grants
(No. 61433012, U1435215, 61402461, 61772489), Hong Kong GRF grant (17210017,
HKU 7114/13E), and Shenzhen basic research grant JCYJ20160229195940462.

References

1. Babaioff, M., Dughmi, S., Kleinberg, R., Slivkins, A.: Dynamic pricing with limited
supply. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC
2012), pp. 74–91 (2012)

2. Badanidiyuru, A., Kleinberg, R., Singer, Y.: Learning on a budget: posted price
mechanisms for online procurement. In: Proceedings of the 13th ACM Conference
on Electronic Commerce (EC 2012), pp. 128–145 (2012)

3. Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In:
Proceedings of the 9th ACM Conference on Electronic Commerce (EC 2008), pp.
50–59 (2008)

4. Blum, A., Hartline, J.D.: Near-optimal online auctions. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 1156–
1163 (2005)

5. Blum, A., Gupta, A., Mansour, Y., Sharma, A.: Welfare and profit maximization
with production costs. In: Proceedings of 52th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2011), pp. 77–86 (2011)

Unbounded One-Way Trading on Distributions with Monotone Hazard Rate 449

6. Chakraborty, T., Even-Dar, E., Guha, S., Mansour, Y., Muthukrishnan, S.:
Approximation schemes for sequential posted pricing in multi-unit auctions. In:
Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 158–169. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17572-5 13

7. Chakraborty, T., Huang, Z., Khanna, S.: Dynamic and non-uniform pricing strate-
gies for revenue maximization. In: Proceedings of 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), pp. 495–504 (2009)

8. Chawla, S., Hartline, J.D., Kleinberg, R.: Algorithmic pricing via virtual valua-
tions. In: Proceedings of the 8th ACM Conference on Electronic Commerce (EC
2007), pp. 243–251 (2007)

9. Chen, G.-H., Kao, M.-Y., Lyuu, Y.-D., Wong, H.-K.: Optimal buy-and-hold strate-
gies for financial markets with bounded daily returns. SIAM J. Compt. 31(2),
447–459 (2001)

10. Chin, F.Y.L., Fu, B., Guo, J., Han, S., Hu, J., Jiang, M., Lin, G., Ting, H.-F.,
Zhang, L., Zhang, Y., Zhou, D.: Competitive algorithms for unbounded one-way
trading. Theor. Comput. Sci. 607(1), 35–48 (2015)

11. Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single
sample. Games Econ. Behav. 91, 318–333 (2015)

12. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Competitive analysis of financial
games. In: Proceedings of 33th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 1992), pp. 372–333 (1992)

13. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading
online algorithms. Algorithmica 30(1), 101–139 (2001)

14. Fujiwara, H., Iwama, K., Sekiguchi, Y.: Average-case competitive analyses for one-
way trading. J. Comb. Optim. 21(1), 83–107 (2011)

15. Koutsoupias, E., Pierrakos, G.: On the competitive ratio of online sampling auc-
tions. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 327–338. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5 27

16. Lorenz, J., Panagiotou, K., Steger, A.: Optimal algorithms for k-search with appli-
cation in option pricing. Algorithmica 55(2), 311–328 (2009)

17. Mahdian, M., McAfee, R.P., Pennock, D.: The secretary problem with a haz-
ard rate condition. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS,
vol. 5385, pp. 708–715. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-92185-1 76

18. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
19. Zhang, Y., Chin, F.Y.L., Ting, H.-F.: Competitive algorithms for online pricing. In:

Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 391–401. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22685-4 35

20. Zhang, Y., Chin, F.Y.L., Ting, H.-F.: Online pricing for bundles of multiple items.
J. Glob. Optim. 58(2), 377–387 (2014)

https://doi.org/10.1007/978-3-642-17572-5_13
https://doi.org/10.1007/978-3-642-17572-5_27
https://doi.org/10.1007/978-3-540-92185-1_76
https://doi.org/10.1007/978-3-540-92185-1_76
https://doi.org/10.1007/978-3-642-22685-4_35

Generalized Bidirectional Limited Magnitude
Error Correcting Code for MLC Flash Memories

Akram Hussain(B), Xinchun Yu, and Yuan Luo

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

hakram940@gmail.com, {moonyuyu,yuanluo}@sjtu.edu.cn

Abstract. The flash memories have gained considerable attention to
replace hard-disk drives in modern storage applications because of the
following excellent features such as the low cost, low power consump-
tion, and high storage densities as compared to other non-volatile tech-
nologies. However, some error types are associated with flash memories
such as charge leakage and inter-cell interference errors. It leads to the
bidirectional limited magnitude channel model if both the error types
are considered together. It has been observed that these error types are
data value dependent for 2-bit MLC flash; they have different probabil-
ities to become erroneous. In this paper, we consider the bidirectional
limited magnitude errors by considering the data value dependencies of
these error sources. A code construction to correct bidirectional limited
magnitude errors is provided as well. The proposed code construction is
the generalized case of asymmetric, symmetric, and bidirectional limited
magnitude error correcting codes.

Keywords: Bidirectional error correcting code · Data value dependent
errors · Limited magnitude errors · Flash memories

1 Introduction

Non-volatile memories (NVMs) hold the stored data even after the power to
memories is cut off. They provide significant advantages such as faster data
access, low power consumption, and improved physical resilience. These signif-
icant features of NVMs made them considerable as the primary replacement
of the hard disk drives for modern storage applications, like mobile comput-
ing, enterprise storage, and data warehouses. Although there are many NVM
based memories such as phase change memory (PCM), magneto-resistive ran-
dom access memory (MRAM), and spin transfer torque random access memory
(STT-RAM), unique characteristics of flash devices made them most popular
among others [1,2].

(NAND) flash memory is comprised of floating gate transistors (cells) which
are organized in blocks. The amount of charge, present at the gate of a tran-
sistor/cell, represents the data. The single level cell (SLC) flash memories store
the only single bit in each cell.
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 450–461, 2017.
https://doi.org/10.1007/978-3-319-71150-8_37

Generalized Bidirectional Limited Magnitude ECC 451

The two main issues are associated with flash devices, which are: data reten-
tion errors (charge leakage) and the inter-cell interference errors. In the first
problem, the device leaks out the stored data over time, and in the second the
cells gain some amount of charge while neighbor cells are being programmed.

The demand of large storage density has yielded the concept of multi-level cell
(MLC) flash memories in which the device can store more than single information
bit in each cell. However, the device capacity is increased by storing more than
one bit in a cell which leads to low reliability (less margin between adjacent
levels) and worsens the two main issues as discussed previously [3]. Cai et al. in
[4] have studied the different types of errors in 2-bit MLC flash memory. One
of their main observations is that the data retention and inter-cell interference
errors are data value dependent. Moreover, they also observe that these errors are
asymmetric errors of small magnitudes. This observation is exploited recently for
placing more thresholds between different levels where more errors are expected,
which reduces the decoding latency of an LDPC code [5].

In [6], they give code a construction and encoding/decoding algorithms for
t asymmetric l–limited magnitude error correcting code to handle programming
overshoot/inter-cell interference errors. The given code is constructed from the
base code over the small size alphabet. The significant advantage of the code con-
struction is that the encoding/decoding complexities are reduced. In the study
of [7], they observe that a large number of cells experience asymmetric errors
of smaller magnitudes, and they design a code to correct t1 and t2 number of
errors of magnitude l1 and l2, respectively, where (l1 < l2). Furthermore, Gabrys
et al. study a more refined model for three-level-cell (TLC) [1,8]. In this model
(Graded bit errors), most of the time only single bit becomes erroneous when
data/symbol is stored as a triplet in TLC. They provide code constructions based
on Tensor product to correct graded bit errors.

The data retention errors have been considered in [9,10] for all asymmetric
l–limited magnitude errors detecting and correcting codes, respectively. They
derive a lower bound on the number of check digits. Their encoding and decoding
algorithms are very efficient. In general, errors do not happen to all the symbols
in a codeword.

An intrinsic/neutral distribution appears when flash memory is used in high
radiation environments such as satellite or probes. This intrinsic distribution
is typically located between the erased state and first programmed state. In
high radiation environment this distribution attracts all the distributions/levels
towards itself, which causes asymmetric errors [11]. They derive an upper bound
on the maximum code size, and provide code constructions to handle the radia-
tion errors.

1.1 Bidirectional Limited Magnitude Channel Model

In general, charge leakage and inter-cell interference errors are considered indi-
vidually which leads to asymmetric limited magnitude channel models to sim-
plify the system. However, if both error types are considered together, then it is
possible that the practical systems can perform better in terms of bit error rate.

452 A. Hussain et al.

The consideration of both error types together induces the bidirectional limited
magnitude channel model; the magnitude of one direction may be larger than
the other. The bidirectional (lu, ld)–limited magnitude channel model is shown
in Fig. 1, where we set the upward magnitude lu = 2 and downward magnitude
ld = 1. In [12], they design code to correct asymmetric and bidirectional errors
by assuming that both sources of errors are equally significant. The designed
code performs better sometimes over large alphabet size.

Inter-cell interference causes the threshold voltage shift of the neighbor cells
when the charge is stored in an adjacent cell. The number of errors due to inter-
cell interference can be minimized by adjusting the Vread (reading voltage) but
this adjustment makes the other errors appear due to different error sources in
the downward direction. These downward errors have small magnitude, how-
ever, they are significant. In [13,14], code constructions and encoding/decoding
algorithms are given for bidirectional limited magnitude errors which also hap-
pen due to adjustment of Vread. The given code constructions are based on the
construction in [6].

Fig. 1. q–ary bidirectional (lu = 2, ld = 1)–limited magnitude channel.

Problem Statement: As discussed in [4], the data retention and intercell inter-
ference errors are data value dependent errors. These errors have different proba-
bilities for each symbol to be confused for upper symbol (a+1) and lower (a−1)
symbols when a was the original symbol. For instance, if we store a codeword
x = (1, 0, 1, 3, 1, 2) which contains different components over 4 − ary (alphabet
size is 4), then each component of this codeword has different probabilities to
transit to lower and upper values (levels). Such as probabilities of data reten-
tion and intercell interference errors for level (L2 = 2) are Pr(L1/L2) = 0.44

Generalized Bidirectional Limited Magnitude ECC 453

and Pr(L3/L2) = 0.004, respectively, similarly probabilities for level (L1 = 1)
are Pr(L0/L1) = 0.02 and Pr(L2/L1) = 0.24, respectively. This codeword con-
tains many lower symbols which implies that many upward errors will happen
to this codeword and few downward errors are possible. This situation implies
that the given code constructions in [12–14] will penalize in term of code size if
those constructions are used whenever both error sources are considered equally
significant for the data value dependent errors (data retention and intercell inter-
ference). In general, we consider the (t+, t−) bidirectional (lu, ld)–limited
magnitude errors whenever both error types are equally significant.
This consideration will lead to the higher code rate.

The paper is organized as follows: some definitions are reviewed in Sect. 2, and
some important propositions are proved too. In Sect. 3, the code is constructed,
moreover, encoding, decoding, size of code, and some special cases of the code
are discussed there as well. The constructed code is the generalization form of
asymmetric, symmetric, and bidirectional limited magnitude error correcting
codes. In last, we conclude the paper.

We use following notations in this paper:

t+: the number of upward errors, for instance (0 → 1),
t−: the number of downward errors, for instance (1 → 0),
lu and ld represent the error magnitude in upward and downward directions,
respectively,
Q is the alphabet whose size is q, and defined as Q = {0, 1, ..., q − 1}, and
N(x, y) = |{i | xi > yi}| which denotes the number of indices where x > y.

2 Preliminaries

The following Definition 1 is the description of a code in a more general way
[15–17].

Definition 1. We say a code Σ (t+, t−) asymmetric error correcting code if and
only if Σ is capable of correcting (t+) number of errors in upward direction and
(t−) number of errors in downward direction.

If t = (t+ = t−), then the code Σ is called t symmetric error correcting code.
The code, defined in Definition 1, was designed in [15,16] over binary and

non-binary alphabets, respectively. They develop key equations using elementary
symmetric functions, which are used to decode the designed codes. For the binary
field, they use isomorphism between sets and binary strings, and for non-binary
they use isomorphism between non-binary strings and multi-sets.

Definition 2 [18]. For two vectors x = (x1, ..., xn) ∈ Qn and y = (y1, ..., yn) ∈
Qn, the asymmetric distance is defined as

dA(x, y) = max{N(x, y), N(y, x)}.

454 A. Hussain et al.

The asymmetric ball B(x), centered at x, is the set of all vectors obtained by at
most t+ and t− errors, and is defined as

B(x) = {x′ ∈ Qn | N(x, x′) ≤ t− and N(x′, x) ≤ t+}.

Let x′ ∈ B(x) and y′ ∈ B(y) be the received vectors such that N(x, x′) ≤ t−,
N(x′, x) ≤ t+, N(y, y′) ≤ t−, and N(y′, y) ≤ t+.

A similar theorem is proved in [15,16] but the following proposition is for
asymmetric distance in Definition 2.

Proposition 1. A code Σ corrects at most (t+, t−) asymmetric errors if and
only if it has minimum distance dA(x, y) > t+ + t− for all distinct x, y ∈ Σ.

Proof. We prove this proposition by showing that B(x)
⋂ B(y) = φ for all distinct

codewords x, y ∈ Σ.
(⇐) Without loss of generality (w.l.o.g), assume that dA(x, y) = N(x, y) >

t++t− for any two codewords x, y ∈ Σ. We have t++t− < N(x, y) ≤ N(x, x′)+
N(x′, y′) + N(y′, y) ≤ t− + N(x′, y′) + t+. So 1 ≤ N(x′, y′), which implies that
x′ �= y′, and we have B(x)

⋂ B(y) = φ. Hence, the code can correct at most t+
and t− errors simultaneously.

(⇒) Suppose that for some distinct x, y ∈ Σ, dA(x, y) ≤ t+ + t−. To prove
in this direction, we consider the following two cases. (C1) We must assume
that dA(x, y) = N(x, y) ≤ t+ + t−. In that case, the inequality is N(x, y) ≤
N(x, x′) + N(x′, y′) + N(y′, y) ≤ t− + N(x′, y′) + t+, so N(x′, y′) = 0. (C2) Let
dA(x, y) = N(y, x) ≤ t+ + t−. Using inequality N(y, x) ≤ N(y, y′) + N(y′, x′) +
N(x′, x) ≤ t− + N(y′, x) + t+, so we have N(y′, x′) = 0.

Both of the cases imply that x′ = y′, and we have x′ ∈ B(x)
⋂ B(y) �= φ.

Therefore, the code is not capable of correcting at most t+ and t− errors simul-
taneously. �	

The flash devices experience limited magnitude errors. When both sources of
errors (data retention and intercell interference errors) are considered together,
then it will induce the bidirectional error which is defined as

Definition 3. We say a vector of integers e = (e1, ..., en), a (t+, t−) bidirec-
tional (lu, ld)–limited magnitude error if

1. |{i : ei �= 0}| ≤ t+ + t−.
2. −ld ≤ ei ≤ lu.

The distance to capture correction capability for the channel error in the Defi-
nition 3, is defined as follows:

Definition 4. The distance between two codewords x and y over Qn, is defined
as

d̃(lu,ld)(x,y) =
{

n + 1, if ∃ i : {|xi − yi| ≥ lu + ld + 1}
max{N(x, y), N(y, x)}, otherwise.

Generalized Bidirectional Limited Magnitude ECC 455

The asymmetric ball Blu,ld(x), centered at x, is the set of all vectors obtained
by at most (t+, t−) bidirectional (lu, ld)–limited magnitude errors, and is defined
as

Blu,ld(x) = {x′ ∈ Qn | ∀i |xi − x′
i| ≤ lu and ld,

N(x, x′) ≤ t− and N(x′, x) ≤ t+}.

Let x′ ∈ Blu,ld(x) and y′ ∈ Blu,ld(y) be the received vectors such that ∀i
|xi−x′

i| ≤ lu and ld and ∀i |yi−y′
i| ≤ lu and ld, and N(x, x′) ≤ t−, N(x′, x) ≤ t+,

N(y, y′) ≤ t−, and N(y′, y) ≤ t+.

Proposition 2. A code C is capable of correcting (t+, t−) bidirectional (lu, ld)–
limited magnitude errors if and only if the minimum distance is d̃(lu,ld)(x, y) >
t+ + t− for all distinct codewords x, y ∈ C.

Proof. A code cannot correct (t+, t−) bidirectional (lu, ld)–limited magnitude
errors if and only if there exist (t+, t−) bidirectional (lu, ld)–limited magnitude
error words e and f such that x′ = y′ for some distinct codewords x, y ∈ C,
where x′ = x + e and y′ = y + f . We prove this proposition by showing that
Blu,ld(x)

⋂ Blu,ld(y) = φ.
(⇐) We assume that d̃(lu,ld)(x, y) > t+ + t− for any pair of codewords x, y.

Then, we can show that x′ �= y′ by considering one of the following cases:

1. N(x, y) > t+ + t− or N(y, x) > t+ + t−.
2. |xi − yi| ≥ lu + ld + 1 for any i ∈ {1, ..., n}.

For case 1, w.l.o.g we assume that N(x, y) > t++t− for any pair of codewords
x, y ∈ C. We have t+ + t− < N(x, y) ≤ N(x, x′) + N(x′, y′) + N(y′, y) ≤
t− + N(x′, y′) + t+. So 1 ≤ N(x′, y′), which implies that x′ �= y′, and we have
Blu,ld(x)

⋂ Blu,ld(y) = φ.
In case 2, it implies that either ei or fi has magnitude larger than lu or ld

for at least one i although both cannot be possible as defined in the Definition 3.
To clarify, we let the magnitude of errors, happen to x and y, be −ld = e and
f = lu, respectively, so it is not possible that |fi − ei| ≥ lu + ld + 1 for any i.

Thus, both the cases imply that the code can correct (t+, t−) bidirectional
(lu, ld)−limited magnitude errors successfully.

(⇒) Suppose that for some distinct codewords x, y ∈ C, the distance is
d̃(lu,ld)(x, y) ≤ t+ + t−. Then, we have N(x, y) ≤ t+ + t− and N(y, x) ≤ t+ + t−,
and for all i |xi − yi| ≤ lu and ld. Similarly we did before, let x′ ∈ Blu,ld(x) and
y′ ∈ Blu,ld(y) be the received vectors. To prove in this direction, we consider the
following two cases. (C1) We must assume that d̃(lu,ld)(x, y) = N(x, y) ≤ t++t−.
In that case, the inequality is N(x, y) ≤ N(x, x′) + N(x′, y′) + N(y′, y) ≤ t− +
N(x′, y′) + t+, so N(x′, y′) = 0. (C2) Let d̃(lu,ld)(x, y) = N(y, x) ≤ t+ + t− such
that N(x′, x) ≤ t+ and N(y, y′) ≤ t−. Using inequality N(y, x) ≤ N(y, y′) +
N(y′, x′) + N(x′, x) ≤ t− + N(y′, x) + t+, so we have N(y′, x′) = 0.

Both of the cases imply that x′ = y′, and we have x′ ∈ Bl(x)
⋂ Bl(y) �= φ.

Therefore, the code is not capable of correcting (t+, t−) bidirectional (lu, ld)–
limited magnitude errors. �	

456 A. Hussain et al.

3 Code Construction for (t+, t−) Bidirectional
(lu, ld)–Limited Magnitude Error Correcting Codes

The code construction is based on the construction given in [6].

Construction 1. Let Σ be a (t+, t−) asymmetric error correcting code over
alphabet size q′ = lu + ld + 1. Then, the code C over alphabet size q (q > q′) is
defined as

C = {c = (c1, ..., cn) | c mod q′ ∈ Σ}. (1)

The error correction capability of the code in (1) is summarized in the following
theorem. The proof of the theorem has some similarity with the Theorem 5 in [6].

Theorem 1. The code C corrects (t+, t−) bidirectional (lu, ld)–limited magni-
tude errors if and only if Σ corrects (t+, t−) asymmetric errors.

Proof. For all distinct pair of codewords x, y ∈ C, the distance between them
is at least d̃(lu,ld)(x, y) ≥ t+ + t− + 1. We have shown in the Proposition 2
that the code C is capable of correcting all (t+, t−) bidirectional (lu, ld)−limited
magnitude errors.

There are two cases to be considered:

1. If x mod q′ = y mod q′ for all distinct pair of codewords x, y ∈ C, then
|xi − yi| ≥ lu + ld + 1 for at least one position i ∈ {1, ..., n}. This makes the
d̃(lu,ld)(x, y) to be n + 1.

2. For x mod q′ �= y mod q′, we know that the code Σ has minimum dis-
tance dA ≥ t+ + t− + 1, which implies that bidirectional distance should be
d̃(lu,ld)(x, y) = max{N(x, y), N(y, x)} ≥ t+ + t− +1. The Proposition 1 shows
that Σ corrects all the (t+, t−) asymmetric errors, and so code C corrects
(t+, t−) bidirectional (lu, ld)–limited magnitude errors.

The converse part of this theorem is easy to follow, and can be referred in
the Proposition 2. �	

3.1 Encoding

There may be many procedures to encode the q′ −ary codeword from base code,
such as (Σ), to the q − ary codeword in C. In this paper, we just describe two
encoding methods from [6,13], respectively.

1. For simplicity, we assume that q = A.q′ where both A and q′ are integers. We
have (χi, ..., χn) as the codeword of the base code Σ over the alphabet size q′,
and we set the n symbols (b1, ..., bn) over alphabet size A as pure information
symbols. Then we get each symbol xi of the codeword of C over the alphabet
size q by xi = bi.q

′ + χi.

Generalized Bidirectional Limited Magnitude ECC 457

2. In the second encoding method, assume x = (x1, ..., xk) to be the q − ary
message. The q′ − ary remainder is obtained by modular operation on the
message vector x (x mod q′). The check symbols are calculated by the base
code encoder using (x mod q′) as the input of the encoder. These check
symbols are then converted to q − ary symbols, and finally, we have c = [x p]
as the q − ary codeword, where p = (p1, ..., pr) is the q − ary check symbols
vector.

Although the first encoding method is very simple, it is non-systematic;
message symbols are mixed with parity symbols in a codeword. In the second
method, encoding is systematic; message symbols and parity symbols are sepa-
rated in a codeword but this procedure has message correction and parity code
writing problems [13]. To avoid these problems, we need to use base code over
large alphabet size p (p > q > q′).

3.2 Decoding

One of the main advantages of the Construction 1 is the reduction in encoding
and decoding complexities which are performed by the base code and after that
codewords from the base code are mapped to the codewords in the code C [6].
In this paper, we only describe the decoding method for non-systematic case.
The decoding steps are similar for the systematic case.

Let y = (y1, ..., yn) be the received vector and the transmitted codeword was
x = (x1, ..., xn) ∈ C. We denote the corresponding Σ codeword by χ = x mod q′.
To decode the received vector by the base code, first modular operation by q′ is
performed on the received vector (ψ = y mod q′). This ψ is decoded using the
base code Σ where the base decoder is invoked just to find out the estimated
error word ε̂. Finally, the estimated codeword of C is x̂ = y − ε̂.

We consider upward and downward errors separately to avoid confusion in
modular operation with negative integer [13].

Let ε = (ε1, ..., εn) be the (t+, t−) bidirectional (lu, ld)–limited magnitude
error vector, so

ψ = y mod q′ = (x + ε) mod q′

= (x mod q′ + ε mod q′) mod q′

= (χ + ε) mod q′.

We need to consider positive and negative errors separately to bound the esti-
mated error word in the proper range of −ld ≤ ε̂ ≤ lu, as:

1. Downward error: εi = ε−(−ld ≤ ε− ≤ −1), then
ψi = (χi + εi) mod q′ = (χi + ε−) mod q′

ψi =
{

χi + ε− + q′, if 0 < ε− + q′ < q′

χi + ε−, if q′ ≤ ε− + q′ < 2q′.

458 A. Hussain et al.

2. Upward error: εi = ε+(0 ≤ ε+ ≤ lu), then
ψi = (χi + εi) mod q′ = (χi + ε+) mod q′

ψi =
{

χi + ε+, if 0 < ε+ + q′ < q′

χi + ε+ − q′, if q′ ≤ ε+ + q′ < 2q′.

Therefore, by considering upward and downward errors separately we are
able to distinguish and recover the estimated error vector from the distinct error
ranges as shown in the Fig. 2 [13].

Fig. 2. Estimated error vector adjustment for (lu = ld).

Fig. 3. Encoding/decoding for t = 1, lu = 2 and ld = 1.

3.3 Size of the Code

The upper and lower bounds on the size of the code in (1) can be easily found.
As defined in the encoding method 1, we get each symbol xi in a valid codeword
of the code C by replacing every χi by any element of the set Θ = {y ∈ Q : y =
χi mod q′}. The size of this set is q/q′� if χi < q mod q′ and �q/q′� otherwise.
Then, the size of the code in (1) is bounded as

� q

lu + ld + 1
�n.|Σ| ≤ |C| ≤ q

lu + ld + 1
�n.|Σ|. (2)

Generalized Bidirectional Limited Magnitude ECC 459

We used Σ as the base code in Eq. (2) for the (t+, t−) bidirectional (lu, ld)–
limited magnitude error correcting code C. In general, Σ corrects (t+, t−) asym-
metric errors where number of upward errors (t+) and downward errors (t−) are
different. The detailed code design for Σ can be referred in [15] over the binary
field and in [16] over Fq.

3.4 Decoding Error Probability

Let p and q be the crossover probabilities of the upward and downward errors,
respectively as shown in Fig. 1, assuming that the magnitudes of the errors are
bounded. We have t+ and t− numbers of errors in upward and downward direc-
tions, respectively. The correct (block) decoding probability is given by

Pt(x) =
t+∑

i=0

(
n

i

)

pi.

t−∑

j=0

(
n − i

j

)

qj(1 − p − q)n−i−j . (3)

Then the decoding (block) error probability is

PB(x) ≤ 1 − Pt(x). (4)

We have proved the error correction capability of the code construction (1),
and Σ is used as base code there. It is very difficult to find some encoding and
decoding procedures generally for Σ and the size of the code as well. Therefore,
some special cases of the construction (1) are provided in the next subsection
and some examples are given there too.

3.5 Special Cases of the Code Construction 1

In this subsection, we consider the different cases of the main construction in
(1) as follows:

1. For t = t+ = t−: If numbers of errors in both directions are equal, then
the construction in (1) becomes the code construction as given in [13]. In
addition, the base code Σ can correct symmetric errors using the Hamming
distance instead of defined asymmetric distance. Therefore, the encoding and
decoding complexities reduce, and we can easily find out the size of resultant
code using Eq. (2); t bidirectional (lu, ld)–limited magnitude error correcting
code.

Example 1. Let C be the code over alphabet size (q = 8) as defined in con-
struction (1). We consider these parameters lu = 2, ld = 1 and t = 1, and
we use Hamming code [n = 5, k = 3] as the base code over alphabet size
q′ = 4 (q′ = lu + ld + 1).

H =
[
0 1 1 1 1
1 1 0 x x + 1

]

460 A. Hussain et al.

Let (1, x, x+1, 0, 1) be the Hamming codeword. Using the encoding method 1
in Encoding, one of the codewords of C is x = (5, 6, 7, 4, 5). Let ε = (0,−1, 0, 0, 0)
be the error word. Then the received vector is y = (5, 5, 7, 4, 5). To decode this
received vector, we invoke Hamming decoder after q′−modular and find out
that the error word is ε̂ = (0, 3, 0, 0, 0). This error word is out of the bound of
(lu, ld)–limited magnitudes, so as discussed in the Decoding, we need to subtract
(q′ = 4) from that component of the error word ε̂2 − q′ = (3 − 4) = −1 which
makes the error word ε̂ = (0,−1, 0, 0, 0). Hence, the estimated codeword is x̂ =
y− ε̂ = (5, 5, 7, 4, 5)− (0,−1, 0, 0, 0) = (5, 6, 7, 4, 5). The code rate of this code is
0.7333, and the decoding error probability is upper bounded by 0.0226 whenever
crossover probability is p = 0.05.

The supercode is defined on the integer ring. For instance, the Hamming code
is used as a subcode in Example 1, and it is mapped to the supercode, which is
defined over integer ring, using Encoding method 1. Furthermore, the code rate
in that example is same as the code rate in [13] if Encoding method 1 is used.
The bound (2) is achieved because q′ | q and due to Hamming code as well.

Example 2. Figure 3 [13] shows another example of encoding/decoding of t
bidirectional (lu, ld)–limited magnitude error correcting code. In this example,
message is encoded with encoding method 2 as described in the Encoding
section. Furthermore, the RS code is used as the base code over finite field
F26 .

2. For (t = t+ = t−) and (l = lu = ld): If the numbers and magnitudes of
errors in both directions are equal, then the construction in (1) can correct t
symmetric l–limited magnitude errors.

3. For t− = 0, ld = 0 and t = t+, l = lu: The code construction in (1) will
converge to the code construction 1 in [6], and the base code Σ uses the
Hamming distance instead. Then, the code will correct t asymmetric l–limited
magnitude errors.

4 Conclusion

In this paper, we have studied the bidirectional limited magnitude channel model
by considering data retention and inter-cell interference errors together with their
data value dependencies. We proposed the code construction for bidirectional
limited magnitude channel model. The proposed construction is the generalized
case of the bidirectional, asymmetric, and symmetric limited magnitude error
correcting codes. Some special cases of the construction were presented as well.
In future, we will try to find some encoding and decoding algorithms for the
base code on which the proposed construction 1 is based.

Acknowledgment. This work was supported by China Program of International
S&T Cooperation 2016YFE0100300 and National Natural Science Foundation of China
under Grant 61571293.

Generalized Bidirectional Limited Magnitude ECC 461

References

1. Dolecek, L., Sala, F.: Channel coding methods for non-volatile memories. Found.
Trends Commun. Inf. Theory 13(1), 1–28 (2016). Boston-Delft

2. Sala, F., Immink Schouhamer, K.A., Delecek, L.: Error control schemes for modern
flash memories. IEEE Consum. Electron. Magz. 4(1), 66–73 (2015)

3. Huang, X., Kavcic, A., Ma, X., Dong, G., Zhang, T.: Multilevel flash memories:
channel modeling, capacities and optimal coding rates. Int. J. Adv. Syst. Measur.
6(3 and 4), 364–373 (2013)

4. Cai, Y., Haratsch, E. F., Mutlu, O., Mai, K.: Error patterns in MLC NAND flash
memory: measurement, characterization, and analysis. In: IEEE Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), pp. 521–526. IEEE,
Dresden (2012)

5. Li, Q., et al.: Improving LDPC performance via asymmetric sensing level placement
on flash memory. In: 22nd Asia and South Pacific Design Automation (ASP-DAC),
pp. 560–565. IEEE, Tokyo (2017)

6. Cassuto, Y., Schwartz, M., Bohossian, V., Bruck, J.: Codes for asymmetric limited
magnitude errors with application to multi-level flash memories. IEEE Trans. Inf.
Theory 56(4), 1582–1595 (2010)

7. Yaakobi, E., Siegal, P.H., Vardy, A., Wolf, J.K.: On codes that correct asymmetric
errors with graded magnitude distribution. In: Proceeding of IEEE International
Symposium on Information Theory, pp. 1056–1060. IEEE, Saint-Petersburg (2011)

8. Gabrys, R., Yaakobi, E., Dolecek, L.: Graded bit-error-correcting codes with appli-
cations to flash memory. IEEE Trans. Inf. Theory 59(4), 2315–2327 (2013)

9. Elarief, N., Bose, B., Elmougy, S.: Limited magnitude error detecting codes over
Zq. IEEE Trans. Comput. 62(5), 984–989 (2013)

10. Elarief, N., Bose, B.: Optimal, systematic, q-ary codes correcting all asymmetric
and symmetric error of limited magnitude. IEEE Trans. Inf. Theory 56(3), 979–983
(2010)

11. Sala, F., et al.: Asymmetric error correcting codes for flash memories in high radi-
ation environments. In: Proceeding of IEEE International Symposium on Informa-
tion Theory, pp. 2096–2100. IEEE, Hong Kong (2015)

12. Kotaki, S., Kitakami, M.: Codes correcting asymmetric/unidirectional errors along
with bidirectional errors of small magnitude. In: IEEE 20th Pacific Rim Inter-
national Symposium on Dependable Computing, pp. 159–160. IEEE, Singapore
(2014)

13. Jeon, M., Lee, J.: On codes correcting bidirectional limited-magnitude errors for
Flash memories. In: International Symposium on Information Theory and its
Applications, pp. 96–100. IEEE, Hawaii (2012)

14. Jeon, M., Lee, J.: Bidirectional limited-magnitude error correction codes for flash
memories. IEICE Trans. Fundam. E96-A(7), 1602–1608 (2013)

15. Tallini, L.G., Bose, B.: On a new class of error control codes and symmetric func-
tions. In: Proceeding of IEEE International Symposium on Information Theory,
pp. 980–984. IEEE, Ontario (2008)

16. Tallini, L.G., Bose, B.: On L1-distance error control codes. In: Proceeding of
IEEE International Symposium on Information Theory, pp. 1061–1065. IEEE, St.
Petersburg (2011)

17. Zhou, H., Jiang, A., Bruck, J.: Nonuniform codes for correcting asymmetric errors
in data storage. IEEE Trans. Inf. Theory 59(5), 2988–3002 (2013)

18. Kløve, T.: Error correcting codes for the asymmetric channel. University of Bergen,
Department of Informatics, Bergen, Norway (1995)

Optimal Topology Design of High Altitude
Platform Based Maritime Broadband

Communication Networks

Jianli Duan1,2(&), Tiange Zhao1, and Bin Lin1

1 Dalian Maritime University, Dalian 116026, China
15140412232@163.com, binlin@dlmu.edu.cn

2 Qingdao University of Technology, Qingdao 266033, China
duanjianli@qut.edu.cn

Abstract. To satisfy the increasing demand for various types of coastal wire-
less communication, the pursuit of fully functional and low cost means of
maritime broadband communication is imminent. High Altitude Platform
(HAP) based maritime communication is a promising solution to improve the
quality of coverage on the sea. In this paper, we present Integrated
HAP-Sea-Land Network (IHSL) architecture for maritime broadband commu-
nication. And then we focus on the problem of Optimal Topology Design
(OTD) which is an important issue for the IHSL network deployment in prac-
tice. We formulate the OTD problem as a generic integer linear programming
(ILP) model with the objective of minimizing the total deployment cost subject
to coverage, reliability, and topology constraints of the network. The linear
programming solver Gurobi is applied to solve the ILP model. A series of case
studies are conducted to validate the optimization framework and demonstrated
the solvability and scalability of the ILP model. The simulation results show the
significant performance benefits of IHSL in terms of cost and reliability under
1-coverage and 2-coverage. The proposed optimization framework is expected
to provide a guideline for the IHSL network deployment in practice.

Keywords: High Altitude Platforms (HAP) � Maritime broadband
communication � Topology optimization design (OTD) � Integer linear
programming (ILP)

1 Introduction

With the rapid development of shipping industry and ocean trade, the number of vessels
shoot up, thus the demands for maritime broadband communications increase explo-
sively [1, 2]. At present, the most common way of maritime communication is the global
satellite communication, which has obvious shortcomings such as high cost, low data
rate, large transmission delay, and specific shipboard equipment terminals are required
to be installed on board [3]. In contrast, High Altitude Platform (HAP) based maritime
communication is a promising solution to improve the quality of communications on the
sea [4] due to lower cost, wider coverage, higher loading and reusable capabilities, easy
deployment and maintenance [5]. The HAP and the 4G communication technology can

© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 462–470, 2017.
https://doi.org/10.1007/978-3-319-71150-8_38

be integrated and applied to the maritime communication such that the cellular network
can extend to the ocean, and constitute the sea-land integrated communication system.
The maritime broadband communication technology should embark on a new phase.

In this paper, by exploiting the HAP-centered near-space communication tech-
nology, we propose an Integrated HAP-Sea-Land (IHSL) Network for maritime
broadband communication. IHSL can extend the terrestrial broadband network to the
ocean through cellular networks, HAP and the ship-borne relay station (RS). As shown
in the Fig. 1, IHSL comprises four parts, i.e., maritime user terminals, shipborne relays,
HAPs which carry base stations (BSs) and ground BSs (coast control center). Then we
investigate the Optimal Topology Design (OTD) problem which is important for the
IHSL net-work architecture in practical deployment.

Driven by the needs of coverage extension to ocean, a tree based structure is applied
in the IHSL network by taking advantages of essential scalability and robustness of tree
topology. To capture the complex relations among the OTD problem and the tree
topology structure, we formulate the OTD problem mathematically. Given the infor-
mation such as candidate points, the cost of deployment, constricts of network entities
and network coverage requirements within the Regions of Interest (RoI) on the sea, the
OTD problem can optimally and simultaneously: (i) minimize the total cost; (ii) identify
the locations of HAPs; (iii) take reliability of network constraints into consideration;
(iv) satisfy the coverage requirements so as to meet the demands of broadband users at
sea. The ILP model is solved by Gurobi, which is the state-of-the-art mathematical
programming solver [6]. Note that, considering the importance of reliability for mar-
itime communications, especially for rescue and emergency communication scenarios,
this paper studies k-coverage (k = 1, 2) as different minimum coverage requirements in
the OTD formulations.

2 Network Model and Problem Formulation

2.1 Network Model

As shown in Fig. 2, in the network model of HICS it mainly consists the following
parts: HAP0, HAP1, HAP2, HAP3 … and test points on the sea (TP). The zero-order

Fig. 1. Integrated HAP-Sea-Land (IHSL) network

Optimal Topology Design of High Altitude Platform 463

HAP is deployed near hot ports and is primarily responsible for connecting ground BSs
and other HAPs, while the first-order HAP, the second-order HAP, and so on are
responsible for connecting upper-order HAP/next-order HAP and TPs. The first-order
HAP, the second-order HAP, and so on use a tree structure to be connected with the
zero-order HAP which is root node, i.e., the first-order HAP is directly connected with
the zero-order HAP, the second-order HAP is connected with the zero-order HAP by
the first-order HAP and so on. TP is used to test whether the coverage rate, connectivity
and QoS indicators of the network meet the requirement. In Fig. 2, TP4 and TP5 are
covered by the first-order HAPi, TP6 and TP7 are covered by the first-order HAPj,
TP1, TP2 and TP3 are covered by the second-order HAPk, and TP8, TP9 and TP10 are
covered by the second-order HAPm. According to the character of tree based integrated
network topology as shown in Fig. 2, we model the OTD as a directed graphs:
~G ¼ X;~E

� �
, where ~E is the set of directed edges/paths, and X is the set of nodes. X is

partitioned into three parts, and denoted as {P}, X_HAP and X_TP, i.e.,
X ¼ Pf g[X HAP[X TP, and let S = |{P}|, M = |X_HAP|, N = |X_TP|.

2.2 Problem Statement

The OTD problem for the IHSL network architecture can be stated as follows.

Given:
As shown in Fig. 2, the zero-order HAP is taken as the root node, and HAPs are taken
as the middle node/leaf nodes to cover the ship on the sea. The following are given: the
position of candidate points (CPs) for the zero-order HAP in the region; the locations of
CPs for HAP in the region; the location of TP on the sea; the cost of HAP and its
carrying load; related parameters of HAP, such as coverage radius of HAP, capacity,
the maximum communication distance between HAP and the minimum anti-collision
distance, etc.

Variables:
Whether the location of nodes and links between nodes are usable can be represented
by 0–1 variables (1: the node is selected/link between nodes exists; 0: otherwise).
Specifically, we define:

Fig. 2. Tree based IHSL network mode

464 J. Duan et al.

(1) HAP and the location incidence vector A ¼ ðamÞ1�M; m 2 XHAP, if CPm is
selected to place a HAP, am is set to 1, otherwise am is 0;

(2) The location incidence vector of the zero-order HAP B ¼ ðbsÞ1�S; S 2 Pf g, if the
CP is selected to place a zero-order HAP, bs is set to 1, otherwise bs is 0;

(3) The allocation matrix between HAP and TP Z ¼ ðzmnÞM�N, m 2 XHAP, n 2 XTP,
if HAP at CPm exists and covers TPn, zmn is set to 1, otherwise zmn is 0;

(4) The coverage matrix of TP Q ¼ ðqnÞ1�N, n 2 XTP, if TPn is covered, qn is set to 1,
otherwise qn is 0;

(5) The Connection matrix between nodes E ¼ ðeijÞðSþMÞ�ðMþNÞ, i 2 Pf g[XHAP,
j 2 XHAP [XTP, if there is a connection between node i to node j, eij is set to 1,
otherwise eij is 0;

(6) To control the flow direction and the number of hops effectively, the inflow
control matrix is defined as F ¼ ðfkijÞðSþMÞ�ðMÞ�ðMÞ, i 2 Pf g[XHAP, j 2 XHAP,

k 2 XHAP, and if the flow from zero-order HAP to HAPk passes through eij; fkij, is

set to 1, otherwise fkij is 0.

Constraints:

(1) Determine the parent-child relationship between nodes to ensure that the network
satisfies the tree topology;

(2) Each candidate point for HAP can only place one HAP;
(3) Distance restriction between HAP;
(4) I/O links number limitation of Network element devices;
(5) The k-coverage requirement: all TPs in the model must meet the minimum

number of coverage requirements in the network, that is, each TP is covered by at
least k HAP carried BSs, k = 1, 2…;

(6) HAP capacity limitation.

Objective:
The optimization objective is to minimize the total HAP deployment cost for the IHSL
network over RoI on the sea.

The important symbols for the problem formulation are defined as following:

(1) Parameters of the OTD problem: Pf g-The set of Zero-order HAP nodes; N-The
number of TPs in network; S-The number of Zero-order HAP nodes in network;
M-The number of candidate HAP nodes in network; XHAP:-The set of candidate
HAP nodes XHAP ¼ CPm m ¼ 0; 1; � � �;M� 1jf g; k-The minimum coverage
requirement of TPs; R-The maximum coverage radius of HAPs to sea surface;
XTP-The set of TPs XTAP ¼ TPn n ¼ 0; 1; � � �;N� 1jf g; LHAP�HAP

max -The maximum
communication distance between HAPs; q0-The minimum coverage rate of target
region LHAP�HAP

min -The minimum anti-collision distance between HAPs; CHAP-The
cost of HAP; CL-The loading cost of airship; dij-The distance between node i and
node j.

Optimal Topology Design of High Altitude Platform 465

(2) Variables of the OTD problem: A-HAP and the location incidence vector
A ¼ ðamÞ1�M; B-The location incidence vector of the zero-order HAP
B ¼ ðbsÞ1�S; Z-The relation matrix between HAP and TP Z ¼ ðzmnÞM�N; Q:-The
coverage matrix of TP Q ¼ ðqnÞ1�N; E-The Connection matrix between nodes
E ¼ ðeijÞðSþMÞ�ðMþNÞ; F-The inflow control matrix F ¼ ðfkijÞðSþMÞ�ðMÞ�ðMÞ:

2.3 Problem Formulation

Objective:

minimize C ¼ ðCHAP þCLÞ
X

s2Sbs þðCHAP þCLÞ
X

m2Mam ð1Þ

Equation (1) is to minimize the total deployment cost of OTD.

Subject to:

eij þ eji � 1; 8i, j 2 pf g [XHAP; i 6¼ j ð2Þ
X

M2XHAPzmn � k,8n 2 XTP ð3Þ

zmn � am; 8m 2 XHAP; 8n 2 XTP ð4Þ

Equation (2) ensures unidirectional connection between network element devices
to avoid forming loops; Eq. (3) guarantees each TP meets the k-coverage requirements
of the network; Eq. (4) defines the coverage relationship between the HAP node and
the TP point.

eijdij �LHAP�HAP
max ; 8i 2 pf g[XHAP; 8j 2 XHAP ð5Þ

eijdij �LHAP�HAP
min ; 8i 2 pf g[XHAP; 8j 2 XHAP ð6Þ

Equations (5, 6) constrain the distance between nodes. If the distance between
eij and dij meets the distance requirement, the connection eijdij is feasible.

X
i2 Pf gbi � 1 ð7Þ

X
j2XHAPeij � bi; 8i 2 Pf g ð8Þ

Equations (7, 8) constrain zero-order HAP nodes. Constrain (7) specifies that there
is at least one zero-order HAP node as the output source point of the network; Con-
strain (8) indicates that if there is a zero-order HAP node in the network, there is at least
one output from the zero-order HAP node to the rest of the HAP nodes.

466 J. Duan et al.

X
i2 pf g[XHAPeij ¼ aj; 8j 2 XHAP; i 6¼ j ð9Þ

X
j2XHAP [XTPeij � ai; 8i 2 XHAP; i 6¼ j ð10Þ

Equations (9, 10) restrict the input and output of the HAP node. Equation (9)
indicates that if the HAP node is selected, it has only one input from the zero-order
HAP node or the rest of the HAP node. Equation (10) constrains that the selected HAP
node have at least one output.

fkij � ak; 8i 2 pf g[XHAP; 8j 2 XHAP; 8k 2 XHAP; i 6¼ k ð11Þ

fkij � eij; 8i 2 pf g[XHAP; 8j 2 XHAP; 8k 2 XHAP; i 6¼ k, i 6¼ j ð12Þ

Equations (11, 12) constrains inflows of a HAP node. Equation (11) associates the
HAP node with the flow, and only when the HAP node is selected can there be a inflow
from other nodes; Eq. (12) associates edges with flows, and an inflow possibly passes
the edge only when there is a direct connection between nodes (i.e., eij = 1).

X
j2XHAP f

k
ij ¼ ak; 8k 2 XHAP;8i 2 Pf g ð13Þ

X
j2XHAP

X
k2XHAP f

k
ij ¼

X
k2XHAPak; 8k 2 XHAP; 8i 2 Pf g ð14Þ

X
i2 Pf g[XHAP f

k
ij ¼ ak; 8k 2 XHAP; i 6¼ k ð15Þ

Equation (13) shows that a unique flow from the zero-order HAP node to the node
exists only when the HAP node is selected. Equation (14) indicates the node will be
linked up to the tree network topology only when the HAP node is selected. If the HAP
node is selected, there is at least one inflow ending with this node (15).

X
i2 Pf g [XHAP

X
j2XHAP f

k
ij �Hop max; 8k 2 XHAP; i 6¼ j, i 6¼ k ð16Þ

X
i2 Pf g [XHAP f

k
ij ¼

X
m2XHAP f

k
jm; 8j, k 2 XHAP; i 6¼ j 6¼ m, i 6¼ j 6¼ k ð17Þ

Equation (16) constrains hop limit in the network. Equation (17) shows that if
HAPj exists in the inflow path of zero-order HAP to HAPk, it must have an input path
starting with zero-order HAP and an output path ending with HAPk.

eijdij �R,8i 2 XHAP; 8j 2 XTP ð18Þ

1
N

X
n2XTPqn � q0 � 100% ð19Þ

Equation (18) defines the coverage relationship between HAP and TP; Eq. (19)
ensures that the network meets coverage requirements.

Optimal Topology Design of High Altitude Platform 467

am 2 0; 1f g; 8m 2 XHAP ð20Þ
bs 2 0; 1f g; 8s 2 Pf g ð21Þ

zmn 2 0; 1f g; 8m 2 XHAP; 8n 2 XTP ð22Þ

qn 2 0; 1f g; 8n 2 XTP ð23Þ

eij 2 0; 1f g; 8i 2 Pf g[XHAP; j 2 XHAP [XTP ð24Þ

fkij 2 0; 1f g; 8i 2 Pf g[XHAP; 8j 2 XHAP; 8k 2 [XHAP; i 6¼ k ð25Þ

Equations (20–25) states that A, B, Z, Q, E, and F are binary variables.

3 Numerical Analysis

A. Validation of the OTD formulation
In the numerical studies, we hope to validate the mathematical formulation of OTD
problem firstly. We conduct the simulations in small-scale scenarios where the global
optimal solutions can be obtained by using exhaustive search. We compare the results
obtained by Gurobi, a state-of-the-art ILP solver, with the optimal solutions and then
examine whether the OTD formulation is correct or not. A serious of simulations in
small-scale scenarios are carried out. Scenario 0 is only one of them and illustrated in
Fig. 3, which includes 10 candidate nodes for HAP and 10 TPs We define a generic
cost unit (gcu) to evaluate the network costs [7].
For the convenience of research, the RoI on the sea is divided into a set of rectangular
grids with a uniform size according to the desired accuracy. Figure 3 also shows the
zero-order HAP, the candidate points for HAP deployment and the TPs.

To improve the reliability of the network, the minimum requirement of network
coverage is 2-coverage based on 1-coverage. We analyze and compare the deployment
solutions under the requirement of 1-coverage and 2-coverage for scenario 0 as shown
in Table 1.

Figure 4 shows the deployment solutions under the requirement of 1-coverage and
2-coverage for Scenario 0. The minimum cost deployment scheme is obtained and the

Fig. 3. Layout graph of scenario 0 before optimization

468 J. Duan et al.

requirements of network coverage and coverage are satisfied. As shown in left part of
Fig. 4, each HAP node can communicate with the zero-order HAP node, which ensure
the network connectivity and the tree topology. Compare with the scheme in left part,
as the number of coverage weights is raised, the scheme in right part of Fig. 4 selects 3
more HAP candidate nodes: HAP0, HAP6 and HAP8 to achieve 2-coverage of TPs in
the network. The above OTD solution obtained by Gurobi are the same as the global
optimal one obtained by exhaustive search. So we validate our proposed OTD
formulation.

B. Feasibility and Scalability of OTD
Considering the practical network deployment, the network scale and the location of
CPs and TPs, the values of key parameters of HAPs may affect the results of network
deployment, so we conduct a series of simulations. Here we only select representative
scenarios with an increasing network scale as listed in Table 2 to test the feasibility and
scalability of the OTD model.

The simulation results illustrate that the OTD model can solve medium-scale and
large-scale network deployment problem with both 1-coverage and 2-coverage. As
shown in Table 2, the data values of 2-coverage deployment solutions are roughly
double those of 1-coverage, and running time rises rapidly with the increase of
net-work scale. In practical applications, if an island or offshore drilling platform which
need stable communications exists in the target area, the 2-coverage scheme should be
adopted to provide high-quality maritime wireless communication services. So we
validate the feasibility and scalability of the OTD model.

Table 1. The comparison of the solutions under 1-coverage and 2-coverage for Scenario 0

Solution ID of selected HAPs Cost (gcu) Running Time(S)

1-coverage HAP1, HAP2, HAP3, HAP5 200 0.05
2-coverage HAP0, HAP1, HAP2, HAP3,

HAP5, HAP6, HAP8
350 0.03

Fig. 4. The OTD solution for Scenario 0 (1-coverage and 2-coverage)

Optimal Topology Design of High Altitude Platform 469

4 Conclusion

In this paper, we present the IHSL Network architecture to meet the increasing
demands of broad-band communication users at sea. And then we study the OTD
problem which is important for the IHSL network architecture from theory to practical
deployment. A series of case studies are conducted to validate the optimization
framework and demonstrated the solvability and scalability of the ILP model. The
simulation results show the significant performance benefits of IHSL in terms of cost
and reliability under 1-coverage and 2-coverage.

Acknowledgments. This study is sponsored by National Science Foundation of China (NSFC)
No. 61371091 and No. 61301228, the National Science Foundation of Liaoning Province
No. 2014025001, and Program for Liaoning Excellent Talents in University (LNET)
No. LJQ2013054 and Fundamental Research Funds for Central Universities under grant
No. 3132016318.

References

1. Ejaz, W., Manzoor, K., Kim, H.J., et al.: Two-state routing protocol for maritime multi-hop
wireless networks. Comput. Electr. Eng. 39(6), 1854–1866 (2013)

2. Roste T, Yang K, Bekkadal F.: Coastal coverage for maritime broadband communications. In:
Oceans 2013, pp. 1–8

3. Liu, F., Kong, X.: Research and implementation of a novel maritime wireless integrated
network. Ship. Sci. Technol. 36(12), 141–144 (2014)

4. Mohammed, A., Mehmood, A., Pavlidou, F.N., Mohorcic, M.: The Role of High-Altitude
Platforms (HAPs) in the global wireless connectivity. Proc. IEEE 99(11), 1939–1953 (2011)

5. Yang, Z., Mohammed, A.: Wireless communications from high altitude platforms:
applications, deployment and development. In: 2010 12th IEEE International Conference
on Communication Technology (ICCT), pp. 1476–1479. IEEE Xplore, Nanjing (2010)

6. Gurobi Optimizer 4.6, Gurobi Optimization Inc. (2012)
7. Alkandari, A., Alnasheet, M., Alabduljader, Y., Moein, S.M.: Water monitoring system using

wireless sensor network (WSN): case study of Kuwait beaches. In: IEEE 2nd International
Conference on Digital Information Processing and Communications, pp. 10–15. IEEE (2012)

Table 2. The comparison of deployment solutions in different scenarios

Scenario The # of CPs for
HAP, TP

The # of selected HAPs Cost (gcu) Running time (S)

1-coverage 2-coverage 1-coverage 2-coverage 1-coverage 2-coverage

1 20,40 7 12 350 600 0.75 0.53
2 30,60 7 15 350 750 1.59 1.93

3 40,80 9 17 450 850 41.39 17.64
4 50,100 10 21 500 1050 6753.61 3422.41

5 60,120 12 24 600 1200 31957.50 143913.89

470 J. Duan et al.

On Adaptive Bitprobe Schemes for Storing
Two Elements

Deepanjan Kesh(B)

Indian Institute of Technology Guwahati, Guwahati, India
deepkesh@iitg.ernet.in

Abstract. In this paper, we look into the problem of storing a subset
S containing at most two elements of the universe U in the adaptive
bitprobe model. Due to the work of Radhakrishnan et al. [3], and more
recently of Lewenstein et al. [2], we have excellent schemes for storing
such an S, and answering membership queries using two or more bit-
probes. Yet, Nicholson et al. [4] in their survey of the area noted that
the space lower bound of even the first non-trivial scenario, namely that
of answering membership of S using two bitprobes, is still open. Towards
that end, we propose an unified geometric approach to designing schemes
in this domain. If t is the number of bitprobes allowed, we arrange the
universe U in a (2t − 1)-dimensional hypercube, and look at its two-
dimensional faces. This approach matches the space bound of the best
known schemes for certain cases, and gives results that are close to the
best known schemes for others.

1 Introduction

Let U denote an universe of m elements. Consider a set S containing n elements
of U . The bitprobe model studies the following question – how efficiently can
the subset S be stored such that the membership queries of the elements from
the universe can be answered correctly, the constraint being that the number
of bits of our datastructure that we are allowed to access is a fixed constant,
say t. Each bit access is called a bitprobe, hence the name of this model. The
bitprobe schemes in which the location of the current bitprobe is independent
of the previous bitprobes are called nonadaptive schemes; otherwise, they are
called adaptive schemes. We borrow the notation introduced by Radhakrishnan
et al. [1], and denote the space used by adaptive and nonadaptive schemes by
sA(n,m, t) and sN (n,m, t), respectively.

For a more detailed discussion about the bitprobe model, and about several
other related models which are collectively referred to as the membership prob-
lem, the reader is adviced to read the excellent exposition by Nicholson et al. [4]
where they survey the area and its current state of the art.

In this paper, we address the problem of designing adaptive schemes in the
bitprobe model when the size of the subset S is two, i.e. n = 2. The num-
ber of bitprobes, denoted by t, though could be arbitrary, is a constant. The
problem when n = 1 is more or less well understood – the space lower bound
c© Springer International Publishing AG 2017
X. Gao et al. (Eds.): COCOA 2017, Part I, LNCS 10627, pp. 471–479, 2017.
https://doi.org/10.1007/978-3-319-71150-8_39

472 D. Kesh

is sA(1,m, t) = Ω(m1/t) (Alon and Feige [6]), and there is a folklore explicit
scheme that matches the lower bound. So, as it stands, n = 2 is the first non-
trivial scenario. For the case of t = 1, Buhrman et al. [5] showed that no space
saving is possible, i.e. sA(2,m, 1) = Ω(m). We study the scenario of t ≥ 2.

For two bitprobes, Radhakrishnan et al. [3] gave an explicit scheme that
uses O(m2/3) space. It uses a clever way of arranging the elements of U into,
what the authors referred to as, blocks and superblocks. The first major result
for t = 3 was due to Radhakrishnan et al. [1] where they proposed a non-
explicit scheme taking up Θ(m2/5) amount of space. They further conjectured
the existence of an explicit scheme matching their space bound. Lewenstein et
al. [2], recently, resolved this long-standing conjecture by proposing such an
explicit deterministic scheme for the problem. In the same paper, the authors
also proposed a generalised scheme for t > 3 and showed that sA(2,m, t) =
O(m1/(t−22−t)).

We present a novel approach for designing schemes in the adaptive bitprobe
model. The idea is to choose a hypercube of suitable dimensions, and arrange the
elements of the universe U within and on the integral points of the hypercube.
The dimension of the hypercube depends on the number of bitprobes t. We then
look at the projection of those integral points on certain faces of the hypercube,
the dimension of the face will depend on n, the size of our subset S. To take a
concrete example, in our scenario where n = 2 we look at two-dimensional faces
of our hypercube. The dimension of the hypercube is 3 when t = 2, 5 when t = 3,
and more generally 2t − 1 for any given t.

Though the results we present in itself might not be interesting, our con-
tribution is an unified approach to designing explicit deterministic schemes in
this domain. Our approach gives the following bounds – sA(2,m, 2) = O(m2/3);
sA(2,m, 3) = O(m2/5); and sA(2,m, t) = O(m1/(t−2−1)), for t > 3. As we can
see, it matches the best known schemes for t = 2 and 3. More importantly, it
gives an alternate scheme for t = 3 by answering the long standing conjecture
of Radhakrishnan et al. [1] about the existence of an O(m2/5) scheme. However,
it falls short for higher values of t. We believe that this approach is interesting
because of the geometric interpretation it lends to the various schemes for dif-
ferent values of t and a discovers a nice interdependence between t and n, the
dimension of our hypercube and the dimension of the face, respectively.

For lack of space, we only present the schemes for t ≥ 3. For the much simpler
case of t = 2 and for the proof of correctness of all the schemes, the reader is
referred to [7].

2 The Three Probe Adaptive Scheme

In this section, we describe a new adaptive scheme that stores two elements of
the universe and answers membership queries in three bitprobes. In this scheme,
we consider projections of points of a five dimensional hypercube onto two-
dimensional faces.

On Adaptive Bitprobe Schemes for Storing Two Elements 473

Consider the five-dimensional space with axes v, w, x, y, and z. We emphasize
the relationship between the coordinate system and the coordinates (a, b, c, d, e)
of a point – a as its v-coordinate, b as its w-coordinate, c as its x-coordinate,
and so on. In that space, consider the five-dimensional hypercube in the positive
orthant with one of its vertices at the origin and each of its sides having mag-
nitude m1/5. There are m points with integer coordinates if we consider all the
points within and on the hypercube. We arrange the m elements of U on those
points. We would refer to any element by the coordinates of the point on which
it lies.

We introduce the sets (V,W)(a,b), (X,Y)(a,b), (X,Z)(a,b), (V,Z)(a,b),
(W,Z)(a,b), (V, Y)(a,b), and (Y,Z)(a,b), and their corresponding families
(V,W), (X ,Y), (X ,Z), (V,Z), (W,Z), (V,Y), and (Y,Z). For the sake of brevity
and to avoid needless repetition, we provide the definition for only one pair of
coordinates.

(V,W)(a,b) =
{

(p, q, r, s, t) | p = a and q = b, 0 ≤ r, s, t < m1/5
}

,

where 0 ≤ a, b < m1/5. Moreover,

(V,W) =
{

(V,W)(a,b) | 0 ≤ a, b < m1/5
}

.

Observation 1. |(V,W)(a,b)| = m3/5 and |(V,W)| = m2/5.

2.1 Our Scheme

For this three probe scheme, we will have seven tables corresponding to the seven
families mentioned in the previous section. They also form the internal nodes
of the decision tree of the scheme (Fig. 1). The tables will have one bit for each
set in the corresponding families. We will abuse the notations and use (V,W)
for the family name as well as for its corresponding table in the datastructure.
Moreover, we will use (V,W)(a,b) to denote a member of the family (V,W) as
well as one bit in the table (V,W).

Lemma 2. The size of our datastructure is 7m2/5.

The design of the query scheme is depicted in the decision tree T3 in Fig. 1.
Each internal node of the tree is a table in our datastructure, as indicated by
the node labels. The children of a node tell us which table to query next, or in
the case of the second last level, what is the output of the query scheme. We
start the query scheme by making our first query into the table at the root of
the decision tree. If the bit returned upon the query is 0, we move to the left
child, otherwise we move to the right child. We repeat the process at the next
node, and so on until we reach a leaf of the tree where we get our Yes or No
answer for our query scheme.

The query locations for any element will depend on the coordinates of the
point on which the element is placed. To take an example, the query location for

474 D. Kesh

(V,W)

(X ,Y) (X ,Z)

0 1

(V,Z) (W,Z)

0 1

(V,Y) (Y,Z)

0 1

No Yes

0 1

No Yes

0 1

No Yes

0 1

No Yes

0 1

Fig. 1. T3 : The decision tree of an element for three probe adaptive scheme.

the element (a, b, c, d, e) in table (V,W) will be (V,W)(a,b), and in table (X ,Y)
it will be (X,Y)(c,d), which are nothing but the projections of the point on the
vw- and xy-planes, respectively.

Given a subset S = {(a1, b1, c1, d1, e1), (a2, b2, c2, d2, e2)} of U , the storage
scheme tells us how to set the bits of our datastructure such that membership
queries can be answered correctly. As before, the scheme varies according to the
elements we want to store, i.e. how the members of S are chosen from U . We
discuss each case separately.

Case I – Let us assume that a1 �= a2. In table (V,W), we set the bit (V,W)(a1,b1)

to 0 and the bit (V,W)(a2,b2) to 1. For the rest of the bits, we set all those
bits (V,W)(a,b) such that a = a2 to 0. The remaining bits are set to 1. In the
second level of the tree, the table (X ,Y) has (X,Y)(c1,d1) set to 0 and the
rest of the bits set to 1. In table (X ,Z), we set the bit (X,Z)(c2,e2) to 0 and
the rest of the bits to 1. Now, we set the bits at third level. We set the bits
(V,Z)(a1,e1) in table (V,Z) and (V, Y)(a2,d2) in table (V,Y) to 1. The rest of
the bits in all of the tables are set to 0.

Case II – Let us consider the case when a1 = a2 = a′ (say), but b1 �= b2. The
members of S now are (a′, b1, c1, d1, e1) and (a′, b2, c2, d2, e2). We set the bit
(V,W)(a′,b1) to 0 and (V,W)(a′,b2) to 1 in table (V,W). The rest of the bits
of the table are assigned as follows. For the bits (V,W)(a,b) such that a = a′,
we set them to 0. We set the rest of the bits to 1. Coming to the second level,
the bit (X,Y)(c1,d1) in table (X ,Y) is set to 1 and the others to 0. In table
(X ,Z), the bit (X,Z)(c2,e2) is set to 0 and the rest to 1. In the third level,
we set the bits (W,Z)(b1,e1) in (W,Z) and (V, Y)(a′,d2) in (V,Y) to 1, and
the rest of the bits in all the tables to 0.

Case III – We now consider the scenario where a1 = a2 = a′ (say), b1 = b2 = b′

(say), and e1 �= e2. The members of S now look like (a′, b′, c1, d1, e1) and
(a′, b′, c2, d2, e2). We set the bit (V,W)(a′,b′) in table (V,W) to 1, and the
rest of its bits to 0. In the second level, the bits (X,Z)(c1,e1) and (X,Z)(c2,e2)
in table (X ,Z) are set to 1, and the rest of bits of all the tables in the level
to 0. In the third level, all the bits in tables (V,Z), (W,Z), and (V,Y) are
set to 0. In table (Y,Z), the bits (Y,Z)(d1,e1) and (Y,Z)(d2,e2) are set to 1,
and the rest to 0.

On Adaptive Bitprobe Schemes for Storing Two Elements 475

Case IV – The final case to consider is a1 = a2 = a′ (say), b1 = b2 = b′ (say),
and e1 = e2 = e′ (say), and hence the members of S are (a′, b′, c1, d1, e′)
and (a′, b′, c2, d2, e′). In table (V,W), the bit (V,W)(a′,b′) is set to 0, and the
rest of the bits are set to 1. In the second level, the bits (X,Y)(c1,d1) and
(X,Y)(c2,d2) in the table (X ,Y) are set to 0, and every other bit to 1. In the
last level, only the bit (V,Z)(a′,e′) in table (V,Z) is set to 1.

3 Adaptive Scheme for Four Probes or More

In this section, we present an adaptive scheme that stores subsets S of size
at most two and answers membership queries using t bitprobes, where t ≥ 4.
Our scheme is a generalisation of the approaches for the two and three bitprobe
schemes. For a scheme involving t bitprobes, we look at the two-dimensional
faces of a (2t − 1)-dimensional hypercube. It is a simple recursive scheme that
uses the schemes for t−2 bitprobes as a subroutine. The base cases of t = 2 and
t = 3 is already known, and we now present schemes for higher values of t.

Consider the (2t − 1)-dimensional space with coordinates x1, x2, . . . , x2t−1.
In the first orthant of that space, consider a (2t−1)-dimensional hypercube with
one of its vertices at the origin and each of its sides having magnitude m1/(2t−1).
The total number of points within and on the cube with integral coordinates is
m. We arrange the elements of our universe U on those points. As before, the
identity of an element will be the coordinates of the point on which it is placed,
e.g. (a1, a2, . . . , a2t−1).

We will stick to the nomenclature introduced in the previous section. For any
two coordinates xi and xj , we define the set (Xi,Xj)(c,d) as the collection of all
points whose projection on the xixj-plane is (c, d).

(Xi,Xj)(c,d) =
{

(a1, a2, . . . , a2t−1) | ai = c, aj = d; ∀k, 0 ≤ ak < m1/(2t−1)
}

,

where 0 ≤ c, d < m1/(2t−1). We also define the corresponding family of sets
(Xi,Xj).

(Xi,Xj) =
{

(Xi,Xj)(c,d) | 0 ≤ c, d < m1/(2t−1)
}

Observation 3. |(Xi,Xj)(c,d)| = m(2t−3)/(2t−1) and |(Xi,Xj)| = m2/(2t−1).

3.1 Our Scheme

The decision tree for our scheme is shown in Fig. 2. It is a complete binary
tree with t + 1 levels, of which the first t levels are shown. Similar to the earlier
decision tree T3, the last level has Yes and No nodes. For want of space, only
those nodes of the tree which are necessary for our discussion have been drawn.
The big triangle marked Tt−2 denotes the decision tree for t − 2 bitprobes with
the root as (X5,X6) and the coordinates involved being x5, x6, . . . , x2t−1.

As before, there is one table in our datastructure for each of the nodes in the
decision tree which, of course, are the various set families. We have one bit in the

476 D. Kesh

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

Fig. 2. Tt : The decision tree of an element for three probe adaptive scheme. The Yes

and the No nodes are not shown to save space.

table for every member of the corresponding family, and as there are m2/(2t−1)

sets in each family (Observation 3), the size of each table is m2/(2t−1). Combined
with the fact that our decision tree has 2t − 1 nodes and we need one table for
each node, the following lemma follows.

Lemma 4. The size of our datastructure is (2t − 1)m2/(2t−1).

To verify whether an element (a1, a2, . . . , a2t−1) is in S, all we need to do is
to follow down a path in the tree Tt (Fig. 2). The label of a node in the tree tells
us two things – on which two-dimensional plane we need to project the element,
and in which table we need query in the current step. To take an example, Tt

tells us that for the first query we need to project the element on the x1x2-plane.
The projection of (a1, a2, . . . , a2t−1) on the plane is (a1, a2). It also tells us to
look into the table (X1,X2) at the location (X1,X2)(a1,a2). The next query will
be in the left child or the right child depending on whether the bit stored at that
location is 0 or 1, respectively. If and only if in the last node our query gives us
a 1, we deduce that the element is a member of S.

As before, how the bits are set in our datastructure depends on how the
members of S are chosen from U . Let the elements we want to store be
(a1, a2, . . . , a2t−1) and (b1, b2, . . . , b2t−1). The intuition behind the scheme is the
following – if the first four coordinates of the two elements are equal to each
other, we use the recursive part of the decision tree to store the elements, the
part of the tree marked Tt−2 which, as we have mentioned earlier, denotes the
decision tree for the scheme with t−2 probes; otherwise, we would use the ideas
from the first two cases of the storage scheme for three probes (Sect. 2.1).

Case I – Let us assume that a1 �= b1. The tables where we are going to store
the two elements and the path one has to take to get a Yes are shown in
Fig. 3.

Case II – Now, let us assume that a1 = b1 and a2 �= b2. The tables where we
are going to store the two elements and the path one has to take to get a
Yes are shown in Fig. 4.

Cases III and IV – We now consider the two scenarios where a1 = b1 =
c1(say), a2 = b2 = c2(say), a3 �= b3 and where a1 = b1, a2 = b2, a3 =
b3, a4 �= b4. The solution in these cases is similar to the Cases I and II dis-
cussed above.

On Adaptive Bitprobe Schemes for Storing Two Elements 477

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

1 2

Fig. 3. a1 �= b1.

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

1 2

Fig. 4. a1 = b1 and a2 �= b2.

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

12

Fig. 5. a1 = b1, a2 = b2 and a3 �= b3.

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

12

Fig. 6. a1 = b1, a2 = b2, a3 = b3 and a4 �= b4.

478 D. Kesh

(X1,X2)

(X3,X4) (X3,X4)

0 1

(X5,X6) (X5,X6)

0 1

(X5,X6) (X5,X6)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X1) (X2t−1,X2)

0 1

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X4)

01

(X2t−3,X2t−2)

0

(X2t−1,X3)(X2t−1,X1)

01
Tt−2

1 2

Fig. 7. a1 = b1, a2 = b2, a3 = b3 and a4 = b4.

We set the bit (X1,X2)(c1,c2) in table (X1,X2) to 1 and the rest of the bits
to 0. This results in the following favourable scenario – only those elements whose
first two coordinates are c1 and c2 would go to the right child of (X1,X2), and
this includes the members of S. We can now handle the scenario when the x3

coordinates of the members of S are different in the same manner as we handled
the scenario when the x1 coordinates were different. This is illustrated by the
Fig. 5. We can see that the leaf nodes storing the two elements both contain the
x3 coordinate, which is needed for the argument to work.

Similarly, the case when the x3 coordinate of the members of S are also
equal but the x4 coordinates are different can be handled using the same logic
which we used to handle the scenario when x1 coordinates were equal and the
x2 coordinates were different. Figure 6 illustrates the situation. The leaf node
storing the first element has x4 coordinate, whereas the leaf node storing the
second element has x3 coordinate, which is required for the argument to work.

Case V – We now discuss the final scenario, where the first four coordi-
nates of the two members of S are equal to each other. Let those coordi-
nates be c1, c2, c3, and c4. We take the path shown in Fig. 7. We set the
bit (X1,X2)(c1,c2) in table (X1,X2) to 0, and the bit (X3,X4)(c3,c4) in table
(X3,X4) to 1. So, all the elements whose first four coordinates are as above,
including the members of S, after the first two queries will arrive at the
subtree Tt−2 with root (X5,X6). The elements that will be mapped to this
subtree will all lie in a (2t − 5)-dimensional hypercube, and among these
elements we have to store a subset of size two. The number of bitprobes left
is t − 2. So, we can safely use the scheme for t − 2 probes, and the decision
tree for that scheme should be able to store and answer membership queries
correctly.

References

1. Radhakrishnan, J., Shah, S., Shannigrahi, S.: Data structures for storing small
sets in the bitprobe model. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6347, pp. 159–170. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15781-3 14

https://doi.org/10.1007/978-3-642-15781-3_14
https://doi.org/10.1007/978-3-642-15781-3_14

On Adaptive Bitprobe Schemes for Storing Two Elements 479

2. Lewenstein, M., Ian Munro, J., Nicholson, P.K., Raman, V.: Improved explicit data
structures in the bitprobe model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014.
LNCS, vol. 8737, pp. 630–641. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44777-2 52

3. Radhakrishnan, J., Raman, V., Srinivasa Rao, S.: Explicit deterministic construc-
tions for membership in the bitprobe model. In: Heide, F.M. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44676-1 24

4. Nicholson, P.K., Raman, V., Rao, S.S.: A survey of data structures in the bitprobe
model. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient
Data Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 303–318. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9 19

5. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are bitvectors
optimal. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, Portland, pp. 449–458, 21–23 May 2000

6. Alon, N., Feige, U.: On the power of two, three and four probes. In: Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, pp. 346–354, 4–6 January 2009

7. https://www.iitg.ernet.in/deepkesh/main.pdf

https://doi.org/10.1007/978-3-662-44777-2_52
https://doi.org/10.1007/978-3-662-44777-2_52
https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/3-540-44676-1_24
https://doi.org/10.1007/978-3-642-40273-9_19
https://www.iitg.ernet.in/deepkesh/main.pdf

Author Index

Ahadi, Arash II-61
Alsughayyir, Aeshah II-457
Alzamel, Mai II-109
Angel, Eric II-333
Aravind, N.R. II-475

Bai, Chunsong I-278
Bui, Trung Q. I-371

Cai, Zhipeng I-251
Chai, Yuna I-18
Chairungsee, Supaporn II-483
Chandrasekaran, R. II-122
Chang, Jou-Ming I-41
Charalampopoulos, Panagiotis II-109
Charbit, Pierre II-154
Chateau, Annie I-180, II-509
Chen, Chen I-417
Chen, Chu I-401
Chen, Cong II-226
Chen, Guangshuo I-70
Chen, Guangting I-125
Chen, Guihai I-111, II-425
Chen, Lin II-214
Chen, Xin II-241
Chen, Xujin II-3
Chen, Yong I-125
Chen, Zhi II-32
Chin, Francis Y.L. I-439
Cohen, Johanne II-291
Conte, Alessio II-169
Crespelle, Christophe I-210
Crispin, Alan II-394
Crochemore, Maxime II-483

Darties, Benoit I-180
de Laat, Cees I-3
Deng, Bo I-141
Ding, Hu I-56
Dragan, Feodor F. II-348
Du, Donglei I-298
Du, Hongwei I-401, II-492
Duan, Jianli I-462
Duan, Zhenhua I-401, II-492

Erlebach, Thomas II-317, II-457

Fan, Neng I-133
Fang, Qizhi II-241
Feldkord, Björn II-17
Feng, Qilong II-501

Gao, Suixiang II-466
Gao, Ziyuan II-199
Gargano, Luisa II-276
Genc, Begum II-441
Giroudeau, Rodolphe I-180, II-509
Glazik, Christian II-409
Grosso, Paola I-3
Gu, Qian-Ping I-340
Gu, Ran I-133
Guan, Li I-95
Gui, Jihong II-466
Guo, Jiong I-85
Guo, Longkun I-103, I-240, II-362

Habib, Michel II-154
Hatanaka, Tatsuhiko I-152
Hell, Pavol II-261
Hong, Eunpyeong II-45
Hu, Xiaodong II-3
Huang, Hejiao II-449
Huang, Jiapeng II-425
Hussain, Akram I-450

Iliopoulos, Costas S. II-109
Italiano, Giuseppe F. II-291
Ito, Takehiro I-152

Jäger, Gerold II-409
Jiang, Haitao I-85
Jiang, Su II-182

Kalyanasundaram, Subrahmanyam II-475
Kang, Liying I-278, II-306
Kao, Shih-Shun I-41
Kare, Anjeneya Swami II-475
Kesh, Deepanjan I-471
Khachay, Michael I-265

Khoshkhah, Kaveh I-195
Khosravian Ghadikolaei, Mehdi I-195
Kim, Donghyun II-76
Kita, Nanao I-225
Kobayashi, Yasuaki II-45
Kong, Linghe I-70, II-425
Kurita, Kazuhiro II-169

Lau, Francis C.M. I-439
Lavygina, Anna II-394
Le, Su T. I-371
Leitert, Arne II-348
Li, Jianping I-95
Li, Jianzhong I-426
Li, Min II-362
Li, Peng I-240
Li, Rongqi I-165
Li, Sha I-111
Li, Weidong I-95
Li, Wenjing I-141
Li, Wenjuan I-286
Li, Wenjun II-94
Li, Xueliang I-141
Li, Yingshu I-426
Liang, Jiajian Leo I-340
Liao, Xiaolu II-501
Lichen, Junran I-95
Lin, Bin I-462
Liu, Anfeng II-182
Liu, Chuang I-18
Liu, Fu-Hong II-317
Liu, Hsiang-Hsuan II-317
Liu, Manni I-56
Liu, Shengxin II-379
Liu, Xianmin I-426
Liu, Xiaofei I-95
Lokshtanov, Daniel I-210
Lu, Jialiang I-70
Lu, Xiwen I-313
Lu, Zaixin II-32
Lü, Zhipeng II-518
Luo, Xi I-70
Luo, Yuan I-450

Manoussakis, Yannis II-291
Mao, Yaping I-141
Markarian, Christine II-17
Meyer Auf der Heide, Friedhelm II-17
Miao, Dongjing I-251
Mills, K. Alex II-122

Mittal, Neeraj II-122
Monnot, Jérôme I-195
Mouatadid, Lalla II-154
Mozafari, Amirhossein II-61

Nakano, Shin-Ichi I-33
Naserasr, Reza II-154
Neznakhina, Katherine I-265
Nguyen, Bang Q. I-371
Nguyen, Kim Thang II-291
Nguyen, Trang T. I-371
Nguyen, Viet Hung I-324
Nishimura, Naomi II-138
Nishiyama, Hiroshi II-261
Nong, Qingqin II-241

O’Sullivan, Barry II-441
Okisaka, Shohei I-286

Pai, Kung-Jui I-41
Pan, Miao II-32
Peng, Keke I-386
Peng, Weiguang I-286
Penna, Paolo II-226
Pham, Hong Phong II-291
Phan, Thi Ha Duong I-210
Pissis, Solon P. II-109
Polevoy, Gleb I-3
Poon, Chung Keung II-379

Qi, Huamei II-182
Qi, Yannan I-417

Radoszewski, Jakub II-109
Rahman, Md. Saidur I-33
Rescigno, Adele A. II-276

Schiemann, Jan II-409
Shalom, Mordechai II-317
Shan, Erfang II-306
Shi, Yongtang I-133
Siala, Mohamed II-441
Simonin, Gilles II-441
Singh, Shikha II-333
Song, Guoliang I-18
Song, Liang II-449
Srivastav, Anand II-409
Stacho, Ladislav II-261
Subramanya, Vijay II-138
Sung, Wing-Kin II-109

482 Author Index

Tan, Haisheng I-439
Tan, Tunzi II-466
Tan, Zhiyi I-165
Tanaka, Kazuyuki I-286
Tang, Shyue-Ming I-41
Tang, Zhongzheng II-3
Thang, Nguyen Kim II-333
Theis, Dirk Oliver I-195
Thierry, Eric I-210
Tian, Cong I-401, II-492
Tian, Shilei I-111
Ting, Hing-Fung I-439
Trajanovski, Stojan I-3

Uno, Takeaki II-169

Vaccaro, Ugo II-276

Wang, Chenhao II-3
Wang, Haotian I-111
Wang, Jianxin II-94, II-501
Wang, Sainan II-466
Wang, Wei II-76
Wang, Xinglong I-417
Wang, Yishui I-119
Wasa, Kunihiro II-169
Weller, Mathias I-180, II-509
Welsh, Kris II-394
Wen, Zhenzao II-425
Weng, Paul I-324
Wong, Prudence W.H. II-317
Wu, Chenchen I-298
Wu, Fan I-111
Wu, Min-You I-70, II-425
Wu, Ro-Yu I-41
Wu, Yuanxiao I-313

Xiao, Tailong II-182
Xu, Chao II-94
Xu, Dachuan I-119, I-298, II-362

Xu, Wen I-386
Xu, Yinfeng II-226

Yamamoto, Akihiro II-45
Yamanaka, Katsuhisa I-33
Yang, Boting II-199
Yang, Jinn-Shyong I-41
Yang, Kai II-492
Yang, Wenguo II-466
Yang, Yongjie II-94
Yang, Zishen II-76
Yao, Pei I-103
Ye, Deshi II-214
Ye, Tao II-518
Youngs, Jd II-32
Yu, Xinchun I-450
Yuan, Caiwei I-386

Zaks, Shmuel II-317
Zarei, Alireza II-61
Zhang, An I-125
Zhang, Chen I-18
Zhang, Chenhao I-355
Zhang, Dongmei I-119, I-298
Zhang, Guochuan I-340, I-355, II-214
Zhang, Lei I-125
Zhang, Nan II-492
Zhang, Peng I-119
Zhang, Wei II-306
Zhang, Ying II-3
Zhang, Yong I-439
Zhang, Zhenning I-119, I-298
Zhao, Haixing I-141
Zhao, Tiange I-462
Zhou, Aizhong I-85
Zhou, Kan II-518
Zhou, Taoqing II-518
Zhou, Xiao I-152
Zhu, Daming I-85
Zhu, Qianyu I-165

Author Index 483

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	Network
	Filtering Undesirable Flows in Networks
	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Local Ratio Approximation

	3 Hardness
	4 Approximation
	5 Conclusion
	References

	A Framework for Overall Storage Overflow Problem to Maximize the Lifetime in WSNs
	1 Introduction
	2 Related Work
	3 Overall Storage Overflow Problem
	4 Data Aggregation for Overall Storage Overflow Problem
	4.1 Data Aggregation Formulation
	4.2 Data Aggregation Algorithm

	5 Integrating Data Aggregation and Data Redistribution
	6 Performance Evaluation
	6.1 Performance of Data Aggregation Algorithm
	6.2 Performance of Data Replication Algorithm

	7 Conclusions and Future Work
	References

	Floorplans with Columns
	1 Introduction
	2 Preliminaries
	3 Family Tree
	4 Algorithm
	5 Conclusion
	References

	A Parallel Construction of Vertex-Disjoint Spanning Trees with Optimal Heights in Star Networks
	1 Introduction
	2 The Star Graphs
	3 Rescigno's Algorithm for Constructing VDSTs of Sn
	4 An Amendatory Scheme
	5 A Fully Parallelized Algorithm for Constructing VDSTs of Sn
	6 Concluding Remarks
	References

	Protein Mover's Distance: A Geometric Framework for Solving Global Alignment of PPI Networks
	1 Introduction
	1.1 Our Contributions

	2 Embedding Methods
	2.1 Node2vec
	2.2 Multi-dimensional Scaling
	2.3 Structure Preserving Embedding

	3 Protein Mover's Distance
	4 Our Algorithms
	4.1 Two PPI Networks
	4.2 Multiple PPI Networks

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Results

	6 Conclusion
	References

	On the Profit-Maximizing for Transaction Platforms in Crowd Sensing
	1 Introduction
	2 System Model
	2.1 Crowd Sensing System
	2.2 Basic Definitions
	2.3 Auction Mechanism

	3 Problem Formulation
	3.1 Participants' Utility Functions
	3.2 Platform Profit Maximization Problem
	3.3 Mathematical Deduction

	4 Strategies and Algorithms for Platforms
	4.1 Basic Case: One Requester and Multiple Providers
	4.2 General Case: Multiple Requesters and Multiple Providers
	4.3 Solutions for the General Case

	5 Simulations
	6 Conclusion
	References

	A New Approximation Algorithm for the Maximum Stacking Base Pairs Problem from RNA Secondary Structures Prediction
	1 Introduction
	2 Preliminaries
	3 Algorithm Description
	4 Performance Analysis
	4.1 The Analysis of Approximation Performance Ratio

	References

	Approximation Algorithm and Graph Theory
	Approximation Algorithms for the Generalized Stacker Crane Problem
	1 Introduction
	2 Algorithm GSC1
	3 Algorithm GSC2
	4 Algorithm GSC9/5
	5 Conclusion and Future Work
	References

	Fast Approximation Algorithms for Computing Constrained Minimum Spanning Trees
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 Algorithms for CMST via Bicameral Edge Replacement
	2.1 Bicameral Edge Replacement
	2.2 The Exact Algorithm

	3 Proof of Theorem 7
	4 Conclusion
	References

	Trajectory-Based Multi-hop Relay Deployment in Wireless Networks
	1 Introduction
	2 Problem Statement
	2.1 System Model
	2.2 Problem Definition

	3 Demand Node Generation
	3.1 Trajectory Matrix Generation
	3.2 Prediction Matrix
	3.3 Filtering

	4 Submodular Iterative Deployment Algorithm (SIDA)
	4.1 The SIDA
	4.2 Performance Analysis

	5 Simulations
	6 Conclusion
	References

	A Local Search Approximation Algorithm for a Squared Metric k-Facility Location Problem
	1 Introduction
	2 Approximation Algorithm for the SM-k-FLP
	2.1 Preliminaries
	2.2 Local Search Algorithm
	2.3 Analysis
	2.4 Further Improvement by Scaling

	3 Discussions
	References

	Combinatorial Approximation Algorithms for Spectrum Assignment Problem in Chain and Ring Networks
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm and Its Performance Ratio Analysis
	4 Conclusion
	References

	Mixed Connectivity of Random Graphs
	1 Introduction
	2 (k,)-connectivity
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 5

	3 (k,)-mixed-connectivity
	3.1 Proof of Theorem 3
	3.2 Proof of Theorem 6

	References

	Conflict-Free Connection Numbers of Line Graphs
	1 Introduction
	2 Dynamic Behavior of the Line Graph Operator
	3 The Values cfc(Lk(G)) of Iterated Line Graphs
	References

	The Coloring Reconfiguration Problem on Specific Graph Classes
	1 Introduction
	1.1 Our Problem
	1.2 Known and Related Results
	1.3 Our Contribution

	2 Preliminaries
	2.1 List coloring reconfiguration
	2.2 Frozen Vertices

	3 PSPACE-Completeness
	3.1 List coloring reconfiguration
	3.2 Reduction
	3.3 Correctness of the Reduction

	4 Polynomial-Time Solvable Cases
	4.1 Split Graphs
	4.2 Trivially Perfect Graphs

	5 Conclusions
	References

	Combinatorial Optimization
	Minimizing Total Completion Time of Batch Scheduling with Nonidentical Job Sizes
	1 Introduction
	2 Technical Preliminaries
	3 Single Machine
	4 Parallel Machines
	References

	New Insights for Power Edge Set Problem
	1 Introduction
	2 Preliminaries
	3 Complexity Results
	3.1 Hardness on Bipartite Planar Graphs of Degree Three
	3.2 Extension of Hardness Result to Grid Graphs of Degree Three and Unit Disk Graph

	4 Lower Bounds
	4.1 Lower Bounds for Exact and FPT Algorithms
	4.2 Non-approximability Results According to Complexity Hypothesis

	5 Conclusion and Perspectives
	References

	Extended Spanning Star Forest Problems
	1 Introduction
	1.1 Graph Terminology and Definitions
	1.2 Related Work
	1.3 Organization and Contribution

	2 Spanning Star Forest Problem: Minimization Case
	3 Approximation Results
	4 Spanning Star Forest Problem: Maximization Case
	5 Conclusion
	References

	Faster and Enhanced Inclusion-Minimal Cograph Completion
	1 Introduction
	2 Preliminaries
	3 Characterisation of Minimal Constrained Completions
	4 An O(n+m') algorithm with incremental minimum
	5 An O(n+m log2 n) algorithm
	References

	Structure of Towers and a New Proof of the Tight Cut Lemma
	1 Introduction
	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Canonical Decomposition for General Factorizable Graphs

	3 Towers and Tower-Sequences
	4 A New Proof of the Tight Cut Lemma
	4.1 Shared Definitions, Assumptions, Lemmas
	4.2 When There Exists a Factor-Component in MinO(G) Whose Vertices are in Sc
	4.3 When Every Factor-Component in MinO(G) has the Vertex Set Contained in S

	References

	On the Complexity of Detecting k-Length Negative Cost Cycles
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 The NP-completeness of FPTkLNCC in Multigraphs
	3 The NP-completeness Proof of kLNCC
	4 Conclusion
	References

	A Refined Characteristic of Minimum Contingency Set for Conjunctive Query
	1 Introduction
	2 Preparation
	2.1 Analysis of Previous Work

	3 Results
	4 Conclusion
	References

	Generalized Pyramidal Tours for the Generalized Traveling Salesman Problem
	1 Introduction
	2 Generalized Pyramidal Tours
	3 Polynomial Time Solvable Subclass of GTSP on Grid Clusters
	4 Conclusion
	References

	The 2-Median Problem on Cactus Graphs with Positive and Negative Weights
	1 Introduction
	2 Notations and Preliminaries
	3 Parametric Problems L1 on Graphs
	3.1 A Parametric Problem L1 on a Cycle
	3.2 A Parametric Problem L1 on a Tree
	3.3 A Parametric Problem L1 on a Cactus

	4 Problems L2 on Cactus Graphs
	4.1 Local 1-Median Problems
	4.2 Algorithm for Local 1-Median Problems

	References

	The Eigen-Distribution of Weighted Game Trees
	1 Introduction
	2 Preliminary
	3 Main Results
	3.1 The Uniqueness of Ei(a,b)-Distribution w.r.t AD
	3.2 The Uniqueness of Ei(a,b)-Distribution Fails w.r.t Adir

	References

	A Spectral Partitioning Algorithm for Maximum Directed Cut Problem
	1 Introduction
	2 Maximum Directed Cut Problem
	2.1 Spectral Partitioning Rounding

	3 The Spectral Partitioning Algorithm
	4 Discussions
	References

	Better Approximation Ratios for the Single-Vehicle Scheduling Problems on Tree/Cycle Networks
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 SVSP on Tree Network
	3.1 Tour-Version of T-SVSP
	3.2 Path-Version of T-SVSP

	4 SVSP on Cycle Network
	5 Conclusions
	References

	An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization Problems
	1 Introduction
	2 Related Work
	3 Model
	3.1 General Model
	3.2 Ordered Weighted Average and Generalized Gini Index
	3.3 Fair Combinatorial Optimization

	4 Alternating Optimization Algorithm
	4.1 Optimality Condition and Approximation Ratio
	4.2 Iterative Algorithm

	5 Experimental Results
	6 Conclusion
	References

	Efficient Algorithms for Ridesharing of Personal Vehicles
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming Algorithm
	3.1 Algorithm
	3.2 Analysis of Algorithm

	4 Greedy Algorithm for Minimizing Number of Drivers
	5 Concluding Remarks
	References

	Cost-Sharing Mechanisms for Selfish Bin Packing
	1 Introduction
	2 A Simple Mechanism
	3 A Lower Bound of PoA
	4 A Better Mechanism
	5 Concluding Remarks
	References

	Application
	Modelling and Solving Anti-aircraft Mission Planning for Defensive Missile Battalions
	1 Introduction
	1.1 Related Works
	1.2 Objective, Contribution, and Outline

	2 Problem Formulations
	2.1 Problem Statement
	2.2 Mathematical Formulations
	2.3 NP-Hardness

	3 Experiments
	4 Conclusion
	A Appendix
	A.1 Compute e(b,f,t)
	A.2 Compute t(b,l,f)

	References

	Perspectives of Big Data Analysis in Urban Railway Planning: Shenzhen Metro Case Study
	1 Introduction
	2 Urban Railway Datasets
	2.1 Data of Passenger Travel Behavior
	2.2 Dynamic Railway Card Data

	3 Methodology
	3.1 Utilization Efficiency of Rail Transit Analysis
	3.2 Organization Efficiency of Traffic System Matching
	3.3 Organization Efficiency from the Distribution of Work-and-Home

	4 Conclusion
	References

	Cloning Automata: Simulation and Analysis of Computer Bacteria
	1 Introduction
	2 Cloning Automata
	2.1 Fusion
	2.2 Fission

	3 Analysis of Cloning Automata
	3.1 Analysis of Fusion
	3.2 Analysis of Fission

	4 Interruption of the Self-replication
	5 Simulation and Analysis of Fork Bomb
	5.1 Operational Principles of Fork Bomb
	5.2 Simulation of Fork Bomb with CA
	5.3 Analysis of Fork Bomb
	5.4 Interruption of Fork Bomb

	6 Conclusion
	References

	Research on Arrival Integration Method for Point Merge System in Tactical Operation
	Abstract
	1 Introduction
	2 Construction of Multi-agent System for Merge Point Arrival
	2.1 Aircraft Agent (AA)
	2.2 Runway Control Agent (RCA)
	2.3 Vertical Trajectory Agent (VTA)
	2.4 Arrival Trajectory Agent (ATA)
	2.5 Space Maintain Agent (SMA)

	3 Module Design
	3.1 Trajectory Generation Module
	3.2 Trajectory Adjustment Module
	3.3 Conflict Detection Module

	4 Verification
	5 Conclusions
	References

	Repair Position Selection for Inconsistent Data
	1 Introduction
	2 Preliminary
	2.1 Basic Notations
	2.2 Data Repair Strategies and the Repair Position Selection Problem

	3 RPS Problem for Simple Deletion Strategy
	4 RPS Problem for Full Modify Strategy
	5 RPS Problem for Half Modify Strategy
	6 Related Work
	7 Conclusion
	References

	Unbounded One-Way Trading on Distributions with Monotone Hazard Rate
	1 Introduction
	2 One-Way Trading with Distribution
	3 Distribution on the Highest Price Among All Buyers
	3.1 Measure of E[OPT]E[ALG]
	3.2 Measure of E[OPTALG]

	4 Distribution on the Highest Price of Each Buyer
	5 Concluding Remark
	References

	Generalized Bidirectional Limited Magnitude Error Correcting Code for MLC Flash Memories
	1 Introduction
	1.1 Bidirectional Limited Magnitude Channel Model

	2 Preliminaries
	3 Code Construction for (t+, t-) Bidirectional (lu, ld)--Limited Magnitude Error Correcting Codes
	3.1 Encoding
	3.2 Decoding
	3.3 Size of the Code
	3.4 Decoding Error Probability
	3.5 Special Cases of the Code Construction 1

	4 Conclusion
	References

	Optimal Topology Design of High Altitude Platform Based Maritime Broadband Communication Networks
	Abstract
	1 Introduction
	2 Network Model and Problem Formulation
	2.1 Network Model
	2.2 Problem Statement
	2.3 Problem Formulation

	3 Numerical Analysis
	4 Conclusion
	Acknowledgments
	References

	On Adaptive Bitprobe Schemes for Storing Two Elements
	1 Introduction
	2 The Three Probe Adaptive Scheme
	2.1 Our Scheme

	3 Adaptive Scheme for Four Probes or More
	3.1 Our Scheme

	References

	Author Index

