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Chapter 1
Introduction

Bruce Edmonds and Ruth Meyer

Abstract This introduces the themes of the book inherent in its title: Simulating
Social Complexity. In a deliberate homage to the work of Herbert Simon, it traces
the roots of these themes back to his work. It then explains the structure of the
handbook with its different parts: introductory, methodological on different kinds of
mechanism and applications. It briefly introduces each chapter within this structure.

Why Read This Chapter?
To understand some of the background and motivation for the handbook and how it
is structured.

1.1 Simulating Social Complexity

As the title indicates, this book is about Simulating Social Complexity. Each of these
words is important:

Simulating—the focus here is on individual- or agent-based computational simu-
lation rather than analytic or natural language approaches (although these can
be involved). In other words, this book deals with computer simulations where
the individual elements of the social system are represented as separate elements
of the simulation model. It does not cover models where the whole population
of interacting individuals is collapsed into a single set of variables. Also, it
does not deal with purely qualitative approaches of discussing and understanding
social phenomena, but just those that try to increase their understanding via the
construction and testing of simulation models.

Social—the elements under study have to be usefully interpretable as interacting
elements of a society. The focus will be on human society but can be extended
to include social animals or artificial agents where such work enhances our

B. Edmonds (�) • R. Meyer
Centre for Policy Modelling, Manchester Metropolitan University Business School, All Saints
Campus, Oxford Road, Manchester, M1 6BH, UK
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4 B. Edmonds and R. Meyer

understanding of human society. Thus, this book does not deal with models of
single individuals or where the target system is dealt with as if it were a single
entity. Rather it is the differing states of the individuals and their interactions that
are the focus here.

Complexity—the phenomena of interest result from the interaction of social actors
in an essential way and are not reducible to considering single actors or a
representative actor and a representative environment. It is this complexity
that (typically) makes analytic approaches infeasible and natural language
approaches inadequate for relating intricate cause and effect. This complexity
is expressed in many different ways, for example, as a macro/micro link, as the
social embedding of actors within their society and as emergence. It is with these
kinds of complexity that a simulation model (of the kind we are focussing on)
helps, since the web of interactions is too intricate and tedious to be reliably
followed by the human mind. The simulation allows emergence to be captured in
a formal model and experimented upon.

Since this area is relatively new, it involves researchers from a wide variety of
backgrounds, including computer scientists, sociologists, anthropologists, geogra-
phers, engineers, physicists, philosophers, biologists and even economists. The field
is starting to mature and this handbook is part of that process. We hope that it will
help to introduce and guide newcomers into the field so as to involve more minds and
effort in this endeavour, as well as inform those who enter it from one perspective
to learn about other sides and techniques.

1.2 The Context: Going Back to Herbert Simon

This handbook is in memory of Herbert Simon, since he initiated several key strands
that can be found in the work described here.

He observed how people behave in a social system instead of following some
existing framework of assumptions as to how they behave (Simon 1947). That is, he
tried to change the emphasis of study from a normative to a descriptive approach—
from how academics think people should be behaving to how people are observed to
behave. Famously he criticised “armchair” theorising, the attempt to make theories
about social phenomena without confronting the theory with observation. There is
still a lot of “armchair” theorising in the field of simulating social complexity, with
a “Cambrian explosion” of simulation models, which are relatively unconstrained
by evidence from social systems. If the development of this work is seen as a sort
of evolutionary process, then the forces of variation are there in abundance but the
forces of selection are weak or non-existent (Edmonds 2010).

Importantly for the simulation of complex social systems, Simon observed
that people act with a procedural rather than substantive rationality—they have a
procedure in the form of a sequence of actions that they tend to use to deal with
tasks and choices rather than try to find the best or ideal sequence of actions (Simon
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1947, 1976; Sent 1997). With the advent of computational simulation, it is now
fairly common to represent the cognition of agents in a model with a series of rules
or procedures. This is partly because implementing substantive rationality is often
infeasible due to the computational expense of doing do, but more importantly it
seems to produce results with a greater “surface validity” (i.e. it looks right). It turns
out that adding some adaptive or learning ability to individuals and allowing the
individuals to interact can often lead to effective “solutions” for collective problems
(e.g. the entities in Chap. 23). It is not necessary to postulate complex problem-
solving and planning by individuals for this to occur.

Herbert Simon observed further that people tend to change their procedure only
if it becomes unsatisfactory; they have some criteria of sufficient satisfaction for
judging a procedure, and if the results meet this, they do not usually change what
they do. Later Simon (1956) and others (e.g. Sargent 1993) focused on the contrast
between optimisers and satisficers, since the prevailing idea of decision-making was
that many possible actions are considered and compared (using the expected utility
of the respective outcomes) and the optimal action was the one that was chosen.
Unfortunately it is this later distinction that many remember from Simon, and not the
more important distinction between procedural and substantive rationality. Simon’s
point was that he observed that people use a procedural approach to tasks; the
introduction of satisficing was merely a way of modelling this. However, the idea
of thresholds, which people only respond to a stimulus when it becomes sufficiently
intense, is often credible and is seen in many simulations (for some examples of
this, see Chaps. 24 and 27).

Along with Alan Newell, Simon made a contribution of a different kind to the
modelling of humans. He produced a computational model of problem-solving
in the form of a computer program, which would take complex goals and split
them into sub-goals until the sub-goals were achievable (Newell and Simon 1972).
The importance of this, from the point of view of this book, is that it was a
computational model of an aspect of cognition, rather than one expressed in
numerical and analytic form. Not being restricted to models that can be expressed
in tractable analytic forms allows a much greater range of possibilities for the
representation of human individual and social behaviour. Computational models
of aspects of cognition are now often introduced to capture behaviours that are
difficult to represent in more traditional analytic models. Computational power is
now sufficiently available to enable each represented individual to effectively have
its own computational process, allowing a model to be distributed in a similar
way to that of the social systems we observe. Thus, the move to a distributed and
computational approach to modelling social phenomena can be seen as part of a
move away from abstract models divorced from what they model towards a more
descriptive type of representation.

This shift towards a more straightforward (even “natural”) approach to modelling
also allows for more evidence to be applied. In the past, anecdotal evidence, in the
form of narrative accounts by those being modelled, was deemed as “unscientific”.
One of the reasons that such evidence was rejected is that it could not be used to

http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_27
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help specify or evaluate formal models; such narrative evidence could only be used
within the sphere of rich human understanding and not at the level of a precise
model. Computational simulation allows some aspects of individual’s narratives to
be used to specify or check the behaviour of agents in a model, as well as the results
being more readily interpretable by non-experts. This has let such computational
simulations to be used in conjunction with stakeholders in a far more direct way
than was previously possible. Chapter 12 looks at this approach.

Herbert Simon did not himself firmly connect the two broad strands of his
work: the observation of people’s procedures in their social context and their
algorithmic modelling in computer models. This is not very surprising as the
computational power to run distributed AI models (which are essentially what
agent-based simulations are) was not available to him. Indeed these two strands
of his work are somewhat in opposition to each other, the one attempting to
construct a general model of an aspect of cognition (e.g. problem-solving) and
the other identifying quite specific and limited cognitive procedures. I think it
is fair to say that whereas Simon did reject the general economic model of
rationality, he did not lose hope of a general model of cognitive processes, which
he hoped would be achieved starting from good observation of people. There
are still many in the social simulation community who hope for (or assume) the
existence of an “off-the-shelf” model of the individuals’ cognition which could
be plugged into a wider simulation model and get reasonable results. Against any
evidence, it is often simply hoped that the details of the individuals’ cognitive
model will not matter once embedded within a network of interaction. This
is an understandable hope, since having to deal with both individual cognitive
complexity and social complexity makes the job of modelling social complexity
much harder—it is far easier to assume that one or the other does not matter
much. Granovetter (1985) addressed precisely this question arguing against both
the under-socialised model of behaviour (that it is the individual cognition that
matters and the social effects can be ignored) and the over-socialised model
(that it is the society that determines behaviour regardless of the individual
cognition).

Herbert Simon did not have at his disposal the techniques of individual-
and agent-based simulation discussed in this handbook. These allow the formal
modelling of socially complex phenomena without requiring the strong assumptions
necessary to make an equation-based approach (which is the alternative formal
technique) analytically tractable. Without such simulation techniques, modellers
are faced with a dilemma: either to “shoehorn” their model into an analytically
tractable form, which usually requires them to make some drastic simplifications
of what they are representing, or to abandon any direct formal modelling of what
they observe. In the latter case, without agent-based techniques, they then would
have two further choices: to simply not do any formal modelling at all remaining in
the world of natural language or to ignore evidence of the phenomena and instead
model their idea concerning the phenomena. In other words, to produce an abstract
but strictly analogical model—a way of thinking about the phenomena expressed

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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as a simulation. This latter kind of simulation does not directly relate to any data
derived from observation but to an idea, which, in turn, relates to what is observed in
a rich, informal manner. Of course there is nothing wrong with analogical thinking,
it is a powerful source of ideas, but such a model is not amenable to scientific
testing.

The introduction of accessible agent-based modelling opens up the world of
social complexity to formal representation in a more natural and direct manner.
Each entity in the target system can be represented by a separate entity (agent or
object) in the model, each interaction between entities as a set of messages between
the corresponding entities in the model. Each entity in the model can be different,
with different behaviours and attributes. The behaviour of the modelled entities can
be realised in terms of readily comprehensible rules rather than equations, rules
that can be directly compared to accounts and evidence of the observed entities’
behaviour. Thus, the mapping between the target system and model is simpler
and more obvious than when all the interactions and behaviour are “packaged
up” into an analytic or statistical model. Formal modelling is freed from its
analytical straight jacket, so that the most appropriate model can be formulated
and explored. It is no longer necessary to distort a model with the introduction of
overly strong assumptions simply in order to obtain analytic tractability. Also, agent-
based modelling does not require high levels of mathematical skill and thus is more
accessible to social scientists. The outcomes of such models can be displayed and
animated in ways that make them more interpretable by experts and stakeholders
(for good and ill).

It is interesting to speculate what Herbert Simon would have done if agent-based
modelling was available to him. It is certainly the case that it brings together two
of the research strands he played a large part in initiating: algorithmic models of
aspects of cognition and complex models that are able to take into account more of
the available evidence. We must assume that he would have recognised and felt at
home with such kinds of model. It is possible that he would not have narrowed his
conception of substantive rationality to that of satisficing if he had other productive
ways of formally representing the processes he observed in the way he observed
them occurring.

It is certainly true that the battle he fought against “armchair theorising” (working
from a neat set of assumptions that are independent of evidence) is still raging.
Even in this volume, you will find proponents (let us call them the optimists) that
still hope that they can find some shortcut that will allow them to usefully capture
social complexity within abstract and simple models (theory-like models) and those
(the pessimists) that think our models will have to be complex, messy and specific
(descriptive models) if they are going to usefully represent anything we observe
in the social world. However, there is now the possibility of debate, since we can
compare the results and success of the optimistic and pessimistic approaches and
indeed they can learn from each other.

It seems that research into social complexity has reached a cusp, between
the “revolutionary” and “normal” phases described by Kuhn (1962). A period of
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exploratory growth, opposed to previous orthodoxies, has occurred over the last
15–20 years, where it was sufficient to demonstrate a new kind of model, where
opening up new avenues was more important than establishing or testing ideas
about observed systems. Now attention is increasingly turning to the questions
such as how to productively and usefully simulate social complexity; how to do
it with the greatest possible rigour; how to ensure the strongest possible relation
to the evidence; how to compare different simulations; how to check them for
unintentional errors; and how to use simulation techniques in conjunction with
others (analytic, narrative, statistical, discourse analysis, stakeholder engagement,
data collection, etc.). The field—if it is that—is maturing.

This handbook is intended to help in this process of maturation. It brings together
summaries of the best thinking and practice in this area, from many of the top
researchers. In this way, it aims to help those entering into the field so that they
do not have to reinvent the wheel each time. It will help those already in the field
by providing accessible summaries of current thought. It aims to be a reference
point for best current practice and a standard against which future methodological
advances are judged.

1.3 The Structure of the Handbook

The material in this book is divided into four parts: Introductory, Methodology,
Mechanisms and Applications. We have tried to ensure that each chapter within
these parts covers a clearly delineated set of issues. To aid the reader, each chapter
starts with a very brief section called “Why read this chapter?” that sums up the
reasons you would read it in a couple of sentences. This is followed by an abstract,
which summarises the content of the chapter. Each chapter also ends with a section
of “Further Reading” briefly describing three to eight things that a newcomer might
read next if they are interested. This is separate from the list of references, which
contains all the references mentioned in the chapter.

1.3.1 Introductory Part

The introductory part includes four chapters: this chapter, a historical introduction
(Chap. 2) that reviews the development of social simulation providing some context
for the rest of the book, an overview of the different kinds of simulation (Chap. 3)
and an examination of some of the different goals one might have for a simulation
model (Chap. 4).

http://dx.doi.org/10.1007/978-3-319-66948-9_2
http://dx.doi.org/10.1007/978-3-319-66948-9_3
http://dx.doi.org/10.1007/978-3-319-66948-9_4
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1.3.2 Methodology Part

The next part on methodology consists of 11 chapters that aim to guide the
reader through the process of simulating complex social phenomena. It starts with
two approaches to designing and building simulation models: formal, i.e. using
approaches from computer science (Chap. 6), and informal (Chap. 5). The former
is more appropriate where the goals and specification of the proposed simulation
are known and fixed, while the latter is more appropriate in the case where possible
models are being explored, in other words when the simulation model one wants
cannot be specified in advance.

However carefully a modeller designs and constructs such models they are
complex entities, which are difficult to understand completely. The next (Chap. 7)
guides the reader through the ways in which a simulation model can be checked
to ensure that it conforms to the programmer’s intentions for it. Chapter 8 looks at
the importance of ontological structure for agent-based simulations, contrasting this
with approaches that have almost no a priori structure. It also takes one through
some of the ways of formalising and checking this structure.

Once one has a simulation model one is happy with, then one needs to decide
what runs of the model are needed to make one’s point. Chapter 11 tackles this
subject giving firm guidelines to ensure one has the right “power” that enables
the required distinctions to be made, but avoiding showing misleading levels of
significance.

Three chapters in this part are concerned with the results of simulations.
Chapter 9 concentrates on the validation of simulation models: the many ways
in which a model and the possible outputs from simulation runs can be related
to data as a check that it is correct for its purpose. Chapter 10 explores ways of
analysing and visualising simulation results, which is vital if the programmer or a
wider audience are to understand what is happening within complex simulations.
Chapter 14 looks at the broader question of the meaning and import of simulations,
in other words the philosophy of social simulation including what sort of theorising
they imply.

Two other chapters consider separate aspects but ones that will grow in impor-
tance over time. Chapter 12 looks at participatory approaches to simulation, that
is, ways of involving stakeholders more directly in the model specification and/or
development process. This is very different to an approach where the simulation
model is built by expert researchers who judge success by the correspondence with
data sets and can almost become an intervention within a social process rather
than a representation of it. Chapter 13 investigates how analytic approaches can
be combined with simulation approaches, both using analytics to approximate and
understand a simulation model and using simulation to test the assumptions within
an analytic model.

http://dx.doi.org/10.1007/978-3-319-66948-9_6
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://dx.doi.org/10.1007/978-3-319-66948-9_7
http://dx.doi.org/10.1007/978-3-319-66948-9_8
http://dx.doi.org/10.1007/978-3-319-66948-9_11
http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_10
http://dx.doi.org/10.1007/978-3-319-66948-9_14
http://dx.doi.org/10.1007/978-3-319-66948-9_12
http://dx.doi.org/10.1007/978-3-319-66948-9_13
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All of the approaches described in these three chapters are aided by good,
clear documentation. Chapter 15 describes a way of structuring and performing
such documentation that helps to ensure that all necessary information is included
without being an overly heavy burden.

1.3.3 Mechanisms Part

The third part considers types of social mechanisms that have been used and
explored within simulations. It does not attempt to cover all such approaches, but
concentrates upon those with a richer history of use, where knowing about what has
been done might be important and possibly useful.

Chapter 16 takes a critical look at mechanisms that may be associated with
economics. Although this handbook is not about economic simulation,1 mechanisms
from economics are often used within simulations with a broader intent. Unfortu-
nately, this is often done without thinking so that, for example, an agent might be
programmed using a version of economic rationality (i.e. considering options for
actions and rating them as to their predicted utility) just because that is what the
modellers know or assume. However, since economic phenomena are a subset of
social phenomena, this chapter does cover these.

Chapter 17 surveys a very different set of mechanisms, those of laws, conventions
and norms. This is where behaviour is constrained from outside the individual in
some way (although due to some decision to accept the constraint from the inside
to differing degrees). Chapter 18 focuses on trust and reputation mechanisms, how
people might come to judge that a particular person is someone they want to deal
with.

Chapter 19 looks at a broad class of structures within simulations, those that
represent physical space or distribution in some way. This is not a cognitive or social
mechanism in the same sense of the other chapters in this part, but has implications
for the kinds of interactions that can occur and indeed facilitates some kinds of
interaction due to partial isolation of local groups.

The last two chapters in this part examine ways in which groups and individuals
might adapt. Learning and evolution are concepts that are not cleanly separable;
evolution is a kind of learning by the collection of entities that are evolving and
has been used to implement learning within an individual (e.g. regarding the set
of competing strategies an individual has) as well as within a society. However,
Chap. 20 investigates these concepts primarily from the point of view of algorithms
for an individual to learn, while Chap. 21 looks at approaches that explicitly take
a population and apply some selective pressures upon it, along with adding some
sources of variation.

1There is an extensive handbook on this (Tesfatsion and Judd 2006).

http://dx.doi.org/10.1007/978-3-319-66948-9_15
http://dx.doi.org/10.1007/978-3-319-66948-9_16
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_18
http://dx.doi.org/10.1007/978-3-319-66948-9_19
http://dx.doi.org/10.1007/978-3-319-66948-9_20
http://dx.doi.org/10.1007/978-3-319-66948-9_21
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1.3.4 Applications Part

The last part looks at eight areas where the techniques that have been described are
being applied. We chose areas where there has been some history of application and
hence some experience of different approaches. Areas of application that are only
just emerging are not covered here.

Chapter 22 reviews applications to ecological management. This is one of the
oldest and most productive areas where simulation approaches have been applied.
Since it is inevitable that the interaction of society and the environment is complex,
analytic approaches are usually too simplistic and approaches that are better suited
are needed.

Chapter 23 explores how a simulation-based understanding of ICT systems
can enable new kinds of distributed systems to be designed and managed, while
Chap. 24 looks at how simulation can help us understand animal interaction.
Chapter 25 describes agent-based simulations as a useful tool to come to a
complex understanding of how markets actually work (in contrast to their economic
idealisations). Chapter 26 considers systems where people and/or goods are being
moved within space or networks including logistics and supply chains.

The next two chapters look at understanding human societies. Chapter 27 focuses
on a descriptive modelling approach to structures of power and authority, with
particular reference to Afghanistan, whereas Chap. 28 reviews the different ways in
which simulations have been used to understand human societies, briefly describing
examples of each.

The final chapter, Chap. 29, looks at some of the pitfalls that can come about
when formal models (especially the complex simulation models considered here)
can be misused or misunderstood when applied in the policy arena.

1.4 Differences in the Second Edition

This edition of the handbook has a number of new chapters, namely, those on
different modelling purposes (Chap. 4), applying computer science to simulation
development (Chap. 5), ontological structure (Chap. 8), how many runs one should
do (Chap. 11) and the final chapter on pitfalls that can occur when such models are
used to inform policy-making or policy delivery (Chap. 29). Furthermore, some
of the chapters have been significantly revised, including those on verification
and validation (Chap. 9); utility, games and haggling (Chap. 16); social constraint
(Chap. 17); reputation (Chap. 17); animal social behaviour (Chap. 24); and human
societies (Chap. 28).

http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_25
http://dx.doi.org/10.1007/978-3-319-66948-9_26
http://dx.doi.org/10.1007/978-3-319-66948-9_27
http://dx.doi.org/10.1007/978-3-319-66948-9_28
http://dx.doi.org/10.1007/978-3-319-66948-9_29
http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://dx.doi.org/10.1007/978-3-319-66948-9_8
http://dx.doi.org/10.1007/978-3-319-66948-9_11
http://dx.doi.org/10.1007/978-3-319-66948-9_29
http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_16
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_28
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Chapter 2
Historical Introduction

Klaus G. Troitzsch

Abstract This chapter gives an overview of early attempts at modelling social
processes in computer simulations. It discusses the early attempts, its successes
and its shortcomings and tries to identify some of them as forerunners of modern
simulation approaches.

Why Read This Chapter?
To understand the historical context of simulation in the social sciences and thus to
better comprehend the developments and achievements in the field.

2.1 Overview

The chapter is organised as follows: the next section will discuss the early attempts
at simulating social processes, mostly aiming at prediction and numerical simulation
of mathematical models of social processes. Section 3 will then be devoted to the
nonnumerical and early agent-based approaches, while Sect. 4 will give a short
conclusion followed by some hints at further reading.

2.2 The First Two Decades

Simulation in the social sciences is nearly as old as computer simulation at large.
This is partly due to the fact that some of the pioneers of computer science—such
as John von Neumann, one of the founders of game theory—were at the same
time pioneers in the formalisation of social science. And one must add Herbert
A. Simon, one of the pioneers in formalising social science, as another early
adopter of computer-assisted methods of building social theories. Thus the first
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two decades of computational social science saw mathematical models and their
inelegant solutions, microsimulation and the first agent-based models before the
name of this approach was coined.

Among the first problems tackled with the help of computer simulation, there
were already predictions of the future of companies (“industrial dynamics”,
Forrester 1961), cities (“urban dynamics”, Forrester 1969) and the world as a
whole (“world dynamics”, Forrester 1971) in the early 1960s and 1970s by Jay W.
Forrester as well as predictions of the consequences of tax and transfer laws for both
the individual household and the national economy in microanalytical simulation,
an attempt that started as early as in 1956 (Orcutt 1957). Other early attempts at
the prediction of election and referendum campaigns also became known in the
1960s, such as Abelson’s and Bernstein’s simulation analysis of a fluoridation
referendum campaign of the Simulmatics Project directed by de Sola Pool. What all
these early simulations have in common is that they were aimed at predicting social
and economic processes in a quantitative manner and that computer simulation was
seen as a “substitute for mathematical derivations” (Coleman 1964, p. 528), and
although Simon and others had already taught computers to deal with nonnumerical
problems as early as in 1955 (“the Logic Theorist, the first computer program that
solved non-numerical problems by selective search”, Simon 1996, pp. 189–190),
Coleman still believed in 1964 that “the computer cannot solve problems in algebra;
it can only carry out computations when actual numbers are fed in” (Coleman 1964,
p. 529).

As system dynamics and microanalytic simulation—simulation approaches that
continue to be promoted by learned societies such as the System Dynamics Society,
which celebrated its 50th anniversary with an international conference in Boston in
July 2007, or the International Microsimulation Association, which also celebrated
50 years of microsimulation with an international conference held in Vienna in
August 2007—are not the focus of this handbook, this chapter will only give a short
overview of these two approaches and go into the details of some other early models
that remained more or less isolated and were even more or less forgotten.

System dynamics was developed by Jay W. Forrester in the mid-1950s as a tool to
describe systems which could have modelled with large systems of difference and
differential equations containing functions whose mathematical treatment would
have been difficult or impossible. The general idea behind system dynamics was
and is that a system, without considering its components individually, could be
described in terms of its aggregate variables and their changes over time. The best
known examples of system dynamic models are Forrester’s (1971) and Meadows
et al.’s (1974) world models which were inspired by the Club of Rome and won
public attention in the 1970s when they tried to forecast the world population, the
natural resources, the industrial and agricultural capital and the pollution until the
end of the twenty-first century by describing the annual change of these aggregate
variables as functions their current states and numerous parameters which had some
empirical background.

Microsimulation was first described in papers by Orcutt (1957) who designed a
simulation starting with a (sample of a) given population and simulating the indi-
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vidual fate of all the members of this population (sample) with the help of transition
probabilities empirically estimated from official statistics. These transitions could
be transitions between different jobs and educational levels, or they could represent
death or the birth of a child or marriage; these models have mainly been used for
predicting demographic changes and the effects of tax and transfer rules. Usually,
these models do not take into account that the overall changes of the aggregated
variables of the population (or the sample) affect the individual behaviour. Thus in
the sense of Coleman (1990, p. 10), these models neglect the “downward causation”
(i.e. the influence of the aggregate on the individual) and focus only the “upward
causation”, namely, the changes on the macro level which are the result of the
(stochastically simulated) behaviour of the individuals.

The fluoridation referendum campaign model already mentioned above (Abelson
and Bernstein 1963) was one of the first models that can be classified as an
early predecessor of today’s agent-based models. It consisted of a large number of
representatives of people living in a community faced with the option of compulsory
fluoridation if drinking water—an issue often discussed in the 1960s—which they
would have to vote upon at the end of a longish campaign in which the media and
local politicians were publishing arguments in favour of or against this issue. In this
model, 500 individuals are exposed to information spread by several communication
channels (or sources), and additionally, they also exchange information among
themselves. It depends on their simulated communication habits to which extent
they actually receive this information and, moreover, to which extent this leads
to changes in their attitudes towards the referendum issue. Abelson and Bernstein
defined 51 rules of behaviour, 22 of which are concerned with the processing of
the information spread over the communication channels, and 27 rules are related
to the information exchange among the individuals; another 2 determine the final
voting behaviour at the end of the referendum campaign. The rules for processing
the information from the public channels and those for processing the information
exchanged among the individual citizens are quite similar, one of these rules—
A3 and B2, respectively—is, for instance, “Receptivity to [source] s is an inverse
function of the extremity of [individual] i’s attitude position”.

This early model did, of course, not endow the model individuals with an
appropriate repertoire of behaviours, but nevertheless it displays a relatively broad
range of communication possibilities among the model individuals which was
neither aimed at in the classical microanalytical simulation approach nor in the
cellular automata approach adopted in the early 1970s in Thomas Schelling’s
seminal paper on segregation. One of the shortcomings of Abelson’s and Bernstein’s
model in the eyes of its critics was the fact that it “has never been fully tested
empirically” (Alker 1974, p. 146), and another is the fact that one never knows “how
adequate are the static representations of citizen belief systems defined primarily
in terms of assertions held, assertions acceptance predispositions, with associated,
more general, conflict levels?” (Alker 1974, p. 146). And, moreover, the assertions
are modelled numerically (not a problem with the proponents of a mathematical
sociology who would even have used a large system of differential equations to
model the citizens’ attitude changes) where obviously real citizens’ attitudes were
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never mapped on to the set of integer or real numbers. More reasons for the fact that
this approach was given up for decades are given by Nowak et al. (1990, p. 371):
“the ad hoc quality of many of the assumptions of the models, perhaps because
of dissatisfaction with the plausibility of their outcomes despite their dependence
on extensive parameter estimation, or perhaps because they were introduced at
a time when computers were still cumbersome and slow and programming time-
consuming and expensive.”

Simulmatics had mainly the same fate as Abelson’s and Bernstein’s model:
Simulmatics was set up “for the Democratic Party during the 1960 campaign. : : :

The immediate goal of the project was to estimate rapidly, during the campaign,
the probable impact upon the public, and upon small strategically important groups
within the public, of different issues which might arise or which might be used by
the candidates” (Ithiel de Pool and Abelson 1961, p. 167). The basic components
of this simulation were voter types, 480 of them, not individual voters, with their
attitudes towards a number of “issue clusters” (48 of them), “political characteristics
on which the voter type would have a distribution”. Voter types were mainly
defined by region, agglomeration structure, income, race, religion, gender and party
affiliation, and from different opinion polls and for different points of time, these
voter types were attributed four numbers per “issue cluster”: the number of voters
in this type and “the percentages pro, anti and undecided or confused on the issue”
(168). The simulation then ran in a way that for each voter type, empirical findings
about cross-pressure (e.g. anti-Catholic voters who had voted for the Democratic
Party in the 1958 congressional elections and were likely to stay at home instead
of voting for the Catholic candidate of the Democrats) were used to readjust the
preferences of the voters, type by type. It is an open question whether one would
call this a simulation in current social simulation communities, but as this approach
in some way resembles the classical static microsimulation, where researchers are
interested in the immediate consequences of new tax or transfer laws with no
immediate feedback, one would classify Simulmatics as a simulation project, though
with as little sophistication as static microsimulation has.

Thus the first two decades of computer simulation in the social sciences were
mainly characterised by two beliefs: that computer simulations were nothing but the
numerical solution of more adequate mathematical models and that they were most
useful for predicting the outcome of social processes whose first few phases had
already been observed. This was also the core of the discussion that was opened
in 1968 by Hayward Alker who analysed, among others, the Abelson-Bernstein
community referendum model and came to the conclusion that this “simulation
cannot be ‘solved’: one must project what will be in the media, what elites will be
doing, and know what publics already believe before even contingent predictions
are made about community decisions. In that sense an open simulation is bad
mathematics even if it is a good social system representation” (Alker 1974, p. 153).

In what Federico et al. (1981, p. 515) called “micro-operational computer
simulations”, they saw the opportunity that “computer modeling [could] contribute
to the comprehension of which parameters and variables are most decisive in
determining systemic behavior” (Federico et al. 1981, p. 519) and “produc[e]
surprising emergent properties” (Federico et al. 1981, p. 518). They predicted that
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“the future of the social sciences is contingent upon identifying techniques to
simultaneously link a multitude of relatively trivial conceptual structures, producing
realistic outcomes when no premise alone is powerful enough to determine the state
of the system at any moment” (Federico et al. 1981, p. 518). This is certainly a
prediction which came true in the decades to come, as agent-based modelling in
its various modern approaches is more or less correctly described with Federico’s
and Figliozzi’s words. Nevertheless their “classification of computer simulation
studies of psychosocial or sociotechnical systems” (Federico et al. 1981, p. 515)
with its double dichotomy of operational and theoretical nature and micro and
macro scope is no longer in line with current classifications. Putting, for instance,
Abelson’s and Bernstein’s study (see above for details) in the box of operational
(as contrasted to theoretical) macro simulation studies seems strange as this study
connects microbehaviour to macrostructures and does not only look at the macro
level. The same is true for other studies that fall in this cell of Federico’s and
Figliozzi’s cross table. The reason for this is that what they call “microtheoretical
computer simulation studies” is restricted to behaviour in small groups, thus “micro”
does no refer to the individual level of social systems (as it usually does today) but
to small systems such as Hare’s (1961) five person group.

2.3 Computer Simulation in Its Own Right

The Simulmatics Corporation already mentioned in the previous subsection did not
only work in the context of election campaigning, but later on also as a consulting
agency in other political fields. Crisiscom is another example of an early forerunner
of current simulation models of negotiation and decision-making processes. At the
same time, it is an early example of a simulation not aimed at prediction but at “our
understanding of the process of deterrence by exploring how far the behaviour of
political decision makers in crisis can be explained by psychological mechanisms”
(Ithiel de Pool and Kessler 1965, p. 31). Crisiscom dealt with messages of the type
“actor one is related to actor two”, where the set of relations was restricted to just
two relations: affect and salience. In some way, Crisiscom could also be used as
part of a gaming simulation in which one or more of the actors were represented by
human players, whereas the others were represented by the computer programme—
thus in a way it can also be classified as a predecessor of participatory simulation
(see Chap. 11).

The 1970s and 1980s saw a number of new approaches to simulate abstract
social processes, and most of them now were computer simulations in its own right,
as—in terms of Thomas Ostrom—they used the “third symbol system” (Ostrom
1988, p. 384) directly without using it as a machine to manipulate symbols of the
second symbol system, mathematics, but directly translating their ideas from the
first symbol system, natural language, into higher level programming languages.
Although this was already true for Herbert Simon’s Logic Theorist, the General
Problem Solver and other early artificial intelligence programmes, the direct use of

http://dx.doi.org/10.1007/978-3-319-66948-9_11
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the “third symbol system” in social science proper was not introduced before the
first multilevel models and cellular automata that integrated at least primitive agents
in the sense of software modules with some autonomy.

Cellular automata (Farmer et al. 1984; Ilachinski 2001) are a composition
of finite automata which follow the same rule, are ordered in a (mostly) two-
dimensional grid and interact with (receive input from) their neighbours. The
behavioural rules of the individual cells are quite simple in most cases; they have
only a small number of states among which they switch according to relatively
simple rules, as in the famous game of life (Gardener 1970), where the cells have
only two states, alive and dead, and change their states according to the two simple
rules: if the cell is alive, it remains in this state if it has exactly two or three live cells
among its eight neighbours—otherwise it dies—and if the cell is dead, it bursts into
life if among its eight neighbours there are exactly three live cells. The great variety
of outcomes on the level of the cellular automaton as a whole enthused researchers
in complexity science and lay the headstone for innumerable cellular automata in
one or two dimensions.

One of the first applications of cellular automata to problems of social science
is Thomas Schelling’s (1971) segregation model, demo versions of which are
nowadays part of any distribution of simulation tools used for programming
cellular automata and agent-based models—a model that shows impressively that
segregation and the formation of ghettos is inevitable even if individuals tolerate a
majority of neighbours different from themselves.

Another example is Bibb Latané’s dynamic social impact theory with the imple-
mentation of the SITSIM model (Nowak and Latané 1994). This model, similar
to Schelling’s, also ends up in clustering processes and in the emergence of local
structures in an initially randomly distributed population, but unlike Schelling’s
segregation model (where agents move around the grid of a cellular automaton
until they find themselves in an agreeable neighbourhood), the clustering in SITSIM
comes from the fact that immobile agents change their attitudes according to the
attitudes they find in their neighbourhood and according to the persuasive strength
of their neighbours.

Other cellular automata models dealt with n-person cooperation games and
integrated game theory into complex models of interaction between agents and their
neighbourhoods, and these models, too, usually end up in emergent local structures
(Hegselmann 1996).

And in another computer simulation related to game theory run by Axelrod, it
could be shown that the tit-for-tat strategy in the iterated prisoner’s dilemma was
superior to all other strategies which were represented in a computer tournament
(Axelrod 1984). The prisoner’s dilemma had served game theorists, economists
and social scientists as a prominent model of decision processes under restricted
knowledge. The idea stems from the early 1950s, first written down by Albert
Tucker, and is about “two men, charged with a joint violation of law, are held
separately by the police. Each is told that (1) if one confesses and the other does
not, the former will be given a reward : : : and the latter will be fined : : : (2) if
both confess, each will be fined : : : At the same time, each has good reason to
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believe that (3) if neither confesses, both will go clear” (Poundstone 1992, pp. 117–
118). In the non-iterated version, the rational solution is that both confess—but if
they believe they can trust each other, they can both win, as both will go clear if
neither confesses. Axelrod’s question was under which conditions a prisoner in
this dilemma would “cooperate” (with his accomplice, not with the police) and
under which condition they would “defect” (i.e. confess, get a reward and let
the accomplice alone in prison). Super-strategies in this tournament had to define
which strategy—cooperate or defect—each player would choose, given the history
of choices of both players, but not knowing the current decision of the partner.
Then every strategy played the iterated game against every other strategy, with
identical payoff matrices—and the tit-for-tat strategy proved to be superior to 13
other strategies proposed by economists, game theorists, sociologists, psychologists
and mathematicians (and it was the strategy that had the shortest description in
terms of lines of code). Although later on several characteristics of several of
the strategies proposed could be analysed mathematically, the tournament had at
least the advantage of easy understandability of the outcomes—which, by the way
is another advantage of the “third symbol system” over the symbol system of
mathematics.

Cellular automata later on became the environment of even more complex
models of abstract social processes. They serve as a landscape where moving,
autonomous, proactive, goal-directed software agents harvest food and trade with
it. Sugarscape is such a landscape which serves as a laboratory for a “generative
social science” (Epstein and Axtell 1996, p. 19) in which the researcher “grows”
the emergent phenomena typical for real-world societies in a way that includes the
explanation of these phenomena. In this artificial world, software agents find several
types of food which they need for their metabolism, but in different proportions,
which gives them an incentive to barter with a kind of food of which they have
plenty, for another kind of food which they urgently need. This kind of a laboratory
gives an insight under which conditions skewed wealth distributions might occur or
be avoided; with some extensions (König et al. 2002), agents can even form teams
led be agents who are responsible to spread the information gained by their followers
among their group.

2.4 Conclusion and Suggested Further Reading

This short guided tour through early simulation models should have shown the
optimism of the early adopters of this method: “If it is possible to reproduce, through
computer simulation, much of the complexity of a whole society going through
processes of change, and to do so rapidly, then the opportunities to put social science
to work are vastly increased” (Ithiel de Pool and Abelson 1961, p. 183). Thirty-five
years later, Epstein and Axtell formulate nearly the same optimism when they list
a number of problems that social sciences have to face—suppressing real-world
agents’ heterogeneity, neglecting nonequilibrium dynamics and being preoccupied
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Table 2.1 Overview of important approaches to computational social science

Approach Used since Characteristics

System dynamics Mid-1950s Only one object with a large number of attributes
Microsimulation Mid-1950s A large number of objects representing individuals

that do not interact, neither with each other nor
with their aggregate, with a small number of
attributes each, plus one aggregating object

Cellular automata Mid-1960s Large number of objects representing individuals
that interact with their neighbours, with a very
restricted behaviour rule, no aggregating object,
thus emergent phenomena have to be visualised

Agent-based models Early 1990s with
some forerunners
in the 1960s,
afterwards
discontinued

Any number of objects (“agents”) representing
individuals and other entities (groups, different
kinds of individuals in different roles) that interact
heavily with each other, with an increasingly rich
repertoire of changeable behaviour rules
(including the ability to learn from other, to
change their behavioural rules and to react
differently to identical stimuli when the situation
in which they are received are different

with static equilibria—and claim “that the methodology developed [in Sugarscape]
can help to overcome these problems” (Epstein and Axtell 1996, p. 2).

To complete this overview, Table 2.1 lists the approaches touched in this
introductory paper with their main features.

As one easily sees from this table, only the agent-based approach can “cover
all the world” (Brassel et al. 1997), as only this one can include the features of
all the others, and only this one can meet the needs of social science, as social
science cannot content itself with models of individuals which cannot exchange
symbolic messages that have to be interpreted by the recipients before they can
take effect. If social science deals with large numbers of individuals in comparable
situations, then microsimulation, cellular automata, sociophysics models and even
systems dynamics can be a good approximation to what happens in human societies.
But if we deal with small communities, including the local communities Abelson
and Bernstein analysed, then the process of persuasion—which needs at least one
persuasive person and one or more persuadable persons—has to be taken into
account, and this calls for a richer structure of agents than the early approaches
could provide.

Most of the literature suggested for further reading has already been mentioned.
Epstein’s and Axtells’s (1996) work on generating societies gives a broad overview
of early applications of agent-based modelling; Epstein (2006) goes even further
as he defines this approach as the oncoming paradigm in social science. For the
state of the art of agent-based modelling in the social sciences at the onset of this
approach, the proceedings of early workshops and conferences on computational
social science are still worth reading (Gilbert and Doran 1994; Gilbert and Conte
1995; Conte et al. 1997; Troitzsch et al. 1996). And a very wide overview of topics
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and approaches can be found in three papers devoted to measuring the “intellectual
structures” of two journals which abound in papers on simulation in the social
sciences at large (Meyer et al. 2009, 2010; Hauke et al. 2015).
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Chapter 3
Types of Simulation

Paul Davidsson and Harko Verhagen

Abstract This looks at various ways that computer simulations can differ not in
terms of their detailed mechanisms but in terms of its broader purpose, structure,
ontology (what is represented), and approach to implementation. It starts with some
different roles of people that may be concerned with a simulation and goes on to look
at some of the different contexts within which a simulation is set (thus implying
its use or purpose). It then looks at the kinds of system that might be simulated.
Shifting to the modelling process, it looks at the role of the individuals within the
simulations, the interactions between individuals, and the environment that they are
embedded within. It then discusses the factors to consider in choosing a kind of
model and some of the approaches to implementing it.

Why Read This Chapter?
To understand the different ways that computer simulation can differ in terms
of (a) purpose, (b) targets for simulation, (c) what is represented, and (d) its
implementation and, subsequently, to be more aware of the choices to be made when
simulating social complexity.

3.1 Introduction

Simulation concerns the imitation of some aspects of the reality (past, present,
or future) for some purpose. We should contrast computer simulation to physical
simulation in which physical objects are substituted for the real thing. These
physical objects are often chosen because they are smaller or cheaper than the actual
object or system. When (some of) the objects in a physical simulation are humans,
we may refer to this as human simulation. However, the focus of this book is on
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computer simulation and, in particular, computer simulation of social complexity,
which concerns the imitation of the behaviour of one or more groups of social
entities and their interaction.

Computer simulation, as any other computer programme, can be seen as a tool,
which could be used professionally or used in the user’s spare time, e.g. when
playing computer games. It is possible to distinguish between different types of
professional users, e.g. scientists who use simulation in the research process to
gain new knowledge, policy-makers who use it for making strategic decisions,
managers (of a system) who use it to make operational decisions, and engineers
who use it when developing systems. We can also differentiate two user situations,
namely, the user as participant in the simulation and the user as observer of the
simulation. Computer games and training settings are examples of the former, where
the user is immerged in the simulation. In the case of using simulation as a tool for,
say, scientific research or decision support, the user is an outside observer of the
simulation. (In other words, we may characterize this difference as that between
interactive simulations and batch simulations.)

The main task of computer simulation is the creation and execution of a formal
model of the behaviour and interaction (of the entities) of the system being
simulated. In scientific research, computer simulation is a research methodology
that can be contrasted to empirically driven research.1 As such, simulation belongs
to the same family of research as analytical models. One way of formally modelling
a system is to use a mathematical model and then attempt to find analytical solutions
enabling the prediction of the system’s behaviour from a set of parameters and
initial conditions. Computer simulation, on the other hand, is often used when
simple closed form analytic solutions are not possible. Although there are many
different types of computer simulation, they typically attempt to generate a sample
of representative scenarios for a model in which a complete enumeration of all
possible states would be prohibitive or impossible.

It is possible to make a general distinction between two ways of modelling the
system to be simulated. One is to use mathematical models and is referred to as
equation-based (or system dynamics or macro-level) simulation. In such models,
the set of individuals (the population of the system) is viewed as a structure that can
be characterized by a number of variables. In the other way of modelling, which
is referred to as individual-based (or agent-based or micro-level) simulation, the
specific behaviours of specific individuals are explicitly modelled. In contrast to
equation-based simulation, the structure is viewed as emergent from the interactions
between the individuals, thus exploring the standpoint that complex effects need not
have complex causes. We will here, as well as in the remainder of this book, focus
on individual-based simulation.

1This distinction is of course not set in stone. For an example of an evidence-driven approach to
computer simulation, see Chap. 27 in this volume (Geller and Moss 2017).

http://dx.doi.org/10.1007/978-3-319-66948-9_27
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In this chapter, we will describe the main purposes of computer simulation and
also give an overview of the main issues that should be regarded when developing
computer simulations.

3.2 Purposes of Simulation

We can identify a number of distinct purposes of simulation. In general terms,
simulation is almost always used for analysing (some aspects of) a system, typically
by predicting future states. More specifically, we may say that in the case when the
user is observing the simulation, the purpose is often one of the following:

– Management of a system, where simulation of (parts of) this system is used to
support operational decisions, i.e. which action to take, or strategic decisions, i.e.
which policy to use. The chapters on application areas in this book provide some
examples of this purpose; e.g. Chap. 22 addresses environmental management
(Le Page et al. 2017).

– Design or engineering of a system, where simulation is used as a tool to support
design decisions when developing a system. Chapter 23 illustrates how simu-
lation can help in the design of distributed computer systems (Hales 2017). In
fact, many new technical systems are distributed and involve complex interaction
between humans and machines, which makes individual-based simulation a
suitable approach. The idea is to model the behaviour of the human users, which
is useful in situations where it is too expensive, difficult, inconvenient, tiresome,
or even impossible for real human users to test out a new technical system. An
example of this is the simulation of “intelligent buildings” where software agents
model the behaviour of the people in the building (Davidsson 2000).

– Evaluation and verification, where simulation is used to evaluate a particular
theory, model, hypothesis, or system, or compare two or more of these. Moreover,
simulation can be used to verify whether a theory, model, hypothesis, system, or
software is correct. An example of this purpose is found in Chap. 4 of this book
(Edmonds et al. 2017). More generally, in the context of social theory building,
simulations can be seen as an experimental method or as theories in themselves
(Sawyer 2003). In the former case, simulations are run, e.g. to test the predictions
of theories, whereas in the latter case, the simulations themselves are formal
models of theories. Formalizing the ambiguous, natural language-based theories
of the social sciences helps to find inconsistencies and other problems and thus
contributes to theory building.

– Understanding, where simulation is used to gain deeper knowledge of a certain
domain. In such explorative studies, there is no specific theory, model, etc. to be
verified, but we want to study different phenomena (which may however lead to
theory refinement). Chapter 24 in this volume provides a number of examples
how simulation has helped in understanding animal social behaviour (Hemelrijk
2017).

http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_24
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The focus of this book is on the user as an observer; the role of the user as
participant is just touched upon in Chap. 12 on participatory approaches (Barreteau
et al. 2017). However, to give a more complete picture, we have identified the
following purposes in the case when the user is participating in the simulation:

– Education, where simulation is used to explain or illustrate a phenomenon and
deepen the user’s theoretical knowledge. An example of this is the recently devel-
oped SimPort,2 a multiplayer serious game where the players have to construct a
port area in the vicinity of Rotterdam. One aim of this simulation-based tool is
to give its users better insight into any unforeseen, undesirable, and unintentional
effects of one or more development strategies and design variations in the
medium term (10–30 years) as a result of exogenous uncertainties (economic,
market, technological) and due to strategic behaviour of the parties involved.
Another example of individual-based simulation for educational purpose is the
PSI agent (Künzel and Hämmer 2006) that supports acquiring theoretical insights
in the realm of psychological theory. It enables students to explore psychological
processes without ethical problems.

– Training, where simulation is used to improve a person’s practical skills in a
certain domain. The main advantage of using simulation for training purposes
is to be part of a real-world-like situation without real-world consequences.
An early work in this area was a tool to help train police officers to manage
large public gatherings, such as crowds and protest marches (Williams 1993).
Another example of agent-based simulation for training purposes is Steve,
an agent integrated with voice synthesis software and virtual reality software
providing a very realistic training environment. For instance, it has been applied
to maintenance tasks in nuclear power plants (Méndez et al. 2003).

– Entertainment, where simulation is used just to please the user. There are a
large number of popular simulation games available. These belong to genres like
construction and management simulations, where players experience managing
a government, a sports team, a business, or a city; life simulations, where players
manage a life form or ecosystem, such as the well-known “Sims” and its sequels;
vehicle simulations, where players experience driving a vehicle, such as an
airplane or a racing car; and of course different types of war games.

3.3 Types of Systems Simulated

It is possible to categorize the systems being simulated:

1. Human-centred systems, such as:

– Human societies, consisting of a set of persons with individual goals. That is, the
goal of different individuals may be conflicting. In Chap. 28 of this book, more
information on the simulation of human societies is given (Edmonds et al. 2017).

2http://www.simport.eu/

http://dx.doi.org/10.1007/978-3-319-66948-9_12
http://dx.doi.org/10.1007/978-3-319-66948-9_28
http://www.simport.eu
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– Organizations, which we here define as structures of persons related to each other
in order to purposefully accomplishing work or some other kind of activity. That
is, the persons of an organization share some of their goals. Further details on the
modelling and simulation of organizations are provided in (Dignum 2013).

– Economic systems, which are organized structures in which actors (individuals,
groups, or enterprises) are trading goods or services on a market. Chapter 25
(Rouchier 2017) takes a closer look at markets.

2. Natural systems, such as:

– Animal societies, which consist of a number of interacting animals, such as an ant
colony or a colony of birds. Chapter 24 (Hemelrijk 2017) is devoted to simulation
of animal societies.

– Ecological systems, in which animals and/or plants are living and evolving in a
relationship to each other and in dependence of the environment (even if humans
also are part of the ecological system, they are often not part of these simulation
models). In Chap. 22 (Le Page et al. 2017) more details on the simulation of
ecological systems are discussed.

3. Socio-technical systems, which are hybrid systems consisting of both living
entities (in most cases humans) and technical artefacts interacting with each
other. Examples of this type of system are transportation and traffic systems
concerning the movement of people or goods in a transportation infrastructure
such as a road network. Chapter 26 (Ramstedt et al. 2017) provides a review of
simulation studies in these areas.

4. Artificial societies, which consist of a set of software and/or hardware entities, i.e.
computer programmes and/or robots, with individual goals. One type of artificial
societies, namely, distributed computer systems, is treated in Chap. 23 (Hales
2017).

In addition, there are systems that are interesting to simulate using a micro-
level approach but that we do not regard as social systems and are therefore not
treated in this book. One class of such systems are physiological systems, which
consist of functional organs integrated and co-operating in a living organism, e.g.
subsystems of the human body. Physical systems, which are collections of passive
entities following only physical laws, constitute another type of nonsocial systems.

3.4 Modelling

Let us now focus on how to model the system to be simulated. This depends on
the type of system and the purpose of the simulation study. An individual- or
agent-based model of a system consists of a set of entities and an environment
in which the entities are situated. The entities are either individuals (agents) that
have some decision-making capabilities or objects (resources) that have no agency
and are purely physical. There are a number of characteristics that can be used to

http://dx.doi.org/10.1007/978-3-319-66948-9_25
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_26
http://dx.doi.org/10.1007/978-3-319-66948-9_23
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differentiate between different types of models. We will first look at how individuals
are being modelled, then on the interaction between the individuals, and finally how
the environment is being modelled.

3.4.1 Individuals

A model of an individual can range from being very simple, such a one binary
variable (e.g. alive or dead) that is changed using only a single rule, to being very
complex. The complexity of the model for a given simulation should be determined
by the complexity of the individuals being simulated. Note, however, that very
complex collective behaviour could be achieved from very simple individual
models, if the number is sufficiently large.

We can distinguish between modelling the state of an individual and the
behaviour of the individual, i.e. the decisions and actions it takes. The state of
an individual, in turn, can be divided into the physical and the mental state. The
description of the physical state may include the position of the individual and
features such as age, sex, and health status. The physical state is typically modelled
as a feature vector, i.e. a list of attribute/value pairs. However, this is not always the
case as in some domain the physical state of individual is not modelled at all. An
example is the PSI agent mentioned earlier that was used to give students theoretical
insights in the area of psychological theory.

Whereas the physical state is often simple to model, representing the mental
state is typically much more complex, especially if the individuals modelled are
human beings. A common approach is to model the beliefs, desires, and intentions
of the individual, for instance, by using the BDI model (Bratman 1987; Georgeff
et al. 1998). Such a model may include the social state of the individual, i.e. which
norms it adheres to, which coalitions it belongs to, etc. Although the BDI model
is not based on any experimental evidence of human cognition, it has proven to be
quite useful in many applications. There has also been some work on incorporating
emotions in models of the mental state of individuals (cf. Bazzan and Bordini 2001)
as well as obligations, like the BOID model (Broersen et al. 2001), which extends
the BDI with obligations.

Modelling the behaviours (and decisions) of the individuals can be done in a
variety of ways, from simple probabilities to sophisticated reasoning and planning
mechanisms. As an example of the former, we should mention dynamic micro-
simulation (Gilbert and Troitzsch 2005), which was one of the first ways of
performing individual-based simulation and is still frequently used. The purpose is
to simulate the effect the passing of time has on individuals. Data (feature vectors)
from a random sample from the population is used to initially characterize the
simulated individuals. A set of transition probabilities are then used to describe
how these features will change over a time period, e.g. there is a probability that an
employed person becomes unemployed during a year. The transition probabilities
are applied to the population for each individual in turn and then repeatedly
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reapplied for a number of simulated time periods. In traditional micro-simulation,
the behaviour of each individual is regarded as a “black box”. The behaviour is
modelled in terms of probabilities, and no attempt is made to justify these in terms
of individual preferences, decisions, plans, etc. Thus, better results may be gained if
also the cognitive processes of the individuals were simulated.

Opening the black box of individual decision-making can be done in several
ways. A basic and common approach is to use decision rules, for instance, in the
form of a set of situation-action rules: If an individual and/or the environment is
in state X, then the individual will perform action Y. By combining decision rules
and the BDI model quite sophisticated behaviour can be modelled. Other models
of individual cognition used in agent-based social simulation include the use of
Soar, a computer implementation of Allen Newell’s unified theory of cognition
(Newell 1994), which was used in Steve (discussed above). Another unified theory
of individual cognition, for which a computer implementation exists, is ACT-R
(Anderson et al. 2004), which is realized as a production system. A less general
example is the Consumat model (Janssen and Jager 1999), a meta-model combining
several psychological theories on decision-making in a consumer situation. In
addition, nonsymbolic approaches such as neural networks have been used to model
the agents’ decision-making (Massaguer et al. 2006).

As we have seen, the behaviour of individuals could be either deterministic or
stochastic. Also, the basis for the behaviour of the individuals may vary. We can
identify the following categories:

– The state of the individual itself : In most social simulation models, the physical
and/or mental state of an individual plays an important role in determining its
behaviour.

– The state of the environment: The state of the environment surrounding the
individual often influences the behaviour of an individual. Thus, an individual
may act differently in different contexts although its physical and mental state is
the same.

– The state of other individuals: One popular type of simulation model, where the
behaviour of individuals is (solely) based on the state of other individuals, is
those using cellular automata (Schiff 2008). Such a simulation model consists of
a grid of cells representing individuals, each in one of a finite number of states.
Time is discrete and the state of a cell at time t is a function of the states of a finite
number of cells (called its neighbourhood) at time t � 1. These neighbours are a
fixed selection of cells relative to the specified cell. Every cell has the same rule
for updating, based on the values in its neighbourhood. Each time the rules are
applied to the whole grid, a new generation is created. In this case, information
about the state of other individuals can be seen as gained through observations.
Another possibility to gain this information is through communication, and in
this case, the individuals do not have to be limited to the neighbours.

– Social states (norms, etc.) as viewed by the agent: For simulation of social
behaviour, the agents need to be equipped with mechanisms for reasoning at
the social level (unless the social level is regarded as emergent from individual
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behaviour and decision-making). Several models have been based on theories
from economy, social psychology, sociology, etc. Guye-Vuillème (2004) pro-
vides an example of this with his agent-based model for simulating human
interaction in a virtual reality environment. The model is based on sociological
concepts such as roles, values, and norms and motivational theories from social
psychology to simulate persons with social identities and relationships.

In most simulation studies, the behaviour of the individuals is static in the sense
that decision rules or reasoning mechanisms do not change during the simulation.
However, human beings and most animals do have an ability to adapt and learn. To
model dynamic behaviour of individuals through learning/adaptation can be done in
many ways. For instance, both ACT-R and Soar have learning built in. Other types
of learning include the internal modelling of individuals (or the environment) where
the models are updated more or less continuously.

Finally, there are some more general aspects to consider when modelling
individuals. One such aspect is whether all agents share the same behaviour or
whether they behave differently, in other words, representation of behaviour is
either individual or uniform. Another general aspect is the number of individuals
modelled, i.e. the size of the model, which may vary from a few individuals to
billions of individuals. Moreover, the population of individuals could be either
static or dynamic. In dynamic populations, changes in the population are modelled,
typically births and deaths.

3.4.2 Interaction Between Individuals

In dynamic micro-simulation, simulated individuals are considered in isolation
without regard to their interaction with others. However, in many situations, the
interaction between individuals is crucial for the behaviour at system level. In
such cases, better results will be achieved if the interaction between individuals
was included in the model. Two important aspects of interaction are (a) who
is interacting with whom, i.e. the interaction topology, and (b) the form of this
interaction.

A basic form of interaction is physical interaction or interaction based on
spatial proximity. As we have seen, this is used in simulations based on cellular
automata, e.g. in the well-known Game of Life (Gardner 1970). The state of an
individual is determined by how many of its neighbours are alive. Inspired by
this, work researchers developed more refined models, often modelling the social
behaviour of groups of animals or artificial creatures. One example is the BOID
model by Reynolds (1987), which simulates coordinated animal motion such as bird
flocks and fish schools in order to study emergent phenomena. In these examples,
the interaction topology is limited to the individuals immediately surrounding an
individual. In other cases, as we will see below, the interaction topology is defined
more generally in terms of a (social) network. Such a network can be either static,
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i.e. the topology does not change during a simulation, or dynamic. In these networks,
interaction is typically language-based. An example is the work by Verhagen
(2001), where agents that are part of a group use direct communication between
the group members to form shared group preferences regarding the decisions they
make. Communication is steered by the structure of the social network regardless of
the physical location of the agents within the simulated world. For a more detailed
discussion of the different options to model interaction topologies, see Chap. 19 in
this volume (Amblard and Quattrociocchi 2017).

3.4.3 The Environment

The state of the environment is usually represented by a set of (global) parameters,
e.g. temperature. In addition, there are a number of important aspects of the
environment model, such as:

– Spatial explicitness: In some models, there is actually no notion of physical
space at all. An example of a scenario where location is of less importance
are “innovation networks” (Gilbert et al. 2001). Individual agents are high-
tech firms that each have a knowledge base used to develop artefacts to launch
on a simulated market. The firms are able to improve their products through
research or by exchanging knowledge with other firms. However, in many
scenarios, location is very important; thus, each individual (and sometimes
objects) is assigned a specific location at each time step of the simulation. In
this case, the individuals may be either static (the entity does not change location
during the simulation) or mobile. The location could either be specified as an
absolute position in the environment or in terms of relative positions between
entities. In some areas, the simulation software is integrated with a Geographical
Information System (GIS) in order to achieve closer match to reality (cf. Schüle
et al. 2004).

– Time: There are in principle two ways to address time, and one is to ignore it. In
static simulation, time is not explicitly modelled; there is only a “before” and an
“after” state. However, most simulations are dynamic, where time is modelled as
a sequence of time steps. Typically, each individual may change state between
each time step.

– Exogenous events: This is the case when the state of the environment, e.g.
the temperature, changes without any influence/action from the individuals.
Exogenous events, if they are modelled, may also change the state of entities,
e.g. decay of resources, or cause new entities to appear. This is a way to make
the environment stochastic rather than deterministic.

http://dx.doi.org/10.1007/978-3-319-66948-9_19
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3.4.4 Factors to Consider When Choosing a Model

In contrast to some of the more traditional approaches, such as system dynamics,
individual-based modelling does not yet have any standard procedures that can
support the model development (although some attempts in this direction have been
made, e.g. by Grimm et al. (2006), in the area of ecological systems). In addition,
it is often the case that the only formal description of the model is the actual
programme code. However, it may be useful to use the Unified Modelling Language
(UML) to specify the model.

Some of the modelling decisions are determined by the features of the system
to be simulated, in particular those regarding the interaction model and the
environment model. The hardest design decision is often how the mental state and
the behaviour of individuals should be modelled, in particular when representing
human beings. For simpler animals or machines, a feature vector combined with
a set of transitions rules is often sufficient. Depending on the phenomena being
studied, this may also be adequate when modelling human beings. Gilbert (2006)
provides some guidelines whether a more sophisticated cognitive model is necessary
or not. He states that the most common reason for ignoring other levels is that
the properties of these other levels can be assumed constant and exemplifies this
by studies of markets in equilibrium where the preferences of individual actors
are assumed to remain constant. (Note, however, that this may not always be
true.) Another reason for ignoring other levels, according to Gilbert, is when there
are many alternative processes at the lower level, which could give rise to the
same phenomenon at the macro-level. He illustrates this with the famous study by
Schelling (1971) regarding residential segregation. Although Schelling used a very
crude model of the mental state and behaviour of the individuals, i.e. ignoring the
underlying motivations for household migration, the simulation results were valid
(as the underlying motivations were not relevant for the purpose of Schelling’s
study).

On the other hand, there are many situations where a more sophisticated cognitive
model is useful, in particular when the mental state or behaviour of the individual
constraints or in other ways influences the behaviour at the system level. However,
as Gilbert concludes, the current research is not sufficiently mature in order to give
advice on which cognitive model to use (BDI, Soar, ACT-R, or other). Rather, he
suggests that more pragmatic considerations should guide the selection.

The model of the environment is mostly dictated by the system to be simulated,
with the modeller having to decide on the granularity of the values the environmental
attributes can take. The interaction model is often chosen based on the theory
or practical situation that lies at the heart of the simulation, but sometimes the
limitations of the formal framework used restrict the possibilities. Here, the modeller
also has to decide upon the granularity of attribute values.
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3.5 Implementation

We will now discuss some issues regarding the implementation (programming and
running) of a simulator.

A simulator can be time-driven, where the simulated time is advanced in constant
time steps, or event-driven, where the time is advanced based on the next event. In an
event-driven simulation, a simulation engine drives the simulation by continuously
taking the first event out of a time-ordered event list and then simulating the effects
on the system state caused by this event. Since time segments where no event takes
place are not regarded, event-driven simulation is often more efficient than time-
driven simulation. On the other hand, since time is incremented at a constant pace
during a simulation in time-driven mode, this is typically a better option if the
simulation involves user participation.

There are a number of platforms or toolkits for agent-based simulation available,
such as Swarm, NetLogo, and RePast (see Railsback et al. (2006) for a critical
review of these and some other platforms). These are freely available, simplify
the programming, and can be of great help, in particular for modellers that are not
skilled programmers. However, they all impose some limitations on what can be
modelled, which may or may not be crucial for the application at hand. An approach
without such limitation is of course to programme the simulator from scratch using
ordinary programming languages like Java or C, which is more difficult and time-
consuming. In some cases, e.g. if you want to distribute the simulation on a number
of computers, it may be appropriate to use an agent platform, such as JADE. In this
case, the individuals may be implemented as actual software agents. In particular,
when the number of individuals simulated is large and/or the models of individuals
are complex, it may be too time-consuming to run the simulation on a single
computer. Instead, one may distribute the computational load on several computers
in order to get reasonable running times. It should be mentioned that there are some
efforts on making agent-based simulation platforms run on large-scale computer
networks such as Grids (see, e.g. the work by Chen et al. (2008)).

It is worth noting that the resulting software is an approximation of a simulation
model, which in turn is an approximation of the actual system. Thus, there
are several steps of verification and validation that need to be addressed in the
development of a simulation model, as discussed in Chap. 9 (David et al. 2017).

3.6 Conclusion

As we have seen, there are many different types of individual-based social simula-
tion. In the table below, we provide a summary.

http://dx.doi.org/10.1007/978-3-319-66948-9_9
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Focus Aspect Options

Usage Users Scientists
Policy-makers
Managers
Non-professionals

Purposes Management of a system
Design or engineering of a system
Evaluation and verification
Understanding
Education
Training
Entertainment

System simulated Human-centred systems Human societies
Organizations
Economic systems

Natural systems Animal societies
Ecological systems

Socio-technical systems
Artificial systems

Individual model Individual physical state Feature vector
Individual mental state Feature vector

BDI
Individual behaviour Transition probabilities

Decision rules
Cognitive model (soar, ACT-R, etc.)

Basis of behaviour Own state
State of the environment
State of other individuals
Social states

Uniformity Uniform/non-uniform
Population Static/dynamic

Interaction model Form of interaction No interaction
Physical
Language-based

Interaction topology Static/dynamic
Neighbourhood/network

Environment model Spatial explicitness None
Relative positions
Absolute positions

Time Static/dynamic
Exogenous events Yes/no

Implementation Simulation engine Time-driven/event-driven
Programming MABS platform (NetLogo, Repast, etc.)

MAS platform (JADE, etc.)
From scratch (C, Java, etc.)

Distributedness Single computer/distributed
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Further Reading

Gilbert and Troitzsch (2005) also have sections that describe the different kinds
of simulation available. Railsback and Grimm (2011) present a complementary
analysis, coming from ecological modelling. The introductory chapters in (Gilbert
and Doran 1994) and (Conte and Gilbert 1995) map out many of the key issues and
aspects in which social simulation has developed.
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Chapter 4
Different Modelling Purposes

Bruce Edmonds

Abstract How one builds, checks, validates and interprets a model depends on
its ‘purpose’. This is true even if the same model is used for different purposes,
which means that a model built for one purpose but now used for another may
need to be rechecked, revalidated and maybe even rebuilt in a different way. Here
we review some of the different purposes for building a simulation model of
complex social phenomena, focussing on five in particular: theoretical exposition,
prediction, explanation, description and illustration. The chapter looks at some of
the implications in terms of the ways in which the intended purpose might fail. In
particular, it looks at the ways that a confusion of modelling purposes can fatally
weaken modelling projects, whilst giving a false sense of their quality. This analysis
motivates some of the ways in which these ‘dangers’ might be avoided or mitigated.

Why Read This Chapter?
This chapter will help you understand the importance of clearly identifying one’s
goal in developing and using a model and the implications of this decision in terms
of how the model is developed, checked, validated, interpreted and described. It
might thus help you produce models that are more reliable for your intended purpose
and increase the reliability of your modelling. It will help you avoid a situation
where you partially justify your model with respect to different purposes but succeed
at none of them.
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4.1 Introduction

A common view of modelling is that one builds a ‘lifelike’ reflection of some sys-
tem, which then can be relied upon to act like that system. This is a correspondence
view of modelling where the details in the model correspond in a one-one manner
with those in the modelling target—as if the model were some kind of ‘picture’ of
what it models. However, this view can be misleading since models always differ
from what they model, so that they will capture some aspects of the target system but
not others. With complex phenomena, especially social phenomena, it is inevitable
that any model is, at best, a very partial picture of what it represents—in fact I
suggest that this picture analogy is so unhelpful that it might be best to abandon it
altogether as more misleading than helpful.1

Rather, here I will suggest a more pragmatic approach, where models are viewed
as tools designed and useful for specific purposes. Although a model designed for
one purpose may turn out to be OK for another, it is more productive to use a tool
designed for the job in hand. One may be able to use a kitchen knife for shaping
wood, but it is much better to use a chisel. In particular, I argue that even when
a model (or model component) turns out to be useful for more than one purpose,
it needs to be justified and judged with respect to each of the claimed purposes
separately (and it will probably require recoding). To extend the previous analogy,
a tool with the blade of a chisel but the handle of a kitchen knife may satisfy some
of the criteria for a tool to carve wood and some of the criteria for a tool to carve
cooked meat but fail at both. If one did come up with a new tool that is good at both,
this would be because it could be justified for each purpose separately.

In his paper ‘Why Model?’, Epstein (2008) lists 17 different reasons2 for making
a model: from the abstract, ‘discover new questions’, to the practical ‘educate
the general public’. This illustrates both the usefulness of modelling but also the
potential for confusion. As Epstein points out, the power of modelling comes from
making an informal set of ideas formal. That is, they are made precise using
unambiguous code or mathematical symbols. This lack of ambiguity has huge
benefits for the process of science, since it allows researchers to share, critique
and improve models without transmission errors (Edmonds 2010). However, in
many papers on modelling, the purpose that its model was developed for or, more
critically, the purpose under which it is being presented is often left implicit or
confused. Maybe this is due to the prevalence of the ‘correspondence picture’ of
modelling discussed above, maybe the authors conceive of their creations being
useful in many different ways, or maybe they simply developed the model without a
specific purpose in mind. However, regardless of the reason, the consequence is that
readers do not know how to judge the model when presented. This has the result that
models might avoid proper judgement—demonstrating partial success in different
ways with respect to a number of purposes, but not adequacy against any.

1With the exception of the purpose of description where a model is intended to reflect what is
observed
2He discusses ‘prediction’ and then lists 16 other reasons to model.
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Our use of language helps cement this confusion: we talk about a ‘predictive
model’ as if it something in the code that makes it predictive (forgetting all the work
in directing and justifying this power)—rather I am suggesting a shift from the code
as a thing in itself, to code as a tool for a particular purpose. This marks a shift from
programming, where the focus is on the nature and quality of the code, to modelling,
where the focus is on the relationship of the behaviour of some code to what is being
modelled. Using terms such as ‘explanatory model’ is OK, as long as we understand
that this is shorthand for ‘a model which establishes an explanation’ etc.

Producing, checking and documenting code are labour intensive. As a result,
we often wish to reuse some code produced for one purpose for another purpose.
However, this often causes as much new work as it saves due to the effort required
to justify code for a new purpose and—if this is not done—the risk that time and
energy of many researchers are wasted due to the confusions and false sense of
reliability that can result. In practice, I have seen very little code that does not need
to be rewritten when one has a new purpose in mind. Ideas can be transferred and
well-honed libraries for very well-defined purposes, but not the core code that makes
up a model of complex social phenomena.3

In this chapter, I will look at five common modelling purposes: prediction,
explanation, theoretical exposition, description and illustration.4 Each purpose is
motivated, defined and illustrated. For each purpose, a ‘risk analysis’ is presented—
some of the ways one might fail to achieve the stated purpose—along with some
ways of mitigating these risks. In the penultimate section, some common confusions
of purpose are illustrated and discussed, before the chapter concludes with a brief
summary and plea to make one’s purpose clear.

4.2 Prediction

4.2.1 Motivation

If one can reliably predict anything that is not already known, this is undeniably
useful regardless of the nature of the model (e.g. whether its processes are a
reflection of what happens in the observed system or not5). For instance, the gas laws
(stating, e.g. that at a fixed pressure, the increase in volume of gas is proportional
to the increase of temperature) were discovered long before the reason why they
worked.

3I am not ruling out the possibility of reusable model components in the future using some clever
protocol; it is just that I have not seen any good cases of code reuse and many bad ones.
4A later chapter (Chap. 28 (Edmonds et al. 2017)) takes a more fine-grained approach in the context
of understanding human societies.
5It would not really matter even if the code had a bug in it, if the code reliably predicts (though it
might impact upon the knowledge of when we can rely upon it or not).
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However, there is another reason that prediction is valued: it is considered the
gold standard of science—the ability of a model or theory to predict is taken
as the most reliable indicator of a model’s truth. This is done in two principle
ways: (a) model A fits the evidence better than model B, a comparative approach,6

or (b) model A is falsified (or not) by the evidence, a falsification approach. In
either, the idea is that, given a sufficient supply of different models, better models
will be gradually selected over time, either because the bad ones are discarded or
outcompeted by better models.

Definition

By ‘prediction’, we mean the ability to reliably anticipate data that is not currently known
to a useful degree of accuracy via computations using the model.

Unpacking this definition:

• It has to do it reliably—that is, under some known (but not necessarily precise)
conditions, the model will work; otherwise one would not know when one could
use it.

• The data it anticipates has to be unknown to the modeller. ‘Predicting’ out-of-
sample data is not enough, since pressures to redo a model and get a better fit are
huge and negative results are difficult to publish.

• The anticipation has to be to a useful degree of accuracy. This will depend upon
the purpose to which it is being put, e.g. as in weather forecasting.

Unfortunately, there are at least two different uses of the word ‘predict’. Almost
all scientific models ‘predict’ in the weak sense of being used to calculate some
result given some settings or data, but this is different from correctly anticipating
unknown data. For this reason, some use the term ‘forecast’ for anticipating
unknown data and use the word ‘prediction’ for almost any calculation of one aspect
from another using a model. However, this causes confusions in other ways, so
this does not necessarily make things clearer. Firstly, ‘forecasting’ implies that the
unknown data is in the future (which is not always the case), and, secondly, large
parts of science use the word ‘prediction’ for the process of anticipating unknown
data. For example, if a modeller says their model ‘predicts’ something when they
simply mean that it calculates it, then most of the audience may misunderstand and
assume the author is claiming more utility than is intended.

As Watts (2014) points out, useful prediction does not have to be a ‘point’
prediction of a future event. For example, one might predict that some particular
thing will not happen, the existence of something in the past (e.g. the existence of
Pluto), something about the shape or direction of trends or distributions or even
qualitative facts. The important fact is that what is being predicted is not known
beforehand by the modeller and that it can be unambiguously checked when it is
known.

An Example Nate Silver aims to predict social phenomena, such as the results of
elections and the outcome of sports competitions. This is a data-hungry activity,

6Where model B may be a random or null model but also might be a rival model
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which involves the long-term development of simulations that carefully see what
can be inferred from the available data. As well as making predictions, his unit tries
to establish the level of uncertainty in those predictions—being honest about the
probability of those predictions coming about given the likely levels of error and
bias in the data. As described in his book (Silver 2012), this involves a number of
properties and activities, including:

• Repeated testing of the models against unknown data
• Keeping the models fairly simple and transparent so one can understand clearly

what they are doing (and what they do not cover)
• Encoding into the model aspects of the target phenomena that one is relatively

certain about (such as the structure of the US presidential electoral college)
• Being heavily data biased, requiring a lot of data to help eliminate sources of

error and bias
• Producing probabilistic predictions, giving a good idea about the level of

uncertainty in any prediction
• Being clear about what kinds of factors are not covered in the model, so the

predictions are relative to a clear set of declared assumptions and one knows the
kind of circumstances in which one might be able to rely upon the predictions

Post hoc analysis of predictions—explaining why it worked or not—is kept
distinct from the predictive models themselves; this analysis may inform changes to
the predictive model but is not then incorporated into the model. The analysis is thus
kept independent of the predictive model, so it can be an effective check. Making
a good predictive model requires a lot of time getting it wrong with real, unknown
data and trying again before one approaches qualified successful predictions.

4.2.2 Risks

Prediction (as we define it) is very hard for any complex social system. For this
reason, it is rarely attempted.7 Many re-evaluations of econometric models against
data that has emerged since publication have revealed a high rate of failure (e.g.
Meese and Rogoff 1983)—37 out of 40 models failed completely. Clearly, although
presented as being predictive models, they did not actually predict unknown data.
Many of these used the strategy of first dividing the data into in-sample and out-of-
sample data, and then parameterising the model on the former and exhibiting the fit
against the latter. Presumably, the apparent fit of the 37 models was not simply a
matter of bad luck, but that all of these models had been (explicitly or implicitly)
fitted to the out-of-sample data, because the out-of-sample data was known to the
modeller before publication. That is, if the model failed to fit the out-of-sample

7To be precise, some people have claimed to predict various social phenomena, but there are very
few cases where the predictions are made public before the data is known and where the number of
failed predictions can be checked. Correctly predicting events after they are known is much easier!
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data the first time the model was tested, it was then adjusted until it did work, or,
alternatively, only those models that fitted the out-of-sample data were published (a
publishing bias). Thus, in these cases, the models were not tested against predicting
the out-of-sample data even though they were presented as such. Fitting known data
is simply not a sufficient test for predictive ability.

There are many reasons why prediction of complex social systems fails, but two
of the most prominent are (1) it is unknown what processes are needed to be included
in the model and (2) a lack of enough quality data of the right kinds. We will discuss
each of these in turn.

1. In the physical sciences, there are often well-validated micro-level models (e.g.
fluid dynamics in the case of weather forecasting) that tell us what processes are
potentially relevant at a coarser level and which are not. In the social sciences,
this is not the case—we do not know what the essential processes are. Here, it is
often the case that there are other processes that the authors have not considered
that, if included, would completely change the results. This is due to two different
causes: (a) we simply do not know much about how and why people behave
in different circumstances, and (b) different limitations of intended context will
mean that different processes are relevant.

2. Unlike in the physical sciences, there has been a paucity of the kind of data we
would need to check the predictive power of models. This paucity can be due
to (a) there is not enough data (or data from enough independent instances) to
enable the iterative checking and adapting of the models on new sets of unknown
data each time we need to, or (b) the data is not of the right kind to do this. What
can often happen is that one has partial sets of data that require some strong
assumptions in order to compare against the predictions in question (e.g. the data
might only be a proxy of what is being predicted, or you need assumptions in
order to link sets of data). In the former case, (a), one simply has not enough to
check the predictive power in multiple cases, so one has to suspend judgement as
to whether the model predicts in general, until the data is available. In the latter
case, (b), the success at prediction is relative to the assumptions made to check
the prediction.

A more subtle risk is that the conditions under which one can rely upon a model
to predict well might not be clear. If this is the case, then it is hard to rely upon the
model for prediction in a new situation, since one does not know its conditions of
application.

4.2.3 Mitigating Measures

To ensure that a model does indeed predict well, one can seek to ensure the
following:

• That the model has been tested on several cases where it has successfully
predicted data unknown to the modeller (at the time of prediction)
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• That information about the following are included: exactly what aspects it
predicts, guidelines on when the model can be used to predict and when not,
some guidelines as to the degree or kind of accuracy it predicts with and any
other caveats a user of the model should be aware of

• That the model code is distributed so others can explore when and how well it
predicts

4.3 Explanation

4.3.1 Motivation

Often, especially with complex social phenomena, one is particularly interested in
understanding why something occurs—in other words, explaining it. Even if one
cannot predict something before it is known, you still might be able to explain
it afterwards. This distinction mirrors that in the physical sciences where there
are both phenomenological and explanatory laws (Cartwright 1983)—the former
matches the data, whilst the latter explains why that came about. In mature science,
predictive and explanatory laws are linked in well-understood ways but with less
well-understood phenomena one might have one without the other. For example, the
gas laws that link measurements of temperature, pressure and volume were known
before the explanation in terms of molecules of gas bouncing randomly around and
the formal connection between both accounts only made much later. Understand-
ing is important for managing complex systems as well as understanding when
predictive models might work. Whilst generally with complex social phenomena
explanation is easier than prediction, sometimes prediction comes first (however, if
one can predict then this invites research to explain why the prediction works).

If one makes a simulation in which certain mechanisms or processes are
built in and the outcomes of the simulation match some (known) data, then this
simulation can support an explanation of the data using the built-in mechanisms. The
explanation itself is usually of a more general nature, and the traces of the simulation
runs are examples of that account. Simulations that involve complicated processes
can thus support complex explanations—that are beyond natural language reasoning
to follow. The simulations make the explanation explicit, even if we cannot fully
comprehend its detail. The formal nature of the simulation makes it possible to
test the conditions and cases under which the explanation works and to better its
assumptions.

Definition

By ‘explanation’ we mean establishing a possible causal chain from a set-up to its
consequences in terms of the mechanisms in a simulation.

Unpacking some parts of this:

• The possible causal chain is a set of inferences or computations made as part
of running the simulation—in simulations with random elements, each run will
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be slightly different. In this case, it is either a possibilistic explanation (A could
cause B), in which case one just has to show one run exhibiting the complete
chain, or a probabilistic explanation (A probably causes B, or A causes a
distribution of outcomes around B) in which case one has to look at an assembly
of runs, maybe summarising them using statistics or visual representations.

• For explanatory purposes, the structure of the model is important, because that
limits what the explanation consists of. If, for example, the model consisted of
mechanisms that are known not to occur, any explanation one established would
be in terms of these non-existent mechanisms—which is not very helpful. If one
has parameterised the simulation on some in-sample data (found the values of
the free parameters that made the simulation fit the in-sample data), then the
explanation of the outcomes is also in terms of the in-sample data, mediated by
these ‘magic’-free parameters.8

• The consequences of the simulations are generally measurements of the out-
comes of the simulation. These are compared with the data to see if it ‘fits’. It is
usual that only some of the aspects of the target data and the data the simulation
produces are considered significant—other aspects might not be (e.g. might be
artefacts of the randomness in the simulation or other factors extraneous to the
explanation). The kind of fit between data and simulation outcomes needs to be
assessed in a way that is appropriate to what aspects of the data are significant
and which are not. For example, if it is the level of the outcome that is key, then a
distance or error measure between this and the target data might be appropriate,
but if it is the shape or trend of the outcomes over time that is significant, then
other techniques will be more appropriate (e.g. Thorngate and Edmonds 2013).

Example Stephen Lansing spent time in Bali as an anthropologist, researching
how the Balinese coordinated their water usage (among other things). He and
his collaborator, James Kramer, build a simulation to show how the Balinese
system of temples acted to regulate water usage, through an elaborate system of
agreements between farmers, enforced through the cultural and religious practices
at those temples (Lansing and Kramer 1993). Although their observations could
cover many instances of localities using the same system of negotiation over
water, they were necessarily limited to all their observations being within the
same culture. Their simulation helped establish the nature and robustness of their
explanation by exploring a close universe of ‘what if’ questions, which vividly
showed the comparative advantages of the observed system that had developed over
a considerable period. The model does not predict that such systems will develop
in the same circumstances, but it substantially adds to the understanding of the
observed case.

8I am being a little disparaging here, it may be that these have a definite meaning in terms of
relating different scales or some such, but too often, they do not have any clear meaning but just
help the model fit stuff.
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4.3.2 Risks

Clearly, there are several risks in the project of establishing a complex explanation
using a simulation—what counts as a good explanation is not as clear-cut as what is
a good prediction.

Firstly, the fit to the target data to be explained might be a very special case. For
example, if many other parameters need to have very special values for the fit to
occur, then the explanation is, at best, brittle and, at worst, an accident.

Secondly, the process that is unfolded in the simulation might be poorly
understood so that the outcomes might depend upon some hidden assumption
encapsulated in the code. In this case, the explanation is dependent upon this
assumption holding, which is problematic if this assumption is very strong or
unlikely.

Thirdly, there may be more than one explanation that fits the target data. So
although the simulation establishes one explanation, it does not guarantee that it
is the only candidate for this.

4.3.3 Mitigating Measures

To improve the quality and reliability of the explanation being established:

• Ensure that the mechanisms built into the simulation are plausible or at least
relate to what is known about the target phenomena in a clear manner.

• Be clear about which aspects of the outcomes are considered significant in terms
of comparison to the target data—i.e. exactly which aspects of that target data
are being explained.

• Probe the simulation to find out the conditions for the explanation holding
using sensitivity analysis, addition of noise, multiple runs, changing processes
not essential to the explanation to see if the results still hold and documenting
assumptions.

• Do experiments in the classic way, to check that the explanation does, in fact,
hold for your simulation code—i.e. check your code and try to refute the
explanation using carefully designed experiments with the model.

4.4 Theoretical Exposition

4.4.1 Motivation

If one has a mathematical model, one can do analysis upon its mathematics to
understand its general properties. This kind of analysis is both easier and harder
with a simulation model—to find out the properties of simulation code, one just
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has to run the code—but this just gives one possible outcome from one set of
initial parameters. Thus, there is the problem that the runs one sees might not be
representative of the behaviour in general. With complex systems, it is not easy
to understand how the outcomes arise, even when one knows the full and correct
specification of their processes, so simply knowing the code is not enough. Thus,
with highly complicated processes, where the human mind cannot keep track of the
parts unaided, one has the problem of understanding how these processes unfold in
general.

Where mathematical analysis is not possible, one has to explore the theoretical
properties using simulation—this is the goal of this kind of model. Of course, with
many kinds of simulation, one wants to understand how its mechanisms work, but
here this is the only goal. Thus, this purpose could be seen as more limited than the
others, since some level of understanding the mechanisms is necessary for the other
purposes (except maybe black-box predictive models). However, with this focus on
just the mechanisms, there is an expectation that a more thorough exploration will be
performed—how these mechanisms interact and when they produce different kinds
of outcome.

Thus, the purpose here is to give some more general idea of how a set of
mechanisms work, so that modellers can understand them better when used in
models for other purposes. If the mechanisms and exploration are limited, this would
greatly reduce the usefulness of doing this. General insights are what is wanted here.

In practice, this means a mixture of inspection of data coming from the simula-
tion, experiments and maybe some inference upon or checking of the mechanisms.
In scientific terms, one makes a hypothesis about the working of the simulation—
why some kinds of outcome occur in a given range of conditions—and then tests
that hypothesis using well-directed simulation experiments.

The complete set of simulation outcomes over all possible initialisations (includ-
ing random seeds) does encode the complete behaviour of simulation, but that is
too vast and detailed to be comprehensible. Thus, some general truths covering the
important aspects of the outcomes under a given range of conditions are necessary—
the complete and certain generality established by mathematical analysis might
be infeasible with many complex systems, but we would like something that
approximates this using simulation experiments.

Definition

‘Theoretical exposition’ means discovering then establishing (or refuting) hypotheses about
the general behaviour of a set of mechanisms (using a simulation).

Unpacking some key aspects here:

• One may well spend some time illustrating the discovered hypothesis (especially
if it is novel or surprising), followed by a sensitivity analysis, but the crucial
part is showing these hypotheses are refuted or not by a sequence of simulation
experiments.

• The hypotheses need to be (at least somewhat) general to be useful.
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• A use of theoretical exposition can be to refute a hypothesis, by exhibiting a
concrete counterexample, or to establish a hypothesis.

• Although any simulation has to have some meaning for it to be a model
(otherwise it would just be some arbitrary code), this does not involve any other
relationship with the observed world in terms of data or evidence.

Example Schelling developed his famous model for a theoretical purpose. He was
advising the Chicago district on what might be done about the high levels of
segregation there. The assumption was that the sharp segregation observed must be a
result of strong racial discrimination by its inhabitants. Schelling’s model (Schelling
1969, 1971) showed that segregation could result from just weak preferences of
inhabitants for their own kind—that even, a wish for 30% of people of the same
trait living in the neighbourhood could result in segregation. This was not obvious
without building a model, and Schelling did not rely on the results of his model
alone but did extensive mathematical analysis to back up its conclusions.

What the model did not do is say anything about what actually caused the
segregation in Chicago—it might well be the result of strong racial prejudice. The
model did not predict anything about the level of segregation nor did it explain it.
All it did was provide a counterexample to the current theories as to the cause of the
segregation, showing that this was not necessarily the case.

4.4.2 Risks

In theoretical exposition, one is not relating simulations to the observed world, so it
is fundamentally an easier and ‘safer’ activity.9 Since a near-complete understanding
of the simulation behaviour is desired, this activity is usually concerned with
relatively simple models. However, there are still risks—it is still easy to fool oneself
with one’s own model. Thus, the main risk is that there is a bug in the code, so that
what one thinks one is establishing about a set of mechanisms is really about a
different set of mechanisms (i.e. those including the bug).

A second area of risk lies in a potential lack of generality or ‘brittleness’ of
what is established. If the hypothesis is true but only holds under very special
circumstances, then this reduces the usefulness of the hypothesis in terms of
understanding the simulation behaviour.

Lastly, there is the risk of over-interpreting the results in terms of saying anything
about the observed world. The model might suggest a hypothesis about the observed
world, but it does not provide any level of empirical support for this.

9In the sense of not being vulnerable to being shown to be wrong later
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4.4.3 Mitigating Measures

The measures that should be taken for this purpose are quite general and maybe best
understood by the community of simulators.

• One needs to check ones’ code thoroughly—see Galán et al. (2017) for a review
of techniques.

• One needs to be precise about the code and its documentation—the code should
be made publically available.

• Be clear as to the nature and scope of the hypotheses established.
• A very thorough sensitivity check, trying various versions with extra noise added

etc.
• It is good practice to illustrate the simulation so that the readers understand its

key behaviours but then follow this with a series of attempted refutations of the
hypotheses about its behaviour to show its robustness.

• Be very careful about not claiming that this says anything about the observed
world.

4.5 Description

4.5.1 Motivation

An important, but currently under-appreciated, activity in science is that of descrip-
tion. Charles Darwin spent a long time sketching and describing the finches he
observed on his travels aboard the HMS Beagle. These descriptions and sketches
were not measurements or recordings in any direct sense, since he was already
selecting from what he perceived and only recording an abstraction of what he
thought of as relevant. Later on, these were used to illustrate and establish his
theoretical abstraction—his theory of evolution of species by natural selection.

One can describe things using natural language or pictures, but these are
inadequate for dynamic and complex phenomena, where the essence of what is
being described is how several mechanisms might relate over time. An agent-based
simulation framework allows for a direct representation (one agent for one actor)
without theoretical restrictions. It allows for dynamic situations as well as complex
sets of entities and interactions to be represented (as needed). This can make it an
ideal complement to scenario development because it ensures consistency between
all the elements and the outcomes. It is also a good base for future generalisations
when the author can access a set of such descriptive simulations.

Definition

A description (using a simulation) is an attempt to partially represent what is important of
a specific observed case (or small set of closely related cases).
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Unpacking some of this:

• This is not an attempt to produce a one-one representation of what is being
observed but only of the features thought to be relevant for the intended kind
of study. It will leave out some features; in particular, it may leave out some of
the interactions between processes.

• It is not in any sense general, but it seeks to capture a restricted set of cases—it
is specific to these, and no kind of generality beyond these can be assumed.

• The simulation has to relate in an explicit and well-documented way to a set
of evidence, experiences and data. This is the opposite of theoretical exposition
and should have a direct and immediate connection with observation, data or
experience.

Example In Moss (1998), Scott Moss describes a model that captures some of the
interactions in a water pumping station during crises. This came about through
extensive discussions with stakeholders within a UK water company about what
happens in particular situations during such crises. The model sought to directly
reflect this evidence within the dynamic form of a simulation, including cognitive
agents who interact to resolve the crisis. This simulation captured aspects of the
physical situation but also tackled some of the cognitive and communicative aspects.
To do this, he had represented the problem solving and learning of key actors,
so he inevitably had to use some existing theories and structures—namely, Alan
Newell and Herbert Simon’s ‘general problem solving architecture’ (Newell and
Simon 1972) and Cohen’s ‘endorsement mechanism’ (Cohen 1984a, b). However,
this is all made admirably explicit in the paper. The paper is suitably cautious in
terms of any conclusions, saying that the simulation ‘indicate[s] a clear need for an
investigation of appropriate organizational structures and procedures to deal with
full-blown crises’.

4.5.2 Risks

Any system for representation will have its own affordances—it will be able to
capture some kinds of aspect much more easily than others will. This inevitably
biases the representations produced, as those elements that are easy to represent are
more likely to be captured than those which are more difficult. Thus, the medium
will influence what is captured and what is not.

Since agent-based simulation is not theoretically constrained,10 there are a large
number of ways in which any observed phenomena could be expressed in terms
of simulation code. Thus, it is almost inevitable that any modeller will use some

10To be precise, it does assume there are discrete entities or objects and that there are processes
within these that can be represented in terms of computations, but these are not very restrictive
assumptions.
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structures or mechanisms that they are familiar with in order to write the code. Such
a simulation is, in effect, an abduction with respect to these underlying structures
and mechanisms—the phenomena are seen through these and expressed using them.

Finally, a reader of the simulation may not understand the limitations of the
simulation and make false assumptions as to its generality. In particular, the
inference within the simulations may not include all the processes that are in what
is observed—thus, it cannot be relied upon to either predict outcomes or justify any
specific explanation of those outcomes.

4.5.3 Mitigating Measures

As long as the limitations of the description (in terms of its selectivity, inference and
biases) are made clear, there are relatively few risks here, since not much is being
claimed. If it is going to be useful in the future as part of a (slightly abstracted)
evidence base, then its limitations and biases do need to be explicit. The data,
evidence or experience it is based upon also need to be made clear. Thus, good
documentation is the key here—one does not know how any particular description
will be used in the future, so the thoroughness of this is key to its future utility.
Here, it does not matter if the evidence is used to specify the simulation or to check
it afterwards in terms of the outcomes, all that matters is that the way it relates to
evidence is well documented. Standards for documentations (such as the ODD and
its various extensions (Grimm et al. 2006, 2010) help ensure that all aspects are
covered.

4.6 Illustration

4.6.1 Motivation

Sometimes one wants to make an idea clear, and an illustration is a good way of
doing this. It makes a more abstract theory or explanation clear by exhibiting a
concrete example that might be more readily comprehended. Complex systems,
especially complex social phenomena, can be difficult to describe, including
multiple independent and interacting mechanisms and entities. Here a well-crafted
simulation can help people see these complex interactions at work and hence
appreciate these complexities better. As with description, this purpose does not
claim much; it is just a medium for the communication of an idea. If the theory is
already instantiated as a simulation (e.g. for theoretical exposition or explanation),
then the illustrative simulation might well be a simplified version of this.

Playing about with simulations in a creative but informal manner can be very
useful in terms of informing the intuitions of a researcher (Norling et al. 2017).
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In a sense, the simulation has illustrated an idea to its creator. One might then exhibit
a version of this simulation to help communicate this idea to others. However, this
does not mean that the simulation achieves any of the other purposes described
above, and it is thus doubtful whether that idea has been established to be of public
value (justifying its communication in a publication) until this happens.

This is not to suggest that illustration is not an important process in science.
Providing new ways of thinking about complex mechanisms or giving us new
examples to consider is a very valuable activity. However, this does not imply its
adequacy for any other purpose.

Definition

An illustration (using a simulation) is to communicate or make clear an idea, theory or
explanation.

Unpacking this:

• Here the simulation does not have to fully express what it is illustrating; it is
sufficient that it gives a simplified example. So it may not do more than partially
capture the idea, theory or explanation that it illustrates, and it cannot be relied
upon for the inference of outcomes from any initial conditions or set-up.

• The clarity of the illustration is of overriding importance here, not its veracity or
completeness.

• An illustration should not make any claims, even of being a description. If it
is going to be claimed that it is useful as a theoretical exposition, explanation or
other purposes, then it should be justified using those criteria—that it seems clear
to the modeller is not enough.

Example In his book, Axelrod (1984) describes a formalised computational ‘game’
where different strategies are pitted against each other, playing the iterated pris-
oner’s dilemma. Some different scenarios are described, where it is shown how the
‘tit for tat’ strategy can survive against many other mixes of strategies (static or
evolving). The conclusions are supported by some simple mathematical consider-
ations, but the model and its consequences were not explored in any widespread
manner.11 In the book, the purpose of the model is to illustrate the ideas that the
book proposes. The book claims the idea ‘explains’ many observed phenomena, but
in an analogical manner, no precise relationship with any observed measurements is
described. There is no validation of the model here or in the more academic paper
that described these results (Axelrod and Hamilton 1981). In the academic paper,
there are some mathematical arguments which show the plausibility of the model,
but the paper, like the book, progresses by showing the idea is coherent with some
reported phenomena—but it is the ideas rather than the model that are so related.
Thus, in this case, the simulation model is an analogy to support the idea, which
is related to evidence in a qualitative manner—the relationship of the model to
evidence is indirect (Edmonds 2001). Thus, the role of the simulation model is that

11Indeed, the work spawned a whole industry of papers doing just such an exploration.
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of an illustration of the key ideas and does not qualify for either explaining specific
data, predicting anything unknown or exploring a theory.

4.6.2 Risks

The main risk here is that you might deceive people using the illustration into
reading more into the simulation than is intended, as these are often quite persuasive
in terms of their impact. Such simulations can be used as a kind of analogy—a way
of thinking about other phenomena. However, just because you can think about some
phenomena in a particular way does not make it true. The human mind is good at
creating, ‘on the fly’, connections between an analogy and what it is considering—
so good that it does it almost without us being aware of this process. The danger
here is of confusing being able to think of some phenomena using an idea and that
idea having any force in terms of a possible explanation or method of prediction.
The apparent generality of an analogy tends to dissipate when one tries to precisely
specify the relationship of a model to observations, since an analogy has a different
set of relationships for each situation it is applied to—it is a supremely flexible
way of thinking. This flexibility means that it does not work well to support an
explanation or predict well, since both of these necessitate an explicit and fixed
relationship with observed data.

There is also a risk of confusion if it is not clear which aspects are important
to the illustration and which are not. A simulation for illustration will show the
intended behaviour, but (unlike when its theory is being explored) it has been tested
only for a restricted range of possibilities; indeed the claimed results might be quite
brittle to insignificant changes in assumption.

4.6.3 Mitigating Measures

Be very clear in the documentation that the purpose of the simulation is for
illustration only, maybe giving pointers to fuller simulations that might be useful
for other purposes. Also be clear in precisely what idea is being communicated and
so which aspects of the simulation are relevant for this purpose.

4.7 Some Confusions of Purpose

It should be abundantly clear by now that establishing a simulation for one purpose
does not justify it for another and that any assumptions to the contrary risk confusion
and unreliable science. However, the field has many examples of such confusions
and conflations, so this message is obviously needed. It is true that a simulation
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model justified for one purpose might be used as part of the development of
a simulation model for another purpose—this can be how science progresses.
However, just because a model for one purpose suggests a model for another does
not mean it is a good model for the new purpose. If it is being suggested that a
model can be used for a new purpose, it has to be justified for this new purpose. To
drive home this point further, we look at some common confusions of purpose to
underline this danger. Each time some code is mistakenly relied upon for a purpose
other than has been established for it.

1. Theoretical exposition ! Explanation. Once one has immersed oneself in a
model, there is a danger that the world looks like this model to its author.
This is a strong kind of Kuhn’s ‘theoretical spectacles’12 and results from the
intimate relationship that simulation developers have with their model. Here, the
temptation is to jump from a theoretical exposition, which has no empirical basis,
to an explanation of something in the world. A simulation can provide a way of
looking at some phenomena, but just because one can view some phenomena in
a particular way does not make it a good explanation. Of course, one can form a
hypothesis from anywhere, including from a theoretical exposition, but it remains
only a hypothesis until it is established as a good explanation as discussed above
(which would almost certainly involve changing the model).

2. Description ! Explanation. In constructing a simulation for the purpose of
describing a small set of observed cases, one has deliberately made many
connections between aspects of the simulation and evidence of various kinds.
Thus, one can be fairly certain that, at least, some of its aspects are realistic. Some
of this fitting to evidence might be in the form of comparing the outcomes of the
simulation to data, in which case it is tempting to suggest that the simulation
supports an explanation of those outcomes. The trouble with this is twofold: (a)
the work to test which aspects of that simulation are relevant to the aspects being
explained has not been done; and (b) the simulation has not been established
against a range of cases—it is not general enough to make a good explanation. An
explanation that only explains aspects of a small number of cases using a complex
simulation is a bad explanation since there will be many other potentialities in
the simulation that are not used for these few cases.

3. Explanation ! Prediction. A simulation that establishes an explanation traces
a (complex) set of causal steps from the simulation set-up to outcomes that
compare well with observed data. It is thus tempting to suggest that one can
use this simulation to predict this observed data. However, the process of using
a simulation to establish and understand an explanation inevitably involves
iteration between the data being explained and the model specification—that is,
the model is fitted to that particular set of data. Model fitting is not a good way
to construct a model useful for prediction, since it does not distinguish between

12Kuhn (1962) pointed out the tendency of scientists to only see the evidence that is coherent
with an existing theory—it is as if they have ‘theoretical spectacles’ that filter out other kinds of
evidence.
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what is essential for the prediction and the ‘noise’ (what cannot be predicted).
Establishing that a simulation is good for prediction requires its testing against
unknown data several times—this goes way beyond what is needed to establish
a candidate explanation for some phenomena. This is especially true for social
systems, where we often cannot predict events, but we can explain them after
they have occurred.

4. Illustration ! Theoretical exposition. A neat illustration of an idea suggests a
mechanism. Thus, the temptation is to use a model designed as an illustration or
playful exploration as being sufficient for the purpose of a theoretical exposition.
A theoretical exposition involves the extensive testing of code to check the
behaviour and the assumptions therein; an illustration, however suggestive, is
not that rigorous. For example, it may be that an illustrated process is a very
special case and only appears under very particular circumstances, or it may be
that the outcomes were due to aspects of the simulation that were thought to be
unimportant (such as the nature of a random number generator). The work to
rule out these kinds of possibility is what differentiates using a simulation as an
illustration from a theoretical exposition.

There is a natural progression in terms of purpose attempted as understanding
develops: from illustration to description or theoretical exposition, from description
to explanations and from explanations to prediction. However, each stage requires
its own justification and probably a complete reworking of the simulation code for
this new purpose. It is the lazy assumption that one purpose naturally follows from
another that is the danger.

4.8 Conclusion

In Table 4.1, we summarise the most important points of the above discussion. This
does not include all the risks of each kind of model but simply picks the most
pertinent ones.

As should be clear from the above discussion, being clear about one’s purpose in
modelling is central to how one goes about developing, checking and presenting the
results. Different modelling purposes imply different risks and hence activities to
avoid these. If one is intending the simulation to have a public function (in terms of
application or publication), then one should not model with unspecified or conflated
purposes.13 Confused, conflated or unclear modelling purpose leads to unreliable
models that are hard to check, can create deeply misleading results and is hard for
readers to judge—in short, it is a recipe for bad science.

13This does not include private modelling, whose purpose maybe playful or exploratory; however,
in this case one should not present the results or model as if they have achieved anything more than
illustration (to oneself). If one finds something of value in the exploration, it should then be redone
properly for a particular purpose to be sure it is worth public attention.
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Table 4.1 A brief summary of the discussed modelling purposes

Modelling purpose Essential features
Particular risks (apart from that
of lacking the essential features)

Prediction Anticipates unknown data Conditions of application unclear
Explanation Uses plausible mechanisms to

match outcome data in a
well-defined manner

Model is brittle, so minor changes
in the set-up result in bad fit to
explained data

Theoretical exposition Systematically maps out or
establishes the consequences
of some mechanisms

Bugs in the code; inadequate
coverage of possibilities

Description Relates directly to evidence
for a small set of cases

Unclear documentation; over
generalisation from cases
described

Illustration Shows an idea clearly Over interpretation to make
theoretical or empirical claims
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prediction.
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Chapter 5
Informal Approaches to Developing Simulation
Models

Emma Norling, Bruce Edmonds, and Ruth Meyer

Abstract This chapter describes an approach commonly taken by most people
in the social sciences when developing simulation models instead of following a
formal approach of specification, design and implementation. What often seems to
happen in practice is that modellers start off in a phase of exploratory modelling,
where they don’t have a precise conception of the model they want but a series of
ideas and/or evidence they want to capture. They then may develop the model in
different directions, backtracking and changing their ideas as they go. This phase
continues until they think they may have a model or results that are worth telling
others about. This then is (or at least should be) followed by a consolidation phase
where the model is more rigorously tested and checked so that reliable and clear
results can be reported. In a sense what happens in this later phase is that the model
is made so that it is as if a more formal and planned approach had been taken.

There is a danger of this approach: that the modeller will be tempted by
apparently significant results to rush to publication before sufficient consolidation
has occurred. There may be times when the exploratory phase may result in useful
and influential personal knowledge, but such knowledge is not reliable enough to
be up to the more exacting standards expected of publicly presented results. Thus,
it is only in combination with a careful consolidation of models that this informal
approach to building simulations should be undertaken.

Why Read This Chapter?
To get to know some of the issues, techniques and tools involved in building
simulation models using a combination of exploration, checking and consolidation.
To understand when a looser, informal style of development might be beneficial and
when one needs a more structured approach.
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5.1 Introduction: Exploration and Consolidation Modelling
Phases

Formal approaches to the development of computer programs have emerged through
the collective experience of computer scientists (and other programmers) over the
past half-century. The experience has shown that complex computer programs
are very difficult to understand: once past a certain point, unless they are very
careful, programmers lose control over the programs they build. Beyond a certain
stage of development, although we may understand each part—each micro-step—
completely, we can lose our understanding of the program as a whole; the effects of
the interactions between the parts of a program are unpredictable; they are emergent.
Thus, computer science puts a big emphasis on techniques that aim to ensure that
the program does what it is intended to do as far as possible. However, even with
the most careful methodology, it is recognised that a large chunk of time will have
to be spent debugging the program—we all know that a program cannot be relied on
until it has been tested and fixed repeatedly.

However, it is fair to say that most computational modellers do not follow such
procedures and methodologies all the time (although since people don’t readily
admit to how messy their implementation process actually is, we cannot know
this, just as one does not know how messy people’s homes are when there are no
visitors). There are many reasons for this. Obviously, those who are not computer
scientists may simply not know these techniques (in which case they should at least
read Chap. 6 in this volume). Then there are a large number of modellers who
know of these techniques (to some degree) but judge that they are not necessary
or not worth the effort. Such a judgement may or may not be correct. Certainly it
is the case that people tend to underestimate the complexity of programming and
so think they can get away with not bothering with a more careful specification
and analysis stage. In some of these cases, the modeller may regret not engaging in
more planning, but there may also be other times when there are good reasons not to
follow such techniques. Thirdly, a specification and design approach is simply not
possible if you don’t have a clear idea of your goal. Often, when modelling some
complex phenomena (and especially social phenomena), one simply does not know
beforehand which parts of the system will turn out to be important to the outcomes
and which can be safely omitted. Further, one may not even know what will be
possible to model computationally.

One of the big benefits of modelling phenomena computationally is that one
learns a lot about what is crucial and possible in the process of building a simulation
model. This is very unlike the case where one has a functional goal or specification
for a program that can be analysed into sub-goals and processes, etc. In (social)
simulation, the degree to which formal approaches are useful depends somewhat on
the goal of modelling. If the goal is very specific, for example, understanding the
effect of the recovery rate on the change in the number of infections in an epidemic,
and the basic model structure is known, then what is left is largely an engineering
challenge. However, if the goal is general understanding of a particular process,
then there is no possible way of systematically determining what the model should

http://dx.doi.org/10.1007/978-3-319-66948-9_6
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be. Here the modelling is essentially a creative process, and the development of
the model proceeds in parallel with the development of the understanding of the
process; the model is itself a theory under development.

Thus, what often seems to happen in practice is that modellers start off in a phase
of exploratory modelling, where they don’t have a precise conception of the model
they want but a series of ideas and/or evidence they want to capture. They then may
develop the model in different directions, backtracking and changing their ideas as
they go. This phase continues until they think they may have a model or results that
are worth telling others about. This then is (or at least should be) followed by a
consolidation phase where the model is more rigorously tested and checked so that
reliable and clear results can be reported. In a sense what happens in this later phase
is that the model is made so that it is as if a more formal and planned approach had
been taken.

There is nothing wrong with having an exploratory approach to model devel-
opment. Unfortunately, it is common to see models and results that are publicly
presented without a significant consolidation phase being undertaken. It is very
understandable why a researcher might want to skip the consolidation phase: they
may have discovered a result or effect that they find exciting and not wish to go
through the relatively mundane process of checking their model and results. They
may feel that they have discovered something that is of more general importance;
however, this personal knowledge, which may well inform their understanding,
is not yet of a standard that makes it worthwhile for their peers to spend time
understanding, until it has been more rigorously checked.

One of the problems with the activity of modelling is that it does influence
how the modeller thinks. Paradoxically, this can also be one of the advantages
of this approach. After developing and playing with a model over a period of
time, it is common to “see” the world (or at least the phenomena of study) in
terms of the constructs and processes of that model. This is a strong version of
Kuhn’s “theoretical spectacles” (Kuhn 1969). Thus, it is common for modellers to
be convinced that they have found a real effect or principle during the exploration of
a model, despite not having subjected their own model and conception to sufficient
checking and testing—what can be called modelling spectacles. Building a model
in a computer is almost always in parallel with the development of one’s ideas about
the subject being modelled. This is why it is almost inevitable that we think about
the subject in terms of our models—this is at once a model’s huge advantage but
also disadvantage. As long as one is willing to be aware of the modelling spectacles
and be critical of them, or try many different sets of modelling spectacles, the
disadvantage can be minimised.

Quite apart from anything, presenting papers with no substantial consolidation
is unwise. Such papers are usually painfully obvious when presented at workshops
and easily criticised by referees and other researchers if submitted to a journal. It
is socially acceptable that a workshop paper will not have as much consolidation
as might be required of a journal article, since the criticism and evaluation of ideas
and models at a workshop are part of its purpose, but presenting a model with an
inadequate level of consolidation just wastes the other participants’ time.
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Fig. 5.1 The exploration and
consolidation approach to
model development

What steps then should modellers who follow such an informal approach take to
ensure that their model is sufficiently consolidated to present to a wider audience?
Firstly, the modeller must have a clear purpose for their model, as described below.
Secondly, the modeller must be careful to identify the assumptions that are made
during the construction of the model. Thirdly, the modeller must maintain control of
the model whilst exploring different possibilities. And fourthly—and this is perhaps
the most difficult—the modeller must maintain an understanding of the model. The
following sections of this chapter discuss these points in more detail. Then there
is the all-important consolidation phase (which may proceed in parallel with the
former steps, rather than strictly sequentially), during which the modeller formalises
the model in order to ensure that the results are sound and meaningful. Figure 5.1
illustrates this approach to model building.

5.2 Knowing the Purpose of the Model

There are many possible purposes for constructing a model. Although some models
might be adapted for different purposes without too much difficulty, at any one
time, a model will benefit from having a clear purpose. One of the most common
criticisms of modelling papers (after a lack of significant consolidation) is that the
author has made a model but is unclear as to its purpose. This can be for several
reasons, such as:
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• The author may have simply modelled without thinking about why (e.g. having
vague ideas about a phenomenon, the modeller decides to construct a model
without thinking about the questions one might want to answer about that
phenomenon).

• The model might have been developed for one purpose but is being presented as
if it had another purpose.

• The model may not achieve any particular purpose and so the author might be
forced into claiming a number of different purposes to justify the model.

The purpose of a model will affect how it is judged and hence should influence
how it is developed and checked.

The classic reason for modelling is to predict some unknown aspect of observed
phenomena—usually a future aspect. If you can make a model that does this for
unknown data (data not known to the modellers before they published the model),
then there can be no argument that such a model is (potentially) useful. Due to the
fact that predictive success is a very strong test of a model for which the purpose
is prediction, this frees one from an obligation as to the content or structure of the
model.1 In particular, the assumptions in the model can be quite severe—the model
can be extremely abstract as long as it actually does predict.

However, predictive power will not always be a measure of a model’s success.
There are many other purposes for modelling other than prediction. Epstein
(2008) lists 16 other purposes for building a model, e.g. explanation, training of
practitioners or education of the general public, and it is important to note that the
measure of success will vary depending on the purpose.

With an explanatory model, if one has demonstrated that a certain set of
assumptions can result in a set of outcomes (e.g. by exhibiting an acceptable fit to
some outcome data), this shows that the modelled process is a possible explanation
for those outcomes. Thus, the model generates an explanation, but only in terms of
the assumptions in the setup of the simulation. If these assumptions are severe ones,
i.e. the model is very far from the target phenomena, the explanation it suggests in
terms of the modelled process will not correspond to a real explanation in terms of
observed processes. The chosen assumptions in an explanatory model are crucial to
its purpose in contrast to the case of a predictive model—this is an example of how
the purpose of a model might greatly influence its construction.

It does sometimes occur that a model made for one purpose can be adapted for
another, but the results are often not of the best quality, and it almost always takes
more effort than one expects. In particular, using someone else’s model is usually
not very easy, especially if you are not able to ask the original programmer questions
about it and/or the code is not very well documented.

1Of course a successfully predictive model raises the further question of why it is successful,
which may motivate the development of further explanatory models, since a complete scientific
understanding requires both prediction and explanation, but not necessarily from the same models
(Cartwright 1983).
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Chapter 4 in this volume (Edmonds 2017) goes into five common modelling
purposes in more detail, with analyses of the particular risks for each kind of
purpose, and the basic steps to mitigate these risks.

5.3 Modelling Assumptions

Whilst the available evidence will directly inform some parts of a model design,
other parts will not be so well informed. In fact, it is common that a large part of a
complex simulation model is not supported by hard evidence. The second source
for design decisions is the conceptions of the modeller, which may have come
from ideas or structures that are available in the literature. However, this is still
not sufficient to get a model working. In order to get a simulation model to run
and produce results, it will be necessary to add in all sorts of other details: these
might include adding in a random process to “stand in” for an unknown decision
or environmental factor, or even be a straight “kludge” because you don’t know
how else to program something. Even when evidence supports a part of the design,
there will necessarily be some interpretation of this evidence. Thus, any model is
dependent upon a whole raft of assumptions of different kinds.

If a simulation depends on many assumptions that are not relatable to the object
or process it models, it is unlikely to be useful. However, just because a model has
some assumptions in it, this does not mean it should be disregarded. Any modelling
is necessarily a simplification of reality, done within some context or other. Hence,
there will be the assumption that the details left out are not crucial to the aspect of
the results deemed important, as well as those assumptions that are inherent in the
specification of the context. This is true for any kind of modelling, not just social
simulation. It is not sufficient to complain that a model has assumptions or does
simplify, since modelling without this is impossible; one has to argue or show why
the assumptions included will distort the results. Equally, the author of a model
should be able to justify the assumptions that have been made.

However, the use that is made of a simulation will be limited by the strength or
weakness of the assumptions taken as a whole. If, for example, the model is going
to be used in a policy process that will impact on many people’s lives, then a high
level of evidential support and validation will be required. If the model is more
exploratory—for example, to suggest unconsidered risks or new hypotheses—then
more assumptions with weaker evidence might well be acceptable. Chapter 29 in
this volume (Edmonds et al. 2017) looks at the dangers when models are used to
inform issues of policy importance.

What one can do is to try to make the assumptions as transparent, as clear and
as explicit as possible. Thus, future researchers will be better able to judge what
the model depends upon and adapt the model if any of the assumptions turns out to
be considered bad. The most obvious technique is to try to document and display
the assumptions. This not only helps to defend the model against criticism but also
helps one to think more clearly about the model.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_29
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Particularly in the early stages of constructing a model, it is common to make a
number of “assumptions” about various processes that are involved. In a sense, these
are not strictly assumptions—they are just necessary simplifications made in order
to get something running—but nevertheless are included here. The model builder
might, for example, include a random term to substitute for an unknown process, or
a particular value might be chosen for a constant without knowing if it is a suitable
value. The modeller must carefully document such decisions and be prepared to
revisit them and adjust them as necessary. This is particularly true if the model
starts to be used for purposes that go beyond what the model was initially intended
for (Chap. 29 in this volume).

The next type of assumption to consider is that which is “forced” by the
constraints of the programming system. This might be the simplification of a process
due to computational power limitations, restrictions forced upon the modeller due to
the data structures and/or algorithms available, or the desire to reuse another (sub-
)model. Again, such decisions must be documented. Whilst the modeller may feel
that these decisions have been forced, their documentation can serve two purposes.
Firstly, other modellers may have insights into the same programming system that
will allow them to suggest alternate approaches. Secondly, modellers who wish to
replicate the model using an alternate system may be able to better demonstrate the
impact of these assumptions.

The third type of assumption to consider is the choice of relevant objects
and processes. As mentioned previously, any modelling exercise is necessarily an
abstraction, and one must leave out much of the detail of the real world. Of course,
it is impractical to document every detail that has been omitted, but the modeller
should consider carefully which objects and processes may be relevant to the model
and document those that have been included and those that have been omitted. This
documentation will then prove invaluable in the consolidation phase (see Sect. 6),
when the modeller should explicitly test these assumptions.

The most difficult type of assumption to track and document is that which derives
from the modeller’s own personal biases or “common sense”. For example, the
modeller may have an innate “understanding” of some social process that is used
in the model without question. The modeller may also have been trained within a
particular school that embraces a traditional set of assumptions. Such traditional
assumptions may be so deeply ingrained that they are treated as fact rather than
assumption, making them difficult to identify from within.

This final class of assumption may be difficult for the modeller to identify
and document, but all others should be carefully documented. The documentation
can then be used in the exploration and consolidation phases (see below), when
the modeller checks these assumptions as much as possible, refining the model
as necessary. The assumptions should also be clearly stated and justified when
reporting the model and results.

http://dx.doi.org/10.1007/978-3-319-66948-9_29
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5.4 Maintaining Control of the Model Whilst Exploring

The second biggest problem in following the exploration and consolidation
approach to model building (after that of giving in to the temptation to promote
your results without consolidation) is that one loses control of the model whilst
exploring, resulting in a tangle of bugs. Exploration is an essential step, testing
the impact of the assumptions that have been made but, if not carefully managed,
can result in code that achieves nothing at all. Bugs can creep in, to an extent that
fixing one merely reveals another, or the model can become so brittle that any
further modifications are impossible to integrate, or the model becomes so flaky
that it keeps breaking in unexpected ways. Although interactions between processes
might be interesting and the point of exploration, too much unknown interaction
can just make the model unusable. Thus, it is important to keep as many aspects as
possible under control as you explore, so you are left with something that you can
consolidate! It is generally helpful to be clear (if this possible) about which aspects
one is certain about and which aspects one is exploring. If these are separable, then
one can apply the techniques in Chap. 6 of this volume to the parts one knows and
constrain the area of uncertainty where the exploration is occurring.

The main technique for maintaining control of a model is doing some planning
ahead and consolidation as you explore. This is a very natural way for a modeller
to work—mixing stages of exploration and consolidation as they feel necessary and
as matches their ambitions for the model. Each programmer will have a different
balance between these styles of work. Some will consolidate immediately after each
bit of development or exploration; some will do a lot of exploration, pushing the
model to its limits and then reconstruct a large part of the model in a careful and
planned way. Some will completely separate the two stages, doing some exploration,
and then completely rebuild their ideas in a formal planned way but now having a
better idea (if they are correct) of what they are aiming to achieve: what needs to
go into the model (and what not), what is happening in the model as it runs and
which results they need to collect from it. It is a general rule that more checking and
consolidation will be required than is generally planned for by modellers.2

There is no absolute rule for how careful and planned one should be in developing
a model, but roughly the more complex and ambitious, the more careful one should
be. Whilst a “quick and dirty” implementation may be sufficient for a simple model,
for others it is unlikely to get the desired results: it is too easy to lose understanding
and control of the interactions between various parts, and also the model loses the
flexibility to be adapted as needed later on. At the other end of the spectrum, one
can spend ages planning and checking a model, building in the maximum flexibility
and modularity, only to find that the model does not give any useful results. This
might be a valuable experience for the programmer but does not produce interesting
knowledge about the target phenomenon. This is the fundamental reason why

2Even when you take this principle into account!

http://dx.doi.org/10.1007/978-3-319-66948-9_6
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exploration is so important: because one does not know which model to build
before it is tried. This is particularly so for models that have emergent effects (like
many of the ones discussed in this volume) and also for those where there is no
benchmark (either formal or observed) against which to check them.

One important thing about the activity of modelling is that one has to be willing to
throw a lot of model versions away. Exploratory modelling is an inherently difficult
activity; most of the models built will either be the wrong structure or just not helpful
with regard to the phenomena we seek to understand. Further, the modelling is
constrained in many ways: in the time available for developing and checking them,
in the amount of computational resources they require, in the evidence available to
validate the model, in the necessary compromises that must be made when making
a model and in the need to understand (at least to some extent) the models we make.
Thus, the mark of a good modeller is that he or she throws away a lot of models
and only publishes the results of a small fraction of those he or she builds. There
is a temptation to laziness, to trying to “fix” a model that is basically not right and
thus save a lot of time, but in reality this often only wastes time. This relates to
the modelling spectacles mentioned above: one becomes wedded to the structure
one is developing, and it takes a mental effort to start afresh. However, if it is to
be effective, a corollary of an exploratory approach is being highly selective about
what one accepts—junking a lot of models is an inevitable consequence of this. If
one is not following a more formal, planning approach, and one is not throwing a
lot of versions away, then you are probably instituting poor modelling decisions into
your code.

Whatever balance you choose between exploration and consolidation, it is
probably useful to always pause before implementing any key algorithm or structure
in your model, thinking a little ahead to what might be the best way. This is an
ingrained habit for experienced programmers but may take more effort for the
beginner. The beginner may not know of different ways of approaching a particular
bit of programming and so may need to do some research. This is why developing
some knowledge of common algorithms and data structures is a good idea. There is
a growing body of work on documenting programming “patterns”—which seek to
describe programming solutions at a slightly general level—which can be helpful,
although none of these pattern catalogues have yet been written specifically with
models of social complexity in mind (but see Grimm et al. 2005 for examples from
ecology). Increasingly too researchers within this field are making their code, or at
least descriptions of the algorithms used, available to wider audiences.

There are dangers of using someone else’s code or algorithm though. There is
the danger of assuming that one understands an algorithm, relying on someone
else’s description of it.3 It is almost inconceivable that there will not be some
unforeseen results of applying even a well-known algorithm in some contexts. When
it comes to reusing code, the risk is even higher. Just as there are assumptions and

3Of course, this danger is also there for one’s own programming: it is more likely, but far from
certain, that you understand some code you have implemented or played with.
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simplifications in one’s own code, so there will be in the code of others, and it
is important to understand their implications. Parameters may need adjustment, or
algorithms tweaking, in order for the code to work in a different context. Thus, one
needs to thoroughly understand at the very least the interface to the code and perhaps
also its details. In some cases, the cost of doing this may well outweigh the benefits
of reuse. One of the advantages of an exploratory process is that it tends to educate
the modeller as to the properties of its algorithms in the process.4

It is important to note that even though the approach presented here deviates
from more formal approaches to software development, this does not mean one
should ignore the standard “good practices” of computer programming. Indeed, due
to the complexity of even the simplest models in this field, it is advisable to do some
planning and design before coding. In particular, the following principles should be
applied:

• Conceptualisation: any model will benefit greatly from developing a clear
understanding of the model structure and processes before starting to program.
This is often called a conceptual model and usually involves some diagramming
technique. Whilst computer scientists will tend to use UML for this purpose, any
graphical notation that you are familiar with will do to sketch the main entities
and their relationships on paper, such as mind maps or flow diagrams. Apart
from helping a modeller to better understand what the model is about, this will
form a valuable part of the overall model documentation. See Alam et al. (2010;
appendix) for an example of using UML class and activity diagrams.

• Modularity: it is not always possible to cleanly separate different functions or
parts of a model, but where it is possible, it is hugely advantageous to separate
these into different modules, classes or functions. In this way, the interactions
with the other parts of your model are limited to what is necessary. It makes it
much easier to test the module in isolation, facilitate diagnostics and make the
code much simpler and easier to read.

• Clear structures/analogies: it is very difficult to understand what code does and
to keep in mind all the relevant details. A clear idea or analogy for each part
of the simulation can help you keep track of the details as well as being a
guide to programming decisions. Such analogies may already be suggested by
the conceptions that the programmer (or others) have of the phenomena under
study, but it is equally important not to assume that these are always right, even
if this was your intention in programming the model.

• Clear benchmarks: if there is a set of reference data, evidence, theory or other
models to which the simulation is supposed to adhere, this can help in the
development of a model, by allowing one to know when the programming has
gone astray or is not working as intended. The clearest benchmark is a set of
observed social phenomena, since each set of observations provides a new set
of data for benchmarking. Similarly, if a part of the model is supposed to extend

4Sometimes painfully!
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another model, then restricting the new model should produce the same outcomes
as the original.5

• Self-documentation: if one is continuously programming a simulation that is not
very complex, then one might be able to recall what each chunk of code does.
However, when developing this type of simulation, it is common to spend large
chunks of time focusing on one area of a model before returning to another.
After such a lapse, one will not necessarily remember the details of the revisited
code, but making the code clear and self-documenting will facilitate it. This sort
of documentation does not necessarily have to be full documentation but could
include using sensible long variable and module names; adding small comments
for particularly tricky parts of the code; keeping each module, class, function
or method fairly simple with an obvious purpose; and having some system for
structuring your code.

• Building in error checking: errors are inevitable in computer code. Even the best
programmer can inadvertently introduce errors to his or her code. Some of these
will be obvious but some might be subtle, difficult to isolate and time-consuming
to eliminate. Detecting such errors as early as possible is thus very helpful and
can save a lot of time. Including safeguards within your code that automatically
detect as many of these errors as possible might seem an unnecessary overhead,
but in the long run can be a huge benefit. Thus, you might add extra code to
check that all objects that should exist at a certain time do in fact exist or
that a message from one object to another is not empty or that a variable that
should only take values within a certain range does stay within this range. This is
especially important in an exploratory development, where one might develop a
section of code for a particular purpose, which then comes to be used for another
purpose. In other words, the computational context of a method or module has
altered.

These matters are covered in Chap. 6 in this volume in greater depth. There
are also many techniques that computer scientists may exhort you to use that are
not necessarily useful that may be more applicable to the development of software
with more clearly defined goals. Thus, do evaluate any such suggested techniques
critically and with a large dose of common sense.

5.5 Understanding the Model

Understanding a model is so intertwined with controlling a model that it is difficult
to cleanly separate the two. You cannot really control a complex model if you do not
at least partially understand it. Conversely, you cannot deeply understand a model

5What the “same outcomes” here means depends on how close one can expect the restricted new
model to adhere to the original, for example, it might be the same but with different pseudorandom
number generators.

http://dx.doi.org/10.1007/978-3-319-66948-9_6
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until you have experimented with it, which necessitates being able to control it to a
considerable extent. However, since modelling complex social phenomena requires
(at least usually and probably always) complex models, complete understanding
and/or control is often unrealistic. Nevertheless, understanding your model as much
as is practical is key to useful modelling. This is particularly true for exploratory
modelling because it is the feedback between trying model variations and building
an understanding of what these variations entail that makes this approach useful.

Understanding one’s model is a struggle. The temptation is to try shallow
approaches by only doing some quick graphs of a few global measures of output,
hoping that this is sufficient to give a good picture of what is happening in a complex
social simulation. Although information about the relationship of the setup of a
simulation and its global outcomes can be useful, this falls short of a full scientific
understanding, which must explain how these are connected. If you have an idea
of what the important features of your simulation model are, you might be able to
design a measure that might be suitable for illustrating the nature of the processes
in your model. However, a single number is a very thin indication of what is
happening—this is OK if you know the measure is a good reflection of what is
crucial in the simulation—but can tend to obscure the complexity if you are trying
to understand what is happening.

To gain a deeper understanding, one has to look at the details of the interactions
between the parts of the simulation as well as the broader picture. There are two
main ways of doing this: case studies using detailed traces/records and complex
visualisations.

A case study involves choosing a particular aspect of the simulation, say a
particular individual, object or interaction, and then following and understanding
it, step by step, using a detailed trace of all the relevant events. Many programming
environments provide tracing tools as an inbuilt feature, but not all social simulation
toolkits have such a feature. In this latter case, the modeller needs to embed the
tracing into the model, with statements that will log the relevant data to a file for
later analysis. This “zooming in” into the detail is often very helpful in developing a
good understanding of what is happening and is well worthwhile, even if you don’t
think you have any bugs in your code. However, in practice, many people seek to
avoid this mundane and slightly time-consuming task.

The second way to gain an understanding is to program a good dynamic
visualisation of what is happening in the model. What exactly is “good” in this
context depends heavily on the nature of the model: it should provide a meaningful
view of the key aspects of the model as the simulation progresses. Many social
simulation toolkits provide a range of visualisation tools to assist this programming,
but the key is identifying the relevant processes and choosing the appropriate
visualisation for them—a task that is not amenable to generic approaches. Thus, you
could have a 2D network display where each node is an individual, where the size,
shape, colour and direction of each node all indicate different aspects of its state,
with connections drawn between nodes to indicate interactions, and so on. A good
visualisation can take a while to design and program, but it can crucially enhance the
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understanding of your simulation and in most cases is usable even when you change
the simulation setup. Chapter 10 in this volume (Evans et al. 2017) discusses a range
of visualisation techniques aimed at aiding the understanding of a simulation model.

5.6 The Consolidation Phase

The consolidation phase should occur after one has got a clear idea about what
simulation one wants to run, a good idea of what one wants to show with it and
a hypothesis about what is happening. It is in this stage that one stops exploring
and puts the model design and results on a more reliable footing. It is likely
that even if one has followed a careful and formal approach to model building,
some consolidation will still be needed, but it is particularly crucial if one has
developed the simulation model using an informal, exploratory approach. The
consolidation phase includes processes of simplification, checking, output collection
and documentation. Although the consolidation phase has been isolated here, it is
not unusual to include some of these processes in earlier stages of development,
intermingling exploration and consolidation. In such circumstances, it is essential
that a final consolidation pass is undertaken, to ensure that the model is truly robust.

Simplification is where one decides which features/aspects of the model you
need for the particular paper/demonstration you have in mind. In the most basic
case, this may just be a decision as to which features to ignore and keep fixed as
the other features are varied. However, this is not very helpful to others because
(a) it makes the code and simulation results harder to understand (the essence of
the demonstration is cluttered with excess detail) and (b) it means your model is
more vulnerable to being shown to be brittle (there may be a hidden reliance on
some of the settings for the key results). A better approach is to actually remove
the features that have been explored but turned out to be unimportant so that only
what is important and necessary is left. This not only results in a simpler model for
presentation but is also a stronger test of whether or not the removed features were
irrelevant.

The checking stage is where one ensures that the code does in fact correspond
to the original intention when programming it and that it contains no hidden bug
or artefact. This involves checking that the model produces “reasonable” outputs
for both “standard” inputs and “extreme” inputs (and of course identifying what
“standard” and “extreme” inputs and “reasonable” outputs are). Commonly, this
involves a series of parameter sweeps, stepping the value of each parameter in
turn to cover as wide a combination as possible (limited usually by resources).
When possible, the outputs of these sweeps should be compared against a standard,
whether that is real-world data on the target phenomenon or data from a comparable
(well-validated) model.

The output collection stage is where data from the various runs is collected
and summarised in such a way that (a) the desired results are highlighted and
(b) sufficient “raw” data is still available to understand how these results have

http://dx.doi.org/10.1007/978-3-319-66948-9_10
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been achieved. It would be impractical to record the details of every variable for
every run of the simulation, but presenting results in summary form alone may
hide essential details. At the very least, it is essential to record the initial parameter
settings (including random seeds, if random numbers are used) so that the summary
results may be regenerated. It may also be informative to record at least a small
number of detailed traces that are illustrative of the simulation process (once one
has determined which parameter configurations produce “interesting” results).

Documentation is the last stage to be mentioned here but is something that should
be developed throughout the exploration and consolidation of a model. Firstly, as
mentioned above, the code should be reasonably self-documenting (through sensible
naming and clear formatting) to facilitate the modeller’s own understanding.
Secondly, the consolidated model should be more formally documented. This should
include any assumptions (with brief justifications), descriptions of the main data
structures and algorithms and, if third-party algorithms or code have been used,
a note to their source. This may seem like unnecessary effort, particularly if the
modeller has no intention of publicly releasing the code, but if questions arise some
months or years down the track, such documentation can be invaluable, even for
the original author’s understanding. Chapter 15 in this volume (Grimm et al. 2017)
looks at documentation and how one might approach this.

Finally, the modeller must present the model and its results to a wider audience.
This is essential to the process of producing a model, since one can only have
some confidence that it has been implemented correctly when it has been replicated,
examined and/or compared to other simulations by the community of modellers. The
distribution of the model should include a description of the model with sufficient
detail that a reader could re-implement it if desired. It should present the typical
dynamics of the system, with example output and summaries of detailed output. The
relevant parameters should be highlighted, contrasting those deemed essential to the
results with those with little or no impact. The benchmark measurements should be
summarised and presented. To maximise a simulation’s use in the community, the
simulation should be appropriately licensed to allow others to analyse, replicate and
experiment with it (Polhill and Edmonds 2007).

5.7 Tools to Aid Model Development

As indicated previously, there is now a variety of systems for aiding the development
of complex simulations. These range from programming language-based tracing
and debugging tools to frameworks designed explicitly for social simulation, which
include libraries of widely used patterns. Learning to use a particular system or
framework is a substantial investment, and because of this, most people do not
swap from system to system readily once they have mastered one (even when an
alternate system may provide a far more elegant solution to a problem). Ideally, a
modeller would evaluate a range of systems when embarking on a new project and
decide upon the most appropriate one for that project. In practice, most modellers

http://dx.doi.org/10.1007/978-3-319-66948-9_15
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simply continue to use the same system as they have used on previous projects,
without considering alternatives. There is no simple answer as to which system
is the “best”. The available options are constantly changing as new systems are
developed and old ones stop being supported. The type of modelling problem will
influence the decision. And indeed it is partly a personal decision, depending on
the modeller’s own personal style and preferences. However, given that such an
investment is involved in learning a new system, it is a good idea to make this
investment in one that will have large payoffs and that will be useful for developing
a wide range of models.

Systems for developing and testing simulations range from the very specific to
those that claim to be fairly generally applicable. At the specific end, there are
simulators that are designed with a restricted target in mind—such as a grid-based
simulation of land use change (e.g. FEARLUS,6 Polhill et al. 2001, or SLUDGE,
Parker and Meretsky 2004)—where most of the structures, algorithms and outputs
are already built in. The user has some latitude to adapt the simulation for their
own modelling ends, but the ease with which one can make small changes and
quickly get some results may be at the cost of being stuck with inbuilt modelling
assumptions, which may not be appropriate for the task at hand. The specificity of
the model means that it is not easy to adapt the system beyond a certain point; it
is not a universal system, capable, in principle, of being adapted to any modelling
goal. Thus, such a specific modelling framework allows ease of use at the cost of a
lack of flexibility.

At the other end of the spectrum are systems that aim to be general systems
to support simulation work that can, at least in principle, allow you to build any
simulation that can be conceived. Such systems will usually be close to a computer
programming language and usually include a host of libraries and facilities for
the modeller to use. The difficulty with this type of system is that it can take
considerable effort to learn to use it. The range of features, tools and libraries that
they provide take time to learn and understand, as does learning the best ways to
combine these features. Furthermore, even if a system in principle makes it possible
to implement a modelling goal, different systems have different strengths and
weaknesses, making any particular system better for some types of models and less
good for others. Thus, modellers will sometimes “fight the system”, implementing
workarounds so that their model can be implemented within the system in which
they have invested so much time, when in fact the model could more efficiently be
implemented in an alternative system.

Between these two extremes lie a host of intermediate systems. Because they are
often open source, and indeed more specific modelling frameworks are commonly
built within one of these generic systems, it is usually possible (given enough time
and skill) to “dig down” to the underlying system and change most aspects of these
systems. However, the fundamental trade-offs remain—the more of a simulation
that is “given”, the more difficult it will be to adapt and the more likely it is that
assumptions that are not fully understood will affect results.

6http://www.macaulay.ac.uk/fearlus/
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Thus, it is impossible to simply dictate which system is best to use for developing
simulation models of social complexity; indeed, there is no single system that is
best under all circumstances. However, the sorts of questions one should consider
are clearer. They include:

• Clear structure: Is the way the system is structured clear and consistent? Are
there clear analogies that help “navigate” your way through various choices you
need to make? Is it clear how its structures can be combined to achieve more
complex goals?

• Documentation: Is there a good description of the system? Is there a tutorial
to lead you through learning its features? Are there good reference documents
where you can look up individual features? Are there lots of well-documented
examples you can learn from?

• Adaptability: Can the system be adapted to your needs without undue difficulty?
Is the way it is structured helpful to what you want to do? Are the structures
easily adaptable once implemented in your model? Does the system facilitate the
modularisation of your model so that you can change one aspect without having
to change it all?

• Speed: How long does it take to run a model? Speed of execution is particularly
important when a variety of scenarios or parameters need to be explored or when
several runs are necessary per parameter configuration due to random processes
in the model.

• User community: Do many people in your field use the system? Are there active
mailing lists or discussion boards where you can ask for help? If you publish a
model in that system, is it likely that it will be accessible to others?

• Debugging facilities: Does the system provide inbuilt facilities for debugging
and tracing your simulation? If not, are there perhaps generic tools that could be
used for the purpose? Or would you have to debug/trace your model by manually
inserting statements into your code?

• Visualisation facilities: Does the system provide tools and libraries to visualise
and organise your results? Are there dynamic visualisation tools (allowing one to
view the dynamics of the system as it evolves)? How quickly can you develop a
module to visualise the key outputs of a simulation?

• Batch processing facilities: Is there a means of running the model a number of
times, collecting and perhaps collating the results? Is it possible to automatically
explore a range of parameters whilst doing this?

• Data collection facilities: Are the results collected and stored systematically so
that previous runs can easily be retrieved? Is it possible to store them in formats
suitable for input into other packages (e.g. for statistical analysis or network
analysis)?

• Portability: Is the system restricted to a particular platform or does it require
special software to run? Even if all your development will be done on one
particular machine, in the interests of reusability, it is desirable to use a system
that will run on multiple platforms and that is not dependent on specialised
commercial software.
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• Programming paradigm: Different programming paradigms are more appropriate
to different types of modelling problems. If, for example, you think of things in
terms of “if-then” statements, a rule-based system might be the most appropriate
for your modelling. If instead you visualise things as series of (perhaps branch-
ing) steps, a procedural one might be more appropriate. In practice, most systems
these days are not purely one paradigm or another, but they still have leanings one
way or another, and this will influence the way you think about your modelling.

• Timing: How will time be handled in the simulation? Will it be continuous or
stepped or perhaps event-driven? Will all agents act “at once” (in practice, unless
each agent is run on a separate processor they will be executed in some sense
sequentially, even if conceptually within the model they are concurrent), or do
they strictly take turns? Will it be necessary to run the simulation in real time or
(many times) faster than real time?

Once one has considered these questions, and decided on the answers for
the particular model in mind, the list of potential systems will be considerably
shortened, and one should then be able to make an informed choice over the
available options. The temptation, particularly when one is beginning to write
models, is to go for the option that will produce the quickest results, but it is
important to remember that sometimes a small initial investment can yield long-
term benefits.

5.8 Conclusion

It is easy to try and rationalise bad practice. Thus, it is tempting to try and prove
that some of the more formal techniques of computer science are not applicable to
building social simulations just because one cannot be bothered to learn and master
them. It is true however that not all the techniques suggested by computer scientists
are useful in an exploratory context, where one does not know in advance precisely
what one wants a simulation to do. In these circumstances, one has to take a looser
and less reliable approach but follow it with consolidation once one has a more
precise idea of what one wants of the simulation. The basic technique is to mix bits
of a more careful approach in with the experimentation in order to keep sufficient
control. This has to be weighed against the time that this may take, given one does
not know which final direction the simulation will take. There is a danger of this
approach: that the modeller will be tempted by apparently significant results to
rush to publication before sufficient consolidation has occurred. There may be times
when the exploratory phase may result in useful and influential personal knowledge,
but such knowledge is not reliable enough to be up to the more exacting standards
expected of publicly presented results. This is particularly true if the model is to
be applied in a critical way that has real impacts upon people or the environment.
Thus, it is only with careful consolidation of models that this informal approach to
building simulations should be undertaken.
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Further Reading

Outside the social sciences, simulation has been an established methodology for
decades. Thus, there is a host of literature about model building in general. The
biggest simulation conference, the annual “Winter Simulation Conference”, always
includes introductory tutorials, some of which may be of interest to social scientists.
Good examples are Law (2008) and Shannon (1998).

For a comprehensive review of the currently existing general agent-based
simulation toolkits, see Nikolai and Madey (2009); other reviews focus on a smaller
selection of toolkits (e.g. Railsback et al. 2006; Tobias and Hofmann 2004; Gilbert
and Bankes 2002).

The chapters in this volume on checking your simulation model (Chap. 7, Galán
et al. 2017), documenting your model (Chap. 15, Grimm et al. 2017) and model
validation (Chap. 9, David et al. 2017) should be of particular interest for anyone
intending to follow the exploration and consolidation approach to model develop-
ment. However, if you would rather attempt a more formal approach to building
an agent-based simulation model, Chap. 6 (Siebers and Klügl 2017) discusses one
such approach in detail. You could also consult textbooks on methodologies for the
design of multi-agent systems, such as Luck et al. (2004) and Bergenti et al. (2004)
or Henderson-Sellers and Giorgini (2005). After all, any agent-based simulation
model can be seen as a special version of a multi-agent system.
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Chapter 6
What Software Engineering Has to Offer
to Agent-Based Social Simulation

Peer-Olaf Siebers and Franziska Klügl

Abstract In simulation projects, it is generally beneficial to have a toolset that
allows following a more formal approach to system analysis, model design and
model implementation. Such formal methods are developed to support a systematic
approach by making different steps explicit as well as providing a precise language
to express the results of those steps, documenting not just the final model but also
intermediate steps. This chapter consists of two parts: the first gives an overview
of which tools developed in software engineering can be and have been adapted
to agent-based social simulation; the second part demonstrates with the help of
an informative example how some of these tools can be combined into an overall
structured approach to model development.

Why Read This Chapter?
To get to know the tools and techniques that software engineering has on offer when
it comes to taking a more structured approach to model building. This is particularly
useful for larger, collaborative and multidisciplinary projects. Resulting models are
easy to maintain and extend and are easy to communicate (and consequently to
reproduce), even if the models themselves are highly complex.

6.1 Introduction

In most, if not all simulation projects, it is beneficial to proceed in a systematic
way, even more for larger, collaborative and multidisciplinary projects. Agent-based
social simulation (ABSS) partially suffers from the fact that despite its increasing
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popularity, there is no standard way of addressing model development, simulation
handling, etc. Many modellers are basically self-taught when it comes to processes
and tools involved in designing and implementing an ABSS model. Developing
an ABSS model is anything but a trivial endeavour given the conceptual depth,
often unclear level of detail and complexities involved when handing software
that contains more than one thread of control. Computer science — in particular
software engineering — has developed a set of tools that enables following the so-
called “formal” approach to system analysis, model design and implementation.
Such elements of a systematic approach make different steps explicit as well as
provide clear and precise languages to capture the concepts, content or assumptions
of the model, documenting not just the final result but also intermediate steps. Such
an approach is naturally used for model development if elements and processes
of the targeted system are more or less accessible and empirically well embedded
or assumptions to be taken are clear. In the terminology of Boero and Squazzoni
(2005), this refers to a type of model more towards the case-based model side of the
spectrum of models.

Models on the other end — theoretical abstractions — are more associated with
scientific endeavour of hypothesis building and testing. They consequently need a
much more exploratory process. Nevertheless, scientific rigor requires a systematic
procedure to ensure reproducible results, as also Norling et al. (2017) argue. Formal
languages allow to clearly formulate what shall be contained in a model, which not
only supports awareness in the overall development process but also facilitates more
unambiguous communication between all involved partners, especially between
the ones that implement the model and the rest of the group. Thus, exploratory
modelling profits as formal approaches support the thoughtfulness of the modelling
process. It helps to avoid model artefacts and supports sharing, reproducing and
reusing the model. Eventually, the model is transformed into software, and applying
software engineering supports the development of well-structured, understandable
software that is easy to maintain and easy to extend.

This chapter advertises formal tools for model conceptualisation, software
development and project management as offered by software engineering. In the
context of social simulation, these tools can either be used individually either to
help with specific modelling activities or to guide the entire modelling process.
The chapter consists of two parts: In the first part, we provide an overview
of tools and techniques used in software engineering which have been used or
suggested in a social simulation context. In the second part of this book chapter,
we demonstrate with the help of an informative example how some of these tools
can be combined into a structured framework that allows a more formal approach to
model development. The informative example is based on a real-world study where
we aimed to develop a simulation model with a multidisciplinary team to study
different facets of normative comparison.
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6.2 Review of Formal Approaches to Model Development

Already in 2006, Richardini et al. identified a number of methodological problems
supposed to hinder the wider adoption of agent-based modelling and simulation in
the social sciences. In contrast to alternative forms of modelling and simulation,
ABSS is assumed not to be suitable to follow shared, standardised conventions
of how to proceed, how to describe or how to analyse a simulation model due to
its exploratory, bottom-up nature aiming at reproducing emergent processes, etc.
Building software in general had similar problems for a long time as the early (and
ongoing) discussions on the nature of software development (art, engineering or
craftsmanship) show (see, e.g. Pyritz (2003)).

There are no underlying principles of physics or other established basic knowl-
edge that could be used for building software in the same way as, for example,
rules of statics for building bridges. Nevertheless, there was the need to systematise
software development by developing guidelines, conventions and best practices
that make the development process more engineering-like, producing software with
intended quality in a predictable way. A number of process models have been
invented with the waterfall model as the most well-known traditional approach or
extreme programming as a more modern, flexible compilation of best practices.
Characteristics of the former are a number of steps that express more and more
detailed views onto the resulting software product while moving from a clarification
of what needs to be eventually implemented, tested and maintained. In modern
forms of software development approaches, fast prototyping and frequent testing
are in the centre. Iterative development with code refactoring that improves software
design replaces clearly structured, systematic larger process steps by more or less
organised smaller advance.

Although ABSS has particularities that preclude to take simulation models
as just another kind of software, software engineering offers a large repertoire
of languages and tools to support systematic and structured system analysis and
development: formal and structured text-based and diagram-based languages allow
more precise formulations of model elements than natural language would do. By
clarifying what needs to be formulated, those languages guide not only model
specification and documentation but all phases in the development. Specific process
suggestions organise different views and model description elements into a sequence
of steps that correspond to some best practice of how to proceed when designing,
implementing and working with a simulation model. Those methodologies exist
not only for simulation models in general but also for agent-based simulations in
particular. At some stage in those processes, best practices on a more technical level
support the translation of concepts into program code — such support is given by
(software) pattern formalising good solution to recurring problems.

In this section, we will present different contributions of software engineering
to support the development of ABSS models. We identified four areas of such
formal instruments in the widest sense and organised the section according to
these four elements: Methodologies as the first pillar suggest how to manage the
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overall development process in a structured and aware way, from formulating the
objective behind the ABSS study to validating and deploying the simulation results.
We hereby concentrate more on the elements of the overall process that relate to
the phases from model conceptualisation to software development as we think of
software engineering tools most relevant for those. The second pillar are structured
and formal languages for expressing the concepts that are seen as relevant in the
system under consideration. These languages can be used in the different steps
for describing different views or elements of the model in an as unambiguous
as possible way. In phases towards implementation of the model, pillars 3 and 4
become essential. Architectures and pattern form a way to capture best practices in
model design and implementation, while tools support the implementation process
directly.

6.2.1 First Pillar: Development Processes and Software
Engineering Methodologies

Social scientists seem to associate software engineering-based approaches with
“formal systems” that enforce to apply a prescribed sequence of steps using formal
languages far too rigorous to be appropriate for the mostly exploratory nature
of simulation model building. Software engineering is an engineering discipline
that is concerned with all aspects of software production.1 In general, it defines a
systematic process with steps that guide the developer from requirement elicitation
to implementation, validation and sometimes even maintenance of the software.

Nowadays there are a variety of more or less formal approaches in software
engineering together with some understanding which of the methods is suitable
for which kind of problem. As coined in Sommerville (2016), for example,
games are usually developed by producing a sequence of prototypes while safety-
critical software development appears to be highly formal with elaborated and
analysed specifications. In the same way as there are very different applications
of agent-based simulation, one may expect also very different ways of building
agent-based simulation software. A formal process here shall ensure that the
results possess particular qualities: The resulting software shall be reliable and
trustworthy, produced in an economic way. While the latter may mean that the
software is based on reusable components in a well-structured way, the former
qualities for simulation software refer to reproducibility of results and validity of
the implemented simulation model.

1Sommerville (2016) relates software engineering also to computer science. The latter is focusing
more on theory and fundamentals, while software engineering is more practically oriented towards
developing and delivering useful software. He also sees software engineering as a part of systems
engineering which aims at systems integrating hardware, software and process engineering.
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In general, the produced software is usually not used by the programmer.
Sommerville (2016) states that the highest costs in a software project are associated
with changing the software after it has gone into use. This can also be stated
for simulation in general — not just when decisions have been taken supported
by results of a simulation study or publications have been published presenting
hypotheses and making statements based on the results of a simulation study.
Discovering too late that the model contains artefacts or does actually not answer
the question it should do can be embarrassing in the best case, deadly in the worst.

6.2.1.1 Generic Processes

Simulation engineering in general has set up a number of generic processes much
on the abstraction level of general software engineering activities. Some process
models are independent from the actual model paradigm. Basically every simulation
textbook proposes a procedure that basically organises activities such as done in
Law (2007), Shannon (1998) and Robinson (2004) or the stages of simulation-based
research in Gilbert and Troitzsch (2005). Figure 6.1 shows a generic version of
this process. This model development cycle starts with an explicit statement of the
objective that is behind the simulation study undertaken, i. e. a formulation of the
problem actually addressed. In a second step, the system is analysed; that means its
basic components and their relations are determined. Reliable information and data
sources are to be found for informing the different steps in the model development
process. Based on this analysis, a conceptual model is specified elaborating the
structure of the model, as well as the dynamics of all the interacting elements.

The conceptual model is hereby particularly important, as it helps not just to
understand the system under consideration but also to guide the subsequent phases
by documenting the hypotheses taken. In the second part of this chapter, we will
demonstrate an example approach in developing such a conceptual model. It is
quite common — not just in our example — to elaborate the conceptual model
from highly abstract descriptions of model elements and different points of view
onto the model to a more and more concrete specification that can directly inform
implementation.

Fig. 6.1 Generic steps in a simulation study
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Depending on the tools used for implementation, the production of an executable
and thus “simulate-able” representation of the model is achieved as output of
the next phase. This phase also usually happens in an iterative way, either by
adding more and more details to the model implementation or by fast prototyping
and adapting. In the last phase, the model is deployed and experimented with
to generate the intended results, which are then documented and used. Each
of the model representations produced in the different phases must sufficiently
correspond to the original system (validation); this is ensured by testing the models
individually and by verifying that one representation is sufficiently related to the
other. Figure 6.2 (presented in Sect. 6.3.1) is elaborating this process towards ABSS
model development. The focus of this chapter is on these earlier steps of a full study,
only indicating how implementation can be achieved and largely omitting running
experiments and analysing produced data.

One can also find similar suggestions for structured procedure when developing
a simulation study in ABSS. An example is Drogoul et al. (2003). They give
more specific detail about types of knowledge and roles of different human experts
involved. Activities are more detailed with respect to domain model (real agents),
design model (conceptual agents) and operational model (computational agents).

Using the similarity of tools and languages applied to model the conceptual views
on software systems consisting of multiple agents and system analysis and model
development in ABSS, there are a number of suggestions to extend methodologies
developed for agent-oriented software engineering (AOSE). One can see AOSE
as an extension of object-oriented software engineering addressing the specific
problems that arise when developing multi-agent systems; for an overview of
different methodologies, see Bergenti et al. (2004) and Gomez-Sanz and Fuentes-
Fernandez (2015). Winikoff and Padgham (2013) give a good introduction into the
general principles of AOSE. One of the earliest AOSE methodologies that have been
used to develop agent-based simulations was INGENIAS (Gomez-Sanz et al. 2010).

6.2.1.2 Specific Processes for ABSS

Also detailed, formal methodologies that are specific for developing ABSS models
have been proposed. Two examples proposing approaches similarly structured to
AOSE methodologies are easyABM (Garro and Russo 2010) and MAIA (Ghorbani
et al. 2013).

easyABM assumes different phases from system analysis, conceptual system
development, simulation design and code generation to simulation setup, execution
and results analysis. Particularly elaborated is the conceptual system modelling
phase consisting of the development of different partial models that capture
relevant views onto the model. An overall metamodel is provided for the different
aspects that provides clear high-level language concepts and their relations. The
structural system model contains sub-models for each component, determining its
abstraction level. The main components are society (composed), agents (active) and
artefacts (passive, resource manager). An interaction model describes how intra-
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and interrelationships end in interactions. Hereby, a society model describes a
society based on its composition, type and rules (safety rules and liveness rules).
The central aspect of the agent model is a complex goal model. It also contains
a behaviour model composed of activities for achieving these goals, as well as
interactions with other agents and artefacts. The latter are specified using behaviour
and interactions. UML class and activity diagrams form the main means to express
those partial models. Developing the conceptual model further, simulation design is
given in a language that resembles elements of the Repast Simphony metamodel
and thus enables at least partial code generation. The case study used in Garro
and Russo (2010) to exemplify the use of easyABM is a logistics scenario using
simulation to test different management policies for vehicles stacking and moving
containers. easyABM is already characterised as a model-driven approach and
further developed towards MDA4ABMS (see below).

MAIA also focuses on conceptual modelling activities, yet social and society
aspects play a specifically central role capturing social phenomena. It guides
modelling institutions and social constructs based on a metamodel derived from the
Institutional Analysis and Development framework of Ostrom (2005) already used
in several agent-based simulation studies. The basic assumption is that social rules
and institutions are more easily accessible to modellers than capturing individual
behaviour. The MAIA metamodel is organised in five sub-models resembling
different aspects of the underlying framework (Ghorbani et al. 2013): (1) collective
structure with actors and their attributes; (2) constitutional structure with roles,
their dependencies and actions, institutional statements such as norms, shared
strategies, etc.; (3) physical structure; (4) operational structure focussing on system
dynamics; and (5) evaluation structure containing concepts to evaluate and validate
the outcomes of the system. In Ghorbani et al. (2014), these structures were
extended by formally grounded operational semantics. This makes the specification
given using the MAIA metamodel executable so that a runnable simulation can be
directly generated from it.

A purer methodology focussing on interactions is IODA (Kubera et al. 2011).
The starting point of this methodology is the identification of interactions that
simulated reactive agents exhibit with other agents as well as their simulated
environment.

6.2.1.3 Model-Driven Development

The basic idea of model-driven development is that software development may
consist of handling models of the intended software starting from a generic level
(Stahl et al. 2006). Specifications then can be (semi) automatically transformed into
more and more platform-specific representations, eventually generating code. Basi-
cally one can see this approach as the currently most formally grounded, controlled
evolution of software. Adapting this idea to ABSS means that based on a precise
formulation of the conceptual model subsequent, more and more concrete models
are elaborated until finally a version that is fully adapted to a particular simulation



88 P.-O. Siebers and F. Klügl

platform is achieved. The above-described specific methodologies for developing
ABSS models, MAIA and easyABM, can be seen as first steps towards model-
driven development methodologies. Garro et al. (2013) introduce MDA4ABMS
as a complete model-driven approach proposing clearly defined metamodels for
each of the major phases of development. There are ABSS-specific metamodels
on different levels of abstraction starting from a computation-independent model
(CIM) on a conceptual level, platform-independentmodels (PIM) with more specific
architectural and behavioural details to a platform-specific model (PSM) towards
realisation for a specific software platform. MDA4ABMS gives also guidelines and
rules for the transition between the different phases of development — making
even partially automatic transformation possible. The process is exemplified with
an extended prisoner dilemma model.

Such methodologies clearly define what elements a system analysis needs
to contain — underlying metamodels create a particular awareness behind the
conceptualisation. The assumption is that — if the original system is analysed
sufficiently thoroughly and the results of this analysis written down in a sufficiently
clear way — the simulation model can be communicated and implemented without
uncertainties. The critical activity is developing a conceptual model. The formal
elements of the methodologies shall sharpen the way the modeller looks onto the
system and guide overall model formulation in a reliable way even for models in
which the individual agents exhibit complex behaviour. Model-driven development
works best in combination with domain-specific languages (DSLs) that provide
abstractions specific for a given application domain. Beyond taking an ABSS-
specific language as a DSL, there are not many other specific languages yet. The
metamodels mentioned above actually provide DSLs for ABSS with a particular
perspective in mind. MAIA focuses more on institutions, easyABM more on the
complex goal-directed behaviour of individual agents. Franchi (2012) proposed a
specific language for agent-based social network modelling. Scherer et al. (2015)
describe a model-driven approach for conceptual modelling phases specific for the
public policy domain. Their toolset supports a semiautomated transformation of
conceptual model representations to formal policy models and then to executable
simulations of different scenarios. Their conceptual model is systematically derived
from narrative texts. The conceptual model representation at the centre of their
approach is specific for public policy development process. This adaptation to the
policy domain makes the overall process particularly suitable for involving different
stakeholder groups.

6.2.1.4 Agile Approaches

Such structured methodologies seem to resemble more classical waterfall type of
software engineering approaches. Knublauch (2002) reports experiences with using
extreme programming as a more modern, agile approach to develop agent-based
software. Extreme programming (Beck 2004) is more like a collection of best
practices and principles such as “on-site customer” resulting in daily contacts with
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stakeholders to avoid the system developing into something which is actually not
intended. Another principle is “simple design”; that means producing software that
solves the particular problem and nothing else. With “refactoring”, it is ensured that
the quality of software design is improved after each iteration in the development
cycle. “Short releases” as a principle mean many executable prototypes and software
testing is in the centre of the methodology. These principles are as important as
the rather more prominent “pair programming” way of implementation, in which
two software developers sit in front of the monitor programming together —
one coding, the other supporting. Extreme programming as overall approach may
fit also to developing model specifications and simulation system formalisations
using structured methodologies mentioned above. Short releases and testing would
then correspond to running and analysing prototypic simulation runs in an overall
iterative approach.

Moyo et al. (2015) organise the development of an agent-based simulation
study using SCRUM, an agile approach to manage software development. This
article forms a good introduction to agile software development methodologies
for simulation in general and gives a case study modelling alcohol consumption
dynamics.

6.2.1.5 Formal Methodologies Versus Modelling Principles

None of these more formal methodologies for developing agent-based simulations
actually contradicts the principles or informal strategies that are proposed in
the social simulation community for model development. Examples for those
principles are the KISS principle stating that a model should be as simple as
possible. A contrasting principle is the KIDS strategy (Edmonds and Moss 2004)
arguing that a model should be preferred that is understandable and descriptive.
Simplification should not be exaggerated, especially before fully understanding the
system to be modelled. Another strategy is the so-called pattern-oriented modelling
(Grimm et al. 2005) that focuses on reproducing all pattern or stylised facts
observable in the underlying data. General guidelines from a simulation engineering
point of view can be found in Kasaie and Kelton (2015) but also in Richiardi et
al. (2006). All these informal strategies can be combined with the more formal
methodologies mentioned here. Underlying metamodels are usually very generic
and can be used to capture many different societies, agents, etc.

6.2.2 Second Pillar: Structured and Formal Languages

In contrast to natural language, structured and formal languages offer a mean
to clearly describe a system. Formal languages form important elements of the
methodologies discussed in the last section but have also a value on their own.
Syntax and semantics of language elements and their relations are precisely given.
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They may be so precise that a model fully described in a formal language may even
be automatically processed — execution or analysis may be done without running
the description. Often formal languages are distinct from programming languages
due to their higher abstraction level enabling more meaningful constructs based
on a clearly defined metamodel. Due to this high-level property, descriptions in
the formal language can be more compact and focussed on the relevant aspects.
Consequently, they are apt for specification and documentation. The clearly defined,
underlying metamodel may at first sight be more restrictive than natural language,
but the advantage of this restriction is that it may result in a more precise and clearer
description.

Some of the languages described below are embedded into frameworks in order
to be executable. That means it may be possible to directly run a simulation specified
in that language without first translating it into a programming language. If this
is not fully possible, there might be a chance to create a code skeleton from the
description that can then be complemented for a full implementation. Even without
any implementation, specification in some formal languages can be processed
directly for deriving properties or for comparing the specified model with likewise
formalised high-level system descriptions.

There is a plethora of formal languages that can be used for capturing ABSS
models or their elements. Different languages have different foci and are useful for
different objectives, or as Edmonds (2004) puts it, “Formal Systems (such as logics)
are not the content of theory but merely a tool for expressing and applying theory
in a symbolic way” (p. 1, italics in the original). So they form an instrument for
expressing a model or elements of a model. The first group of languages that may
come into one’s mind when thinking about formal languages are logic based. Many
different logical languages exist; each of them focuses on particular elements or
uses a different starting point (Fasli 2004).

6.2.2.1 Logic-Based Languages

Languages for logic-based modelling correspond to mathematics as a language for
analytical modelling. The language comes with certain constraints limiting the range
of particular details that can be formulated. If those details are not relevant when
modelling a system, using such a formal language is preferable as it makes tools
available for fast or even automated analysis, for fast simulation, etc. An example
for a useful tool for ABSS based on logics is the LEADSTO language (Bosse et al.
2005). Its statements as extension of predicate logics can be used for expressing time
dependencies between statements. T. Bosse suggests using this logic to describe the
overall dynamics of a simulation model so that the output data can be automatically
tested for whether the statements hold in the actual simulation runs. In AOSE,
logic-based languages play in particular a role in the area of verifiable specification
languages (for a review see Mascardi et al. 2004).
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6.2.2.2 Algebraic Specification Languages

Besides formal logics, there are many languages that can be used for describing
agent-based software as well as ABSS models. d’Inverno and Luck (2001), for
example, used the algebraic specification language Z for formally describing
different multi-agent systems and their features for clarifying and understanding
the core concepts. There are a lot of approaches for formalising particular aspects,
such as architectures, organisations, etc. Examples that are relevant as they not
just cover agents in isolation are Weyns and Holvoet (2004) and Helleboogh et al.
(2007). The language used there are more or less formal algebraic but less structured
than, for example, Z. However, the contents are particularly interesting as they show
how interactions between agents and between agents and their environment can be
captured in a precise and unambiguous way. They also demonstrate on what level
of detail a fully clear specification would need to be given.

6.2.2.3 Petri Nets

Another example of a formal language that has been used for specifying multi-agent
systems on different levels of aggregation are Petri nets. Köhler et al. (2007) show
how social theories can be formalised using this graphical language of “places”
and “transitions” with “tokens” traveling through the network. A place may hold
tokens, while a transition transports tokens from one place to another on a strictly
local basis. In computer science, Petri nets form an established modelling tool for
concurrent, interacting processes and their synchronisation. They are amendable for
theoretical analysis, but their overall state changes — when becoming too complex
for analysis — can also be simulated as places and transitions have a clearly given
semantics. For expressing agent interaction and behaviour, complex token structures
are needed to actually represent a network on their own.

6.2.2.4 Object-Oriented Simulation and DEVS

In the object-oriented simulation community, formal specification languages have
been invented and found wide dissemination. The most prominent example is DEVS
(Discrete EVent system Specification) initially introduced by Zeigler (1990), a
specification language for object-oriented simulation models that is based on notions
from general systems science. Initially restricted to discrete event modelling and
simulation, meanwhile it is seen as a more general approach that can also be used for
continuous systems. An atomic model consists of a description of the input, state and
output variables, a specification of which value combinations of input variables are
fed into the running simulation (“input segment”), transition functions for updating
state and output variables, as well as a time advance function that characterises how
time is updated. Atomic models can be aggregated to composed models. Due to its
generality, DEVS was advertised for use in ABSS by Duboz et al. (2006). Hocaoglu
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et al. (2002) focus on giving more structure to the state of an atomic model in order
to allow for more complex agent behaviour. Specifications formulated in DEVS can
be executed using specialised environments such as JAMES (Himmelspach et al.
2010).

6.2.2.5 Object-Oriented Software Specification and UML

In AOSE the most prominent language for specifying particular views onto the
overall system is UML. UML was developed for supporting software engineering
processes (from requirement analysis to implementation and documentation) by
providing a language consisting of different specialised diagrams that address
different aspects of an object-oriented software system (Fowler 2003). It is actually a
semiformal diagram language. That means it allows some extent of vagueness when
describing a system. There is an additional formal language — OCL, the object
constraint language — that can be used to add information that cannot be expressed
in the diagrams directly.

The first edition of UML — used for developing object-oriented software —
was defined in the mid-1990s as an integration of different diagram notations from
different object-oriented modelling methods. Especially in AOSE, there have been
a number of suggestions for extensions, e.g. class diagrams containing information
about the particular social organisation, behaviour diagrams containing structures
for particular agent architectures, etc. Those extensions were mostly done for
specific AOSE methodologies. The best-known extension for software agents was
Agent UML (Odell et al. 2000), which mostly pertained to sequence diagrams for
enabling the formulation of more flexible and diverse interactions and reactions to
messages than simple method calls. Some of these extensions became part of the
UML 2 standard, in a graphically different way than originally proposed by Agent
UML. Since alternatives and conditional reactions can now be formulated in UML
2, Agent UML has been declared obsolete (Bauer and Odell 2005).

As ABSS in general are often designed and implemented using object-oriented
languages and tools, Bommel and Müller (2007) motivate the use of UML diagrams
as a suitable tool for communication between different experts involved in a
simulation project. A good introduction to UML for ABSS can be found in (Bersini
2012) or (Siebers and Onggo 2014).

UML proposes various types of diagrams to capture different aspects of an
overall object-oriented software system. The following diagram types are used
mainly in an agent-based simulation context. In the second part of this chapter, we
will illustrate their use in more detail.

• Use case diagrams show different scenarios of how the user may interact with
the system. They could also be applied — on a coarse level — for interactions
between an agent and its environment.

• Class diagrams show the static structure of the software system by connecting
specialised classes to more general ones or showing which classes are composed
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of others or how classes are otherwise linked to each other. This type of diagram
is not just suitable for depicting an agent’s internal setup but also its embedding
into an organisation structure.

• State and activity diagrams can be used to capture dynamics. They show the
states that an (typical) entity can be in, as well as the transitions between them.
Activity diagrams focus on behaviour as a flow of activities also in relation to
other agents’ activities.

• Sequence diagrams show how entities interact as a sequence of messages that
they exchange.

In addition, other diagram types are proposed to capture details of the package
structure, deployment, etc. In the second part of this chapter, we give more details
on how to use UML diagrams for model development and embed their use into some
form of best-practice process guiding the development of a conceptual model.

6.2.3 Third Pillar: Architectures and Patterns

Methodologies and the use of a formal and precise language to describe different
aspects of the conceptual model as well as to capture model specification, etc.
are particularly important for people just starting with modelling and simulation
as they provide guidelines for managing the development process and support for
conceiving a model. A third pillar of software engineering for ABSS is related
to best practices in designing models that means they provide advice on how to
structure and build the actual software.

In the seminal book on software patterns (Gamma et al. 1994), best practices
in (object-oriented) software design have been formalised and captured in such a
way that they can easily be communicated and even taught. Over the years software
design pattern has been suggested for many problem types, each of them giving
a particular abstract “good” solution. Patterns have been also suggested in AOSE
(see Juziuk et al. 2014 for a general survey). As North and Macal (2011) state,
the standard software patterns are only of limited use for ABSS as the problems
addressed by them are of a completely different nature to the ones needing to
be solved when developing simulations. For simulation, one may distinguish two
different views on design pattern: (1) design pattern that directly relates to particular
phenomena to be modelled or (2) design pattern that solves problems on a more
technical level. Klügl and Karlsson (2009) give two examples for the first type
of pattern, e.g. they describe what agent behaviour can produce exponential agent
number growth. North and Macal (2011) give a list of pattern for the second case,
e.g. pattern for agent scheduling, how to design spatial environments in an efficient
way or the model-view-controller pattern, which is also the most well-known pattern
in software engineering, describing how to separate visualisation from application-
specific logic.
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Agent architectures can be seen as specific pattern for agent-based systems.
Depending on whether human decision-making shall be reproduced in ways that
resembles how humans think or whether the agents need to exhibit complex and
flexible behaviour, different architectures can be used. For the former type, the so-
called cognitive architectures such as SOAR (Laird et al. 1987; Wray and Jones
2005) or ACT-R (Anderson et al. 2004; Taatgen et al. 2006) have been suggested
(for a short overview, see (Jones 2005)). Those architectures resemble theories from
cognitive science supported by results from experiments with humans. Especially
SOAR has been used for reproducing human behaviour in military training systems
(Wray et al. 2005).

Although often indicated, the so-called BDI architecture is not a cognitive
agent architecture but a practical reasoning architecture (Wooldridge 2009). Its
underlying motivation consists of a human-inspired means-end analysis separating
the decision about which goal (“desire”) to pursue from the actual planning towards
the goal the agent is committed to achieve (“intention”). The BDI architecture
has turned out to be very useful for software agents in general. It also appears
to be a reasonable choice for organising the internal decision-making of agents
in simulation, especially when more sophisticated agent behaviour needs to be
formulated (see, e.g. Joo (2013), Caillou et al. (2015) or Norling (2003)). Even
in simulations with rather simple agent behaviour, it is advisable to use an agent
architecture to organise the behaviour description, so that the agent program is more
transparent, better readable and thus better analysable and maintainable.

Although not introduced as agent architectures, the general setup of rule-based
systems, state automata or decision trees can provide important ways to structure
agent behaviour descriptions and separate agents’ decision-making from the actual
processing. A rule-based system contains a set of rules as “if : : : then : : : ” constructs
and a mechanism that systematically tests the current perception and agent state
against the if parts of the constructs. If something is true, the second part, the
“then : : : ” part, is activated. Using such a setup instead of cascades of if-then-else
programming language statements supports clarity of design and extensibility of
the decision-making model. Similar are decision trees, which form another way
to avoid ugly, inflexible implementations with hard-wired if-then-else cascades. A
decision tree is a data structure that organises conditions in nodes and different
alternative values for those conditions in the branches out of the node. Another
architecture pattern is a state automaton with an explicit representation of the state
that the agent is in. The state is associated with particular behaviour. State changes
happen based on a trigger relevant in the current state. An older, slightly more
complex agent architecture following those ideas is the EMF frame (Drogoul and
Ferber 1994). All agent architectures presented in AOSE can also be viewed as
local pattern for developing agents. They suggest a structure that supports design
and implementation of agents with non-trivial behaviour programs. Clearly, those
architectures can be useful for ABSS as well.

In addition to software design patterns and agent architectures, there is another
category of (software) pattern relevant for ABSS. These are meta-patterns capturing
best practices in working with a model, not directly related to the model design or to
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a specific methodology. A good example is the ODD protocol (Grimm et al. 2017)
for documenting ABSS models. It describes a framework of elements that make
up a complete and useful documentation. One can also interpret any description
of best practices for model testing, validation, etc. as such a meta-pattern. Rossiter
(2015) describes a reference architecture for a simulation system in general, clearly
structuring the overall software into different layers of functionality. He also uses
this reference architecture to explain the setup of existing platforms and to introduce
a new toolkit.

6.2.4 Fourth Pillar: Tools and Development Environments

There are many useful tools available for all phases of developing and using ABSS
models. For the purpose of this chapter, we want to single out two particular types:
specialised drawing tools and software development platforms.

The diagrams capturing a model in, for example, UML may become quite
large and complex. Thus tools that offer specialised shapes and other convenient
support such as grid-based layout alignment, automated connections, etc. are highly
valuable for making the drawing process more efficient and enable the modeller to
concentrate on the important aspects of the description. Especially for UML, there
are a number of good tools available, such as Visual Paradigm2 or Visio.3 Some
platforms for implementing ABSS models, as, for example, Repast (Ozik et al.
2015) or AnyLogic (see below), come with tools for drawing some UML diagram
types that are then directly translated into code skeletons.

Professional software development is usually done using an integrated develop-
ment environment (IDE). This is basically a collection of tools facilitating software
development, such as elaborated program editors with built-in syntax checks, code
completion, etc. allowing the programmer to concentrate on the semantics of
the program rather than its syntax. Prominent IDE examples are Visual Studio4

or Eclipse.5 Such development environments also support, for example, code
documentation by providing tools that automatically generate UML class diagrams
from source code.

Inspired by those general IDEs and in addition to low-level programming
support, an IDE for ABSS could contain

• Conceptual views on the implemented model with diagrammatic representations
of what happens in the model. Drawing tools can be integrated with automated
code generation from diagrams representing agent and organisational structures
and agent behaviour and interaction dynamics.

2www.visual-paradigm.com. A free for non-commercial use community version exists.
3products.office.com/en/visio/.
4www.visualstudio.com.
5eclipse.org.

http://www.visual-paradigm.com
http://products.office.com/en/visio/
http://www.visualstudio.com
http://eclipse.org
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• Simulation runtime support — tools for handling simulated time and space
(maps), animation, inspection tools for individual agents and their interactions.

• Appropriate ways to integrate model documentation, e.g. facilities to add com-
ments or specific elements of an ODD model documentation.

• Automated generation of simulation runs including interfaces for conducting
elaborated tests or manipulating model settings during runtime.

• Debugging and validation support.
• Convenient tools for defining experiments and input and output data handling.

Such tools make model handling more convenient and efficient, yet they are
built around a particular simulation platform that manages and executes a particular
model implementation.

Various specialised platforms for ABSS are available that aim at giving specific
support. Over the last decades, hundreds of platforms and tools have been suggested.
A Wikipedia page6 lists 89 tools (in April 2016). Wikipedia also provides an
up-to-date list of their attributes. Only a few of them deserve to be called an
IDE for ABSS such as Repast Simphony (repast.github.io/repast_simphony.html),
AnyLogic (www.anylogic.com/) or SeSAm (www.simsesam.org). In addition to
that list, there are a number of partially outdated surveys (Nikolai and Madey
2008; Railsback and Lytinen 2006; Kravari and Bassiliades 2015). The most
prominent platforms are NetLogo (ccl.northwestern.edu/netlogo/) and Repast
(repast.sourceforge.net/), they are covered in of each of the surveys. Other analysed
platforms include AnyLogic, MASON (cs.gmu.edu/~eclab/projects/mason/), Gama
(gama-platform.org) or Swarm (http://www.swarm.org).

Which platform to use depends on a variety of factors ranging from the
modellers’ personal preferences and experience to the properties of the model to
be implemented. Also whether the platform is a commercial one or open source
often plays a role. Providing general advice about the “best” platform is impossible.

6.3 Illustrative Example: Normative Comparison
in an Office Environment

Up to now we have seen that software engineering in general and AOSE in particular
offer a lot of support for developing ABSS models. Most of this support can
be coined “formal”: at the heart are clearly given process models describing the
different steps to go through when doing a simulation study. This is particularly
important for less experienced modellers as these process models help to solve the
problem of translating vague mental representations of models into descriptions that
are more and more refined. These methodologies help to know where one should
start when doing a simulation study.

6https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software, accessed
07/05/2016.

http://www.anylogic.com/
http://www.simsesam.org
http://repast.sourceforge.net/
http://cs.gmu.edu/~eclab/projects/mason/
http://gama-platform.org
http://www.swarm.org
https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software


6 What Software Engineering Has to Offer to Agent-Based Social Simulation 97

In the following we show based on an illustrative example that there is no need
to be afraid of formal approaches but that they can indeed be useful to support
awareness about the actual model content when developing a model.

6.3.1 Our Structured Approach

When developing ABSS models, one faces the question of how to build them and
where to start. This can be challenging not only for novices in the field but also
for multidisciplinary teams where it is often difficult to engage everyone in the
modelling process. Over the years we have developed a quite sophisticated “plan
of attack” in the form of a framework that guides the model development and can
be used by either individuals or teams.

When used by individuals, they need to consider the perspective of potential team
members (i.e. slip into their roles) during each process step. When used by teams,
co-creation is an important aspect. Team members need to be open-minded about
the use of new tools and methods and about the collaboration with researchers from
other domains and business partners. This is often not easy for researchers trained
in more traditional approaches or for business partners who often expect researchers
to act like consultants, providing them with a report and a list of recommendations
(Mitleton-Kelly 2003).

Our framework, called the “Engineering Agent Based Social Simulation” frame-
work (or EABSS framework for short), supports model reproducibility through
rigorous documentation of the conceptual ideas, underlying assumptions and the
actual model content. The framework provides a step-by-step guide to conceptual-
ising and designing ABSS models with the support of software engineering tools
and techniques. Figure 6.2 provides an overview of the steps that make up the
development process.

Fig. 6.2 Overview of our EABSS framework
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While the framework represents a structured modelling approach, there will
always be iterations required by the users to improve definitions from previous
tasks. When stepping through the framework, the users may realise that they did
not consider important elements/details in a previous step or that they considered
too many or that they considered them wrongly. In particular discussions in focus
groups unearth these kinds of issues and are therefore extremely valuable for the
model development process. The framework is a suitable tool for well-organised
discussions and to capture the knowledge and ideas coming out of these discussions
in a formal way. While there is a given sequence of steps that users should follow,
they need to be prepared to go back to a previous task if required and apply changes.
Consequently this means that the users do not have to worry too much if in the
initial rounds they get things wrong or things feel incomplete. They should simply
move on to the next task if they feel that they have some form of contribution.
Our experience is that it is necessary to revisit each task four to five times before
there is a satisfying result that is acceptable to all stakeholders. In that sense, the
approach somewhat resembles “agile” approaches of software engineering with
frequent interactions with stakeholders and frequent iterations and not investing a
lot of time into specifications that are obsolete after the next discussion.

While this framework will not work perfectly for all possible cases, it provides
at least some form of systematic approach. The user should be prepared to adapt
it to fit individual needs. In the following we will explain each step (including the
necessary tools) and exemplify its application.

In order to demonstrate the use of our structured approach, we use an illustrative
example, which is based on work by Zhang et al. (2011), Susanty (2015) and Bed-
well et al. (2014). In this example we focus on the simulation model development
to support studying the impact of normative comparison amongst colleagues with
regards to energy consumption in an office environment. Normative comparison in
this context means giving people clear regular personalised insight into their own
energy consumption (e.g. “you used x% more energy than usual for this month”)
and allowing them to compare it to that of their neighbours (e.g. “you used x%
more than your efficient neighbours”). A simulation study could compare the impact
of “individual apportionment” vs. “group apportionment” of energy consumption
information on the actual energy consumption within the office environment.

6.3.2 Gathering Knowledge

The task of knowledge gathering is one that happens throughout the structured
modelling approach and in many different ways. The main ones we use in our
framework are literature review, focus group discussions, observations and surveys.
The knowledge gathering is either a prerequisite for tasks (e.g. a literature review)
or embedded within the tasks (e.g. focus group discussions). For our study, all
focus groups were led by a computer scientist (the initiator of the study), and the
participants consisted of a mixture of academics and researchers from the fields of
computer science, business management and psychology. In this example study, we
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did not engage with business partners. The team consisted of five core members
who would participate regularly in the focus groups. Over the years we have made
the experience that for our purposes smaller focus groups work best. Whenever
we describe a task, in the following, we also briefly mentioned when and how the
required knowledge was gathered.

6.3.3 Defining the Objectives

The first step within the framework is to define objectives in relation to the aim of
the study. In our case this was done through a combination of a literature review and
focus group discussions. After some iteration we came up with the following:

• Our aim is to study normative comparison in an office environment.
• Our objective is to answer the following questions:

– What are the effects of having the community influence the individual?
– What is the extent of impact (significant or not)?
– Can we optimise it using certain interventions?

• Our hypotheses are:

– Peer pressure leads to greener behaviour.
– Peer pressure has a positive effect on energy saving.

With the objectives defined, we then need to think about how we can test these
objectives. For this we need to consider relevant experimental factors and responses.
Experimental factors are the means by which the modelling objectives are to be
achieved. Responses are the measures used to identify whether the objectives have
been achieved and to identify potential reasons for failure to meet the objectives
(Robinson 2004). In other words, experimental factors are simulation inputs that
need to be set initially to test different scenarios related to the objectives while
responses are simulation outputs that provide insight and show to what level the
objectives have been achieved. In our case the hypotheses are very helpful for
defining an initial set of experimental factors and responses:

• Experimental factors

– Initial population composition (categorised by greenness of behaviour)
– Level of peer pressure (“individual apportionment” vs. “group apportion-

ment”)

• Responses

– Actual population composition (capturing changes in greenness of behaviour)
– Energy consumption (of individuals and at average)

The experimental factors and responses defined at this stage are still very broad
and need to be revisited when more information about the model becomes available.
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6.3.4 Defining the Scope

At this stage we are interested in specifying the model scope. This requires some
initial knowledge gathering. We did this through a literature review and observation
of the existing system. With the help of the knowledge gathered, we were then
able to define the scope of the model. Decisions were made through focus group
discussions. To guide the discussion and to document the decisions made in
a more formal way, we used an adaptation of the conceptual modelling scope
table proposed by Robinson (2004) specially tailored towards ABSS modelling.
The general categories we consider are “Actor”, “Physical environment” and
“Social/Psychological aspects”.

In order to make decisions about including or excluding different elements within
these categories, we asked ourselves, amongst others, the following questions:

• What is the appropriate level of abstraction for the objective(s) stated before?

– This would define the level of abstraction acceptable.

• Do the elements have a relevant impact on the overall dynamics of the system?

– Then they should be included.

• Do the elements show similar behaviour to other elements?

– Then they should be grouped.

After some discussions within the focus group, we decided that “transparency”
would be the key driver for our decision-making and that we want to
abstract/simplify as much as possible while still keeping a realistic model (i.e.
we aimed to explicitly follow the KISS principle mentioned in Sect. 6.2.1). In
order to have easy access to data, we decided to use our own offices (University of
Nottingham; School of Computer Science) as the data source. Table 6.1 presents
the resulting scope table in which we state for every element whether we want to
include or exclude it and why we decided either way.

6.3.5 Defining Key Activities

Interaction can take place between actors and between an actor and the physical
environment it is in. Capturing these at a high level can be done with the help
of UML use case diagrams. In software engineering, UML use case diagrams are
used to describe a set of actions (use cases) that some system or systems (subject)
should or can perform in collaboration with one or more external users of the
system (actors). These diagrams do not attempt to represent the order or number
of times that the systems actions and subactions should be executed. The relevant
components of a use case diagram are depicted and described in Table 6.2.
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Table 6.1 Scope table for our illustrative example

Category Element Decision Justification

Actor Staff Include as group
(User)

Regularly occupy the
office buildingResearch fellows

PhD students
UGCMSc
students

Exclude Do not have control over
their work environment

Visitors Exclude Insignificant energy use
Physical
environment

Appliance HVAC
(Heating C Venti-
lation C Aircon)
system

Exclude We only need one major
energy consumer to test
the theory; we decided
to go for electricity

Lighting Include Interacts with users on a
daily basis; controlled
by user

Computer Include Interacts with users on a
daily basis; controlled
by user

Monitor Exclude Modelled as part of the
computer

Continuously
running
appliances

Exclude Constant consumption
of electricity; not
controllable by
individuals

Personal
appliances

Exclude No way to measure
consumption

Weather Temperature Exclude Not necessary for
proof-of-principle

Natural light level Exclude Not necessary for
proof-of-principle

Room Office Include Location where
electronic appliances are
installed

Lab Exclude Mainly used by
UGCMSc

Kitchen Include as group
(Other room)

Common areas
frequently used by
“users”

Toilet
Corridor Include Commonly used when

“users” move around

(continued)
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Table 6.1 (continued)

Category Element Decision Justification

Social/Psychological
aspect

Comparative
feedback

Include Effective strategy to reduce
energy consumption in residential
building

Informative
feedback

Include Effective strategy to remove
barriers in performing specific
behaviour

Apportionment
level

Include Potential strategy to reduce
energy consumption in office
building

Freeriding Include Behaviour that differentiate two
apportionment strategy

Sanction Include Factor to encounter freeriding
behaviour

Anonymity Include Factor to encounter freeriding
behaviour

Table 6.2 Relevant use case diagram components

Component Symbol Description
Actors Entities that interface with the system (this can be people or

other systems). Think of actors by considering the roles
they play

Use cases Denotes what the actor wants your system to do for them

System
boundary

Indicates the scope of your system: the use cases inside the
rectangle represent the functionality that you intend to
implement

Relationships There are different types of relationships. In a relationship
between use case and actor the associations indicate which
actors initiate which use cases. A relationship between two
use cases specifies common functionality and simplifies use
case flows. We use <<Include>> when multiple use cases
share a piece of same functionality which is placed in a
separate use case rather than documented in every use case
that needs it. We use <<Extend>>when activities might be
performed as part of another activity but are not mandatory
for a use case to run successfully. We are adding more
capability

While in software engineering the actors are outside the system boundaries (they
are usually the users of software, and the software represents the system), when
using use case diagrams in an ABSS context the actors are inside the system
(representing the humans that interact with each other and the environment). The
system boundaries are the boundaries of the relevant locations (which in our case
would be the building boundaries of the office environment). It is important to
understand that the purpose of these diagrams is to promote understanding; as long
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Fig. 6.3 Use case diagram for our illustrative example [drawn with Visio]

as they capture the ideas and help to explain them, they are very useful. The use
case diagram which we developed for our illustrative example through focus group
discussions is depicted in Fig. 6.3.

6.3.6 Defining Stereotypes

In social psychology, a stereotype is a thought (or belief) that can be adopted about
specific types of individuals or certain ways of doing things (McGarty et al. 2002).
In order to be able to represent a specific population in our simulation models,
we define stereotypes that allow us to classify the members of this population.
We derived our stereotype templates (categories, habits to be considered and type
names) through focus group discussions and through considering the knowledge
gathered previously. Getting the stereotype templates right is more an art than a
science. After long debates we decided to have two categories of stereotypes: one
related to “work time” and the other related to “energy-saving awareness”. Once the
categories were identified, we had to come up with the habits that describe these
stereotypes:

• Habits for work time category:

– Arrival time at office
– Leaving time from office
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• Habits for energy-saving awareness category:

– Energy-saving awareness
– Likelihood of switching off unused electric appliances
– Likelihood of promoting greenness

To get the information we needed to fully define the stereotypes, we con-
ducted a survey amongst our school’s academics, researchers and PhD students,
anonymously asking them questions about their habits towards work time and
energy-saving awareness. We then analysed the data through cluster analysis to
come up with the stereotype groups, assigned some speaking name and populated
the stereotype tables with the “habit” information. The stereotype definitions we
ended up with can be found in Tables 6.3 and 6.4.

6.3.7 Defining Agent and Object Templates

For each of the relevant actor types we have identified in our scope table, we have
to develop an agent template containing all information for a prototypical agent.
These templates will act as a blueprint when we later create the actor population for
each simulation run. When it comes to modelling the environment, we need similar
templates for everything relevant we have identified in the scope table that lends
itself to be represented as an object (e.g. the appliances). For other things (e.g. the
weather), we need to consider other modelling methods. From a technical point of
view, there is no big difference between agents and objects. Thus we can use the
same types of diagrams to document their design. We will therefore use the term

Table 6.3 User stereotypes defining work time habits

Stereotype Working days Arrival time Leave time

Early bird Mon–Fri 5 am-9 am 4 pm-7 pm
Time table complier Mon–Fri 9 am-10 am 5 pm-6 pm
Flexible worker Mon–Fri 10 am-1 pm 5 pm-11 pm
Hardcore worker Mon–Fri C Sat 8 am-10 am 5 pm-11 pm

Table 6.4 User stereotypes defining energy-saving habits

Stereotype
Energy saving
awareness [0–100]

Probability of
switching off
unnecessary appliances

Probability of sending
emails about energy
issues to others

Environmental
champion

95–100 0.95 0.9

Energy saver 70–94 0.7 0.6
Regular user 30–69 0.4 0.2
Big user 0–29 0.2 0.05
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“entity” when we talk about both. There are three different diagram types that are
relevant for defining entity templates: UML class diagrams (to define structure),
UML state machine diagrams (to define behaviour) and UML activity diagrams
(to define logic). Often only a subset of these is required. When developing the
templates, we create the different diagrams in parallel and in an iterative manner as
often one informs and inspires the development of the other. As with the stereotypes,
getting the entity templates right is not hard science and will therefore require many
iterations.

In software engineering UML class diagrams are used to define the static
structure of the software to be developed by showing classes (which are blueprints
to build specific types of objects) and the relationships between classes. These
relationships define the logical connections between classes (association, aggrega-
tion, composition, generalisation, dependency). UML class diagrams can be very
complex, and for our purposes it is often enough to consider individual classes.
Therefore we focus on how to define individual classes here. In UML classes
are depicted as rectangles with three compartments. The first compartment is
reserved for the class name. This is simply the name of the entity as defined in
the scope table (e.g. “user” for our user agent template). The second compartment
is reserved for attributes (constants and variables). Often we would capture key
state variables (e.g. “energy saving awareness”), key parameters and key output
variables (e.g. “own energy consumption”) here. The third compartment is reserved
for operations that the user may perform. For each operation, we define some
function names that indicate what kind of additional code we have to produce
later (e.g. “moveToNewLocation()”). The brackets indicate that this is a function.
Figure 6.4 shows as an example the user class definition we developed in parallel
with the other template diagrams in several focus group discussion sessions.

In software engineering, UML state machine diagrams (sometimes just called
“state charts”) are used to represent the dependencies between the state of an object
and its reaction to messages or other events. State machine diagrams show the states
of a single object, the events or the messages that cause a transition from one state
to another and the actions that result from a state change. A state machine diagram
has exactly one state machine entry pointer which indicates the initial state of the
agent. A state in a state machine diagram models a situation during which some
invariant condition holds. Usually time is consumed while an object is in a specific
state. A simple state is a state that does not have substates, while a composite state is
a state that has substates (nested states). The relevant components of a state machine
diagram are depicted and described in Table 6.5.

In our case we use state machine diagrams to define the behaviour of our entities.
This type of diagram is particularly useful as it can be automatically translated into
source code by IDEs who support such features. One can use several diagrams
(e.g. one representing physical states and one representing mental states) for the
same entity. A state machine diagram is not always meaningful (e.g. if there are no
relevant states that need to be represented to capture the behaviour) or necessary
(e.g. “energy saving awareness” could be expressed in states “aware” and “not
aware” but also as a state variable that represents the level of awareness). There is
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Fig. 6.4 User class definition
[drawn with Visual Paradigm]

Table 6.5 Relevant state machine diagram components

Component Symbol Description

Entry pointer Indicates the initial state after an object is created
State Represents a locus of control with a particular set of

reactions to conditions and/or events
Initial states
pointer

Points to the initial state within a composite state

Final state Termination point of a state chart
Transition Movement between states, triggered by a specific

event
Branch Transition branching and/or connection point
Shallow history The state chart remembers the most recent active sub

state (but not the lower level sub-states)
Deep history The state chart remembers the most recent active sub

state (including the lower level sub states)

nothing wrong with having entity templates without state machine diagrams. While
for software engineering the descriptions of how transitions are triggered are usually
embedded within the diagram (in a rather cryptic language), it might be a good idea
to present them in a separate table, to make the diagram easier to understand.

Many people find it difficult to get started with developing the state machine
diagrams for agent templates. In order to come up with potential states that an agent
can be in, it helps to think in terms of locations (e.g. “in office”). The next step
would be to think about key time-consuming activities within these locations (e.g.
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“working with computer”). It is important to consider only key locations and key
activities as otherwise the state chart gets too complex. One should only define as
much detail as is really necessary for investigating the question studied. The above
steps are just suggestions and do not always work. In case they do not work, one has
to use intuition and try to draft something that “feels right”.

Figure 6.5 shows as an example the “User” state machine diagram we developed
in parallel with the other template diagrams in several focus group discussions.
Here we have defined location states based on the relevant rooms we identified
in the scope table and added one location (“outOfOffice”) to represent the outside
world. The ideas for the activity states stem from our use case diagram (Fig. 6.3).
We then added transition arrows to represent the possible transitions between the
defined states. Transitions with a question mark symbol are condition triggered
while transitions with a clock symbol are time triggered. If there is more than one
transition connecting states, we have considered different triggers for state changes.

Fig. 6.5 User state machine diagram [drawn with AnyLogic]
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This becomes clearer when we look at the transition definitions in Table 6.6. Here
we can see that, for example, a state change from “outOfOffice” to “inCorridor”
can happen for all user stereotypes during the working week and only for hardcore
worker user stereotypes during the weekend.

In software engineering UML activity diagrams describe how activities are
co-ordinated (the overall flow of control). They represent workflows of stepwise
activities (while state machine diagrams show the dynamic behaviour of an object)
and actions with support for choice, iteration and concurrency. Often people
describe activity diagrams as just being fancy flow charts. The relevant components
of an activity diagram are listed in Table 6.7.

Amongst others, we can use these activity diagrams as a formal way to describe a
decision-making process (logic flow). In our case we use it to describe the logic flow
of the normative comparison process. In order to define the logic flow, we use the
information we gathered from our literature review on psychological factors in the
scoping phase. Figure 6.6 shows as an example the actions happening when the user
agent is in the state “compareWithHistory” (which in the model is triggered once per
simulated month). It is good practice to provide some evidence from the literature
for the rationale behind the decision-making process. This would come from our
scoping phase literature review but might also require some additional resources.
As an example, let’s take the case “Less than former month?Dno / Group?Dyes /

Table 6.6 User state machine transition definitions (excerpt)

From state To state Triggered by When?

outOfOffice inCorridor Condition At typical arrival time during the working week
for all

outOfOffice inCorridor Condition At typical arrival time on Saturdays for hard-core
workers only

inCorridor outOfOffice Condition At typical leave time
inCorridor inOffice Timeout At average after 5 min
inOffice inCorridor Condition At random while at work or when leaving
inCorridor otherRoom Condition At random while at work
otherRoom inCorridor Timeout At average after 10 min
: : : : : : : : : : : :

Table 6.7 Relevant activity diagram components

Component Symbol Description
Activity Named box with rounded corners (a state that is left

once the activity is finished)
Activity edge Arrow (fires when the previous activity completes)
Synchronisation bar Represent the start (split) or end (join) of

concurrent activities

Decision
diamond

Used to show decisions

Start marker Indicate entry point of the diagram
Stop marker Indicate exit point of the diagram
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Fig. 6.6 Activity diagram for user agent state “compareWithHistory” [drawn with Visual
Paradigm]

Sanction?Dyes / Not Anonymous?”. In the literature we find that using mechanisms
to identify freerides and implement sanctions (social (e.g. gossip) or institutional
(e.g. fines)) reduces the likelihood of further freeriding (Fehr et al. 2002). This is
our justification for adding the action “decrease freeriding” for this case. In the end
we would evaluate our logic flow by discussing it in the focus group.

6.3.8 Defining Interactions

As we saw in Sect. 6.3.5, capturing interactions on a high level can be done using
UML use case diagrams. Capturing interactions in more detail can be done by using
UML sequence diagrams. These can be used to further specify use cases that involve
direct interactions (usually in the form of message passing) between entities (agents
and objects).

In software engineering UML sequence diagrams are used primarily to show
the interactions between objects in the sequential order in which those interactions
occur. Often they depict the actors and objects involved in a specific use case
realisation and the sequence of messages exchanged between the actors and objects
needed to carry out the functionality of the use case realisation. But sometimes
they also capture wider scenarios that go beyond a specific use case. The relevant
components of a sequence diagram are listed in Table 6.8.

In our case, we discussed the technical way of implementing the “observe others”
use case during one of our focus group discussions. Figure 6.7 shows the sequence
diagram we developed during our discussion for this use case. The entities involved
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Table 6.8 Relevant sequence diagram components

Component Symbol Description

Lifeline Named element which represents an individual participant
in the interaction

Message From sender to receiver
Message Return message

Execution Represents a period of time in which the participant is
active

Message Self message
Loop Wrapper for representing loops (has one compartment)
Alternative Wrapper for representing alternatives (has as many

compartments as alternatives exist)

User1 User2

Interface DataBase

1: Ask for information

[random (depending on archetype)]

1.3: Reply

2: Ask for information

2.3: Reply

3: Start communication

4: Reply communication

6: Reply communication

5: Start communication

2.2: Reply

1.1: Ask for information

2.1: Ask for information

1.2: Reply

alt

[random (depending on archetype)]

Fig. 6.7 Initial sequence diagram for the use case “observe others” [drawn with Visual Paradigm]

are users and units that provide information. Users interact with information units
and with each other. Information units interact with the users and with each other.
Creating this diagram sparked a discussion if we should consider a database that
stores historic information in our model or not. It is currently not represented in the
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Fig. 6.8 Artificial lab class
definition [drawn with Visual
Paradigm]

scope table (Table 6.1). In the end we agreed that for our initial model, we will leave
it out but keep a record of it in the scope table as it might be something we want
to consider in the future. We then removed it from the final version of our sequence
diagram.

6.3.9 Defining the Artificial Lab

Finally we need to define an environment in which we can embed all our entities
and define some global functionality. We call this environment our “artificial lab”.
For the development of our artificial lab, we use a class definition as described in
Sect. 6.3.7. Within this class definition, we consider things like global variables
(e.g. to collect statistics), compound variables (e.g. to store a collection of agents
and objects) and global functions (e.g. to read/write to a file). We also need to make
sure that we have all variables in place to set the experimental factors and to collect
the responses we require for testing our hypotheses. We derive our class content
through focus group discussions. To inform these discussions, we need to look at
our list of objectives (see Sect. 6.3.3) and our scope table (see Sect. 6.3.4). The final
class definition should only contain key variables and functions. Figure 6.8 shows
the “Artificial Lab” class definition for our illustrative example. Variable names
including “[]” represent collection variables.
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Sometimes it can be helpful to create a sequence diagram as described in
Sect. 6.3.8 to visually show the order of execution describing the actions taken on
various elements at each step of the simulation from a high-level approach. The
way and order in which all entities are initialised, as well as the way and order in
which they are updated and how their interactions are handled, is often not trivial
and a major source of artefacts. In such a case, it therefore needs to be clearly
documented and specified. Since we do not have any obvious complex dependencies
in our illustrative example, it was not necessary to create such a high-level sequence
diagram.

At this point, we have all the information for a conceptual model together. Using
the collection of diagrams and tables that we produced, the model to be implemented
should be fully specified and as well understood as it can be without running it.
The next step is to take this specification and either start with the implementation
ourselves or let a professional software developer deal with it.

6.4 Conclusion

There seems to be a fear of non-computer scientists with regard to “formal
approaches”. This might be due to the fact that formal approaches are often
presented in a way that makes modelling a very complex and costly task and that
seems to take away opportunities for exploratory model development. While this
might be true for very large projects, it is usually not the case for smaller ones as
tools and techniques do not have to be applied in a dogmatic fashion. They are
there to aid the modelling process wherever one thinks it would be appropriate or
helpful to use them. Thinking about this as being a more structured approach that
adds transparency to model development rather than a formal approach that makes
modelling a complex task might take away some of the fear. While there will always
be a place for informal modelling (in software engineering often coined as “fast
prototyping” to quickly try out things), we believe that there is also a place for a
more structured approach to modelling.

We have found the framework described in the second part of the chapter very
helpful in terms of communicating in multidisciplinary teams during focus group
meetings and also for documenting the outcomes of these discussions. It (or parts
of it) has been extensively used by the group of PO Siebers (the first author of this
chapter) for many different projects, ranging from “Studying People Management
Practices in Retail” (Siebers and Aickelin 2011), where we worked with colleagues
from Economics and Work Psychology and a leading UK retailer, to “Simulating
Peace Building Activities in Africa” (Siebers et al. 2017), where we worked with
colleagues from the School of Politics and Psychology. We are currently also
applying the framework in several new projects including industrial partners.

So far the feedback from the participating team members has always been very
positive. Using these methods has aided “the fun” of collaborative model devel-
opment. Applying object-oriented principles and tools from software engineering



6 What Software Engineering Has to Offer to Agent-Based Social Simulation 113

also helped us to develop simulation models that are easy to maintain and easy to
extend. Rather than building a model from scratch every time we start a new study,
we can reuse previously developed model components with confidence. Using a
formal approach to modelling is also a big benefit when it comes to publications as
the resulting models are transparent and well documented.

Further Reading

There is a host of literature on the topic of software engineering. A book that
provides a comprehensive yet easy to understand entry to most of the software
engineering topics discussed in this book chapter is Lethbridge and Laganiere
(2005). If you are mainly interested in learning more about UML, then Fowler
(2003) is sufficient. A lot of ideas for ABSS stem from the computer science field
of artificial intelligence and herein particular multi-agent systems. A good overview
on the wide area of topics (including AOSE) is Weiss (2013). Finally, the JASSS
special issue “Engineering ABSS” (Siebers and Davidsson 2015) provides lots of
information and case studies. The approach contrasts with that described in Chap. 5
in this volume.
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Chapter 7
Checking Simulations: Detecting and Avoiding
Errors and Artefacts

José M. Galán, Luis R. Izquierdo, Segismundo S. Izquierdo, José I. Santos,
Ricardo del Olmo, and Adolfo López-Paredes

Abstract The aim of this chapter is to simulations. The reader with a set of
concepts and a range of suggested activities that will enhance his or her ability
to understand agent-based simulations. To do this in a structured way, we review
the main concepts of the methodology (e.g. we provide precise definitions for the
terms “error” and “artefact”) and establish a general framework that summarises
the process of designing, implementing, and using agent-based models. Within this
framework we identify the various stages where different types of assumptions are
usually made and, consequently, where different types of errors and artefacts may
appear. We then propose several activities that can be conducted to detect each type
of error and artefact.

Why Read This Chapter?
Given the complex and exploratory nature of many agent-based models, checking
that the model performs in the manner intended by its designers is a very challenging
task. This chapter helps the reader to identify some of the possible types of error and
artefact that may appear in the different stages of the modelling process. It will also
suggest some activities that can be conducted to detect, and hence avoid, each type.
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7.1 Introduction

Agent-based modelling is one of multiple techniques that can be used to conceptu-
alise social systems. What distinguishes this methodology from others is the use of
a more direct correspondence between the entities in the system to be modelled and
the agents that represent such entities in the model (Edmonds 2001). This approach
offers the potential to enhance the transparency, soundness, descriptive accuracy,
and rigour of the modelling process, but it can also create difficulties: agent-based
models are generally complex and mathematically intractable, so their exploration
and analysis often require computer simulation.

The problem with computer simulations is that understanding them in reasonable
detail is not as straightforward an exercise as one could think (this also applies
to one’s own simulations). A computer simulation can be seen as the process of
applying a certain function to a set of inputs to obtain some results. This function
is usually so complicated and cumbersome that the computer code itself is often
not that far from being one of the best descriptions of the function that can be
provided. Following this view, understanding a simulation would basically consist
in identifying the parts of the mentioned function that are responsible for generating
particular (sub)sets of results.

Thus, it becomes apparent that a prerequisite to understand a simulation is to
make sure that there is no significant disparity between what we think the computer
code is doing and what is actually doing. One could be tempted to think that, given
that the code has been programmed by someone, surely there is always at least one
person—the programmer—who knows precisely what the code does. Unfortunately,
the truth tends to be quite different, as the leading figures in the field report:

You should assume that, no matter how carefully you have designed and built your
simulation, it will contain bugs (code that does something different to what you wanted
and expected). (Gilbert 2007)

An unreplicated simulation is an untrustworthy simulation—do not rely on their results,
they are almost certainly wrong. (‘Wrong’ in the sense that, at least in some detail or other,
the implementation differs from what was intended or assumed by the modeller). (Edmonds
and Hales 2003)

Achieving internal validity is harder than it might seem. The problem is knowing whether
an unexpected result is a reflection of a mistake in the programming, or a surprising
consequence of the model itself. [ : : : ] As is often the case, confirming that the model was
correctly programmed was substantially more work than programming the model in the first
place. (Axelrod 1997a)

In the particular context of agent-based simulation, the problem tends to be
exacerbated. The complex and exploratory nature of most agent-based models
implies that, before running a model, there is almost always some uncertainty about
what the model will produce. Not knowing a priori what to expect makes it difficult
to discern whether an unexpected outcome has been generated as a legitimate result
of the assumptions embedded in the model or, on the contrary, it is due to an error
or an artefact created in its design, in its implementation, or in the running process
(Axtell and Epstein 1994, p. 31; Gilbert and Terna 2000).
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Moreover, the challenge of understanding a computer simulation does not end
when one is confident that the code is free from errors; the complex issue of
identifying what parts of the code are generating a particular set of outputs remains
to be solved. Stated differently, this is the challenge of discovering what assumptions
in the model are causing the results we consider significant. Thus, a substantial
part of this non-trivial task consists in detecting and avoiding artefacts: significant
phenomena caused by accessory assumptions in the model that are (mistakenly)
deemed irrelevant. We explain this in detail in subsequent sections.

The aim of this chapter is to provide the reader with a set of concepts and a range
of suggested activities that will enhance his ability to understand simulations. As
mentioned before, simulation models can be seen as functions operating on their
inputs to produce the outputs. These functions are created by putting together a
range of different assumptions of very diverse nature. Some assumptions are made
because they are considered to be an essential feature of the system to be modelled;
others are included in a somewhat arbitrary fashion to achieve completeness—i.e.
to make the computer model run—and they may not have a clear referent in the
target system. There are also assumptions—e.g. the selection of the compiler and the
particular pseudorandom number generator to be employed—that are often made,
consciously or not, without fully understanding in detail how they work, but trusting
that they operate in the way we think they do. Finally, there may also be some
assumptions in a computer model that not even its own developer is aware of, e.g.
the use of floating-point arithmetic, rather than real arithmetic.

Thus, in broad terms, understanding simulations requires identifying what
assumptions are being made and assessing their impact on the results. To achieve
this, we believe that it is useful to characterise the process by which assumptions
accumulate to end up forming a complete model. We do this in a structured way
by presenting a general framework that summarises the process of creating and
using agent-based models through various stages; then, within this framework, we
characterise the different types of assumptions that are made in each of the stages
of the modelling process, and we identify the sort of errors and artefacts that may
occur; we also propose activities that can be conducted to avoid each type of error
or artefact.

The chapter is structured as follows: the following section is devoted to explain-
ing what we understand by modelling, and to argue that computer simulation is
a useful tool to explore formal models, rather than a distinctively new symbolic
system or a uniquely different reasoning process, as it has been suggested in the
literature. In Sect. 7.3 we explain what the essence of agent-based modelling is in
our view, and we present the general framework that summarises the process of
designing, implementing, and using agent-based models. In Sect. 7.4 we define
the concepts of error and artefact, and we discuss their relevance for validation
and verification. The framework presented in Sect. 7.3 is then used to identify the
various stages of the modelling process where different types of assumptions are
made and, consequently, where different types of errors and artefacts may appear.
We then propose various activities aimed at avoiding the types of errors and artefacts
previously described, and we conclude with a brief summary of the chapter.
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7.2 Three Symbolic Systems Used to Model Social Processes

Modelling is the art of building models. In broad terms, a model can be defined
as an abstraction of an observed system that enables us to establish some kind of
inference process about how the system works or about how certain aspects of the
system operate.

Modelling is an activity inherent to every human being: people constantly
develop mental models, more or less explicit, about various aspects of their daily
life. Within science in particular, models are ubiquitous. Many models in the
“hard” sciences are formulated using mathematics (e.g. differential equation models
and statistical regressions), and they are therefore formal, but it is also perfectly
feasible—and acceptable—to build non-formal models within academia; this is
often the case in disciplines like history or sociology, consider, e.g. a model written
in natural language that tries to explain the expansion of the Spanish Empire in the
sixteenth century or the formation of urban “tribes” in large cities.

We value a model to the extent that it is useful—i.e. in our opinion, what makes a
model good is its fitness for purpose. Thus, the assessment of any model can only be
conducted relative to a predefined purpose. Having said that, there is a basic set of
general features that are widely accepted to be desirable in any model, e.g. accuracy,
precision, generality, and simplicity (see Fig. 7.1). Frequently some of these features
are inversely related; in such cases the modeller is bound to compromise to find a
suitable trade-off, considering the perceived relative importance of each of these
desirable features for the purpose of the model (Edmonds 2005).

Some authors (Gilbert 1999; Holland and Miller 1991; Ostrom 1988) classify
the range of available techniques for modelling phenomena in which the social
dimension is influential according to three symbolic systems.

One possible way of representing and studying social phenomena is through
verbal argumentation in natural language. This is the symbolic system traditionally
used in historical analyses, which, after a process of abstraction and simplification,
describe past events emphasising certain facts, processes, and relations at the
expense of others. The main problem with this type of representation is its intrinsic
lack of precision (due to the ambiguity of natural language) and the associated
difficulty of uncovering the exact implications of the ideas put forward in this way.
In particular, using this symbolic system, it is often very difficult to determine the
whole range of inferences that can be obtained from the assumptions embedded in
the model in reasonable detail; therefore it is often impossible to assess its logical
consistency, its scope, and its potential for generalisation in a formal way.

A second symbolic system that is sometimes used in the social sciences,
particularly in economics, is the set of formal languages (e.g. leading to models
expressed as mathematical equations). The main advantage of this symbolic system
derives from the possibility of using formal deductive reasoning to infer new facts
from a set of clearly specified assumptions; formal deductive reasoning guarantees
that the obtained inferences follow from the axioms with logical consistency. Formal
languages also facilitate the process of assessing the generality of a model and its
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Generality

Lack of error
(accuracy of results)

Specificity (makes
precise predictions)

Simplicity

Fig. 7.1 The trade-off between various desirable features depends on the specific case and model.
There are not general rules that relate, not even in a qualitative fashion, all these features. The
figure shows a particular example from Edmonds (2005) that represents the possible equilibrium
relationships between some features in a particular model

sensitivity to assumptions that are allowed to change within the boundaries of the
model (i.e. parameter values and nonstructural assumptions).

However, the process of reducing social reality to formal models is not exempt
from disadvantages. Social systems can be tremendously complex, so if such
systems are to be abstracted using a formal language (e.g. mathematical equations),
we run the risk of losing too much in descriptiveness. To make things worse, in
those cases where it appears possible to produce a satisfactory formal model of
the social system under investigation, the resulting equations may be so complex
that the formal model becomes mathematically intractable, thus failing to provide
most of the benefits that motivated the process of formalisation in the first place.
This is particularly relevant in the domain of the social sciences, where the systems
under investigation often include non-linear relations (Axtell 2000). The usual
approach then is to keep on adding simplifying hypotheses to the model—thus
making it increasingly restrictive and unrealistic—until we obtain a tractable model
that can be formally analysed with the available tools. We can find many examples
of such assumptions in economics: instrumental rationality, perfect information,
representative agents, etc. Most often these concepts are not included because
economists think that the real world works in this way, but to make the models
tractable (see, for instance, Conlisk 1996; Axelrod 1997a; Hernández 2004; Moss
2001, 2002). It seems that, in many cases, the use of formal symbolic systems
tends to increase the danger of letting the pursuit for tractability be the driver of
the modelling process.
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But then, knowing that many of the hypotheses that researchers are obliged
to assume may not hold in the real world, and could therefore lead to deceptive
conclusions and theories, does this type of modelling representation preserve its
advantages? Quoting G.F. Shove, it could be the case that sometimes “it is better to
be vaguely right than precisely wrong”.

The third symbolic system, computer modelling, opens up the possibility of
building models that somewhat lie in between the descriptive richness of natural
language and the analytical power of traditional formal approaches. This third type
of representation is characterised by representing a model as a computer program
(Gilbert and Troitzsch 1999). Using computer simulation we have the potential to
build and study models that to some extent combine the intuitive appeal of verbal
theories with the rigour of analytically tractable formal modelling.

In Axelrod’s (1997a) opinion, computational simulation is the third way of
doing science, which complements induction, the search for patterns in data, and
deduction, the proof of theorems from a set of fixed axioms. In his opinion,
simulation, like deduction, starts from an explicit set of hypotheses, but, rather than
generating theorems, it generates data that can be inductively analysed.

While the division of modelling techniques presented above seems to be
reasonably well accepted in the social simulation community—and we certainly
find it useful—we do not fully endorse it. In our view, computer simulation does
not constitute a distinctively new symbolic system or a uniquely different reasoning
process by itself, but rather a (very useful) tool for exploring and analysing formal
systems. We see computers as inference engines that are able to conduct algorithmic
processes at a speed that the human brain cannot achieve. The inference derived
from running a computer model is constructed by example and, in the general
case, reads: the results obtained from running the computer simulation follow (with
logical consistency) from applying the algorithmic rules that define the model on
the input parameters1 used.

In this way, simulations allow us to explore the properties of certain formal
models that are intractable using traditional formal analyses (e.g. mathematical
analyses), and they can also provide fundamentally new insights even when such
analyses are possible. Like Gotts et al. (2003), we also believe that mathematical
analysis and simulation studies should not be regarded as alternative and even
opposed approaches to the formal study of social systems, but as complementary.
They are both extremely useful tools to analyse formal models, and they are
complementary in the sense that they can provide fundamentally different insights
on one same model.

1By input parameters in this statement, we mean “everything that may affect the output of the
model”, e.g. the random seed, the pseudorandom number generator employed, and, potentially,
information about the microprocessor and operating system on which the simulation was run, if
these could make a difference.
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To summarise, a computer program is a formal model (which can therefore be
expressed in mathematical language, e.g. as a set of stochastic or deterministic
equations), and computer simulation is a tool that enables us to study it in ways
that go beyond mathematical tractability. Thus, the final result is a potentially more
realistic—and still formal—study of a social system.

7.3 Agent-Based Modelling

7.3.1 Concept

As stated before, modelling is the process of building an abstraction of a system for
a specific purpose—see Chap. 4 in this volume (Edmonds 2017; Epstein 2008) for a
list of potential modelling goals. Thus, in essence, what distinguishes one modelling
paradigm from another is precisely the way we construct that abstraction from the
observed system.

In our view, agent-based modelling is a modelling paradigm with the defining
characteristic that entities within the target system to be modelled—and the
interactions between them—are explicitly and individually represented in the model
(see Fig. 7.2). This is in contrast to other models where some entities are represented
via average properties or via single representative agents. In many other models,
entities are not represented at all, and it is only processes that are studied (e.g. a
model of temperature variation as a function of pressure), and it is worth noting
that such processes may well be already abstractions of the system.2 The specific
process of abstraction employed to build one particular model does not necessarily
make it better or worse, only more or less useful for one purpose or another.

The specific way in which the process of abstraction is conducted in agent-based
modelling is attractive for various reasons: it leads to (potentially) formal yet more
natural and transparent descriptions of the target system, provides the possibility
to model heterogeneity almost by definition, facilitates an explicit representation
of the environment and the way other entities interact with it, and allows for the
study of the bidirectional relations between individuals and groups, and it can
also capture emergent behaviour (see Epstein 1999; Axtell 2000; Bonabeau 2002).
Unfortunately, as one would expect, all these benefits often come at a price: most of
the models built in this way are mathematically intractable. A common approach to
study the behaviour of mathematically intractable formal models is to use computer
simulation. It is for this reason that we often find the terms “agent-based modelling”
and “agent-based simulation” used as synonyms in the scientific literature (Hare and
Deadman 2004).

2The reader can see an interesting comparative analysis between agent-based and equation-based
modelling in Parunak et al. (1998).

http://dx.doi.org/10.1007/978-3-319-66948-9_4
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Fig. 7.2 In agent-based modelling, the entities of the system are represented explicitly and
individually in the model. The limits of the entities in the target system correspond to the limits of
the agents in the model, and the interactions between entities correspond to the interactions of the
agents in the model (Edmonds 2001)

Thus, to summarise our thoughts in the context of the classification of modelling
approaches in the social sciences, we understand that the essence of agent-based
modelling is the individual and explicit representation of the entities and their
interactions in the model, whereas computer simulation is a useful tool for studying
the implications of formal models. This tool happens to be particularly well suited to
explore and analyse agent-based models for the reasons explained above. Running
an agent-based model in a computer provides a formal proof that a particular micro-
specification is sufficient to generate the global behaviour that is observed during
the simulation. If a model can be run in a computer, then it is in principle possible
to express it in many different formalisms, e.g. as a set of mathematical equations.
Such equations may be very complex, difficult to interpret, and impossible to solve,
thus making the whole exercise of changing formalism frequently pointless, but
what we find indeed useful is the thought that such an exercise could be undertaken,
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i.e. an agent-based model that can be run in a computer is not that different from the
typical mathematical model. As a matter of fact, it is not difficult to formally charac-
terise most agent-based models in a general way (Leombruni and Richiardi 2005).

7.3.2 Design, Implementation, and Use of an Agent-Based
Model

Drogoul et al. (2003) identify three different roles in the design, implementation, and
use of a typical agent-based model: the thematician (domain expert), the modeller,
and the computer scientist. It is not unusual in the field to observe that one single
person undertakes several or even all of these roles. We find that these three roles fit
particularly well into the framework put forward by Edmonds (2001) to describe the
process of modelling with an intermediate abstraction. Here we marry Drogoul et
al.’s and Edmonds’ views on modelling by dissecting one of Drogoul et al.’s roles
and slightly expanding Edmonds’ framework (Fig. 7.3). We then use our extended
framework to identify the different types of assumptions that are made in each of
the stages of the modelling process, the errors and artefacts that may occur in each
of them, and the activities that can be conducted to avoid such errors and artefacts.
We start by explaining the three different roles proposed by Drogoul et al. (2003).

The role of the thematician is undertaken by experts in the target domain. They
are the ones that better understand the target system and, therefore, the ones who
carry out the abstraction process that is meant to produce the first conceptualisation
of the target system. Their job involves defining the objectives and the purpose of
the modelling exercise, identifying the critical components of the system and the
linkages between them, and also describing the most prominent causal relations.
The output of this first stage of the process is most often a non-formal model
expressed in natural language, and it may also include simple conceptual diagrams,
e.g. block diagrams. The non-formal model produced may describe the system using
potentially ambiguous terms (such as learning or imitation, without fully specifying
how these processes actually take place).

The next stage in the modelling process is carried out by the role of the modeller.
The modeller’s task is to transform the non-formal model that the thematician
aims to explore into the (formal) requirement specifications that the computer
scientist—the third role—needs to formulate the (formal) executable model. This
job involves (at least) three major challenges. The first one consists in acting as
a mediator between two domains that are very frequently fundamentally different
(e.g. sociology and computer science). The second challenge derives from the fact
that in most cases, the thematician’s model is not fully specified, i.e. there are
many formal models that would conform to it.3 In other words, the formal model
created by the modeller is most often just one of many possible particularisations

3Note that the thematician faces a similar problem when building his non-formal model. There are
potentially an infinite number of models for one single target system.
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Fig. 7.3 Different stages in the process of designing, implementing, and using an agent-based
model

of the thematician’s (more general) model. Lastly, the third challenge appears when
the thematician’s model is not consistent, which may perfectly be the case since
his model is often formulated using natural language. Discovering inconsistencies
in natural language models is in general a non-trivial task. Several authors (e.g.
Christley et al. 2004; Pignotti et al. 2005; and Polhill and Gotts 2006) have identified
ontologies to be particularly useful for this purpose, especially in the domain of
agent-based social simulation. Polhill and Gotts (2006) write:

An ontology is defined by Gruber (1993) as ‘a formal, explicit specification of a shared
conceptualisation’. Fensel (2001) elaborates: ontologies are formal in that they are machine
readable; explicit in that all required concepts are described; shared in that they represent
an agreement among some community that the definitions contained within the ontology
match their own understanding; and conceptualisations in that an ontology is an abstraction
of reality. (Polhill and Gotts 2006, p. 51)

Thus, the modeller has the difficult—potentially unfeasible—task of finding a set of
(formal and consistent) requirement specifications4 where each individual require-

4Each individual member of this set can be understood as a different model or, alternatively,
as a different parameterisation of one single—more general—model that would itself define the
whole set.
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ment specification of that set is a legitimate particular case of the thematician’s
model and the set as a whole is representative of the thematician’s specifications
(i.e. the set is sufficient to fully characterise the thematician’s model to a satisfactory
extent).

Drogoul et al.’s third role is the computer scientist. Here we distinguish between
computer scientist and programmer. It is often the case that the modeller comes
up with a formal model that cannot be implemented in a computer. This could be,
for example, because the model uses certain concepts that cannot be operated by
present-day computers (e.g. real numbers, as opposed to floating-point numbers)
or because running the model would demand computational requirements that are
not yet available (e.g. in terms of memory and processing capacity). The job of
the computer scientist consists in finding a suitable (formal) approximation to
the modeller’s formal model that can be executed in a computer (or in several
computers) given the available technology. To achieve this, the computer scientist
may have to approximate and simplify certain aspects of the modeller’s formal
model, and it is his job to make sure that these simplifications are not affecting
the results significantly. As an example, Cioffi-Revilla (2002) warns about the
potentially significant effects of altering system size in agent-based simulations.

The Navier-Stokes equations of fluid dynamics are a paradigmatic case in point.
They are a set of non-linear differential equations that describe the motion of
a fluid. Although these equations are considered a very good (formal and fully
specified) model, their complexity is such that analytical closed-form solutions are
available only for the simplest cases. For more complex situations, solutions of the
Navier-Stokes equations must be estimated using approximations and numerical
computation (Heywood et al. 1990; Salvi 2002). Deriving such approximations
would be the task of the computer scientist’s role, as defined here.

One of the main motivations to distinguish between the modeller’s role and the
computer scientist’s role is that, in the domain of agent-based social simulation, it is
the description of the modeller’s formal model that is usually found in academic
papers, even though the computer scientist’s model was used by the authors to
produce the results in the paper. Most often the modeller’s model (i.e. the one
described in the paper) simply cannot be run in a computer; it is the (potentially
faulty) implementation of the computer scientist’s approximation to such a model
that is really run by the computer. As an example, note that computer models
described in scientific papers are most often expressed using equations in real
arithmetic, whereas the models that actually run in computers almost invariably use
floating-point arithmetic.

Finally, the role of the programmer is to implement the computer scientist’s
executable model. In our framework, by definition of the role computer scientist, the
model he produces must be executable and fully specified, i.e. it must include all the
necessary information so given a certain input the model always produces the same
output. Thus, the executable model will have to specify in its definition everything
that could make a difference, e.g. the operating system and the specific pseudo-
random number generator to be used. This is a subtle but important point, since it
implies that the programmer’s job does not involve any process of abstraction or
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simplification; i.e. the executable model and the programmer’s specifications are
by definition the same (see Fig. 7.3). (We consider two models to be the same
if and only if they produce the same outputs when given the same inputs.) The
programmer’s job consists “only” in writing the executable model in a programming
language.5 If the programmer does not make any mistakes, then the implemented
model (e.g. the code) and the executable model will be the same.

Any mismatch between someone’s specifications and the actual model he passes
to the next stage is considered here an error (see Fig. 7.3). As an example, if the
code implemented by the programmer is not the same model as his specifications,
then there has been an implementation error. Similarly, if the computer scientist’s
specifications are not complete (i.e. they do not define a unique model that produces
a precise set of outputs for each given set of inputs), we say that he has made an
error since the model he is producing is necessarily fully specified (by definition of
the role). This opens up the question of how the executable model is defined: the
executable model is the same model as the code if the programmer does not make
any mistakes. So, to be clear, the distinction between the role of computer scientist
and programmer is made here to distinguish (a) errors in the implementation of a
fully specified model (which are made by the programmer) from (b) errors derived
from an incomplete understanding of how a computer program works (which are
made by the computer scientist). An example of the latter would be one where
the computer scientist’s specifications stipulate the use of real arithmetic, but the
executable model uses floating-point arithmetic.

It is worth noting that in an ideal world, the specifications created by each role
would be written down. Unfortunately the world is far from ideal, and it is often the
case that the mentioned specifications stay in the realm of mental models and never
reach materialisation.

The reason for which the last two roles in the process are called “the computer
scientist” and the “programmer” is because, as mentioned before, most agent-
based models are implemented as computer programs and then explored through
simulation (for tractability reasons). However, one could also think of, e.g. a
mathematician conducting these two roles, especially if the formal model provided
by the modeller can be solved analytically. For the sake of clarity, and without great
loss of generality, we assume here that the model is implemented as a computer
program, and its behaviour is explored through computer simulation.

Once the computer model is implemented, it is run, and the generated results are
analysed. The analysis of the results of the computer model leads to conclusions on
the behaviour of the computer scientist’s model, and, to the extent that the computer
scientist’s model is a valid approximation of the modeller’s formal model, these
conclusions also apply to the modeller’s formal model. Again, to the extent that

5There are some interesting attempts with INGENIAS (Pavón and Gómez-Sanz 2003) to use
modelling and visual languages as programming languages rather than merely as design languages
(Sansores and Pavón 2005; Sansores et al. 2006). These efforts are aimed at automatically
generating several implementations of one single executable model (in various different simulation
platforms).
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the formal model is a legitimate particularisation of the non-formal model created
by the thematician, the conclusions obtained for the modeller’s formal model can
be interpreted in the terms used by the non-formal model. Furthermore, if the
modeller’s formal model is representative of the thematician’s model, then there is
scope for making general statements on the behaviour of the thematician’s model.
Finally, if the thematician’s model is satisfactorily capturing social reality, then the
knowledge inferred in the whole process can be meaningfully applied to the target
system.

In the following section, we use our extended framework to identify the different
errors and artefacts that may occur in each of the stages of the modelling process
and the activities that can be conducted to avoid such errors and artefacts.

7.4 Errors and Artefacts

7.4.1 Definition of Error and Artefact and Their Relevance for
Validation and Verification

Since the meanings of the terms validation, verification, error, and artefact are not
uncontested in the literature, we start by stating the meaning that we attribute to
each of them. For us, validation is the process of assessing how useful a model is
for a certain purpose. A model is valid to the extent that it provides a satisfactory
range of accuracy consistent with the intended application of the model (Kleijnen
1995; Sargent 2003).6 Thus, if the objective is to accurately represent social reality,
then validation is about assessing how well the model is capturing the essence of
its empirical referent. This could be measured in terms of goodness of fit to the
characteristics of the model’s referent (Moss et al. 1997).

Verification—sometimes called “internal validation”, e.g. by Taylor (1983),
Drogoul et al. (2003), Sansores and Pavón (2005), or “internal validity”, e.g. by
Axelrod (1997a)—is the process of ensuring that the model performs in the manner
intended by its designers and implementers (Moss et al. 1997). Let us say that
a model is correct if and only if it would pass a verification exercise. Using our
previous terminology, an expression of a model in a language is correct if and only
if it is the same model as the developer’s specifications. Thus, it could well be the
case that a correct model is not valid (for a certain purpose). Conversely, it is also
possible that a model that is not correct is actually valid for some purposes. Having
said that, one would think that the chances of a model being valid are higher if
it performs in the manner intended by its designer. To be sure, according to our
definition of validation, what we want is a valid model, and we are interested in its
correctness only to the extent that correctness contributes to make the model valid.

6See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).
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We also distinguish between errors and artefacts (Galán et al. 2009). Errors
appear when a model does not comply with the requirement specifications self-
imposed by its own developer. In simple words, an error is a mismatch between
what the developer thinks the model is and what it actually is. It is then clear that
there is an error in the model if and only if the model is not correct. Thus, verification
is the process of looking for errors. An example of an implementation error would
be the situation where the programmer intends to loop through the whole list of
agents in the program, but he mistakenly writes the code so it only runs through a
subset of them. A less trivial example of an error would be the situation where it is
believed that a program is running according to the rules of real arithmetic, while
the program is actually using floating-point arithmetic (Izquierdo and Polhill 2006;
Polhill and Izquierdo 2005; Polhill et al. 2005, 2006).

In contrast to errors, artefacts relate to situations where there is no mismatch
between what the developer thinks a model is and what it actually is. Here the
mismatch is between the set of assumptions in the model that the developer thinks
are producing a certain phenomenon and the assumptions that are the actual cause
of such phenomenon. We explain this in detail. We distinguish between core and
accessory assumptions in a model. Core assumptions are those whose presence
is believed to be important for the purpose of the model. Ideally these would be
the only assumptions present in the model. However, when producing a formal
model, it is often the case that the developer is bound to include some additional
assumptions for the only purpose of making the model complete. We call these
accessory assumptions. Accessory assumptions are not considered a crucial part
of the model; they are included to make the model work. We also distinguish
between significant and non-significant assumptions. A significant assumption is
an assumption that is the cause of some significant result obtained when running
the model. Using this terminology, we define artefacts as significant phenomena
caused by accessory assumptions in the model that are (mistakenly) deemed non-
significant. In other words, an artefact appears when an accessory assumption that
is considered non-significant by the developer is actually significant. An example
of an artefact would be the situation where the topology of the grid in a model
is accessory; it is believed that some significant result obtained when running the
model is independent of the particular topology used (say, e.g. a grid of square
cells), but it turns out that if an alternative topology is chosen (say, e.g. hexagonal
cells), then the significant result is not observed.

The relation between artefacts and validation is not as straightforward as that
between errors and verification. For a start, artefacts are relevant for validation
only to the extent that identifying and understanding causal links in the model’s
referent is part of the purpose of the modelling exercise. We assume that this is
the case, as indeed it usually is in the field of agent-based social simulation. A
clear example is the Schelling-Sakoda model of segregation, which was designed
to investigate the causal link between individual preferences and global patterns
of segregation (Sakoda 1971; Schelling 1971, 1978). The presence of artefacts
in a model implies that the model is not representative of its referent, since one
can change some accessory assumption (thus creating an alternative model which
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still includes all the core assumptions) and obtain significantly different results.
When this occurs, we run the risk of interpreting the results obtained with the
(nonrepresentative) model beyond its scope (Edmonds and Hales 2005). Thus, to
the extent that identifying causal links in the model’s referent is part of the purpose
of the modelling exercise, the presence of artefacts decreases the validity of the
model. In any case, the presence of artefacts denotes a misunderstanding of what
assumptions are generating what results.

7.4.2 Appearance of Errors and Artefacts

The dynamics of agent-based models are generally sufficiently complex that model
developers themselves do not understand in exhaustive detail how the obtained
results have been produced. As a matter of fact, in most cases if the exact results
and the processes that generated them were known and fully understood in advance,
there would not be much point in running the model in the first place. Not knowing
exactly what to expect makes it impossible to tell whether any unanticipated results
derive exclusively from what the researcher believes are the core assumptions in
the model or whether they are due to errors or artefacts. The question is of crucial
importance since, unfortunately, the truth is that there are many things that can go
wrong in modelling.

Errors and artefacts may appear at various stages of the modelling process (Galán
and Izquierdo 2005). In this section we use the extended framework explained in the
previous section to identify the critical stages of the modelling process where errors
and artefacts are most likely to occur.

According to our definition of artefact—i.e. significant phenomena caused by
accessory assumptions that are not considered relevant—, artefacts cannot appear
in the process of abstraction conducted by the thematician, since this stage consists
precisely in distilling the core features of the target system. Thus, there should not
be accessory assumptions in the thematician’s model. Nevertheless, there could still
be issues with validation if, for instance, the thematician’s model is not capturing
social reality to a satisfactory extent. Errors could appear in this stage because the
thematician’s specifications are usually expressed in natural language, and rather
than being written down, they are often transmitted orally to the modeller. Thus, an
error (i.e. a mismatch between the thematician’s specifications and the non-formal
model received by the modeller) could appear here if the modeller misunderstands
some of the concepts put forward by the thematician.

The modeller is the role that may introduce the first artefacts in the modelling
process. When formalising the thematician’s model, the modeller will often have
to make a number of additional assumptions so the produced formal model is
fully specified. By our definition of the two roles, these additional assumptions
are not crucial features of the target system. If such accessory assumptions have
a significant impact on the behaviour of the model and the modeller is not aware
of it, then an artefact has been created. This would occur if, for instance, (a) the
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thematician did not specify any particular neighbourhood function, (b) different
neighbourhood functions lead to different results, and (c) the modeller is using only
one of them and believes that they all produce essentially the same results.

Errors could also appear at this stage, although it is not very likely. This is so
because the specifications that the modeller produces must be formal, and they are
therefore most often written down in a formal language. When this is the case, there
is little room for misunderstanding between the modeller and the computer scientist,
i.e. the modeller’s specifications and the formal model received by the computer
scientist would be the same, and thus there would be no error at this stage.

The role of the computer scientist could introduce artefacts in the process. This
would be the case if, for instance, his specifications require the use of a particular
pseudorandom number generator; he believes that this choice will not have any
influence in the results obtained, but it turns out that it does. Similar examples could
involve the arbitrary selection of an operating system or a specific floating-point
arithmetic that had a significant effect on the output of the model.

Errors can quite easily appear in between the role of the computer scientist
and the role of the programmer. Note that in our framework, any mismatch
between the computer scientist’s specifications and the executable model received
by the programmer is considered an error. In particular, if the computer scientist’s
specifications are not executable, then there is an error. This could be, for instance,
because the computer scientist’s specifications stipulate requirements that cannot
be executed with present-day computers (e.g. real arithmetic) or because it does not
specify all the necessary information to be run in a computer in an unequivocal way
(e.g. it does not specify a particular pseudorandom number generator). The error
then may affect the validity of the model significantly, or may not.

Note from the previous examples that if the computer scientist does not provide
a fully executable set of requirement specifications, then he is introducing an error,
since in that case, the computer program (which is executable) would be necessarily
different from his specifications. On the other hand, if he does provide an executable
model but in doing so he makes an arbitrary accessory assumption that turns out to
be significant, then he is introducing an artefact.

Finally, the programmer cannot introduce artefacts because his specifications are
the same as the executable model by definition of the role (i.e. the programmer does
not have to make any accessory assumptions). However, he may make mistakes
when creating the computer program from the executable model.

7.4.3 Activities Aimed at Detecting Errors and Artefacts

In this section we identify various activities that the different roles defined in the
previous sections can undertake to detect errors and artefacts. We consider the use
of these techniques as a very recommendable and eventually easy to apply practice.
In spite of this, we should warn that, very often, these activities may require a
considerable human and computational effort.



7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 135

Modeller’s activities:

• Develop and analyse new formal models by implementing alternative accessory
assumptions while keeping the core assumptions identified by the thematician.
This exercise will help to detect artefacts. Only those conclusions which are
not falsified by any of these models will be valid for the thematician’s model.
As an example, see Galán and Izquierdo (2005), who studied different instan-
tiations of one single conceptual model by implementing different evolutionary
selection mechanisms. Takadama et al. (2003) conducted a very similar exercise
implementing three different learning algorithms for their agents. In a collection
of papers, Klemm et al. (2003a, 2003b, 2003c, 2005) investigate the impact
of various accessory assumptions in Axelrod’s model for the dissemination of
culture (Axelrod 1997b). Another example of studying different formal models
that address one single problem is provided by Kluver and Stoica (2003).

• Conduct a more exhaustive exploration of the parameter space within the
boundaries of the thematician’s specifications. If we obtain essentially the same
results using the wider parameter range, then we will have broadened the scope of
the model, thus making it more representative of the thematician’s model. If, on
the other hand, results change significantly, then we will have identified artefacts.
This type of exercise has been conducted by, e.g. Castellano et al. (2000) and
Galán and Izquierdo (2005).

• Create abstractions of the formal model which are mathematically tractable. An
example of one possible abstraction would be to study the expected motion of
a dynamic system (see the studies conducted by Galán and Izquierdo (2005),
Edwards et al. (2003), and Castellano et al. (2000) for illustrations of mean-field
approximations). Since these mathematical abstractions do not correspond in a
one-to-one way with the specifications of the formal model, any results obtained
with them will not be conclusive, but they may suggest parts of the model where
there may be errors or artefacts.

• Apply the simulation model to relatively well-understood and predictable sit-
uations to check that the obtained results are in agreement with the expected
behaviour (Gilbert and Terna 2000).

Computer scientist’s activities:

• Develop mathematically tractable models of certain aspects, or particular cases,
of the modeller’s formal model. The analytical results derived with these models
should match those obtained by simulation; a disparity would be an indication of
the presence of errors.

• Develop new executable models from the modeller’s formal model using alter-
native modelling paradigms (e.g. procedural vs. declarative). This activity will
help to identify artefacts. As an example, see Edmonds and Hales’ (2003)
reimplementation of Riolo et al. (2001) model of cooperation among agents using
tags. Edmonds reimplemented the model using SDML (declarative), whereas
Hales reprogrammed the model in Java (procedural).
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• Rerun the same code in different computers, using different operating systems,
with different pseudorandom number generators. These are most often accessory
assumptions of the executable model that are considered non-significant, so any
detected difference will be a sign of an artefact. If no significant differences are
detected, then we can be confident that the code comprises all the assumptions
that could significantly influence the results. This is a valuable finding that can
be exploited by the programmer (see next activity). As an example, Polhill et
al. (2005) explain that using different compilers can result in the application of
different floating-point arithmetic systems to the simulation run.

Programmer’s activities:

• Reimplement the code in different programming languages. Assuming that the
code contains all the assumptions that can influence the results significantly,
this activity is equivalent to creating alternative representations of the same
executable model. Thus, it can help to detect errors in the implementation.
There are several examples of this type of activity in the literature. Bigbee et
al. (2007) reimplemented Sugarscape (Epstein and Axtell 1996) using MASON.
Xu et al. (2003) implemented one single model in Swarm and Repast. The
reimplementation exercise conducted by Edmonds and Hales (2003) applies here
too.

• Analyse particular cases of the executable model that are mathematically
tractable. Any disparity will be an indication of the presence of errors.

• Apply the simulation model to extreme cases that are perfectly understood
(Gilbert and Terna 2000). Examples of this type of activity would be to run
simulations without agents or with very few agents, explore the behaviour of
the model using extreme parameter values, or model very simple environments.
This activity is common practice in the field.

7.5 Summary

The dynamics of agent-based models are usually so complex that their own
developers do not fully understand how they are generated. This makes it difficult, if
not impossible, to discern whether observed significant results are legitimate logical
implications of the assumptions that the model developer is interested in or whether
they are due to errors or artefacts in the design or implementation of the model.

Errors are mismatches between what the developer believes a model is and what
the model actually is. Artefacts are significant phenomena caused by accessory
assumptions in the model that are (mistakenly) considered non-significant. Errors
and artefacts prevent developers from correctly understanding their simulations.
Furthermore, both errors and artefacts can significantly decrease the validity of a
model, so they are best avoided.

In this chapter we have outlined a general framework that summarises the
process of designing, implementing, and using agent-based models. Using this
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framework we have identified the different types of errors and artefacts that may
occur in each of the stages of the modelling process. Finally, we have proposed
several activities that can be conducted to avoid each type of error or artefact.
Some of these activities include repetition of experiments in different platforms,
reimplementation of the code in different programming languages, reformulation
of the conceptual model using different modelling paradigms, and mathematical
analyses of simplified versions or particular cases of the model. Conducting these
activities will surely increase our understanding of a particular simulation model.
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Further Reading

Gilbert (2007) provides an excellent basic introduction to agent-based modelling.
Chapter 4 summarises the different stages involved in an agent-based modelling
project, including verification and validation. The paper entitled “Some myths and
common errors in simulation experiments” (Schmeiser 2001) discusses briefly some
of the most common errors found in simulation from a probabilistic and statistical
perspective. The approach is not focused specifically on agent-based modelling but
on simulation in general. Yilmaz (2006) presents an analysis of the life cycle of a
simulation study and proposes a process-centric perspective for the validation and
verification of agent-based computational organisation models. An antecedent of
this chapter can be found in Galán et al. (2009). Finally, Chap. 9 in this volume
(David et al. 2017) discusses validation in detail.
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Chapter 8
The Importance of Ontological Structure:
Why Validation by ‘Fit-to-Data’ Is Insufficient

Gary Polhill and Doug Salt

Abstract This chapter will briefly describe some common methods by which
people make quantitative estimates of how well they expect empirical models to
make predictions. However, the chapter’s main argument is that fit-to-data, the
traditional yardstick for establishing confidence in models, is not quite the solid
ground on which to build such belief some people think it is, especially for the
kind of system agent-based modelling is usually applied to. Further, the chapter
will show that the amount of data required to establish confidence in an arbitrary
model by fit-to-data is often infeasible, unless there is some appropriate ‘big data’
available. This arbitrariness can be reduced by constraining the choice of model.
In agent-based models, these constraints are introduced by their descriptiveness
rather than by removing variables from consideration or making assumptions for the
sake of simplicity. By comparing with neural networks, we show that agent-based
models have a richer ontological structure. For agent-based models, in particular,
this richness means that the ontological structure has a greater significance and yet
is all too commonly taken for granted or assumed to be ‘common sense’. The chapter
therefore also discusses some approaches to validating ontologies.

Why Read This Chapter?
When you have built an agent-based model, you need some way of assessing how
‘good’ it is. We will tell you how this is done traditionally in empirical contexts,
through measures of fit-to-data. You will learn why fitting to data is not enough
in the kind of situation where agent-based models are useful and why you also
need to assess the model’s ontological structure. The chapter will tell you what the
ontological structure is, how to assess it and whether and if so how it can be traded
off against fit-to-data.
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8.1 Introduction

The chapter argues for the importance of the ontological structure in social
simulation – that is, what basic entities exist, their attributes and their relationships
with each other. In particular, simply getting a good fit of the outcomes to data
is not enough to establish the adequacy of the model. To make this point vivid,
it considers the opposite extreme, an example of a machine learning algorithm
where the ‘model’ is simply induced from the data – where there is the minimum
predefined ontological structure. The example chosen is that of neural networks,
though almost any black-box machine learning approach would have done as
well.

Neural networks are universal function approximators (Hornik et al. 1989). This
means that given a set of data, they can approximate it to within an arbitrary degree
of accuracy simply by adding more parameters. Though it may seem strange to
compare neural networks with agent-based models for the purposes of validation
and generalization, there are useful lessons from so doing that illustrate where agent-
based models add value to traditional modelling approaches and why validation
is not so straightforward. The main contrast between neural networks and agent-
based models comes down to the ‘ontology’. Essentially, apart from the labels
assigned to the input and output units of a neural network, neural networks don’t
have an ontology at all. What they do have is a mathematical structure that allows
the number of parameters to be arbitrarily varied and, with that, arbitrary degrees
of fit to a set of data to be achieved. By contrast, agent-based models have a rich
and highly descriptive ontology but, like neural networks, potentially have a large
number of parameters that can be varied (especially if we consider each agent
uniquely).

In this chapter, we examine some approaches to validation and generalization in
neural networks and consider what they tell us about agent-based modelling. Our
arguments are that validation needs to look beyond the relatively trivial question
of fit-to-data, especially in non-ergodic complex systems. Rather than being a
weakness of agent-based modelling, the challenges of validation and generalization
point to its strengths, especially in social systems, where the language used to
describe them is influenced by evolving cultural considerations.

The chapter starts with an introduction to neural networks followed by
how these are calibrated and validated. It then discusses the issue at the
heart of the chapter the importance of predetermined model bias – that is the
imposed structure derived from knowledge about what is being modelled. It
uses a particular measure (the VC dimension) to show the amount of data
needed to infer a good model without imposing such a bias is typically
infeasible. It summarizes the various measures one might use for checking
fit-to-data. This paves the way for a discussion on validating ontologies
discussing a number of approaches and the tools that might be useful for
this.
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8.1.1 Introduction to Neural Networks

In this section, we will briefly explain what neural networks are, the mathematical
formulas that underpin them (in Appendix 1) and the way they are structured.
The main points we wish to introduce are that, though neural networks have
tremendous potential to approximate data, there is nothing about their structure
or the mathematics underpinning their functioning that necessarily reflects any
structure or mathematics in whatever system the data were taken from.

Neural networks were originally conceived as simulations of the brains but
are essentially networks of nonlinear functions with parameters that are adjusted
according to a learning rule. There are several different kinds of neural network
mathematically speaking, and for each kind, there can be several different learning
rules and minor adaptations and variations thereof. Biologically, a neuron is a cell
with axons connecting it to other neurons. In an agent-based simulation of a brain,
we would simulate a neuron as an agent and an axon as a link. The behaviour of
the neuron is simply to emit an electrical pulse periodically. The more frequent
the pulse, the more ‘excited’ the neuron. Connections between neurons can be
excitatory or inhibitory. An excitatory connection means that there is a positive
relationship between the excitation of the two connected neurons: all other things
being equal, one neuron’s excitement increases that of the other. An inhibitory
connection means that the relationship is negative – one neuron’s excitement
decreases that of the other. The connection has a strength – the stronger the
connection between one neuron and another, the more significant the relationship
is in comparison with other neurons the neuron is connected to.

When simulating neurons, the pulsation is ignored and the frequency of pulsation
modelled as a variable. Simulated neurons are typically called nodes. The axons
form the links in a directed graph connecting the nodes, and the directedness means
that nodes have input axons and output axons. Simulated axons are typically called
weights, largely because it is the value of the weight (representing the strength
of the connection) that is of primary interest. The weights of a neural network
are its parameters, and the job of the learning algorithm is to determine their
values. The qualitative description of the behaviour of neurons is of course given
a precise mathematical specification in simulated neural networks; this is provided
in Appendix 1 for the benefit of those who are interested.

A further simplification of the structure of the network is to arrange the nodes
into distinct layers. (It can be proved that this does not lead to loss of potential
functionality.) This simplification means that the choice of network structure is
simply a question of determining the number of layers, and for the layers that are
not input or output layers (the so-called hidden layers), the number of nodes to
use in each layer. The number of nodes in the input and output layers is of course
determined by the dimensionalities of the domain and range of the function to be
approximated. It has been proved (Cybenko 1989; Funahashi 1989; Hornik et al.
1989) that one hidden layer is sufficient to approximate any function. Although
having more hidden layers can mean that the contribution of the weights closer to
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the input units to the difference between the actual and desired output of the network
is more diluted, it can also be shown that more efficient network topologies (in terms
of number of weights) involving two hidden layers can achieve the same level of
accuracy that can be achieved with one hidden layer (Cheng and Titterington 1994;
Chester 1990).

The algorithms used to determine the weights such that the network as a whole
provides a good fit-to-data are not particularly of interest here. This material is
covered in various introductory textbooks on neural networks (e.g. Bishop 1995;
Gurney 1997; Hertz et al. 1991). What is of interest is that, having seen the structure
of a neural network and what it does, it is immediately clear that there is nothing in
that structure that reflects the real world, except for the assignment of input nodes
and output nodes to specific variables in the data to be fitted. The numbers of hidden
nodes and layers must capture any patterns in how the real-world mechanisms
interact, the choice of which essentially reflects how complex the modeller expects
the function to fit the data to need to be.

Neural networks have the absolute minimum in the way of ontological structure
it is possible to have. Their ‘content’ comes from the data they are trained to fit. We
thus next discuss the principles behind adjusting a model to fit its data, checking a
model’s fit to available evidence and how this is done in neural networks.

8.1.2 Calibration, Validation and Generalization in Neural
Networks

Calibration, validation and generalization are three steps in the development and
application of any model. We discuss them here in relation to neural networks, first
with a view to clarifying what we mean by those terms and second to discussing
some of the ways in which generalization (the application of the model) can go
wrong even for a well-validated model.

Since various terms are used in the modelling literature for the three processes
intended here by the words ‘calibration’, ‘validation’ and ‘generalization’, it is
best to be clear what is meant. The process begins with a set of data, with some
explanatory (input) variables and response (output) variables, and a model with a
predefined structure that has some parameters that can be adjusted. The data are split
into two not necessarily equal parts. The larger part is typically used for calibration:
adjusting the parameters so that the difference between the model’s prediction for
the input variables in the data and the corresponding output variables in the data (the
error) is minimized. In neural networks, this is referred to as training and entails
adjusting the values of all the weights.

There is a caveat to the use of the term ‘minimization’. For reasons such as
measurement error in the data, if a function is capable of providing an exact fit
to the data, this is potentially undesirable and is seen as overfitting. So, when we
say we want to minimize the error, it is usually understood that we wish to do so
without overfitting.
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Bearing this in mind, at the end of the calibration process, you have a param-
eterized neural network with all the weights specified that you now want to be
able to use to make predictions with; except, of course, if you want to have some
degree of confidence in those predictions. Validation is the process of developing
that confidence, and it is achieved by using the data you kept aside and didn’t use
during calibration to estimate how good your future predictions will be. So, having
reached a point where you are happy with the error on the calibration data, you use
the validation data to tell you how confident you should be in the model you have
fitted: the error rate on the validation set is an estimate of the expected error rate for
prediction.

Generalization is the ability of the model to provide output for untrained input.
There are two aspects to this. The first is whether the required input can be
represented using the formalism provided by the model. In the case of neural
networks, the question seems simply to be whether the input can be adequately
expressed using the same set of dimensions and any encoding thereof as the data
used for calibration and validation. It may seem unfair to expect a model to be able
to provide output for cases that cannot be expressed using the ‘language’ the model
was built with. However, sometimes, arguably, that is what happens. Measures of
inflation, for example, are based on a ‘basket of goods’ that changes from time to
time as people’s buying habits change. This change arguably changes the meaning
of inflation. Though something of a straw man, if you have calibrated a model using
a measure of inflation that uses one basket of goods and then naively expect it to
give meaningful output for a measure of inflation that uses another, then perhaps
you are expecting the model to provide output for cases that cannot be expressed
using the language the model was built with.1 Similar problems exist with other
social statistics that might be used as variables input to or output from a model,
particularly where there are changes in the way the variables are measured from one
region to another.

A second problem comes from what you left out of the model when you first built
it. Although this too may seem like an unfair criticism, perhaps when you built the
original model, a particular variable was not included as an input variable because
it was not seen as having any significant relationship with the output. Since the
model was calibrated and validated, however, a large change in the ignored variable
might have occurred that has affected the relationships between the variables you
did include. So, although when you come to compute a prediction for a new input
you have all the data you need, and can perform the computation, really, the values
for the variables you have as inputs to your model do not adequately reflect the
scenario any more. This is known as ‘omitted variable bias’ in the econometrics
literature (see, e.g. Clarke 2005).

1Less naively, you would use a calculated inflation figure for the old basket of goods as input to
the model; however, if people are not buying things in the old basket, the model may still not be
providing meaningful output.
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A final problem is a consequence of encoding variables that have nominal values.
Assuming an appropriate encoding of nominals in the input variables of the model,
the calibration and validation data may only have provided a subset of the nominals
the variable can have. The generalization may, however, be for a value of the
nominal that was not in the data used to construct the model. For neural networks,
this is less of an issue than with symbolic AI machine learning algorithms: one of
the supposed advantages of neural networks is that they are less ‘brittle’ with respect
to the language of representation of the states of the world, because they do not rely
on the language having a specific vocabulary to represent every possible state that
might ever be of interest (Aha 1992; Hanson and Burr 1990; Holland 1986).

In essence, calibration is the process of finding the parameters of a neural
network (or more generally, any model) that best fit your data. Validation is the
process of establishing the confidence you can expect to have in the predictions of
the model based on the data you have got. Generalization is the capability of a model
to make predictions in new situations. There are various reasons why that capability
may be questioned. Apart from the relevance of the data used for calibration and
validation in the new context, the reasons relate to how the modeller chose to encode,
or represent, the data.

8.1.3 Bias vs. Variance

The representation of the data is not the only choice the modeller makes. This
section covers the dilemma a modeller faces when choosing the structure of the
model. In the case of neural networks, that structure is the number of layers and
hidden units, which collectively determine the number of weights or parameters the
model has. The fewer the number of parameters, the easier the model is to calibrate,
but there is a risk of oversimplification. Since it is so easy to add more parameters to
a neural network, there is a temptation to add more parameters. We introduce some
rather advanced mathematics (Vapnik-Chervonenkis theory) to argue that in terms
of demand for data, adding more parameters can be exponentially costly.

Not all approaches using mathematical functions are ontology-free in the way
neural networks are. If we are modelling oscillatory systems, for example, we
might start with trigonometric functions. In general, the set of functions we are
willing to consider for modelling a system constitutes our ‘bias’ – the smaller the
set of functions, the greater the bias. Even neural networks have a ‘bias’ (not to be
confused with the ‘bias’ node in the network itself), which is inversely related to the
number of parameters (weights) in the network. In the ideal world, we would have a
very high bias that constrained the set of functions we would consider so much that
calibration, the search for ‘the’ function we are going to accept as modelling the
target system, is trivial. The price to pay for this bias is that the data may not fit very
well to the set of functions we are willing to consider; if we were only willing to
expand that set of functions more, we would be able to achieve a much better fit to
the data. The opposite of this meaning of ‘bias’ is ‘variance’; in neural networks, this
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variance is directly related to the number of weights in the network. High-variance
models can be adjusted using the parameters to realize a wide range of input-output
mappings, with the obvious cost of increasing the volume of search space in which
to find the optimum such as mapping.

Introducing bias just to make the modelling process feasible is arguably unsci-
entific: you are allowing your chosen modelling technique to drive your analysis of
a system, rather than allowing your knowledge of that system to determine the way
you describe it in your model. This kind of unscientific bias is one of the practices
that has led some in the agent-based modelling community to be critical of making
assumptions ‘for the sake of simplicity’ (e.g. Moss 2002; Edmonds and Moss 2005).
Although some of these criticisms are focused on the infeasibility of the analysis
itself were a more realistic representation to be used that did not make simplifying
assumptions (e.g. the computation is undecidable), the feasibility of an empirical
modelling process does depend on the availability of data.

Like neural networks, agent-based models potentially have large numbers of
parameters – a multiple of the number of agents and the number of links in the social
network. These parameters determine the heterogeneity and interaction dynamics
of the model. For more traditional modelling paradigms, having large numbers of
parameters is regarded with suspicion. From a practical perspective, there is a good
reason for this heuristic: a high-variance model is more challenging to calibrate.
Each dimension of parameter space adds exponentially to the scale of the search task
and to the requirement for data. Another reason is an interpretation of Ockham’s
razor in a modelling context: if I have two models with the same behaviour, I
prefer the one with fewer parameters. Ockham’s razor is often stated as entia non
sunt multiplicanda praeter necessitatum (literally, entities should not be multiplied
more than necessary, or more naturally, explanations should not use unnecessary
entities) – were it not for the qualifier, this statement would be the antithesis of
agent-based modelling!2

However, the orthogonality of the parameters in agent-based models may be
more questionable than in traditional mathematical models. Essentially, in tra-
ditional mathematical modelling, each parameter is contributing to the potential
‘wiggliness’ (to use a term from the spline literature, e.g. Wood and Augustin 2002)
of the function the model realizes. Though it is possible (e.g. Gotts and Polhill
2010), it is not necessarily the case that having another agent in the system will
mean that the dynamics of the system as a whole are hugely different; adding
another connection in a neural network, by contrast, does increase the ‘power’ of its
function to realize different shapes in the mapping from input to output by adjusting
the weights. The suspicion of traditional mathematical modellers towards agent-
based models because of the apparently large number of parameters may therefore

2The case for agent-based modelling being that it is necessary to represent all the agents if you
want to understand the emergent system-level dynamics.
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not be justified.3There may be a way to assess the question of the ‘power’ a system
of interacting agents has to realize different ‘shapes’ from input to output (however,
that is understood in an ABM context) quantitatively. In the early 1970s, Vapnik
and Chervonenkis (1971) published a paper that provided a lower bound on the
probability that the difference between the actual predictive power of a classifier
system and that estimated from calibration is more than a small amount, based
on the amount of data it is given and something called the ‘Vapnik-Chervonenkis
dimension’ of the classifier. The inequality is written thus (Vapnik and Chervonenkis
1971, p. 269):

P .jg � hj > "/ � 4m.2n/e�"2n=8 (8.1)

where g and h are the actual and estimated generalization ability, respectively (the
proportion of instances that are correctly classified), " is the small amount we want
to bound the difference between g and h to, n is the amount of data (as number of
instances) and m(x) is a function that tells you the number of different realizations
the classifier can make on x datapoints. The function m() is equal to 2x until x D dVC,
the Vapnik-Chervonenkis (VC) dimension of the classifier, after which it continues
to grow but at a polynomial rate less than 2x and no more than xdVC C 1 (Hertz
et al. 1991, p. 154). A rough idea of the shape of the growth function m() can be
seen in Fig. 8.1, particularly the red (top) curve when dVC D 4. In a log-log plot,
m() is convex until a critical point at which it becomes linear; as stated above, this
critical point is the VC dimension of the function dVC, but the red curve in Fig. 8.1
is 4 m(2n), so in fact the critical point on the red curve should be at n D 0.5dVC.
However, since xdVC C 1 > 2x for lower values of x, the polynomial upper bound
on m() isn’t informative; the critical point in Fig. 8.1 at which m() becomes linear is
therefore higher than would otherwise be expected.

To understand (8.1) a bit better, imagine " D 0.01. That means you want the
difference between the actual and estimated abilities to be less than 0.01 ideally. So,
suppose you have a validation ability (h) of 0.95 (5% of the model’s predictions on
the validation data are wrong); then with " D 0.01, you are saying you want your
future predictions to have an ability (g) in the range [0.94, 0.96]. How certain do
you want to be that you have achieved that? Suppose you want to be at least 99.9%
certain, so one in a thousand predictions will have an ability outside the above range.
Then you want the probability on the left-hand side of (8.1), P, to be 0.001. How
can you achieve this? The right-hand side says that the probability can be reduced
by using a function with a smaller VC dimension (so m(2n) is smaller), using more
data (increasing n) or being less fussy about how close your validation ability is to

3Part of this is the confusion between ‘free parameters’, which can be adjusted to make the results
fit data, and parameters with values that are, at least in theory, empirically observable, even if
currently unknown. Agent-based models have a lot of the latter but relatively few of the former.
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Fig. 8.1 Plots showing the
two expressions in (8.1).
Coloured curves are upper
bounds 4 m(2x) for dVC in f1
(blue), 2, 3, 4 (red)g. The
black curves show
0.001/exp.(�"2x/8) for " in
f0.05, 0.01, 0.001g (left to
right, respectively)

the ability you expect in future predictions (increasing "). To achieve a probability
bound of 0.001, you need exp.("2n/8) to be at least a thousand times more than
4 m(2n).

Mapping an ABM context to a classifier one would be somewhat awkward,
though we could ask under what conditions (these conditions being the ‘input
space’) the ABM produces a certain outcome – an outcome that either happens or
doesn’t. However, there is the additional problem that any stochasticity in the model
will possibly generate different outcomes given the same conditions. Provided these
issues can be addressed, given a thorough exploration of the ABM’s parameter
space, we may be able to estimate the VC dimension of the model given such an
interpretation of its behaviour. We could then see the difference that adding another
agent had and compare both with adding a parameter to a neural network, where
approaches to estimating the VC dimension or computing it directly have already
been investigated (e.g. Abu-Mostafa 1989; Watkin et al. 1993).

One of the rather depressing consequences of using the VC formula is that the
value of n needed to get P down to an acceptable level turns out to be rather high,
even for models with quite low VC dimension. Figure 8.1 plots expressions in (8.1)
on a log-log scale, using the x-axis for n, the amount of data. The coloured curves
show upper bounds for 4 m(2n), and the black curves show P/exp.(�"2n/8) for "

in each of f0.05, 0.01, 0.001g and P D 0.001. The intersections of the black and
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coloured curves show the values of n (on the x-axis) at which P in (8.1) has an
upper bound of 0.001. For example, if dVC D 2 (cyan curve), and " D 0.05, then
n needs to be roughly 105 for P to have an upper bound of 0.001. For quantitative
social data, that would be a very simple model for a very expensive questionnaire.

These high estimates are partly a consequence of the fact that the VC formula
and growth function m() are both upper bounds. However, the high estimates are
also a consequence of the function under scrutiny essentially being an arbitrary
choice, without any other information about the system the data have come from
or the way the model describes that system. The VC formula is therefore very
much a ‘worst case’, but one that applies to neural networks insofar as relatively
little information about the system is encoded in the network’s topology. That
information is essentially the modeller’s assumptions about the appropriate level
of ‘wiggliness’ needed to fit the data – which may be as much about the pragmatics
of training the network and the amount of data available as it is a reflection of the
system the data have come from.

Using knowledge to constrain the choice of model is one way to reduce the
VC estimate. Traditionally, this might be achieved effectively by reducing the
VC dimension of the set of models being considered, using the kind of practice
criticized above for being ‘unscientific’. Introducing bias by removing variables
from consideration, reducing the number of parameters on terms using those
variables (e.g. by only considering linear models) or making other oversimplifying
assumptions is, however, not the only way that we can constrain our choice of
model. Though the impact on the VC dimension is less clear, in agent-based
models, we can also constrain our choice of model by making it more ‘descriptive’
(Edmonds and Moss 2005). This essentially amounts to appropriately tuning the
model’s ‘ontology’ or ‘microworld’, but before considering the ontology in more
detail, since agent-based models are typically applied to complex systems, we will
consider some arguments about validation by fit-to-data in such systems.

8.1.4 Complex Systems and Validation by Fit-to-Data

Since agent-based models are applied to complex systems, this section introduces an
important article (Oreskes et al. 1994) posing arguments about the degree to which
we should trust fit-to-data as a measure of our confidence in a model’s predictions in
complex open systems. We move on to criticize Ockham’s razor – a heuristic often
used by modellers to give preference to simpler models with the same fit-to-data and
one that has already been argued against on different grounds by Edmonds (2002).

Naomi Oreskes et al. (1994) have argued eloquently that environmental systems
(and hence socio-environmental systems) are ‘open’, and hence traditional valida-
tion expressed as fit-to-data commits a logical fallacy when used as a basis to judge
the degree of belief we should have that a model is a ‘good’ one. Essentially, the
fallacious argument affirms the consequent by starting with the observations that
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• Good models fit the data (G � F).
• My model fits the data (F).

and concluding that

• My model is a good model (`G).

Oreskes et al. (1994) assert that (prejudices such as Ockham’s razor aside)
in closed systems, only good models fit the data (G � F); in open systems, the
observed data could have been affected by external influences outside the system.
When fitting functions to data from complex open systems (such as social and
ecological systems), the ability to exclude or control for external influences is highly
constrained. A model of a subsystem that just fits to data will likely also be fitting
to external influences on that subsystem.

If a model somehow captures the effect of an external influence that it is not
supposed to model, we should be rather suspicious. Further, as Filatova et al. (2016)
point out, disturbances to a complex socioecological system need not only arise
from exogenous influences but can also grow from endogenous gradual change. If
there are multiple ‘attractors’ and the data have followed one path at a bifurcation
but a model follows another, the model will fail to validate. Over multiple runs of the
model, of course, it might take the same path as the data did half the time. Given the
choice between two models, one of which is simpler, and always follows the path
the data did (because it is high bias and doesn’t bifurcate), and another of which is
more complicated, and only follows the path the data did half the time, Ockham’s
razor and fit-to-data heuristics tell us to choose the former. However, it is arguably
the latter model that has more faithfully captured the underlying dynamics of the
system.

The probability of following one trajectory rather than another need not nec-
essarily be 0.5. It could be 1E–6, and it just so happened that this time, the real
world followed the one-in-a-million chance trajectory. The model that captures the
bifurcation may not be run enough times that the path the data took is observed. The
point remains that in complex systems, fit-to-data is not necessarily an indicator that
we have a ‘good’ model. If our model is ontology-free, then it is doubly awful, an
oversimplified bendy sheet that hardly reflects the system it is modelling: ‘It is a tale
told by an idiot, full of sound and fury, signifying nothing’.4

To summarize, validation by fit-to-data is not necessarily (on its own) a helpful
measure in complex systems. No matter what the outcome, there exists an argument
both for and against the model (Table 8.1). Nevertheless, it is still a potentially useful
information about a model, and we show in the box various methods for computing
validation error on a set of data or otherwise comparing models’ expected prediction
ability. As is apparent from reading Brewer et al. (2016), there is controversy
in some of the modelling literatures about which measure of expected prediction
ability is ‘best’. This can lead to reviewers complaining that one measure should

4Macbeth, Act V, Scene V.
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Table 8.1 Arguments about validation by fit-to-data and whether the model is ‘good’ or ‘bad’

Validation result Good model Bad model

Acceptable The model has fit the data, and we
estimate it will predict accurately
in the future

Although the model has fit-to-data,
it is oversimplified, relies on
unrealistic assumptions, doesn’t
really explain anything or doesn’t
allow for the possibility that things
could have turned out differently. Its
predictions should not be trusted

Not acceptable The particular course that history
took was highly contingent on
phenomena that it would not be
reasonable to include in any model.
There is a ‘possible world’ in
which the model would be right.
Alternatively, the model reproduces
‘patterns’ (as per Grimm et al.
1996) in the data, if not the data
itself. It might still be worth
considering the model’s predictions

The model did not fit the empirical
data we have, so it must be rejected
and its predictions ignored

have been used rather than another, but since reviewers’ statistical fetishes are
impossible to predict, we cannot provide guidance as to how to satisfy them.
However, we do give a summary of the various measures and their properties in
Appendix 2 for reference.

8.1.5 Validating Ontologies

After summarizing the foregoing arguments, this section elaborates more on the
structure of the model, which may be referred to as its ‘ontology’. After briefly
introducing ontologies, we build an argument for why agent-based models have the
scope to pay more attention to this side of modelling based on the expressivity of
a formal language for writing ontologies. We then consider various ways in which
ontologies could be ‘validated’ – in the sense of establishing confidence in them,
finding that this is far from being a settled area.

The foregoing pages had two objectives. One was to summarize all the different
ways people try to estimate how well their model has fit some empirical data, to
give them some kind of (preferably quantitative) idea of how much they should
believe in its predictions. (See also Appendix 2.) The other is to argue that there is
more to evaluating a model than just looking at its fit-to-data, largely by showing
various ways in which fit-to-data may not be as convincing an indicator of a model’s
suitability as some appear to believe it to be. To summarize the reasons, the first two
of which may seem a little ‘unfair’ but should be anticipated in complex social
systems:
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• Simplifying assumptions that apply during calibration may not apply at
prediction.

• The (formal) language you have used to represent the system during calibration
may not be adequate during prediction.

• You may not have enough data to justify a model with a high VC dimension, but
using a model with a lower VC dimension would be oversimplifying.

• In complex/non-ergodic systems, at a bifurcation point, the empirical data may
have followed a path that had a low probability in comparison with other paths it
could have taken.

The various methods for measuring estimated prediction ability say relatively
little about the structure of the model itself, except, in the case of metrics like the
AIC and BIC, by penalizing models for having too many parameters. In neural
networks, this is the number of weights the network has, but assumptions about
functional form are embedded in the structure of the network itself – how the nodes
are arranged into layers and/or connected to each other. This structure, however,
only reflects the flexibility the network will have to achieve certain combinations of
outputs on all the inputs it might be given (its ‘wiggliness’). This is a rather weak
ontological commitment to make to a set of data.

Neural networks are an extreme – one in which there is the minimum repre-
sentative connection between the empirical world and the nodes and network of
connecting weights that determine the behaviour of the model. They are nevertheless
useful when there is a large amount of data available for training, the modelled
system isn’t complex, and one is not particularly concerned about how the input-
output mapping is achieved, only that whatever mapping obtained has good
prediction ability.

Neural networks are very interesting to contrast with agent-based models, which
also feature networks of behaving entities, but where the network of connections and
the behaving entities are supposed to have a representative link with the empirical
world. In the artificial intelligence community, this representative structure would
be referred to as the microworld (e.g. Chenoweth 1991) of the simulation. A famous
example is Winograd’s (1972) blocks world. However, with advances in formal
languages for expressing such representative structure, we could also refer to these
microworlds as ontologies.

Ontologies in computer science are defined by Gruber (1993) as formal, explicit
representations of shared conceptualizations. In general, ontologies cover a broad
range of formalized representations, including diagrams, computing code and even
the structure of a filesystem, but the development of description logics (Baader and
Nutt 2003) means that there are formal languages for ontologies to which automated
reasoning can be applied. One of the most popularly used languages for ontologies,
which draws on description logics, is the Web Ontology Language (OWL; Cuenca
Grau et al. 2008; Horrocks et al. 2003). The application of OWL to agent-based
modelling has been discussed by a number of authors (e.g. Gotts and Polhill 2009;
Livet et al. 2010), but of particular relevance for our purposes is the application of
OWL to representing the structure of agent-based models (Polhill and Gotts 2009).
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Mappings between the programming languages used for implementing agent-based
models and OWL ontologies are discussed by Polhill (2015) and Troitzsch (2015).

For the purposes of highlighting why the ontology of an agent-based model
becomes so much more significant, one of the measures of a description logic
is its expressivity. The expressivity of a logic is essentially the various kinds
and combinations of axiom it allows you to create whilst still having decidable
reasoning. We might compare different modelling approaches according to the
ontological expressivity needed to capture descriptions of the states the model can
have. Appendix 3 compares the expressivity of the ontologies of various modelling
approaches and the corresponding description logics.

The fact that agent-based models have a generally richer expressivity for defining
the ontologies over which they operate means that some of the complaints of
qualitative social researchers about quantitative social researchers are brought into
sharper focus. The ontology of an agent-based model is less constrained by the
amount of data available, aesthetic concerns about elegance or the need to reduce
the number of variables to enable tractable mathematical evaluation of equilibria.

It is also much clearer that the ontology is by and large a subjective choice.
Nevertheless, we wish to have an idea of how ‘good’ that subjective choice is –
something that may be as much about normativity in the community with an interest
in the model as (supposedly) objective numerical measures. That said, if we are to
move beyond fit-to-data as the sole basis for our belief in the predictions of a model,
we still need some ways of assessing the model’s ontology as an additional basis for
such belief. This is far from being in a position where there are established methods,
but four ways in which an ontology can be assessed are:

• Logical consistency
• Populating it with instances
• Stakeholder and/or expert evaluation
• Comparison with existing ontologies

If the ontology can be translated into OWL, the first of these can be achieved
using the consistency checking available in reasoning applications such as Pellet
(Sirin et al. 2007), FACTCC (Tsarkov and Horrocks 2006), HermiT (Shearer et
al. 2008) and Ontop (Bagosi et al. 2014). Though consistency checking ensures we
have at least made no logical contradictions in our specification of the ontology, it is
rather a low bar to set as it says little about the quality of the representation. Beyond
mere logical consistency, there are methodologies such as OntoClean (Guarino and
Welty 2009) for validating the ontological adequacy of taxonomies. However, this
also says more about the correctness of the operational semantics of a given set of
axioms in an ontology, as opposed to addressing the sufficiency of that ontology to
represent a given problem domain.

Populating an ontology with instances is another check of the ‘validity’ of an
ontology, as difficulties with so doing, especially with empirical data, can reveal
where the ontology is ‘awkward’ in its specifications. Working ontologies are
produced every time a successful IT project is implemented. Any modern enterprise
system is usually the result of a problem domain being modelled using some
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object-oriented analysis and design (Rumbaugh 2003) and as such necessarily
involves visual modelling (usually Unified Modelling Language – UML). The
resultant conception is then implemented in one of the numerous object-oriented
computer languages. Although not formally provable as in any way equivalent, such
systems are prima facie evidence of the successful construction of working ontolo-
gies, albeit normally in UML. Although not equivalent, design practices can be
implemented that result in a one-to-one translation between UML and OWL (Object
Modelling Group 2014, p. 130). Embedded software systems operating machinery
in the real world (e.g. autopilots and control systems) have their ontologies validated
every time they send a signal to a servo or relay, which over time constitutes a
robust empirical test of their conceptualizations. From an agent-based modelling
perspective, where the ontology describes the entities and state variables in the
model, pragmatic issues with the ontology could become apparent when trying to
populate the model from empirical databases. However, since the schemas of these
databases are themselves ontologies, there is the potential to argue that it is those
ontologies, or the integration thereof, that is the locus of any problems, rather than
with the model itself. Hence, unless the context is embedded software, the ability to
initialize a model from empirical data is also a rather weak test of the validity of the
model’s ontology.

The third idea of stakeholder and/or expert evaluation involves a degree of
integration of specific problem-domain knowledge and ontological engineering
expertise if we are to be convinced that the evaluators have really understood
the implications of the formalization of their knowledge. Sowa (1999, p. 452)
points out that knowledge engineering is a specialism requiring skills in logic,
language and philosophy that domain experts should not be expected to have. Even
if experts agree on a conceptualization of a domain, they will not necessarily be
able to construct ontologies of it; this will be done instead by the knowledge
engineer. The resulting ontology is the knowledge engineer’s conceptualization
of the experts’ conceptualization and may differ from one knowledge engineer to
another. Such problems and in particular their relevance to the veridicality and the
actual information content of natural language utterances such as those from domain
experts are extensively discussed by Devlin (1991, chaps. 1–2).

There are formal methodologies available for knowledge elicitation, such as On-
To-Knowledge (Sure et al. 2004), creating ontologies from existing thesauruses,
or taxonomies, as illustrated by Huhn and Schulz (2004) and those listed by
Jones et al. (1998). However, such methodologies would normally be associated
with model design rather than model validation. Since validation is only really
meaningful when using ‘out-of-sample’ data (i.e. data not used for calibration),
we should expect validation of model ontologies to be a process that behaves
equivalently, for example, through using different experts during validation than
during model design. In the case of peer-reviewed journal articles, this arguably
happens automatically assuming that reviewers have had nothing to do with the
work. However, validation by peer review detracts from the sense of reporting
on a completed piece of work in a journal article and is not something that is
typically documented, except in more innovative open access journals such as Earth
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System Dynamics,5 where reviews and authors’ responses are also available to
read. Whether validating with academic peers or with nonacademic participants
or stakeholders in a model, issues with the conceptualization highlighted during
validation may reflect controversies and differences in conceptualization in the
community rather than issues with the particular conceptualization in the model
as such.

Using formal knowledge elicitation methods, such as those listed above, to build
new ontologies from the experts involved in model validation rather than those
involved in model design may seem excessive. Polhill et al. (2010) document a
process by which assumptions in the formalization are converted back to natural
language and then ‘checked’ (they use this somewhat weaker term than ‘validation’
to describe the process) with domain experts. Since expert validation is, formally
or informally, essentially a process of ontology comparison, a rigorous approach
to validating ontologies would involve two knowledge elicitation exercises – one
during design and one during validation.

Ontology comparison can be seen as matching ontological primitives between
at least two differing ontologies. In the world of ontologies, however, such linking
of primitives between ontologies is referred to as interoperability. Interoperability
refers to the conditions under which we can establish a formal correspondence
between two ontological primitives. Though interoperability was a motivation for
the development of the semantic web (Berners-Lee et al. 2001), interoperability
between ontologies has been somewhat intractable historically (Kalfoglou and
Schorlemmer 2003) and indeed may have stalled the widespread adoption of
ontologies in other application domains.

Pragmatically, interoperability is hampered by issues that come under the head-
ing of semantic heterogeneity, in which there are various semantic conflicts (see,
e.g. Bellatreche et al. 2006) from the seemingly trivial naming conflicts (the same
name for different concepts or different names for the same concepts) to the more
significant representation conflicts (concepts are represented in different ways).
However, there are also philosophical issues to do with whether ontologies are seen
as being ‘observed’ or ‘constructed’ (see Klein and Hirschheim 1987). If ontologies
are ‘observed’, then we should expect to find commonality in conceptualizations
because we all see the same world and discriminate the same entities in it. If they
are ‘constructed’, such commonality is a function of norms in the way the external
world is conceptualized, and any differences are cultural (and hence subject to
political connotations if one conceptualization is argued to be ‘better’ than another).
Grubic and Fan (2010, p. 783), reviewing ontologies of supply chains, conclude
by noting the need to challenge the perception that building ontologies is simply a
problem of terminology – finding the ‘right’ names for things in the real world.

With all the above caveats in mind, there are a few approaches to ontology
interoperability, with some tools listed in Table 8.2:

5http://www.earth-system-dynamics.net/ <Accessed May 2017>.

http://www.earth-system-dynamics.net/
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Table 8.2 Available ontology interoperability tools, method used for interoperability and licence

Tool Brief description Method Licence

AgreementMakerLight An automated and efficient
ontology matching system
derived from
AgreementMaker (Faria et al.
2013)

Matching Apache

COMACC A schema and ontology
matching tool with a
comprehensive infrastructure.
Its graphical interface
supports a variety of
interaction (Do and Rahm
2002)

Matching AGPL

Falcon-AO (finding,
aligning and learning
ontologies)

This is an automatic ontology
matching tool that includes
the three elementary matchers
of string, virtual documents
and graph similarity
measures. In addition, it
integrates a PBM
(partition-based block
matching; Hu et al. 2008)
algorithm to cope with
large-scale ontologies (Hu
and Qu 2008)

Matching Open source

OnAGUI (Ontology
Alignment Graphical User
Interface)

This is an alignment helper
and viewer that also makes
automatic discovery of
alignment using different kind
of algorithms

Manual,
graph

GPL

S-Match Takes any two tree-like
structures (such as database
schemas, classifications,
lightweight ontologies) and
returns a set of
correspondences between
those tree nodes which
semantically correspond to
one another (Giunchiglia
et al. 2012)

Graph LGPL

YAMCC (Yet Another
Matcher)

A self-configuring ontology
matching system for
discovering semantic
correspondences between
entities (i.e., classes, object
properties and data
properties) of ontologies
using machine learning (Ngo
and Bellahsene 2012)

Machine
learning

Open source

The list is based on work by Bergman (2014). The tools are all implemented in Java
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• Token matching or token transformation – this makes use of automated token
matching via textual analysis or leveraging existing ontologies to provide
correspondences between previously unrelated ontological entities. Most of the
tools in Table 8.2 use this kind of matching at some level.

• Graph analysis of the ontology – this includes formal concept analysis (FCA),
which uses graphs to link informationally related items (Yang and Feng 2012)
and other general graph matching or analysis algorithms such as in S-Match
(Giunchiglia et al. 2012).

• Machine learning – examples of this include GLUE (Doan et al. 2004) and the
more recent YAMCC (Ngo and Bellahsene 2012), both using machine learning
to try and create correspondences between ontological elements.

• Information flow (IF) or semantic information content – this has been around
quite a while but is still largely theoretical (Barwise and Seligman 1997).
Premised by the externalist assumption and the assumption of veridical nature
of information, this is treatment of information and its relations using category
theory (Kalfoglou and Schorlemmer 2003). There are no useful implementations
of this methodology so far.

• Some combination of all the above.

Token matching and graph analysis are most prevalent. An additional review of
the available systems and software for ontology interoperability can be found in
Shvaiko and Euzenat (2013), and some other, older, but still useful methodologies
may also be found in Jean-Mary et al. (2009).

Potentially, therefore, the tools and infrastructure exist to evaluate interoperabil-
ity between domain and model ontologies. The ‘validation data’ would comprise
a pre-existing domain ontology not used to build the model or a domain ontology
obtained through a second knowledge elicitation exercise with experts or stakehold-
ers. The model’s ontology could be extracted automatically (e.g. using tools such
as Polhill’s (2015) NetLogo extension or appropriately designed object-oriented
programs enabling exploitation of one-to-one mappings from UML to OWL) or
manually, and then applications such as those in Table 8.2 used to assess their
interoperability. Such an exercise is rather more effort than fit-to-data validation:
the maturity of the area is far from being in a position where it is simply a matter
of invoking a function call in the appropriate R library as in the examples in
Appendix 2.

There is also the issue that effectively the model is assessed twice, once with
respect to its fit-to-data (which is still information, even if arguably not dependable
as a sole indicator of how ‘good’ a model is) and once with respect to its ontology.
If we are not to assume that a richer ontology automatically leads to a better fit-
to-data, the trade-off between fit-to-data and ontological interoperability is not a
trivial choice to make. Even in more established model assessment metrics that use
some information about model structure, the differences in penalty of parameters
between the AIC and BIC illustrate the scope for potential controversy. Indeed,
Brewer et al. (2016) argue that the choice of which of these to use is sensitive
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to context, suggesting there is no universally applicable trade-off heuristic. In the
meantime, in the social simulation community, common practice is either to use
stakeholder evaluation in participatory contexts or simply to rely on peer review.
Given that ontological expressivity is a major advantage for agent-based modelling,
at least as suggested by our categorizations in Appendix 3, the community should
set itself the aim of finding ways to quantify that benefit.

We emphasize that our arguments do not mean that fit-to-data can be ignored
as a criterion for assessing the confidence we should have but rather that we also
need to pay attention to the model’s ontology. As this section has shown, there are
various ways to do this, though the area is far from being sufficiently settled that
we can provide ‘generally used’ quantitative measures of the fit of an ontology to
a system. This may reflect the fact that agent-based simulation, a relatively recent
development in the world of modelling, has a much greater potential expressivity
in its ability to specify ontologies, and the question of model structure has thus far
been limited to discussions about numbers of parameters. Further, there is evidence
that we should not expect to find a single, general measure that appropriately trades
off fit-to-data and ontological fit and provides us with a number that tells us how
‘good’ a model is.

8.1.6 Conclusion

Summarizing the key arguments in this chapter:

• Methods for validating models have thus far concentrated on fit-to-data.
• There are various ways in which that fit can be assessed.
• However, fit-to-data, though it should not be ignored, cannot be trusted as the sole

basis for model validation. Besides questions about comparability of context, the
modeller’s biases in encoding, or representing, the system need to be questioned.

• In complex open systems, fit-to-data does not resolve whether a model’s
predictions should be trusted.

• Agent-based models have greater potential ontological expressivity than other
modelling approaches, and researchers wishing to validate their models need to
pay attention to their ontology as well as their fit-to-data.

The effort involved in building an agent-based model in an empirical context,
as opposed to a more traditional aggregate-level mathematical model, is predicated
on the empirical world being ‘complex’. In such systems, validation by fit-to-data
is not, on its own, a sound basis for estimating the ability of a model to make
reliable predictions, not least because of issues with path dependency. However, the
availability of sufficient data to justify building a model with as many parameters
as an agent-based model typically has is a further significant potential issue, at
least until methods are developed to assess how flexible agent-based models are
in their ability to realize input-output mappings. These points, however, apply just
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as much to any other modelling approach as they do to agent-based models, noting
that models with a number of parameters commensurate with the available data may
be oversimplifying.

Unsatisfactory though some will find the idea that a model’s ontology might
be seen as subjective, the increased expressivity of agent-based models’ ontologies
over those of other formal modelling approaches places greater onus on the
assessment of these ontologies as part of the validation process. Methodologies for
assessing ontologies are still not at a sufficiently mature stage that there is a clear
‘standard’. We have argued that best practice would involve a separate knowledge
elicitation exercise with experts not involved in design and a comparison of the
resulting ontology (or an ontology generated from a similar process in by other
authors) with that of the model. Given interest in ontologies in other disciplines,
there is an opportunity for the agent-based modelling community to contribute to
this area, ensuring that tools and techniques can be tailored to meet any specific
requirements.
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Further Reading

Shalizi’s (2006) book chapter covers approaches to modelling (and measuring)
complex systems in a more formal and comprehensive way, with a focus on more
traditional mathematical modelling techniques. However, he also covers issues with
validation and penalization of parameters, including discussions of VC theory and
Ockham’s razor.

Sowa’s (1999) book on knowledge representation is a good introduction to vari-
ous issues in the field and covers various formalisms and underlying philosophical
questions that the formal representation of knowledge yields. Baader et al.’s (2003)
Description Logic Handbook goes in to more details on description logics. Another
book, which goes into some depth on controversies in the formal representation
of what otherwise seems to be a simple everyday concept, ‘if-then’, is Evans and
Over’s (2004) book, and this too is highly recommended.

Since one of the ways of validating ontologies is through engaging with
stakeholders, the Companion Modelling school of agent-based modelling, pioneered
especially by research teams based in France, is well worth familiarizing yourself
with. They have a website1 and a book (Etienne 2014) as well as several publications

1https://www.commod.org/en <Accessed May 2017>.

https://www.commod.org/en
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illustrating their work. Since they sometimes use ontologies as part of their
methodological approach to modelling with stakeholders, the work of authors such
as Jean-Pierre Müller, Nicolas Becu and Pascal Perez and their collaborators are
particularly worth investigating. Some example articles include Müller (2010), Becu
et al. (2003) and Perez et al. (2009). Companion modellers are not the only ones to
apply knowledge elicitation to model design, however – see, for example, Bharwani
et al. (2015).

Validation has long been a subject of discussion in agent-based modelling, and
this chapter has not dedicated space to reviewing the excellent thinking that has
already been done on the topic. The interested reader wanting to access some of
this literature is advised to look for keywords such as validation, calibration and
verification in the Journal of Artificial Societies and Social Simulation, currently
the principal journal for publication of agent-based social simulation work. Notable
recent articles include Schulze et al. (2017), Drchal et al. (2016), ten Broeke et al.
(2016) and Lovelace et al. (2015). Other older articles worth a read are Elsenbroich
(2012), Radax and Rengs (2010) and Rossiter et al. (2010). See also some of the
debates such as Thompson and Derr’s (2009) critique of Epstein’s (2008) article
and Troitzsch’s (2009) response and Moss’s (2008) reflections on Windrum et al.’s
(2007) paper. A practical article on one approach to validating agent-based models
outwith JASSS is Moss and Edmonds (2005).

Appendix 1: Neural Networks

Though there are variants, typically the excitation, xj, of a node j is given by the
weighted sum of its inputs (8.2):

xj D
X

i2inputs

wijoi (8.2)

where oi (usually in the range [0, 1], though some formalisms use [�1, 1]) is the
output of a node i with a connection that inputs to node j and wij is the strength
(weight) of that connection. Nonlinearity of the behaviour of the node is critical
to the power that the neural network has as an information processing system. It is
introduced by making the output oj of a node a nonlinear function of its excitation xj.
There are a number of ways this can be achieved. Since many learning algorithms
rely on the differentiability of the output with respect to the weights, the sigmoid
function is typically used:

oj D 1

1 C exp
��xj

� (8.3)

So, a neural network essentially consists of a directed graph of nodes, where each
of the links has a weight. If the graph is acyclic, the neural network is known as a
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feed-forward network. (If cyclic, the network is recurrent.) Nodes with no input
connections are input nodes; those with no output connections are output nodes.
Since they have no input connections and hence no excitation, input nodes are often
also not given a nonlinear treatment as per (8.3), though this breaks somewhat with
the simulation of a neuron. Similarly, nonlinearity may not be applied to output
nodes. If there are N input nodes, and M output nodes, then essentially a feed-
forward network without nonlinearity on the output nodes is computing a mapping
from RN to RM . With nonlinearity, the mapping is from RN to [0, 1]M.

Appendix 2: Metrics of and Methods for Validation

Table 8.3 explains various metrics and measures of validation, showing you where
to find out more information on them and how to use them with R. For those
of you unfamiliar with R, it is a popularly used1 free (as in open-source and in
the financial sense) statistical software package, available for Windows, OS-X and
Linux.2 Each of the examples assumes you are validating against a single variable
(unless otherwise stated) for which you have a number of samples from your data
and corresponding output from your model. The R variable vdata contains the
empirical data to validate against (which must not have been used for calibration –
though many of the metrics can of course be applied to the calibration process),
whilst the variable model contains the corresponding output from the model. The
two variables vdata and model are, in R terms, vectors of equal length. If the
model predicted the data perfectly, then for each element i of the two vectors,
vdata[i] DD model[i]. More information on each of the approaches can be found
on Wikipedia,3 R documentation and in various machine learning and advanced
statistical textbooks.

Appendix 3: Expressivity of Various Modelling Approaches

Description logics use a letter-based notation to describe the axioms each logic
has (Baader and Nutt 2003; Calvanese and De Giacomo 2003; Baader et al.
2003). Briefly, AL is a basic description logic, and .D/ is for data properties; C
provides more complex class axioms than the basic axioms in AL; r is for complex
relationship assertions such as irreflexivity (all NetLogo links are irreflexive, e.g. as
you cannot link anything to itself); O introduces nominals (a bit-like enumerations

1Its popularity in the social simulation community is reflected by the fact that tools have been built
to link it with Wilensky’s (1999) Netlogo (Thiele et al. 2012).
2http://www.r-project.org/ <Accessed May 2017>.
3https://www.wikipedia.org/ <Accessed May 2017>.

http://www.r-project.org/
https://www.wikipedia.org/
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Table 8.4 Comparison of expressivity of ontologies of various modelling approaches

Modelling
approach Expressions needed Description logic Comments

Neural
networks

The concepts of inputs
and outputs and data
property labels for each
node

AL.D/ The only ontologically
significant terms are the input
and output variables.
Rudimentary classes are
needed for input and output
specifically

ODEs Data properties for each
variable, distinction
between exogenous and
endogenous variables,
causal influence

ALCOIN .D/ Concepts would be needed for
each variable so that causal
influences can be represented
with relationships

System
dynamics

As ODEs, but stocks
and flows are also
relevant concepts

ALCOIN .D/ Stocks and flows as concepts
do not add any extra
requirements for expressivity

Social
network
analysis

Individuals and
relationships, possibly
data properties where
attributes of individuals
relevant

ALI.D/ Concepts not really needed
(other than Top), so ALI is
more expressive than SNA
really requires. Data properties
optional

Agent-based
modelling

Classes, inheritance,
individuals, data
properties, object
properties, lists, arrays,
domain and ranges
needed

ALCROINF .D/ Not all agent-based models will
need all the expressivity
options. If you have a NetLogo
model and want to find out the
expressivity of its ontology,
you can use Polhill’s (2015)
automated ontology extraction
tool and load the result into
Protégé, and the ontology
summary tab tells you the
description logic needed. For
example, Ge and Polhill’s
(2016) model of commuting
has description logic
ALRIF .D/

Letters are used to represent terms or groups of terms needed to capture any syntax for the
modelling approach’s formalism with respect to the real world. See text for an explanation

in Java); I inverse relationships; N numerical restrictions on properties; and F
functional properties. Table 8.4 provides an initial indication of the description logic
expressivity needed to capture the syntax used to specify the ontologies of various
modelling approaches. However, the labels applied in the ‘description logic’ column
do not necessarily mean that the full capabilities of the language are necessarily
used.
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Drchal, J., Čertický, M., & Jakob, M. (2016). VALFRAM: Validation framework for activity-
based models. Journal of Artificial Societies and Social Simulation, 19(3), 15. http://
jasss.soc.surrey.ac.uk/19/3/15.html. Accessed May 2017.

Edmonds, B. (2002, June 3). Simplicity is not truth-indicative. In Centre for policy modelling
discussion papers CPM-02-99. http://cfpm.org/discussionpapers/111/simplicity-is-not-truth-
indicative. Accessed May 2017.

Edmonds, B., & Moss, S. (2005, July 19). From KISS to KIDS: An ‘anti-simplistic’ modelling
approach. In P. Davidsson, B. Logan, & K. Takadama (Eds.), Multi-agent and multi-agent-
based simulation, joint workshop MABS 2004, Revised selected papers. Lecture notes in
artificial intelligence 3415 (pp. 130–114), New York, NY, USA.

Elsenbroich, C. (2012). Explanation in agent-based modelling: Functions, causality or
mechanisms? Journal of Artificial Societies and Social Simulation, 15(3), 1. http://
jasss.soc.surrey.ac.uk/15/3/1.html. Accessed May 2017.

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12.
http://jasss.soc.surrey.ac.uk/11/4/12.html. Accessed May 2017.

Etienne, M. (2014). Companion modelling: A participatory approach to support sustainable
development. The Netherlands: Springer.

Evans, J. S. B. T., & Over, D. E. (2004). If. Oxford: Oxford University Press.
Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I. F., & Couto, F. M. (2013, September

9–13). The agreementmakerlight ontology matching system. In R. Meersman, H. Panetto, T.
Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. De Leenheer, & D. Dou (Eds.), On the move to
meaningful internet systems: OTM 2013 conferences. Confederated international conferences
CoopIS, DOA-trusted cloud, and ODBASE 2013, Proceedings. lecture notes in computer
science 8185 (pp. 527–541), , Graz, Austria.

Filatova, T., Polhill, J. G., & van Ewijk, S. (2016). Regime shifts in coupled socio-environmental
systems: Review of modelling challenges and approaches. Environmental Modelling and
Software, 75, 333–347.

Funahashi, K. (1989). On the approximate realisation of continuous mappings by neural networks.
Neural Networks, 2(3), 183–192.

Ge, J., & Polhill, J. G. (2016). Exploring the combined effect of factors influencing commuting
patterns and CO2 emissions in Aberdeen using an agent-based model. Journal of Artificial
Societies and Social Simulation, 19(3), 11. http://jasss.soc.surrey.ac.uk/19/3/11.html. Accessed
May 2017.

Giunchiglia, F., Autayeu, A., & Pane, J. (2012). S-match: An open source framework for matching
lightweight ontologies. Semantic Web, 3(3), 307–317.

Gotts, N. M., & Polhill, J. G. (2009, October 5–6). Narrative scenarios, mediating formalisms, and
the agent-based simulation of land use change. In F. Squazzoni (Ed.), Epistemological aspects
of computer simulation in the social sciences. Second international workshop EPOS, Revised
selected and invited papers. Lecture notes in artificial intelligence 5466 (pp. 99–116), Brescia,
Italy.

Gotts, N. M., & Polhill, J. G. (2010). Size matters: Large-scape replications of experiments with
FEARLUS. Advances in Complex Systems, 13(4), 453–467.

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Uchmański, J., & Wissel, C. (1996). Pattern-oriented
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Chapter 9
Verifying and Validating Simulations

Nuno David, Nuno Fachada, and Agostinho C. Rosa

Abstract Verification and validation are two important aspects of model building.
Verification and validation compare models with observations and descriptions of
the problem modelled, which may include other models that have been verified
and validated to some level. However, the use of simulation for modelling social
complexity is very diverse. Often, verification and validation do not refer to
an explicit stage in the simulation development process, but to the modelling
process itself, according to good practices and in a way that grants credibility to
using the simulation for a specific purpose. One cannot consider verification and
validation without considering the purpose of the simulation. This chapter deals
with a comprehensive outline of methodological perspectives and practical uses
of verification and validation. The problem of evaluating simulations is addressed
in four main topics: (1) the meaning of the terms verification and validation in
the context of simulating social complexity; (2) types of validation, as well as
techniques for validating simulations; (3) model replication and comparison as
cornerstones of verification and validation; and (4) the relationship of various
validation types and techniques with different modelling strategies.

Why Read This Chapter?

To help you decide how to check your simulation—both against its antecedent
conceptual models (verification) and external standards such as data or other
simulations (validation)—and in this way help you to establish the credibility of
your simulation. In order to do this the chapter will point out the nature of these
processes, including the variety of ways in which people seek to achieve them.
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9.1 Introduction

The terms verification and validation (V&V) are commonly used in science but
their meaning may be controversial in the natural and the social sciences. Putting
aside the epistemological underpinnings of the terms, in simulation the distinction
of meaning has a mere pragmatic nature inherited from computer science and
software engineering. Often, verification is used in the context of evaluating the
computational implementation of a model in terms of the researchers’ intentions. In
turn, validation typically refers to an evaluation of the credibility of the model as a
representation of the subject modelled.

In disciplines that make use of computational models, the role of V&V is
related to the need of evaluating models along the simulation development process.
Basically, the very idea of V&V is comparing models with observations and
descriptions of the problem modelled. This may include other models that have been
verified and validated to some level, or even the implementation of replications in
order to verify and validate models in more depth.

This chapter introduces a methodological perspective on V&V and describes
different strategies and techniques to validate models of social complexity. Some
aspects of what can be called either verification or validation are also discussed,
namely comparison between models and model replication, whereon verification
and validation are superimposed or indistinguishable. These are important but fre-
quently neglected methods of promoting V&V, particularly since social simulation
models can be very sensitive to implementation details (making them hard to verify),
and data from social systems can be difficult or even impossible to collect (making
the respective models hard to validate).

The use of simulation for modelling social complexity is very diverse. Often,
V&V do not refer to an explicit stage in the simulation development process, but
to the modelling process itself according to good practices and in a way that grants
credibility to using the simulation for a specific purpose. Normally, the purpose is
dependent on different strategies and dimensions, along which simulations can be
characterised, with reference to different kinds of claims intended by the modeller,
such as theoretical claims, empirical claims or simply subjunctive theoretical claims.
The term subjunctive is used when very abstract simulations are used for thinking
about scenarios in possible worlds, such as describing “what would happen if
something were the case.” There cannot be V&V without considering the purpose
of the simulation.

In the next section of the chapter, we will deal with the meaning of the terms
V&V in the context of the simulation development process. In Sect. 9.3, methods
and techniques commonly associated with validation are described. The comparison
and replication of simulation models as an essential aspect of V&V is discussed in
Sect. 9.4. The chapter closes with Sect. 9.5, where the relationship of validation with
different modelling strategies is described.
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9.2 The Simulation Development Process

Several chains of intermediate models are developed before obtaining a satisfactory
verified and validated model. What does it mean to verify and validate a model
in social simulation? Is there a fundamental difference between verifying and
validating models? The purpose of this section is to define the role of V&V within
the scope of the simulation development process.

The most common definitions of V&V are imported from computer science,
as well as from technical and numerical simulation,1 having intended distinct—
although epistemologically overlapping—meanings. The reason for distinguishing
between the terms derives from the practice of determining the suitability of certain
models for representing two distinct subjects of inquiry. This is represented in
Fig. 9.1, in which V&V are related to a simplified model development process.
Two conceptual models mediate between two subjects of inquiry. The latter are (1)
the target theory or phenomenon and (2) the executable computational model. The
conceptual model on the right, designated here as the pre-computational model,
is basically a representation in the minds and writing of the researchers, which
presumably represents the target. This model must be implemented as an executable
computational model, by going through a number of intermediate models such
as formal specification or textual programs written in high-level programming
languages.

The analysis of the executable model gives rise to one or more conceptual models
on the left, here designated as post-computational models. They are constructed
based on the output of the computational model, often with the aid of statistical

Target
theory or

phenomenon

Executable
computational

model

Pre-computational
models

Post-computational
models

Publication / Theory
dissemination / Application

Conceptualisation and
model construction

Implementation
(physical construction of
computational models)

Conceptualisation and
model construction

Validation Validation

VerificationVerification

Fig. 9.1 Verification and validation related to the model development process (David 2009)

1Numerical simulation refers to simulation for finding solutions to mathematical models, normally
for cases in which mathematics does not provide analytical solutions. Technical simulation stands
for simulation with numerical models in computational sciences and engineering.
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packages, graphing and visualisation. The whole construction process results in
categories of description that may not have been used for describing the pre-
computational model. This is the so-called idea of emergence, when interactions
among model components specified through pre-computational models at some
level of description give rise to different categories of model descriptions identified
in the executable model at macro levels of observation, expressed through post-
computational models.

As an example consider the culture dissemination model of Axelrod (1997b)
which has a goal of analysing the phenomena of social influence. At a micro-
level of description, a pre-computational model defines: (a) the concept of actors
distributed on a grid; (b) the concept of culture of each actor, specified as a set of five
features; and (c) the interaction mechanisms specified with a bit-flipping schema, in
which the probability of interaction between two actors is set proportionately to the
similarity between two cultures. The executable model is then explored and other
categories of descriptions resulting from the interaction of individual cultures may
be defined. These are associated with macro properties of interest and conditions in
which they form, such as the concepts of regions and zones on the grid. A great deal
of the simulation proposed by Axelrod concerns investigating properties of regions
and zones in the executable model, giving rise to a proposed conceptual, post-
computational model, which expresses traits such as the relation between the size of
a region formed and the number of features per individual culture. These concepts
are interpreted in relation to the target social phenomena of social influence.

We will now situate the role of V&V in the modelling process of social
simulation.

9.2.1 What Does It Mean to Verify a Computational Model?

Computational model verification is defined as checking the adequacy among
conceptual models and computational models (see also Chap. 7 in this volume,
Galán et al. 2017). Consider the lower quadrants of Fig. 9.1. They are concerned
with ensuring that the pre-computational model has been implemented adequately
as an executable computational model, according to the researcher’s intentions in the
parameter range considered, and also that the post-computational model adequately
represents the executable model in the parameter range considered.2 In short, the
three models must correspond to each other adequately, relative to the same target
they are meant to represent.

At this point you might question the meaning of adequately. A minimal definition
could be the following: adequateness means that the inputs, outputs and the
mechanisms post-computationally modelled from the executable computational
model are consistent with the ones specified through the pre-computational models,

2Verification in the left quadrant of Fig. 9.1 is sometimes known as “internal validation.”
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in accordance with the researcher’s intentions. However, the outcomes of computer
programs in social simulation are often unintended or not known a priori and thus
the verification process requires more than checking that the executable model does
what it was planned to do. The goal of the whole exercise is to assess logical
inferences within, as well as between, the pre- and the post-computational models.
This requires assessing whether the post-computational model—while expressing
emergent concepts that the pre-computational model may not have been intended
to express—is consistent with the latter. From a methodological point of view this
is a complicated question, but from a practical perspective one might operationally
define the verification problem with the following procedures:

(a) For some pre-computational model definable as a set of input/output pairs in a
specified parameter range, the corresponding executable model is verified for
the range considered if the corresponding post-computational model expresses
the same set of inputs/outputs for the range considered.

(b) For some pre-computational model defined according to the researcher and/or
stakeholders’ intentions in a specified parameter range, the corresponding
executable model is verified for the range considered if the corresponding post-
computational model meets the researchers and/or stakeholders’ expectations
for the range considered.

Note that both procedures limit the verification problem to a clearly defined
parameter range. The first option is appropriate when quantitative data is available
from the target with which to test the executable model. This is normally not the
case, leaving the second option as the suitable path for the verification process. This
is possible since the aim is to assess the appropriateness of the relations that may be
established between micro-levels of description specified in the pre-computational
model and macro-levels of description expressed through post-computational mod-
els, usually amenable to evaluation by researchers and stakeholders.

In any case, the verifiability of a simulation is influenced by the process used to
develop that simulation. The tools used to implement the executable computational
model are a major factor affecting verification (Sargent 2013). The use of high-level
simulation packages has the potential to simplify verification, since the majority
of common model building blocks are provided, and these are typically already
verified. Arguably, this is even more so in the case of open source toolkits, such
as NetLogo (Wilensky 1999) or Repast Simphony (North et al. 2013), where, in
addition to the developers themselves, the respective user communities perform
verification of the provided simulation blocks and modules. Community members
can not only detect bugs, but also correct them due to the open and collaborative
nature of these projects. When such modelling toolkits are used, verification mainly
consists of guaranteeing that the model has been correctly implemented using the
available modules.

However, while the use of modelling toolkits reduces the programming and
verification effort, it typically increases simulation times (Fachada et al. 2017a) and
limits the modeller’s flexibility in implementing non-standard behaviours (Sargent
2013). As such, it is often necessary to directly implement models using general-
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purpose programming languages. This is not a black or white choice, since several
simulation toolkits offer the option of developing models using general-purpose
programming languages (e.g. Repast Simphony), and/or provide high-performance
and scalable workflows, with Repast HPC (Collier and North 2013) being a case in
point.

When the direct use of general-purpose programming languages is involved, the
adoption of good programming practices for designing and implementing the model
is fundamental. Techniques such as object-oriented design, modularity and encapsu-
lation not only simplify testing and debugging, but also promote incremental model
development and the mapping of programming units (e.g. classes or functions) to
model concepts, thus making computational models easier to understand, extend and
modify. Additionally, defensive programming methodologies, such as assertions and
unit tests, are well suited for the exploratory nature of simulation, making models
easier to debug and verify.

Two important verification methods, traces and structured walk-throughs, com-
plement the techniques discussed thus far. The former entails following a specific
model variable (e.g. the position of an agent or the value of a simulation output)
throughout the execution of the computational model, with the goal of assessing
whether the implemented logic is correct and if the necessary precision is obtained.
Modelling toolkits and programming language tools typically offer the relevant
functionality, making the use of traces relatively simple (Sargent 2013). In turn,
structured walk-throughs consist of having more than one person reading and
debugging a program. All members of the development team are given a copy of a
particular module to be debugged and the module developer goes through the code
but does not proceed from one statement to the next until everyone is convinced that
a statement is correct (Law 2015).

Nevertheless, and while the techniques described here are an important part of
the verification process, a computational model should only be qualified as verified
with reasonable confidence if it has been successfully replicated and/or aligned with
a valid pre-existing model. We will return to this topic in greater detail in Sect. 9.4.

9.2.2 What Does It Mean to Validate a Model?

Model validation is defined as ensuring that both conceptual and computational
models are adequate representations of the target. The term “adequate” in this sense
may stand for a number of epistemological perspectives. From a practical point of
view we could assess whether the outputs of the simulation are close enough to
empirical data.

Alternatively, we could assess various aspects of the simulation, such as if the
mechanisms specified in the simulation are well accepted by stakeholders involved
in a participative-based approach. In Sect. 9.3 we will describe the general idea of
validation as the process that assesses whether the pre-computational models—put
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forward as models of social complexity—can be demonstrated to represent theories
or aspects of social behaviour able to give rise to post-computational models that
are, at some given level, consistent with the onset theories or similar to real data.

Given the model development process described, is there any fundamental
difference between verifying and validating simulations? Rather than being a sharp
difference in kind it is a distinction that results from the computational method.
Whereas verification is focused on the assessment of micro and macro concepts and
inferences in the process of programming, observing and interpreting computational
models, validation is focused on the evaluation of such inferences and concepts as
representations of the target social phenomenon or theory.

In paraphrasing Axelrod (1997a), at first sight, we could say that the problem
is whether an unexpected result is a reflection of the computational model, due to
a mistake in the implementation of the pre-computational model, or is a surprising
consequence of the pre-computational model itself. Unfortunately, the problem is
more complicated than that. In many cases mistakes in the code may not be qualified
simply as mistakes, but only as one interpretation among many others possible
for implementing a conceptual model. Nevertheless, from a practical viewpoint
there may be still good reasons to make the distinction between V&V. A number
of established practices exist for the corresponding quadrants of Fig. 9.1. We will
address some of these in the following sections.

9.3 Validation Approaches

We offered a conceptual definition of validation in Sect. 9.2.2. Had we given an
operational definition, things would have become somewhat problematical. Models
of social complexity are diverse and there is no definitive and guaranteed criterion of
validity. As Amblard et al. (2007) remarked, “validation suggests a reflection on the
intended use of the model in order to be valid, and the interpretation of the results
should be done in relation to that specific context.”

A specific use may be associated with different methodological perspectives
for building the model, with different strategies, types of validity tests, and
techniques (Fig. 9.2). Consider the kind of subjunctive, metaphorical models such
as Schelling’s (1971). In these models there is no salient validation step during the
simulation development process. Design and validation walk together. The intended
use is not to show that the simulation is plausible against a specific context of social
reality but to propose abstract or schematic mechanisms as broad representations of
classes of social phenomena. In other cases, the goal may be modelling a specific
target domain, full of context, with use of empirical data and significant amounts
of rich detail. Whereas in the former a good practice could be modelling with the
greatest parsimony possible so as to have a computational model sanctionable by
human beings and comparable to other models, parsimony can be in opposition to
the goal of descriptive richness and thus inappropriate to the latter case.
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Purpose of models

General goal of simulating social complexity

Basic methodological conceptions
(types of validity:

through prediction, retrodiction, structural similarity)

Validation techniques
(diverse)

Relationship to modelling strategies
(subjunctive models, context-specific models)

Fig. 9.2 Validation implies considering the purpose of the model

There are also different methodological motivations behind the use of a model,
such as those conceived to predict or explain and those merely conceived to describe.
Regardless of what method is used, the reproduction of characteristics of the object
domain is important, but this can be assessed through rather different approaches
during the model development process. If it is prediction you are seeking, validation
consists of confronting simulated behaviour with the future behaviour of the target
system (however, attempting to establish numerical prediction is not a normal goal
in simulation). If it is explanation, validation consists of building plausible mech-
anisms that are able to reproduce simulated behaviour similar to real behaviour. If
the goal is the more general aim of descriptiveness, explanation may probably be a
goal as well, and a creative integration of ways for assessing the structure and results
of the model, from quantitative to qualitative and participatory approaches, will be
applied.

In conclusion, one should bear in mind that there is no one special method for
validating a model. However, it is important to assess whether the simulation is
subjected to good practices during its conception, whether it fits the intended use of
the model builder and whether it is able to reproduce characteristics of the object
domain. Assessing whether the goals of the modellers are well stated and the models
themselves are well described in order to be understood and sanctioned by other
model builders are sine qua non conditions for good simulation modelling.

In the remainder of this section, we revise the purpose of validating simulations
along three dimensions: (1) the general goal of validation in social complexity;
(2) basic methodological conceptions of validity types; and (3) typical validation
techniques used in social simulation.
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9.3.1 The Goal of Validation: Goodness of Description

If one is using a predictive model, then the purpose of the model is to predict either
past or future states of the target system. On the other hand, one may strive for a
model that is able to describe the target system with satisfactory accuracy in order
to become more knowledgeable about the functioning of the system, to exercise
future and past scenarios, and to explore alternative designs or inform policies.

The objective in this section is to define the purpose of validation in terms of
the purpose of simulating social complexity, which we will define as being of good
description. This position entails that there is no single method or technique for
validating a simulation. A diversity of methods for validating models is generally
applied.

In the rest of this chapter we adopt the agent-based paradigm for modelling. A
conceptual understanding of validation, similar but more general than Moss and
Edmonds (2005), will be used:

The purpose of validation is to assess whether the design of micro-level mechanisms, put
forward as theories of social complexity validated to arbitrary levels, can be demonstrated
to represent aspects of social behaviour and interaction that are able to produce macro-level
effects either (i) broadly consistent with the subjacent theories; and/or (ii) qualitatively or
quantitatively similar to real data.

By broad consistency we mean the plausibility of both micro specification and
macro effects accounted as general representations of the target social reality. In its
most extreme expression, plausibility may be evaluated on a metaphorical basis.
By qualitative similarity to real data we mean a comparison with the model in
terms of categorical outcomes, accounted as qualitative features, such as the shape
of the outcomes, general stylised facts, or dynamical regimes. As for quantitative
similarity we mean the very unlikely case in which the identification of formal
numerical relationships between aggregate variables in the model and in the target—
such as enquiring as to whether both series may draw from the same statistical
distribution—proves to be possible.

Notice that this definition is general enough to consider both the micro-
level mechanisms and macro-level effects assessed on a participatory basis. It is
also general enough to consider two methodological practices for building social
simulation models, namely the extent to which models should be based on formal
theories or on the intuition of the model builders and stakeholders—an issue that
we will come back to later. These are omnipresent methodological questions in
the social simulation literature and are by no means irrelevant to the purpose of
simulation models.

Suppose that on the basis of a very abstract model, such as the Schelling model,
you were to evaluate the similarity of its outputs with empirical data. Then you will
probably not take issue with the fact that the goal of predicting future states of the
target would be out of the scope of simulation research for that kind of modelling.
However, despite the belief that other sorts of validation are needed, this does not
imply excluding the role of prediction, but simply emphasises the importance of
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description as the goal of simulating social complexity. In truth, what could be
more contentious in assessing the Schelling model is the extreme simplicity used
to describe the domain of social segregation. The descriptive power of agent-based
models (ABMs) makes them suited to model social complexity. Computational
modelling corresponds to a process of abstraction, in that it selects some aspects of a
subject being modelled, like entities, relations between entities and change of state,
while ignoring those that may be considered less relevant to the questions that are of
interest to the model builder. The expressiveness of ABMs allows the researcher to
play with intuitive representations of distinct aspects of the target, such as defining
societies with different kinds of agents, organisations, networks and environments,
which interact with each other and represent social heterogeneity. By selecting
certain aspects of social reality into a model, this process of demarcation makes
agent-based modelling suited to represent sociality as perceived by researchers and
often by the stakeholders themselves.

The descriptive power of simulation is on par with the diversity of ways used
for informing the construction and validation of models, from theoretic approaches
to the use of empirical data or stakeholder involvement. At any rate, measuring
the goodness of fit between the model and real data expressed with data series is
neither the unique nor a typical criterion for sanctioning a model. The very idea of
using a diversity of formal and informal methods is to assess the credibility of the
mechanisms of the model as good descriptions of social behaviour and interaction,
which must be shown to be resilient in the face of multiple tests and methods, in
order to provide robust knowledge claims and allow the model to be open to scrutiny.

9.3.2 Broad Types of Validity

When we speak about types of validity we mean three general methodological per-
spectives for assessing whether a model is able to reproduce expected characteristics
of an object domain: validation through prediction, validation through retrodiction
and validation through structural similarity. Prediction refers to validating a model
by comparing the states of a model with future observations of the target system.
Retrodiction compares the states of the model with past observations of the target
system. Lastly, structural similarity refers to assessing the realism of the structure
of the model in terms of empirical and/or theoretical knowledge of the target
system (see also Gross and Strand 2000). In practice, all three approaches are
interdependent and no single approach is used alone.

9.3.2.1 Validity Through Prediction

Validation through prediction requires matching the model with aspects of the target
system before they were observed. The logic of predictive validity is the following:
if one is using a predictive model—in which the purpose of the model is to predict
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future states of the target system—and the predictions prove satisfactory in repeated
tested events, it may be reasonable to expect the model outcomes to stay reliable
under similar conditions (Gross and Strand 2000). The purpose of prediction is
somewhat problematic in social simulation:

– Models of social complexity usually show nonlinear effects in which the
global behaviour of the model can become path-dependent and self-reinforcing,
producing high sensitivity to initial conditions, which limits the use of predictive
approaches.

– Many social systems show high volatility with unpredictable events, such as
turning points of macroeconomic trade cycles or of financial markets that are
in practice (and possibly in principle) impossible to predict; refer to Moss and
Edmonds (2005) for a discussion on this.

– Many social systems are not amenable to direct observation, change too slowly,
and/or do not provide enough data to be able to compare model outcomes. Most
involve human beings and are too valuable to allow repeated intervention, which
hinders the acquisition of knowledge about its future behaviour. Policies based
on false predictions could have serious consequences, thus making the purpose
of prediction unusable (Gross and Strand 2000).

While quantitative prediction of the target system behaviour is rare or simply
unattainable, prediction in general is not able to validate per se the mechanisms of
the model as good representations of the target system. In the words of Troitzsch
(2004), “What simulations are useful to predict is only how a target system might
behave in the future qualitatively.” But a different model using different mechanisms
that could lead to the same qualitative prediction may always exist, thus providing a
different explanation for the same prediction. More often, the role of predicting
future states of the target system becomes the exploration of new patterns of
behaviour that were not identified before in the target system, whereby simulation
acquires a speculative character useful as a heuristic and learning tool. What we are
predicting is really new concepts that we had not realised as being relevant just by
looking into the target.

9.3.2.2 Validity Through Retrodiction

The difference from retrodiction to prediction is that in the former the intention is
to reproduce already observed aspects of the target system. Given the existence of a
historical record of facts from the target system, the rationale of retrodictive validity
for a predictive model is the following: If the model is able to reproduce a historical
record consistently and correctly, then the model may also be trusted for the future
(Gross and Strand 2000). However, as we have mentioned, predictive models of
social complexity are uncommon in simulation. Explanation rather than prediction
is the usual motive for retrodiction. The logic of retrodictive validity is the follow-
ing: If a model is able to consistently reproduce a record of past behaviours of the
target system, then the mechanisms that constitute the model are eligible candidates
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for explaining the functioning of the target system. Nevertheless, retrodiction alone
is not sufficient to assess the validity of the candidate explanations:

– Underdetermination: Given a model able to explain a certain record of behaviours
or historical data, there will always be a different model yielding a different
explanation for the same record.

– Insufficient quality of data: In many cases it is impossible to obtain long historical
series of social facts in the target system. In the social sciences the very notion
of social facts or data is controversial, can be subjective, and is not dissociable
from effects introduced by the measurement process. Moreover, even when data
is available it may not be in a form suitable to be matched to the bulk of data
generated by simulation models.

Underdetermination and insufficient data suggest the crucial importance of
domain experts for validating the mechanisms specified in the model. A model
is only valid provided that both the generated outcomes and the mechanisms
that constitute the model are sanctioned by experts in the relevant domain. The
importance of validating the mechanisms themselves leads us to the structural
validity of the model, which neither predictive nor retrodictive validity is able to
assess alone.

9.3.2.3 Validity Through Structural Similarity

In practice, the evaluation of a simulation includes some kind of prediction and
retrodiction, based on expertise and experience. Given the implementation of micro-
level mechanisms in the simulation, classes of behaviour at the macroscopic scale
are identified in the model and compared to classes of behaviour identified in the
target. Similarly, known classes of behaviour in the target system are checked
for existence in the simulation. The former case is generally what we call the
“surprising” character of simulations in which models show something beyond what
we expect them to. However, only an assessment of the model from various points
of view, including its structure and properties on different grains and levels, will
truly determine whether it reflects the way in which the target system operates. For
instance, do agents’ behaviour, the constituent parts and the structural evolution of
the model match the conception we have about the target system with satisfactory
accuracy? These are examples of the elements of realism between the model and the
system that the researcher strives to find, which requires expertise in the domain on
the part of the person who builds and/or validates the model.

9.3.3 Validation Techniques

In this section we describe validation techniques used in social simulation. Some
are used as common practices in the literature and most of the terminology has
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been inhered from simulation in engineering and computer science, particularly
from the reviews of validation and verification in engineering by Sargent (2013).
All techniques that we describe can be found in the literature, but it would be rare
to find a model in which only one technique was used, consistent with the fact that
the validation process should be diverse. Also, there are no standard names in the
literature and some techniques overlap with others.

9.3.3.1 Face Validity

Face validity is a general kind of test used both before and after the model is put
to use. During the model development process, the various intermediate models are
presented to persons who are knowledgeable about the problem in order to assess
whether they are compatible with the expert’s understanding and reasonable for their
purpose (Sargent 2013). Face validity may be used for evaluating the conceptual
model, the components thereof, and the behaviour of the computational models
in terms of categorical outcomes or direct input/output relationships. This can be
accomplished via documentation, graphing visualisation models, and animation of
the model as it moves through time. Visualisation of model outputs (including a
brief look at model animation) is analysed in Chap. 10 of this volume (Evans et al.
2017). Insofar as this is a general kind of test, it is used in several iterations of the
model.

9.3.3.2 Turing Tests

People who are knowledgeable about the behaviour of the target system are asked
if they can discriminate between system and model outputs (Sargent 2013; Law
2015). The logic of Turing tests is the following: If the outputs of a computational
model are qualitatively or quantitatively indistinguishable from the observation of
the target system, a substantial level of validation has been achieved.

Note that the behaviour of the target system does not need to be observed
directly in the cases where a computational direct representation is available. For
example, suppose that videos of car traffic are transformed into three-dimensional
scenes, whereby each object in the scene represents a car following the observed
trajectory. If an independent investigator is not able to distinguish the computational
reproduction from an agent-based simulation of car traffic, then a substantial level of
validation has been obtained for the set of behaviours represented in the simulation
model.

9.3.3.3 Historical Validity

Historical validity is a kind of retrodiction where the results of the model are
compared with the results of previously collected data. If only a portion of the
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available historical data is used to design the model then a related concept is called
out-of-sample tests in which the remaining data are used to test the predicative
capacity of the model.

9.3.3.4 Event Validity

Event validity compares the occurrence of particular events in the model with
the occurrence of events in the source data. This can be assessed at the level of
individual trajectories of agents or at any aggregate level. Events are situations
that should occur according to pre-specified conditions, although not necessarily
predictable. Some events may occur at unpredictable points in time or circum-
stances. For instance, if the target system data shows arbitrary periods of stable
behaviours interwoven with periods of volatility with unpredictable turning points,
the simulation should produce similar kinds of unpredictable turning events.

9.3.3.5 Validity of Simulation Output

Since data is hard to collect in social systems, investigating the behaviour of
simulation output becomes a crucial model validation technique (Sargent 2013).
This can be performed by running the simulation with different parametrisations
and checking if the output is reasonable (Law 2015), either based on subjective
expert opinion when using “typical” simulations parameters, or by objectively
evaluating output behaviour under trivial or extreme parametrisations. For instance,
concerning the latter, if interaction among agents is nearly suppressed the modeller
should be surprised if such activities as trade or culture dissemination continues in
a population.

The concept of internal validity (Sargent 2013) or verification between the exe-
cutable computational model and post-computational models (lower left quadrant
of Fig. 9.1) can also be considered here, since it directly relates to simulation
output behaviour. In order to assess the level of stochastic variability in a model,
a number of simulation runs are performed using different random number streams.
A sizeable level of variability between simulation runs can question the model at
different levels. For example, the validity of simulation output for the executable
computational model may be disputed, or the stability of a given policy (and the
parametrisation that expresses it) in the overall model may be challenged.

For a more in-depth look at issues concerning simulation output behaviour, we
refer the reader to the following references. Visualisation-oriented approaches for
understanding simulation output are debated in Chap. 10 of this volume (Evans et al.
2017). Visualisation, and statistical and analytical analysis of model outputs are
examined and reviewed by Lee et al. (2015). For a pure statistical outlook, Fachada
et al. (2015) discuss a generic and systematic approach for evaluating time-series
output of simulation models.
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9.3.3.6 Solution Space Exploration

The techniques discussed in Sect. 9.3.3.5 are useful for basic output validation under
specific parametrisations. However, they do not provide a general understanding
of how input parameters influence model behaviour, nor they consider the broader
picture of overall model assumptions, which encompass not only input parameters,
but also internal model structure, employed submodels and model elements, as well
as their inter-relations. In solution space exploration, model assumptions are varied
in order to reach a better understanding of how the assumptions of interest affect the
model.

The exploration of the solution space can be as simple as testing “what
if” scenarios for observing model behaviour under different inputs—similar to
what was discussed in the previous subsection—or follow a more systematic
approach based on carefully designed experiments (Montgomery 2012). The latter
approach aims to get the maximum amount of information from the model with
the minimum number of simulation runs (Pereda et al. 2015), and is generally
more efficient than hand-guided runs where alternative model configurations are
experimented with (Law 2015). Nonetheless basic hand-guided experiments are also
valuable for model validation, namely when trying different conceptual- or system-
level assumptions. Conceptual-level assumptions include internal mechanisms or
submodels that constitute the larger model (e.g. the decision processes of the
agents, their learning mechanisms or their interaction topology), while system-level
assumptions involve low-level elements of the model (e.g. agent activation regimes).
If changing elements at the system-level determines different behaviours of the
model that cannot be adequately interpreted, then the validity of the model can be
compromised. The case of changing elements at conceptual levels is more subtle
and the validity of the results must be assessed by the researcher with reference to
the validity of the composing elements of the model. This is basically a kind of
cross-model or cross-element validation, as described in Sect. 9.4.

The exploration of the solution space is often undertaken with one or more
targeted objectives in mind, especially in the case of formally designed experiments.
Typical objectives include optimisation, calibration, uncertainty analysis and sensi-
tivity analysis (Lee et al. 2015). While these objectives may overlap, brief definitions
and their potential roles in model validation can be given. In model optimisation, the
researcher is interested in finding parameters or assumptions that minimise some
cost or elicit specific model events or behaviour, which can be directly related with
event validity, as discussed in Sect. 9.3.3.4. In turn, calibration is concerned with
finding the assumptions that maximise the agreement of the model behaviour with
the target system behaviour, thus making it a crucial aspect in model validation
and in the model development process. Uncertainty analysis provides measures
related to the reliability of results and how do input uncertainties propagate through
to the collected outputs. These measures affect simulation output validity and
directly influence the interpretation of data obtained through sensitivity analysis.
The latter is arguably the most common objective when exploring the solution
space of a model. In essence, small perturbations are applied to model assumptions
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in order to determine which ones have the greatest effect on output behaviour
(Evans et al. 2017). This information can be used to improve model accuracy and
reduce output variance—issues directly related with model validation—and also to
promote model parsimony by fixing inconsequential parameters and simplifying
assumptions, reducing dimensionality of the input parameter space and the model’s
computational cost (Law 2015; Lee et al. 2015). Conversely, sensitivity analysis
may also point to underspecified assumptions, which may require additional detail
in order to accurately represent some aspect of the target system (Law 2015). If the
output remains unpredictable even with controlled changes, the modeller should be
concerned about making claims about the model.

A number of techniques for sampling the solution space are described in the
modelling and simulation literature. The one-factor-at-a-time (OFAT) approach is
one of the simplest sampling techniques. The effects of individual assumptions
(factors) on model behaviour are analysed in isolation by iterating each one over a
set of discretised levels while keeping the other factors unchanged (Lee et al. 2015).
Unfortunately, this technique ignores possible interactions between factors (Law
2015). This issue is handled by factorial-type designs, for which the different factor
levels are combined in specific configurations (e.g. full factorial, fractional factorial
or central composite designs) (Pereda et al. 2015). Space-filling designs are another
type of sampling technique, and aim to cover the solution space more evenly (Pereda
et al. 2015). Monte Carlo random sampling is probably the most common space-
filling approach, consisting in sampling each parameter range randomly. However,
care should be taken with this approach since clustered observations and empty
spaces are bound appear by chance. Space-filling alternatives such as quasi-Monte
Carlo or Latin Hypercube Sampling (McKay et al. 1979) cover the input space more
evenly and are often preferred. In turn, sampling based on meta-heuristics, such
as genetic algorithms, can search for pre-specified output behaviours. Thus, such
techniques are commonly used when the researcher wishes to estimate parameters
for calibration and/or optimisation purposes (Miller 1998; Calvez and Hutzler 2005;
Stonedahl and Wilensky 2010).

Since the vast majority of the models of interest in social simulation are
stochastic, one should also consider the issue of having to perform several runs
with different seeds for each sampled assumption set in order to reduce the
uncertainty about the expected output value. Consequently, there is a trade-off
between assumption space coverage and output accuracy, which can severely limit
the exploration of models with long execution times (Pereda et al. 2015). This issue
can be minimised with the use of metamodels, which can act as computationally
inexpensive proxies of more complex models (Lee et al. 2015). A metamodel, or a
model of a model, can be used for predicting the original model’s response for non-
simulated assumption sets or finding combinations of assumptions that optimise (i.e.
minimise or maximise) a response (Law 2015). A metamodel usually takes the form
of a regression function relating inputs with an output response, typically a statistic
representative of model behaviour. Statistical learning techniques such as regression
analysis, Gaussian process modelling (Kriging), neural networks or random forests
are commonly used for building the metamodel function (Law 2015; Pereda et al.
2015).
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9.3.3.7 Participatory Approaches for Validation

Participatory approaches refer to the involvement of stakeholders both in the design
and the validation of a model. Such an approach, also known as Companion
Modelling (Barreteau et al. 2001), assumes that model development must be
itself considered in the process of social intervention, where dialogue among
stakeholders, including both informal and theoretical knowledge, is embedded in
the model development process. Rather than just considering the final shape of
the model, both the process and the model become instruments for negotiation and
decision making. Documentation and visualisation techniques can play a crucial role
in bridging the opinions and intentions of all interested parties. Such approaches are
particularly suited for policy or strategy development. This topic is discussed in
Chap. 12 “Participatory Approaches” (Barreteau et al. 2017).

9.4 Replicating and Comparing Models

Computational models in social science can be very sensitive to implementation
details, and the influence that seemingly negligible aspects such as data structures or
sequences of events can have on simulation results is striking (Merlone et al. 2008).
Furthermore, model implementations can be considerably elaborate, making them
prone to programming errors (Will and Hegselmann 2008). This can seriously affect
V&V when data from the system being modelled cannot be obtained easily, cheaply
or at all—often the case in social simulation. Moreover, even if data were available,
the goodness of fit between real and simulated data, albeit reflecting evidence about
the validity of the model as a data-generating process, does not provide evidence
on how it operates. Model replication—the reimplementation of an existing model
and the replication of its results—is a potential but frequently neglected solution to
this problem (Will and Hegselmann 2008; Thiele and Grimm 2015). Replicating a
model in a different context will sidestep the biases associated with the language or
toolkit used to develop the original model, bringing to light inconsistencies between
conceptual and computational models (Edmonds and Hales 2003; Wilensky and
Rand 2007).

Replication strongly contributes to the V&V of simulation models (Wilensky
and Rand 2007; Thiele and Grimm 2015). Verification is improved because if two
or more distinct implementations of a conceptual model yield equivalent results,
it is more likely that the implemented models correctly describe the conceptual
model (Wilensky and Rand 2007). In turn, validation is stimulated since its very
idea is comparing models with other descriptions of the problem modelled, and
this may include cross-model validation, i.e. the comparison with other simulation
models that have been validated to some level. Thus, it is reasonable to assume
that a computational model cannot be considered fully verified and validated until
it has been successfully replicated (Edmonds and Hales 2003). Nonetheless, the
most important reason for replicating and comparing models is simply one of good
scientific practice, since replication is the gold standard against which scientific
claims are evaluated (Peng 2011).
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In the remainder of this section we discuss replication and comparison of
simulation models under three different perspectives. First, in Sect. 9.4.1, we
distinguish the terminology and origins of the different goals related to model
replication and comparison. Next, in Sect. 9.4.2, we go over the best practices in
developing models so that they may be replicated by other researchers in the future.
Finally, in Sect. 9.4.3 we discuss a number of model comparison techniques.

9.4.1 Model Replication, Model Alignment or Submodel
Comparison?

A model replication study commonly assesses the extent to which building com-
putational models that draw on the same conceptual, usually published, model give
results compatible with the ones reported for the latter. If the new results are similar
to the published results, then the confidence in the correspondence between the
computational and the conceptual models is increased. Replication is represented
in Fig. 9.3.

The work of Edmonds and Hales (2003) is particularly informative and worthy
of reference. Edmonds and Hales performed two independent replications of a
previously published model involving co-operation between self-interested agents.
Several shortcomings were found in the original model, leading the authors to
conclude that unreplicated simulation models and their results cannot be trusted.
The issue was found to be a subtle difference in one of the submodels, which lead
to different conclusions about the functioning of the overall model.

The term model alignment is frequently used as a synonym for model replication.
However, its meaning is somewhat more subtle, as it is more related with the
extent to which models can be coupled or docked so that their consequences and
results are consistent with each other. In its most general form, this concerns both
to V&V. After Axtell et al. (1996), the term became associated with the process
of determining whether different published models describing the same class of
social phenomena produce the same results. Usually the alignment or docking of
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and results

Computational
model A’

Computational
model A”

results compare
results

Fig. 9.3 Model replication
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Fig. 9.4 Model alignment, also referred to as docking

two models A and B requires modifying certain aspects of model B—for instance
turning off a specific feature—in order to become equivalent to model A. This is
represented in Fig. 9.4.

The work of Axtell et al. (1996) is arguably the most-cited attempt to align
two distinct but similar models. Rather than re-implementing Axelrod’s culture
dissemination model, Axtell and colleagues focused on the general case of aligning
two models that reflected slightly distinctive mechanisms. For this purpose, Epstein
and Axtell’s Sugarscape model (1996) was progressively simplified in order to
align with the results obtained by Axelrod’s culture dissemination model (1997b).
They concluded that comparing models developed by different researchers and
with different tools (i.e. programming languages and/or modelling environments),
can lead to exposing bugs, misinterpretations in model specification, and implicit
assumptions in toolkit implementations.

Model alignment has been further investigated in a series of meetings called
model-to-model (M2M) workshops (Rouchier et al. 2008). The M2M workshops
attract researchers interested in understanding and promoting the transferability of
knowledge between model users.

Submodel comparison, often referred to as cross-element validation, rather than
comparing whole models, compares the results of a model whose architecture of
the agents differs only in a few elements. The goal is to assess the extent to
which changing elements of the model architecture produces results compatible
with the expected results of the (larger) model. It is essentially an exercise in
composing different submodels within a larger model, and is related to solution
space exploration since submodels are varied, and the consequences of that variation
are analysed and compared. In this process, the overall validity of the larger
model with reference to the validity of each one of the submodels can also be
assessed. For instance, one may study the effects of using a model with agents in a
bargaining game employing either evolutionary learning or reinforcement learning
strategies, and assess which one of the strategies produces results compatible with
theoretical analysis in game theory (Takadama et al. 2003). Submodel comparison
is represented in Fig. 9.5.

Submodel comparison can also be used as a model replication or alignment
aid. For example, Radax and Rengs (2009) proposed a method for replicating
insufficiently described ABMs, consisting in systematically varying ambiguous
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Fig. 9.5 Submodel comparison, also referred to as cross-element validation

model elements in order to align the replicated model with the original one. More
generally, if two simulations do not align, trying out different assumptions or
submodels is a practical way of finding the source of errors or mismatches. This
type of study is greatly facilitated when computational models are implemented in
a modular fashion, as discussed in Sect. 9.2.1. If submodels or model elements are
implemented as separate modules in the computational model, it becomes much
simpler to change or swap them in order to perform submodel comparisons.

9.4.2 Developing Replicable Models

An important aspect when developing a simulation model is to guarantee that it may
be replicated by other researchers. Designing and programming for replicability
involves a number of aspects that should be considered. Simulations are often a
mix of conceptual descriptions and hard technical choices about implementation.
The author who reports a model should assume that a replication or alignment may
later be tried and thus should be careful about providing detailed information for
future use. Some of the best practices include, but are not limited to:

– Effective documentation about the conceptual model should be provided, prefer-
ably in the form of a structured natural language description (Müller et al. 2014),
such as the ODD protocol, discussed in Chap. 15 (Grimm et al. 2017) of this
volume.The ODD protocol (Overview, Design concepts, Details) is one of the
most widely used templates for making model descriptions more understandable
and complete, providing a comprehensive checklist that covers many of the
key features that can define a model. The ODD + D protocol (Müller et al.
2013) extends the ODD protocol for models in which human-decision making
is simulated, often the case in social simulation.

– The model’s source code should be made available, given that it is the model’s
definitive implementation, not subject to the vagueness and uncertainty possibly
associated with verbal descriptions (Wilensky and Rand 2007; Müller et al.
2014). If possible, an open source simulation platform should be utilised to
implement the model, thus fostering software reuse in order to make simulations
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reliable and more comparable to each other. Maximum model exposure is
achieved if the simulation is runnable on the browser. This is much simpler
nowadays, with technologies such as HTML5 and JavaScript dispensing the
need for browser plug-ins. ABM toolkits such as AgentScript (Densmore 2016)
and AgentBase (Wiersma 2015) use this approach. In any case, making the
computational model widely available and easily runnable is crucial for others
to be able to experiment with it.

– Besides source code availability, documentation about the computational model
should also be provided in the form of (1) detailed source code comments, and
(2) a user guide and/or technical report. The former should clearly explain what
each code unit (e.g. function or class) does, while the latter should describe the
program’s architecture, preferably with the aid of visual description standards
such as UML diagrams. In either case, the computational model documentation
should contain information about technical options where the translation from
the conceptual model was neither straightforward nor consensual.

– Detailed information about the results should be made publicly available. This
includes statistical methods and/or scripts implementing or using them, raw
simulation outputs, distributional information, sensitivity analyses performed or
qualitative measures. A number of specialised scientific data repositories exist
for this purpose (Assante et al. 2016; Amorim et al. 2015). Furthermore, there
is an increasing awareness of how important it is to have published, citable
and documented data available in the scholarly record due to its crucial role in
reproducible science (Altman et al. 2015; Kratz and Strasser 2014).

The CoMSES Net Computational Model Library (Rollins et al. 2014), an
open digital repository for disseminating computational models associated with
publications in the social and life sciences, should be highlighted in this regard
since it enforces some of the best practices discussed above. Models are organised
as searchable entries, by title, author or other relevant metadata. A formatted citation
is shown for each entry so that researchers who use the model can easily credit its
creators. Model entries have separate sections for code, documentation, generated
outputs, solution exploration analyses and other relevant information. The library
accepts not only original models, but also explicitly welcomes replications of
previous studies. It also offers a certification service that verifies (1) if the model
code successfully compiles and runs, and (2) if the model adheres to documentation
best practices, with the ODD protocol being the recommended documentation
template.

9.4.3 Model Comparison Techniques

Replication is evaluated by comparing the outputs of the original computational
model against the output of the replicated implementation (Thiele and Grimm 2015).
However, how do we determine whether or not two models produce equivalent
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output behaviour? Axtell et al. (1996) defined three kinds of equivalence or levels
of similarity between model outputs: numerical identity, relational alignment and
distributional equivalence. The first, numerical identity, implies exact numerical
output and is difficult to demonstrate for stochastic models in general and social
complexity models in particular. Relational alignment between outputs exists if they
show qualitatively similar dependencies with input data, which is frequently the only
way to compare a model with another which is inaccessible (e.g. implementation
has not been made available by the original author), or with a non-controllable
“real” social system. Lastly, distributional equivalence between implementations
is achieved when the distributions of results cannot be statistically distinguished.
What this shows is that at conventional confidence probabilities the statistics
from different implementations may come from the same distribution, but it does
not prove that this is actually the case. In other words, it does not prove that
two implementations are algorithmically equivalent. Nonetheless, demonstrating
equivalence for a larger number of parametrisations increases the confidence that
the implementations are in fact globally equivalent (Edmonds and Hales 2003).

Since numerical identity is difficult to attain, and is not critical for showing that
two such models have the same dynamic behaviour, distributional equivalence is
more often than not the appropriate standard when comparing two implementations
of a stochastic social complexity model. When aiming for distributional equiva-
lence, a set of statistical summaries representative of each output are selected. It is
these summaries, and not the complete outputs, that will be compared in order to
assess the similarity between the original computational model and the replicated
one. As models may produce large amounts of data, the summary measures should
be chosen as to be relevant to the actual modelling goal. The summaries of all model
outputs constitute the set of focal measures (FMs) of a model (Wilensky and Rand
2007), or more specifically, of a model parametrisation (since different FMs may be
selected for distinct parametrisations). However, this process is empirically driven
and model-dependent, or even parameter-dependent. Furthermore, it is sometimes
unclear as to what output features best describe model behaviour. A possible
solution, presented by Arai and Watanabe (2008) in the context of comparing
models with different elements, is the automatic extraction of FMs from time-
series simulation output using the discrete Fourier transform. Fachada et al. (2017b)
proposed a similarly automated method, using principal component analysis to
convert simulation output into a set of linearly uncorrelated statistical measures,
analysable in a consistent, model-independent fashion. The proposed method was
broader in scope—with support for multiple outputs and different types of data—
and is available in the form of a software package for the R platform (Fachada et al.
2016; R Core Team 2017).

Once the FMs are extracted from simulation output, there are three major
statistical approaches used to compare them: (1) statistical hypothesis tests; (2)
confidence intervals; and (3) graphical methods (Balci and Sargent 1984). Statistical
hypothesis tests are often used for comparing two or more computational models
(Axtell et al. 1996; Wilensky and Rand 2007; Edmonds and Hales 2003; Miodownik
et al. 2010; Radax and Rengs 2009; Fachada et al. 2017a,b). More specifically,
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hypothesis tests check if the statistical summaries obtained from the outputs of two
(or more) model implementations are drawn from the same distribution. Confidence
intervals are usually preferred for comparing the output of a model with the output of
the system being modelled, as they provide an indication of the magnitude by which
the statistic of interest differs between the two. Nonetheless, confidence intervals
can also be used for model comparison, but in contexts different from replication,
such as the evaluation of different models that might represent competing system
designs or alternative operating policies (Balci and Sargent 1984; Law 2015).
Graphical methods, such as Q–Q plots (e.g. Alberts et al. 2012) or scatter plots
(e.g. Arai and Watanabe 2008; Fachada et al. 2017b), can also be employed for
comparing output data, though their interpretation is more subjective than the
previous methods.

9.5 Modelling Strategies and Its Relationship to Validation

In this section we review the purpose of validation and its relationship to different
modelling strategies with respect to the level of descriptive detail embedded in a
simulation.

Several taxonomies of modelling strategies have been described in the literature
(David et al. 2004; Boero and Squazzoni 2005; Gilbert 2008, pp. 42–44). Normally,
the adoption of these strategies does not depend on the class of the target being
modelled, but on different ways to address it as the problem domain. For example,
if a simulation is intended to model a system for the purpose of designing policies,
this implies representing more information and detail than a simulation intended
for modelling social mechanisms of the system in a metaphorical way. However,
varying levels of model detail imply a trade-off between the effort required for
verifying the simulation and the effort required for validating it. As more context
and richness are embedded in a model, the more difficult it will be to verify it.
Conversely, as one increases the descriptive richness of simulations, more ways
will be available to assess its validity. A tension that contrasts the tendency
for constraining simulations by formal-theoretical constructs—normally easier to
verify—and constraining simulations by theoretical-empirical descriptions—more
amenable to validation by empirical and participative-based methods. In the next
sections, two contrasting modelling strategies are discussed and the typical cycle of
formal and informal approaches for modelling and validation is described.

9.5.1 Subjunctive Agent-Based Models

A popular strategy in social simulation consists of using models as a means for
expressing subjunctive moods to talk about possible worlds using what-if scenarios,
like “what would happen if something were the case.” The goal is building artificial
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societies for modelling possible worlds that represent classes of social mechanisms,
while striving for maximal simplicity and strong generalisation power of the
representations used. Reasons for striving for simplicity include the computational
tractability of the model and to keep the data analysis as simple as possible.

Simplicity and generalisation power are often seen as elements of elegance
in a model. However, making the model simpler in the social sciences does
not necessarily make the model more general. More often than not this kind of
modelling only makes it metaphorically general, or simply counterfactual (with false
assumptions). For example, “What would happen if world geography is regarded
as a two-dimensional space arranged on a 10 � 10 grid, where agents are thought
of as independent political units, such as nations, which have specific behaviours
of interaction according to simple rules?” To assume that world geography is
one-dimensional, as Axelrod (1993) does in his Tribute Model, is clearly a false
assumption. Often these models are associated with a design slogan coined by
Axelrod (1997a), called the KISS approach—“Keep it Simple Stupid.” Despite their
simplicity, these kinds of models prove useful for concept formation and theoretical
abstraction. The emergence of macro regularities from micro-levels of interaction
becomes the fundamental source of concept formation and hypothesis illustration,
with the power of suggesting novel theoretical debates.

Given the tendency for simplification and abstraction, mechanisms used in these
models are normally described in a formalised or mathematical way. Axelrod’s mod-
els, such as the culture dissemination model, or Schelling’s residential segregation
model, are canonical examples. Their simplicity and elegance have been factors for
popularity and dissemination that span numerous disciplines and ease replication
and verification.

However, whereas simplicity eases verification, the use of metaphorical models
also brings disadvantages. Consider a word composed of several attributes repre-
senting an agent’s culture, such as in Axelrod’s culture dissemination model. The
attributes do not have any specific meaning and are only distinguishable by their
relative position in the word. Thus, they can be interpreted according to a relatively
arbitrary number of situations or social contexts. However, such a representation
may also be considered too simplified to mean anything relevant for such a
complex concept as a cultural attribute. As a consequence, verification is hardly
distinguishable from validation, insofar as the model does not represent a specific
context of social reality. In such a sense, the researcher is essentially verifying
experimentally whether his conceptions are met by an operationalisation that is
intentionally and computationally expressed (David et al. 2005). Nevertheless,
given their simplicity, subjunctive models can be easily linked and compared
to other models, extended with additional mechanisms, as well as modified for
model alignment, docking, or replication. Cross-element validation is a widely used
technique.

At any rate, the fact that these models are simpler to replicate and compare—but
hardly falsifiable by empirically acquired characteristics of social reality—stresses
their strong characteristic: when models based on strategies of maximal simplicity
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become accepted by a scientific community, their influence seems to reach several
other disciplines and contexts. Perhaps for this reason, these kinds of models are the
most popular in social simulation, and some models are able to reach a considerable
impact in many strains of social science.

9.5.2 Context-Specific Agent-Based Models

It would be simplistic to say that models in social simulation can be characterised
according to well-defined categories of validation strategies. Even so, the capacity
to describe social complexity, whether through simplicity or through rich detail and
context, is a determining factor for a catalogue of modelling strategies.

We cannot hope to model general social mechanisms that are valid in all
contexts. There are many models that are not designed to be markedly general
or metaphorically general, but to stress accurateness, diversity, and richness of
description. Instead of using possible worlds representing very arbitrary contexts,
models are explicitly bounded to specific contexts. Constraints imposed on these
models can vary from models investigating properties of social mechanisms in
a large band of situations which share common characteristics, to models with
the only ambition of representing a single history, like Dean’s retrodiction of the
patterns of settlement of the Anasazi in the southwestern United States, household
by household (Dean et al. 2000).

Constructing and validating a model of this kind requires the use of empirical
knowledge. They are, for this reason, often associated with the idea of “Empirical
Validation of Agent-Based Models.”

What is the meaning of empirical in this sense? If the goal is to discuss empirical
claims, then models should attempt to capture empirically enquired characteristics
of the target domain. Specifying the context of descriptions will typically provide
more ways for enquiring quantitative and qualitative data in the target, as well
as using experimental and participative methods with stakeholders. In this sense,
empirical may be understood as a stronger link between the model and a context-
specific, well-circumscribed problem domain.

The Anasazi model by Dean et al. (2000) is a well-known and oft-cited example
of a highly contextualised model built on the basis of numerous sources, from
archaeological data to anthropological, agricultural and ethnographic analyses, in
a multidisciplinary context.

Given the higher specificity of the target domain, the higher diversity of ways for
enriching the model as well as the increased semantic specificity of the outputs
produced by the model, context-specific models may be more susceptible to be
compared with empirical results of other methods of social research. On the other
hand, comparison with other simulation models is complex and these models are
more difficult to replicate and compare.
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9.5.3 Modus Operandi: Formal and Informal Approaches

The tension between simplicity and descriptive richness expresses two different
ways for approaching the construction and validation of a model. One can start
with a rich, complex, realistic description and only simplify it where this turns out
to be possible and irrelevant to the target system—known as the KIDS approach
(Edmonds and Moss 2005). Or one starts from the outset with the simplest possible
description and complexifies it only when it turns out to be necessary to make
the model more realistic (Law 2015), nevertheless keeping the model as simple as
possible—known as the KISS approach (Axelrod 1997a).

In practice, both trends are used for balancing trades-offs between the model’s
descriptive accuracy and the practicality of modelling, according to the purpose and
the context of the model (Sun et al. 2016). This raises yet another methodological
question: the extent to which models ought to be designed on the basis of formal
theories, or ought to be constrained by techniques and approaches just on the
basis of the intuition of the model builders and stakeholders. As we have seen,
strong, subjunctive, ABMs with metaphorical purposes tend to adopt the simplicity
motto with extensive use of formal constructs, making the models more elegant
from a mathematical point of view, easier to verify, but less liable to validation
methods. Game theoretical models, with all their formal and theoretical apparatus,
are a canonical example. Results from these models are strongly constrained by the
formal theoretical framework used.

A similar problem is found when ABMs make use of cognitive architectures
strongly constrained by logic-based formalisms, such as the kind of formalisms
used to specify BDI-type architectures. If the cognitive machinery of the agents
relies on heuristic approaches that have been claimed valid, many researchers in
the literature claim that cognitive ABMs can be validated in the empirical sense of
context-specific models. Cited examples of this kind usually point to ABMs based
on the Soar cognitive architecture (Laird 2012).

At any rate, context-specific models are normally more eclectic and make use
of both formal and informal knowledge, often including informal and stakeholder
evidence in order to build and validate the models. Model design tends to be less
constrained a priori by formal constructs. In principle, one starts with all aspects of
the target domain that are assumed to be relevant and then explores the behaviour
of the model in order to find out if there are aspects that do not prove relevant
for a particular interval of outcomes. The typical approach the majority of all
modelling and validation can be summarised in a cycle with the following iterative
and overlapping steps:

(a) Building and validating pre-computational and computational models: Several
descriptions and specifications are used to build a model, eventually in the
form of a computer program, which are micro-validated against a theoretical
framework and/or empirical knowledge, usually qualitatively. This may include
the individual agents’ interaction mechanisms (rules of behaviour for agents
or organisations of agents), their internal mechanisms (e.g. their cognitive
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machinery), the kind of interaction topology or environment, and the passive
entities with which the agents interact. The model used should be as general
as possible for the context in consideration as well as flexible for testing how
parameters vary in particular circumstances. Empirical data—if available—
should be used to help configure the parameters. Both the descriptions of the
model and the parameters used should be validated for the specific context of
the model. For example, suppose empirical data are available for specifying
the consumer demand of products. If the demand varies from sector to sector,
one may use data to inform the distribution upon which the parameter could be
based for each specific sector.

(b) Specifying expected behaviours of the computational model: Micro and macro
characteristics that the model is designed to reproduce are established from the
outset based on theoretical and/or empirical knowledge. Any property, from
quantitative to qualitative measures, such as emergent key facts the model
should reproduce (stylised facts), the statistical characteristic or shape of time-
data series (statistical signatures) and individual agents’ behaviour along the
simulation (individual trajectories), can be assessed. This may be carried out
in innumerable ways, according to different levels of description or grain, and
be more or less general depending on the context of the model and the kind of
empirical knowledge available. For instance, in some systems it may be enough
to predict just a “weak” or “positive” measure on some particular output, such
as a positive and weak autocorrelation. Or we might look for the emergence
of unpredictable events, such as stable regimes interleaved with periods of
strong volatility, and check their statistical properties for various levels of
granularity. Or the emergence of different structures or patterns associated with
particular kinds of agents, such as groups of political agents with “extremist” or
“moderate” individuals.

(c) Testing the computational model and building and validating post-compu-
tational models: The computational model is executed. Both individual and
aggregate characteristics are computed and tested for sensitivity analysis. These
are micro-validated and macro-validated against the expected characteristics
of the model established in step B according to a variety of validation
techniques, as described in the previous sections. A whole process of building
post-computational models takes place, possibly leading to the discovery of
unexpected characteristics in the behaviour of the computational model which
should be assessed with further theoretical or empirical knowledge about the
problem domain.

Further Reading

Good introductions to validation and verification of simulation models in general
are Sargent (2013) and Troitzsch (2004), the latter with a focus on social simulation.
Validation of ABMs in particular is addressed by Amblard et al. (2007).
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For readers more interested in single aspects of V&V, with regard to ABMs with
applicability in social simulation, the following papers provide highly accessible
starting points:

– Edmonds and Hales (2003) demonstrate the importance of model replication (or
model alignment) by means of a clear example.

– Boero and Squazzoni (2005) examine the use of empirical data for model
calibration and validation and argue that “the characteristics of the empirical
target” influence the choice of validation strategies.

– Moss and Edmonds (2005) discuss an approach for cross-validation that com-
bines the involvement of stakeholders to validate the model qualitatively on the
micro level with the application of statistical measures to numerical outputs to
validate the model quantitatively on the macro level.

– Müller et al. (2014) address the question of whether an ideal standard for
describing and documenting models exists, defining different types of model
reporting and proposing a minimum description standard for good modelling
practice.

– Lee et al. (2015) provide an overview of the state-of-the-art approaches in
analysing and reporting ABM outputs, highlighting challenges and issues related
to variance stability, sensitivity analysis, spatio-temporal analysis, visualisation,
and effective communication of these to non-technical audiences, such as various
stakeholders.

– Fachada et al. (2017b) Present a structured approach to designing and per-
forming complete model comparison experiments, using statistical tests to
determine if two or more computational models generate distributionally equiv-
alent behaviour.

– Finally, more comprehensive epistemological perspectives on verification and
validation are provided in a number of papers published or derived from the
Epistemological Perspectives on Simulation (EPOS) workshops, namely Frank
and Troitzsch (2005), David (2009), Squazzoni (2009) and David et al. (2010).
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Chapter 10
Understanding Simulation Results

Andrew Evans, Alison Heppenstall, and Mark Birkin

Abstract Simulation modelling is concerned with the abstract representation of
entities within systems and their interrelationships; understanding and visualising
these results is often a significant challenge for the researcher. Within this chapter we
examine particular issues such as finding “important” patterns and interpreting what
they mean in terms of causality. We also discuss some of the problems with using
model results to enhance our understanding of the underlying social systems which
they represent, and we will assert that this is in large degree a problem of isolating
causal mechanisms within the model architecture. In particular, we highlight the
issues of equifinality and identifiability—that the same behaviour may be induced
within a simulation from a variety of different model representations or parameter
sets—and present recommendations for dealing with this problem. The chapter ends
with a discussion of avenues of future research.

Why Read This Chapter?
To help you understand the results that a simulation model produces, by suggesting
some ways to analyse and visualise them. The chapter concentrates on the internal
dynamics of the model rather than its relationship to the outside world.

10.1 Introduction

Simulation models may be constructed for a variety of purposes. Classically these
purposes tend to centre on either the capture of a set of knowledge or making
predictions. Knowledge capture has its own set of issues that are concerned
with structuring and verifying knowledge in the presence of contradiction and
uncertainty. The problems of prediction, closely associated with calibration and
validation, centre around comparisons with real data, for which the methods covered
in Chap. 9 (David et al. 2017) are appropriate. In this chapter, however, we look at
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what our models tell us through their internal workings and logic, how we might
understand/interpret simulation results as results about an attempted simulation
of the real world, rather than as results we expect to compare directly with the
world. Here then, we tackle the third purpose of modelling: the exploration of
abstracted systems through simulation. In a sense, this is a purpose predicated
only on the limitations of the human mind. By common definition, simulation
modelling is concerned with abstract representations of entities within systems
and their interrelationships and with the exploration of the ramifications of these
abstracted behaviours at different temporal and geographical scales. In a world in
which we had larger brains, models would not be required to reveal anything—we
would instantly see the ramifications of abstracted behaviours in our heads. To a
degree, therefore, models may be seen as replacing the hard joined-up thinking that
is required to make statements about the way the world works. This chapter looks at
what this simplifying process tells us about the systems we are trying to replicate.

In part, the complications of simulation modelling are a product of the dimen-
sionality of the systems with which we are dealing. Let us imagine that we are
tackling a system of some spatio-temporal complexity, for example, the prices in
a retail market selling items A, B and C. Neighbouring retailers adjust their prices
based on local competition, but the price of raw materials keeps the price surface
out of equilibrium. In addition, customers will only buy one of the products at a
time, creating a link between the prices of the three items. Here, then, we have
three interdependent variables, each of which varies spatio-temporally, with strong
auto- and cross-correlations in both time and space. What kinds of techniques can
be used to tease apart such complex systems? In Sect. 10.2 of this chapter, we will
discuss some of the available methodologies broken down by the dimensionality
of the system in question and the demands of the analysis. Since the range of
such techniques is extremely sizable, we shall detail a few traditional techniques
that we believe might be helpful in simplifying model data that shows the traits of
complexity and some of the newer techniques of promise.

Until recently, most social science models represented social systems using
mathematical aggregations. We have over 2500 years’ worth of techniques to call
upon that are founded on the notion that we need to simplify systems as rapidly as
we can to the point at which the abstractions can be manipulated within a single
human head. As is clear, not least from earlier contributions in this volume, it
is becoming increasingly accepted that social scientists might reveal more about
systems by representing them in a less aggregate manner. More specifically, the
main difference between mathematics and the new modelling paradigm is that we
now aspire to work at a scale at which the components under consideration can be
represented as having their own discrete histories; mathematics actually works in a
very similar fashion to modern models, but at all the other scales. Naturally there are
knock-ons from this in terms of the more explicit representation of objects, states
and events, but these issues are less important than the additional simulation and
analytical power that having a history for each component of a system gives us. Of
course, such a “history” may just be the discrete position of an object at a single
historical moment, and plainly at this level of complication, the boundary between
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such models and, for example, Markov models, is somewhat diffuse; however, as the
history of components becomes more involved, so the power of modern modelling
paradigms comes to the fore. What is lacking, however, are the techniques that are
predicated on these new architectures. Whilst models which are specified at the
level of individual entities or “agents” may also be analysed using conventional
mathematical techniques, in Sect. 10.3 of the chapter, we will discuss some more
novel approaches which are moving the direction of understanding the outputs of
these new, unaggregated, models on their own terms.

One of the reasons that simulation models are such a powerful methodology
for understanding complex systems is their ability to display aggregate behaviour
which goes beyond the simple extrapolation of the behaviour of the individual
component parts. In mathematical analysis, such as dynamical systems theory, this
behaviour tends to be linked to notions of equilibrium, oscillation and catastrophe
or bifurcation. Individual- and agent-based modelling approaches have veered
more strongly towards the notion of emergence, which can be defined as “an
unforeseen occurrence; a state of things unexpectedly arising” (OED 2010). The
concept of emergence is essentially a sign of our ignorance of the causal pathways
within a system. Nevertheless, emergence is our clearest hope for developing an
understanding of systems using models. We hope that emergence will give us
a perceptual shortcut to the most significant elements of a system’s behaviour.
When it comes to applications, however, emergence is a rather double-edged blade:
emergence happily allows us to see the consequence of behaviours without us
having to follow the logic ourselves; however it is problematic in relying upon
us to filter out which of the ramifications are important to us. As emergence
is essentially a sign of incomplete understanding, and therefore weakly relative,
there is no objective definition of what is “important”. one day classification of
the kinds of patterns that relate to different types of causal history, but there is
no objective manner of recognising a pattern as “important” as such. These two
problems, finding “important” patterns (in the absence of any objective way of
defining “important”) and then interpreting what they mean in terms of causality,
are the issues standing between the researcher and perfect knowledge of a modelled
system. In the fourth section of this chapter, we will discuss some of the problems
with using model results to enhance our understanding of the underlying social
systems which they represent, and we will assert that this is in large degree a
problem of isolating causal mechanisms within the model architecture. In particular,
we highlight the issues of equifinality and identifiability—that the same behaviour
may be induced within a simulation from a variety of different model representations
or parameter sets—and present recommendations for dealing with this problem.
Since recognising emergence and combating the problems of identifiability and
equifinality are amongst the most urgent challenges to effective modelling of
complex systems, this leads naturally to a discussion of future directions in the final
section of the chapter.
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10.2 Aggregate Patterns and Conventional Representations
of Model Dynamics

Whether a model is based on deductive premises or inferred behaviours, any
new understanding of a given modelled system tends to be developed inductively.
Modellers examine model outputs, simplify them and then try to work out the cause
utilising a combination of hypothesis dismissal, refinement and experimentation.
For example, a modeller of a crowd of people might take all the responses of each
person over time and generate a single simple mean statistic for each person; these
might then be correlated against other model variables. If the correlation represents a
real causal connection, then varying the variables should vary the statistic. Proving
such causal relationships is not something we often have the ability to do in the
real world. During such an analysis, the simplification process is key: it is this that
reveals the patterns in our data. The questions are: how do we decide what needs
simplifying and, indeed, how simple to make it?

We can classify model results by the dimensionality of the outputs. A general
classification for social systems would be:

• Single statistical aggregations (1D)
• Time series of variables (2D)
• The spatial distributions of invariants (2D) or variables (3D)
• Spatio-temporal locations of invariants (3D) or variables (4D)
• Other behaviours in multidimensional variable space (nD)

For simplicity, this assumes that geographical spaces are essentially two-
dimensional (while recognising that physical space might also be represented along
linear features such as a high street, across networks or within a three-dimensional
topographical space for landforms or buildings). It should also be plain that in
the time dimension, models do not necessarily produce just a stream of data, but
that the data can have complex patternation. By their very nature, individual-level
models, predicated as they are on a life cycle, will never stabilise in the way a
mathematical model might (Uchmanski and Grimm 1996); instead models may run
away or oscillate, either periodically or chaotically.

Methods for aiding pattern recognition in data break down, again, by the
dimensionality of the data, but also by the dimensionality of their outputs. It is quite
possible to generate a one-number statistic for a 4D spatio-temporal distribution. In
some cases, the reduction of dimensionality is the explicit purpose of the technique,
and the aim is that patterns in one set of dimensions should be represented as closely
as possible in a smaller set of dimensions so they are easier to understand. Table 10.1
below presents a suite of techniques that cross this range (this is not meant to be an
exhaustive list; after all, pattern recognition is a research discipline of its own with
a whole body of literature including several dedicated journals).

To begin with, let us consider some examples which produce outputs in a single
dimension. In other words, techniques for generating global and regional statistics
describing the distribution of variables across space, either a physical space or a
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Table 10.1 Pattern recognition techniques for different input and output data dimensions

1D output 2D output 3D output 4D output ND

1D input
2D input Exploratory

statistics
Cluster locating
Fourier/wavelet
transforms

3D input Entropy
statistics

Phase diagrams
Fourier/wavelet
transforms

4D input Diffusion
statistics

Time slices Recurrence plots

nD Network
statistics

Eigenvector
analysis

Sammon mapping Animations Heuristic
techniques

variable space. Such statistics generally tend to be single time slice, but can be
generated for multiple time slices to gauge overall changes in the system dynamics.

Plainly, standard aggregating statistics used to compare two distributions, such as
the variable variance, will lose much of interest, both spatially and temporally. If we
wish to capture the distribution of invariants, basic statistics like nearest-neighbour
(Clark and Evans 1954) or the more complex patch shape, fragmentation and
connectivity indices of modern ecology (for a review and software, see McGarigal
2002) provide a good starting point. Networks can be described using a wide
variety of statistics covering everything from shortest paths across a network to the
quantity of connections at nodes (for a review of the various statistics and techniques
associated with networks, see Boccaletti et al. 2006; Evans 2010). However, we
normally wish to assess the distribution of a variable across a surface—for example,
a price surface or a surface of predicted retail profitability. One good set of global
measures for such distributions are entropy statistics. Suppose we have a situation
in which a model is trying to predict the number of individuals that buy product A
in one of four regions. The model is driven by a parameter, beta. In two simulations
we get the following results: simulation one (low beta), 480, 550, 520 and 450 and
simulation two, (high beta) 300, 700, 500 and 400. Intuitively the first simulation
has less dispersal or variability than the second simulation. An appropriate way
to measure this variability would be through the use of entropy statistics. The
concept of entropy originates in thermodynamics, where gases in a high-entropy
state contain dispersed molecules. Thus high entropy equates to high levels of
variability. Entropy statistics are closely related to information statistics where
a -entropy state corresponds to a high information state. In the example above,
simulation two is said to contain more “information” than simulation one, because if
we approximate the outcome using no information, we would have a flat average—
500, 500, 500 and 500—and this is closer to simulation one than simulation two.
Examples of entropy and information statistics include Kolmogorov-Chaitin, mutual
information statistics and the Shannon information statistic. Most applications in the
literature use customised code for the computation of entropy statistics, although
the computation of a limited range of generalised entropy indices is possible within



210 A. Evans et al.

Stata.1 Entropy statistics can also be used to describe flows across networks. In this
sense they provide a valuable addition to network statistics: most network statistics
concentrate on structure rather than the variable values across them. Unless they
are looking specifically at the formation of networks over time, or the relationship
between some other variable and network structure, modellers are relatively bereft
of techniques to look at variation on a network.

In the case where variability is caused and constrained by neighbourhood effects,
we would expect the variation to be smoother across a region. We generally expect
objects in space under neighbourhood effects to obey Tobler’s first law of geography
(Tobler 1970) that everything is related, but closer things are related more. This
leads to spatial auto- or cross-correlation, in which the values of variables at a
point reflect those of their neighbours. Statistics for quantifying such spatial auto-
or cross-correlation at the global level, or for smaller regions, such as Moran’s I and
Geary’s C, are well established in the geography literature (e.g. Haining 1990); a
useful summary can be found in Getis (2007).

Such global statistics can be improved on by giving some notion of the direction
of change of the auto- or cross-correlation. Classically this is achieved through semi-
variograms, which map out the intensity of correlation in each direction traversed
across a surface (for details, see Isaaks and Srivastava 1990). In the case where it
is believed that local relationships hold between variables, local linear correlations
can be determined, for example, using geographically weighted regression (GWR;
for details, see Fotheringham et al. 2002). GWR is a technique which allows the
mapping of R2s calculated within moving windows across a multivariate surface
and, indeed, mapping of the regression parameter weights. For example, it would
be possible in our retail results to produce a map of the varying relationship
between the amount of A purchased by customers and the population density, if
we believed these were related. GWR would not just allow a global relationship
to be determined, but also how this relationship changed across a country. One
important but somewhat overlooked capability of GWR is its ability to assess how
the strength of correlations varies with scale by varying the window size. This can
be used to calculate the key scales at which there is sufficient overlap between the
geography of variables to generate strong relationships (though some care is needed
in interpreting such correlations, as correlation strength generally increases with
scale: Robinson 1950; Gehlke and Biehl 1934). Plainly, identifying the key scale at
which the correlations between variables improve gives us some ability to recognise
key distance scales at which causality plays out. In our example, we may be able to
see that the scale at which there is a strong relationship between sales of A and the
local population density increases as the population density decreases, suggesting
rural consumers have to travel further and a concomitant non-linearity in the model
components directing competition.

1Confusingly, “generalised entropy” methods are also widely used in econometrics for the
estimation of missing data. Routines which provide this capability, e.g. in SAS, are not helpful
in the description of simulation model outputs!
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If, on the other hand, we believe the relationships do not vary smoothly across
a modelled surface, we instead need to find unusual clusters of activity. The ability
to represent spatial clustering is of fundamental importance, for example, within
Schelling’s well-known model of segregation in the housing market (Schelling
1969). However clustering is often not so easy to demonstrate within both real
data and complex simulation outputs. The most recent techniques use, for example,
wavelets to represent the regional surfaces, and these can then be interpreted
for cluster-like properties. However, for socio-economic work amongst the best
software for cluster detection is the geographical analysis machine (GAM), which
not only assesses clustering across multiple scales but also allows assessment of
clustering in the face of variations in the density of the population at risk. For
example, it could tell us where transport network nodes were causing an increase in
sales of A, by removing regions with high sales caused by high population density
(the population “at risk” of buying A). Clusters can be mapped and their significance
assessed (Openshaw et al. 1988).

Often, simulations will be concerned with variations in the behaviour of systems,
or their constituent agents, over time. In common with physical systems, social and
economic systems are often characterised by periodic behaviour, in which similar
states recur, although typically this recurrence is much less regular than in many
physical systems. For example, economic markets appear to be characterised by
irregular cycles of prosperity and depression. Teasing apart a model can provide
nonintuitive insights into such cycles. For example, Heppenstall et al. (2006)
considered a regional network of petrol stations and showed within an agent
simulation how asymmetric cyclical variations in pricing (fast rises and slow falls),
previously thought to be entirely due to a desire across the industry to maintain
artificially high profits, could in fact be generated from more competitive profit
maximisation in combination with local monitoring of network activity. While it
is, of course, not certain these simpler processes cause the pattern in real life, the
model exploration does give researchers a new explanation for the cycles and one
that can be investigated in real petrol stations.

In trying to detect periodic behaviour, wavelets are rapidly growing in popularity
(Graps 2004). In general, one would assume that the state of the simulation can
be represented as a single variable which varies over time (let’s say the average
price of A). A wavelet analysis of either observed or model data would decompose
this trend into chunks of time at varying intervals, and in each interval the technique
identifies both a long-term trend and a short-term fluctuation. Wavelets are therefore
particularly suitable for identifying cycles within data. They are also useful as
filters for the removal of noise from data and so may be particularly helpful in
trying to compare the results from a stylised simulation model with observed data
which would typically be messy, incomplete or subject to random bias. It has been
argued that such decompositions are fundamentally helpful in establishing a basis
for forecasting (Ramsey 2002).

Wavelets are equally applicable in both two and three dimensions. For example,
they may be useful in determining the diffusion of waves across a two-dimensional
space and over time and can be used to analyse, for example, the relationship
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between wave amplitude and propagation distance. Viboud et al. (2006) provide
a particularly nice example of such a use, looking at the strength of the propagation
of influenza epidemics as influenced by city size and average human travel distances
in the USA. Other more traditional statistics, such as the Rayleigh statistic (Fisher
et al. 1987; Korie et al. 1998), can also be used to assess the significance of diffusion
from point sources.

In addition to global and regional aggregate statistics of single variables or
cross-correlations, it may be that there is simply too great a dimensionality to
recognise patterns in outputs and relate them to model inputs. At this point it
is necessary to engage in multidimensional scaling. If an individual has more
than four characteristics, then multidimensional scaling methods can be used to
represent the individuals in two or three dimensions. In essence, the problem is
to represent the relation between individuals such that those which are most similar
in n-dimensions still appear to be closest in a lower-dimensional space which can
be visualised more easily. The most popular technique is Sammon mapping. This
method relies on the ability to optimise an error function which relates original
values in high-dimensional space to the transformed values. This can be achieved
using standard optimisation methods within packages such as MATLAB or using
a number of bespoke R packages. Multidimensional scaling can be useful in
visualising the relative position of different individuals within a search space, for
exploring variations in a multi-criteria objective function within a parameter space
or for comparing individual search paths within different simulations (Pohlheim
2006).

Eigenvector methods are another form of multidimensional scaling. Any multidi-
mensional representation of data in n-dimensional space can be transformed into an
equivalent space governed by n orthogonal eigenvectors. The main significance of
this observation is that the principal eigenvector constitutes the most efficient way
to represent a multidimensional space within a single value. For example, Moon,
Schneider and Carley (Moon et al. 2006) use the concept of “eigenvector centrality”
within a social network to compute a univariate measure of relative position based
on a number of constituent factors.

Eigenvector analyses, however, can be nonintuitive to those not used to them.
Somewhat simpler presentations of multidimensional data can be made using clus-
tering techniques. These collapse multidimensional data so that individual cases are
members of a single group or cluster, classified on the basis of a similarity metric.
The method may therefore be appropriate if the modeller wishes to understand the
distribution of an output variable in relation to the combination of several input
variables. Cluster analysis is easy to implement in all the major statistics packages
(R, SAS, SPSS). The technique is likely to be most useful in empirical applications
with a relatively large number of agent characteristics (i.e. six or more) rather than
in idealised simulations with simple agent rules. One advantage of this technique
over others is that it is possible to represent statistical variation within the cluster
space, for example, by displaying the interquartile variation in the attribute variable
within clusters.
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10.3 Individual Patterns, Novel Approaches
and Visualisation

Plainly aggregate statistics like those above are a useful way of simplifying
individual-level data, both in terms of complexity and dimensionality. However,
they are the result of over 2500 years of mathematical development in a research
environment unsuited to the mass of detail associated with individual-level data.
Now, computers place us in the position of being able to cope with populations
of individual-level data at a much smaller scale. We still tend to place our own
understanding at the end of an analytical trail, constraining the trail to pass through
some kind of simplification and higher level of aggregation for the purposes of
model analysis. Despite this, it is increasingly true that individual-level data is dealt
with at the individual level for the body of the analysis, and this is especially true in
the case of individual-level modelling, in which experimentation is almost always
enacted at the individual level. Whether it is really necessary to simplify for human
understanding at the end of an analysis is not especially clear. It may well be that
better techniques might be developed to do this than those built on an assumption of
the necessity of aggregation.

At the individual level, we are interested in recognising patterns in space and
time, seeing how patterns at different scales affect each other, and then using this
to say something about the behaviour of the system/individuals. Patterns are often
indicators of the attractors to which individuals are drawn in any given system and
present a shortcut to understanding the mass of system interactions. However, it is
almost as problematic to go through this process to understand a model as it is, for
example, to derive individual-level behaviours from real large-size spatio-temporal
datasets of socio-economic attributes. The one advantage we have in understanding
a model is that we do have some grip on the foundation rules at the individual scale.
Nonetheless, understanding a rule and determining how it plays out in a system
of multiple interactions are very different things. Table 10.2 outlines some of the
problems.

Despite the above, our chief tool for individual-level understanding without
aggregation is, and always has been, the human ability to recognise patterns in

Table 10.2 Issues related to understanding a model at different levels of complexity

Complexity Issues

Spatial What is the impact of space (with whom do individuals initiate transactions
and to what degree)?

Temporal How does the system evolve?
Individuals How do we recognise which individual behaviours are playing out in the

morass of interactions?
Relationships How do we recognise and track relationships?
Scale How can we reveal the manner in which individual actions affect the

large-scale system and vice versa?
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masses of data. Visualisation, for all its subjectivity and faults, remains a key
element of the research process. The standard process is to present one or more
attributes of the individuals in a map in physical or variable space. Such spaces
can then be evolved in movies or sliced in either time or space (Table 10.3 shows
some examples). In general, we cannot test the significance of a pattern without
first recognising it exists, and to that extent significance testing is tainted by the
requirement that it tests our competency in recognising the correct pattern as much
as that the proposed pattern represents a real feature of the distribution of our
data. Visualisation is also a vital tool in communicating results within the scientific
community and to the wider public. The former is not just important for the
transmission of knowledge, but because it allows others to validate the work. Indeed,
the encapsulation of good visualisation techniques within a model framework
allows others to gain deeper understanding of one’s model, and to experiment
at the limits of the model—what Grimm (2002) calls “visual debugging”. Good
model design starts like the design of any good application, with an outline of
what can be done to make it easy to use, trustworthy and simple to understand.
Traditionally, user interface design and visualisation have been low on the academic
agenda, to the considerable detriment of both the science and the engagement of
taxpayers. Fortunately, in the years since the turn of the millennium, there has
been an increasing realisation that good design engages the public and that there
is a good deal of social science research that can be built on that engagement.
Orford et al. (1999) identify computer graphics, multimedia, the World Wide Web
and virtual reality as four visualisation technologies that have recently seen a
considerable evolution within the social sciences. There is an ever-increasing array
of visualisation techniques at our disposal: Table 10.3 presents a classification
scheme of commonly used and more novel visualisation methods based on the
dimensionality and type of data that is being explored.

Another classification scheme of these techniques that is potentially very useful
comes from Andrienko et al. (2003). This classification categorises techniques based
on their applicability to different types of data:

• “Universal” techniques that can be applied whatever the data, e.g. querying and
animation

• Techniques revealing existential change, e.g. time labels, colouring by age, event
lists and space-time cubes

• Techniques about moving objects, e.g. trajectories, space-time cubes and snap-
shots in time

• Techniques centred on thematic/numeric change, e.g. change maps, time series
and aggregations of attribute values

For information on other visualisation schemes, see Cleveland (1983), Hinneburg
et al. (1999) and Gahegan (2001).

In each case, the techniques aim to exploit the ease with which humans recognise
patterns (Muller & Schumann Müller and Schumann 2003). Pattern recognition is,
at its heart, a human attribute, and one which we utilise to understand models, no
matter how we process the data. The fact that most model understanding is founded
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Table 10.3 Classification of visualisation methods according to dimensionality and type of data

Method Pro Con

Spatial 1D/2D Map: overlay;
animated trajectory
representation (e.g.
arrows); snapshots

View of whole
trajectory of an object

Cannot analyse
trajectory of movement.
If several objects cross
paths, cannot tell
whether objects met at
crossing point or visited
points at different times

Spatial distribution,
e.g. choropleth
maps

Gives a snapshot of an
area.

Cannot see how a
system evolves through
time. Aggregate view of
area. Only represents
one variable; hard to
distinguish relationships

Temporal 1D Time-series
graphs/linear and
cyclical graphs

Show how the system
(or parameters) change
over time

No spatial element.
Hard to correlate
relationships between
multivariate variables

Rank clocks (e.g.
Batty 2006)

Good for visualising
change over time in
ranked order of any set
of objects

No spatial element

Rose diagrams Good for representation
of circular data, e.g.
wind speed and
direction

No spatial element

Phase diagram Excellent for examining
system behaviour over
time for one or two
variables

No spatial element. Gets
confusing quickly with
more than two variables

Spatio-temporal
3D/4D

Map animation (e.g.
Patel and
Hudson-Smith
2012)

Can see system
evolving spatially and
temporally

Hard to quantify or see
impacts of individual
behaviour, i.e. isolated
effects

Space-time cube
(Andrienko et al.
2003)

Can contain space-time
paths for individuals

Potentially difficult to
interpret

Recurrence plot Reveals hidden
structures over time and
in space

Computationally
intensive. Methods
difficult to apply. Have
to generate multiple
snapshots and run as an
animation

Vector
plotting/contour
slicing (Ross and
Vosper 2003)

Ability to visualise 2D
or 3D data and multiple
dimensional dataset

Hard to quantify
individual effects
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on a human recognition of a “significant” pattern is somewhat unfortunate, as we
will bring our own biases to the process. At worst we only pay attention to those
patterns that confirm our current prejudices: what Wyszomirski et al. (1999) call
the WYWIWYG—What You Want is What You Get—fallacy. At best, we will only
recognise those patterns that match the wiring of the human visual system and
our cultural experiences. The existence of visualisation techniques generally points
up the fact that humans are better at perceiving some patterns than others, and in
some media than others—it is easier to see an event as a movie and not a binary
representation of the movie file displayed as text. However, in addition to standard
physiological and psychological restrictions on pattern recognition consistent to all
people, it is also increasing apparent there are cultural differences in perceptions.
Whether there is some underlying biological norm for the perception of time and
space is still moot (Nisbett and Masuda 2003; Boroditsky 2001), but it is clear that
some elements of pattern recognition vary by either culture or genetics (Nisbett
and Masuda 2003; Chua et al. 2005). Even when one looks at the representation of
patterns and elements like colour, there are clear arguments for a social influence
on the interpretation of even very basic stimuli into perceptions (Roberson et al.
2004). Indeed, while there is a clear and early ability of humans to perceive moving
objects in a scene as associated in a pattern (e.g. Baird et al. 2002), there are
cultural traits associated with the age at which even relatively universal patterns are
appreciated (Clement et al. 1970). The more we can objectify the process, therefore,
the less our biases will impinge on our understanding. In many respects it is easier
to remove human agents from data comparison and knowledge development than
pattern hunting, as patterns are not something machines deal with easily. The
unsupervised recognition of even static patterns repeated in different contexts is far
from computationally solved (Bouvrie and Sinha 2007), though significant advances
have been made in recent years (Druzhkov and Kustikova 2016). Most pattern-
hunting algorithms try to replicate the process found in humans, and in that sense
one suspects we would do better to skip the pattern hunting and concentrate on data
consistency and the comparison of full datasets directly. At best we might say that
an automated “pattern” hunter that wasn’t trying to reproduce the human ability
would instead seek to identify attractors within the data.

Figure 10.1 presents several visualisation methods that are commonly found in
the literature, ranging from 1D time-series representation (a) to contour plots (d)
that could be potentially used for 4D representation.

Visualisations are plainly extremely useful. Here we’ll look at a couple of
techniques that are of use in deciphering individual-level data: phase maps and
recurrence plots. Both techniques focus on the representation of individual-level
states and the relationships between stated individuals.
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Fig. 10.1 Examples of different visualisation methods. (a) 1D Time-series graph (idealised data).
(b) 3D interpolated map (idealised data). (c) Rose diagram. (d) Contour plot

10.3.1 Phase Maps

Phase-space maps are commonly used by physicists to study the behaviour of
physical systems. In any graphical representation, a phase-space map represents an
abstract view of the behaviour of one or more of the system components. These can
be particularly useful to us as we can plot the behaviour of our system over time.
This allows us to understand how the system is evolving and whether it is chaotic,
random, cyclical or stable (Fig. 10.2).

Each of the graphs produced in Fig. 10.2 is a representation of the coincident
developments in two real neighbouring city centre petrol stations in Leeds (UK)
over a 30-day period (sampled every other day). Figure 10.2a represents a stable
system. Here, neither of the stations is changing in price and, thus, a fixed point is
produced. However, this behaviour could easily change if one or both of the stations
alter it price. This behaviour is seen in Fig. 10.2b. Both stations are changing their
prices each day (from 75.1p to 75.2p to 75.1p); this creates a looping effect; the
stations are cycling through a pattern of behaviour before returning to their starting
point. Note that the graph appears to reveal a causative link between the two stations
as they are never simultaneously low. Figure 10.2c, d shows a more varied pattern
of behaviour between the stations. In Fig. 10.2c, one point is rising in price, whilst
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Fig. 10.2 Examples of different types of behaviour found in urban petrol stations (Leeds).
(a) Stable. (b) Looping. (c) Two types of behaviour. (d) Chaotic

the other is oscillating. In Fig. 10.2(d), there is no apparent pattern in the displayed
behaviour. Simply knowing about these relationships is valuable information and
allows us a greater understanding of this system, its behaviour and its structure. For
example, it may be that the only difference between the graphs is one of distance
between the stations, but we would never see this unless the graphs allowed us to
compare at a detailed level the behaviours of stations that potentially influence each
other.

10.3.2 Recurrence Plots

Recurrence plots (RPs) are a relatively new technique for the analysis of time-series
data that allows both visualisation and quantification of structures hidden within
data or exploration of the trajectory of a dynamical system in phase space (Eckmann
et al. 1987). They are particularly useful for graphically detecting hidden patterns
and structural changes in data as well as examining similarities in patterns across a
time-series dataset (where there are multiple readings at one point). RPs can be also
used to study the nonstationarity of a time series as well as to indicate its degree of
aperiodicity (Casdagli 1997; Kantz and Schreiber 1997). These features make RPs
a very valuable technique for characterising complex dynamics in the time domain
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Fig. 10.3 Example of Recurrence Plots. (a) RP of the change in price at a retail outlet over 100
days. (b) illustrates how oscillations in the change in the price data are represented in the RP

(Vasconcelos et al. 2006), a factor reflected in the variety of applications that RPs
can now be found in ranging from climate variation (Marwan and Kruths 2002) and
music (Foote and Cooper 2001) to heart rate variability (Marwan et al. 2002).

Essentially a RP is constructed via a matrix where values at a pair of time steps
are compared against each other. If the system at the two snapshots is completely
different, the result is 1.0 (black), while completely similar periods are attributed
the value 0.0 (represented as white). Through this, a picture of the structure of the
data is built up. Figure 10.3a shows the RP of the change in price at a retail outlet
over 100 days. Above the RP is a time-series graph diagrammatically representing
the change in price. Changes in price, either increases, decreases or oscillations, can
be clearly seen in the RP. Figure 10.3b illustrates how oscillations in the change in
the price data are represented in the RP.

Early work on this area has shown that there is considerable potential in the
development and adaptation of this technique. Current research is focused on the
development of cross-reference RPs (consideration of the phase-space trajectories
of two different systems in the same phase space) and spatial recurrence plots.

10.4 Explanation, Understanding and Causality

Once patterns are recognised, “understanding” our models involves finding expla-
nations highlighting the mechanisms within the models which give rise to these
patterns. The process of explanation may be driven with reference to current theory
or developing new theory. This is usually achieved through:

1. Correlating patterns visually or statistically with other parts of the model, such
as different geographical locations, or with simulations with different starting
values.

2. Experimentally adjusting the model inputs to see what happens to the outputs.
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3. Tracking the causal processes through the model.

It may seem obvious, and yet it is worth pointing out, that model outputs can only
causally relate to model inputs, not additional data in the real world. Plainly insights
into the system can come from comparison with external data that is correlated or
miscorrelated with model outputs, but this is not the same as understanding your
model and the way it currently represents the system. One would imagine that this
means that understanding of a model cannot be facilitated by comparing it with
other, external, data, and yet it can often be worth:

4. Comparing model results with real-world data, because the relationships between
real data and both model inputs and model outputs may be clearer than the
relationships between these two things within the model.

Let’s imagine, for example, a model that predicts the location of burglaries across
a day in a city region where police corruption is rife. The model inputs are known
offenders’ homes, potential target locations and attractiveness, the position of the
owners of these targets and the police, who prefer to serve the wealthy. We may
be able to recognise a pattern of burglaries that moves, over the course of the day,
from the suburbs to the city centre. Although we have built into our model the fact
that police respond faster to richer people, we may find, using (1), that our model
doesn’t show less burglaries in rich areas, because the rich areas are so spatially
distributed that the police response times are stretched between them. We can then
alter the weighting of the bias away from the wealthy (2) to see if it actually reduces
the burglary rate in the rich areas by placing police nearer these neighbourhoods
as an ancillary effect of responding to poor people more. We may be able to fully
understand this aspect of the model and how it arises (3), but still have a higher
than expected burglary rate in wealthy areas. Finally, it may turn out (4) that there
is a strong relationship between these burglaries and real data on petrol sales, for no
other reason than both are high at transition times in this social system, when the
police would be most stretched between regions—suggesting in turn that the change
in police locations over time is as important as their positions at any one time.

Let us look at each of these methodologies for developing understanding in turn.

Correlation Most social scientists will be familiar with linear regression as a
means for describing data or testing for a relationship between two variables; there is
a long scientific tradition of correlating data between models and external variables,
and this tradition is equally applicable to intra-model comparisons. Correlating
datasets is one of the areas where automation can be applied. As an exploratory
tool, regression modelling has its attractions, not least its simplicity in both concept
and execution. Simple regressions can be achieved in desktop applications like
Microsoft Excel, as well as all the major statistical packages (R, SAS, SPSS, etc.).
Standard methodologies are well known for cross-correlation of both continuous
normal data and time series. However even for simple analyses with a single
input and single output variable, linear regression is not always an appropriate
technique. For example, logistic regression models will be more appropriate for
binary response data, Poisson models will be superior when values in the dependent
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tend to be highly clustered, while binomial models may be the most effective
when observations are highly dispersed around the mean. An interesting example
is Fleming and Sorenson (2001) in which binomial estimates of technological
innovation are compared to the complexity of the invention measured by both
the number of components and the interdependence between those components.
In behavioural space, methodologies such as association rule making (e.g. Hipp
et al. 2002) allow the Bayesian association of behavioural attributes. It is worth
noting that where models involve a distribution in physical space, this can introduce
problems, in particular where the model includes neighbourhood-based behaviours
and therefore the potential to develop spatial auto and cross-correlations. These alter
the sampling strategies necessary to prove relationships—a full review of the issues
and methodologies to deal with them can be found in Wagner and Fortin (2005).

Experimentation In terms of experimentation, we can make the rather artificial
distinction between sensitivity testing and “what if?” analyses—the distinction is
more one of intent than anything. In sensitivity analysis one perturbs model inputs
slightly to determine the stability of the outputs, under the presumption that models
should match the real world in being insensitive to minor changes (a presumption
not always well founded). In “what if?” analyses, one alters the model inputs to see
what would happen under different scenarios. In addition to looking at the output
values at a particular time slice, the stability or otherwise of the model, and the
conditions under which this varies, also gives information about the system (Grimm
1999).

Tracking Causality Since individual-based models are a relatively recent devel-
opment, there is far less literature dealing with the tracking of causality through
models. It helps a little that the causality we deal with in models, which is essentially
a mechanistic one, is far more concrete than the causality perceived by humans,
which is largely a matter of the repeated coincidence of events. Nevertheless,
backtracking through a model to mark a causality path is extremely hard, primarily
for two reasons. The first is what we might call the “find the lady problem”—that
the sheer number of interactions involved in social processes tends to be so large we
don’t have the facilities to do the tracking. The second issue, which we might call
the “drop in the ocean problem”, is more fundamental as it relates to a flaw in the
mathematical representation of objects, that is, that numbers represent aggregated
quantities, not individuals. When transacted objects in a system are represented with
numbers greater than one, it is instantly impossible to reliably determine the path
taken by a specific object through that system. For objects representing concepts,
either numerical (e.g. money) or nonnumerical (e.g. a meme), this isn’t a problem
(one dollar is much like any other; there is only one Gangnam style to know).
However, for most objects such aggregations place ambiguous nodes between what
would otherwise be discrete causal pathways. Fortunately, we tend to use numbers
in agent models as a methodology to cope with our ignorance (e.g. in the case of
calibrated parameters) or the lack of the computing power we’d need to deal with
individual objects and their transactional histories (e.g. in the case of a variable
like “number of children”). As it happens, every day brings improvements to both.
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It addition, the last 10 years or so has seen considerable theoretical advances in the
determination of the probabilities of causation (e.g. Granger 1980; Pearl and Verma
1991; Greenland and Pearl 2006). For now, however, the tracking of causality is
much easier if the models build in appropriate structures from the start. While they
are in their infancy, techniques like process calculi (Worboys 2005) and Petri nets
show the potential of this area.

The inability to track causality leads to the perennial problem of identifiability,
that is, that a single model outcome may have more than one history of model
parameters that leads to it. Identifiability is part of a larger set of issues with
confirming that the model in the computer accurately reflects the system in the
real world—the so-called equifinality issue. These are issues that play out strongly
during model construction from real data and when validating a model against real
data, and a review of techniques to examine these problems, including using model
variation to determine the suitability of variables and parameters, can be found in
Evans (2012). At the model stage we are interested in, however, we at least have the
advantage that there is only one potential model that may have created the output—
the one running. Nevertheless, the identifiability of the parameters in a running
model still makes it hard to definitively say when model behaviour is reasonable.
For those modelling for prediction, this is of little consequence—as long as the
model gives consistently good predictions it may as well be a black box. However,
if we wish to tease the model apart and look at how results have emerged, these
issues become more problematic.

The mechanisms for dealing with these problems are pragmatic:

1. Examine the stability of the calibration process and/or the state of internal
variables that weren’t inputs or outputs across multiple runs.

2. Validate internal variables that weren’t inputs or outputs used in any calibration
against real data.

3. Run the model in a predictive mode with as many different datasets as possible—
the more the system can replicate reality at output, the more likely it is to replicate
reality internally. If necessary engage in inverse modelling: initialize parameters
randomly and then adjust them over multiple runs until they match all known
outputs.

Of these, by far the easiest, but the least engaged with, is checking the stability of
the model in parameter space (see Evans 2012 for a review). Various AI techniques
have been applied to the problem of optimising parameters to fit model output
distributions to some predetermined pattern (such as a “real-world” distribution).
However, the stability of these parameterizations and the paths AIs take to generate
them are rarely used to examine the degree to which the model fluctuates between
different states, let alone to reflect on the nature of the system. The assumption of
identifiability is that the more parameterized a model, the more likely it is a set
of parameter values can be derived which fit the data but don’t represent the true
values. However, in practice the limits on the range of parameter values within any
given model allow us an alternative viewpoint: that the more parameterized rules in
a model, the more the system is constrained by the potential range of the elements
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in its structure and the interaction of these ranges. For example, a simple model
a D b has no constraints, but a D b/c, where c D distance between a and b, adds an
additional constraint even though there are more parameters. As such rules build up
in complex systems, it is possible that parameter values become highly constrained,
even though, taken individually, any given element of the model seems reasonably
free. This may mean that if a system is well modelled, exploration of the model’s
parameter space by an AI might reveal the limits of parameters within the constraints
of the real complex system. For example, Heppenstall et al. (2007) use a genetic
algorithm to explore the parameterisation of a petrol retail model/market and find
that while some GA-derived parameters have a wide range, others consistently fall
around specific values that match those derived from expert knowledge of the real
system.

The same issues as hold for causality hold for data uncertainty and error. We have
little in the way of techniques for coping with the propagation of either through
models (see Evans 2012 for a review). It is plain that most real systems can be
perturbed slightly and maintain the same outcomes, and this gives us some hope
that errors at least can be suppressed; however we still remain very ignorant as to
how such homeostatic forces work in real systems and how we might recognise or
replicate them in our models. Data and model errors can breed patterns in our model
outputs. An important component of understanding a model is understanding when
this is the case. If we are to use a model to understand the dynamics of a real system
and its emergent properties, then we need to be able to recognise novelty in the
system. Patterns that result from errors may appear to be novel (if we are lucky), but
as yet there is little in the way of toolkits to separate out such patterns from truly
interesting and new patterns produced intrinsically.

Currently our best option for understanding model artefacts is model-to-model
comparisons. These can be achieved by varying one of the following contexts
while holding the others the same: the model code (the model, libraries and
platform), the computer the model runs on or the data it runs with (including
internal random number sequences). Varying the model code (for instance, from
Java to CCC or from an object-orientated architecture to a procedural one) is a
useful step in that it ensures the underlying theory is not erroneously dependent
on its representation. Varying the computer indicates the level of errors associated
with issues like rounding and number storage mechanisms, while varying the data
shows the degree to which model and theory are robust to changes in the input
conditions. In each case, a version of the model that can be transferred between
users, translated onto other platforms and run on different data warehouses would
be useful. Unfortunately, however, there is no universally recognised mechanism for
representing models abstracted from programming languages. Mathematics, UML
and natural languages can obviously fill this gap to a degree, but not in a manner
that allows for complete automatic translation. Even the automatic translation of
computer languages is far from satisfactory when there is a requirement that the
results be understood by humans so errors in knowledge representation can be
checked. In addition, many such translations work by producing the same binary
executable. We also need standard ways of comparing the results of models, and
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these are no more forthcoming. Practitioners are only really at the stage where we
can start to talk about model results in the same way (see, e.g. Grimm et al. 2006).
Consistency in comparison is still a long way off, in part because statistics for model
outputs and validity are still evolving and in part because we still don’t have much
idea which statistics are best applied and when (for one example bucking this trend,
see Knudsen and Fotheringham 1986).

10.5 Future Directions

Recognising patterns in our modelled data allows us to:

1. Compare it with reality for validation.
2. Discover new information about the emergent properties of the system.
3. Make predictions.

Of these, discovering new information about the system is undoubtedly the
hardest, as it is much easier to spot patterns you are expecting. Despite the
above advances, there are key areas where current techniques do not match our
requirements. In particular, these include:

1. Mechanisms to determine when we do not have all the variables we need to
model a system and which variables to use.

2. Mechanisms to determine which minor variables may be important in making
emergent patterns through non-linearities.

3. The tracking of emergent properties through models.
4. The ability to recognise all but the most basic patterns in space over time.
5. The ability to recognise action across distant spaces over space and time.
6. The tracking of errors, error acceleration and homeostatic forces in models.

While we have components of some of these areas, what we have is but a
drop in the ocean of techniques we need. In addition, the vast majority of our
techniques are built on the 2500 years of mathematics that resolved to simplify
systems that were collections of individuals because we lacked the ability (either
processing power or memory) to cope with the individuals as individuals. Modern
computers have given us this power for the first time, and, as of yet, the ways we
describe such systems have not caught up, even if we accept that some reduction
in dimensionality and detail is necessary for a human to understand our models.
Indeed in the long run, it might be questioned whether the whole process of model
understanding and interpretation might be divorced from humans and delegated
instead to an artificially intelligent computational agency that can better cope with
the complexities directly.
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Further Reading

Statistical techniques for spatial data are reviewed by McGarigal (2002) while
for network statistics good starting points are Newman (2003) and Boccaletti et
al. (2006), with more recent work reviewed by Evans (2010). For information on
coping with auto-/cross-correlation in spatial data, see Wagner and Fortin (2005).
Patel and Hudson-Smith (2012) provide an overview of the types of simulation tool
(virtual worlds and virtual reality) available for visualising the outputs of spatially
explicit agent-based models. Evans (2012) provides a review of techniques for
analysing error and uncertainty in models, including both environmental/climate
models and what they can bring to the agent-based field. He also reviews techniques
for identifying the appropriate model form and parameter sets.
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Chapter 11
How Many Times Should One Run
a Computational Simulation?

Raffaello Seri and Davide Secchi

Abstract This chapter is an attempt to answer the question “how many runs of
a computational simulation should one do,” and it gives an answer by means of
statistical analysis. After defining the nature of the problem and which types of
simulation are mostly affected by it, the chapter introduces statistical power analysis
as a way to determine the appropriate number of runs. Two examples are then
produced using results from an agent-based model. The reader is then guided
through the application of this statistical technique and exposed to its limits and
potentials.

Why Read This Chapter?

To understand and reflect on the importance of determining an appropriate number
of runs for a simulation of a complex social system, especially agent-based simu-
lation models. Also the chapter guides readers through (a) the issues surrounding
this determination, (b) the use of statistical power analysis to identify the number of
runs, and (c) two examples to practice the computation.

11.1 Introduction

This chapter explores the issue of how many times a simulation should run. This is
an often neglected issue (Ritter et al. 2011) that, sooner or later, all modelers dealing
with simulations of complex systems encounter. The literature takes an agnostic
stance on how many runs—per configuration of parameters or, as economists put
it, ceteris paribus—a simulation is to be run. In fact, the focus has mostly been on
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defining the “steps,” the time, or the interactions within each run through sensitivity
and convergence analysis, for example (Mungovan et al. 2011; Robinson 2014;
Shimazoe and Burton 2013).

The central assumption of what is proposed in this chapter is that the number
of runs in a simulation is often crucial for results to bear some meaning. Of
course, this is not true for all simulations and it depends on scope, nature of the
simulated phenomenon, purpose, and level of abstraction. We specify these aspects
in the following section. For now, it suffices to write that for social simulations
with a strong stochastic component, where emergence and complexity cause results
to differ even within the same configuration of parameters, knowing how many
runs are enough for differences to emerge (or not) becomes an extremely relevant
information. This is where this chapter positions itself.

We first try to indicate—very broadly—what type of simulations this approach
may apply to. Then, mediating from research on sample size determination for the
behavioral sciences (Cohen 1988; Liu 2014), we introduce statistical power analysis
and testing theory. The chapter also takes an agent-based model (ABM) with a
strong stochastic component and provides two examples that show how crucial the
issue is. At the same time, the chapter offers a practical guide on how to conduct the
computation. Implications and concluding remarks follow.

11.2 Scope and Nature of Agent-Based Models

In this chapter we identify a particular sub-group of agent-based models that are
fit for hypothesis testing. In order to frame the following discussion, we propose
a classification of the aims of ABM, with the caveat that the following discussion
may not be general or exhaustive. For a more general classification of the types of
simulation, one may refer to Chap. 3 of this handbook (Davidsson and Verhagen
2017).

Some agent-based models have the purpose of studying the emergent properties
of a system (Anderson 1972; Fioretti 2016). These properties arise when the system
as a whole displays a behavior that is not explicit in its single components, in this
case, the agents. When this is aimed at establishing whether an outcome is possible,
hence the simulation has an exploratory purpose that reflects on theory, then the
visual inspection of the trajectories of the simulated system or the computation of
some descriptive statistics is sufficient to illustrate the existence of an emergent
behavior. For example, Heckbert’s (Heckbert 2013) model of the socio-economic
system in which the ancient Maya civilization developed and disappeared can be
thought of as a simulation of this kind. As a descriptive model, it establishes whether
the conditions set in the model offer reasonable explanations of historical facts.

The study of emergent properties is also linked to another objective of some
agent-based models, namely hypothesis generation (Bardone 2016; Secchi 2015).
A researcher may run a model just to assess whether it is reasonable to suppose
that some variables have an impact on a given outcome. The hypotheses obtained
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in this way may be subject to empirical testing in a future laboratory experiment or
through real data. An example of this type of ABM can be the simulation of a team
of doctors and nurses working in the emergency room of a hospital, to isolate those
socio-cognitive attitudes that may lead to increased performance (Thomsen 2016).
Another example comes from political science (de Marchi and Page 2014) and it
concerns the model of incumbent advantage in elections proposed by Kollman et al.
(1992), that was first studied by simulation and then successfully tested empirically.

The techniques presented in this chapter are not necessarily pertinent to these first
two model types described above, because they call for an exploratory approach
in which the configurations of parameters and the number of runs are not rigidly
chosen in advance, but they may be modified by trial and error while the researcher
explores the potential outcomes of the model.1

A third objective of ABM is measurement, namely providing a numerical value
for a quantity of interest. Since most agent-based models in the social sciences are
too simplified a representation of reality to provide accurate estimates of real-world
quantities, the models that pursue this objective are generally constrained to specific
disciplines in which the rules of behavior of the agents are simple or particularly
well known (for an example in biology see Sect. 1.1.1 in Railsback and Grimm
(2011); for examples in transportation research, see Maggi and Vallino 2016). In this
case, even if statistical tests can still be of interest, the researcher may direct his/her
statistical analysis towards different tools. On the one hand, data from an ABM
may be compared, through a distance (e.g., Lamperti 2015), with real time series to
assess whether the two are similar enough. On the other hand, the researcher may
settle on a sample size that guarantees a certain precision in the value computed for
the quantity of interest rather than a certain level of power (see Sect. 11.5.1 below).

Finally, a fourth objective of ABMs is to test hypotheses in a controlled
environment often emulating, with simplified rules, a real-world situation. The
advantage of ABMs in this respect is that they allow the researcher to analyze a
realistic situation by removing all the confounding factors arising in the observation
of the real-world phenomenon. In this case, agent-based models can be considered
the computational equivalent of laboratory experiments (Gilbert and Terna 2000).
In the following pages, we explain how the parallel can be established. Note,
however, that this is not the only possible setting. It is customary that an ABM
has several parameters entering its formulation. The aim of a model can be that
of exploring whether these parameters bear any impact on a quantity of interest,
obtained as an outcome of the simulations of the model. The usual way is to identify
some configurations of parameters that would correspond to different alternative
treatments in an experiment, and to run several simulations of the model under each
configuration. Each run of the model corresponds to an observation (e.g., a subject)
in an experiment: the measured outcome can either be the terminal value of the
series or a value computed on (a part of) the trajectory. The presumed independence

1Note, moreover, that the researcher should not test a hypothesis on the data that have been used to
generate it.



232 R. Seri and D. Secchi

of the simulation outcome on the configurations of parameters can then be tested in
an ANOVA framework. An example of this type of ABM can be a model of intra-
organizational bandwagons (Secchi and Gullekson 2016), in which authors run the
simulation multiple times in order to test propositions as guide for future, probably
empirical, research.

Another distinction that might be helpful when considering the number of runs
can be drawn between models that strive at defining abstract and simple rules
of behavior for their agents and those that are more concerned with describing a
particular aspect of reality with fine degrees of details. This is the divide between
the KISS (“Keep it Simple, Stupid!”) and the KIDS (“Keep it Descriptive, Stupid!”)
principles (Edmonds and Moss 2005). While advocates of the first approach are
in line with modeling efforts of the past (Troitzsch 2017; Coen 2009), those who
indicate that ABM opens a new way stand with a more descriptive and complex
approach to modeling (Edmonds and Moss 2005). If we take that the extreme for a
KISS model is a system of deterministic equations and, on the other side, the bound
for a KIDS model is the attempt to replicate reality, there is an entire spectrum of
models (and ABMs) falling between these two extremes. However, considerations
on the number of runs are more likely to become relevant as modelers tend toward
increased complexity, without reaching the extreme of full description.

In summary, the determination of the number of runs in a simulation is warranted
every time the researcher is seeking to measure—with some degree of confidence—
whether different configurations of parameters are more or less likely to affect the
outcome.

11.3 Testing Theory: Controlling for Alpha and Beta

In this section, we provide an introduction to testing theory that can be read
independently from the rest of the paper. As an example, in this section, the term
parameter denotes an unknown characteristic of a population, and not a quantity
whose value is fixed before data are collected, as customary in ABMs. Therefore, we
suppose that the researcher has identified some parameters describing the behavior
of the population from which the data have been sampled (as a trivial example, the
mean and the variance of the population). We also assume that he/she has formulated
a null hypothesis H0, i.e. an assertion about the value of the parameters.

The original approach to testing, pioneered by K. Pearson and theorized by R.A.
Fisher, looks for a statistic T with the following property: when the hypothesis H0 is
verified, the value t that the statistic T assumes in the sample is near to a fixed value,
generally identified with 0. Therefore, small values of t appear to bring support to
the null hypothesis H0, while extreme values of t are seen as witnessing a possible
violation of H0. This explains why the most sensible summary of the test, in Fisher’s
approach, is the p-value, i.e. the probability of observing, under H0, values of T that
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Table 11.1 Table of possible
outcomes for a
Neyman–Pearson test

H0 true H1 true

H0 chosen True negative Type-II error or
false negative

H1 chosen Type-I error or True positive
false positive

are as extreme or more extreme than the one computed on the sample. The p-value
is sometimes (erroneously) perceived as a measure of strength of support in the null
hypothesis. It is however clear that this method does not have the possibility to offer
anything more than mild support to H0, especially because of the absence of an
hypothesis that holds true when H0 does not.

This approach to testing was amended by J. Neyman and E.S. Pearson, who
modified it to allow for the possibility of decision and action. The new theory starts
with the introduction of the null hypothesis, H0, and the alternative hypothesis, i.e.
H1, that is supposed to be true when H0 is not. The hypothesis H0 is generally, but
not always, associated with the absence of an effect (of one variable on another,
for example), while H1 is generally associated with its presence. The researcher
is uncertain as to whether H0 or H1 holds true. The decision between these two
hypotheses is performed, as in a trial, on the basis of the available data (we will see
later how).2 This leads to a table of possible outcomes, see Table 11.1. The use of
positive and negative to denote respectively the choice of H1 and H0 comes from the
medical use of the same terms, where they indicate the positive or negative result
of a medical test. A negative, i.e. a result in which the disease is not detected, can
be either true or false, when the unobserved true hypothesis coincides or not with
the choice of the procedure; the same holds true for a positive. A false positive is
also called, with a more statistical term, a Type-I error, while a false negative is also
called a Type-II error. These two “sources of error” (Neyman and Pearson 1928, p.
177) exist whichever method is used to choose between H0 and H1.

The standard procedure to decide between H0 and H1 is to consider a statistic
T whose distribution is known under H0 (let us denote the probability as PH0). The
researcher builds an acceptance region A such that, when t belongs to A, then H0 is
chosen as the true hypothesis. The possible values of t that are not contained in A
form a rejection region R. Therefore A and R make up the entire space in which T
varies and are generally chosen in such a way that3:

PH0 fT 2 Ag D 1 � ˛

PH0 fT 2 Rg D ˛

2The metaphor of the trial has been introduced in Neyman and Pearson (1933, p. 296) but has been
criticized as misleading in Liu and Stone (2007).
3Here 2 means “belongs to,” so that T 2 A means “T belongs to A.”
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where ˛ 2 Œ0; 1� is called Type-I error rate, i.e. the probability of rejecting the null
hypothesis when it is true, or significance level.4

Suppose now that the alternative hypothesis is verified and let PH1 be the
probability distribution under the alternative hypothesis. If the null hypothesis
is associated with the absence of an effect (of a variable on the outcome), the
alternative hypothesis implies generally that there is an effect. It is generally the
case that this effect can be measured through a quantity d called effect size,5 that
enters the formulation of PH1 . If we suppose that the alternative hypothesis is true,
the probability that T belongs to A or to R is:

PH1 fT 2 Ag D ˇ .d/

PH1 fT 2 Rg D 1 � ˇ .d/

where ˇ, belonging to Œ0; 1�, is the Type-II error rate, i.e. the probability of accepting
the null hypothesis when it is false. Note that ˇ depends on the effect size d. The
quantity 1 � ˇ, especially when seen as a function of the effect size d, is called
(statistical) power of the test and measures the probability that the test correctly
identifies the presence of an effect when there is one.

In a hypothetical simulation, for example, one may want to study how decision
making makes employee motivation more effective under conditions of more or less
organized corporate structures (Herath et al. 2017). The null hypothesis may be that
the average motivation does not vary under alternative corporate structures, and this
can be tested using, say, ANOVA. The Type-I error rate or significance level ˛,
that is usually set at 5%, can be used to obtain an acceptance region A. If the null
hypothesis is false, the effect size d—i.e. the “strength” of the effect—measures
the impact that the different conditions exercise, on average, on the outcome. The
probability that the statistic takes a value inside A under the alternative hypothesis is
ˇ and depends on d. If the effect as measured by d is small, the alternative hypothesis
is near to the null hypothesis, and the probability ˇ that the statistic T falls inside A
under H1 is near to the probability 1 � ˛ under H0. If d increases, ˇ decreases.

It is clear that there are several degrees of freedom in the choice of the probability
˛, of the statistic T for testing H0, and of the acceptance region A. Now, while the
test statistic is often suggested by the problem under scrutiny, the probability ˛ is
chosen routinely from a set of possibilities that have been determined by tradition
more than by reflection. As to the choice of A and R, it is often the case that R

4We note that Neyman (1950, p. 259) used the term “accept” where most modern treatments
propose to use “fail to reject” or “do not reject.” The original choice of the author is in line with
his idea of testing as leading to decision, while the modern use appears to be incorrectly borrowed
from Fisher’s approach (Fisher 1955, p. 73). However Pearson was more cautious (Pearson 1955, p.
206) and this even suggested to some authors the idea that he had rejected the approach pioneered
with Neyman (Mayo 1992).
5More generally, the effect size d measures the distance of the true distribution from the distribution
under the null hypothesis, and is generally a function of the parameters.
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contains the most extreme values of T, i.e. the tails of its distribution. Most users
of statistics stop here, and perform a test verifying whether t belongs to R or to A
and, as a consequence, respectively reject H0 or fail to reject it, as part of a ritual
(Gigerenzer 2004). In this situation, an alternative way of reaching the same result
is to compare the p-value, whenever defined, to a fixed threshold ˛: if the p-value is
smaller than ˛, we reject H0, otherwise we fail to reject it.

It is interesting to review the relations among the quantities seen until now. We
saw before that the effect size d has an impact on ˇ. Since d is a measure of how easy
it is to discriminate between H0 and H1, it is generally the case that power, 1 � ˇ,
increases with d when ˛ is fixed.6 Another factor affecting ˛ and ˇ is the sample
size N. In this case too, 1�ˇ generally increases with N, when ˛ is fixed. At last, the
formulas PH0 fT 2 Ag D 1 � ˛ and PH1 fT 2 Ag D ˇ show that there is a trade-off
between ˛ and ˇ. Indeed, when A gets larger, ˛ decreases while ˇ increases, and
vice versa. This explains why, when N and d are fixed, it is not possible to reduce ˛

without consequences on the Type-II error rate ˇ.7

This is the reason why one cannot make ˛ as small as possible, that is because
this inflates ˇ. This fact suggests that good results could be achieved by balancing
the two error rates. This was indeed proposed by Neyman and Pearson in 1933,8 and
has been revived several times since then. A more recent attempt in this direction
is the compromise power analysis of Erdfelder (1984). However, the most common
approach is to consider the two sources of error differently.

A first approach completely disregards ˇ: a value for ˛ is rigorously fixed (often
as ˛ D 0:05), and the test checks whether t belongs to A or not using a sample
whose size N has been selected without reference to ˇ. This approach is the one that
most closely resembles the original Fisher paradigm, as the alternative hypothesis
has practically no role in it. It is based on the fact that, as N increases, ˇ goes to
0, so that a large sample size guarantees that ˇ will be small enough. A second
approach supplements this part of the analysis with the computation of power using
a value of d estimated on the basis of the data, a procedure called post hoc power
analysis. Because of the large variability of the estimated effect size, this approach
is generally regarded with suspicion by statisticians (Korn 1990; Hoenig and Heisey
2001). In the third approach, the researcher fixes ˛ and ˇ, hypothesizes a value of d,
and chooses A and N so that both PH0 fT 2 Ag D 1 � ˛ and PH1 fT 2 Ag D ˇ .d/

hold true. This procedure, called a priori power analysis, guarantees that, if d is
correctly guessed, the desired values of ˛ and ˇ will be achieved.

6This also explains why in some cases it is possible to increase the power of a test by designing
an experiment in which it is expected that the effect size d, if not null, is large. As an example,
in ABM this could be done by setting some of the quantities entering the model to their extreme
values.
7See also van der Vaart (2000, p. 213) or Choirat and Seri (2012, Proposition 7, p. 285).
8The authors say: “The use of these statistical tools in any given case, in determining just how the
balance should be struck, must be left to the investigator” (Neyman and Pearson 1933, p. 296).



236 R. Seri and D. Secchi

It is important to recall that the Neyman–Pearson theory of testing is essentially
designed to provide the researcher with a decision rule guaranteeing, in the long run,
a specified error probability under the null hypothesis. The decision rule equating
the rejection of H0 with the occurrence of a value of t inside A makes sure that when
a large number of tests are performed, the null hypothesis is incorrectly rejected
100˛ percent of the times, but does not guarantee a good performance in the case
of the single test. Otherwise stated, in the Neyman–Pearson approach a controlled
long-run performance is obtained if the researcher chooses ˛ and A and decides on
the basis of the fact that t belongs to A or not (or, equivalently, on the basis of the
fact that the p-value is larger than ˛ or not). In general, it is also expected that the
researcher sets a value of ˇ and chooses, on the basis of experience or pilot runs, a
value of d, and computes N on the basis of these values.

However, this is not the way in which tests are generally performed in practice.
Indeed, it is customary that the researcher computes the test statistic t and the p-value
and uses the latter as a measure of the support in the null hypothesis. For example,
it is quite common that a p-value just under 5% is treated differently than a p-value
under 1%, the latter providing a stronger evidential value against the null hypothesis.
This is so widespread that some researchers do not report the p-value but only p <

1% or p < 5%. From the point of view of the Neyman–Pearson theory of testing
this is nonsensical. However this has entered common practice and has evolved
into an approach of its own, different from the Fisher and the Neyman–Pearson
approaches, yet gathering aspects of both, and called Null-Hypothesis Significance
Testing (NHST). This approach takes from the Fisher approach the emphasis on the
p-value and its disregard for power; from the Neyman–Pearson theory, the approach
emphasizes the threshold values of ˛.

In this chapter, we follow more closely the original Neyman–Pearson theory than
the NHST. The elements of this approach are the two probabilities of error ˛ and ˇ,
a measure of the effect under scrutiny or of the distance between the alternative and
the null hypothesis d, and the sample size N. These quantities are linked by some
equations. We will see below that determining a value N amounts at choosing some
values for the quantities ˛, ˇ and d, whose interpretation is generally simpler than
the one of N.

11.4 The Use of Power in Practice: Two Examples

In order to show how power analysis can help to determine the number of runs in
a simulation, we decided to select a model and to proceed with some calculations.
The simulation we selected for this computational exercise is an agent-based model
that was developed by Fioretti and Lomi (2008, 2010) on the basis of the famous
“garbage can” model (Cohen et al. 1972), hereby GCM.

There are several reasons that led to the selection of this ABM. One of the
obvious reasons is that it describes a very well-known model that informed the
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decision making literature and had an extremely significant impact.9 As a result
of this, the basic assumptions of the model should be easy to understand for most
scholars. Moreover, the agent-based implementation by Fioretti and Lomi attracted
some attention because it does not support all the conclusions of the original model.
Another reason—and this is not a secondary reason—is that authors made the
code available so that anyone interested could download and run the simulation in
NetLogo, an ABM software (Wilensky 1999). Finally, the work of Cohen, March,
and Olsen is very much in line with the legacy of Simon (1976, 1978, 1997), thus
consistent with the introduction to this handbook (Edmonds and Meyer 2017).

The two examples that follow are both hands-on cases that should inform
readers on how to determine the number of runs in an agent-based simulation.10 In
Example 1, the model runs a limited number of times so that insufficient power leads
to the risk of not rejecting hypotheses that should be rejected. In Example 2, the
model is run a very high number of times to produce over-powered results, reducing
to a minimum the likelihood not to make any effect statistically significant.

11.4.1 Short Description of the Model

The “garbage can” is a model of decision making in organizations (Cohen et al.
1972). There are four types of agents: (a) problems, (b) opportunities, (c) solutions,
and (d) participants. The overall goal of the model is to determine whether a formal
(hierarchic) organizational structure provides the institutional backbone for problem
solving that is better than an informal (anarchic) organizational structure or not. In
the first case, the four types of agents interact following a specified sequence while
in the other they interact at random.

The aim of the model is to match the four elements mentioned above to study the
most effective way for an organization to make decisions. Originally, the model was
designed to understand whether opportunities become more available to decision
makers when organizations relax hierarchical and structural ties. This is what the
ABM simulation attempts to study as well. Figure 11.1 shows a screenshot of
the model interface; each agent has a different shape and they move on the black
environment.

There are two ways in which participants make decisions in the organization. One
type of decision is called by resolution and it happens when problems are solved
once participants match opportunities to the right solutions (Cohen et al. 1972).
This happens graphically when the right combination of the four agents are on the
same position at the same time (i.e., they overlap, see Fig. 11.1). Another type is

9The number of citations of the original paper (Cohen et al. 1972) in Google Scholar amounts at
9196 and those from Thomson’s Web of Science are 1864.
10Even though we use this method for ABM, it may reveal to be useful for any simulation with
emergent properties derived from a relevant stochastic component.
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Fig. 11.1 NetLogo screenshot for the “Garbage Can” model by Fioretti and Lomi (2010)

when decisions are made by oversight and it is when solutions and opportunities
are available to participants but no problems are actually solved (Cohen et al. 1972).
Not all problems are solved automatically, just by having opportunities, participants,
and solutions available. In fact, all problems have difficulty levels, participants have
abilities, and solutions have a certain degree of efficiency. The problem is solved if
the match of the participant with an opportunity and a solution is greater than the
difficulty of the problem (Fioretti and Lomi 2010).

In the agent-based version of the model, there are three types of structure:

• Anarchy. There is no hierarchy so that abilities, efficiencies, and difficulties are
randomly distributed among agents.

• Hierarchy-competence. The hierarchical structure is such that abilities, efficien-
cies, and difficulties increase as one moves up the hierarchical ladder.

• Hierarchy-incompetence. The hierarchical structure is such that abilities, effi-
ciencies, and difficulties decrease as one moves up the hierarchical ladder.

Finally, the model implements two modes of (not) dealing with problems. One
is called buck passing, and it happens when one participant has the alternative
of passing the decision on a problem to another participant. The other mode is
postpone, and it refers to problems that are kept on hold by participants and
eventually solved at an unspecified future time.

For the purpose of this chapter, we calculate the ratio of decisions made by
resolution on those made by oversight in the three cases of anarchy, hierarchy with
competence, and hierarchy with incompetence.
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11.4.2 Example 1

We performed a simulation for the ABM version of the GCM (Fioretti and Lomi
2010), using the second version of the two models uploaded on the NetLogo
community platform. The model has three overall conditions—anarchy, hierarchy-
competence, and hierarchy-incompetence—and each of these has four parameter
configurations, with buck passing Œtrue, false�, and postpone Œtrue, false�. We
decided to test a simple case, setting both parameters to false. This gives a design of
3 configurations of parameters (CoP). Each run had 5000 steps as per the original
simulation (Fioretti and Lomi 2010).

Power analysis should be performed before obtaining data from the model to
choose how many times a simulation should be run. To do that, there are a few
elements to determine. First of all, the researcher should choose a certain number G
of configurations of parameters (also called groups). Then, considering the nature of
the model or previous simulations one should guess a value of the effect size d that,
in the case of ANOVA, is identified by the letter f (Cohen 1988; Liu 2014). At last,
one should choose a level for ˛ and a corresponding goal for the level of power—
i.e. 1 � ˇ—to be achieved. Although the power threshold of 1 � ˇ for empirical
research is set at 0:80, some (Secchi and Seri 2014, 2017) argue that it can be set
at 0:95 for simulations, because the control exerted on variables and parameters is
much higher than that usually in place in empirical research. Consistently with this,
also the threshold for ˛ can be set at the more stringent level of 0:01 (Secchi and
Seri 2017).11

As explained above, the dependent variable is the ratio rro of decisions by
resolution in relation to those made by oversight. The differences in its average
value across the three CoP can be easily explored by performing a one-way ANOVA
with the null hypothesis that the expected value is the same across conditions. We
set some notation. If G denotes the number of groups/CoP and n the number of
observations per CoP, the sample size N turns out to be N D n � G.

11In an interesting exchange with Bruce Edmonds, we came to realize that this approach might
raise some important issues. One of the concerns is that thresholds do not usually adjust because
the experiment is so well planned that results come out to be extremely clear; that is to say that good
experimental work still accepts or rejects hypotheses at the level ˛ < 0:05 with 1�ˇ � 0:80. This
implies that adjustments of these levels for simulation work appears to be arbitrary. Our position on
this critique is that thresholds actually change as it happens in some medical studies, where 1 � ˇ

raises to 0:90 (Lakatos 2005), or when we listen to the calls not to interpret the traditional choices
of ˛ levels as absolute from either social scientists (Gigerenzer 2004) or statisticians (Wasserstein
and Lazar 2016). While a complete review of the reasons leading to the traditional choices of ˛ and
ˇ is in Secchi and Seri (2017), the introduction to testing theory above should have made clear that
the fathers of this theory thought of ˛ and ˇ as quantities to be chosen according to the problem at
hand. This justifies our proposals as long as we cannot compare artificial computational experiment
to real-life experiments because of different variability of observations, observer’s control and role,
and the usual difficulty of increasing sample size for empirical experiments.
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11.4.2.1 Identifying the Appropriate Effect Size

We are left with the problem of guessing a value for the effect size. In the following
we propose some reasonings concerning the choice. For this purpose, we need some
basic notation. For ANOVA, the effect size f is to be calculated as f D �m

�
(Cohen

1992), where �m is the standard deviation of the group means and � is the within-
population (or pooled) standard deviation. The same quantity can be expressed
using sums of squares. Let the subscript j, ranging from 1 to G, indicate the j-
th group/CoP. Let n be the number of observations in each group/CoP and let i,
ranging from 1 to n, denote the i-th observation. Therefore, xij is the i-th observation
in the j-th group. Moreover, we consider the sample means Nxj D 1

n

Pn
iD1 xij and

Nx D 1
nG

Pn
iD1

PG
jD1 xij, where the latter is the grand mean of all the observations.

Now, the variation of the observations between configurations (or groups) is simply
the square root of the Sum of Squares Between (SSB), or n

PG
jD1

�Nxj � Nx�2
, divided

by the Sum of Squares Within (SSW) observations, or
PG

jD1

Pn
iD1

�
xij � Nxj

�2
.

A first possibility is to use “canned” effect sizes (Cohen 1988). In this case,
verbal descriptions of the strength of the effect (e.g., small, medium and large; see
below) are mapped onto numerical values, usually based on effect sizes retrieved
from a review of the literature. As per the literature on the GCM, we can expect
that many decisions are made by oversight and that the number of difficult problems
solved increases under anarchy (Fioretti and Lomi 2008, 2010; Herath et al. 2015).
Hence, the “distance” between conditions could be classified as medium or large,
and we can set to an effect size of 0:25 or 0:4 (consistently with Cohen 1992). The
computation of the sample size providing the desired level of power can use the
formulas in Cohen (1988) as implemented in the R package pwr on power analysis
(see Champely et al. 2016). For f D 0:25, this yields the result n D 112 (exactly
111:68). A simpler approximation, proposed in Secchi and Seri (2017), yields n D
109 (exactly 109:47).12 The latter approach makes the relation between components
of power more explicit. For f D 0:40, R package pwr yields n D 45 (more precisely
44:58) and our formula yields n D 43 (more precisely 43:04).

A second possibility is to guess a value for the effect size by having the
simulation run for a pilot study and by calculating the estimated effect size from
the results. We will deal below with some problems involved in this approach.
For expository purposes, we have decided to run the model for n D 10 runs per
condition. Taking the definition of f above, the numerator SSB is 0:000813 and the
denominator is 0:004341 so that the estimated effect size for these three conditions
is 0:43. If we calculate the number of runs reaching a power of 0:95 with such
a large effect size as f D 0:43, we obtain n D 38 (more precisely 38:31) using
Cohen’s formulas and n D 37 (more precisely 36:81) using our approximation.

A third possibility is to use the results of former studies on the same topic.
Here, we can use the results of Fioretti and Lomi (2010) in the case without buck

12This formula can be used in Rwith an ad hoc function taken from one of our previous publications
(Secchi and Seri 2017). See the Appendix for the code for both formulas.
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passing and postponement. In that source, the authors state that, based on 100 runs,
the average number of decisions by resolution (resp., by oversight) is 43:90 (resp.,
779:57) under anarchy (group 1), 24:82 (resp., 461:94) under competent hierarchy
(group 2) and 7:71 (resp., 192:77) under incompetent hierarchy (group 3). We can
approximate the average value of the ratio rro through the ratio of the averages, i.e.
Nx1 ' 0:0563, Nx2 ' 0:0537 and Nx3 ' 0:0400. Therefore, we expect the difference
between the average value of rro in competent hierarchy with respect to anarchy to
be around Nx2 � Nx1 ' �0:0026, and in incompetent hierarchy with respect to anarchy
to be around Nx3 � Nx1 ' �0:016. These coefficients are remarkably near to the ones
obtained in the tables below. From the Appendix, we can see that:

f D
vuut

PG
jD1

�Nxj � Nx�2

1
n

PG
jD1

Pn
iD1

�
xij � Nxj

�2
:

The numbers above allow us to estimate the quantity
PG

jD1

�Nxj � Nx�2
as 0:000153.

Instead, 1
n

PG
jD1

Pn
iD1

�
xij � Nxj

�2
, i.e. SSW divided by n, cannot be estimated from

Fioretti and Lomi (2010), but we can use the value from our pilot runs with n D 10,
i.e. 0:004341=10 D 0:000434. The final result is f D 0:594 that would lead to
n D 21 (more precisely n D 21:07; n D 19:60 with our formula). While one should
not give too much credit to these numbers, they suggest that the effect size f may be
larger than expected.

Another consideration may provide some hints about how to interpret the values
provided by the previous three techniques. The standard error associated with
estimated effect sizes is generally quite large. Nothing guarantees that the estimated
f is indeed equal or even near to the true value. A good idea is therefore to investigate
what happens choosing a value f in a neighborhood around the estimate. As an
example, if we suppose that f is 0:35 or 0:5, our formula yields respectively n equal
to 56 or 28. We will see below that it is generally better to overshoot the correct
sample size than to undershoot it. From this point of view, a possibility is to use the
estimated effect size to choose a smallest effect size of interest (SESOI, see Lakens
(2014) for its definition in a different context), i.e. a value of the effect size that is the
smallest one for which we want to achieve the desired level of power.13 This means
that for f larger than the SESOI we will experience overpower while for f smaller
we will be in underpower. This asymmetry is justified by the fact that values of
the effect size under the SESOI are deemed to be improbable or uninteresting. The
SESOI is then used in the computation of the sample size. Whether the researcher
chooses to use the SESOI or not, the importance of these sensitivity analyses can
hardly be exaggerated, as they shed light on the factors that impact the choice of the
sample size.

13A possibility is to choose, as SESOI, the lower bound of a confidence interval on the effect size
with a specified confidence probability, e.g., 0.95 or 0.90.



242 R. Seri and D. Secchi

Table 11.2 OLS Regression
Results (DV: decisions by
resolution/decisions by
oversight)

Model 5 Model 40

(Intercept) 0:052��� 0:056���

St. err. (0.006) (0.002)

t value 8.721 29.804

Type: HC/AR �0:005 �0:007��

St. err. (0.009) (0.003)

t value �0:542 �2:692

Type: HI/AR �0:013 �0:012���

St. err. (0.009) (0.003)

t value �1:481 �4:637

R-squared 0.157 0.156

F-statistic 1.123 10.842

Degrees of freedom 2, 12 2, 117

p-value 0.357 0.000

N 15 120

Note. HC hierarchy-competence, HI hierarchy-
incompetence, AR anarchy
Signif. codes: 0 “***” 0.001 “**” 0.01 “ ” 1

On the basis of the previous reasonings, taking into account the expository nature
of this example, we decided to take n D 40, consistently with a value of f around
0:4. In Table 11.2 we reproduce the estimation results for a model with 5 runs
(i.e. Model 5), that is clearly under-powered, and for a model with 40 runs (i.e.
Model 40), that is correctly powered under an effect size f equal to 0:40. We expect
therefore the second model to provide a test of the effect of parameters on the
number of decisions by resolution in comparison to those made by oversight, with
the desired levels of ˛ and ˇ.

11.4.2.2 The Impact of Under-Power on Outcomes

The previous discussion shows that 5 runs should still be insufficient to provide
reliable results. Let us see how. As stated above, we are interested in understanding
whether the number of decisions by resolution on those by oversight change
(decrease) as we move from anarchy to hierarchy. Hence, we can perform an OLS
regression14 and produce a table with results calculated on 5 and 40 runs, to compare
findings from an under-powered to those from an appropriately-powered study.
Table 11.2 shows these comparisons and refers to them as Model 5 for the under-
powered and Model 40 for the balanced simulation.

14See the Appendix for details on how the effect size of the ANOVA and OLS regressions map
onto each other.
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From results in Table 11.2 it is immediately apparent that there are differences
between the two models. The under-powered Model 5 is not able to detect some
of the effects that are instead captured by the more balanced Model 40. In fact,
Model 5 fails to identify the relation between hierarchy with competence (HC) and
anarchy (AR) as statistically significant as well as the relation between hierarchy
with incompetence (HI) and anarchy (AR). In other words, the null hypothesis was
accepted when (probably) false, hence falling into Type-II error. And we know that
this is the case because a very similar regression coefficient (ˇHC=AR D �0:007,
St. err. D 0:003) leads instead to the rejection of the null hypothesis—that the
corresponding parameter is zero—in Model 40, where it is more reasonable to
suppose that power requirements are met. The second coefficient—hierarchy with
incompetence on anarchy—is also statistically significant in Model 40 (ˇHI=AR D
�0:012, St. err. D 0:003) as opposed to Model 5 (ˇHI=AR D �0:012, St. err.
D 0:008).

At last, note that in Model 5 the F-statistic for the joint nullity of both effects
does not lead to the rejection of the null hypothesis, thus suggesting that there is no
effect overall of the structure on problem solving. The conclusion is at odds with
the one from Model 40, that leads to the strong rejection of the same hypothesis.

In short, the impact of some of the conditions fails to be acknowledged in
the under-powered study with only 5 runs, leaving important and interesting
implications out of the study.

11.4.3 Example 2

We also conduct a second example to illustrate the risks and problems of over-
powering the simulation. In this example, we over-power the simulation and
calculate results on 500 runs, with the same parameter specifications used in the
example above.

Results of the two simulations are explored in Table 11.3, where we show the
estimation outputs of two OLS regression models. In the table, Model 40 shows
results for the correctly-powered simulation while Model 500 refers to the over-
powered simulation. The beta coefficients are very close to each other, with a
variation that is mostly reflected in the standard errors, that decrease in the case of
the over-powered simulation. This leads to a different t value so that the respective
probability (the p-value) becomes closer to zero for Model 500 than for Model 40.

From the perspective of accepting or rejecting results in the regression, there
is little or no difference. In fact, most values are well below the threshold for
statistically significant results. This points at the fact that, if one is interested in
accepting or rejecting hypotheses, there is no particular difference between the two.

However, in another article (Secchi and Seri 2017), we warn modelers of the
risks of over-power. There we write that over-power hides some dangers because it
might be unnecessarily costly (time consuming, for example), it makes small effects
as significant as larger ones, and destroys the balance between the two probabilities
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Table 11.3 OLS Regression
Results (DV: decisions by
resolution/decisions by
oversight)

Model 40 Model 500

(Intercept) 0:056��� 0:055���

St. err. (0.002) (0.001)

t value 29.804 100.12

Type: HC/AR �0:007�� �0:005���

St. err. (0.003) (0.001)

t value �2:692 �5:99

Type: HI/AR �0:012��� �0:015���

St. err. (0.003) (0.001)

t value �4:637 �19:18

R-squared 0.156 0.205

F-statistic 10.842 192.497

Degrees of freedom 2, 117 2, 1497

p-value 0.000 0.000

N 120 1500

Note. HC hierarchy-competence, HI hierarchy-
incompetence, AR anarchy
Signif. codes: 0 “***” 0.001 “**” 0.01 “ ” 1

of error ˛ and ˇ,15 thus decreasing the overall reliability of the model. However, all
things considered, Example 2 shows that, in the case of large effect sizes such as
this one, overpower does not bear particularly relevant problems besides accuracy.
In fact, the two models present results that are close to each other and only differ in
the granularity and reliability of details.

One last remark concerns the value of f as estimated from Model 500. In that
case, we get f D 0:51. This confirms that our initial guess (f between 0:25 and
0:4) was probably an underestimation, and validates with hindsight our choice of
focusing on the upper bound of the interval Œ0:25; 0:40�.

11.5 Implications and Conclusions

A few implications can be drawn from the two examples above. The first is
that power analysis can guide researchers on establishing the number of times a
simulation should run. The most immediate advice to modelers is that using power
to compute the number of runs should help avoid under-powered studies. In that

15Over-power reduces ˇ well below the chosen value of ˛. This is a problem because Type-I errors
are generally perceived as more serious than Type-II errors, and when ˇ � ˛ we expect exactly
a higher incidence of serious errors and a lower incidence of less serious ones. That is the reason
why, at least in the intentions of Neyman and Pearson, ˛ and ˇ should have been chosen in a
balanced way.
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case, Example 1 shows that results are unreliable and one might discard effects that
are, in fact, relevant to the study. At the same time, Example 2 shows that—for
studies with large effect sizes—overpower does not pose too relevant threats to the
overall reliability of a study.

In any case, knowing what makes the ABM more likely to produce reliable
results is a relevant information for modelers. It seems more so when modelers
perform their simulation a limited number of times per configuration of parameters.
But also when too many runs are performed, the absence of power calculations
may mislead one’s judgement on the effects and actual meaning of the simulation.
However, the asymmetry of the effects between under- and over-power suggests
that power analysis can be used to provide, if not a guess, at least a lower guess on
the number of runs (see the concept of SESOI introduced above). The value that is
calculated with the aid of statistical power analysis is a number that—if not taken
at face value—should inform the choice on the number of runs, and could at least
work as a benchmark.

In a review of models published mostly in Computational and Mathematical
Organization Theory (CMOT) and in the Journal of Artificial Societies and Social
Simulation (JASSS) between 2010 and 2013 (Secchi and Seri 2017) it was found
that most models are under-powered. If a small effect size d D 0:1 is hypothesized,
then the average power is 1 � ˇ � 0:41, while if a medium effect size d D 0:3 is
taken, then power becomes 1 � ˇ � 0:84 (with ˛ D 0:01). In both cases, the review
shows that models are under-powered even by the milder standards of 1 � ˇ D 0:90

suggested in Ritter et al. (2011).

11.5.1 Comparing Statistical Power to Other Approaches

Using power is not the only way in which one can determine the number of runs in
an experimental study and, in particular, in an ABM.

As an example, another approach sometimes called accuracy in parameter
estimation (AIPE) (Maxwell et al. 2008) has been proposed. In this approach,
first the researcher identifies a quantity of interest (a coefficient in a regression, a
correlation, etc.) and chooses the desired width of a confidence interval around this
value. Then, the researcher selects the sample size that allows one to reach this
objective. The technique is already established, under different names, in medicine
(Bland 2009), engineering (Hahn and Meeker 2011, Sect. 8.3), and psychology
(Maxwell et al. 2008). A similar approach, putting together AIPE and power
analysis, has also been proposed in the context of simulation models in Ritter et al.
(2011).

However, we think that, in order to become a feasible option for ABM, this
method should overcome some difficulties. First, AIPE may be surely of interest
whenever the objective of the analysis is to obtain a precise enough measure of the
effect of a treatment (see above for references). However, most ABM studies are not
framed in this way (see the distinction between KISS and KIDS above).
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The reason is that ABM studies are often simplified representations of reality.
Therefore, the effect of a treatment is rarely their desired outcome, as it is clear that
the value obtained from an ABM will generally not be the same value observed in
reality. Second, even when the outcome of an ABM study is of interest in itself, it is
rarely the case that one has a precise idea of what the width of a confidence interval
should be. This may be different whenever the outcome variable is measured on
a well-known scale, as it is often the case in the disciplines in which AIPE is an
established alternative to power analysis. The paper (Schönbrodt and Perugini 2013)
(see also Lakens and Evers 2014) provides an interesting example, based on Cohen
(1988), of how to determine the width of an interval, but this seems difficult to
generalize to other situations.

11.5.2 Concluding Remarks

The message of this article is that statistical power analysis can help modelers to
refine their ideas on how many times their ABM simulation should be performed.
In this chapter, we first wrote a few notes on the importance of determining the
number of runs, and then turned our attention to the type of models that would
benefit the most from this approach. The focus is then moved to testing theory so that
we could provide an appropriate statistical background for this approach. Finally,
some practical examples show the risks and perils of under- or over-estimating the
number of runs in a simulation. The implications are then further discussed at the
beginning of this section.

As a way to provide a summary of this chapter and, at the same time, help
modelers clarify what under- and over-power imply, Table 11.4 shows calculations
of power for ˛ D 0:01 and 1 � ˇ D 0:95, using the formula that we developed and
also appearing in the Appendix.

The left column in Table 11.4 shows the hypothetical number of parameter
configurations (or groups G) that a potential ABM could have. Knowing how to
determine the appropriate number of configurations is a complex issue that falls
beyond the scope of this chapter. However, sensitivity and steady state analyses
can provide sound support (Thiele et al. 2015). The table calculates the number
of runs that are necessary to reach 1 � ˇ D 0:95 at ˛ D 0:01 for five different
effect sizes, respectively ultra-micro D 0:01, micro (0:05), small (0:1), medium
(0:2), large (0:4), and huge (0:8). Results from these calculations confirm with more
granularity of details that small simulations, with few configurations of parameters
(up to 10) need to be performed many times unless the effect size is large or very
large. As the number of configurations grows, the number of runs to perform clearly
decreases significantly to the point where one run per configuration is enough when
variability is spread to its limits (from 1000 and up) in the presence of large and
very large effect sizes.



11 How Many Times Should One Run a Computational Simulation? 247

Table 11.4 A map of statistical power: Number of runs for ˛ D 0:01 and 1 � ˇ D 0:95

Effect sizes f

CoP (G) ultra-micro micro small medium large huge

2 84,777.89 3,468.39 875.55 221.02 55.79 14.08

3 65,400.97 2,675.65 675.44 170.51 43.04 10.87

4 54,403.07 2,225.71 561.85 141.83 35.80 9.04

5 47,162.95 1,929.51 487.08 122.96 31.04 7.84

10 30,265.08 1,238.19 312.57 78.90 19.92 5.03

20 19,421.49 794.56 200.58 50.63 12.78 3.23

50 10,804.41 442.02 111.58 28.17 7.11 1.79

100 6,933.33 283.65 71.60 18.08 4.56 1.15

200 4,449.21 182.02 45.95 11.60 2.93 0.74

500 2,475.15 101.26 25.56 6.45 1.63 0.41

1000 1,588.33 64.98 16.40 4.14 1.05 0.26

3000 786.29 32.17 8.12 2.05 0.52 0.13

5000 567.02 23.20 5.86 1.48 0.37 0.09

10,000 363.86 14.89 3.76 0.95 0.24 0.06

Note. Effect sizes: ultra-micro D 0:01, micro D 0:05, small D 0:1, medium D 0:2, large D 0:4,
huge D 0:8. CoP (G): configuration of parameters (groups)

Clearly, Table 11.4 needs to be taken as an exemplification of how likely it is that
a given number of configurations may lead to an under- or over-powered simulation,
hence determining the likelihood to make Type-II error or to over-emphasize results.
The table can be used as a first indication of how this approach to ABM runs can
be applied. More fine grained results may vary depending on the circumstances of
each simulation, including the levels of ˛, ˇ, and the purpose of the model.

Further Reading

Details on several power measures can be found in Cohen (1988) and Liu (2014).
Specific information on ABM and power are in Secchi and Seri (2017).

Appendix

Number of Runs Calculations

The following is the R code for a function that calculates the number of runs for the
configuration of parameters (G, here G) and effect size (f , here ES), given 1 � ˇ D
0:95, ˛ D 0:01:
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n.runs <- function(G, ES) {
return(14.091 * G^(-0.640) * ES^(-1.986))

}

In the case discussed in Exercise 1 above, the numbers are:

n.runs(3, 0.25)
[1] 109.465

The same analysis using the exact function of the package pwr on power analysis
(see Champely et al. 2016) is:

pwr.anova.test(f=0.25, k=3, power=0.95,
sig.level=0.01)

and yields n D 111:677.

Effect Size for ANOVA vs OLS Regression

In the text we have used a one-way ANOVA test to estimate the number of runs,
taking 1 � ˇ D 0:95, ˛ D 0:01 and a given effect size f . However, we then used
regression analysis to study the differences between under-, correctly-, and over-
powered models.

Since there is transformation between the parameters of ANOVA and OLS
regression, it is possible to connect the way effect size is calculated in the first to the
second.

As mentioned in the text of the chapter, the effect size for ANOVA is:

f D
vuut n

PG
jD1

�Nxj � Nx�2

PG
jD1

Pn
iD1

�
xij � Nxj

�2

The quantity under the square root is the SSB divided by the Sum of Squares Within
(SSW) or, in Cohen’s terms, f D �m

�
(Cohen 1992). The effect size for regression is,

according to Cohen (1992), f 2 D R2

1�R2 . It is easy to demonstrate that:

f 2 D R2

1 � R2
D SSB

SSR

where the SSW in a one-way ANOVA is comparable to the Sum of Squares
of Residuals (SSR) in an OLS regression with exactly the same dependent and
independent variables.
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Abstract This chapter aims to describe the diversity of participatory approaches
in relation to social simulations, with a focus on the interactions between the tools
and participants. We consider potential interactions at all stages of the modelling
process: conceptual design, implementation, use and simulation outcome analysis.
After reviewing and classifying existing approaches and techniques, we describe
two case studies with a focus on the integration of various techniques. The first
case study deals with fire hazard prevention in Southern France, and the second one
with groundwater management on the atoll of Kiribati. The chapter concludes with
a discussion of the advantages and limitations of participatory approaches.

O. Barreteau (�)
IRSTEA, UMR G-EAU, Montpellier, France
e-mail: olivier.barreteau@irstea.fr

P. Bots
Faculty of Technology, Policy and Management, Delft University of Technology,
Delft, The Netherlands

K. Daniell
Research School of Social Sciences, The Australian National University, Canberra, Australia

M. Etienne
Ecodevelopment Unit, National Institute for Agronomic Research, Avignon, France

P. Perez
SMART, University of Wollongong, Wollongong, Australia

C. Barnaud
Dynafor, Centre INRA de Toulouse, Castanet Tolosan, France

D. Bazile • W. Daré • G. Trebuil
Cirad GREEN, TA C-47/F. Campus international de Baillarguet, Montpellier, France

N. Becu
CNRS, Laboratoire de geographie PRODIG 2, Paris, France

J.-C. Castella
IRD (Institute of Research for Development) and CIRAD (UR ÄDA), Vientiane, Laos

© Springer International Publishing AG 2017
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_12

253

mailto:olivier.barreteau@irstea.fr
https://doi.org/10.1007/978-3-319-66948-9_12


254 O. Barreteau et al.

Why Read This Chapter?
To help you understand how one might involve stakeholders in all stages of the
modelling process. This approach allows for including stakeholders’ expertise as
well as giving them more control over the process.

12.1 Introduction

In this chapter, social simulation is cross-examined with a currently very active trend
in policymaking: participation or stakeholder involvement. This cross-examination
has two main outputs: the development of tools and methods to improve or facilitate
participation and the development of more grounded simulation models through par-
ticipatory modelling. Technological development provides new devices to facilitate
interaction around simulation models: from the phase of conceptual design to that
of practical use. In many fields there is a growing requirement from stakeholders
and the public to become more actively involved in policymaking and to be aware
of probable changing trends due to global policy decisions. New tools and methods
related to social simulation have started to be made available for this purpose such
as many group decision support systems which use computer simulation, including
potentially social items components, to facilitate communication to formulate and
solve problems collectively (DeSanctis and Gallupe 1987; Shakun 1996; Whitworth
et al. 2000). In addition, simulation of social complexity occurs in models whose
validation and suitability depend on their close fit to society, as well as on their
acceptability by it. These issues are tackled through the use of participatory
modelling, such as group model building (Vennix 1996) or participatory agent-based
simulations (Bousquet et al. 1999; Guyot and Honiden 2006; Moss et al. 2000;
Pahl-Wostl and Hare 2004; Ramanath and Gilbert 2004). The topic is also related
to participatory design as it is a means of involving end users of computer systems
in their design, including social simulations focussed ones (Schuler and Namioka
1993).

Group decision support as well as participatory modelling stems from the
interactions between simulation models and participants. There is a diversity of
ways through which these interactions might take place. They are related to
the diversity of approaches to simulate society or to organise participation. It is
important to make the choices made for these interactions explicit: for distinction
between approaches to be possible, to provide the opportunity for stakeholders to
discuss the process and for them to be prepared to be involved in. There is a need
to go further than the development of tools as they are liable to create filters that
reshape the understanding of social complexity. Description of the mechanisms
behind interactions is a way to qualify the potential effects of these interactions.

This chapter aims to describe the diversity of participatory approaches in relation
to social simulations, with a focus on the interactions between the tools and
participants. This overview is limited to simulation models. Model is considered
here as a representation of shared knowledge, which means the gathering of pieces
of knowledge and assumptions about a system, written altogether in a model so
that they might play or work together. We limit this scope further to simulation
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model, hence models including the representation of dynamics. We consider here
potential interactions among participatory and modelling processes at all stages
of the modelling process: conceptual design, implementation, use and simulation
outcome analysis.

The first section of this chapter outlines a number of factors which have paved the
way for development of the association between social simulation and participation.
There is a large body of literature in which authors have developed their own
participatory modelling approaches, justified by some specific expectations on
participation for modelling or vice versa. This first section makes a synthesis of
these expectations and draws out some principles on which various participatory
modelling settings should be assessed. The second section describes some existing
techniques and approaches. The third section proposes a classification of these
participatory approaches according to three dimensions: the level of involvement
in the process, the timeliness of involvement and the heterogeneity of population
involved. The fourth section describes two case studies with a focus on the
integration of various techniques. We discuss the advantages of these approaches
but also some limits, according to the expectations and in comparison with more
traditional techniques in the fifth section.

12.2 Expectations of Using Participatory Approaches
with Simulation of Social Complexity

Joint use of participatory approaches with social simulations is based upon three
categories of expectations. They vary according to the target of the expected benefits
of the association:

1. Quality of the simulation model per se
2. Suitability of the simulation model for a given use
3. Participation support

These three targets are linked to three different components of a modelling
process. Target one is linked to the output, target three to the source system, and
target two to the relation between both the output and source system. In this section
we further develop these three categories.

12.2.1 Increasing Quality of Simulation Models of Social
Complexity

The objective here is to produce a good quality model to simulate social complexity.
Participation is then pragmatically assumed to be a means for improving this quality.
There is no normative belief which would value participation by itself in this
category of expectations.
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Quality of the simulation model is understood here rather classically with the
following indicators:

– Realism: is the simulation model able to tackle key features of the social
complexity it aims to represent?

– Efficiency: is the simulation model representing its target system with a minimum
of assumptions and minimal simulation run times?

Quality of the representation according to its use is another classical indicator of
a simulation model’s quality. It is specifically tackled in the following subsection.

12.2.1.1 Taking Social Diversity and Capacity to Evolve into Account

One of the key features to be taken into account when representing a social
system is to deal with its diversity. This diversity is related not only to individual
characteristics but also to viewpoints, expectations towards the system and positions
in the decision-making processes. Dealing with diversity in simulation of social
complexity involves embracing it as well as profiting by its existence.

Classically, dealing with diversity is a process of aggregation or selection. Aggre-
gation consists of the identification of classes of individuals and representatives for
them. Selection consists of choosing a few cases with all of their characteristics. This
may lead to very simple simulation models with a generic diversity. Aggregation is
rather greedy on data and modelling time and is still dependent on the viewpoint of
the observers who provide the information leading to the categorisation. Selection
is weak to cope with relations among various sources of diversity.

Involvement of stakeholders in the modelling process allows them to bring
their own diversity. Concerns over representation are then transferred onto the
constitution of the sample of participants. Fischer and colleagues have shown
through development of situations to support creativity in various fields, such as art,
open source development and urban planning, that diversity, as well as complexity,
is important to enhance creativity (Fischer et al. 2005). This creativity is expected
to pave the way for surprises in the simulation model.

Involvement of stakeholders in the modelling process is a way to externalise part
of this diversity outside the model towards a group of stakeholders. The issue is then
to work on the relation between the model and a number of stakeholders to allow a
transfer of knowledge and ideas.

Social systems are open and evolving. Their definition depends on the viewpoint
of the analyst. As far as simulation is concerned, this means depending on
the viewpoint of the model designer(s). This choice means framing: cutting a
number of links around the boundaries of the system studied, as well as around
the interpretation which might occur based on the simulation outcomes (Dewulf
et al. 2006). Firstly, participation provides the opportunity to consider problem
boundaries which would be plurally defined, increasing the potential coherence of
the model. However, it is still an operation of cutting links out of the real-world
situation, even though these chosen cuttings are more grounded and discussed.
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Secondly, interactive use of a simulation model is a means to keep some of these
links open and active, with participants as driving belts. Stakeholders are embedded
in social networks which cross the boundaries into the physical and environmental
networks. They make the links come alive, which allows them to function and be
updated.

There is thus a need to question the boundaries set in the interactive setting:
actors in the neighbourhood, concerns of actors connected to those tackled by the
(simulation) model and how these relations are to be mobilised in the interaction.

12.2.1.2 Distribution of Control

A key characteristic of social systems which is to be addressed through social
simulation is their complexity. This complexity leads to various consequences, such
as the emergence of phenomena, delay effects or discontinuities in some trends,
which are present in social systems as in any complex systems. These are usually
the effects which one likes to discover or better understand when experimenting
with social simulations. From the internal point of view of simulations, Schelling
has shown experimentally that reproducing settings with multiple decision centres
improves the quality of representation of complexity (Schelling 1961). He could
generate complexity through experimental games because of the presence of
independent decision centres, the players. This result has also been shown with
simulations used for forecasting (Green 2002). Green compared the capacity of
forecasting the outcome of past social conflicts with a role-playing game with
students, game theorists and a group of experts. He compared the simulated
outcomes with those from the real negotiations and found that the role-playing game
setting produced the best results. This was the one with the main distribution of
decisions among autonomous centres.

The purpose of associating participatory processes and social simulation here
is then to increase the complexity through interactive use or implementation of
a social model. Unless computational agents are effectively used, which is rare
(Drogoul et al. 2003), formal theories of complex systems that are completely
embedded in a simulation model do not simulate complex patterns but implement an
explanation of a complex pattern. In other words, they should be implemented in a
distributed setting with autonomous entities. Participatory approaches provide such
settings. There is then an issue of a deep connection between a simulation model
and participants in a participatory modelling setting.

12.2.2 Improving Suitability of Simulation Model’s Use

Quality of a model is also assessed according to its suitability for its intended
use. In this subsection, two cases of use are considered: knowledge increase and
policymaking. In both cases, it is expected that involvement of stakeholders at any
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stage of a modelling process will aid better tuning of the model with its intended use:
either through interactions with people represented in the model, or with potential
users. Both cases have a major concern with making viewpoints explicit.

12.2.2.1 Case of Increasing Knowledge

The case of use for knowledge increase builds upon the previous subsection. The key
element treated here deals with the uncertainty of social systems. The involvement
of stakeholders represented in the simulation model is a way to improve its
validation or calibration. Participants may bring their knowledge to reduce or better
qualify some uncertainties. The simulation model is then expected to give back to
the participant’s simulation outputs based on the interactions between their pieces
of knowledge. On the other hand, this feedback is sometimes difficult to validate
(Manson 2002). Its presentation and discussion with stakeholders represented in
the simulation model is a way to cope with this issue. This approach has been
explored by Barreteau and colleagues to improve the validation of an agent-based
model of irrigated systems in Senegal River valley (Barreteau and Bousquet 1999).
The format of this feedback, information provided and medium of communication,
might make the model really open to discussion.

This joins another expectation which is probably the most common in work
that has so far implemented such participatory approaches with a social simulation
model: making each participant’s assumptions explicit, included the modellers (Fis-
cher et al. 2005; Moss et al. 2000; Pahl-Wostl and Hare 2004). This is a requirement
from the simulation modelling community: making stakeholders’ beliefs, points of
view and tacit knowledge explicit (Barreteau et al. 2001; Cockes and Ive 1996;
D’Aquino et al. 2003; McKinnon 2005). Moreover, so that participants might
become part of the model, the assumptions behind the model should be made
explicit in order to be discussed, as should the outputs of the simulations so that
they can also be discussed, transferred and translated in new knowledge. This is to
overcome one major pitfall identified with the development of models which is the
underuse of decision support models because of their opacity (Loucks et al. 1985;
Reitsma et al. 1996). This concern of making explicit assumptions in the modelling
process is also at the heart of the participatory approach community. One aim of
gathering people together and making them collectively discuss their situation in a
participatory setting is to make them aware of others’ viewpoints and interests. This
process involves and stimulates some explanation of tacit positions.

This means that the interactive setting should allow a bidirectional transfer of
knowledge between stakeholders and the simulation model: knowledge elicitation
in one direction and validation and explanation of simulation outputs in the other
direction.
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12.2.2.2 Case of Policymaking

In the case of simulation focusing on policy issues, there is a pragmatic, moral and
now sometimes legal need to involve stakeholders, which may lead to open the black
box of models of social complexity used in policymaking. Post-normal approaches
aim at making the decision process and its tools explicit so that stakeholders can
better discuss it and appropriate its outcomes. When this decision process involves
the use of decision support tools, which might include social simulation models,
this means that the models themselves should be opened to stakeholders (Funtowicz
et al. 1999). A simulation model is then expected to be explicit enough so that
stakeholders who might be concerned by the implementation of the policy at stake
could discuss it. This legitimisation is socially based, while validation, as mentioned
with the previous case of use, is scientifically based (Landry et al. 1996). Even
though validation is still required in this case of use, because it is the mode of
evaluation for some participants, it is rather the legitimisation of the model by the
stakeholders which is to be worked out.

Participatory approaches may be a means for opening these models to stakehold-
ers, provided that formats of communication of models’ assumptions and structure
can be genuinely discussed. Involvement of stakeholders is expected to raise their
awareness of the assumptions of the model and potentially able to discuss these and
modify them. This includes the evolution of underlying values and choices made in
the design of model.

12.2.3 Simulation as a Means to Support Participation

Social simulation might also benefit to participation. While the previous subsection
was dedicated to appropriateness between the model and its use as a group decision
support tool, we focus here on participation which might be a component of a
decision-making process.

Social simulation is seen here as an opportunity to foster participation and cope
with some of its pitfalls (Eversole 2003). The use of simulation models may lead to
some outcomes such as community building or social learning.

12.2.3.1 Dynamics and Uncertainties

Social systems have to deal with uncertainties just as social simulation models do.
This might hamper participatory processes: in wicked problems (Rittel and Webber
1973), encountered in many situations where participatory processes are organised,
stakeholders always maintain the opportunity related to these uncertainties to
challenge others’ viewpoints or observations. As an example, origin, flow and
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consequences of nonpoint source pollution are uncertain. This leads some farmers to
challenge the accusation, made by domestic water companies downstream of their
fields, that they are polluting their sources. Sometimes, disparate viewpoints do not
conflict. The gathering of these disparate pieces of knowledge is a way to reduce
uncertainty and allows the group of stakeholders involved in a participatory process
to progress, provided that they can work together.

Another characteristic of any social system which might hamper participation
is its dynamicity. Socioecological systems exhibit a range of dynamics, not only
social but also natural, which evolve at various paces. In the application developed
by Etienne and colleagues in Causse Mejan, pine tree diffusion has a typical time
step of 20 years which is long according to the typical time steps of land-use choices
and assessment (Étienne et al. 2003). In a participatory process, it might be difficult
to put these dynamics on the agenda. Simulation models are known to be good tools
to deal with dynamic systems.

Simulation models are therefore a means to gather distributed pieces of knowl-
edge among stakeholders and to cope with scenarios in the face of uncertainties.
They can also help make the participants aware of potential changes or regime shifts
generated by their interactions (Kinzig et al. 2006).

12.2.3.2 Towards Social Learning

Participation is often linked with the concept of social learning (Webler et al. 1995).
However, for social learning to occur, participants should have a good understanding
of their interdependencies as well as of the system’s complexity. Social simulation
can provide these bases, provided that the communication is well developed (Pahl-
Wostl and Hare 2004).

This learning comes from exchanges among stakeholders involved in the par-
ticipatory process but also from new knowledge which emerges in the interaction.
Externalisation of tacit knowledge in boundary objects (Star and Griesemer 1989)
is useful for both: it facilitates communication in giving a joint framework to make
one’s knowledge explicit, and it enhances individual, as well as social, creativity
(Fischer et al. 2005).

Simulation models are good candidates to become such boundary objects. Agent-
based models have long been considered as blackboards upon which various
disciplines could cooperate (Hochman et al. 1995). Through simulation outputs,
they provide the necessary feedback for reflexivity, be it individual or collective.

The question then remains whether such models constrain the format of knowl-
edge which might be externalised.
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12.2.4 Synthesis: A Key Role of the Interaction Pattern
Between Model and Stakeholders

These three categories of expectations have led to specific requests for the devel-
opment of participation in relation to social simulation models. In the following
section, we provide an overview of these techniques. On the basis of the previous
requests, these techniques and methods have to be analysed according to the
following dimensions:

– Set of connections between the participation arena and simulation model: its
structure, its content and organisation of its mobilisation

– Control of the process
– Format of information which can travel from one pole to another: openness and

suitability to the diversity of stakeholders’ competencies.

12.3 A Diversity of Settings

In this section, we describe some examples of participatory techniques and
approaches associated with social simulation models. Settings described in this
overview stem from various fields and disciplines. Most of these have already
produced some reviews on participatory approaches. For the purpose of the
discussion in relation with social simulation, a synthesis of these reviews is provided
here with a focus on the requests identified in the previous section.

12.3.1 From System Science and Cybernetics

Cybernetics and system sciences have produced a first category of simulation
models of social complexity (Gilbert and Troitzsch 1999). These models are based
on tools originating from system dynamics, using specific software. They focus on
flows of resources and information between stocks which can be controlled.

Two main types of interactions between these models and stakeholders have so
far emerged: group model building (Vennix 1996) and management flight simulators
or microworlds (Maier and Grössler 2000).

Group model building experiments focus on the interaction with stakeholders in
the design stage of a modelling process. It associates techniques of system dynamics
modelling with brainstorming tools and other techniques of group work, mainly
based on workshops and meetings. This trend consists of integrating future users
of the model in the design stage. The participants are supposed to be the clients
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of the modelling process. Rouwette and colleagues analysed 107 cases of such
experiments and proposed a number of guidelines to facilitate consistent reporting
on participatory modelling exercises. These guidelines focus on three categories:
context, mechanisms and results (Rouwette et al. 2002). The second category
focuses predominately on preparation activities and description of meetings, along
with factual elements and the modelling process.

This category of participatory modelling deals with the expectations identified in
the first section in the following manner:

– The participation arena is constituted of a rather small or medium size well-
identified group. The structure of the interaction is rather global: debates
tackle the whole model, and participants are supposed to be concerned by the
model entity as a whole. The connections may convey information on the tacit
knowledge of stakeholders, as well as on their purposes. This is still very diverse
among the experiments. The group of stakeholders is mobilised within specific
events, workshops, which might be repeated. The aim is to feed the model but
also to increase the probability of the use of the models produced.

– The process is predominately controlled by the modellers.
– The format of information is generally not well formalised, even though tech-

niques, such as hexagons brainstorming or causal diagrams (Akkermans 1995),
appear to organise the knowledge brought by stakeholders. This low formalisa-
tion allows the issues related to stakeholder diversity to be tackled and alleviated
in the problem framing phase, but it leaves a large place to the modellers’
interpretation.

Management flight simulators or microworlds constitute a complementary tech-
nique, which focuses more on the stages of use and simulation outcomes analysis,
even though this technique may also be used in a design stage to elicit tacit
knowledge. A key characteristic of this type of technique is to encourage learning
by doing. Participants, who might be the clients or other concerned people without
any formal relation to the modelling team, have to play through a simulation of
the model. Martin and colleagues have used this technique to validate a system
dynamics model on the hen industry (Martin et al. 2007). Participants were asked to
play with some parameters of the model.

When used to elicit knowledge, microworlds attempt to provide events that are
similar to those that participants already face or are likely to face in their activities
related to the issue at stake in the model. Le Bars and colleagues have thus developed
a game setting to lead farmers to understand the dynamics of their territory with
regard to water use and changes in EU common agricultural policy (Le Bars et al.
2004). In flight simulator experiments, interaction between stakeholders and the
simulation model is structured around future users of the model or people whose
stakes are represented in the model, with a slightly deeper connection than with
previous group modelling building approaches. Participants are asked to deal with
parameters of the model and are framed in the categories used in the model.
There is no a priori differentiation among participants. The connections convey
information about the object from the model to participants. It also conveys the
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participants’ reactions to this object and some behavioural patterns observed that
can provide new information for the modellers. This connection is activated by
the participants working through specific events and focus on the use of the tool.
Control is still on the side of modellers, who frame the interactions. The format of
information is largely formalised from model to stakeholders. It is not formalised
from stakeholders to model.

12.3.2 Knowledge Engineering: Between Artificial Intelligence
and Social Psychology

Knowledge engineering focuses on a specific time of the interaction between
stakeholders and a simulation model in the design stage: the process of translat-
ing tacit knowledge into conceptual or sometimes computational models. Many
knowledge elicitation techniques are useful in transforming written or oral text
into pieces of simulation models. The purpose of these techniques is to separate
the contributions made directly to the model from the design of the model itself.
Knowledge engineering aims to provide interfaces for this gap.

To deal with this interface, techniques have been developed, grounded in artificial
intelligence, (social) psychology and cognitive science. Behavioural patterns in
social simulation models are often borrowed in simplified versions from these fields
(Moss et al. 2000; Pahl-Wostl and Hare 2004). This cross-pollination of disciplines
can be potentially fruitful for model design. As an example, Abel and colleagues
have built upon the concept of a mental model. They assume that individuals have
representations of their world which may be formalised in causal rules. Working
in the Australian bush, they have designed specific individual interview protocols
and analysis frameworks to elicit these mental models (Abel et al. 1998). In this
case, interaction with the model occurs through the interviewer who in this case
was also the modeller. There was no collective interaction. Researchers dealing
with the interviews and the corresponding model design clearly guide the process.
The format of information is speech (in the form of a transcribed text), which is
transformed into a modelling language in this elicitation process.

Building upon Abel’s work, Becu has further minimised the involvement of the
modeller, still using individual interviews. This has led him to collaborate with an
anthropologist and to use ethnographic data as a benchmark. Individual interviews,
with the interviewee in the environment suitable to the purpose of the interview,
led him to identify objects and relations among these objects. These constitute the
initial basis for an exercise, labelled as playable stories: stakeholders, in his case
farmers from Northern Thailand, are asked to choose the key elements to describe
their world from their own viewpoints (with the possibility of adding new elements),
then to draw relations among them and to tell a story with this support (Becu 2006;
Becu et al. 2006). In this case, interaction between stakeholders and the simulation
model is still on an individual basis. The format of conveyed information is finally
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less formal, but the work of translation is less important. However, control of the
process still remains largely in the hand of the modeller but to a lesser degree than
in previous examples. This technique was further associated with semi-automatic
ontology building procedures by Dray and colleagues in order to generate collective
representations of water management in the atoll of Tarawa (Dray et al. 2006).

With inspiration coming similarly from the domain of ethnography, Bharwani
and colleagues have developed the KNeTS method to elicit knowledge. Apart from a
first stage with a focus group, this method is also based on individual interviews. As
in Becu’s work, interaction occurs in two phases: elicitation through questionnaires
and involvement in the model design at the validation stage, which is also considered
as a learning phase for stakeholders. These authors used an interactive decision
tree to check with stakeholders whether the output of simulation would fit their
points of view (Bharwani 2006). Control of this process is on the modeller’s side.
The stakeholders’ interaction is marginally deeper in the model than in previous
examples, since there is a direct interaction with the model as in management flight
simulator. On the other hand, the ontology which is manipulated seems to be poorer,
since the categories of choices open in the interaction are rather reduced. The format
of information is open in the first phase and very structured in the decision tree in
the second phase. The structuration process used in the modelling process occurs
outside of the field of interaction with the stakeholders.

On its side, group decision support system design domain is based on a collective
interaction with stakeholders as early as the design stage. These systems tend to
be used to address higher-level stakeholders. In the method he developed, ACKA,
Hamel organised a simulation exercise with the stakeholders of a poultry company.
In this exercise, the participants were requested to play their own roles in the
company. He constrained the exchanges taken place during the exercise through the
use of an electronic communication medium so that he could analyse them and keep
track of them later. All of the participants’ communication was transformed into
graphs and dynamic diagrams (Hamel and Pinson 2005). In this case, the format of
information was quite structured.

12.3.3 From Software Engineering

Close to the artificial intelligence trend, working like Hamel and Pinson on the
design of agent-based models, there is an emerging trend in computing science
based on agent-based participatory simulations (Guyot and Honiden 2006) or
participatory agent-based design (Ramanath and Gilbert 2004). This trend focuses
on the development of computer tools, multi-agent systems, which originate from
software engineering. Guyot proposes the implementation of hybrid agents, with
agents in the software controlled by real agents, as avatars (Guyot 2006). These
avatars help the players’ understanding the system (Guyot and Honiden 2006). They
can be thought as learning agents: they learn from choices of their associated player
and are progressively designed (Rouchier 2003). The approaches working on hybrid
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agents implement a deep connection between participants and the social simulation
model. Information conveyed in the interaction is relative to the model assumptions,
as well as to the model content.

Ramanath and Gilbert have reviewed a number of software engineering tech-
niques which may be coupled to participatory approaches (Ramanath and Gilbert
2004). This union between software design and participatory approaches is based
on joint production not only between developers but also with end users. Not
only interaction with stakeholders contributes to better software ergonomics—
the computer-supported cooperative work (CSCW) workshop series being an
example—but their participation tends to improve their acceptation and further
appropriation of the mode.

The implementation of interactive techniques may take place at all stages of a
software development process. In early stages, joint application design (Wood and
Silver 1995) allows issues raised to be dealt with during the software development
phase, attributing a champion to each issue. It is also concerned with technical
issues. This protocol might involve other developers, as well as potential users. It
may also increase the computing literacy of the participants involved in the process.
This process is based on the implementation of rather well-framed workshops.

Joint application design is supported by using prototypes. It is here we find
a link with a second technique: prototyping. This technique can be used all the
way through a software development cycle. It is based around providing rough
versions or parts of the targeted product. For example, it allows the pre-product
to be criticised, respecified or the interface improved. Quite close to prototyping,
in the final stages of the process, user panels can be used to involve end users in
assessment of the product. These panels are based on a demonstration or a test of
the targeted product.

In these cases, control of the process is dependent on the hiring of a skilful
facilitator. Otherwise, control of the process may become rather implicit. The
content of the interaction is rather technical, which makes it potentially unbalanced
according to participants’ literacy in computer science. An assessment of 37 joint
application design experiments has shown that the participation of users during the
process is actually rather poor, notably due to the technical nature of debates, which
is hardly compatible with the time allocated to a joint application design process by
users, compared to the time allocated by developers (Davidson 1999). Interaction
is rather superficial and needs translation. However, identification of a champion of
specific tasks gives a little bit more control to participants, as does involvement in
the content of pieces of the tool being developed.

Besides these approaches originating from software engineering, people working
in thematic fields such as the environmental sciences propose co-design workshops
that focus on the development of simulation models. Such workshops are a type of
focus group, organised around the identification of actors, resources, dynamics and
interactions, suitable for a set of stakeholders to represent from a socioecological
system on which they express their own point of view (Étienne 2006). This
approach, which occurs at the design stage of the modelling process, is supposed
to lead participants to design the simulation model by themselves, by formalising
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the conceptual model through a series of diagrams and a set of logical sentences.
The final interaction diagram and the attached logical sentences are then translated
by the modeller in computer code. It is in this type of process that a deep interaction
can occur between participants and the model. This interaction conveys information
on the model content, which is attached to the representations and knowledge of
each participant.

12.3.4 From Statistical Modelling

Bayesian belief networks have been developed to include in the computation
of probabilities, their dependence on the occurrence of any event. They can be
useful to represent complex systems and increasingly used in participatory settings
because their graphical nature facilitates discussion (Henriksen et al. 2004). A
group of participants can be asked individually or collectively to generate relations
between events and possibly probabilities as well. Henriksen and his colleagues
propose a method in seven stages which alternates between individual and collective
assessment and revision of an existent Bayesian belief network diagram.

This approach is reported to still present some difficulties in encouraging
strong participant involvement due to the mathematical functions behind the
network structure. However, other researchers and practitioners have improved
their communication and facilitation of the technique with their own Bayesian
belief network processes and are receiving positive stakeholder engagement in
the modelling processes (Ticehurst et al. 2005). In the example of Henriksen
and colleagues, the process is controlled by the modeller and includes only a
rather superficial coupling between participants and the model. The translation of
participant-provided information into probabilities is mediated by the modeller and
is rather opaque, as in many participatory modelling approaches.

12.3.5 From the Social Sciences

The association of participatory approaches and social simulation modelling also
originates from disciplines not focusing on the production of tools but on under-
standing social systems. Social psychology, economics, management and policy
sciences have all developed their own interactive protocols to involve stakeholders
in the design and/or use of their models. Sociology is still at the beginning of
this process (Nancarrow 2005). These protocols propose a variety of structures of
experimental settings, from laboratory to in vivo experiments through interactive
platforms (Callon and Muniesa 2006). These three categories vary according to their
openness to the influence given to participants. The in vivo category is beyond the
scope of this paper since it does not involve modelling: the society in which the
experiment is embedded provides its own model (Callon and Muniesa 2006).
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Laboratory settings are very controlled experiments, involving human subjects.
This is the case for most economic experiments. Participants are encouraged to
behave with a given rationality through instructions and payments at the end of
the session. In canonical experiments, analysis of the experiments is performed by
the scientist. The focus of the analysis is to understand the individual and collective
behavioural patterns generated by these settings. The purpose of these experiments
is either (i) to test theories and models, (ii) to gain new knowledge on human
behavioural patterns in given situations, or (iii) to test new institutional configu-
rations (Friedman and Sunder 1994). These experiments are particularly efficient
for situations with strong communication issues or with important interindividual
interactivity (Ostrom et al. 1994). The issue of simulating a real situation is not
considered but rather the testing of a theoretical model. This field is currently very
active and evolves with the emergence of field experiments involving stakeholders
concerned by the issues idealised in the model tested, asking them to play in their
environment (Cardenas et al. 2000). With this configuration, interactions are rather
deep since participants act as parts of the model. The participants convey action
choices. However, the experimentalist strongly controls the process.

A platform is an intermediary setting more open to compromise and hybridisation
than the laboratory. Heterogeneity of participants is also more welcome, since
the setting is designed to enhance sharing interests. Through experimentation, a
platform is supposed to bridge the gap between the world of the model and that
of the stakeholders (Callon and Muniesa 2006). Policy exercises and role-playing
games, as developed in the companion modelling approach, are kinds of these
platforms (Richard and Barreteau 2006). Policy exercises embed stakeholders in
potential situations they might have to face in the future (Toth 1988). They stem
from war games that have been developed since the time of ancient China and are
now used in public policy assessment (Duke and Geurts 2004) or environmental
foresighting (Mermet 1993). They are actually quite similar to the business games
and the system dynamics trend explained previously in Subsect. 12.2.1. However,
the underlying social simulation model is rather implicit, though it exists to create
the potential situation and to help identify the participants relevant to the exercise.
Association with a computer tool tends to be with a simulation model of the
environment that does not necessarily involve a social component. The interaction
between participants and the social model is rather deep since they are pieces of
the model and connect with the model of their environment. Control of the process
is rather diffuse. There might be a genuine empowerment of participants since they
have the possibility of bringing their own parts of the social model to the process and
can adapt it in ways different to what the designers expected. Alike with laboratory
settings, platforms provide information to the modeller about behavioural patterns
of the participants. Reaction to taboos or innovative behaviours in situations new
to the participants, tacit routines and collective behavioural patterns can be elicited
using these platforms, while it is difficult with classical interviewing techniques.

Between experimental laboratory settings and policy exercises, the companion
modelling approach proposes an association of role-playing games and agent-based
simulations (Bousquet et al. 2002). Even though authors in this approach claim not
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to limit themselves to these two categories of tools, they predominately rest in the
trend of participatory agent-based simulations and are thus close to the software
design and artificial intelligence trends presented above. This approach makes a
full use of similarities in architecture between role-playing games and agent-based
simulations (Barreteau 2003). Both implement autonomous agents that interact
within a shared dynamic environment. Joint use of both agent-based simulation and
role-playing games builds upon these similarities to express the same conceptual
model. Authors in this approach use this to reinforce a principle of making all
the assumptions underlying a model used or design interactively with stakeholders
explicit and understood. At the design stage, this approach aims to incorporate
stakeholders’ viewpoints in the model. At the model use stage, it aims to improve
the appropriation of the tool produced as well as to increase its legitimacy for further
operational use. However, this appropriation is still under discussion and might be
rather heterogeneous (Barreteau et al. 2005).

12.4 Participation in the Modelling Process: Diversity
of Phases and Intensity

While many authors claim to use participatory approaches for the simulation
of social complexity, there remains a large diversity of actual involvement of
stakeholders and of activities hidden behind this involvement. Associations of
participatory methods with social simulation models are rather heterogeneous. It is
thus important to qualify the actual involvement of stakeholders in these processes.
This level of participation can range from mere information received by concerned
parties related to the output of a process to the full involvement of a wide range of
stakeholders at all stages of a process. There are also many intermediary situations
imaginable. Participation should not be thought of as just talking, and diversity
should be made explicit so that criticisms towards participation as a global category
(Irvin and Stansbury 2004) can focus on specific implementations. This section
explores the potential consequences of this diversity in three dimensions: stage
in the modelling process, degree of involvement and heterogeneity of stakeholders
involved.

12.4.1 Stages in the Modelling Process

The modelling process can be subdivided into the following stages, with the
possibility of iterating along them:

– Preliminary synthesis/diagnosis (through previously available data). This
includes making explicit the goal of the modelling process.

– Data collection (specific to the modelling purpose).
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– Conceptual model design.
– Implementation.
– Calibration and verification.
– Simulation process (might be running a computer simulation model, playing a

game session, etc.).
– Validation.
– Discussion of results.

Involvement of stakeholders in each of the different stages of the modelling
process does not generate the same level of empowerment or learning, even if
we assume that this involvement is sincere. Preliminary synthesis, conceptual
model design, validation and, to some extent, discussion of results are framing
stages; stakeholder involvement at these levels gives power to stakeholders to
orientate the process. In the preliminary synthesis/diagnosis, stakeholders have the
opportunity to play a part in setting the agenda. This is the stage of problem
structuring which is identified as a key one in all participatory processes (Daniell
et al. 2006). Even if the agenda developed with stakeholder involvement might
further evolve, its initialisation generates a strong irreversibility in the process: data
collection, participant’s selection and (partially) modelling choices (architecture,
platform) are related to this agenda and are costly, either directly or through the
necessity of reprogramming. The modelling process is a sequential decision process,
and as shown in theory of sequential decisions, initial decisions are often at the
source of more consequences than envisaged (Henry 1974; Richard and Trometter
2001). Conceptual model design constitutes a landmark in the process. It is the
crystallisation of viewpoints that serve as a reference in further stages. Validation
is the compulsory stage where stakeholders will have the opportunity to check the
effectiveness of the computer model in representing correctly their behaviours and
ways of acting. Discussion of results may also constitute a framing phase, according
to the purpose of the discussion. If dimensions of discussion are to be defined and
model is open to be modified, there is some place for participants to (re-)orientate
the modelling process. Otherwise, if the discussion of results aims to choose from
a few scenarios, for example, the choice is very narrow and might be completely
manipulated. In this regard, it has been shown that for any vote among composite
baskets, it is possible to maintain that one item always selected according to the way
the baskets are constituted (Marengo and Pasquali 2003). A scenario in this case is
a kind of composite basket.

In other stages of a modelling process, the influence of stakeholder involvement
on the overall process is less important. When data collection or calibration and
verification involve participants, stakeholders tend to take the role of informants.
Among the various levels proposed in the classical ladder of participation explained
in the following subsection, these stages deal predominately with consultation. Their
involvement is framed by the format of information which is expected and on the
parts of the model which are to be calibrated or validated. If the process is open to
modification in these frames, the level of participation might be higher but still with
a limited scope.
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Implementation stage is another mean to empower participants. It is often implic-
itly framing. But empowerment through involving stakeholders in this technical
activity is rather to raise their literacy in this part and raise the probability of their
appropriation of the model. Simulation stage is basically providing information to
stakeholders on what is being done. This is a technical stage (running the simulation)
which keeps a part of strategic choices (design of scenarios and indicators to track
the simulation progress). Involvement of stakeholders in the technical part, such as
through role-playing games, increases their knowledge of the model from inside,
provided stakeholders have the literacy for that. Involvement in strategic part is
connected to the initial stage which has set the agenda. The further this initialisation
has gone in formalising the questions, the less empowering is this involvement.

12.4.2 Level of Involvement

Level of involvement is a more classical dimension. It is inspired by the classical
hierarchy of participation levels proposed first by Arnstein (1969). Several reviews
and adaptations have been made since then, with the same focus on power issues
(Mostert 2006; van Asselt et al. 2001). These works focus on what participation
means in decision-making terms (the bases of many political or democratic the-
ories), with democracy cube (Fung 2006) or the work of Pateman (1990) and
Rocha (1997). In most of these examples, the emphasis is placed on who (citizens,
managers or policymakers) has the balance of power for final decision-making (i.e.
the choice phase of a decision process (Simon 1977)), but other issues of process
are not specifically mentioned. Such participation classifications, although useful
in a very general sense for the question of participation in modelling processes, do
not explicitly treat the issue of the place of a modeller or researchers with expert
knowledge (Daniell et al. 2006).

On these bases, we consider here the five following levels in which there are
at least some interactions between a group of citizens and a group of decision
makers:

– Information supply: citizens are provided access to information. This is not
genuine participation since it is a one-way interaction.

– Consultation: solicitation of citizens’ views.
– Co-thinking: real discussions between both groups.
– Co-design: citizens have an active contribution in policy design.
– Co-decision-making: decisions are taken jointly by members of both groups.

Since a modelling process is a kind of decision process, this hierarchy might
apply to modelling process as well. This is a little bit more complicated because two
processes are behind the modelling process, and the network of interactions cannot
be represented with a group of citizens and a group of decision or policymakers
only.
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A modelling process with the purpose of simulation has two dimensions along
which these scales might be assessed: model content and building on one hand and
control over model use on the other. Though these two dimensions are related, it is
useful to consider them separately as they provide power and knowledge: either
within the process or in the system in which the process takes place. Each of
these dimensions is more closely related to specific stages in the modelling process
presented in the previous subsection. However, some stages, such as model design
or implementation, contribute to both dimensions.

Therefore we consider the following categories:

– Information on a model’s content and no control over model use
– Consultation and no control over model use
– Dialogue with modellers and no control over model use
– Dialogue with modellers and control over model use
– Co-building of a model and no control over model use
– Co-building of a model and control over model use

Each category is described in the following subsection by a flow of interactions
within an interaction network based on four poles: A, R, M and P. A stands for
all people who are involved in and/or concerned by the social complexity at stake
in the modelling process. This includes policymakers and citizens. R stands for
researchers involved in the modelling process. M stands for the model. P stands for
policymakers. P is a subset of A, which gathers the actors who might use the model
and its output for the design of new regulations or policies concerning the system
as a whole. We chose to gather citizens and policymakers in A, as in the modelling
process they are rather equivalent in their interactions with the researchers about
the model. Their distinction is useful for the second dimension: model use and
dissemination. We assume that the default situation is an access of P members to
the output of the modelling process.

12.4.2.1 Information and No Control

A R

MP

Participants are informed about the model’s content and the simulation by
researchers, who are the only designers. No control over the model’s use or
dissemination is deputed to participants as such. Whatever the use of the model may
be afterwards, citizens become only better aware of the basis on which this model
has been built. However, the model exists and can be used by members of P. This is
the classical situation with simulation demonstration and explanation of a model’s
assumptions. This explanation might be achieved by more active means, such as a
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role-playing game. A switch to the following category occurs when this explanation
leads to a debate that makes the model open to modifications. Otherwise, it remains
mere information.

12.4.2.2 Consultation and No Control

A R

MP

Participants are consulted about the model’s content and its simulation that is by
the researchers, who are the only designers. They provide information and solicit
comments on the model. Mere data collection through a survey does not fall in
this category because it assumes active involvement from participants in providing
information to the modellers. Some knowledge elicitation techniques, such as BBN
design, tend to fall mostly in this category. Translation of the inputs originating from
participants into pieces of a model is performed only by researchers. This translation
is not necessary transparent. No control over use or dissemination of the model is
deputed to participants as such. Compared to previous category, participants have
the ability to frame marginally more of what is performed by the model through
their inputs to the model’s content However, the extent of this ability depends on
the participants’ skills to identify potential uses of a model. As in any participatory
process, when there is an unbalanced power relation between parties, the process is
also a way for policymakers to gain information from stakeholders, information that
could be used for strategic purposes. This bias can be alleviated if the involvement
of A includes all members of A, including the subset P. The constructed model in
this case may be used by the members of P.

12.4.2.3 Dialogue with Modellers and No Control

A R

MP

In this category, iterative and genuinely interactive processes between stake-
holders and modellers start to appear. There is still a translation of inputs from
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participants into the model through the researchers, but there is feedback about these
developments to the stakeholders. This leads to discussion about the model. Con-
vergence of the discussion remains on the researchers’ side. Group model building
experiments predominately fall into this category. In this case, stakeholders may
increase their influence on the framing of the model with better prior assessment of
the scope of simulations to be examined. Biases related to strategic information
being revealed in the dialogue process are still present if there is unbalanced
involvement of members of A and notably if members of P are less active but still
present. However, this category still represents indirect control, and no specification
of model use is left open to the stakeholders. At the end of the process, the created
model can be used by members of P without any control or any road map set by
other members of A.

12.4.2.4 Dialogue with Modellers and Control

A R

MP

This category is the same as the previous one with translation of stakeholders’
inputs and feedback from the researchers about them. However, the output of the
discussion, the model, is appropriated by stakeholders. They have control over
its use and dissemination of models which may have been produced through the
modelling process: who might use them, with which protocol and what is the
value of their outputs. They can decide whether the model and simulations are
legitimate to be used for the design of policies that may concern them. However,
this appropriation raises issues of dialogue between researchers and stakeholders
about the suitability of model for various uses. Comparison of several participatory
agent-based simulations has shown that there is a need for dialogue about not only
a model’s content but also on its domain of validity (Barreteau et al. 2005).

12.4.2.5 Co-building of a Model and No Control

A R

MP

A further stage of empowerment of stakeholders through participation in a mod-
elling process is their co-building of the model. The design and/or implementation
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of such a model are joint activities between the researchers and stakeholders. Co-
design workshops or joint application development falls into this category, provided
that there is genuinely no translation of stakeholders’ inputs by the researchers.
Techniques originating from artificial intelligence and knowledge engineering, as
presented above, aim to reach this level, either through the implementation of virtual
agents extending stakeholders or through constraining the interactions between
actors through a computer network. This involvement increases the fidelity of the
model to match stakeholders’ viewpoints and behavioural patterns. However, at the
end of the process, the created model can still be used by members of P without any
control or any road map set by other members of A.

12.4.2.6 Co-building of a Model and Control

A R

MP

This category is the same as the previous one, but actors now have control over
use and dissemination of models which may be produced through the process. This
leads to possible stakeholder appropriation of the models, raising the same issues as
in Sect. 12.4.2.4.

12.4.3 Heterogeneity of Actors

Eversole points out the need for participatory processes to take into account the
complexity of the society involved including power relations, institutions and the
diversity of viewpoints (Eversole 2003). This is all the more true when applied to
the participatory process of social simulation modelling. Most settings presented
in Sect. 12.2 have a limited capacity to involve a large numbers of people in
interactions with a given version of a model. When interactions convey viewpoints
or behavioural patterns, heterogeneity may not appear if no attention is paid to it.
Due to limits in terms of number of participants, participatory approaches that deal
with social simulation modelling involve usually representatives or spokespeople.
The issue of their statistical representativeness is left aside here, as the aim is to
comprehend the diversity of possible viewpoints and behavioural patterns. There
is still an issue of their representativeness through their legitimacy to speak for
the group they represent, as well as their competency to do so. The feedback
of these spokespersons to their group should also be questioned. When issues of
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Table 12.1 Categories of participation according to level of heterogeneity embraced (from van
Daalen and Bots 2006)

Model use
Level Model construction Computer model Gaming simulation

1 Individual
stakeholders

Knowledge elicitation
involving one or more
individuals separately,
depending on the
modelling method this
may consist of
interviews about
(perceptions on) a
system or
questionnaires related
to the aspects being
modelled (e.g. Molin
2005)

Model can be executed,
and individual
stakeholders are
informed of the result
(e.g. Dudley 2003)

Individual can ‘play’
an actor in a flight
simulator setting (e.g.
Maier and Grössler
2000; Sterman 1992)

2 Homogenous
group

Same as 1, but group
model building
includes interaction
between stakeholders
(e.g. Castella et al.
2005)

The use of a model in a
homogenous group
means that the model
can be run in a workshop
setting and model results
are discussed (e.g. van
Daalen et al. 1998)

Multiplayer gaming
simulation can be
conducted; the game is
followed by a
debriefing (e.g. Mayer
et al. 2005)

3 Heterogeneous
group

Same as 2, but group
model building
interaction between
stakeholders with
different
perceptions/beliefs
(e.g. Van den Belt
2004)

Same as 2, but results
discussed with
stakeholders with
different
perceptions/beliefs

Same as 2, but full
stakeholder group
involved (e.g. Étienne
et al. 2003)

empowerment are brought to the fore, the potential for framing or controlling the
process is dedicated to the participants. This might induce echoes in power relations
within the group, notably due to training that may be induced.

Van Daalen and Bots have proposed a categorisation of participatory modelling
according to this dimension with three scales: individual involvement, a group
considered as homogeneous and a heterogeneous group (van Daalen and Bots 2006).
Table 12.1 provides examples of each level according to the two processes involved
that were explained in previous subsection.

These three categories are represented in the diagrams below, as expansions of
the relation between A and (M [ R) in the previous subsection. The third category
corresponds to the deep connection mentioned in the first section (Figs. 12.1, 12.2
and 12.3).
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Fig. 12.1 Individual
involvement
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Fig. 12.2 Homogenous
group involvement

M
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Some other ways are currently explored with hybrid agents to technically
overcome the difficulty of dealing with representatives: by involving them all in
large systems. The internet or mobile phone networks provide the technical substrate
for such interaction. A large number of participants have a virtual component in
a large system, interacting with other components, possibly with the purpose of
building a model (Klopfer et al. 2004). However, in this case it is rather an individual
interaction of these participants with the system, than genuine interactions among
the participants.
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Fig. 12.3 Heterogenous
group involvement
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12.4.4 Which Configurations Can Meet the Expectations
of the First Section?

In this subsection we revisit the expectations towards the joint use of participatory
approaches and social simulation presented in the first section, through the categori-
sations above. This is a tentative mapping of participatory approach categorisation
with model expectations. Table 12.2 below synthesises this mapping.

The two expectations dealing with increasing a model’s quality often actually use
participants as (sometimes cheap) resources in the simulation modelling process.
The most important stage is simulation, because participants are supposed to
bring missing information to the simulation, as well as the missing complexity.
The minimum level of empowerment is rather low. These processes are hardly
participatory in that sense, because participants are not supposed to benefit from the
process, except a potential payment. A higher level of empowerment might increase
the quality of participants’ involvement in the process through a deeper concern in
the outcome of the simulation. Finally, the heterogeneous group level is obviously
to be respected because it can instil a deep connection between stakeholders and the
model still and concurrently profit from their interactions with each other.

To make simulation models match their intended use, the key stage is the
design process. Stakeholders are supposed to aid the building of an appropriate
model. The main difference between targets of simulation model’s use is in the
necessity to give control over the process to stakeholders in case of policymaking.
New knowledge is of individual benefit to all participants, and the emergence of
fruitful interactions can also become an individual benefit. There are few direct
consequences of this new knowledge. Therefore, control over the process in this
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Table 12.2 Matching expectations on joint use of participatory approaches and social simulation
modelling with categories of participation

Expectation
Key stage(s) for
participation

Minimum level of
empowerment

Level of
heterogeneity

Increase model’s
quality with social
diversity and
capacity to evolve

Simulation Information and no
control

Heterogeneous group

Increase model’s
quality through
distribution of
control

Simulation Information and no
control

Heterogeneous group

Improve suitability
of simulation
model’s use for
increasing
knowledge

Design Dialogue and no
control

Individual

Improve suitability
of simulation
model’s use for
policymaking

Design and
discussion of results

Dialogue and control Homogeneous group

Simulation as a
means to support
participation to deal
with dynamics and
uncertainties

Discussion of results Consultation and no
control (depend on
participatory process
to be supported)

Homogeneous group

Simulation as a
means to support
participation through
social learning

Preliminary
diagnosis, design and
discussion of results

Co-building and
control (to be
preferred)

Heterogeneous group

case is useless, and involvement might be individual, as with knowledge elicitation
techniques. However, higher level of stakeholder heterogeneity might raise the
knowledge acquired in the process.

When simulation is used to support participation, discussion of results is a
key stage. Previous stages aid in the problem framing and literacy increase of
participants that allow them to reach more solid interpretations. The empowerment
level is rather dependent on the participatory process that is being supported.
However, consultation in the modelling process should be a minimum requirement
so that uncertainties and dynamics tackled by the simulations are relevant to the
stakeholders. When focusing on social learning, co-building and control should be
preferred because this category increases the potential for exploration and creativity.
However, some social learning might take place in lesser levels, provided that group
heterogeneity is well encouraged in the process.
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12.5 Combining Approaches and Techniques at Work

We present in this section two case studies implementing various methods for
joining social simulation modelling and participatory approaches. The first deals
with fire hazard prevention in southern France and the second one with groundwater
management in the atoll of Kiribati.

12.5.1 The Fire Hazard Case Study

In December 2005, the Forest Service of the Gard Department of Agriculture
(DDAF) decided to start a fire prevention campaign focussed on fire hazard at the
interface between urban and forest areas. Interested in the participatory approaches
developed by INRA researchers on fire prevention and forest management planning
(Étienne et al. 2003), they ask for an adaptation of the SylvoPast model to the peri-
urban context in order to make local politicians aware of the increasing fire hazard
problem. The district of Nîmes city (NM) who was already interested in the use
of role-playing games for empowering stakeholders and decision makers asked the
Ecodevelopment Unit of the INRA of Avignon to develop a companion modelling
approach based on social simulations and a participatory involvement of all the
mayors of the district.

The modelling process was subdivided into seven stages:

1. Collection and connection on a GIS of relevant cartographic data on forests,
land-use and urbanization and individual interviews with local extensionists on
farmers, foresters and property developers practices.

2. Co-construction with DDAF and NM of a virtual but implicit map representing
three villages typical from the northern area of Nîmes city and validation of the
map (shape, land-use attributes and scale) by a group of experts (EX) covering
the main activities of the territory (agriculture and livestock extensionists, forest
managers, hunting manager, land tenure regulator, fire brigade captain and town
planner).

3. Co-construction with NM, DDAF and experts of a conceptual model accounting
for the current functioning of the territory and the probable dynamic trends to
occur during the next 15 years. This participatory process followed the ARDI
methodology mentioned in Sect. 12.2.3 (Étienne 2006).

4. Implementation of the NimetFeu model on Cormas multi-agent platform by
INRA researchers and validation of the model by simulating with the co-
construction group, the current situation and its consequences on fire hazard and
landscape dynamics for the 15 following years.

5. Co-construction and test of a role-playing game (RPG) using the NimetFeu
model as a way to simulate automatically natural processes and some social
decisions (vineyard abandonment, horse herding, firefighting). The other social
decisions were programmed to be taken directly by the players and used as an
input to the model.
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6. The use of the RPG during several sessions gathering 6 players (3 mayors,
1 developer, 1 NM representative, 1 DDAF technician) until the 14 villages
involved in the project did participate to a session.

7. Adaptation of NimetPasLeFeu to other ecological conditions and decision of the
Gard Department to become autonomous in running RPG sessions. A facilitator
and a data manager were trained and tested during sessions organised in the
framework of an INTERREG project with mayors and fire prevention experts
from France, Spain, Italy and Portugal.

The approach is based on a mutual comprehension of the elements of the territory
that makes sense with the question asked. This sharing of representations is done by
means of a series of collective workshops during which actors, resources, dynamics
and interactions (ARDI) which make the stakes of the territory are identified and
elicited. To facilitate this sharing, the answers to the questions are formalized into
easily comprehensible diagrams, with a minimum of coding making it possible to
classify the provided information. The role of the facilitator only consists in calling
upon each participant, writing down the proposals in a standard way and asking for
reformulating when the proposal is too generic, enounced with a polysemous word
or can lend to confusion.

In both models, the environment is divided into three neighbouring villages
covering the gradient of urbanization and agricultural land/woodland ratio currently
observed around Nîmes city. It is visualised by means of a cellular automaton
through a spatial grid representing 18 land-use types that can change according to
natural transitions or human activities.

Four categories of social entities are identified: property developers, mayors,
farmers and fire prevention managers. The developers propose new urban devel-
opments according to social demand and land prices. They have to respect the
government regulations (flood hazard, protected areas, urban zoning). Mayors select
an urbanization strategy (to densify, to develop on fallow land, olive groves or
forests), update their urban zoning according to urban land availability and social
demand and make agreements with the developers. When updating the urban
zoning, they can create new roads. Farmers crop their fields using or not current
practices that impact fire hazard (vineyards weeding, stubble ploughing) or adapt
to the economic crisis of certain commodities by uprooting and setting aside
lowland vineyards or olive groves near to urban zones. The fire prevention manager
establishes a fuel break in a strategic place, selected according to fire hazard ranges
in the forest and the possible connections with croplands, as well as available funds
and forest cleaning costs.

Four biophysical models issued from previous researches and adjusted to the
local conditions are integrated to the MAS to account for fallow development, shrub
encroachment, pine overspreading and fire propagation. The model is run at a one-
year time step, the state represented on the map corresponding to the land cover at
the end of June (beginning of the wildfire period). Each participant was invited to
propose a set of key indicators that permit them to monitor key changes on ecologi-
cal or socio-economic aspects. A common agreement was made on what to measure,
on which entity, with which unit and on the way to represent the corresponding
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qualitative or quantitative value (visualising probes on graphs or viewpoints on
maps). They were encouraged to elaborate simple legends, in order to be able to
share their point of view with the other participants while running the model.

The first MAS was exclusively used to support the collective thinking on
which procedures and agents will be affected to players and which ones would
be automatically simulated by the computer. In the RPG model, the playing board
was strongly simplified with only four types of land cover. Running the game gives
participants the opportunity to play individually or collectively by turns, according
to a precisely defined sequence. While the mayors players draw the limits of the
urban zone and rank the price of constructible land according to its current land
use, the developer player sorts randomly a development demand and elaborates a
strategy (village, density, livelihood). Then begin a series of negotiations between
the developer and the three mayors in order to decide where to build, at which
density and with which type of fire prevention equipment. All the players’ decisions
are input into the computer, and landscape dynamics are simulated by running
the model. Players get different types of output from the simulation run: budget
updating, new land-use mapping, popularity scoring. Each round corresponds to a
3-year lapse and is repeated 3–4 times according to players’ availability.

A specific effort is made in the RPG design to account for physical remoteness
and territory identity among participant: the playing room is set up into three
neighbouring but distinct boxes for the three mayors (each box represents one
village), one isolated small table for the developer, and another game place with
two tables, one small for the DDAF and a huge one for NM. Lastly, in a corner, the
computer stuff is placed with an interactive board than can both be used as a screen
to project different viewpoints on the map or as an interactive town plan to identify
the parcels’ number.

At the end of the game, all the participants are gathered in the computer room and
discuss collectively, with the support of fast replays of the game played. Different
topics are tackled related to ecological processes (effect of fire, main dynamics
observed), attitudes (main concerns, changes in practices) and social behaviours
(negotiations, alliances, strategies).

Along these various stages, this experiment features a diversity of involvement
as well as of structure of interactions. This is synthesised in the Table 12.3 below.

12.5.2 The AtollGame Experiment

This study is carried out in the Republic of Kiribati, on the low-lying atoll of Tarawa.
The water resources are predominantly located in freshwater lenses on the largest
islands of the atoll. South Tarawa is the capital and main population centre of the
Republic. The water supply for the urban area of South Tarawa is pumped from
horizontal infiltration galleries in groundwater protection zones. These currently
supply about 60% of the needs of South Tarawa’s communities. The government’s
declaration of water reserves over privately owned land has led to conflicts, illegal
settlements and vandalism of public assets (Perez et al. 2004).
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Table 12.3 Classification of type of participation in various stages of the NimetPasleFeu experi-
ment

Involvement Heterogeneity nb

Preliminary diagnosis Consultation Individuals 10
Data collecting Consultation Individuals 3
Conceptual model designing Co-design Heterogeneous group 14
Implementing Information Individuals 2
Calibrating and validating Co-thinking Heterogeneous group 14
Role-playing game designing Co-design Heterogeneous group 14
RPG playing and debriefing Co-decision-making Heterogeneous group 30
Getting self sufficient Information Individuals 3

The AtollGame experiment aims at providing the relevant information to the
local actors, including institutional and local community representatives, in order to
facilitate dialogue and to help devise together sustainable and equitable water man-
agement practices. Knowledge elicitation techniques as well as multi-agent-based
simulations (MABS) coupled with a role-playing game have been implemented to
fulfil this aim. In order to collect, understand and merge viewpoints coming from
different stakeholders, the following 5-stage methodology is applied: (1) collecting
local and expert knowledge, (2) blending the different viewpoints into a game-
based model, (3) playing the game with the different stakeholders, (4) formalising
the different scenarios investigated in computer simulations and (5) exploring the
simulated outcomes with the different stakeholders (Dray et al. 2006).

Initial knowledge elicitation (stages 1 and 2) relies on three successive methods.
First, a Global Targeted Appraisal focuses on social group leaders in order to collect
different standpoints and their articulated mental models. These collective models
are partly validated through Individual Activities Surveys focusing on behavioural
patterns of individual islanders. Then, these individual representations are merged
into one collective model using qualitative analysis techniques. This conceptual
model is further simplified in order to create a computer-assisted role-playing game
(AtollGame). The range of contrasted viewpoints confirms the need for an effective
consultation and engagement of the local population in the design of future water
management schemes in order to warrant the long-term sustainability of the system.
Clear evidence of the inherent duality between land and water use rights on the one
hand and between water exploitation and distribution on the other hand provides
essential features to frame the computer-assisted role-playing game.

The assistance of a computer is needed as far as interactions between groundwa-
ter dynamics and surface water balance involve complex spatial and time-dependent
interactions (Perez et al. 2003). The use of agent-based modelling (ABM) enables
us to take full advantage of the structure of the conceptual model. We developed the
AtollGame simulator with the CORMAS© platform (Bousquet et al. 1998).1

1More details about the AtollGame can be found online at http://cormas.cirad.fr/en/applica/
atollGame.htm.

http://cormas.cirad.fr/en/applica/atollGame.htm
http://cormas.cirad.fr/en/applica/atollGame.htm
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A board game version reproduces the main features of the AtollGame simulator
(Dray et al. 2006). Sixteen players—eight on each island—are able to interact
according to a set of predefined rules. Their choices and actions are directly
incorporated into the simulator at the end of each round of the game. During the
game, players can ask for more information from the simulator or discuss the results
provided by the simulator (salinity index, global demand). Landowners, traditional
or new buyers, are the essential actors in the negotiations with the government.
The connection between land tenure issues and water management is essential. It
drives the land-use restrictions and land lease discussions. The population increase,
mainly through immigration, is perceived as a threat in terms of water consumption,
pollution generation and pressure on the land. Financial issues linked with water
management usually deal with land leases, equipment investment and, seldom,
water pricing. Hence, the model features:

– Agents/players becoming a local landowners
– Land and water allocation conflicting rules and various sources of incomes
– An increasing number of new settlers on agents/players’ land

The individual objective of the players is to minimise the number of angry or
sick people in their house. People may become angry because they didn’t have
enough water to drink during the round. People may become sick if they drank
unhealthy (polluted or salty) water during the round. Pollution depends on the
number of people living on the island and contaminating the freshwater lens. Salty
water depends on the recharge rate of the fresh water lens and the location of the
people on the island.

At first, representatives from the different islands displayed different viewpoints
about the water reserves. Hence, the group meetings organised in the villages
prior the workshop allowed for a really open debate. On the institutional side,
the position of the different officers attending the workshop demonstrated a clear
commitment to the project. All the participants showed the same level of motivation
either to express their views on the issue or to genuinely try to understand other
viewpoints. Participants also accepted to follow the rules proposed by the project
team, especially the necessity to look at the problem from a broader perspective.
During the first rounds, the players quickly handled the game and entered into
interpersonal discussions and comparisons. The atmosphere was good, and the game
seemed playful enough to maintain the participants’ interest alive. The second day,
the introduction of a water management agency and the selection of its (virtual)
director created a little tension among the participants. But, after a while, the players
accepted the new situation as a gaming scenario and started to interact with the
newly created institution. At this stage, players started to mix arguments based on
the game with other ones coming directly from the reality. On Island 1, players
entered direct negotiations with the (virtual) director of the water management
agency. On Island 2, discussions opposed players willing or not to pay the fee.
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Fig. 12.4 Flowchart of financial, technical and social solutions agreed on by the participants of
the AtollGame experiment

Finally, the project team introduced the fact that the water management agency
was no longer able to maintain the reticulated system due to a poor recovery of
the service fees. It had for immediate consequence a sharp decrease of the water
quantity offered on Island 2.

Then, players from both tables were asked to list solutions to improve the
situation on their island. When the two lists were completed, the project team and
the participants built a flowchart of financial, technical and social solutions, taking
into account issues from both islands (Fig. 12.4).

A collective analysis of the flowchart concluded that the actual situation was
largely unsustainable either from a financial or social viewpoint. The flowchart
above provides a set of interdependent solutions that should be explored in order
to gradually address the present situation.

12.6 Discussion: Relations Between Participants and Models

The diverse categories of joint implementation of participatory approaches and
social simulation modelling feature a diversity of relations between a set of people,
participants and a model.
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Classical social simulation models do not feature any participant. People are
represented in the model, sometimes from assumed or theoretical behavioural
patterns. This entails exploring potential emergent phenomena from interactions
among these behavioural patterns. Some participatory approaches involve only an
implicit social model. Within this scope, there is a large diversity of relations. This
diversity is based on the role undertaken by stakeholders, their actual involvement
and issues tackled by the model.

In all the processes allying social simulation models and participation, stake-
holders take on various roles: pieces in simulation, interfaces for coupling various
sources of knowledge, beneficiaries of the process, key informants : : : As pointed
out by Ryan, managers are overwhelmed by the complexity to be managed.
Participation is a way to share this burden (Ryan 2000). Stakeholders provide the
missing interactions and add missing pieces of knowledge, such as tacit knowledge
(Johannessen et al. 2001). If involvement of stakeholders is useful for principal
agents such as managers, we propose it as a rule that they should gain some
empowerment in the process.

Stakeholders can be key pieces of the modelling process itself as well. In
the simulation they are an alternative to computer code to provide the engine
(Hanneman 1995). They provide an answer to issues of coupling several viewpoints
(Robinson 1991).

However actual involvement of people in a participatory modelling process might
largely differ from formal involvement planned. Leaving aside cases of manipula-
tion and announce effect, people have also to find their place in the participatory
process. Suitability of participatory approaches in a specific society has to be taken
into account: context (including social) is a key driver for success in stakeholder
involvement (Kujala 2003), and practice of interactive policymaking processes
depends on local culture (Driessen et al. 2001). Representation mechanisms have
already been pointed out as a major factor. It has to be tuned to this local social and
cultural context. At a finer grain, facilitator has a key role to lead people towards the
level of involvement they are invited (Akkermans and Vennix 1997).

12.7 Conclusion

This chapter provides a review of the diversity of association of participatory
approaches and social simulation, for their mutual benefit. This diversity of
approaches allows tackling expectations about increasing model’s quality, model’s
suitability to its intended use and improving participation. Their diversity is built
upon ingredients coming from various disciplines from social sciences to computer
sciences and management. It is expressed according to the implementation of
interactions between the participants and the simulation model, the control of the
process and the format of information. This leads to expand the classical ladder of
participation towards categorization according to the stage in the modelling process
when participation takes place and the structure of the interaction to cope with the
heterogeneity of stakeholders.
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This diversity requires a cautious description of each implementation in situation,
so that any evaluation is specific to the implementation of a given association in its
context. Generalisation can then be done only on the relation of this practice of
participatory simulation and its suitability to its context and purpose. Efficiency
to induce changes in practice or knowledge depends on the respect of a triple
contingency of collective decision processes: time, people and means (Miettinen and
Virkkunen 2005). This means to respect and take into account the own dynamics
within the social system at stake, to allow the participation of people with their
whole essence (including tacit knowledge, networks, relations to the world) and to
be adaptive to means and competences present within the system (Barreteau 2007).
Another dimension of evaluation should be democracy, since it is often put to the
front. This raises the issue of the existence of a control of the process. Does it rely
only on modellers or is it more shared? Finally there is a necessity of being more
explicit on the kind of PA which is used because of the potential deconsideration of
the whole family if expectations are deceived.

Further Reading

Participatory modelling is increasingly present in special sessions of conferences
or special features of scientific journals. A first source of further readings consists
in case studies. Among others, Environmental Modelling & Software had a special
issue on modelling with stakeholders (Bousquet and Voinov 2010), where readers
will find a whole set of well-described case studies using various methods. The
biennial international environmental modelling and software conferences have also
specific tracks for participatory modelling; proceedings are available online (see
http://www.iemss.org/society/ under publications). For specific tools, refer to the
papers of a symposium on simulation and gaming in natural resource management,
published as a special issue of Simulation & Gaming (volume 38, issues 2 & 3). The
introductory paper giving an overview is Barreteau et al. (2007).

Reflexivity is crucial for practitioners of participatory processes, as part of the
need for more cautious evaluation of participatory processes as pointed out by Rowe
and Frewer (2004). Another direction for reading consists in methods for evaluation
and assessment of stakeholder involvement in modelling processes. Etienne edited
a whole book aiming at assessing consequences of a specific approach, so-called
companion modelling (Étienne 2011).

Readers who are more interested in stakeholder involvement in modelling at a
more technical level should go for the review paper of Ramanath and Gilbert (2004)
which provides a nice overview of this point of view.

http://www.iemss.org/society/
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Chapter 13
Combining Mathematical and Simulation
Approaches to Understand the Dynamics
of Computer Models

Luis R. Izquierdo, Segismundo S. Izquierdo, José M. Galán, and José I. Santos

Abstract This chapter shows how computer simulation and mathematical analysis
can be used together to understand the dynamics of computer models. For this
purpose, we show that it is useful to see the computer model as a particular
implementation of a formal model in a certain programming language. This formal
model is the abstract entity which is defined by the input–output relation that the
computer model executes and can be seen as a function that transforms probability
distributions over the set of possible inputs into probability distributions over the set
of possible outputs.

It is shown here that both computer simulation and mathematical analysis
are extremely useful tools to analyse this formal model, and they are certainly
complementary in the sense that they can provide fundamentally different insights
on the same model. Even more importantly, this chapter shows that there are plenty
of synergies to be exploited by using the two techniques together.

The mathematical analysis approach to analyse formal models consists in
examining the rules that define the model directly. Its aim is to deduce the logical
implications of these rules for any particular instance to which they can be applied.
Our analysis of mathematical techniques to study formal models is focused on the
theory of Markov Chains, which is particularly useful to characterise the dynamics
of computer models.

In contrast with mathematical analysis, the computer simulation approach does
not look at the rules that define the formal model directly but instead tries to
infer general properties of these rules by examining the outputs they produce when
applied to particular instances of the input space. Thus, conclusions obtained with
this approach may not be general. On a more positive note, computer simulation
enables us to explore formal models beyond mathematical tractability, and we can
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achieve any arbitrary level of accuracy in our computational approximations by
running the model sufficiently many times.

Bearing in mind the relative strengths and limitations of both approaches, this
chapter explains three different ways in which mathematical analysis and computer
simulation can be usefully combined to produce a better understanding of the
dynamics of computer models. In doing so, it becomes clear that mathematical
analysis and computer simulation should not be regarded as alternative—or even
opposed—approaches to the formal study of social systems but as complementary.
Not only can they provide fundamentally different insights on the same model, but
they can also produce hints for solutions for each other. In short, there are plenty of
synergies to be exploited by using the two techniques together, so the full potential
of each technique cannot be reached unless they are used in conjunction.

Why Read This Chapter?
This chapter is about how to better understand the dynamics of computer models
using both simulation and mathematical analysis. The starting point is a computer
model which is already implemented and ready to be run; the objective is to gain
a thorough understanding of its dynamics. Combining computer simulation with
mathematical analysis can help to provide a picture of the model dynamics that
could not be drawn by only using one of the two techniques.

13.1 Introduction

This chapter is about how to better understand the dynamics of computer models
using both simulation and mathematical analysis. Our starting point is a computer
model which is already implemented and ready to be run; our objective is to gain
a thorough understanding of its dynamics. Thus, this chapter is not about how to
design, implement, verify or validate a model; this chapter is about how to better
understand its behaviour.

Naturally, we start by clearly defining our object of study: a computer model.
The term ‘computer model’ can be understood in many different ways—i.e. seen
from many different perspectives—and not all of them are equally useful for every
possible purpose. Thus, we start by interpreting the term ‘computer model’ in a
way that will prove useful for our objective: to characterise and understand its
behaviour. Once our object of study has been clearly defined, we then describe
two techniques that are particularly useful to understand the dynamics of computer
models: mathematical analysis and computer simulation.

In particular, this chapter will show that mathematical analysis and computer
simulation should not be regarded as alternative—or even opposed—approaches to
the formal study of social systems but as complementary (Gotts et al. 2003, b). They
are both extremely useful tools to analyse formal models, and they are certainly
complementary in the sense that they can provide fundamentally different insights
on the same model. Even more importantly, this chapter will show that there are
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plenty of synergies to be exploited by using the two techniques together, i.e. the full
potential of each technique will not be reached until they are used in conjunction.
The remaining of this introduction outlines the structure of the chapter.

Sections 13.2, 13.3 and 13.4 are devoted to explaining in detail what we
understand by ‘computer model’, and they therefore provide the basic framework
for the rest of the chapter. In particular, Sect. 13.2 shows that a computer model
can be seen as an implementation—i.e. an explicit representation—of a certain
deterministic input–output function in a particular programming language. This
interpretation is very useful since, in particular, it will allow us to abstract from the
details of the modelling platform where the computer model has been programmed
and focus on analysing the formal model that the computer model implements.
This is clarified in Sect. 13.3, which explains that any computer model can be
re-implemented in many different formalisms (in particular, in any sophisticated
enough programming language), leading to alternative representations of the same
input–output relation.

Most computer models in the social simulation literature make use of pseudoran-
dom number generators. Section 13.4 explains that—for these cases and given our
purposes—it is useful to abstract from the details of how pseudorandom numbers
are generated and look at the computer model as an implementation of a stochastic
process. In a stochastic process, a certain input does not necessarily lead to one
certain output only; instead, there are many different paths that the process may
take with potentially different probabilities. Thus, in a stochastic process, a certain
input will generally lead to a particular probability distribution over the range of
possible outputs, rather than to a single output only. Stochastic processes are used
to formally describe how a system subjected to random events evolves through time.

Having explained our interpretation of the term ‘computer model’, Sect. 13.5
introduces and compares the two techniques to analyse formal models that are
assessed in this chapter: computer simulation and mathematical analysis. The
following two sections sketch possible ways in which each of these two techniques
can be used to obtain useful insights about the dynamics of a model. Section 13.8 is
then focused on the joint use of computer simulation and mathematical analysis. It
is shown here that the two techniques can be used together to provide a picture of the
dynamics of the model that could not be drawn by using one of the two techniques
only. Finally, our conclusions are summarised in Sect. 13.9.

13.2 Computer Models as Input–Output Functions

At the most elementary level, a computer model can be seen as an implementation—
i.e. an explicit representation—of a certain deterministic input–output function in a
particular programming language. The word ‘function’ is useful because it correctly
conveys the point that any particular input given to the computer model will lead
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to one and only one output.1 (Obviously, different inputs may lead to the same
output.) Admittedly, however, the word ‘function’ may also mislead the reader into
thinking that a computer model is necessarily simple. The computer model may be
as complex and sophisticated as the programmer wants it to be, but ultimately, it
is just an entity that associates a specific output to any given input, i.e. a function.
In any case, to avoid confusion, we will use the term ‘formal model’ to denote the
function that a certain computer model implements.2 To be sure, the ‘formal model’
that a particular computer model implements is the abstract entity which is defined
by the input–output relation that the computer model executes.3

Thus, running a computer model is just finding out the logical implications of
applying a set of unambiguously defined formal rules (which are coded in the
program and define the input–output function or formal model) to a set of inputs
(Balzer et al. 2001). As an example, one could write the computer program ‘y D 4x’
and apply it to the input ‘x D 2’ to obtain the output ‘y D 8’. The output (y D 8),
which is fully and unequivocally determined by the input (x D 2) and the set of rules
coded in the program (y D 4x), can be seen as a theorem obtained by pure deduction
(fx D 2; y D 4xg ! y D 8). Naturally, there is no reason why the inputs or the outputs
should be numbers4; they could equally well be, e.g. strings of characters. In the
general case, a computer run is a logical theorem that reads: the output obtained from
running the computer simulation follows (with logical necessity) from applying to
the input the algorithmic rules that define the model. Thus, regardless of its inherent
complexity, a computer run constitutes a perfectly valid sufficiency theorem (see,
e.g. Axtell 2000).

It is useful to realise that we could always apply the same inference rules
ourselves to obtain—by logical deduction—the same output from the given input.
Whilst useful as a thought, when it comes to actually doing the job, it is much
more convenient, efficient and less prone to errors to let computers derive the output
for us. Computers are inference engines that are able to conduct many algorithmic
processes at a speed that the human brain cannot achieve.

1Note that simulations of stochastic models are actually using pseudorandom number generators,
which are deterministic algorithms that require a seed as an input.
2A formal model is a model expressed in a formal system (Cutland 1980). A formal system consists
of a formal language and a deductive apparatus (a set of axioms and inference rules). Formal
systems are used to derive new expressions by applying the inference rules to the axioms and/or
previously derived expressions in the same system.
3The mere fact that the model has been implemented and can be run in a computer is a proof that
the model is formal (Suber 2002).
4As a matter of fact, strictly speaking, inputs and outputs in a computer model are never numbers.
We may interpret strings of bits as numbers, but we could equally well interpret the same strings
of bits as, e.g. letters. More importantly, a bit itself is already an abstraction, an interpretation we
make of an electrical pulse that can be above or below a critical voltage threshold.
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13.3 Different Ways of Representing the Same Formal Model

A somewhat controversial issue in the social simulation literature refers to the
allegedly unique features of some modelling platforms. It is important to realise
that any formal model implemented in a computer model can be re-implemented in
many different programming languages, leading to exactly the same input–output
relation. Different implementations are just different ways of representing one same
formal model, much in the same way that one can say ‘Spain’ or ‘España’ to express
the same concept in different languages: same thing, different representation, that’s
all.

Thus, when analysing the dynamics of a computer model, it is useful to abstract
from the details of the modelling platform that has been used to implement the
computer model and focus strictly on the formal model it represents, which could be
re-implemented in any sophisticated enough5 modelling platform. To be clear, let us
emphasise that any computer model implemented in Objective-C (e.g. using Swarm)
can be re-implemented in Java (e.g. using RePast or Mason), NetLogo, SDML,
Mathematica© or Matlab©. Similarly, any computer model can be expressed as a
well-defined mathematical function (Epstein 2006; Leombruni and Richiardi 2005;
Richiardi et al. 2006).

Naturally, the implementation of a particular formal model may be more straight-
forward in some programming languages than in others. Programming languages
differ in where they position themselves in the well-known trade-offs between
ease of programming, functionality and performance; thus, different programming
languages lead to more or less natural and more or less efficient implementations
of any given formal model. Nonetheless, the important point is this: whilst we
may have different implementations of the same formal model, and whilst each
of these implementations may have different characteristics (in terms of, e.g. code
readability), ultimately they are all just different representations of the same formal
model, and they will therefore return the same output when given the same input.

In the same way that using one or another formalism to represent a particular
formal model will lead to more or less natural implementations, different formalisms
also make more or less apparent certain properties of the formal model they
implement. For example, we will see in this chapter that representing a computer

5A sufficient condition for a programming language to be ‘sophisticated enough’ is to allow for the
implementation of the following three control structures:

• Sequence (i.e. executing one subprogram and then another subprogram),
• Selection (i.e. executing one of two subprograms according to the value of a Boolean variable,

e.g. IF[boolean DD true]-THEN[subprogram1]-ELSE[subprogram2])
• Iteration (i.e. executing a subprogram until a Boolean variable becomes false, e.g.

WHILE[boolean DD true]-DO[subprogram])

Any programming language that can combine subprograms in these three ways can implement
any computable function; this statement is known as the ‘structured program theorem’ (Böhm and
Jacopini 1966; Harel 1980; Wikipedia 2007).
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model as a Markov chain, i.e. looking at the formal model implemented in a
computer model through Markov’s glasses, can make apparent various features of
the computer model that may not be so evident without such glasses. In particular,
as we will show later, Markov theory can be used to find out whether the initial
conditions of a model determine its asymptotic dynamics or whether they are
actually irrelevant in the long term. Also, the theory can reveal whether the model
will sooner or later be trapped in an absorbing state.

13.4 ‘Stochastic’ Computer Models as Stochastic Processes

Most computer models in the social simulation literature contain stochastic com-
ponents. This section argues that, for these cases and given our purposes, it is
convenient to revise our interpretation of computer models as deterministic input–
output relations, abstract from the (deterministic) details of how pseudorandom
numbers are generated, and reinterpret the term ‘computer model’ as an implemen-
tation of a stochastic process. This interpretation will prove useful in most cases
and, importantly, does not imply any loss of generality: even if the computer model
to be analysed does not contain any stochastic components, our interpretation will
still be valid.

In the general case, the computer model to be analysed will make use of (what
are meant to be) random numbers, i.e. the model will be stochastic. The word
‘stochastic’ requires some clarification. Strictly speaking, there does not exist a
truly stochastic computer model, but one can approximate randomness to a very
satisfactory extent by using pseudorandom number generators. The pseudorandom
number generator is a deterministic algorithm that takes as input a value called the
random seed and generates a sequence of numbers that approximates the properties
of random numbers. The sequence is not truly random in that it is completely
determined by the value used to initialise the algorithm, i.e. the random seed.
Therefore, if given the same random seed, the pseudorandom number generator will
produce exactly the same sequence of (pseudorandom) numbers. (This fact is what
made us define a computer model as an implementation of a certain deterministic
input–output function in Sect. 13.2.)

Fortunately, the sequences of numbers provided by current off-the-shelf pseu-
dorandom number generators approximate randomness remarkably well. This
basically means that, for most intents and purposes in this discipline, it seems safe to
assume that the pseudorandom numbers generated in one simulation run will follow
the intended probability distributions to a satisfactory degree. The only problem we
might encounter appears when running several simulations which we would like
to be statistically independent. As mentioned above, if we used the same random
seed for every run, we would obtain the same sequence of pseudorandom numbers,
i.e. we would obtain exactly the same results. How can we truly randomly select a
random seed? Fortunately, for most applications in this discipline, the state of the
computer system at the time of starting a new run can be considered a truly random
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Fig. 13.1 A computer model can be usefully seen as the implementation of a function that
transforms any given input into a certain probability distribution over the set of possible outputs

variable, and conveniently, if no seed is explicitly provided to the pseudorandom
number generator, most platforms generate a seed from the state of the computer
system (e.g. using the time). When this is done, the sequences of numbers obtained
with readily available pseudorandom number generators approximate statistical
randomness and independence remarkably well.

Given that—for most intents and purposes in this discipline—we can safely
assume that pseudorandom numbers are random and independent enough, we
dispense with the qualifier ‘pseudo’ from now on for convenience. Since every
random variable in the model follows a specific probability distribution, the
computer model will indeed generate a particular probability distribution over the
range of possible outputs. Thus, to summarise, a computer model can be usefully
seen as the implementation of a stochastic process, i.e. a function that transforms
any given input into a certain probability distribution over the set of possible outputs
(Fig. 13.1).

Seeing that we can satisfactorily simulate random variables, note that studying
the behaviour of a model that has been parameterised stochastically does not
introduce any conceptual difficulties. In other words, we can study the behaviour
of a model that has been parameterised with probability distributions rather than
certain values. An example would be a model where agents start at a random initial
location.

To conclude this section, let us emphasise an important corollary of the previous
paragraphs: any statistic that we extract from a parameterised computer model
follows a specific probability distribution (even if the values of the input parameters
have been expressed as probability distributions).6 Thus, a computer model can be
seen as the implementation of a function that transforms probability distributions

6Note that statistics extracted from the model can be of any nature, as long as they are
unambiguously defined. For example, they can refer to various time-steps and only to certain agents
(e.g. ‘average wealth of female agents in odd time-steps from 1 to 99’).
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Fig. 13.2 A computer model can be seen as the implementation of a function that transforms
probability distributions over the set of possible inputs into probability distributions over the set of
possible outputs

over the set of possible inputs into probability distributions over the set of possible
outputs (Fig. 13.2). The rest of the chapter is devoted to characterising this function.

13.5 Tools to Understand the Behaviour of Formal Models

Once it is settled that a computer model can be seen as a particular implementation
of a (potentially stochastic) function in a certain programming language, let us refer
to such a function as the ‘formal model’ that the computer model implements.
As mentioned before, this formal model can be expressed in many different
formalisms—in particular, it can always be expressed as a set of well-defined math-
ematical equations (Leombruni and Richiardi 2005)—and our objective consists
in understanding its behaviour. To do that, we count with two very useful tools:
mathematical analysis7 and computer simulation.

The advantages and limitations of these two tools to formally study social
systems have been discussed at length in the literature (see, e.g. Axtell 2000; Axtell
and Epstein 1994; Edmonds 2005; Gilbert 1999; Gilbert and Troitzsch 1999; Gotts
et al. 2003; Holland and Miller 1991; Ostrom 1988). Here we only highlight the
most prominent differences between these two techniques (see Fig. 13.3).

In broad terms, when using mathematical analysis, one examines the rules that
define the formal model directly and tries to draw general conclusions about these
rules. These conclusions are obtained by using logical deduction; hence they follow
with logical necessity from the premises of the formal model (and the axioms of

7We use the term ‘mathematical analysis’ in its broadest sense, i.e. we do not refer to any particular
branch of mathematics, but to the general use of (any type of) mathematical technique to analyse a
system.



13 Combining Mathematical and Simulation Approaches to Understand. . . 301

Fig. 13.3 In general terms, mathematical analysis tends to examine the rules that define the formal
model directly. In contrast, computer simulation tries to infer general properties of such rules by
looking at the outputs they produce when applied to particular instances of the input space

the mathematics employed). The aim when using mathematical analysis is usually
to ‘solve’ the formal system (or, most often, certain aspects of it) by producing
general closed-form solutions that can be applied to any instance of the whole
input set (or, at least, to large portions of the input set). Since the inferences
obtained with mathematical analysis pertain to the rules themselves, such inferences
can be safely particularised to any specific parameterisation of the model, even
if such a parameterisation was never explicitly contemplated when analysing the
model mathematically. This greatly facilitates conducting sensitivity analyses and
assessing the robustness of the model.

Computer simulation is a rather different approach to the characterisation of the
formal model (Epstein 2006; Axelrod 1997a). When using computer simulation, one
often treats the formal model as a black box, i.e. a somewhat obscure abstract entity
that returns certain outputs when provided with inputs. Thus, the path to understand
the behaviour of the model consists in obtaining many input–output pairs and—
using generalisation by induction—inferring general patterns about how the rules
transform the inputs into the outputs (i.e. how the formal model works).

Importantly, the execution of a simulation run, i.e. the logical process that trans-
forms any (potentially stochastic) given input into its corresponding (potentially
stochastic) output, is pure deduction (i.e. strict application of the formal rules that
define the model). Thus, running the model in a computer provides a formal proof
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that a particular input (together with the set of rules that define the model) is
sufficient to generate the output that is observed during the simulation. This first part
of the computer simulation approach is therefore, in a way, very ‘mathematical’:
outputs obtained follow with logical necessity from applying to the inputs the
algorithmic rules that define the model.

In contrast, the second part of the computer simulation approach, i.e. inferring
general patterns from particular instances of input–output pairs, can only lead
to probable—rather than necessarily true—conclusions.8 The following section
explains how to rigorously assess the confidence we can place on the conclusions
obtained using computer simulation, but the simple truth is irrefutable: inferences
obtained using generalisation by induction can potentially fail when applied to
instances that were not used to infer the general pattern. This is the domain of
statistical extrapolation.

So why bother with computer simulation at all? The answer is clear: computer
simulation enables us to study formal systems in ways that go beyond mathematical
tractability. This role should not be underestimated: most models in the social
simulation literature are mathematically intractable, and in such cases computer
simulation is our only chance to move things forward. As a matter of fact, the
formal models that many computer programs implement are often so complicated
and cumbersome that the computer code itself is not that far from being one of the
best descriptions of the formal model that can be provided.

Computer simulation can be very useful even when dealing with formal models
that are mathematically tractable. Valuable uses of computer simulation in these
cases include conducting insightful initial explorations of the model and presenting
dynamic illustrations of its results.

And there is yet another important use of computer simulation. Note that
understanding a formal model in depth requires identifying the parts of the model
(i.e. the subset of rules) that are responsible for generating particular (sub)sets of
results or properties of results. Investigating this in detail often involves changing
certain subsets of rules in the model, so one can pinpoint which subsets of
rules are necessary or sufficient to produce certain results. Importantly, changing
subsets of rules can make the original model mathematically intractable, and
in such (common) cases, computer simulation is, again, our only hope. In this
context, computer simulation can be very useful to produce counterexamples. This
approach is very common in the literature of, e.g. evolutionary game theory, where
several authors (see, e.g. Hauert and Doebeli 2004; Imhof et al. 2005; Izquierdo
and Izquierdo 2006; Lieberman et al. 2009; Nowak and May 1992; Nowak and
Sigmund 1992; Nowak and Sigmund 1993; Santos et al. 2006; Traulsen et al. 2006)
resort to computer simulations to assess the implications of assumptions made in
mathematically tractable models (e.g. the assumptions of ‘infinite populations’ and
‘random encounters’).

8Unless, of course, all possible particular instances are explored.
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It is important to note that the fundamental distinction between mathematical
analysis and computer simulation as presented here is not about whether one
uses pen and paper or computers to analyse formal models. We can follow either
approach with or without computers, and it is increasingly popular to do mathemat-
ical analysis with computers. Recent advancements in symbolic computation have
opened up a new world of possibilities to conduct mathematical analyses (using, e.g.
Mathematica©). In other words, nowadays it is perfectly possible to use computers
to directly examine the rules that define a formal model (see Fig. 13.3).

Finally, as so often in life, things are not black or white but involve some shade
of grey. Similarly, most models are not tractable or intractable in mathematical
terms; most often they are partially tractable. It is in these cases where an adequate
combination of mathematical analysis and computer simulation is particularly
useful. We illustrate this fact in Sect. 13.8, but first let us look at each technique
separately. The following two sections provide some guidelines on how computer
simulation (Sect. 13.6) and mathematical analysis (Sect. 13.7) can be usefully
employed to analyse formal models.

13.6 Computer Simulation: Approximating the Exact
Probability Distribution by Running the Model

The previous sections have argued that any statistic obtained from a (stochastically
or deterministically) parameterised model follows a specific probability distribution.
The statistic could be anything as long as it is unambiguously defined; in particular,
it could refer to one or several time-steps and to one or various subcomponents
of the model. Ideally, one would like to calculate the exact probability distribution
for the statistic using mathematical analysis, but this will not always be possible.
In contrast, using computer simulation we will always be able to approximate this
probability distribution to any arbitrary level of accuracy; this section provides basic
guidelines on how to do that.

The output probability distribution—which is fully and unequivocally deter-
mined by the input distribution—can be approximated to any degree of accuracy
by running enough simulation runs. Note that any specific simulation run will be
conducted with a particular certain value for every parameter (e.g. a particular initial
location for every agent) and will produce one and only one particular certain output
(see Fig. 13.3). Thus, in order to infer the probability distribution over the set of
outputs that a particular probability distribution over the set of inputs leads to, there
will be a need to run the model many times (with different random seeds); this is
the so-called Monte Carlo method.

The method is straightforward: obtain as many random samples as possible (i.e.
run as many independent simulations as possible), since this will get us closer and
closer to the exact distribution (by the law of large numbers). Having conducted a
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Fig. 13.4 Snapshot of
CoolWorld. Patches are
coloured according to their
temperature: the higher the
temperature, the darker the
shade of red. Houses are
coloured in orange and form
a circle around the central
patch. Walkers are coloured
in green, and represented as a
person if standing on a patch
without a house, and as a
smiling face if standing on a
patch with a house. In the
latter case, the white label
indicates the number of
walkers in the same house

large number of simulation runs, the question that naturally comes to mind is: how
close to the exact distribution is the one obtained by simulation?

To illustrate how to assess the quality of the approximation obtained by
simulation, we use CoolWorld, a purpose-built agent-based model (Gilbert 2007)
implemented in NetLogo 4.0 (Wilensky 1999). A full description of the model,
and the source code can be found at the dedicated model webpage https://
luis-r-izquierdo.github.io/coolworld/. For our purposes, it suffices to say that in
CoolWorld there is a population of agents called walkers, who wander around
a two-dimensional grid made of square patches; some of the patches are empty,
whilst others contain a house (see Fig. 13.4). Patches are at a certain predefined
temperature, and walkers tend to walk towards warmer patches, staying for a while
at the houses they encounter in their journey.

Let us assume that we are interested in studying the number of CoolWorld
walkers staying in a house in time-step 50. Initial conditions (which involve 100
walkers placed at a random location) are unambiguously defined at the model
webpage and can be set in the implementation of CoolWorld provided by clicking
on the button ‘Special conditions’. Figure 13.4 shows a snapshot of CoolWorld after
having clicked on that button.

As argued before, given that the (stochastic) initial conditions are unambiguously
defined, the number of CoolWorld walkers in a house after 50 time-steps will follow
a specific probability distribution that we are aiming to approximate. For that, let us
assume that we run 200 runs and plot the relative frequency of the number of walkers
in a patch with a house after 50 time-steps (see Fig. 13.5).

https://luis-r-izquierdo.github.io/coolworld/
https://luis-r-izquierdo.github.io/coolworld/
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Fig. 13.5 Relative frequency distribution of the number of walkers in a house after 50 time-steps,
obtained by running CoolWorld 200 times, with initial conditions set by clicking on ‘Special
conditions’

Figure 13.5 does not provide all the information that can be extracted from the
data gathered. In particular, we can plot error bars showing the standard error for
each calculated frequency without hardly any effort.9 Standard errors give us infor-
mation about the error we may be incurring when estimating the exact probabilities
with the empirical frequencies. Another simple task that can be conducted consists
in partitioning the set of runs into two batteries of approximately equal size and
comparing the two distributions. If the two distributions are not similar, then there
is no point in proceeding: we are not close to the exact distribution, so there is a
need to run more simulations.

Figures 13.6 and 13.7 show the data displayed in Fig. 13.5 partitioned in two
batteries of 100 simulation runs, including the standard errors. Figure 13.6 and 13.7
also show the exact probability distribution we are trying to approximate, which has
been calculated using mathematical methods that are explained later in this chapter.

Figures 13.6 and 13.7 indicate that 100 simulation runs may not be enough to
obtain a satisfactory approximation to the exact probability distribution. On the
other hand, Figs. 13.8 and 13.9 show that running the model 50,000 times does

9The frequency of the event ‘there are i walkers in a patch with a house’ calculated over n
simulation runs can be seen as the mean of a sample of n i.i.d. Bernoulli random variables
where success denotes that the event occurred and failure denotes that it did not. Thus, the
frequency f is the maximum likelihood (unbiased) estimator of the exact probability with which
the event occurs. The standard error of the calculated frequency f is the standard deviation of the
sample divided by the square root of the sample size. In this particular case, the formula reads:

Std . error(f, n) D (f (1 – f )/(n – 1))1/2

where f is the frequency of the event, n is the number of samples and the standard
deviation of the sample has been calculated dividing by n � 1.
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Fig. 13.6 In blue: relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 100 times (Battery A), with initial conditions set by
clicking on ‘Special conditions’. In grey: exact probability distribution (calculated using Markov
chain analysis)
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Fig. 13.7 In blue: relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 100 times (Battery B), with initial conditions set by
clicking on ‘Special conditions’. In grey: exact probability distribution (calculated using Markov
chain analysis)
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Fig. 13.8 In blue: relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 50,000 times (Battery A), with initial conditions set by
clicking on ‘Special conditions’. In grey: exact probability distribution (calculated using Markov
chain analysis)
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Fig. 13.9 In blue: relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 50,000 times (Battery B), with initial conditions set by
clicking on ‘Special conditions’. In grey: exact probability distribution (calculated using Markov
chain analysis)
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seem to get us close to the exact probability distribution. The standard error, which
is inversely proportional to the square root of the sample size (i.e. the number of
runs), is naturally much lower in these latter cases.

When, like in this example, the space of all possible outcomes in the distribution
under analysis is finite (the number of walkers in a house must be an integer between
0 and 100), one can go further and calculate confidence intervals for the obtained
frequencies. This is easily conducted when one realises that the exact probability
distribution is a multinomial. Genz and Kwong (2000) show how to calculate these
confidence intervals.

To conclude this section, let us emphasise that all that has been written here
applies to any statistic obtained from any computer model. In particular, the statistic
may refer to predefined regimes (e.g. ‘number of time-steps between 0 and 100
where there are more than 20 walkers in a house’) or to various time-steps (e.g.
‘total number of walkers in a house in odd time-steps in between time-steps 50 and
200’). These statistics, like any other one, follow a specific probability distribution
that can be approximated to any degree of accuracy by running the computer model.

13.7 Mathematical Analysis: Time-Homogenous Markov
Chains

The whole range of mathematical techniques that can be used to analyse formal
systems is too broad to be reviewed here. Instead, we focus on one specific technique
that seems to us particularly useful to analyse social simulation models: Markov
chain analysis. Besides, there are multiple synergies to be exploited by using
Markov chain analysis and computer simulation together, as we will see in the next
section.

Our first objective is to learn how to represent a particular computer model as
a time-homogeneous Markov chain. This alternative representation of the model
will allow us to use several simple mathematical results that will prove useful
to understand the dynamics of the model. We therefore start by describing time-
homogeneous Markov chains.

13.7.1 What Is a Time-Homogeneous Markov Chain?

Consider a system that in time-step n D f1, 2, 3, : : : g may be in one of a finite
number of possible states S D fs1, s2, : : : , sMg. The set S is called the state space;
in this chapter, we only consider finite state spaces.10 Let the sequence of random
variables Xn 2 S represent the state of the system in time-step n. As an example,
X3 D s9 means that at time n D 3, the system is in state s9. The system starts at a

10The term ‘Markov chain’ allows for countably infinite state spaces too (Karr 1990).
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Fig. 13.10 Schematic transition diagram of a Markov chain. Circles denote states, and directed
arrows indicate possible transitions between states. In this figure, circles and arrows coloured in
red represent one possible path where the initial state X0 is s8 and the final state is s2

certain initial state X0 and moves from one state to another. The system is stochastic
in that, given the present state, the system may move to one or another state with
a certain probability (see Fig. 13.10). The probability that the system moves from
state i to state j in one time-step, P(XnC1 D jjXn D i), is denoted by pi,j. As an
example, in the Markov chain represented in Fig. 13.10, p4,6 equals 0 since the
system cannot go from state 4 to state 6 in one single time-step. The system may
also stay in the same state i, and this occurs with probability pi,i. The probabilities
pi,j are called transition probabilities, and they are often arranged in a matrix,
namely, the transition matrix P. Implicitly, our definition of transition probabilities
assumes two important properties about the system:

(a) The system has the Markov property. This means that the present state
contains all the information about the future evolution of the system that can
be obtained from its past, i.e. given the present state of the system, knowing the
past history about how the system reached the present state does not provide
any additional information about the future evolution of the system. Formally,

P .XnC1 D xnC1jXn D xn; Xn–1 D xn–1; : : : ; X0 D x0/ D P .XnC1 D xnC1jXn D xn/

(b) In this chapter we focus on time-homogeneous Markov chains, i.e. Markov
chains with time-homogeneous transition probabilities. This basically means
that transition probabilities pi,j are independent of time, i.e. the one-step
transition probability pi,j depends on i and j but is the same at all times n.
Formally,
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P .XnC1 D jjXn D i/ D P .Xn D jjXn–1 D i/ D pi;j

The crucial step in the process of representing a computer model as a time-
homogeneous Markov chain (THMC) consists in identifying an appropriate set of
state variables. A particular combination of specific values for these state variables
will define one particular state of the system. Thus, the challenge consists in
choosing the set of state variables in such a way that the computer model can be
represented as a THMC. In other words, the set of state variables must be such
that one can see the computer model as a transition matrix that unambiguously
determines the probability of going from any state to any other state.

13.7.1.1 Example: A Simple Random Walk

Let us consider a model of a simple one-dimensional random walk and try to see it as
a THMC. In this model—which can be run and downloaded at the dedicated model
webpage https://luis-r-izquierdo.github.io/random-walk/—there are 17 patches in
line, labelled with the integers between 1 and 17. A random walker is initially placed
on one of the patches. From then onwards, the random walker will move randomly
to one of the spatially contiguous patches in every time-step (staying still is not an
option). Space does not wrap around, i.e. patch 1’s only neighbour is patch 2 (Fig.

Fig. 13.11 Snapshot of the one-dimensional random walk applet. Patches are arranged in a
horizontal line on the top right corner of the figure; they are labelled with red integers and coloured
in shades of blue according to the number of times that the random walker has visited them: the
higher the number of visits, the darker the shade of blue. The plot beneath the patches shows the
time series of the random walker’s position

https://luis-r-izquierdo.github.io/random-walk/
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Fig. 13.12 Probability function of the position of the one-dimensional random walker in time-step
100, starting at an initial random location

13.11). This model can be easily represented as a THMC by choosing the agent’s
position (e.g. the number of the patch she is standing on) as the only state variable.
To be sure, note that defining the state of the system in this way, it is true that there
is a fixed probability of going from any state to any other state, independent of time.
The transition matrix P D [pi,j] corresponding to the model is:

P D �
Pi;j

� D

2

666666666666664

0 1 0 � � � 0

0:5 0 0:5 0
:::

0 0:5 0 0:5 0

0 0:5 0 0:5 0
: : :

: : :
: : :

: : :
: : :

: : :

0 0:5 0 0:5 0
::: 0 0:5 0 0:5

0 � � � 0 1 0

3

777777777777775

(13.1)

where, as explained above, pi,j is the probability P(XnC1 D jjXn D i) that the system
will be in state j in the following time-step, knowing that it is currently in state i.
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13.7.2 Transient Distributions of Finite THMCs

The analysis of the dynamics of THMCs is usually divided into two parts: transient
dynamics (finite time) and asymptotic dynamics (infinite time). The transient
behaviour is characterised by the distribution of the state of the system Xn for a
fixed time-step n 	 0. The asymptotic behaviour (see Sects. 13.7.3 and 13.7.4) is
characterised by the limit of the distribution of Xn as n goes to infinity, when this
limit exists.

This section explains how to calculate the transient distribution of a certain
THMC, i.e. the distribution of Xn for a fixed n 	 0. In simple words, we are after
a vector a(n) containing the probability of finding the process in each possible state
in time-step n. Formally, a(n) D [a1

(n), : : : , aM
(n)], where ai

(n) D P(Xn D i) denotes
the distribution of Xn for a THMC with M possible states. In particular, a(0) denotes
the initial distribution over the state space, i.e. ai

(0) D P(X0 D i). Note that there is
no problem in having uncertain initial conditions, i.e. probability functions over the
space of possible inputs to the model.

It can be shown that one can easily calculate the transient distribution in time-
step n, simply by multiplying the initial conditions by the n-th power of the transition
matrix P.

Proposition 1 a(n) D a(0) � Pn Thus, the elements p(n)
i,j of Pn represent the proba-

bility that the system is in state j after n time-steps having started in state i, i.e.
p(n)

i,j D P(Xn D jjX0 D i). A straightforward corollary of Proposition 1 is that
a(nCm) D a(n) � Pm.

As an example, let us consider the one-dimensional random walk again. Imagine
that the random walker starts at an initial random location, i.e. a(0) D [1/17, : : : ,
1/17]. The exact distribution of the walker’s position in time-step 100 would then
be a(100) D a(0) : : : P100. This distribution is represented in Fig. 13.12, together with
an empirical distribution obtained by running the model 50,000 times.

Having obtained the probability function over the states of the system for any
fixed n, namely, the probability mass function of Xn, it is then straightforward to
calculate the distribution of any statistic that can be extracted from the model. As
argued in the previous sections, the state of the system fully characterises it, so any
statistic that we obtain about the computer model in time-step n must be, ultimately,
a function of fX0, X1, : : : , Xng.

Admittedly, the transition matrix of most computer models cannot be easily
derived, or it is unfeasible to operate with it. Nonetheless, this apparent drawback
is not as important as one might expect. As we shall see below, it is often possible
to infer many properties of a THMC even without knowing the exact values of its
transition matrix, and these properties can yield useful insights about the dynamics
of the associated process. Knowing the exact values of the transition matrix allows
us to calculate the exact transient distributions using Proposition 1; this is desirable
but not critical, since we can always approximate these distributions by conducting
many simulation runs, as explained in Sect. 13.6.
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13.7.3 Important Concepts

This section presents some basic concepts that will prove useful to analyse the
dynamics of computer models. The notation used here follows the excellent book
on stochastic processes written by Kulkarni (1995).

Definition 1 Accessibility A state j is said to be accessible from state i if starting at
state i there is a chance that the system may visit state j at some point in the future.
By convention, every state is accessible from itself. Formally, a state j is said to be
accessible from state i if for some n 	 0, p(n)

i,j > 0.
Note that j is accessible from i ¤ j if and only if there is a directed path from i

to j in the transition diagram. In that case, we write i ! j. If i ! j we also say that
i leads to j. As an example, in the THMC represented in Fig. 13.10, s2 is accessible
from s12 but not from s5. Note that the definition of accessibility does not depend on
the actual magnitude of p(n)

i,j, only on whether it is exactly zero or strictly positive.

Definition 2 Communication A state i is said to communicate with state j if i ! j
and j ! i.

If i communicates with j, we also say that i and j communicate and write i $ j.
As an example, note that in the simple random walk presented in Sect. 13.7.1,
every state communicates with every other state. It is worth noting that the relation
‘communication’ is transitive, i.e.

i $ j; j $ k ) i $ k:

Definition 3 Communicating Class A set of states C � S is said to be a
communicating class if:

• Any two states in the communicating class communicate with each other.
Formally,

i 2 C; j 2 C ) i $ j

• The set C is maximal, i.e. no strict superset of a communicating class can be a
communicating class. Formally,

i 2 C; i $ j ) j 2 C

As an example, note that in the simple random walk presented in Sect. 13.7.1,
there is one single communicating class that contains all the states. In the THMC
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represented in Fig. 13.10, there are four communicating classes: fs2g, fs5g, fs10g,
fs1, s3, s4, s6, s7, s8, s9, s11, s12g.

Definition 4 Closed Communicating Class (i.e. Absorbing Class): Absorbing
State A communicating class C is said to be closed if no state within C leads to
any state outside C. Formally, a communicating class C is said to be closed if i 2 C
and j 2 C imply that j is not accessible from i.

Note that once a Markov chain visits a closed communicating class, it cannot
leave it. Hence we will sometimes refer to closed communicating classes as
‘absorbing classes’. This latter term is not standard in the literature, but we find
it useful here for explanatory purposes. Note that if a Markov chain has one single
communicating class, it must be closed.

As an example, note that the communicating classes fs10g and fs1, s3, s4, s6,
s7, s8, s9, s11, s12g in the THMC represented in Fig. 13.10 are not closed, as they
can be abandoned. On the other hand, the communicating classes fs2g and fs5g
are indeed closed, since they cannot be abandoned. When a closed communicating
class consists of one single state, this state is called absorbing. Thus, s2 and s5 are
absorbing states. Formally, state i is absorbing if and only if pi,i D 1 and pi,j D 0 for
i ¤ j.

Proposition 2 Decomposition Theorem (Chung 1960) The state space S of any
Markov chain can be uniquely partitioned as follows:

S D C1 \ C2 \ � � � \ Ck \ T

where C1, C2, : : : , Ck are closed communicating classes, and T is the union of
all other communicating classes.

Note that we do not distinguish between non-closed communicating classes: we
lump them all together into T. Thus, the unique partition of the THMC represented
in Fig. 13.10 is S D fs2g \ fs5g \ fs1, s3, s4, s6, s7, s8, s9, s10, s11, s12g. The simple
random walk model presented in Sect. 13.7.1 has one single (closed) communicating
class C1 containing all the possible states, i.e. S 
 C1.

Definition 5 Irreducibility A Markov chain is said to be irreducible if all its states
belong to a single closed communicating class; otherwise it is called reducible.
Thus, the simple random walk presented in Sect. 13.7.1 is irreducible, but the
THMC represented in Fig. 13.10 is reducible.

Definition 6 Transient and Recurrent States A state i is said to be transient if,
given that we start in state i, there is a non-zero probability that we will never return
back to i. Otherwise, the state is called recurrent. A Markov chain starting from a
recurrent state will revisit it with probability 1 and hence revisit it infinitely often.
On the other hand, a Markov chain starting from a transient state has a strictly
positive probability of never coming back to it. Thus, a Markov chain will visit
any transient state only finitely many times; eventually, transient states will not be
revisited anymore.
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Definition 7 Periodic and Aperiodic States: Periodic and Aperiodic Communi-
cating Classes A state i has period d if any return to state i must occur in multiples
of d time-steps. If d D 1, then the state is said to be aperiodic; otherwise (d > 1), the
state is said to be periodic with period d. Formally, state i’s period d is the greatest
common divisor of the set of integers n > 0 such that p(n)

i,i > 0. For our purposes,
the concept of periodicity is only relevant for recurrent states. As an example, note
that every state in the simple random walk presented in Sect. 13.7.1 is periodic with
period 2.

An interesting and useful fact is that if i $ j, then i and j must have the same
period (see theorem 5.2 in Kulkarni 1995). In particular, note that if pi,i > 0 for any i,
then the communicating class to which i belongs must be aperiodic. Thus, it makes
sense to qualify communicating classes as periodic with period d or aperiodic. A
closed communicating class with period d can return to its starting state only at
times d, 2d, 3d, : : : .

The concepts presented in this section will allow us to analyse the dynamics of
any finite Markov chain. In particular, we will show that, given enough time, any
finite Markov chain will necessarily end up in one of its closed communicating
classes (i.e. absorbing classes).

13.7.4 Limiting Behaviour of Finite THMCs

This section is devoted to characterising the limiting behaviour of a THMC, i.e.
studying the convergence (in distribution) of Xn as n tends to infinity. Specifically,
we aim to study the behaviour of ai

(n) D P(Xn D i) as n tends to infinity. From
Proposition 1 it is clear that analysing the limiting behaviour of Pn would enable us
to characterise ai

(n). There are many introductory books in stochastic processes that
offer clear and simple methods to analyse the limiting behaviour of THMCs when
the transition matrix P is tractable (see, e.g. Chap. 5 in (Kulkarni 1999), Chaps. 2–4
in (Kulkarni 1995), Chap. 3 in (Janssen and Manca 2006) or the book chapter written
by Karr (1990)). Nonetheless, we focus here on the general case, where operating
with the transition matrix P may be computationally unfeasible.

13.7.4.1 General Dynamics

The first step in the analysis of any THMC consists in identifying all the closed
communicating classes, so we can partition the state space S as indicated by the
decomposition theorem (see Proposition 2). The following proposition (Theorems
3.7 and 3.8 in Kulkarni 1995) reveals the significance of this partition:

Proposition 3 General Dynamics of Finite THMCs Consider a finite THMC that
has been partitioned as indicated in Proposition 2. Then:

1. All states in T (i.e. not belonging to a closed communicating class) are transient.
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2. All states in Cv (i.e. in any closed communicating class) are recurrent;
v 2 f1, 2, : : : , kg.

Proposition 3 states that sooner or later the THMC will enter one of the absorbing
classes and stay in it forever. Formally, for all i 2 S and all j 2 T: lim

n!1p.n/
i;j D

0, i.e. the probability of finding the process in a state belonging to a non-closed
communicating class goes to zero as n goes to infinity. Naturally, if the initial state
already belongs to an absorbing class Cv, then the chain will never abandon such a
class. Formally, for all i 2 Cv and all j 62 Cv, p(n)

i,j D 0 for all n 	 0.
As an example of the usefulness of Proposition 3, consider the THMC repre-

sented in Fig. 13.10. This THMC has only two absorbing classes: fs2g and fs5g.
Thus, the partition of the state space is: S D fs2g \ fs5g \ fs1, s3, s4, s6, s7, s8,
s9, s10, s11, s12g. Hence, applying Proposition 3 we can state that the process will
eventually end up in one of the two absorbing states, s2 or s5. The probability of
ending up in one or the other absorbing state depends on the initial conditions a(0)

(and on the actual numbers pi,j in the transition matrix, of course). Slightly more
formally, the limiting distribution of Xn exists, but it is not unique, i.e. it depends on
the initial conditions.

13.7.4.2 Dynamics Within Absorbing Classes

The previous section has explained that any simulation run will necessarily end up in
a certain absorbing class; this section characterises the dynamics of a THMC that is
already ‘trapped’ in an absorbing class. This is precisely the analysis of irreducible
Markov chains, since irreducible Markov chains are, by definition, Markov chains
with one single closed communicating class (see Definition 5). In other words, one
can see any THMC as a set of transient states T plus a finite number of irreducible
Markov sub-chains.

Irreducible THMCs behave significantly different depending on whether they are
periodic or not. The following sections characterise these two cases.

Irreducible and Aperiodic THMCs

Irreducible and aperiodic THMCs are often called ergodic. In these processes the
probability function of Xn approaches a limit as n tends to infinity. This limit is
called the limiting distribution and is denoted here by � . Formally, the following
limit exists and is unique (i.e. independent of the initial conditions ai

(0)):

lim
n!1a.n/

i D �i > 0 i 2 S

Thus, in ergodic THMCs the probability of finding the system in each of its
states in the long run is strictly positive and independent of the initial conditions
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(Theorems 3.7 and 3.15 in Kulkarni 1995). As previously mentioned, calculating
such probabilities may be unfeasible, but we can estimate them sampling many
simulation runs at a sufficiently large time-step.

Importantly, in ergodic THMCs the limiting distribution � coincides with the
occupancy distribution �*, which is the long-run fraction of the time that the
THMC spends in each state.11 Naturally, the occupancy distribution �* is also
independent of the initial conditions. Thus, in ergodic THMCs, running just one
simulation for long enough (which enables us to estimate �*) will serve to estimate
� just as well.

The question that comes to mind then is: How long is long enough? i.e. when
will I know that the empirical distribution obtained by simulation resembles the
limiting distribution �? Unfortunately there is no answer for that. The silver lining
is that knowing that the limiting and the occupancy distribution coincide, that they
must be stable in time and that they are independent of the initial conditions enables
us to conduct a wide range of tests that may tell us when it is certainly not long
enough. For example, we can run a battery of simulations and study the empirical
distribution over the states of the system across samples as time goes by. If the
distribution is not stable, then we have not run the model for long enough. Similarly,
since the occupancy distribution is independent of the initial conditions, one can
run several simulations with widely different initial conditions and compare the
obtained occupancy distributions. If the empirical occupancy distributions are not
similar, then we have not run the model for long enough. Many more checks can be
conducted.

Admittedly, when analysing a computer model, one is often interested not so
much in the distribution over the possible states of the system but rather in the
distribution of a certain statistic. The crucial point is to realise that if the statistic is
a function of the state of the system (and all statistics that can be extracted from the
model are), then the limiting and the occupancy distributions of the statistic exist,
coincide and are independent of the initial conditions.

Irreducible and Periodic THMCs

In contrast with aperiodic THMCs, the probability distribution of Xn in periodic
THMCs does not approach a limit as n tends to infinity. Instead, in an irreducible
THMC with period d, as n tends to infinity, Xn will in general cycle through d
probability functions depending on the initial distribution. As an example, consider
the simple random walk again (which is irreducible and periodic, with period 2),
and assume that the random walker starts at patch number 1 (i.e. X0 D 1). Given

11Formally, the occupancy of state i is defined as:

��

i D lim
n!1

E.Ni.n//
nC1

where Ni(n) denotes the number of times that the THMC visits state i over the time span f0,
1, : : : , ng.
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these settings, it can be shown that:
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In particular, the limits above show that the random walker cannot be at a patch
with an even number in any even time-step, and she cannot be at a patch with an
odd number in any odd time-step. In contrast, if the random walker started at patch
number 2 (i.e. X0 D 2), then the limits above would be interchanged. Fortunately,
every irreducible (periodic or aperiodic) THMC does have a unique occupancy
distribution �*, independent of the initial conditions (see Theorem 5.19 in Kulkarni
1999). In our particular example, this is:
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Thus, the long-run fraction of time that the system spends in each state in any
irreducible THMC is unique (i.e. independent of the initial conditions). This is a
very useful result, since any statistic which is a function of the state of the system
will also have a unique occupancy distribution independent of the initial conditions.
As explained before, this occupancy distribution can be approximated with one
single simulation run, assuming it runs for long enough.

13.8 Synergies Between Mathematical Analysis
and Computer Simulation

In this section, we present various ways in which mathematical analysis and
computer simulation can be combined to produce a better understanding of the
dynamics of a model. Note that a full understanding of the dynamics of a model
involves not only characterising (i.e. describing) them but also finding out why such
dynamics are being observed, i.e. identifying the subsets of rules that are necessary
or sufficient to generate certain aspects of the observed dynamics. To do this, one
often has to make changes in the model, i.e. build supporting models that differ only
slightly from the original one and may yield useful insights about its dynamics.
These supporting models will sometimes be more tractable (e.g. if heterogeneity or
stochasticity is averaged out) and sometimes more complex (e.g. if interactions that
were assumed to be global in the original model may only take place locally in the
supporting model). Thus, for clarity, we distinguish three different cases and deal
with them in turn (see Fig. 13.13):

1. Characterisation of the dynamics of a model.
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Fig. 13.13 To fully understand the dynamics of a model, one often has to study supporting models
that differ only slightly from the original one. Some of these supporting models may be more
tractable, whilst others may be more complex

2. Moves towards greater mathematical tractability. This involves creating and
studying supporting models that are simpler than the original one.

3. Moves towards greater mathematical complexity. This involves creating and
studying supporting models that are less tractable than the original one.

13.8.1 Characterising the Dynamics of the Model

There are many types of mathematical techniques that can be usefully combined
with computer simulation to characterise the dynamics of a model (e.g. stochastic
approximation theory (Benveniste et al. 1990; Kushner and Yin 1997)), but for
limitations of space, we focus here on Markov chain analysis only.

When using Markov chain analysis to characterise the dynamics of a model, it
may happen that the transition matrix can be easily computed, and we can operate
with it or it may not. In the former case—which is quite rare in social simulation
models—one can provide a full characterisation of the dynamics of the model just
by operating with the transition matrix (see Proposition 1 and the beginning of
Sect. 13.7.4 for references). In general, however, deriving and operating with the
transition matrix may be unfeasible, and it is in this common case where there is a
lot to gain in using Markov chain analysis and computer simulation together. The
overall method goes as follows:

• Use Markov chain analysis to assess the relevance of initial conditions and to
identify the different regimes in which the dynamics of the model may end up
trapped.

• Use the knowledge acquired in the previous point to design suitable computa-
tional experiments aimed at estimating the exact probability distributions for the
relevant statistics (which potentially depend on the initial conditions).



320 L.R Izquierdo et al.

The following describes this overall process in greater detail. Naturally, the first
step consists in finding an appropriate definition of the state of the system, as
explained in Sect. 13.7.1. The next step is to identify all the closed communicating
(i.e. absorbing) classes in the model Cv (v 2 f1, 2, : : : , kg). This allows us to partition
the state space of the Markov chain as the union of all the closed communicating
classes C1, C2, : : : , Ck in the model plus another class T containing all the states
that belong to non-closed communicating classes. Izquierdo et al. (2009) illustrate
how to do this in ten well-known models in the social simulation literature.

In most cases, conducting the partition of the state space is not as difficult as
it may seem at first. In particular, the following proposition provides some simple
sufficient conditions that guarantee that the computer model contains one single
aperiodic absorbing class, i.e. the finite THMC that the computer model implements
is irreducible and aperiodic (i.e. ergodic).

Proposition 4 Sufficient Conditions for Irreducibility and Aperiodicity

1. If it is possible to go from any state to any other state in one single time-step
(pi,j > 0 for all i ¤ j) and there are more than two states, then the THMC is
irreducible and aperiodic.

2. If it is possible to go from any state to any other state in a finite number of time-
steps (i $ j for all i ¤ j) and there is at least one state in which the system
may stay for two consecutive time-steps (pi,i > 0 for some i), then the THMC is
irreducible and aperiodic.

3. If there exists a positive integer n such that p(n)
i,j > 0 for all i and j, then the

THMC is irreducible and aperiodic (Janssen and Manca 2006, p. 107).

If one sees the transition diagram of the Markov chain as a (directed) network,
the conditions above can be rewritten as:

1. The network contains more than two nodes and there is a directed link from every
node to every other node.

2. The network is strongly connected and there is at least one loop.
3. There exists a positive integer n such that there is at least one walk of length n

from any node to every node (including itself).

Izquierdo et al. (2009) show that many models in the social simulation liter-
ature satisfy one of these sufficient conditions (e.g. Epstein and Axtell’s (1996)
Sugarscape, Axelrod’s (1986) metanorms models, Takahashi’s (2000) model of
generalised exchange and Miller and Page’s (2004) standing ovation model with
noise). This is important since, as explained in Sect. 13.7.4.2, in ergodic THMCs,
the limiting and the occupancy distributions of any statistic exist, coincide and
are independent of the initial conditions (so running just one simulation for long
enough, which enables us to estimate the occupancy distribution, will serve to
estimate the limiting distribution just as well).

Let us return to the general case. Having partitioned the state space, the analysis
of the dynamics of the model is straightforward: all states in T (i.e. in any finite
communicating class that is not closed) are transient, whereas all states in Cv (i.e. in
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any finite closed communicating class) are recurrent. In other words, sooner or later
any simulation run will enter one of the absorbing classes Cv and stay in it forever.

Here computer simulation can play a crucial role again, since it allows us to
estimate the probability of ending up in each of the absorbing classes for any
(stochastic or deterministic) initial condition we may be interested in. A case in point
would be a model that has only a few absorbing states or where various absorbing
states are put together into only a few groups. Izquierdo et al. (2009) analyse models
that follow that pattern: Axelrod’s (1997b) model of dissemination of culture,
Arthur’s (1989) model of competing technologies and Axelrod and Bennett’s (1993)
model of competing bimodal coalitions. CharityWorld (Polhill et al. 2006; Izquierdo
and Polhill 2006) is an example of a model with a unique absorbing state.

The following step consists in characterising the dynamics of the system within
each of the absorbing classes. Once the system has entered a certain absorbing
class Cv, it will remain in it forever exhibiting a unique conditional12 occupancy
distribution �v* over the set of states that compose Cv. Naturally, the same applies
to any statistic we may want to study, since all statistics that can be extracted from
the model are a function of the state of the system.

The conditional occupancy distribution �v* denotes the (strictly positive) long-
run fraction of the time that the system spends in each state of Cv given that the
system has entered Cv. Importantly, the conditional occupancy distribution �v* is
the same regardless of the specific state through which the system entered Cv. The
role of simulation here is to estimate these conditional occupancy distributions for
the relevant statistics by running the model for long enough.

Finally, recall that some absorbing classes are periodic and some are aperiodic.
Aperiodic absorbing classes have a unique conditional limiting distribution �v

denoting the long-run (strictly positive) probability of finding the system in each
of the states that compose Cv given that the system has entered Cv. This conditional
limiting distribution �v coincides with the conditional occupancy distribution �v*
and, naturally, is also independent of the specific state through which the system
entered Cv. (Again, note that this also applies to the distribution of any statistic, as
they are all functions of the state of the system, necessarily.)

In contrast with aperiodic absorbing classes, periodic absorbing classes do
not generally have a unique limiting distribution; instead, they cycle through d
probability functions depending on the specific state through which the system
entered Cv (where d denotes the period of the periodic absorbing class). This is
knowledge that one must take into account at the time of estimating the relevant
probability distributions using computer simulation.

Thus, it is clear that Markov chain analysis and computer simulation greatly
complement each other. Markov chain analysis provides the overall picture of
the dynamics of the model by categorising its different dynamic regimes and
identifying when and how initial conditions are relevant. Computer simulation uses
this information to design appropriate computational experiments that allow us
to quantify the probability distributions of the statistics we are interested in. As

12Given that the system has entered the absorbing class Cv
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explained above, these probability distributions can always be approximated with
any degree of accuracy by running the computer model several times.

There are several examples of this type of synergetic combination of Markov
chain analysis and computer simulation in the literature. Galán and Izquierdo (2005)
analysed Axelrod’s (1986) agent-based model as a Markov chain, and concluded
that the long-run behaviour of that model was independent of the initial conditions,
in contrast to the initial conclusions of the original analysis. Galán and Izquierdo
(2005) also used computer simulation to estimate various probability distributions.
Ehrentreich (2002, 2006) used Markov chain analysis on the artificial stock market
(Arthur et al. 1997; LeBaron et al. 1999) to demonstrate that the mutation operator
implemented in the model is not neutral to the learning rate but introduces an
upward bias.13 A more positive example is provided by Izquierdo et al. (2007, 2008),
who used Markov chain analysis and computer simulation to confirm and advance
various insights on reinforcement learning put forward by Macy and Flache (2002)
and Flache and Macy (2002).

13.8.2 Moves Towards Greater Mathematical Tractability:
Simplifications

There are at least two types of simplifications that can help us to better understand
the dynamics of a model. One consists in studying specific parameterisations of the
original model that are thought to lead to particularly simple dynamics or to more
tractable situations (Gilbert and Terna 2000; Gilbert 2007). Examples of this type
of activity would be to run simulations without agents or with very few agents,
explore the behaviour of the model using extreme parameter values, model very
simple environments, etc. This activity is a common practice in the field (see, e.g.
Gotts et al. 2003a, d).

A second type of simplification consists in creating an abstraction of the original
model (i.e. a model of the model) which is mathematically tractable. An example
of one possible abstraction would be to study the expected motion of the dynamic
system (see the studies conducted by Galán and Izquierdo 2005; Edwards et al.
2003; Castellano et al. 2000; Huet et al. 2007; Mabrouk et al. 2007; Vilà 2008;
Izquierdo et al. 2007, 2008 for illustrations of mean-field approximations). Since
these mathematical abstractions do not correspond in a one-to-one way with the
specifications of the formal model, any results obtained with them will not be
conclusive in general, but they may give us insights suggesting areas of stability
and basins of attraction, clarifying assumptions, assessing sensitivity to parameters
or simply giving the option to illustrate graphically the expected dynamics of the

13This finding does not refute some of the most important conclusions obtained by the authors of
the original model.
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original model. This approach can also be used as a verification technique to detect
potential errors and artefacts (Galán et al. 2009).

13.8.3 Moves Towards Greater Mathematical Complexity:
Extensions

As argued before, understanding the dynamics of a model implies identifying the
set of assumptions that are responsible for particular aspects of the obtained results.
Naturally, to assess the relevance of any assumption in a model, it is useful to replace
it with other alternatives, and this often leads to greater mathematical complexity.14

Ideally, the evaluation of the significance of an assumption is conducted by
generalisation, i.e. by building a more general model that allows for a wide range
of alternative competing assumptions, and contains the original assumption as a
particular case. An example would be the introduction of arbitrary social networks
of interaction in a model where every agent necessarily interacts with every other
agent. In this case, the general model with arbitrary networks of interaction would
correspond with the original model if the network is assumed to be complete, but any
other network could also be studied within the same common framework. Another
example is the introduction of noise in deterministic models.

Building models by generalisation is useful because it allows for a transparent,
structured and systematic way of exploring the impact of various alternative
assumptions that perform the same role in the model, but it often implies a loss in
mathematical tractability (see, e.g. Izquierdo and Izquierdo 2006). Thus, it is often
the case that a rigorous study of the impact of alternative assumptions in a model
requires being prepared to slide up and down the tractability continuum depicted in
Fig. 13.13 (Gotts et al. 2003). In fact, all the cases that are mentioned in the rest of
this section involved greater complexity than the original models they considered,
and computer simulation had to be employed to understand their dynamics.

In the literature there are many examples of the type of activity explained in this
section. For example, Klemm et al. studied the relevance of various assumptions
in Axelrod’s model of dissemination of culture (Axelrod 1997b) by changing the
network topology (Klemm et al. 2003a), investigating the role of dimensionality
(Klemm et al. 2003b, 2005) and introducing noise (Klemm et al. 2003c). Another
example is given by Izquierdo and Izquierdo (2007), who analysed the impact of
using different structures of social networks in the efficiency of a market with quality
variability.

14This is so because many assumptions we make in our models are, to some extent, for the sake
of simplicity. As a matter of fact, in most cases the whole purpose of modelling is to build an
abstraction of the world which is simpler than the world itself, so we can make inferences about
the model that we cannot make directly from the real world (Edmonds 2001; Galán et al. 2009;
Izquierdo et al. 2008a).
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In the context of decision-making and learning, Flache and Hegselmann (1999)
and Hegselmann and Flache (2000) compared two different decision-making
algorithms that a set of players can use when confronting various types of social
dilemmas. Similarly, Takadama et al. (2003) analysed the effect of three different
learning algorithms within the same model.

Several authors, particularly in the literature of game theory, have investigated the
effect of introducing noise in the decision-making of agents. This is useful not only
to investigate the general effect of potential mistakes or experimentation but also to
identify the stochastic stability of different outcomes (see Sect. 10 in Izquierdo et al.
2009). An illustrative example is given by Izquierdo et al. (2008), who investigate
the reinforcement learning algorithm proposed by Bush and Mosteller (1955) using
both mathematical analysis and simulation and find that the inclusion of small
quantities of randomness in players’ decisions can change the dynamics of the
model dramatically.

Another assumption investigated in the literature is the effect of different spatial
topologies (see, e.g. Flache and Hegselmann 2001, who generalised two of their
cellular automata models by changing their—originally regular—grid structure).
Finally, as mentioned in Sect. 13.5, it is increasingly common in the field of evo-
lutionary game theory to assess the impact of various assumptions using computer
simulation (see, e.g. Galán and Izquierdo 2005; Santos et al. 2006; Traulsen et al.
2006; Izquierdo and Izquierdo 2006).

13.9 Summary

In this chapter, we have provided a set of guidelines to understand the dynamics of
computer models using both simulation and mathematical analysis. In doing so, it
has become clear that mathematical analysis and computer simulation should not be
regarded as alternative—or even opposed—approaches to the formal study of social
systems but as complementary (Gotts et al. 2003, b). Not only can they provide
fundamentally different insights on the same model, but they can also produce hints
for solutions for each other. In short, there are plenty of synergies to be exploited by
using the two techniques together, so the full potential of each technique cannot be
reached unless they are used in conjunction.

To understand the dynamics of any particular computer model, we have seen
that it is useful to see the computer model as the implementation of a function that
transforms probability distributions over the set of possible inputs into probability
distributions over the set of possible outputs. We refer to this function as the formal
model that the computer model implements.

The mathematical approach to analyse formal models consists in examining the
rules that define the model directly; the aim is to deduce the logical implications of
these rules for any particular instance to which they can be applied. Our analysis of
mathematical techniques to study formal models has been focused on the theory of
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Markov chains. This theory is particularly useful for our purposes since many com-
puter models can be meaningfully represented as time-homogenous Markov chains.

In contrast with mathematical analysis, the computer simulation approach does
not look at the rules that define the formal model directly but instead tries to
infer general properties of these rules by examining the outputs they produce when
applied to particular instances of the input space. Thus, in the simulation approach,
the data is produced by the computer using strict logical deduction, but the general
patterns about how the rules transform the inputs into the outputs are inferred
using generalisation by induction. Thus, in the general case—and in contrast with
mathematical analysis—the inferences obtained using computer simulation will not
be necessarily correct in a strict logical sense; but, on the other hand, computer
simulation enables us to explore formal models beyond mathematical tractability,
and the confidence we can place on the conclusions obtained with this approach can
be rigorously assessed in statistical terms. Furthermore, as shown in this chapter, we
can achieve any arbitrary level of accuracy in our computational approximations by
running the model sufficiently many times.

Bearing in mind the relative strengths and limitations of both approaches, we
have identified at least three different ways in which mathematical analysis and
computer simulation can be usefully combined to produce a better understanding of
the dynamics of computer models.

The first synergy appears at the time of characterising the dynamics of the formal
model under study. To do that, we have shown how Markov chain analysis can be
used to provide an overall picture of the dynamics of the model by categorising
its different dynamic regimes and identifying when and how initial conditions are
relevant. Having conducted such an analysis, one can then use computer simulation
to design appropriate computational experiments with the aim of quantifying the
probability distributions of the variables we are interested in. These probability
distributions can always be approximated with any degree of accuracy by running
the computer model several times.

The two other ways in which mathematical analysis and computer simulation
can be combined derive from the fact that understanding the dynamics of a model
involves not only characterising (i.e. describing) them but also finding out why such
dynamics are being observed (i.e. discover causality). This often implies building
supporting models that can be simpler or more complex than the original one. The
rationale to move towards simplicity is to achieve greater mathematical tractability,
and this often involves studying particularly simple parameterisations of the original
model and creating abstractions which are amenable to mathematical analysis.
The rationale to move towards complexity is to assess the relevance of specific
assumptions, and it often involves building generalisations of the original model
to explore the impact of competing assumptions that can perform the same role in
the model but may lead to different results.

Let us conclude by encouraging the reader to put both mathematical analysis
and computer simulation in their backpack and be happy to glide up and down the
tractability spectrum where both simple and complex models lie. The benefits are
out there.
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Further Reading

Firstly, we suggest three things to read to learn more about Markov chain models.
Grinstead and Snell (1997) provide an excellent introduction to the theory of finite
Markov chains, with many examples and exercises. Häggström (2002) gives a
clear and concise introduction to probability theory and Markov chain theory and
then illustrates the usefulness of these theories by studying a range of stochastic
algorithms with important applications in optimisation and other problems in
computing. One of the algorithms covered is the Markov chain Monte Carlo method.
Finally, Kulkarni (1995) provides a rigorous analysis of many types of useful
stochastic processes, e.g. discrete and continuous time Markov chains, renewal
processes, regenerative processes and Markov regenerative processes.

The reader may find three other papers helpful. Izquierdo et al. (2009) analyse
the dynamics of ten well-known models in the social simulation literature using
the theory of Markov chains, which is thus a good illustration of the approach in
practice within the context of social simulation.1 Epstein (2006) is a more general
discussion, treating a variety of foundational and epistemological issues surrounding
generative explanation in the social sciences and discussing the role of agent-
based computational models in generative social science. Finally, Leombruni and
Richiardi (2005) usefully discuss several issues surrounding the interpretation of
simulation dynamics and the generalisation of the simulation results. For a different
approach to analysing the dynamics of a simulation model, we refer the interested
reader to Chap. 10 in this volume (Evans et al. 2017).

References

Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events.
Economic Journal, 99(394), 116–131.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R., & Tayler, P. (1997). Asset pricing under
endogenous expectations in an artificial stock market. In W. B. Arthur, S. Durlauf, & D. Lane
(Eds.), The economy as an evolving complex system II (pp. 15–44). Reading, MA: Addison-
Wesley Longman.

Axelrod, R. M. (1986). An evolutionary approach to norms. American Political Science Review,
80(4), 1095–1111.

1This comment is added by the editors as the authors are too modest to so describe their own work.

http://dx.doi.org/10.1007/978-3-319-66948-9_10


13 Combining Mathematical and Simulation Approaches to Understand. . . 327

Axelrod, R. M. (1997a). Advancing the art of simulation in the social sciences. In R. Conte, R.
Hegselmann, & P. Terna (Eds.), Simulating social phenomena, Lecture notes in economics and
mathematical systems (Vol. 456, pp. 21–40). Berlin: Springer.

Axelrod, R. M. (1997b). The dissemination of culture: A model with local convergence and global
polarization. Journal of Conflict Resolution, 41(2), 203–226.

Axelrod, R. M., & Bennett, D. S. (1993). A landscape theory of aggregation. British Journal of
Political Science, 23(2), 211–233.

Axtell, R. L. (2000). Why agents? On the varied motivations for agent computing in the
social sciences. In C. M. Macal & D. Sallach (Eds.), Proceedings of the workshop on
agent simulation: applications, models, and tools (pp. 3–24). Argonne, IL: Argonne National
Laboratory.

Axtell, R. L., & Epstein, J. M. (1994). Agent based modeling: Understanding our creations. The
Bulletin of the Santa Fe Institute, Winter, 1994, 28–32.

Balzer, W., Brendel, K. R., & Hofmann, S. (2001). Bad arguments in the comparison of game
theory and simulation in social studies. Journal of Artificial Societies and Social Simulation,
4(2). http://jasss.soc.surrey.ac.uk/4/2/1.html

Benveniste, A., Métivier, M., & Priouret, P. (1990). Adaptive algorithms and stochastic approxi-
mations. Berlin: Springer.

Böhm, C., & Jacopini, G. (1966). Flow diagrams, turing machines and languages with only two
formation rules. Communications of the ACM, 9(5), 366–371.

Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning. New York: Wiley.
Castellano, C., Marsili, M., & Vespignani, A. (2000). Nonequilibrium phase transition in a model

for social influence. Physical Review Letters, 85(16), 3536–3539.
Cutland, N. (1980). Computability: An introduction to recursive function theory. Cambridge:

Cambridge University Press.
Chung, K.L. (1960). Markov Chains with Stationary Transition Probabilities. Springer,

Berlin.https://link.springer.com/book/10.1007%2F978-3-642-49686-8
Edmonds, B. (2001). The use of models: Making MABS actually work. In S. Moss & P. Davidsson

(Eds.), Multi-agent-based simulation, Lecture notes in artificial intelligence (Vol. 1979, pp.
15–32). Berlin: Springer.

Edmonds, B. (2005). Simulation and complexity: How they can relate. In V. Feldmann & K.
Mühlfeld (Eds.), Virtual worlds of precision: Computer-based simulations in the sciences and
social sciences (pp. 5–32). Lit-Verlag: Münster, Germany.

Edwards, M., Huet, S., Goreaud, F., & Deffuant, G. (2003). Comparing an individual-based
model of behaviour diffusion with its mean field aggregate approximation. Journal of Artificial
Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/9.html

Ehrentreich, N. (2002) The Santa Fe artificial stock market re-examined: Suggested cor-
rections (Betriebswirtschaftliche Diskussionsbeiträge Nr. 45/02). Halle/Saale, Germany:
Wirtschaftswissenschaftliche Fakultät, Martin-Luther-Universität. http://econwpa.wustl.edu:
80/eps/comp/papers/0209/0209001.pdf

Ehrentreich, N. (2006). Technical trading in the Santa Fe institute artificial stock market revisited.
Journal of Economic Behavior & Organization, 61(4), 599–616.

Epstein, J. M. (2006). Remarks on the foundations of agent-based generative social science.
In K. L. Judd & L. Tesfatsion (Eds.), Handbook of computational economics, Agent-based
computational economics (Vol. 2, pp. 1585–1604). Amsterdam, The Netherlands: North-
Holland.

Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the bottom
up. Cambridge, MA: Brookings Institution Press/MIT Press.

Evans, A., Heppenstall, A., & Birkin, M. (2017). Understanding simulation results. In B. Edmonds
& R. Meyer (Eds.), Simulating social complexity: A handbook. Cham: Springer.

Flache, A., & Hegselmann, R. (1999). Rationality vs. learning in the evolution of solidarity
networks: A theoretical comparison. Computational & Mathematical Organization Theory,
5(2), 97–127.

http://jasss.soc.surrey.ac.uk/4/2/1.html
https://link.springer.com/book/10.1007%2F978-3-642-49686-8
http://jasss.soc.surrey.ac.uk/6/4/9.html
http://econwpa.wustl.edu/eps/comp/papers/0209/0209001.pdf


328 L.R Izquierdo et al.

Flache, A., & Hegselmann, R. (2001). Do irregular grids make a difference? Relaxing the spatial
regularity assumption in cellular models of social dynamics. Journal of Artificial Societies and
Social Simulation, 4(4). http://jasss.soc.surrey.ac.uk/4/4/6.html

Flache, A., & Macy, M. W. (2002). Stochastic collusion and the power law of learning. Journal of
Conflict Resolution, 46(5), 629–653.

Galán, J. M., & Izquierdo, L. R. (2005). Appearances can be deceiving: Lessons learned re-
implementing axelrod’s ‘evolutionary approach to norms’. Journal of Artificial Societies and
Social Simulation, 8(3). http://jasss.soc.surrey.ac.uk/8/3/2.html

Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., Del Olmo, R., López-Paredes, A.,
et al. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial Societies and
Social Simulation, 12(1). http://jasss.soc.surrey.ac.uk/12/1/1.html

Genz, A., & Kwong, K. S. (2000). Numerical evaluation of singular multivariate normal distribu-
tions. Journal of Statistical Computation and Simulation, 68(1), 1–21.

Gilbert, N. (1999). Simulation: A new way of doing social science. The American Behavioral
Scientist, 42(10), 1485–1487.

Gilbert, N. (2007). Agent-based models, Quantitative applications in the social sciences (Vol. 153).
London: Sage Publications.

Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind
and Society, 1(1), 57–72.

Gilbert, N., & Troitzsch, K. G. (1999). Simulation for the social scientist. Buckingham, UK: Open
University Press.

Gotts, N. M., Polhill, J. G., & Adam, W. J. (2003, September 18–21). Simulation and analysis
in agent-based modelling of land use change. In Online proceedings of the first conference
of the European social simulation association, Groningen, The Netherlands. http://www.uni-
koblenz.de/~essa/ESSA2003/proceedings.htm

Gotts, N. M., Polhill, J. G., & Law, A. N. R. (2003a). Agent-based simulation in the study of social
dilemmas. Artificial Intelligence Review, 19(1), 3–92.

Gotts, N. M., Polhill, J. G., & Law, A. N. R. (2003b). Aspiration levels in a land-use simulation.
Cybernetics and Systems, 34(8), 663–683.

Gotts, N. M., Polhill, J. G., Law, A. N. R, & Izquierdo, L. R. (2003, April 7–11). Dynamics
of imitation in a land use simulation. In K. Dautenhahn & C. Nehaniv (Eds.), Proceedings
of the second international symposium on imitation in animals and artefacts (pp. 39–46).
Aberystwyth: University of Wales.

Grinstead, C. M., & Snell, J. L. (1997). Chapter 11: Markov chains. In C. M. Grinstead & J. L.
Snell (Eds.), Introduction to probability (2nd Revised ed., pp. 405–470). Providence, RI: Amer-
ican Mathematical Society. http://www.dartmouth.edu/~chance/teaching_aids/books_articles/
probability_book/book.html

Häggström, O. (2002). Finite markov chains and algorithmic applications. Cambridge: Cambridge
University Press.

Harel, D. (1980). On folk theorems. Communications of the ACM, 23(7), 379–389.
Hauert, C., & Doebeli, M. (2004). Spatial structure often inhibits the evolution of cooperation in

the snowdrift game. Nature, 428(6983), 643–646.
Hegselmann, R., & Flache, A. (2000). Rational and adaptive playing. Analyse & Kritik, 22(1),

75–97.
Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. American

Economic Review, 81(2), 365–370.
Huet, S., Edwards, M., & Deffuant, G. (2007). Taking into account the variations of neighbourhood

sizes in the mean-field approximation of the threshold model on a random network. Journal of
Artificial Societies and Social Simulation, 10(1). http://jasss.soc.surrey.ac.uk/10/1/10.html

Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2005). Evolutionary cycles of cooperation and
defection. Proceedings of the National Academy of Sciences of the United States of America,
102(31), 10797–10800.

Izquierdo, L. R., Galán, J. M., Santos, J. I., & Olmo, R. (2008). Modelado de sistemas complejos
mediante simulación basada en agentes y mediante dinámica de sistemas. Empiria, 16, 85–112.

http://jasss.soc.surrey.ac.uk/4/4/6.html
http://jasss.soc.surrey.ac.uk/8/3/2.html
http://jasss.soc.surrey.ac.uk/12/1/1.html
http://www.uni-koblenz.de/~essa/ESSA2003/proceedings.htm
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://jasss.soc.surrey.ac.uk/10/1/10.html


13 Combining Mathematical and Simulation Approaches to Understand. . . 329

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., & Santos, J. I. (2009). Techniques to understand
computer simulations: Markov chain analysis. Journal of Artificial Societies and Social
Simulation, 12(1). http://jasss.soc.surrey.ac.uk/12/1/6.html

Izquierdo, L. R., Izquierdo, S. S., Gotts, N. M., & Polhill, J. G. (2007). Transient and asymptotic
dynamics of reinforcement learning in games. Games and Economic Behavior, 61(2), 259–276.

Izquierdo, L. R., & Polhill, J. G. (2006). Is your model susceptible to floating point errors? Journal
of Artificial Societies and Social Simulation, 9(4). http://jasss.soc.surrey.ac.uk/9/4/4.html

Izquierdo, S. S., & Izquierdo, L. R. (2006). On the structural robustness of evolutionary models of
cooperation. In E. Corchado, H. Yin, V. J. Botti, & C. Fyfe (Eds.), Intelligent data engineering
and automated learning - IDEAL 2006, Lecture notes in computer science (Vol. 4224, pp. 172–
182). Berlin: Springer.

Izquierdo, S. S., & Izquierdo, L. R. (2007). The impact on market efficiency of quality uncertainty
without asymmetric information. Journal of Business Research, 60(8), 858–867.

Izquierdo, S. S., Izquierdo, L. R., & Gotts, N. M. (2008). Reinforcement learning dynamics
in social dilemmas. Journal of Artificial Societies and Social Simulation, 11(2). http://
jasss.soc.surrey.ac.uk/11/2/1.html

Janssen, J., & Manca, R. (2006). Applied semi-markov processes. New York, NY: Springer.
Karr, A. F. (1990). Markov processes. In D. P. Heyman & M. J. Sobel (Eds.), Stochastic models,

Handbooks in operations research and management science (Vol. 2, pp. 95–123). Amsterdam:
Elsevier.

Klemm, K., Eguíluz, V. M., Toral, R., & San Miguel, M. (2003a). Nonequilibrium transitions in
complex networks: A model of social interaction. Physical Review E, 67(2), 026120.

Klemm, K., Eguíluz, V. M., Toral, R., & San Miguel, M. (2003b). Role of dimensionality in
Axelrod’s model for the dissemination of culture. Physica A, 327(1–2), 1–5.

Klemm, K., Eguíluz, V. M., Toral, R., & San Miguel, M. (2003c). Global culture: A noise-induced
transition in finite systems. Physical Review E, 67(4), 045101.

Klemm, K., Eguíluz, V. M., Toral, R., & San Miguel, M. (2005). Globalization, polarization and
cultural drift. Journal of Economic Dynamics and Control, 29(1–2), 321–334.

Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems. Boca Raton, FL: Chapman &
Hall/CRC.

Kulkarni, V. G. (1999). Modeling, analysis, design, and control of stochastic systems. New York:
Springer.

Kushner, H. J., & Yin, G. G. (1997). Stochastic approximation algorithms and applications. New
York, NY: Springer.

Lebaron, B., Arthur, W. B., & Palmer, R. (1999). Time series properties of an artificial stock market.
Journal of Economic Dynamics & Control, 23(9–10), 1487–1516.

Leombruni, R., & Richiardi, M. (2005). Why are economists sceptical about agent-based simula-
tions? Physica A, 355(1), 103–109.

Lieberman, E., Havlin, S., & Nowak, M. A. (2009). Evolutionary dynamics on graphs. Nature,
433(7023), 312–316.

Mabrouk, N., Deffuant, G., & Lobry, C. (2007, March 15–16). Confronting macro, meso and
micro scale modelling of bacteria dynamics. In M2M 2007: Third international model-to-model
workshop, Marseille, France. http://m2m2007.macaulay.ac.uk/M2M2007-Mabrouk.pdf

Macy, M. W., & Flache, A. (2002). Learning dynamics in social dilemmas. Proceedings of the
National Academy of Sciences of the United States of America, 99(3), 7229–7236.

Miller, J. H., & Page, S. E. (2004). The standing ovation problem. Complexity, 9(5), 8–16.
Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359(6398),

826–829.
Nowak, M. A., & Sigmund, K. (1992). Tit for tat in heterogeneous populations. Nature, 355(6357),

250–253.
Nowak, M. A., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit for tat

in the Prisoner’s Dilemma game. Nature, 364(6432), 56–58.
Ostrom, T. (1988). Computer simulation: The third symbol system. Journal of Experimental Social

Psychology, 24(5), 381–392.

http://jasss.soc.surrey.ac.uk/12/1/6.html
http://jasss.soc.surrey.ac.uk/9/4/4.html
http://jasss.soc.surrey.ac.uk/11/2/1.html
http://m2m2007.macaulay.ac.uk/M2M2007-Mabrouk.pdf


330 L.R Izquierdo et al.

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2006). What every agent based modeller should
know about floating point arithmetic. Environmental Modelling & Software, 21(3), 283–309.

Richiardi, M., Leombruni, R., Saam, N. J., & Sonnessa, M. (2006). A common protocol for
agent-based social simulation. Journal of Artificial Societies and Social Simulation, 9(1). http:/
/jasss.soc.surrey.ac.uk/9/1/15.html

Santos, F. C., Pacheco, J. M., & Lenaerts, T. (2006). Evolutionary dynamics of social dilemmas in
structured heterogeneous populations. Proceedings of the National Academy of Sciences of the
United States of America, 103(9), 3490–3494.

Suber, P. (2002). Formal systems and machines: An isomorphism. Electronic hand-out for the
course “Logical Systems”. Richmond, IN: Earlham College. http://www.earlham.edu/~peters/
courses/logsys/machines.htm

Takadama, K., Suematsu, Y. L., Sugimoto, N., Nawa, N. E., & Shimohara, K. (2003). Cross-
element validation in multiagent-based simulation: Switching learning mechanisms in agents.
Journal of Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/
6.html

Takahashi, N. (2000). The emergence of generalized exchange. American Journal of Sociology,
10(4), 1105–1134.

Traulsen, A., Nowak, M. A., & Pacheco, J. M. (2006). Stochastic dynamics of invasion and fixation.
Physical Review E, 74(1), 011909.

Vilà, X. (2008). A model-to-model analysis of bertrand competition. Journal of Artificial Societies
and Social Simulation, 11(2). http://jasss.soc.surrey.ac.uk/11/2/11.html

Wikipedia. (2007). Structured program theorem. http://en.wikipedia.org/w/
index.php?title=Structured_program_theorem&oldid=112885072

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo

http://jasss.soc.surrey.ac.uk/9/1/15.html
http://www.earlham.edu/~peters/courses/logsys/machines.htm
http://jasss.soc.surrey.ac.uk/6/4/6.html
http://jasss.soc.surrey.ac.uk/11/2/11.html
http://en.wikipedia.org/w/index.php?title=Structured_program_theorem&oldid=112885072
http://ccl.northwestern.edu/netlogo


Chapter 14
Interpreting and Understanding Simulations:
The Philosophy of Social Simulation

R. Keith Sawyer

Abstract Simulations are usually directed at some version of the question: What
is the relationship between the individual actor and the collective community?
Among social scientists, this question generally falls under the topic of emergence.
Sociological theorists and philosophers of science have developed sophisticated
approaches to emergence, including the critical question: to what extent can
emergent phenomena be reduced to explanations in terms of their components?
Modelers often proceed without considering these issues; the risk is that one might
develop a simulation that does not accurately reflect the observed empirical facts
or one that implicitly sides with one side of a theoretical debate that remains
unresolved. In this chapter, I provide some tips for those developing simulations,
by drawing on a strong recent tradition of analyzing scientific explanation that is
found primarily in the philosophy of science but also to some extent in sociology.

Why Read This Chapter?
To gain an overview of some key philosophical issues that underlie social simula-
tion. Providing an awareness of them may help avoid the risk of presenting a very
limited perspective on the social world in any simulations you develop.

14.1 Introduction

Researchers who develop multi-agent simulations often proceed without thinking
about what the results will mean or how the results of the simulation might be used.
After the simulation is completed, it is too late to begin to think about interpretation
and understanding, because poorly designed simulations often turn out to be uninter-
pretable. An analysis of interpretation and understanding has to precede and inform
the design. In this chapter, I provide some tips for those developing simulations, by
drawing on a strong recent tradition of analyzing scientific explanation that is found
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primarily in the philosophy of science but also to some extent in sociology. My
hope is that this exploration can help modelers by identifying hidden assumptions
that often underlie simulation efforts and assumptions that sometimes can limit the
explanatory power of the resulting simulation.

Modelers often proceed without considering these issues, in part, because of the
historical roots of the approach. During the 1990s, two strands of work in computer
science began to merge: intelligent agents, a tradition of studying autonomous
agents that emerged from the artificial intelligence community, and artificial life,
typically a graphically represented two-dimensional grid in which each cell’s
behavior is determined by its nearby neighbors. In the 1990s, a few members of
both of these communities began to use the new technologies to simulate social
phenomena. Several intelligent agent researchers began to explore systems with
multiple agents in communication, which became known as distributed artificial
intelligence, and artificial life researchers began to draw parallels between their
two-dimensional grids and various real-world phenomena, such as ant colonies
and urban traffic flows. The new field that emerged within computer science is
generally known as multi-agent systems; the term refers to engineering computer
systems with many independent and autonomous agents, which communicate with
each other using a well-specified set of message types. When multi-agent systems
are used specifically to simulate social phenomena, the simulations are known as
multi-agent-based simulations (MABS), artificial societies, or social simulations.

Computer scientists had been working with multiple processor systems since
the 1980s, when computer scientists began to experiment with breaking up a
computational task into subtasks and then assigning the subtasks to separate, stand-
alone computers. During this time, a specialized massively parallel computer called
the thinking machine was famously built by the Thinking Machines Corporation,
and computer scientists began developing formalisms to represent distributed
computational algorithms. These early efforts at parallel computation were centrally
managed and controlled, with the distribution of computation being used to speed
up a task or to make it more efficient.

The multi-agent systems of the 1990s represented a significant shift from these
earlier efforts, in that each computational agent was autonomous: capable of making
its own decisions and choosing its own course of action. The shift to autonomous
agents raised several interesting issues among computer scientists: if an agent were
asked to execute a task, when and why would the agent agree to do it? Perhaps
an agent would have a different understanding of how to execute a task than
the requesting agent; how could two agents negotiate these understandings? Such
questions would be unlikely to arise if one central agent had control over all of
the distributed agents. But the rapid growth of the Internet—where there are, in
fact, many autonomous computers and systems that communicate with each other
every day—resulted in a real-world situation in which independent computational
agents might choose not to respond to a request or might respond differently than
the requester expected.

As a result of these historical developments, computer scientists found them-
selves grappling with questions that have long been central to sociology and



14 Interpreting and Understanding Simulations: The Philosophy of Social Simulation 333

economics. Why should a person take an action on behalf of the collective good?
How to prevent free-riding and social loafing—situations where agents benefit from
collective action but without contributing very much? What is the relationship
between the individual actor and the collective community? What configurations
of social network are best suited to different sorts of collective tasks?

Among social scientists, these questions generally fall under the topic of
emergence (Sawyer 2005). Emergence refers to a certain kind of relation between
system-level phenomena or properties and properties of the system components.
The traditional method of understanding complex system phenomena has been to
break the system up into its components, to analyze each of the components and
the interactions among them. In this reductionist approach, the assumption is that
at the end of this process, the complex system will be fully explained. In contrast,
scholars of emergence are unified in arguing that this reductionist approach does not
work for a certain class of complex system phenomena. There are different varieties
of this argument; some argue that the reduction is not possible for epistemological
reasons (it is simply too hard to explain using reduction although the whole is really
nothing more than the sum of the parts), while others argue that it is not possible
for ontological reasons (the whole is something more and different than the sum of
the parts). Emergent phenomena have also been described as novel—not observed
in any of the components—and unpredictable, even if one has already developed a
full and complete explanation of the components and of their interactions.

Among sociologists, this debate is generally known as the individualism-
collectivism debate. Methodological individualists are the reductionists, those who
argue that all social phenomena can be fully explained by completely explaining
the participating individuals and their interactions. Collectivists argue, in contrast,
that some social phenomena cannot be explained by reduction to the analysis of
individuals and their interactions. Several scholars have recently noted that agent-
based simulations are an appropriate tool to explore these issues (Neumann 2006;
Sawyer 2005; Schmid 2006).

In the mid-1990s, a few sociologists who were interested in the potential
of computer simulation to address these questions began to join with computer
scientists who were fascinated with the more theoretical dimensions of these very
practical questions, and the field of multi-agent-based simulation (MABS) was
born. Since that time, technology has rapidly advanced, and now there are several
computer tools, relatively easy to use, that allow social scientists to develop multi-
agent simulations of social phenomena.

After almost 15 years, this handbook provides an opportunity to look reflexively
at this work and to ask: what do these simulations mean? How should scientists
interpret them? Such questions have traditionally been associated with the philos-
ophy of science. For over a century, philosophers of science have been exploring
topics that are fundamental to science: understanding, explanation, perception,
validation, and interpretation. In the following, I draw on concepts and arguments
from within the philosophy of science to ask a question that is critical to scientists:
What do these multi-agent based simulations mean? How should we interpret
simulations?
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In spite of the occasional participation of sociologists in social simulation
projects, most modelers continue to proceed without an awareness of these impor-
tant foundational questions. These are of more than simple theoretical importance;
without an awareness of these somewhat complex issues of interpretation and
understanding, the risk is that one might develop a simulation that does not
accurately reflect the observed empirical facts or one that implicitly sides with one
side of a theoretical debate that remains unresolved (thus clouding the interpretation
of the simulation’s results).

I address these questions by delving into the nature of explanation. Many
developers of MABS believe that the simulations provide explanations of real
phenomena—that the concrete specifics of what is going on in the world are revealed
by examining the simulation. Interpreting and understanding the simulation thus
result in an explanation of the target phenomenon.

Although simulation has many potential benefits to offer scientists, I argue that
the meaning of a simulation is rarely obvious and unequivocal. For example, there
are many different ways to understand and interpret a given simulation of a social
phenomenon. These run roughly along a spectrum from a very narrowly focused
and ungeneralizable simulation of a very specific instance of a social phenomenon
to a grand-theoretical type of simulation that explains a very broad range of
social emergence phenomena. The specific end of the spectrum results in better
understanding of a single phenomenon, but not in any lawful regularities nor in any
general knowledge about social life. The general end of the spectrum is something
like the tradition of grand theory in sociology, with generalizable laws that explain
a wide range of social phenomena. The center of the spectrum is associated with
what Merton famously called “middle range theories”; this is what most mainstream
sociologists today believe is the appropriate task of sociology, as the field has turned
away from grand theorizing in recent decades.

All of these are valid forms of sociological explanation, and each has the potential
to increase our understanding of social life. My concern is with the specific end
of the spectrum: in some cases, it could be that a simulation explains only a very
narrow single case, with no generalizability. This would be of limited usefulness to
our understanding.

14.2 Interpreting Multi-agent Simulations

How should scientists outside of the simulation community interpret a multi-agent
simulation of a real phenomenon? Although there has been almost no philosophical
attention to these simulations, simulation developers themselves have often engaged
in discussions of the scientific status of their simulations. Within this community,
there is disagreement about the scientific status of the simulations. Opinions fall into
two camps: the “simulation as theory” camp and the “simulation as experiment”
camp.
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Representing the first group, many of those developing computer simulations
believe that in building them, they are engaged in a form of theory construction
(Conte et al. 2001; Markovsky 1997; also see Ostrom 1988). They argue that social
simulation, for example, is a more sophisticated and advanced form of social theory,
because concepts and axioms must be rigorously specified to be implemented in a
computer program, unlike the “discursive theorizing” of many sociologists, which
is relatively vague and hard to empirically test (Conte et al. 2001; Turner 1993). As
Markovsky (1997) noted, turning a (discursive) sociological theory into a simulation
is not a transparent translation. A variable in the theory may turn out to be central to
the simulation, or it may turn out not to matter very much; one cannot know which
without going through the exercise of programming the simulation. Developing a
simulation almost always reveals logical gaps in a theory, and these must be filled
in before the simulation will work. As a result, simulations often introduce logical
relationships that the original theory did not specify, and they contain gap-filling
assumptions that the theory never made.

Representing the second group, other modelers have argued that a simulation is
a virtual experiment (Carley and Gasser 1999). From this perspective, simulations
cannot explain in and of themselves, but can only serve as tests of a theory—and
the theory is what ultimately does the explaining. In a virtual experiment, a model
is developed that simulates some real-world social phenomenon but with one or
more features modified to create experimental conditions that can be contrasted. For
example, the same business organization could be modeled multiple times but with a
strong authority figure in one simulation and a diffuse authority structure in another
(Carley and Gasser 1999). Whereas it would probably be impossible to implement
such an experiment with real-world societies, a computer model readily allows such
manipulation. When the model is started, the simulations that result behave in ways
that are argued to be analogous to how the real-world organization would have
behaved, in each of the different conditions. In this view, because the simulation
plays the role of a data-generating experiment, it doesn’t provide an explanation;
rather, it provides raw data to aid in theorizing, and the theory ultimately provides
the explanation.

14.3 Scientific Explanation

Explanations are attempts to account for why things happen—singular events or
regular, repeatable patterns. In the philosophy of science, there is a long history of
discussion surrounding scientific explanation, including the deductive-nomological
(D-N) or covering law approach (Hempel 1965), the statistical relevance approach
(Salmon 1971), and the mechanistic approach (Bechtel and Richardson 1993;
Salmon 1984). Here I limit the term “explanation” to causal explanation (cf.
Little 1998; Woodward 2003). The relation between causation and explanation is
complex; some philosophers of science hold that all explanation must be causal,
whereas others deny this. For example, in the deductive-nomological tradition of
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logical empiricism, laws are said to provide explanations, even though the status of
causation is questionable—causation is thought to be nothing more than an observed
regularity as captured by a covering law. In the more recent mechanistic approach,
in contrast, causation is central to explanation. I take the mechanistic position that
causal mechanism is central to explanation, but I first briefly summarize the covering
law notion of explanation.

In the covering law approach, a phenomenon is said to be explained when salient
properties of the event are shown to be consequents of general laws, where the
antecedents can also be identified. The phenomenon is said to be explained by
the combination of the antecedent conditions and the laws that then result in the
phenomenon. A strength of the covering law approach is that laws both explain and
predict; once a law is discovered, it can be used both to explain past phenomena and
also to predict when similar phenomena will occur in the future.

Covering law models have always been problematic in the social sciences,
primarily because of difficulty translating the notion of “law” to social reality. After
all, advocates of the covering law model have had trouble adequately defining “law”
even in the physical world (Hempel 1965). Candidates for social laws always have
exceptions, and laws with exceptions are problematic in the D-N approach. There is
a history of debate concerning whether social laws exist at all, with prominent social
theorists such as Anthony Giddens arguing that there are no social laws (1984)
and other prominent social theorists arguing that there are (e.g., Peter Blau 1977,
1983). Philosophers of social science have taken various positions on the status
of social laws (Beed and Beed 2000; Kincaid 1990; Little 1993; McIntyre 1996).
Much of this discussion centers on what constitutes a law: must it be invariant and
universal (Davidson’s 1980 “strict law”), or can it admit of some exceptions? Even
the strongest advocates of lawful explanation admit that there are no strict laws in
the social sciences; these laws will typically have exceptions, and the law cannot
explain those exceptions.

In the last decade or so, philosophers of biology (Bechtel 2001; Bechtel and
Richardson 1993; Craver 2001; Craver 2002; Glennan 1996; Machamer et al. 2000)
and philosophers of social science (Elster 1989; Hedström 2005; Hedström and
Swedberg 1998; Little 1991; Little 1998; Stinchcombe 1991) have begun to develop
a different approach to explanation, one based on causal mechanisms rather than
laws. In the mechanism approach, a phenomenon is said to be explained when the
realizing mechanism that gave rise to the phenomenon is sufficiently described.
Mechanistic accounts of explanation are centrally concerned with causation. For
example, Salmon’s (1984, 1994, 1997) causal mechanical model focuses on causal
processes and their causal interactions; an explanation of an event traces the causal
processes and interactions leading up to that event and also describes the processes
and interactions that make up the event.

Hedström (2005) presented an account of how social simulations correspond
to mechanistic explanations. Mechanistic explanations differ from covering law
explanations by “specifying mechanisms that show how phenomena are brought
about” (p. 24). Of course, how one defines “mechanism” is the crux of the approach.
Some theorists believe that mechanisms provide causal explanations, whereas others
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do not. But what the approaches share is that “a mechanism explicates the details of
how the regularities were brought about” (p. 24). Rather than explanation in terms of
laws and regularities, a mechanism approach provides explanations by postulating
the processes constituted by the operation of mechanisms that generate the observed
phenomenon. For Hedström, “A social mechanism : : : describes a constellation of
entities and activities that are organized such that they regularly bring about a
particular type of outcome” (p. 25). The explanation is provided by the specification
of often unobservable causal mechanisms and the identification of the processes
in which they are embedded. In other words, mechanists are willing to grant that
macro-level regularities are observed; the covering law approach to sociology has,
after all, resulted in the identification of lawlike regularities that are empirically
supported. But for a mechanist, a covering law does not explain: “correlations and
constant conjunctions do not explain but require explanation by reference to the
entities and activities that brought them into existence” (p. 26).

14.4 MABS: Explaining by Simulating

Using MABS, researchers have begun to model the mechanisms whereby macroso-
cial properties emerge from interacting networked agents. A MABS contains many
autonomous computational agents that negotiate and collaborate with each other,
in a distributed, self-organizing fashion. The parallels with causal mechanism
approaches in the philosophy of science are striking (Sawyer 2004).

Hedström (2005) refers to his social simulation method as empirically calibrated
agent-based models (ECA) to emphasize that the models should be grounded in
quantitative empirical data. His recommended method is to (1) develop a stylized
agent-based model “that explicates the logic of the mechanism assumed to be
operative” (p. 143), (2) use relevant data to verify the mechanism actually works
this way, and (3) run the model and modify it until it best matches relevant
data. “Only when our explanatory account has passed all of these three stages
can we claim to have an empirically verified mechanism-based explanation of a
social outcome” (p. 144). Hedström provides an extended demonstration of the
ECA method by modeling how social interactions might have given rise to the
increase in youth unemployment in Stockholm in the 1990s. His model includes
exactly as many computational agents as there were unemployed 20–24-year-olds in
Stockholm during 1993 to 1999: 87,924. The demographic characteristics of these
computational agents were an accurate reflection of their real-world counterparts.
He then created a variety of different simulations as “virtual experiments” to see
which simulation resulted in the best match to the observed empirical data.

The Stockholm simulation falls at the more specific end of the explanatory
spectrum; even if it successfully simulates unemployment in Stockholm, it may
not be helpful at understanding unemployment in any other city. Other MABS are
designed to provide more general explanations. For example, many MABS have
explored one of the most fundamental economic and sociological questions: What
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is the origin of social norms? For example, how do norms of cooperation and trust
emerge? If autonomous agents seek to maximize personal utility, then under what
conditions will agents cooperate with other agents? In game theory terms, this is
a prisoner’s dilemma problem. Many studies of cooperation in artificial societies
have been implementations of the iterated prisoner’s dilemma (IPD), where agents
interact in repeated trials of the game and agents can remember what other agents
have done in the past (Axelrod 1997).

The sociologists Macy and Skvoretz (1998) developed an artificial society
to explore the evolution of trust and cooperation between strangers. In prior
simulations of the prisoner’s dilemma, trust emerged in the iterated game with
familiar neighbors, but trust did not emerge with strangers. Macy and Skvoretz
hypothesized that if the agents were grouped into neighborhoods, norms of trust
would emerge among neighbors within each neighborhood and that these norms
would then extend to strangers. Their simulation contained 1000 agents that played
the prisoner’s dilemma game with both familiar neighbors and with strangers. To
explore the effects of community on the evolution of PD strategy, the simulation
defined neighborhoods that contained varying numbers of agents—from 9 agents
per neighborhood to 50. Different runs of the simulation varied the embeddedness
of interaction: the probability that in a given iteration, a player would be interacting
with a neighbor or a stranger. These simulations showed that conventions for
trusting strangers evolved in neighborhoods of all sizes, as long as agents interacted
more with neighbors than strangers (embeddedness greater than 0.5). The rate
of cooperation among strangers increased linearly as embeddedness was raised
from 0.5 to 0.9. Simulations with smaller neighborhoods resulted in a higher rate
of cooperation between strangers: at 0.9 embeddedness, the rate of cooperation
between strangers was 0.62 in the 10-member neighborhood simulation and 0.45
in the 50-member neighborhood simulation (p. 655).

Macy and Skvoretz concluded that these neighborhoods—characterized by
relatively dense interactions—allow conventions for trusting strangers to emerge
and become stable and then diffuse to other neighborhoods via weak ties. If
an epidemic of distrusting behavior evolves in one segment of the society, the
large number of small neighborhoods facilitates the restoration of order (p. 657).
This simulation demonstrates how social structure can influence micro- to macro-
emergence processes; cooperation with strangers emerges when agents are grouped
into neighborhoods, but not when they are ungrouped.

An advocate of the causal mechanist approach to explanation would argue that
the Macy and Skvoretz simulation provides candidate explanations of several social
phenomena. First, the simulation explains how norms of cooperation could emerge
among friends in small communities—because exchanges are iterated, and agents
can remember their past exchanges with each other, they learn that cooperation
works to everyone’s advantage. Second, the simulation explains how norms of
cooperation with strangers could emerge—as local conventions diffuse through
weak ties. And in addition, the simulation explains how several variables contribute
to these effects—variables like the size of the neighborhood and the embeddedness
of each agent.
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Advocates of a covering law approach to explanation might prefer to think in
terms of lawful generalizations. The above simulation suggests at least two: first,
cooperation among strangers is greater when the neighborhoods are smaller, and
second, cooperation among strangers increases linearly with embeddedness. In a
D-N empiricist approach, such laws could be hypothesized and then tested through
empirical study of existing human societies, and no understanding of the causal
mechanism would be necessary. A mechanist like Hedström (2005) would counter
that the identification of empirically supported lawful relations does not constitute
an explanation. One has not identified a causal explanation until one has identified
the underlying social mechanisms that realize the regularities captured by the law.
The Macy and Skvoretz simulation helps to provide this form of causal explanation.

14.5 Potential Limitations of Simulations as Explanations

I am sympathetic to the mechanism approach. As Hedström points out, “It tends to
produce more precise and intelligible explanations” (2005, p. 28); this is desirable
for sociology, which I believe must work toward being an empirically grounded
and theoretically rigorous science. It reduces theoretical fragmentation, because
a single mechanistic account might potentially explain many different observed
phenomena, from crime to social movements; think of Gladwell’s best seller The
Tipping Point (2000). And finally, knowing the underlying mechanism allows you
to make a certain kind of causal claim, whereas covering law approaches give you
essentially only correlations.

However, causal mechanist accounts of scientific explanation can be epistemi-
cally demanding. For example, many behaviors of a volume of gas can be explained
by knowing a single number, its pressure; yet a mechanist account requires the
identification of the locations and movements of all of the contained molecules.
A strict focus on mechanistic explanation would hold that the ideal gas law does not
explain the behavior of a volume of gas; only an account in terms of the individual
trajectories of individual molecules would be explanatory. And even that would be
an incomplete explanation, because the gas would manifest the same macroscopic
behavior even if the individual molecules had each taken a different trajectory;
certainly, an explanation should be able to account for these multiple realizations.

Many advocates of mechanism are unwilling to accept any place for the covering
law approach: they argue that mechanisms are the only proper form of sociological
explanation. In several publications, Sawyer (2003a, 2004, 2005) has described a
class of social phenomena in which mechanism-based explanations would be of
limited usefulness: when macro-level regularities are multiply realized in a wide
range of radically different underlying mechanisms. In such a situation, an account
of the mechanism underlying one realization of the regularity would not provide
an explanation of the other instances of that regularity. Hedström’s Stockholm
simulation does not necessarily explain the rise in youth employment in any other
city, for example; other cities might have different realizing mechanisms. But even
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though it might not be possible to develop a single simulation that accurately
represents unemployment processes in all large cities, it might nonetheless be
possible to develop a law (or set of laws) that was capable of explaining (in the
deductive-nomological sense of the term) unemployment in a large number of cities.

A social mechanist account often requires information that is unavailable or
that science is unable to provide. The Stockholm simulation was only possible
because of the availability of detailed data gathered by the Swedish government.
But covering law explanations can be developed with much less data or with data at
a much larger grain size. For example, many behaviors of a society can be explained
by knowing whether it is individualist or collectivist (Markus and Kitayama 1991;
Triandis 1995). Such properties figure in lawful generalizations like “individualist
societies are more likely to be concerned with ownership of creative products”
(Sawyer 2006) and “collectivist societies are more likely to practice co-sleeping”
(Morelli et al. 1992). In contrast to such simple and easy-to-understand regularities,
a mechanist explanation of the same patterns requires quite a bit of knowledge about
each participant in that society and their interactions with each other.

Even if a very good social simulation were developed, it might be very difficult
to use that simulation to communicate to a broad, nontechnical audience what
meaning or understanding to attribute to the phenomenon (or the simulation). And
in extremely complex systems like human societies, it may be impossible to develop
an explanation of macro phenomena in terms of individual actions and interactions,
even though we may all agree that such processes nonetheless must exist at the
individual level. The issue here is identifying the right level of description, and the
mechanistic or realizing level is often too detailed to provide us with understanding.
There are many cases in science where it seems that reduction is not the best
strategy for scientific explanation. For example, higher-level events like mental
events supervene on physical processes but do not seem to be reducible to a unique
set of causal relationships in terms of them.

The most accurate simulation would come very close to replicating the natural
phenomenon in all its particulars. After such a simulation has been successfully
developed, the task remains to explain the simulation; and for a sufficiently detailed
simulation, that could be just as difficult as the original task of explaining the data
(Cilliers 1998). Computer programmers often have difficulty explaining exactly
why their creations behave as they do, and artificial society developers are no
different. Mechanistic accounts of explanation need to more directly address issues
surrounding levels of explanation and epistemic and computational limits to human
explanation and understanding (see Sawyer 2003a, 2004).

Social simulation unavoidably touches on the unresolved sociological issue of
how explanation should proceed. Social simulations represent only individual agents
and their interactions, and in this they are methodologically individualist (Conte
et al. 2001; also see Drennan 2005). Methodological individualism is a sociological
position that has its roots in the nineteenth-century origins of sociology; it argues
that sociology should proceed by analyzing the individual participants in the social
system, then their relations and the behaviors of bigger system components, and
all the way up until we have an explanation of the social system. But if there are
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real emergent social properties, with downward causal powers over component
individuals, then methodologically individualist simulation will fail to provide
explanations of those social phenomena—for essentially the same reasons that
philosophers of mind now believe that physicalism is inadequate to explain mental
phenomena (see Sawyer 2002). Some social properties—such as the property of
“being a collectivist society” or “being a church”—are multiply realized in widely
different social systems. A simulation of a realizing mechanism of one instance of
“being a church” would explain only one token instance but would fail to broadly
explain the full range of mechanisms that could realize the social property. To return
to the Macy and Skvoretz simulation, the norm of cooperation could emerge in
many other realizing social systems, yet the norm might have the same downward
causal effects regardless of its realizing mechanism. If so, then a simulation of one
realization is only a partial explanation of a more general social phenomenon; it
does not explain the other ways that human cooperative behavior could be realized.

Social simulations which contain only individual agents deny a sociological
realism that accepts social properties as real. If macrosocial properties are real,
then they have an ontological status distinct from their realizing mechanisms and
may participate in causal relations (this point continues to be actively debated
and the arguments are complex; see Sawyer 2003b). An accurate simulation of a
social system that contains multiply realized macrosocial properties would have
to represent not only individuals in interaction but also these higher-level system
properties and entities (Sawyer 2003a).

The problem is that although a social simulation may provide a plausible account
of how individual actions and interactions give rise to an emergent macro pattern,
it is hard to know (1) whether or not that social simulation in fact captures the
empirical reality of the emergence and, more critically, (2) even if all agree that
the social simulation accurately captures an instance of the emergence of a macro
pattern from a network of individual agents, there may be other networks and other
emergence processes that could also give rise to the same macro pattern.

Issue (1) is the issue of validation and it is addressed in Chap. 9 in this same
volume (David et al. 2017). My concern here is with issue (2), which Sawyer (2005)
called multiple realizability: a social simulation may accurately represent the social
mechanisms by which individual actions together give rise to an emergent macro
phenomenon. But for a given macrosocial phenomenon, there could potentially be
many different networks of people, acting in different combinations, that result in
different emergence processes that lead to the same macrosocial phenomenon. If so,
the social simulation would not provide a complete explanation of the macrosocial
phenomenon but instead would only provide a limited and partial explanation.

The usual response to the multiple realizability issue is to argue that in many
cases, the alternate realizations of the macro phenomena are not significantly
different from each other. After all, every basketball team has five different players,
but the fact that the five positions are occupied by different human beings does not
substantially change the possible ways that the five can interact and the possible
ways that plays emerge from the interactions of the five individuals. Some pairs
of realization are quite similar to each other, so similar that understanding one

http://dx.doi.org/10.1007/978-3-319-66948-9_9
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realization is tantamount to understanding the other one of the pair—without
necessarily developing an entirely distinct social simulation.

The problem with this response is that it fails in the face of wild disjunction
(Fodor 1974): when a given macro phenomenon has multiple realizations and those
realizations have no lawful relations with one another. If the multiple realizations
are wildly disjunctive, then a social simulation of one of the realizations does not
provide us with any understanding beyond that one realization. We are still left
needing explanations of all of the other realizations. In many cases, wild disjunction
is related to functionalist arguments (and the argument originated from functionalist
perspectives in the philosophy of mind: Fodor 1974). “Being a church” is more
likely to be multiply realized in wildly disjunctive fashion; if “church” is defined
in terms of the functional needs, it satisfies for its society rather than in terms of
structural features internal to the institution.

The mechanist could respond to wild disjunction concerns by empirically
identifying all of the different ways that the macro phenomenon in question might
emerge and then developing a suite of social simulations, each one of which
would represent one of the realizing mechanisms. Then, could we say that the
suite of social simulations, together, constituted a complete explanation of the
macro phenomenon? I think so, although I would prefer to speak of a suite of
“explanations” rather than to call the set a single explanation. The Stockholm
unemployment simulation might only work for societies with generous social
welfare systems; but then, another simulation could be developed for stingier
governments, and two simulations together are not oppressively large given the
outcome that unemployment everywhere is now fully explained.

The suite-of-simulation approach works fine as long as the number of realizing
social simulations is manageable. But at some point, a suite of simulations would
become so large that most sociologists would agree that it provided limited
understanding of a phenomenon. Is 200 too many to be a meaningful explanation?
Could as few as 20 still be too many? Even if it is computationally plausible and the
number of person-hours required to develop all of the simulations is not excessive, it
might nonetheless be of questionable value to undertake that work, because another
path toward social explanation is available—the covering law model.

Many philosophical advocates of mechanism believe that mechanistic explana-
tion is compatible with the existence of higher-level laws. Mechanisms are said
to explain laws (Beed and Beed 2000; Bunge 2004; Elster 1998). Bunge (2004)
and Little (1998) argued that causal mechanistic accounts are fully compatible
with covering law explanations; the mechanisms do the explanatory work, and
the covering laws provide a convenient shorthand that is often useful in scientific
practice. However, it is possible that social laws may exist that are difficult to explain
by identifying realizing mechanisms—in those cases where the laws relate wildly
disjunctive, multiply realized social properties. If so, the scope of mechanistic
explanation would be limited.

Many sociological theorists use the philosophical notion of emergence to argue
that collective phenomena are collaboratively created by individuals yet are not
reducible to individual action (Sawyer 2005). In the social sciences, emergence
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refers to processes and mechanisms of the micro- to macro-transition. Many of these
accounts argue that although only individuals exist, collectives possess emergent
properties that are irreducibly complex and thus cannot be reduced to individual
properties. Thus they reject sociological realism and are methodologically collec-
tivist. Other accounts argue that emergent properties are real.

The resolution to the apparent contradiction between mechanistic explanation
and social emergence is to develop a sufficiently robust account of emergence so that
mechanistic explanation and lawful explanation can be reconciled. Sawyer (2002,
2003b) proposed a version of emergence that he called nonreductive individualism
(NRI). Some emergent social properties may be real and may have autonomous
causal powers, just like real properties at any other level of analysis. Nonreductive
individualism argues that this is the case for social properties that are multiply
realized in wildly disjunctive mechanisms. To the extent that social properties are
multiply realized, artificial society simulations may be limited to the explanation of
individual cases that do not generalize widely, resulting in a case study approach
rather than a science of generalizable laws and theories. The emergentist nature
of NRI is compatible with a more limited form of mechanism but one that is
elaborated in a sociologically realist direction—with the mechanisms containing
explicit models of social properties at levels of analysis above the individual.

If a social property is multiply realized in many different (methodologically
individualist) mechanisms, a mechanistic explanation of any one realizing instance
will have limited explanatory power—particularly if the social property participates
in causal relations across its multiple realizations. A covering law approach
might be necessary to capture generalizations of higher-level phenomena across
different realizing mechanisms. Alternately, a mechanism could be proposed which
explicitly models emergent social properties, in addition to individuals and their
interactions. Although almost all artificial societies are currently individualist—with
no representation of higher-level social properties—there is no reason why computer
simulations could not be extended to model both individuals and macrosocial
phenomena, apart from an implicit commitment to methodological individualism.

14.6 Conclusion

Social simulations are almost all methodologically individualist, in that they
represent agents and their interactions, but not higher-level entities or properties. In
other words, social simulations are representations of the realizing mechanisms of
higher-level social properties. More generally, almost all agent-based simulations
are representations of a realizing mechanism of some system-level phenomenon.
Whether or not a complex system can be explained at the level of its realizing
mechanisms, or requires explanation at the level of emergent macro properties, is an
empirical question (Sawyer 2005). For example, it cannot be known a priori whether
or not a given social property can be given a useful mechanistic explanation in terms
of individuals—nor whether a given social property can be adequately simulated by
representing only individuals and their interactions in the model.
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If this “realizing mechanism” approach begins to seem limiting, then modelers
could respond by incorporating system-level entities into their simulations. For
example, sociologists could respond by developing simulations that contain the
terms and properties of macro sociology, in addition to individual properties and
relations. If macrosocial properties are indeed real, and have autonomous causal
powers, then to be empirically accurate, any model would have to incorporate
those properties. Although the social mechanism approach is commonly asso-
ciated with methodological individualism—because its advocates assume that a
social mechanism must be described in terms of individuals’ intentional states
and relations (e.g., Elster 1998; Hedström 2005)—there is no reason why social
simulations cannot include systems and mechanisms at higher levels of analysis.
The system dynamic models of an earlier era focused on macrosocial properties;
but with the availability of multi-agent technology, new hybrid simulations could be
developed that contain both societies of autonomous agents and explicit simulations
of emergent macrosocial properties.

To explore how we should interpret and understand simulations, I have drawn
on contemporary philosophical accounts of explanation and of causal mechanism.
I conclude by cautioning against being overly confident that agent-based simula-
tions, at least those that are based on mechanistic assumptions, provide complete
explanations of a given system-level phenomenon. The explanation may not be
complete even in those cases where the simulation is well conceived, is grounded
in empirical observation and theory, and generates emergent processes that lead
to empirically observed system outcomes. These successful simulations should be
considered to be explanations of a given realizing instance of an emergence process,
but not necessarily considered to be complete explanations of the target system
phenomenon.

The question for sociologists is ultimately what path should sociology take? All
sociologists define their goal to be the explanation of macrosocial phenomena—
of groups and organizations, rather than of single individuals. Many sociologists
believe that they can explain macrosocial phenomena without attending to the
specific realizing mechanisms at the level of individuals and their interactions.
These sociologists define sociology as the science of an autonomous social level of
analysis. The social mechanists believe that this is the wrong approach; instead, the
goal of sociology should be to identify and characterize these individual realizing
mechanisms. Mechanists believe that there can be no autonomous science at the
macrosocial level of analysis. These are the issues to be faced as we attempt to
interpret and understand social simulations.

The question for complexity researchers more generally is the same: Can a
mechanistic approach provide a complete explanation, or will scientific explanation
need to incorporate some higher-level properties and entities? The answer to this
question has direct implications for modelers. If the mechanistic approach is capable
of providing a complete explanation of a given phenomenon, then a strict agent-
based approach is appropriate. But if it is necessary to incorporate higher-level
properties or entities, then agent-based simulations will need to include model
entities that represent higher levels of organization.
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Further Reading

Bechtel and Richardson (1993) provide a discussion of a range of philosophical
issues related to the likely success of reductionist strategies in understanding and
explaining complex systems, inspired by connectionist accounts of cognition, but
relevant to complex systems at any level of analysis. Hedström (2005) makes a
strong case for reductionist explanation of social systems, using mechanistic expla-
nation and specifically multi-agent-based simulation in connection with empirical
study.

For an examination of the philosophical accounts of mechanistic explanation
and theories of emergence in sociology and philosophy, see Sawyer (2004). For an
extensive review of historical and contemporary theories of emergence in the social
sciences, primarily psychology and sociology, see Sawyer (2005). This advocates
that sociology should be the science of social emergence. Conte et al. (2001) is
a discussion between four different viewpoints specifically as they concern social
simulation.
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Chapter 15
Documenting Social Simulation Models: The
ODD Protocol as a Standard

Volker Grimm, Gary Polhill, and Julia Touza

Abstract The clear documentation of simulations is important for their communi-
cation, replication, and comprehension. It is thus helpful for such documentation to
follow minimum standards. The ‘overview, design concepts, and details’ document
protocol (ODD) is specifically designed to guide the description of individual-
and agent-based simulation models (ABMs) in journal articles. Popular among
ecologists, it is also increasingly used in the social simulation community. Here,
we describe the protocol and give an annotated example of its use, with a view
in facilitating its wider adoption and encouraging higher standards in simulation
description.

Why Read This Chapter?
To learn about the importance of documenting your simulation model and discover
a lightweight and appropriate framework to guide you in doing this.

15.1 Introduction and History

A description protocol is a framework for guiding the description of something, in
this case a social simulation model. It can be thought of as a checklist of things that
need to be covered and rules that should be followed when specifying the details of
a simulation (in a scholarly communication). Following such a protocol means that
readers can become familiar with its form and that key elements are less likely to
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be forgotten. This chapter describes a particular documentation protocol, the ODD
(pronounced ‘odd’ or ‘oh dee dee’) protocol.

The ODD protocol (Grimm et al. 2006, 2010; Polhill et al. 2008; Polhill 2010;
Müller et al. 2013) is a standard layout for describing individual- and agent-based
simulation models (ABMs), especially for journal articles, conference papers, and
other academic literature. It consists of seven elements which can be grouped into
three blocks: overview, design concepts, and details (hence, ‘ODD’; see Table 15.1).
The purpose of ODD is to facilitate writing and reading of model descriptions, to
better enable replication of model-based research, and to establish a set of design
concepts that should be taken into account whilst developing an ABM. It does this in
a relatively lightweight way, avoiding over formal approaches whilst ensuring that
the essentials of a simulation are explicitly described in a flexible yet appropriate
manner.

Originally, ODD was formulated by ecologists, where the proportion of ABMs
described using ODD is increasingly fast and might cross the 50% margin in the near
future. In social simulation, the acceptance of ODD has been slower. A first test, in
which three existing descriptions of land use models were reformulated according
to ODD, demonstrated the benefits of using ODD but also revealed that some
refinements were needed to make it more suitable for social simulation (Polhill et al.
2008). In 2010, an update of ODD was released (Grimm et al. 2010), which is based
on users’ feedback and a review of more than 50 ODD-based model descriptions
in the literature. In this update, ODD itself was only slightly modified, but the
explanation of its elements was completely rewritten, with the specific intention
of making it more suitable for social simulation.

Currently in social simulation, interest in ODD is also increasing (Polhill 2010).
An indicator for this is the inclusion of ODD chapters in recent reference books
(this volume; Heppenstall et al. 2012). ODD is also recommended by the Network
for Computational Modelling for SocioEcological Science (CoMSES Net) and the
Model Library of their node OpenABM.org. Moreover, a recent textbook of agent-
based modelling uses ODD consistently (Railsback and Grimm 2012) so that the
next generation of agent-based modellers is more likely to be familiar with ODD
and hence to use it themselves.

15.2 The Purpose of ODD

Why is ODD (or a protocol very much like it) needed? There are a number of
endeavours in agent-based social simulation that are facilitated through having a
common approach to describing the models that is aimed at being readable and
complete1:

1Many of these endeavours have been covered in submissions to the “model-to-model” series of
workshops, organised by members of the social simulation community (Hales et al. 2003; Rouchier

http://openabm.org
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• Communication is the most basic aim of anyone trying to publish their results.
For agent-based modellers, this can pose a particular challenge, as our models
can be complicated, with many components and submodels. As a critical mass of
papers using ODD develops, so readers of agent-based modelling papers will
find themselves sufficiently more familiar with papers structured using ODD
than those using an arbitrary layout devised by the authors that they will find
the former easier to read and understand than the latter.

• Replication, as we discuss later in this chapter, is a pillar of the scientific endeav-
our (Thiele and Grimm 2015). If our model descriptions are inadequate, our
results are not repeatable, and the scientific value of our work commensurately
reduced. ODD helps to encourage the adequacy of descriptions by saving authors
having to ‘reinvent the wheel’ each time they describe a model, by providing a
standard layout designed to ensure that all aspects of a model needed to replicate
it are included in the account.

• Comparing models is likely to become increasingly important as work in agent-
based modelling continues. If two or more research teams produce similar models
with different outcomes, comparing the models will be essential to identify the
cause of the variance in behaviour. Such comparisons will be much easier if all
teams have used the same protocol to describe the models. At a conceptual level,
the design concepts also enable comparison of models with greater differences
and application domains.

• Dialogue among disciplines can be encouraged through a standard that is used by
both the ecological and social simulation communities. This is especially useful
for those developing coupled socio-ecosystem models (Polhill et al. 2008), which
is a rapidly growing area of research (Polhill et al. 2011).

In the following, we briefly describe the rationale of ODD and how it is used,
provide an example model description, and finally discuss benefits of ODD, current
challenges, and its potential future development.

15.3 The ODD Protocol

A core principle of ODD is that first an ‘overview’ of a model’s purpose, structure,
and processes should be provided, before ‘details’ are presented. This allows readers
to quickly get a comprehensive overview of what the model is, what it does, and
for what purpose it was developed. This follows the journalistic ‘inverted pyramid’
style of writing, where a summary is provided in the first one or two paragraphs,
and progressively further detail is added on the story the further on you read
(see, e.g. Wheeler 2005). It allows the reader to easily access the information they
are interested in at the level of detail they need. For experienced modellers, this

et al. 2008. The second workshop was held as a parallel session of the ESSA 2004 conference: see
http://www.insisoc.org/ESSA04/M2M2.htm).

http://www.insisoc.org/ESSA04/M2M2.htm
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overview part is sufficient to understand what the model is for, to relate it to other
models in the field, and to assess the overall design and complexity.

Before presenting the ‘details’, ODD requires a discussion of whether and how
ten design concepts were taken into account whilst designing the model. This
‘design concept’ part of ODD does not describe the model itself but the principles
and rationale underlying its design. ‘Design concepts’ are thus not needed for
model replication but for making sure that important design decisions were made
consciously and that readers are fully aware of these decisions. For example, it
is important to be clear about what model output is designed to emerge from
the behaviour the model’s entities and their interactions and what, in contrast, is
imposed by fixed rules and parameters. Ideally, key behaviours in a model emerge,
whereas other elements might be imposed. If modellers are not fully aware of this
difference, which is surprisingly often the case, they might impose too much so that
model output is more or less hard-wired into its design, or they might get lost in a too
complex model because too much emergence makes it hard to understand anything.
Likewise, the design concept ‘stochasticity’ requires that modellers explicitly say
what model processes include a stochastic component, why stochasticity was used,
and how it was implemented. Note that, in contrast to the seven elements of ODD,
the sequence in which design concepts are described can be changed, if needed, and
design concepts that are not relevant for the model can be omitted.

The ‘detail’ part of ODD includes all details that are needed to re-implement
the model. This includes information about the values of all model entities’ state
variables and attributes at the beginning of a simulation (‘initialisation’), the
external models, or data files that are possibly used as ‘input data’ describing the
dynamics of one or more driving contextual or environmental variables (e.g. rainfall,
market price, disturbance events) and ‘details’ where the submodels representing
the processes listed in ‘process overview and scheduling’ are presented. Here, it is
recommended for every submodel to start with the factual description of what the
submodel is and then explain its rationale.

Model parameters should be presented in a table, referred to in the ‘submodel’
section of ODD, including parameter name, symbol, reference value, and—if the
model refers to real systems—unit, range, and references, or sources for choosing
parameter values. Note that the simulation experiments that were carried out to
analyse the model, characterised by parameter settings, number of repeated runs, the
set of observation variables used, and the statistical analyses of model output, are not
part of ODD but ideally should be presented in a section ‘simulation experiments’
directly following the ODD-based model description.

15.4 How to Use ODD

To describe an ABM using ODD, the questions listed in Table 15.1 have to be
answered. The identifiers of the three blocks of ODD elements—overview, design
concepts, details—are not used themselves in ODD descriptions (except for ‘design
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concepts’, which is the only element of the corresponding block). Rather, the seven
elements are used as numbered headlines in ODD-based model descriptions. For
experienced ODD users, the questions in Table 15.1 are sufficient. For beginners,
however, it is recommended to read the more detailed description of ODD in Grimm
et al. (2010) and to use the template, which provides additional questions and
examples and which is available via download.

15.5 An Example

In the supplementary material of Grimm et al. (2010), publications are listed
which use ODD in a clear, comprehensive, and recommendable way. Many further
examples are provided in the textbook by Railsback and Grimm (2012). In Grimm
and Railsback (2012), Schelling’s segregation model, as implemented in the
model library of the software platform NetLogo (Wilensky 1999), is used as an
example. Here, we demonstrate the process of model documentation using ODD
by describing a model developed by Deffuant et al. (2002), which explores the
emergence of extreme opinions in a population. We choose this model because it
is simple but interesting, and opinion dynamic models are quite well known in the
social simulation community. It is also one of the introductory examples in Gilbert
(2007). The ODD for the Deffuant et al. model is interspersed with comments on
the information included, with a view to provide some guidelines for those applying
ODD to their own model. Clearly this is a very simple example, and many models
would require more extensive description. The parts of ODD are set in italics and
indented to distinguish them from comments. Normally the ODD description would
simply form part of the text in the main body of a paper or in an appendix.2

15.5.1 Purpose

The model’s purpose is to study the evolution of the distribution of opinions in a population
of interacting individuals, which is under the influence of extremists’ views. Specifically, it
aims to answer how marginal extreme opinions can manage to become the norm in large
parts of a population. The central idea of the model is that people who have more extreme
opinions are more confident than people with moderate views. More confident people are,
however, assumed to more easily affect the opinion of others, who are less confident.

Comments The purpose section is deliberately brief. Even for more sophisticated
models than this, we would not expect to see much more text here. This would
otherwise repeat information in the rest of the paper. However, since the ODD,

2It is often the case that a substantial description needs to be included in the main text so readers
can get an idea of what is being discussed, but maybe a more complete description might be added
in an appendix.
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to some extent, needs to stand alone and be comprehensive, the summary of the
purpose is included as here. It is important to be specific here, for example, by using
a statement starting with ‘specifically’.

15.5.2 Entities, State Variables, and Scales

The model includes only one type of entity: individuals. They are characterized by
two continuous state variables, opinion x and uncertainty u. Opinions ranges from �1
to 1. Individuals with an opinion very close to x D �1 or C1 are referred to as
‘extremists’, all other individuals are ‘moderates’. Uncertainty u defines an interval around
an individuals’ opinion and determines whether two individuals interact and, if they do, on
the relative agreement of those two individuals which then determines how much opinion
and uncertainty change in the interaction. One-time step of the model represents the time in
which all individuals have randomly chosen another individual and possibly interacted with
it. Simulations run until the distribution of opinions becomes stationary.

Comments For larger models, this section has the potential to get quite long if
written in the same style as this example, which has only one type of entity, with
two state variables. Other articles have taken the approach of using tables to express
this information, one table per entity, with one row per state variable associated with
that entity (see, e.g. Polhill et al. 2008); this row should include the variable’s name,
meaning, possible values, and physical units, if applicable. Other articles have used
UML class diagrams (e.g. Bithel and Brasington 2009), as suggested in the original
ODD article (Grimm et al. 2006); however, these do not provide a means for giving
any description, however brief, of each state variable. Simply listing the entities and
the data types of the state variables does not provide all the information that this
element of ODD should provide. This, together with the fact that UML is focused
on object-oriented design (which is used to implement the majority of ABMs but
by no means all: NetLogo, for example, is not an object-oriented language, and
many, particularly in agent-based social simulation, use declarative programming
languages), meant that the recommendation to use UML was retracted in the recent
ODD update (Grimm et al. 2010).

In declarative programming languages, the entities and their state variables may
not be so explicitly represented in the program code as they are in object-oriented
languages. For example, this information may be implicit in the arguments of rules.
However, many declarative programs have a database of knowledge that the rules
operate on. This database could be used to suggest entities and state variables. For
example, a Prolog program might have a database containing the assertion person
(Volker) and nationality (Volker, German). This suggests that a ‘person’ is an entity,
and ‘nationality’ is a state variable. (It might be reasonable to suggest in general that
assertions with one argument suggest entities and those with two state variables.)
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15.5.3 Process Overview and Scheduling

In each time step, each individual chooses randomly one other individual to interact with,
then the relative agreement between these two agents is evaluated, and the focal individual’s
opinion and uncertainty are immediately updated as a result of this opinion interaction.
Updating of state variables is thus asynchronous. After all individuals have interacted, a
convergence index is calculated which captures the level of convergence in the opinions of
the population, additionally, and output updated (e.g. draw histogram of the population’s
opinions; write each individual’s opinion to a file).

Comments This section briefly outlines the processes (or submodels) that the
model runs through in every time step (ignoring initialisation) and in what order.
Notice how each process is given an emphasised label, which corresponds to
subsection headings in the submodel section; the same label should also be used
in the program implementing the model. Whilst the ODD protocol does not make
such precise stipulations as to formatting, there should be a clear one-to-one
correspondence between the brief outlines of processes here and the details provided
on each in the submodel section.

In describing larger models than Deffuant et al.’s, it may be appropriate to simply
present the process overview as a list. Many models have a simple schedule structure
consisting of a repeated sequence of actions; such a list would clearly show this
schedule. However, others use more complicated scheduling arrangements (e.g.
dynamic scheduling). In such cases, the rules determining when new events are
added to the schedule would need to be described, as well as an (unordered) list of
event types, each corresponding to a subsection of ‘submodels’.

The ‘schedule’ in a declarative model may be even less clear, as it will depend on
how the inference engine decides which rules to fire. However, declarative programs
are at least asked a query to start the model, and this section would be an appropriate
place to mention that. Some declarative programs also have an implied ordering to
rule firing. For example, in Prolog, the rule a: x, y, z. will, in the event that the
inference engine tries to prove a, try to prove x, then y, and then z. Suppose the
model is started with the query. (a) In describing the model here, it might suffice
simply to summarise how x, y, and z change the state of the model. Any subrules
called by the inference engine trying to prove these could be given attention in the
detail section.

The declarative programmer may also use language elements (such as cuts in
Prolog) to manage the order of execution. In deciding which rules to describe here,
a declarative modeller might focus on those changing the value of a state variable
over time. The key point is that the program will do something to change the values
of state variables over time in the course of its execution. Insofar as that can be
described in a brief overview, it belongs here.
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15.5.4 Design Concepts

Basic principles—This model extends earlier stylised models on opinion dynamics, which
either used only binary opinions instead of a continuous range of opinions or where
interactions only depended on whether opinion segments overlapped, but not on relative
agreement (for references, see Deffuant et al. 2002).

Emergence—The distribution of opinions in the population emerges from interactions
among the individuals.

Sensing—Individuals have complete information of their interaction partner’s opinion
and uncertainty.

Interaction—Pairs of individuals interact if their opinion segments, [x � u, x C u],
overlap.

Stochasticity—The interaction between individuals is a stochastic process because
interaction partners are chosen randomly.

Observation—Two plots are used for observation: the histogram of opinions and the
trajectories of each individual’s opinion. Additionally, a convergence index is calculated.

Comments Note that the design concepts are only briefly addressed. This would
be expected in larger models too. Note also that several design concepts have been
omitted because they are not appropriate to the model. Specifically, adaptation,
objectives, learning, prediction, and collectives have been left out here: individuals
change their opinion after interaction, but this change is not adaptive since it is
not linked to any objective; there are also no collectives since all individuals act
on their own. Nevertheless, most models should be able to relate to some basic
principles, emergence, interactions, observation, and most often also stochasticity.
Small models might use the option of concatenating the design concepts into a single
paragraph to save space.

15.5.5 Initialisation

Simulations are run with 1,000 individuals, of which a specified initial proportion, pe, are
extremists; pC denotes the proportion of ‘positive’ extremists, and p� are the proportion of
‘negative’ extremists. Each moderate individual’s initial opinion is drawn from a random
uniform distribution between �1 and C1. Extremists have on opinion of either �1 or C1.
Initially, individuals have a uniform uncertainty, which is larger for moderates than for
extremists.

Comments This explains how the simulation is set up before the main schedule
starts. In other models, this might include empirical data of various kinds from, for
example, surveys. The key question to ask here, particularly given the potential for
confusion with the next section (‘input data’), is whether the data are used only to
provide a value for a state variable before the schedule runs.
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15.5.6 Input Data

The model does not include any input of external data.

Comments These are time-series data used to ‘drive’ the model. Some of these data
may specify values for variables at time zero (i.e. during initialisation); however, if
a data series specifies values for any time step other than during initialisation, then it
is input data rather than initialisation. It is also important not to confuse ‘input data’
with parameter values.

15.5.7 Submodels

All model parameters are listed in the following table.

Parameter Description

N Number of individuals in population
U Initial uncertainty of moderate individuals
� Speed of opinion dynamics
pe Initial proportion of extremists
pC Initial proportion of positive extremists
p� Initial proportion of negative extremists
ue Initial uncertainty of extremists

Opinion interaction—This is run for an agent j, whose ‘opinion segment’ sj is defined in
terms of its opinion xj and uncertainty uj as:

sj D �
xj–uj; xj C uj

�

The length of the opinion segment is 2uj and characterises an individual’s overall
uncertainty.

In opinion interaction, agent j (the influenced, focal, or ‘calling’ individual) is paired
with a randomly chosen agent, i, the influencing individual. The ‘overlap’ of their opinion
segments, hij, is then computed as:

hij D min
�
xi C ui; xj C uj

�
–max

�
xi–ui; xj–uj

�
:

This overlap determines whether in opinion interaction will take place or not: Agent j
will change its opinion if hij > ui, which means that overlap of opinions is higher than the
uncertainty of the influencing agent (see Fig. 15.1).

For opinion interactions, the relative agreement of the two agents’ opinions, RA, is
calculated by dividing the overlap of their opinion segments (hij) minus the length of
the nonoverlapping part of influencing individual’s opinion segment, (2ui � hij), and this
difference is divided by agent i’s opinion segment length, 2ui (Fig. 15.1 depicts these terms
graphically):

RA D �
hij–

�
2ui–hij

��
=2ui D 2

�
hij–ui

�
=2ui D �

hij=ui

�
–1
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Fig. 15.1 Visualisation of
the individual’s opinions,
uncertainties, and overlap in
opinions in the model of
(Deffuant et al. 2002)

Opinion
segment of
individual j

Opinion segment
of individual i

Overlap hij

Non-overlap 2ui -hij

xi

xj

The opinion and uncertainty of agent j are then updated as follows:

xj D xj C � RA
�
xi C xj

�

uj D uj C � RA
�
ui C uj

�

Thus, the new values are determined by the old values and the sum of the old values of
both interacting individuals multiplied by the relative agreement, RA, and by parameter �,
which determines how fast opinions change.

The main features of this interaction model are, according to Deffuant et al. (2002):

• Individuals not only influence each other’s opinions but also each other’s uncertainties.
• Confident agents, who have low uncertainty, are more influential. This reflects the

common observation that confident people more easily convince more uncertain people
than the other way round—under the conditions that their opinions are not too different
at the beginning.

Calculate convergence index—This index, y, is used as a summary model output for
sensitivity analysis and an exploration of the model’s parameter space. It is defined as:

y D qC C q�

where qC and q� are the proportions of initially moderate agents which become extremists
in the positive extreme or negative extreme, respectively. If after reaching the steady state,
none of the initially moderate agents became extremist, the index would take a value of zero.
If half of them become positive extremists and the other half becomes negative extremists,
the index would be 0.5. Finally, if all the initially moderate agents converge to only one
extreme, the index would be one. Note that for calculating y, ‘positive’ or ‘negative’ extreme
has to be defined via an interval close to the extreme, with a width of, for example, 0.15.

Comments Here, details on the two processes described in Sect. 3 are provided,
in sufficient depth to enable replication, i.e. opinion interaction and calculate
convergence index. Note how these names match with those used in the process
overview in Sect. 3.
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Authors describing larger models may find journal editors protesting at the length
of the ODD if all submodels are described in the detail required. There are various
ways such constraints can be handled. One is to include the submodels in an
appendix or supplementary material to the paper. Another is to provide them as a
technical report accessible separately (e.g. on a website) and referred to in the text. If
space is not too limited, a summary of each submodel could be provided in the main
text, longer than the brief description in the process overview but shorter than the full
detail, the latter being provided separately. For very large models or where space is
highly constrained, there may be little room for much more than the three overview
sections in the journal article; again, making the full ODD available separately is a
possible solution. Nevertheless, excluding the ‘submodel’ element entirely from the
main text should be avoided because this would mean to ask readers to accept, in the
main text of the article, the model as a black box. Description of the most important
processes should therefore be included also in the main text.

15.6 Discussion

Since the example model by Deffuant et al. (2002) is very simple, using ODD here
comes with the cost of making the model description longer than the original one,
through requiring the ODD labels. The original model is actually relatively clear and
easy to replicate (which might partly explain this model’s success). However, easy
replication is much more the exception than the rule (Hales et al. 2003; Rouchier et
al. 2008; Thiele and Grimm 2015), and the more complex an ABM, the higher the
risk that not all information is provided for unambiguous replication.

ODD facilitates writing comprehensive and clear documentations of ABMs.
This does not only facilitate replication; it also makes writing and reading model
documentations easier. Modellers no longer have to come up with their own format
for describing their model, and readers know once they are familiar with the
structure of ODD, exactly where to look for what kind of information.

Whether or not to use ODD as a standard format for model descriptions might
look like a rather technical question, but it has fundamental consequences, which
go far beyond the issue of replication. Once ODD is used as a standard, it will
be become much easier to compare different models addressing similar questions.
Even now, ODD can be used to review models in a certain field, by rewriting
existing model descriptions according to ODD (Grimm et al. 2010). Building blocks
of existing models, in particular specific submodels, which seem to be useful in
general, will be much easier to identify and reuse in new models. This is particular so
for ABMs representing human behaviour, and decisionmaking. Müller et al. (2013)
found ODD too coarse for capturing all essential elements of the decision-making
submodel in a systematic way; they therefore extended ODD to ODD C D, with the
third ‘D’ standing for ‘decisionmaking’. Most importantly, however, using ODD
affects the way we design and formulate ABMs in the first place. After having
used ODD for documenting two or three models, you start formulating ABMs by
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answering the ODD questions: What ‘things’ or entities do I need to represent in
my model? What state variables and behavioural attributes do I need to characterise
these entities? What processes do I want to represent explicitly, and how should
they be scheduled? What are the spatial and temporal extent and resolution of
my model, and why? What do I want to impose, and what to let emerge? What
kind of interactions does the model include? For what purposes should I include
stochasticity? How should the model world be initialised, what kinds of input data
do I need, and how should I, in detail, formulate my submodels?

These questions do not impose any specific structure on simulation models, but
they provide a clear checklist for both model developers and users. This helps
avoiding ‘ad hocery’ in model design (Heine et al. 2005). Modellers can also more
easily adopt designs of existing models and don’t have to start from scratch all the
time, as in most current social simulation models.

Criticisms of ODD include Amouroux et al. (2010), who, acknowledging its
merits, find the protocol ambiguous and insufficiently specified to enable replica-
tion. This article pertained to the Grimm et al. (2006) first description of ODD. The
update in Grimm et al. (2010) endeavoured to address issues such as these. However,
the success of the latter article in so doing and indeed any future revisions of ODD
can only be measured by comparing replication efforts based on ODD descriptions
with those not conforming to any protocol—the norm prior to 2006 when ODD was
first published. As suggested above, the record for articles not using ODD has not
been particularly good: Rouchier et al. (2008) observe in their editorial to a special
section of JASSS on the third Model-2-Model workshop that several researchers
attempting replications have to approach the authors of the original articles to
disambiguate model specifications. If the models were adequately described in the
original articles, this should not be necessary.

Polhill et al. (2008) also observed that those used to object-oriented designs
for modelling will find the separation of what will for them effectively amount to
instance variables and methods (state variables and processes, respectively) counter-
intuitive, if indeed not utterly opposed to encapsulation— one of the key principles
of object orientation. For ODD, however, it is the reader who is important rather
than programming principles intended to facilitate modularity and code reuse. It is
also important that, as a documentation protocol, ODD does not tie itself to any
particular ABM implementation environment. From the perspective of the human
reader, it is illogical (to us at least) to discuss processes before being informed what
it is the processes are operating on. Encapsulation is about hiding information; ODD
has quite the opposite intention.

The main issue with ODD in social simulation circles as opposed to ecology,
from which it originally grew, pertains to its use with declarative modelling
environments. This matter has been raised in Polhill et al. (2008) and acknowledged
in Grimm et al. (2010). Here we have tried to go further towards illustrating how
a declarative modeller might prepare a description of their model that conforms
to ODD. However, until researchers using declarative environments attempt to use
ODD when writing an article and feedback on their findings, this matter cannot be
properly addressed.
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Certainly, ODD is not the silver bullet regarding standards for documenting
ABMs. Nevertheless, even at the current stage, its benefits by far outweigh its
limitations, and using it more widely is an important condition for further devel-
opments. Still, since ODD is a verbal format; not all ambiguities can be prevented.
Whilst a more formal approach using, for example, XML or UML (e.g. Triebig
and Klügl 2010 and for ABMs of land use/cover change, the MRPOTATOHEAD
framework—Livermore 2010; Parker et al. 2008) might address such ambiguities,
we consider it important that written, natural language formulations of ABMs exist
(Grimm and Railsback 2005). This is the only way to make modelling, as a scientific
activity, independent of technical aspects of mark-up or programming languages and
operating systems. Further, verbal descriptions force us to think about a model, to
try to understand what it is, what it does, and why it was designed in that way
and not another (J. Everaars, pers. comm.). We doubt that a ‘technical’ standard for
documenting ABMs—one that can be read by compilers or interpreters, would ever
initiate and require this critical thinking about a model.

Nevertheless, it is already straightforward to translate ODD model description to
NetLogo programs because much of the way models which are written in NetLogo
correspond to the structure of ODD: the declaration of ‘entities, state variables,
and scales’ is done via NetLogo’s globals, turtles-own, and patches-own primitives.
‘Initialisation’ is done via the setup procedure, ‘process overview and scheduling’
which corresponds to the go procedure. ‘Details’ are implemented as NetLogo
procedures, and ‘design concepts’ can be included, (as indeed can the entire ODD
model description), on the ‘information’ tab of NetLogo’s user interface.

15.7 Conclusion

Clearly describing simulations well so that other researchers can understand a sim-
ulation is important for the scientific development and use of complex simulations.
It can help in the assessment and comprehension of simulation results by readers
replicating simulations for checking and analysis by other researchers, transferring
knowledge embedded within simulations from one domain to another, and allowing
simulations to be better compared. It is thus an important factor for making use
of simulations more rigorous and useful. A protocol such as ODD is useful in
standardising such descriptions and encouraging minimum standards. As the field
of social simulation matures, it is highly likely that the use of a protocol such as
ODD will become standard practice.

The investment in learning and using ODD is minimal, but the benefits, both for
its user and the scientific community, can be huge. We therefore recommend learn-
ing and testing ODD by rewriting the model description of an existing, moderately
complex ABM, and, in particular, using ODD to formulate and document the next
ABM you are going to develop.
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Further Reading

Railsback and Grimm’s (2012) textbook introduces to agent-based modelling with
examples described using ODD. The OpenABM website (http://openabm.org) is a
portal specifically designed to facilitate the dissemination of simulation code and
descriptions of these using the ODD protocol. The original reference document for
ODD is Grimm et al. (2006) with the most recent update being Grimm et al. (2010).
Polhill (2010) is an overview of the 2010 update of ODD written specifically with
the social simulation community in mind.
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Chapter 16
Utility, Games and Narratives

Guido Fioretti

Abstract This chapter provides a general overview of theories and tools to model
decision-making. In particular, utility maximization and its application to collective
decision-making, i.e. Game Theory, are discussed in detail. The most important
exemplary games are presented, including the Prisoner’s Dilemma, the Game
of Chicken and the Minority Game, also known as the El Farol Bar Problem.
After discussing the paradoxes and pitfalls of utility maximization, an alternative
approach is introduced, which is based on seeking coherence between competing
interpretations. An assessment of the pros and cons of competing approaches to
modelling decision-making concludes the chapter.

Why Read This Chapter?
To appreciate how decision-making can be modelled in terms of utility maximiza-
tion and game theory. To understand some of the paradoxes, limitations and major
criticism of this approach and some of the alternatives.

16.1 Introduction

This chapter provides a general overview of theories and tools to model individual
and collective decision-making. In particular, stress is laid on the interaction of
several decision-makers.

A substantial part of this chapter is devoted to utility maximization and its
application to collective decision-making, known as Game Theory. However, the
pitfalls of utility maximization are thoroughly discussed, and the radically alterna-
tive approach of viewing decision-making as constructing narratives is presented
with its emerging computational tools. In detail, the chapter is structured as follows.

Section 16.2 presents utility maximization and Game Theory with its Nash
equilibria. The most important prototypical games are expounded in this section.
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Section 16.3 presents games that are not concerned with Nash equilibria. Section
16.4 illustrates the main paradoxes of utility maximization as well as the patches
that have been proposed to overcome them. Section 16.5 expounds the vision of
decision-making as constructing a narrative, supported by an empirical case study.
Section 16.6 aims at providing computational tools for this otherwise literary vision
of decision-making. Finally, Section 16.7 concludes by assessing the pros and cons
of competing approaches.

This chapter touches so many issues that a complete list of references to the
relevant literature would possibly be longer than the chapter itself. Instead of
references, a guide to the most relevant bibliography is provided at the end of the
chapter.

16.2 Utility and Games

Let fa1, a2, : : : am g be a set of alternatives. Let ai denote a generic alternative,
henceforth called the i-th alternative where i D 1 , 2 , : : : m.

By selecting an alternative, a decision-maker obtains one out of several possible
consequences. Let fci1, ci2, : : : cin g be the set of possible consequences of alterna-
tive ai. Let cij denote a consequence of ai, where i D 1 , 2 , : : : m and j D 1 , 2 , : : : ni.
The expected utility of alternative ai is:

u .ai/ D
niX

jD1

p
�
cij

�
u

�
cij

�
(16.1)

where p(cij) is the probability of obtaining consequence cij and u(cij) is the utility of
consequence cij.

It is suggested that the one alternative should be chosen that maximizes expected
utility. Frank Ramsey, Bruno De Finetti and Leonard Savage demonstrated that this
is the only choice coherent with a set of postulates that they presented as self-
evident.

Among these postulates, the following ones have the strongest intuitive appeal:

Transitivity: transitivity of preferences means that if ai � aj and aj � ak, then
ai � ak.

Independence: independence of irrelevant alternatives means that ai � aj if
ai [ ak � aj [ ak, 8ak.

Completeness: completeness means that 8(ai, aj), a preference relation � is
defined.

Utility maximization is neither concerned with conceiving alternatives nor with
the formation of preferences, which are assumed to be given and subsumed by the
utility function. Probabilities may eventually be updated by means of frequency
measurement, but at least their initial values are supposed to be given as well. Thus,
utility maximization takes as solved many of the problems with which its critics are
concerned.
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Utility maximization takes a gambler playing dice or roulette as its prototypical
setting. Indeed, in this setting the set of alternatives is given, utilities coincide
with monetary prizes and probabilities can be assessed independently of utilities.
By contrast, for some critics of utility maximization, gambling is not an adequate
prototype of most real-life situations.

The interaction of several utility-maximizing decision-makers is covered by
Game Theory. Game Theory assumes that collective decision-making is the com-
bination of several individual decision processes, where each individual maximizes
his utility depending on the alternatives selected by the other individuals. Since
selecting an alternative implies considering what alternatives other players may
select, alternatives are generally called strategies in this context.

Utility is called payoff in Game Theory. Games in which one player does better
at another’s expense are called zero-sum games. Games may be played once, or they
may be repeated.

The bulk of Game Theory is concerned with equilibria. If each player knows the
set of available strategies and no player can benefit by changing his or her strategy
while the other players keep theirs unchanged, then the current choice of strategies
and the corresponding payoffs constitute a Nash equilibrium. Since this implies
stepping in another player’s shoes in order to figure out what she would do if one
selects a particular strategy, Nash equilibria are fixed points in self-referential loops
of the kind “I think that you think that I think : : : ”.

Note that being at a Nash equilibrium neither implies that each player reaches
the highest possible payoff that she can attain nor that the sum of all payoffs of
all players is the highest that can be attained. This is eventually a concern for
economics, for it implies that individual interests may not produce the common
good.

If a game is repeated, a Nash equilibrium may be realized either with pure
strategies, meaning that players choose consistently one single alternative, or mixed
strategies, meaning that players select one out of a set of available strategies
according to a probability distribution. Accepting the idea of mixed strategies often
allows to find Nash equilibria where there would be none if only pure strategies
are allowed. However, the realism of random decision-makers choosing strategies
according to a probability distribution is at least questionable.

Most of the games analysed by Game Theory involve two or in any case
a very limited number of players. On the contrary, evolutionary games concern
large populations of players playing different strategies that are subject to an
evolutionary dynamics regulated by replicator equations. Successful strategies
replicate and diffuse; unsuccessful strategies go extinct. Occasionally, new strategies
may originate by random mutation.

The equilibrium concept of evolutionary games is that of evolutionarily stable
strategies. An evolutionary stable strategy is such that, if almost every member
of the population follows it, no mutant can successfully invade. Alternatively,
evolutionary games may be played in order to observe typical dynamics, in which
case they become akin to the influence games that will be handled in Sect. 16.3.
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The following games propose prototypical modes of human interaction. Games
used by experimental economics in order to evince human attitudes do not pertain
to this list.

16.2.1 The Battle of Sexes

Imagine a couple where the husband would like to go to the football game, whereas
the wife would like to go to the opera. Both would prefer to go to the same place
rather than different ones.

The payoff matrix in Fig. 16.1 is an example of the Battle of Sexes, where
the wife chooses a row and the husband chooses a column. Aside, a generic
representation of the game where L < M.

This representation does not account for the additional harm that might come
from going to different locations and going to the wrong one, i.e. the husband goes
to the opera while the wife goes to the football game, satisfying neither. Taking
account of this effect, this game would bear some similarity to the Game of Chicken
of Sect. 16.2.7.

This game has two pure-strategy Nash equilibria, one where both go to the opera
and another where both go to the football game. Furthermore, there is a Nash
equilibrium in mixed strategies, where the players go to their preferred event more
often than to the other one.

None of these equilibria is satisfactory. One possible resolution involves a
commonly observed randomizing device, e.g. the couple may agree to flip a coin
in order to decide where to go.

Fig. 16.1 A payoff matrix for the Battle of the Sexes (left) and its generic representation (right).
The left number is the payoff of the row player (wife); the right number is the payoff of the column
player (husband). In this generic representation, L is the payoff of the least preferred alternative,
whereas M is the payoff of the most preferred alternative
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16.2.2 The Stag Hunt

Rousseau described a situation where two individuals agree to hunt a stag, which
none of them would be able to hunt alone. One hunter may eventually notice a
hare and shoot at it. This would destroy the stag hunt so the other hunter would get
nothing.

An example of the payoff matrix for the stag hunt is pictured in Fig. 16.2, along
with its generic representation. The stag hunt requires that C > B 	 D > S.

This game has two pure-strategy Nash equilibria, one where both hunters hunt
the stag and the other one where both hunters hunt a hare. The first equilibrium
maximizes payoff, but the second equilibrium minimizes risk. There exists also a
mixed-strategy Nash equilibrium, but no payoff matrix can make the hunters play
“stag” with a probability higher than 1/2.

The stag hunt exemplifies the idea of society originating out of contracts between
individuals. The examples of “social contract” provided by Hume are stag hunts:

• Two individuals must row a boat. If both choose to row, they can successfully
move the boat, but if one does not, the other wastes his effort.

• Two neighbours wish to drain a meadow. If they both work to drain it, they will
be successful, but if either fails to do his part, the meadow will not be drained.

Several animal behaviours have been described as stag hunts. For instance, orcas
corral large schools of fish to the surface and stun them by hitting them with their
tails. This works only if fishes do not have ways to escape, so it requires that all
orcas collaborate to kill all fishes they caught rather than catching a few of them.

Fig. 16.2 A payoff matrix for the stag hunt (left) and its generic representation (right). The left
number is the payoff of the row player; the right number is the payoff of the column player. In
this generic representation, C is the payoff that accrues to both players if they cooperate, D is the
payoff that accrues to both players if they defect from their agreement, S is the sucker’s payoff and
B is the betrayer’s payoff
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16.2.3 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a central subject in economics, for it apparently
contradicts its basic assumption that common good arises out of self-interested
individuals. This difficulty is eventually overcome by repeating the game.

The basic formulation of the Prisoner’s Dilemma is as follows. Two suspects,
A and B, are arrested by the police. Having insufficient evidence for conviction,
the police visits them separately, offering each prisoner the following deal: if one
testifies for prosecution against the other and the other remains silent, the betrayer
goes free, and the silent accomplice receives the full 10-year sentence. If both stay
silent, both prisoners are sentenced to only 6 months in jail for a minor charge. If
each betrays the other, each receives a 5-year sentence. Each prisoner must make
the choice of whether to betray the other or to remain silent; unfortunately, neither
prisoner knows what choice the other prisoner made.

The Prisoner’s Dilemma describes any situation where individuals have an
interest to be selfish, though if everyone cooperates, a better state would be attained.
Examples may include unionizing, paying taxes, not polluting the environment or
else. Figure 16.3 illustrates a payoff matrix for the Prisoner’s Dilemma as well as
its generic representation. The Prisoner’s Dilemma requires that B > C > D > S.

The Prisoner’s Dilemma has only one Nash equilibrium at (D, D). Notably, all
individual incentives push towards this equilibrium. Nevertheless, this equilibrium
is not socially optimal.

Eventually, the difficulty raised by the Prisoner’s Dilemma can be overcome if
players can repeat the game (which requires 2C > B C S). In particular, by playing
the Prisoner’s Dilemma as an evolutionary game with large numbers of players and
strategies, it is possible that islands of cooperation sustain themselves in a sea of
selfish choices. One possibility for islands of cooperation to emerge is to allow
reciprocity, e.g. with a “tit-for-tat” strategy: start with cooperating whenever you
meet a new player, but defect if the other does. Another possibility is that players
cooperate when they meet players that exhibit a randomly selected tag—e.g. a tie
may be worn in order to inspire confidence—so that islands of cooperation emerge
even if agents have no memory.

Fig. 16.3 A payoff matrix for the Prisoner’s Dilemma (left) and its generic representation (right).
The left number is the payoff of the row player; right number is the payoff of the column player. In
this generic representation, C is the payoff if both players cooperate, D is the payoff if both defect
from their agreement, S is the sucker’s payoff and B is the betrayer’s payoff
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16.2.4 The Traveller’s Dilemma

The Traveller’s Dilemma is a non-zero-sum game in which two players attempt to
maximize their own payoff, without any concern for the other player’s payoff. It is
a game that aims at highlighting a paradox of rationality. It is a thought experiment
on the following problem.

An airline loses two suitcases belonging to two different travellers. The suitcases
contain identical antiques. An airline manager tasked to settle the claims of both
travellers explains that the airline is liable for a maximum of $100 per suitcase,
and in order to determine a honest appraised value of the antiques, the manager
separates both travellers and asks each of them to write down the amount of their
value at no less than $2 and no more than $100. He also tells them that if both write
down the same number, he will treat that number as the true value of both suitcases
and reimburse both travellers that amount. However, if one writes down a smaller
number than the other, this smaller number will be taken as the true value, and both
travellers will receive that amount along with a bonus/malus: $2 extra will be paid
to the traveller who wrote down the lower value and a $2 deduction will be taken
from the person who wrote down the higher amount. The challenge is: what strategy
should both travellers follow in order to decide what value they should write down?

If this game is actually played, nearly all the time, everyone chooses $100 and
gets it. However, rational players should behave differently.

Rational players should value the antique slightly less than their fellow traveller,
in order to get the bonus of $2. For instance, by pricing at $99, one would get $101,
whereas the opponent would get $97. However, this triggers an infinite regression
such that $2 is the only Nash equilibrium of this game. Thus, being rational does
not pay.

The Traveller’s Dilemma suggests that in reality people may coordinate and
collaborate because of their bounded rationality, rather than in spite of it. If they
would be smarter than they are, they would obtain less.

16.2.5 The Dollar Auction

The dollar auction is a non-zero-sum sequential game designed to illustrate a
paradox brought about by rational choice theory. In this game, players with perfect
information are compelled to make an ultimately irrational decision based on a
sequence of rational choices.

The game involves an auctioneer who offers a one-dollar bill with the following
rule: the dollar goes to the highest bidder, who pays the amount he bids. The second
highest bidder must also pay the highest amount that he bids but gets nothing in
return.

Suppose that the game begins with one of the players bidding 1 cent, hoping to
make a $0.99 profit. He will be quickly outbid by another player bidding 2 cents, as
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a $0.98 profit is still desirable. Similarly, another bidder may bid 3 cents, making
a $0.97 profit. At this point the first bidder may attempt to convert his loss of
1 cent into a gain of $0.97 by also bidding 3 cents. In this way, a series of bids
is maintained.

One may expect that the bidders end up with offering $1.00 for a one-dollar bill,
which is what the auction is for. However, a problem becomes evident as soon as the
bidding reaches 99 cents. Suppose that one player bid 98 cents. The other players
now have the choice of losing 98 cents or bidding one dollar, which would make
their profit zero. After that, the original player has a choice of either losing 99 cents
or bidding $1.01, losing only 1 cent. After this point these rational players continue
to bid the value up well beyond the dollar, and neither makes a profit.

16.2.6 Pure Coordination Games

Pure coordination games are an empirical puzzle for Game Theory. Pure coordina-
tion games are one-shot games where players face a set of alternatives knowing that
a positive payoff will only accrue to them if they coordinate on the same choice.
For instance, two subjects may be shown a city map and asked, independently of
one another, to select a meeting point. Or, subjects may be asked to select a positive
integer. In the first case, they obtain a positive payoff if they select the same meeting
point; in the second case, if they select the same integer.

The difficulty of pure coordination games derives from the fact that players
cannot communicate and that the game is not repeated. The astonishing fact about
pure coordination games is that, if they are actually played, players reach an
agreement much more often than they would if they played randomly.

The commonly held explanation is that pure coordination games generally entail
cues that single out one choice as more “salient” than others. For instance, subjects
asked to select a meeting point generally end up with the railway station, whereas
the majority of those asked to name a positive integer select the number 1.

Interestingly, this suggests that coordination may eventually be attained because
of conventions, habits or values that do not enter the description of decision settings.
People may not even be aware of what makes them coordinate with one another.

16.2.7 The Game of Chicken

The Game of Chicken models two drivers, both headed for a single-lane bridge from
opposite directions. One must swerve, or both will die in the crash. However, if one
driver swerves but the other does not, he will be called a “chicken”. Figure 16.4
depicts a typical payoff matrix for the chicken game as well as its generic form.

Chicken is an anti-coordination game with two pure-strategy Nash equilibria
where each player does the opposite of what the other does. Which equilibrium
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Fig. 16.4 A payoff matrix for the Game of Chicken (left) and its generic representation (right).
The left number is the payoff of the row player; the right number is the payoff of the column player.
In this generic representation, V is the value of power, prestige, or of the available resource to be
obtained; C is the cost if both players choose “straight”

is selected depends very much on the effectiveness in signalling precommitment
before the game is played. For instance, a driver who disables the brakes and the
steering wheel of his car and makes it known to the other driver may induce him to
swerve.

Bertrand Russell remarked that the nuclear stalemate was much like the Game of
Chicken1:

As played by irresponsible boys, this game is considered decadent and immoral, though
only the lives of the players are risked. But when the game is played by eminent statesmen,
who risk not only their own lives but those of many hundreds of millions of human beings,
it is thought on both sides that the statesmen on one side are displaying a high degree of
wisdom and courage, and only the statesmen on the other side are reprehensible. This, of
course, is absurd. Both are to blame for playing such an incredibly dangerous game. The
game may be played without misfortune a few times, but sooner or later it will come to
be felt that loss of face is more dreadful than nuclear annihilation. The moment will come
when neither side can face the derisive cry of “Chicken!” from the other side. When that
moment is come, the statesmen of both sides will plunge the world into destruction.

The Game of Chicken has been reinterpreted in the context of animal behaviour.
It is known as Hawk-Dove game among ethologists, where the Hawk-Dove game
has the same payoff matrix as in Fig. 16.4. In the Hawk-Dove game, “swerve” and
“straight” correspond to the following strategies, respectively:

Dove: retreat immediately if one’s opponent initiates aggressive behaviour;
Hawk: initiate aggressive behaviour, not stopping until injured or until the

opponent backs down.
While the original Game of Chicken assumes C > V and cannot be repeated,

the Hawk-Dove game lacks this requirement and is generally conceived as an
evolutionary game.

The strategy “Dove” is not evolutionary stable, because it can be invaded by a
“Hawk” mutant. If V > C, then the strategy “Hawk” is evolutionarily stable. If V < C,

1Bertrand W. Russell, Common Sense and Nuclear Warfare. London, George Allen and Unwin,
1959.
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there is no evolutionarily stable strategy if individuals are restricted to following
pure strategies, although there exists an evolutionarily stable strategy if players are
allowed to use mixed strategies.

16.2.8 The War of Attrition

The war of attrition is a game of aggression where two contestants compete
for a resource of value V by persisting with their intentions while constantly
accumulating costs. Equivalently, this game can be seen as an auction in which
the prize goes to the player with the highest bid Bh, and each player pays the loser’s
low bid Bl.

The war of attrition cannot be properly solved using its payoff matrix. In this
game, the players’ available resources are the only limit to the maximum value of
bids. Since bids can be any number, if available resources are ignored, then the
payoff matrix has infinite size. Nevertheless, its logic can be analysed.

Since players may bid any number, they may even exceed the value V that is
contested over. Indeed, if both players bid higher than V, the high bidder does not
so much win as lose less because �Bl < V � Bh < 0—a pyrrhic victory.

Since there is no value to bid which is beneficial in all cases, there is no dominant
strategy. However, this does not preclude the existence of Nash equilibria. Any pair
of strategies such that one player bids zero and the other player bids any value equal
to V or higher, or mixes among any values V or higher, is a Nash equilibrium.

The war of attrition is akin to a Chicken or Hawk-Dove game—see Sect. 16.2.7—
where if both players choose “swerve”/“Dove”, they obtain 0 instead of V/2 as in
Fig. 16.4.

The evolutionarily stable strategy when playing it as an evolutionary game is a
probability density of random persistence times which cannot be predicted by the
opponent in any particular contest. This result has led to the conclusion that, in this
game, the optimal strategy is to behave in a completely unpredictable manner.

16.3 Influence Games

Contrary to those of Sect. 16.2, the games in this section are not concerned
with Nash equilibria. Players are not assumed to figure out which alternatives the
other players might choose, originating infinite regressions that can only stop at
equilibrium points.

Rather, boundedly rational players are assumed to follow certain rules that may
be quite simple but need not be necessarily so. The game then concerns what
collective behaviours emerge out of mutual influence.
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However, the games in this section are not so different from those of Sect. 16.2
when they are played as evolutionary games. Such is the case, for instance, of
simulations where a large number of players iterate the Prisoner’s Dilemma.

Two prototypical games will be expounded in this section. The Ising model
(originally developed in physics, where it is also known as the spin glass model)
is concerned with imitation. The minority game, also known as the El Farol Bar
Problem, is concerned with the contrary of imitation. It is about doing the opposite
of what others do.

16.3.1 The Ising Model

The Ising model was originally developed in physics in order to study the interaction
between atoms in a ferromagnetic material. For this reason its agents can only take
two states, or opinions in social applications, and are fixed in space.

The Ising model is an exceedingly stylized model of imitation dynamics. Clearly,
many imitation models are more complex and more realistic than the Ising model.
However, the closed-form solutions of the Ising model may guide the builder of
more complex models in the process of understanding their behaviour.

In general, the Ising model is not presented as a game. It is done here in order to
stress its symmetry with the minority game.

Let N players be denoted by means of an index i D 1 , 2 , : : : N. Players must
choose between an alternative A D � 1 and an alternative A D 1.

The payoff of a player does not only depend on the alternative that she has chosen
but also on the average of the alternatives chosen by the other players. Let m denote
this average.

Since we want to reproduce situations where the individual follows the herd,
the effect of m should be the stronger, the more homogeneous the group. Since
A2f�1;1g and consequently m2f�1;1g, we can reach this goal by requiring that
the payoff depends on a term A m. This term may eventually be multiplied by a
coefficient J > 0.

A stochastic term " is necessary in order to understand our game as a system
jumping between many equilibria. This term will disappear when expected values
will be taken. In the end, the following functional form is chosen for the payoff of a
player:

u.A/ D v.A/ C JAm C " (16.2)

where u(A) is the total payoff of a player and v(A) is its individual component.
Furthermore, let us assume that this individual component takes the following form:

v.A/ D
� �h if A D �1

h if A D 1
(16.3)

where h2<, h > 0.
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By assuming that stochastic terms " are Gumbel-distributed, we can apply the logit
model. By combining Eqs. (16.2) and (16.3) we derive the following expressions
for the probability that a player selects one of the two alternatives:

p fA D �1g D e�.�h�JmC"/

e�.�h�JmC"/ C e�.hCJmC"/
(16.4)

p fA D 1g D e�.hCJmC"/

e�.�h�JmC"/ C e�.hCJmC"/
(16.5)

The expected value of the selected alternative is EfAg D � 1 • pfA D � 1g C 1 •
pfA D 1g. Since it is also EfAg D m, we obtain the following expression:

m D tanh .�h C �Jm/ (16.6)

where tanh(x) D (ex � e�x)/(ex C e�x) is the hyperbolic tangent.
Equation (16.6) provides an analytic description of a game with herd behaviour

on two alternatives described by means of a mean-field approximation. It admits a
closed-form solution that provides the following findings:

• If �J < 1 and h D 0, there exists one single solution at m D 0. Consider that this
is a discrete-time system, so its attractors are stable if all eigenvalues of the
state transition function are in (�1, 1). Intuitively, �J < 1 means that this system
is globally stable. Furthermore, h D 0 means that the individual component of
the payoff is zero, so the players have no incentive to choose one of the two
alternatives. Consequently, the stochastic term makes m D 0 the only solution.

• If �J < 1 and h ¤ 0, there exists one single solution with the same sign as h. As in
the previous case, the system is globally stable so it admits one single solution.
However, since in this case the players’ payoff includes an individual component,
it is this component that determines what equilibrium is reached. If most players
prefer A D � 1, the equilibrium will be m � � 1; likewise, if most players prefer
A D 1, then the equilibrium will be m � 1.

• If �J 	 1 and h D 0, there exist two solutions: m D 0 and m D ˙ m(�J). In this
case the system is globally unstable, but locally stable equilibria may exist.
Since the individual component of the payoff is zero, the system may either tend
towards m D 0 or m � � 1 or m � 1.

• If �J 	 1 and h ¤ 0, the following subcases must be distinguished:

– If, for any given � and J, there exists a threshold H(h) > 0 such that jhj � H,
then three solutions exist, one with the same sign as h and the other two with
opposite sign. Condition jhj � H means that the individual component of the
payoff is limited even if not zero. Therefore, results are similar to the previous
case.
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– If, for any given � and J, there exists a threshold H(h) > 0 such that jhj > H,
then there exists one single solution with the same sign as h. Indeed if the
individual component of the payoff can take any value, then the whole system
is forced into its direction.

In the Ising model, each player observes the average behaviour of all other
players. If each player observes only the behaviour of his neighbours, one obtains
Schelling’s model of racial segregation (according to Schelling’s model of racial
segregation, a city where Blacks and Whites are randomly distributed turns into a
chessboard of homogeneous quarters if its inhabitants, although absolutely ready to
accept the presence of the other colour, do not want to be a small minority in their
own neighbourhoods).

16.3.2 The Minority Game

The minority game originates from a consideration inspired by the El Farol bar in
Santa Fe, New Mexico (USA). The economist Brian Arthur remarked that people
go to the bar in order to meet other people, but they do not want to go when all
other people go because the bar is too crowded on such occasions. Thus, they want
to do the opposite of what most people do—go to the bar when most people stay at
home and stay at home when most people go to the bar. This is interesting, because
the “El Farol Bar Problem” cannot have a stable equilibrium. This happens because
once the majority observed what the minority did, it wants to imitate it, which turns
the minority into majority, and so on endlessly.

Physicists Damien Challet and Yi-Cheng Zhang remarked that this is the essence
of stock market dynamics. In the stock market, those traders gain, who buy when
prices are low (because most traders are selling) and sell when prices are high
(because most traders are buying). So all traders want to belong to the minority,
which is clearly impossible, hence the inherent instability of this game. Among the
physicists, the “El Farol Bar Problem” became the “Minority Game”.2

Let us consider N players who either belong to a group denoted 0 or a group
denoted 1. Players belonging to the minority group receive a positive payoff. Players
belonging to the majority receive zero.

Strategies are functions that predict which will be the minority group in the
next step given the minority group in the m previous steps. Thus, a strategy is
a matrix with 2m rows (dispositions with repetition of two elements of class m)
and two columns. The first column entails all possible series of minority groups
in the previous m steps, henceforth histories. The second column entails the group
suggested to be minority in the next step. As an example, Fig. 16.5 illustrates a
strategy with m D 2.

2The rest of this section has been extensively drawn from E. Moro, The Minority Game: An
Introductory Guide, working paper available online.
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Fig. 16.5 An example of a
strategy based on the two
previous steps of the minority
game. The first column lists
all possible stories. The
second column makes a
prediction depending on past
history

Each player owns s strategies. If s D 1, the game is trivial because the time series
of the minority group is periodical.

If s > 1, players choose the strategy that cumulated the greatest amount of payoffs.
Thus, a number of feedbacks may arise between what strategies are chosen and their
capability to predict the minority. The reason is that in this game players must adapt
to an environment that they themselves create.

An important magnitude in this game is the variance of the time series of the
number of players belonging to group 1 (or, equivalently, group 0). Henceforth, this
magnitude will be denoted by �2.

The average of the number of players belonging to each group is generally close
to N/2. If �2 is small, then the distribution of the number of players belonging
to group 1 is concentrated around N/2. This implies that the minority is large,
eventually close to its maximum (N/2 � 1). On the contrary, if �2 is large, the
number of players belonging to group 1 tends to be either much smaller or much
larger than N/2, implying that the minority is often very small.

Let us consider �2/N in order to normalize to the number of players. Let us
define the efficiency of coordination ec D N/�2 as the reciprocal of the extent to
which players behave differently from one another.

Figure 16.6 depicts numerical simulations of ec as a function of the number
of histories in a strategy 2m/N. Graphs are shown for different values of s. The
horizontal line marks the value that ec attains if players would make a random choice
among the strategies available to them.

With low m the efficiency of coordination is low. This happens because if
memory is short, players have greater difficulties to adapt to the changing features
of the game.

If only few strategies are available (s D 2, s D 3, s D 4), at intermediate values of
m, many players guess the correct strategy, so ec increases above the level that can
be attained if strategies are chosen randomly. This threshold is marked by the dashed
vertical line. However, this effect disappears if many strategies are available (s D 8,
s D 16). In this case the decision process becomes similar to a random choice, so
even at intermediate values of m, the efficiency of coordination is close to the level
attained when strategies are chosen randomly.
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Fig. 16.6 Efficiency of coordination ec as a function of the number of histories in a strategy 2m/N,
for different values of the number of available strategies s. The horizontal line at ec D ec marks
the efficiency level when players select a strategy at random. The vertical dashed line marks the
point where ec can be greater than ec.

Independently of the number of available strategies, with increasing m, the value
of ec tends to the level attained when strategies are chosen randomly. This happens
because a history of length m occurs again after 2m steps on average, so a strategy
that is successful with a particular history needs 2m steps in order to be successful
again. With very high values of m, no strategy can present itself as particularly
successful; therefore, a nearly random dynamics ensues.

Let us consider what information is available to players. The only information
available to them is what group was the minority in previous time steps. Let this
information be carried by a variable Wt, where Wt D 0 means that at time t the group
0 has been minority, Wt D 1 otherwise. The issue is whether this information is used
efficiently; if it is not, there may exist arbitrage possibilities for players who utilize
information more efficiently than their peers.

Let us consider Wt and Wt C 1 as distinct signals. Let us compute their mean
mutual information I(Wt, Wt C 1).3

3Given a source of binary symbols fa1, a2, : : : aMg issued with probabilities p1 , p2 , : : : pM , the
average information that they convey is defined as H.A/ D PM

iD1p .ai/ log21=p .ai/, and it is
called information entropy. Suppose that there is a second source issuing symbols fb1, b2, : : : bNg
with information entropy H(B). Let H(A,B) denote the information entropy of the whole system.
Mean mutual information H(A) C H(B) � H(A,B) measures to what extent the two sources interact
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Fig. 16.7 Efficiency of information exploitation as a function of the number of stories in a strategy,
normalized to the number of players

Mean mutual information measures whether the information entailed in the
outcomes of two steps of the game, taken together, is greater than the sum of the
information entailed in the outcomes of the two steps taken independently of one
another. Thus, mean mutual information says whether a player, by observing the
time series of the outcome of the game, could do better than his peers. Recalling the
analogy with the stock market, I(Wt, Wt C 1) > 0 means that a trader could gain from
arbitrage.

Let us introduce information efficiency ei D 1/I(Wt, Wt C 1). Being the reciprocal
of mean mutual information, information efficiency is high when mean mutual
information is low, i.e. when information is efficiently exploited by the player, so
there is little room for arbitrage.

Figure 16.7 depicts numerical simulations of ei as a function of the number of
stories in a strategy 2m/N. Graphs are shown for different values of s.

One may observe in Fig. 16.7 a sudden drop of ei in the [0.3,1] interval. This
interval is entailed in the interval [0.1,1] where ec was observed to rise above the
level corresponding to random choice in Fig. 16.6. Thus, we may subsume the
behaviour of the minority game as in Table 16.1.

Table 16.1 shows that the minority game has two large behaviour modes, one
inefficient in coordination but efficient in the exploitation of information and the
other one efficient in coordination but inefficient in the exploitation of information.

to correlate their messages. Mean mutual information is zero if the two sources are independent of
one another.
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Table 16.1 Efficiency of coordination and efficiency of information exploitation in the minority
game

2m/N < 0.1 2m/N > 1

Inefficient coordination Efficient coordination
Low ec High ec

Efficient information exploitation Inefficient information exploitation
High ei Low ei

In between is a tiny space where the efficiency of coordination and the efficiency of
information exploitation may change dramatically depending on s and m.

Since the minority game is a stylized representation of stock markets, we may
ask in which region stock markets operate. It is well known that traders are very
many, so we may assume that N is very large. Human bounded rationality suggests
that traders do not make use of complicated algorithms that take account of events
far back in the past, so m should be in the order of a few units. Consequently, 2m/N
is likely to be very small.

This suggests that financial markets are characterized by low coordination,
which implies irregular oscillations where large majorities and small minorities may
appear. At the same time, financial markets are efficient in exploiting information.
Thus, the observation of its time series offers few possibilities to extrapolate future
courses.

16.4 Some Pitfalls of Utility Maximization

Utility maximization strikes its adepts for its elegance, simplicity and beauty.
Unfortunately, empirical tests have shown that in many situations, decision-makers
do not follow its prescriptions. Furthermore, there are cases where maximizing
utility leads to paradoxical decisions.

Some of these paradoxes can be reduced to utility maximization by means of
special additions to the basic theory. Others cannot, thereby suggesting that utility
maximization, besides poor descriptive strength, may have poor normative value
as well. In this section the main paradoxes will be discussed, together with their
eventual resolution within the utility maximization framework.

16.4.1 Ellsberg’s Paradox and Subadditive Probabilities

Suppose that a decision-maker is placed in front of two urns, henceforth denoted
A and B. The decision-maker is informed that urn A entails white and black balls
in equal proportion, e.g. urn A may contain ten white balls and ten black balls.
Regarding urn B, the decision-maker knows only that it entails white and black
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balls. Suppose to ask the decision-maker to evaluate the probability to extract a
white ball from urn A and the probability to extract a white ball from urn B.

Since urn A entails white and black balls in equal proportions, the probability
to extract a white ball from urn A is 0.5. By contrast, nothing is known regarding
the proportion of white to black balls in urn B. In cases like this, the so-called
principle of insufficient reason—i.e. the fact that there is no reason to think
otherwise—suggests to imagine that also urn B entails white and black balls in equal
proportions. Thus, also in this case, the probability to extract a white ball is assessed
at 0.5. And yet, something is not in order: intuitively, urn B should be characterized
by a greater uncertainty than urn A!

Ellsberg’s paradox actually deals with the size of the sample on which probabili-
ties are evaluated. More precisely, Ellsberg’s paradox places two extreme situations
aside.

In the case of urn A, since we know that it entails white and black balls in equal
proportions, we are able to compute probability with infinite precision. It is just
like extracting a ball (and replacing it afterwards) infinite times. We are measuring
probability on a sample of infinite size.

In the case of urn B, lack of knowledge on the proportion of white to black balls
is equivalent to estimating the probability of extracting a white ball prior to any
extraction. It means that the probability must be measured on a sample of size zero.
We guess its value at 0.5, but the reliability of our estimate is very low.

One possibility for overcoming Ellsberg’s paradox is that of representing uncer-
tainty by means of two magnitudes. The first one is probability, whereas the second
one is sample size. In statistics, sample size is expressed by precision indicators.

Another possibility is to resort to the theory of subadditive probabilities. While
according to classical probability theory the sum of the probabilities of an exhaustive
set of events must be equal to 1, according to the theory of subadditive probabilities,
this holds only if probabilities are measured on a sample of infinite size. In all other
cases, probabilities take values such that their sum is smaller than 1.

Let us consider the following example: we are playing dice in a clandestine
gambling room. Since we fear that we are playing with unfair dice, we may
not assign probability 1/6 to each face but rather something less, e.g. 1/8. Thus,
the sum of the probabilities of all faces is 6 � 1/8 D 3/4, which is smaller than
1. Subsequently, if we have a possibility to throw a die many times—i.e. if
we can increase the size of our sample—we may find out that that the die is
unfair in the sense that, e.g. face “2” comes out with probability 1/3 while all
other faces come out with probability 2/15. The sum of all these probabilities is
5 � 2/15 C 1/3 D 2/3 C 1/3 D 1.

Let us return to Ellsberg’s paradox. In the case of urn A, the probability to extract
a white ball is 0.5, and the probability to draw a black ball is 0.5. The sum of
these probabilities is 1. In the case of urn B, the decision-maker may judge that
the probability to extract a white ball is, for instance, 0.4 and that the probability
of extracting a black ball is also 0.4. The sum of these probabilities is 0.8, and this
does not constitute a problem for the theory of utility maximization.
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By employing subadditive probabilities, utility maximization can be meaning-
fully applied to situations where probabilities are less than perfectly known. In the
end, utility maximization can safely deal with the difficulty raised by Ellsberg’s
paradox.

16.4.2 Allais’ Paradox and Prospect Theory

The following experiment was proposed by Maurice Allais. Subjects are asked to
choose between the alternatives A and B reported on the rows of Table 16.2. It is
empirically observed that most people choose alternative B.

Subsequently, the same subjects are confronted with the alternatives C and D
reported on the rows of Table 16.3. It is empirically observed that most people
choose alternative C.

Let us now examine the expected utilities of these two pairs of alternatives,
namely, (A,B) and (C,D). Preferring (B) to (A) means that u(2400) > 0.33 � u(2500)
C 0.66 � u(2400), which can be written as 0.34 � u(2400) > 0.33 � u(2500). Unfor-
tunately, preferring (C) to (D) implies just the opposite, i.e. 0.33 � u(2500) > 0.34
� u(2400). So it turns out that most people either do not behave rationally or do not
maximize utility.

However, Allais’ paradox is due to the presence of a tiny probability of not
obtaining anything in alternative (A). Thus, it is due to aversion to risk.

Daniel Kahneman and Amos Tversky introduced non-linear transformations
of utilities and probabilities in order to balance risk aversion. The transformed
utilities and probabilities can describe the observed behaviour as expected utility
maximization, and this is called prospect theory.

A prospect is a set of pairs f(c1, p1), (c2, p2), : : : g, where cj is a consequence that
will obtain with probability pj. As a preliminary step, prospects with identical conse-
quences are summed, dominated prospects are eliminated and riskless components
are ignored. Prospect theory prescribes that the utilities and the probabilities of the
above prospects be transformed according to the following rules:

Table 16.2 The first choice in Allais’ experiment

Consequence 1 Consequence 2 Consequence 3

Alternative A Receive $2500 with
probability 0.33

Receive $2400 with
probability 0.66

Receive nothing with
probability 0.01

Alternative B Receive $2400 with
probability 1.00

Table 16.3 The second choice in Allais’ experiment

Consequence 1 Consequence 2

Alternative C Receive $2500 with probability 0.33 Receive nothing with probability 0.67
Alternative D Receive $2400 with probability 0.34 Receive nothing with probability 0.66
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1. Utility is transformed by means of a non-linear function v D f (u) such
that f

0

(u) > 0 and f “(u) < 0 for u > 0, f
0

(u) > 0 and f “(u) > 0 for u < 0, with
jf “(u)ju < 0 > jf “(u)ju > 0.

2. Probabilities p are transformed into “weights” w by means of a non-linear
function w D g(p) such that g(0) D 0 and g(1) D 1 but 9p 2 .0; 1/ such that
8p < p it is g(p) 	 p and 8p > p it is g(p) � p.

3. Weights w are transformed into coefficients q by means of the following rules:

q��h D w� .p�h/ for i D �h

q�
i D w� .p�h C � � � C pi/ � w� .p�h C � � � C pi�1/ for � h < i � 0

qC
i D wC .pi C � � � C pk/ � wC .piC1 C � � � C pk/ for 0 � i < k

qC
k D wC .pk/ for i D k

where w� and q� refer to prospects with negative utility, denoted by an index
i 2 [�h, 0], whereas wC and qC refer to prospects with positive utility, denoted by
an index i 2 [0, k].

The v and q obtained at the end of this procedure can be used just like utilities and
probabilities, respectively. However, note that prospect theory succeeds to eliminate
the inconsistencies highlighted by Allais’ paradox, but it does not explain why it
works. It should be called a heuristic, rather than a theory.

In the end, utility maximization does succeed to cope with Allais’ paradox but at
the cost of a complicated patch that has the flavour of the epicycles that had to be
added to the Ptolemaic system in order to support the idea that it was the Sun that
was turning around the Earth. With such a patch, the elegance of the original theory
is lost.

16.4.3 Preference Reversal in Slovic’s Paradox

Let us consider a series of bets with different characteristics, for instance, a series of
bets on different horses, or playing on a series of different slot machines, or a series
of unfair dice that are different from one another. The game consists of choosing to
bet on a specific horse, choosing to play on a specific slot machine or selecting a
specific die to throw. In other words, the game consists of choosing one bet out of a
series of bets.
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Table 16.4 Slovic’s experiment

Consequence 1 Consequence 2

Pair of bets I

Bet AI Win $4.00 with probability 0.99 Lose $1.00 with probability 0.01
Bet BI Win $16.00 with probability 0.33 Lose $2.00 with probability 0.67
Pair of bets II

Bet AII Win $3.00 with probability 0.95 Lose $2.00 with probability 0.05
Bet BII Win $6.50 with probability 0.50 Lose $1.00 with probability 0.50
Pair of bets III

Bet AIII Win $2.00 with probability 0.80 Lose $1.00 with probability 0.20
Bet BIII Win $9.00 with probability 0.20 Lose $0.50 with probability 0.80
Pair of bets IV

Bet AIV Win $4.00 with probability 0.80 Lose $0.50 with probability 0.20
Bet BIV Win $40.00 with probability 0.10 Lose $1.00 with probability 0.90

In order to simplify matters, let us consider series composed by two bets. More
specifically, let us consider the four pairs of bets illustrated in Table 16.4.

For any pair of bets, subjects are asked to select either bet A or bet B. On average,
the number of subjects who prefer A to B is slightly greater than the number of
subjects who prefer B to A.

At this point, a different game is played. Subjects are asked to imagine that they
own a lottery ticket for each bet and that they have a possibility to sell it. That is,
either they can wait for the outcome of each bet, where they may win or lose with a
certain probability, or they can sell the ticket. In order to compare the willingness to
play to the willingness to sell the ticket, subjects are asked to fix a minimum selling
price for each bet.

In general, it is empirically observed that most people ask a higher price for bets
B than for bets A.

However, for each pair of bets, bet A has the same expected (utility) value than
bet B. Thus, utility maximizers should be indifferent between A and B. And yet the
empirical evidence is that most subjects have a slight preference for A if they are
asked to play one of the two bets but they definitely prefer B if they are asked to fix
a selling price.

The distinguishing feature of bets A is that the first consequence has a much
higher probability than the second one. Thus, one may assume that it is this
difference of probability values that orientates decision-making.

The distinguishing feature of bets B is that the first consequence concerns a
much larger amount of money than the second one. Probabilities, on the contrary,
are sometimes very similar and sometimes very different from one another. Thus,
one may assume that it is this difference of money values that orientates decision-
making.

If subjects are asked to bet, their attention is caught by probabilities, so either
they are indifferent or they prefer A to B. By contrast, if subjects are asked to sell
lottery tickets, their attention is caught by money values, so they prefer B to A.
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Slovic’s paradox shows that preferences change if decision-makers focus on the
probability of a consequence or, rather, on its utility (here, money value). This means
that human beings are unable to evaluate probabilities and utilities independently of
one another.

Slovic’s paradox—often known as “preference reversal”—is destructive for
utility maximization. Indeed, it undermines the assumption that a utility function
and a probability function can be defined independently of one another. Ultimately,
Slovic’s paradox suggests that uncertain belief cannot be split into utilities and
probabilities.

Obviously, several attempts have been made to reconcile preference reversal
with the theory of rational choice. In particular, it has been found that preference
reversal can be accommodated with the theory of rational choice if either violations
of transitivity, or of independence, or of completeness of preferences are accepted.
While the attempts to reconcile preference reversal with the theory of rational
decision by relaxing transitivity or independence of preferences did not receive
much attention because these properties are essential for our idea of rationality—
see Sect. 16.2—the more recent idea of dropping completeness deserves some
discussion. Indeed, allowing preferences to be incomplete amounts to accept the
idea that utility functions can be defined, at most, for only some alternatives.
Possibly, just the simplest and most repetitive ones.

16.4.4 Arrow’s Paradox

The following paradox of social choice is due to Kenneth Arrow. Let A, B and C
denote three alternatives, and let 1, 2 and 3 denote three individuals. Let us assume
that:

• Individual 1 prefers alternative A to alternative B and alternative B to alternative
C. Thus, he prefers alternative A to alternative C.

• Individual 2 prefers alternative B to alternative C and alternative C to alternative
A. Thus, he prefers alternative B to alternative A.

• Individual 3 prefers alternative C to alternative A and alternative A to alternative
B. Thus, he prefers alternative C to alternative B.

If these three individuals constitute a democratic community with a majority
rule, then this community prefers A to B (individuals 1 and 3) and alternative B to
alternative C (individuals 1 and 2). Thus, if the community wants to have transitive
preferences, it must prefer A to C. But, the majority of its members (individuals 2
and 3) prefers C to A!

Arrow’s paradox shows that there are conditions such that the aggregate outcome
contradicts a basic assumption of utility maximization, even if individuals do not. It
is not destructive for utility maximization as a theory of individual decision-making,
but it impairs its extension to group or organizational decision-making.
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Several proposals have been made in order to overcome Arrow’s paradox. The
most common solution is to allow individuals to have different preferences if
all alternatives are presented to them, instead of being presented with pairs of
alternatives. Or, one may limit voters to two alternatives presented in tournaments.
In this way Arrow’s paradox would disappear, and yet the final choice is not
necessarily the one that would be preferred by the largest possible majority.

16.5 Seeking Coherence

As we have seen in Sect. 16.4, utility maximization is not a good descriptor
of decision processes. Its proponents have objected that utility maximization is
not meant to be a faithful description of what people actually do, but rather a
prescription of what they should do. It pretends to be a normative theory, although
it is not a descriptive theory.

However, the preference reversals highlighted by Slovic point to such a huge dis-
tance between theory and reality that even the normativeness of utility maximization
might be questioned. If utilities do not exist prior to decision-making, it may make
little sense to tell decision-makers that they should maximize them. Furthermore,
if evolution shaped human reasoning along patterns that are different from utility
maximization, we ought to be careful to declare these patterns “illogical” or
“irrational”. Rather, it may make sense to observe how human beings actually make
their decisions, understand their rationales and eventually revise our theories.

Suppose to view human minds as coherence-seeking machines that make use of
available information in order to construct a plausible interpretation of reality, be
it social roles, scientific theories or else. By drawing causal relationships and by
eliminating inconsistencies, a decision-maker tells herself a story that explains why
certain facts are the way they are and why certain people did what they did. This
story, a founding story that suggests a decision-maker what it is appropriate to do,
is a narrative.

The construction of a narrative may require that issues that do not fit into the
picture are ignored, downplayed or forgotten. It may require that opinions are
changed even dramatically, and yet their purporters candidly claim that they have
always been coherent throughout their lives or that they have been coherent in spite
of having changed their opinion if their story is seen from a particular point of view.

Albeit disturbing for our idea of rationality, the extent and easiness with which
human beings distort previous experiences have been proven by a number of
experiments in psychology. It is easy to induce subjects to change opinion, while
they are still convinced to have been coherent throughout the whole experiment.
Experiments show that people remember past events to the extent that they fit their
narratives and that they are ready to change their interpretation of the past if new
evidence must be accommodated. On the whole, experimental evidence tells us that
human beings are ready to lie to themselves in order to build coherent narratives.
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This attitude is puzzling, because distorting reality in order to construct a
coherent narrative is at odds with our idea of rationality. So either human nature
is inherently irrational, or our idea of rationality is incorrect.

According to James March, reinventing the past is a crucial ability, for it enables
decision-makers to conceive new goals and figure out a strategy in an uncertain
future. Later, a similar argument has been made by Karl Weick under the label of
“sense-making”. In a nutshell, these authors suggest that in order to make decisions
in the face of an uncertain future, it is good to have a narrative that explains the past
as if previous decisions had been made along a coherent line. This line guides the
decision-maker into the future, providing a rationale for action even if certainties
are very few.

So here comes a straightforward argument for normativeness. If seeking coher-
ence has the purpose of constructing a narrative, and if narratives are useful, then a
decision theory based on constructing narratives should be regarded as rational and
openly prescribed.

In business, politics and other fields, narratives may constitute the bulk of strate-
gies. David Lane and Robert Maxfield have made a years-long field observation of
the elaboration and modification of the narrative of a Silicon Valley firm. This study
is worth reporting, because it is very clear in making us understand that narratives
are useful precisely because they provide guidance in the face of an uncertain future
and that their usefulness is not impaired by the fact that their coherence is based on
arbitrary interpretations of reality.

16.5.1 A Real Story

In 1990 E. launched LW, an innovative technology for distributed control of elec-
tromechanical devices. Previously, control was centralized by one main processing
unit that would command several peripheral devices. With LW, each device is
endowed with a microprocessor and can communicate with all others, so the devices
control one another. Distributed control is more resilient than centralized control and
easily implements modular architectures to which additional devices can be added.
Therefore, it is technically superior to centralized control.

Distributed control is particularly suited to the automation of office spaces in
large buildings, post-Fordist productive plants as well as any setting where a large
number of heterogeneous devices must coordinate their operations while retaining
some flexibility. Thus, in its early days, E. focused on partnerships with large
producers of the devices to be automated, e.g. a producer in the field of heating and
air conditioning was offered a possibility to integrate a microchip in their devices,
as well as on lifts, doors and windows in order to integrate all controls in a large
building, from lighting to heating to theft protection.

With some disappointment, E. had to recognize that the LW technology was not
exploited in its full potentialities. The problem was that each large producer was
so specialized in its own industry that it had neither the power nor the capability
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to implement LW on all devices. For instance, a producer in the field of heating
and air conditioning would not install LW on doors, windows, lights and lifts, for
the production of these devices was covered by other firms. Indeed, the difficulty
was that E. was attempting to create a single market for automation where the
marketplace was covered by producers of several devices.

E. was aware of what huge difficulties were associated with the creation of a
new market. Nevertheless, it deemed that long-term relations with a few specialized
producers would pay in the long run. E. had a narrative, saying that large specialized
producers would slowly but persistently adopt and impose LW. Consequently, it
invested all of its resources in these relations.

By 1994, E. was losing confidence in this narrative. E. started to approach large
system integrators of ICTs, such as Olivetti and Ameritech. However, the crucial
move was that of hiring a person for this job, who did not come from Silicon
Valley as all other executives did. Out of his suggestion, E. approached smaller
companies which integrated devices that they bought from different producers.
Technicians conceived the idea of embedding LW in a box that could be attached to
any electromechanical device, of whatever producer.

Scholars of technological innovation know how difficult it is for visionary
employees to convince their boss of the value of their idea. However, in the case
of E., the CEO embraced enthusiastically the new idea because it appeared to fit
with his previous experience.

E.’s CEO had been the successful entrepreneur of a small firm that exploited dig-
ital technologies to produce private branch exchange systems (PBX) with innovative
features. This firm had been able to displace giants such as AT&T by providing small
independent installers with a superior product. When this CEO was confronted with
the idea of addressing small independent integrators of electromechanical devices,
he mapped this idea onto his previous experience.

In 1996, and within a few months, E. changed its narrative. E. presented itself
as a provider of an innovative network technology designed for independent system
integrators and based on a microchip that could be installed on any electromechani-
cal device, of whatever producer.

Most importantly, E. told itself that it had always pursued this strategy. Nobody
in the firm seemed to be aware that the firm’s strategy had changed. According to
the narrative that they had developed, they had always done what they were doing.

Moreover, when faced with evidence that the firm did change its strategy,
management wished that the final publication would not stress this aspect (Lane,
personal communication). This makes sense, for according to our idea of rationality,
narratives should reflect “objective information”, and decision-makers should stick
to it. Thus, management did not want to appear irrational according to common
wisdom.

However, the case of E. highlights that constructing a narrative by reinterpreting
the past may be good and useful for decision-makers. Ultimately, the reported
case reveals that precisely by reinterpreting its mission, E. was able to direct its
investments. If the future is uncertain, as it is often the case, interpreting the past in
order to find a direction for the future is a sensible activity.
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So the trouble may rather lie with our idea of rationality. Since reinterpreting
the past is regarded as irrational, then it must be done in secrecy. However, if
reinterpreting the past may have positive effects, then it should be prescribed.

16.6 Tools for Modelling Coherence-Seeking

Although coherence-seeking cannot propose itself with a ready-made and ready-to-
use formula such as utility maximization, there exist some tools that can be used
to reproduce its building blocks. These are essentially classification tools, i.e. tools
that form concepts out of information, and coherence tools, i.e. tools that arrange
concepts into coherent stories.

In particular, the following tools will be reviewed in this section:

1. Unsupervised neural networks
2. Constraint satisfaction networks
3. Evidence Theory, also called belief functions theory

Unsupervised neural networks reproduce the formation of mental categories out
of a flow of information. Constraint satisfaction networks arrange concepts into
coherent maps. Finally, Evidence Theory assumes that actors receive information
on possibilities and arrange them into coherent hypotheses. Although these tools
have not been integrated with one another, they all concern the process of selecting
some items from the flow of experiences, arranging them in a coherent whole and
deciding accordingly.

Utility maximization makes sense in the restricted realm of games of chance,
where it is possible to overview an exhaustive set of possibilities and enlist all of the
consequences of any alternative. By contrast, reaching a decision by constructing
coherence makes sense precisely because, quite often, such conditions do not hold.
In order to stay within this focus, this review does not cover tools concerned with
classification in a given set of categories, such as Case-Based Decision Theory and
supervised neural networks.

16.6.1 Unsupervised Neural Networks

Human mental categories are not defined by prespecified similarity criteria that the
objects to be classified should fulfil. Rather, mental categories are continuously
constructed and modified according to the similarity of a just-received piece of
information to the pieces of information that have already been stored in existing
categories. For instance, a child observing house chairs may start with an idea of
“chair” as an object having four legs and then observe an office chair with only one
leg and yet sufficiently similar to house chairs to be added to their category, which
from this time onwards does not have the number of legs as a common property of
all the objects that it entails.
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This is a radically different process from that of defining criteria in order to
classify objects into given categories. In the case of mental categories, categories
do not exist prior to the beginning of the classification process. Categories form
out of similarity of certain input information to some information that has been
previously received, so that these items are stored in the same “place” and concur
to build up a mental category. There exist no criteria defined ex ante that control the
classification of input information; since the only rule is similarity of information
items, categories form depending on what items are received. For instance, the
aforementioned mental category “chair” may depend on what chairs have been
observed in the course of a life spent in Manhattan, rural China or tropical Africa,
in modern times or the Middle Age.

By contrast, logical reasoning works with objects that have been clearly defined
from the outset. The point here is that these definitions are actually made once
mental categories have been formed. Eventually, a mental category formed around
similarity judgements may suggest a definition for all the objects that it entails if
they share some common feature, but this is not necessarily the case.

There are instances where definitions are not possible, simply because a mental
category entails objects that do not have any common feature. For instance,
the mental category expressed by the word “game” refers to children amusing
themselves with toys and adults involved in a serious competition on a chessboard
but also a set of wild animals. One may speculate that primitive man found some
similarity between hunting and exercising for hunting and later on between sports
and other leisures, including chess, and that the fact that chess was an amusement
suggested some similarity to what children were supposed to do. So pairwise
intersections of the meanings of the word “game” do exist, but this does not imply
that all of their meanings have a common intersection. Nevertheless, human beings
are perfectly at ease with this as well as many other concepts that cannot be defined.

Unsupervised neural networks (UNNs) are able to reproduce the idea that mental
categories arise out of adding examples. Indeed, UNNs construct categories around
the most frequent input patterns, mimicking the idea that a child creates a category
“chair” upon observation of many objects similar to one another.

It is important to stress once again that the ensuing account deals with unsu-
pervised neural networks only. Supervised neural networks (SNNs), with their
neurons arranged in layers and training phases to teach them in what categories
they must classify input information, do not fit into the present account, nor
does Case-Based Decision Theory which, similarly to SNNs, is concerned with
classifying information into previously defined categories. Directions to these tools
will be provided in the bibliography, but they do not pertain to this chapter.
Neural networks—of whatever sort—are composed by a set of neurons which
produce an output y2< by summing inputs x1; x2; : : : xN2R by means of coefficients
a1 , a2 , : : : aN :

y D
NX

iD1

ai xi (16.7)
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For any set of coefficients ai, this simple device is able to classify inputs in a
category by yielding the same output y for several input vectors x. This is due to
the sheer fact that there exist several vectors x whose weighted sum yields the same
y. For instance, if N D 2 and 8i, it is ai D 1, then e.g. y D 10, can arise out of x

0 D [9
1], x00 D [2.5 7.5] as well as many other vectors. In this sense, the neuron classifies
the input vectors [9 1] and [2.5 7.5] in the same category.

Note that a neuron has no difficulty to classify input vectors that do not perfectly
fit its categories. For instance, if there is a category y D 10 and a category y D 11, an
input vector x000 D [2.1 8] is classified in the category y D 10 just as x0 and x00.

The shape of the categories implemented by a neuron depends on coefficients ai.
For instance, if a1 D 0.5 and a2 D 20, the input vector x

0 D [9 1] yields y D 24.5 and
may not lie in the same category as x00 D [2.5 7.5], which yields y D 151.25.

Coefficients ai may be chosen by the user of the network during a training phase,
in which case we are dealing with a SNN. Alternatively, coefficients ai may be
initialized at random and subsequently changed by the network itself according
to some endogenous mechanism. In this case we have a UNN, of which Kohonen
networks are the most common instance. In UNNs, the ability of a neuron to change
its categories stems from a feed-back from output y and a feed-forward from input
x, towards coefficients ai:

dai

dt
D ' .a; y/ xi � � .a; y/ ai 8i (16.8)

where ®(a,y) and ”(a,y) may be linear or non-linear functions.
In Eq. (16.8), the term ®(a, y) xi enables the neuron to learn input patterns. It

entails both a feed-back (from y) and a feed-forward (from xi). This learning term
makes ai increase when both y and xi take high values, thereby enhancing those
coefficients that happened to yield a high y when a particular xi was high. Thus, the
structure of coefficients vector a ultimately depends on which vectors x appeared
most often as inputs.

The learning term is such that the neuron learns the patterns that it receives most
often. This is sufficient to make the network work, but it also makes it unable to
construct different categories if different patterns appear. Furthermore, since the
learning term works by multiplying inputs and outputs, it may produce an explosive
output that must be curbed in order to make the network work.

For both reasons, a forgetting term that makes the coefficients ai decay towards
zero is in order. In Eq. (16.8) the forgetting term is � (a, y)ai. It depends on a feed-
back from output y and, most importantly, on coefficient ai itself.

Figure 16.8 illustrates the feed-backs and feed-forwards within a neuron of a
UNN.

Simple, but non-trivial, examples of Eq. (16.8) are Pa D �yx � �a, Pa D �x � �ya,
Pa D �yx � �ya and Pa D �yx � �y2a, where � and � are constants. Each functional
form corresponds to different strengths of the learning and forgetting terms.

In general, a network of neurons is able to discriminate input information
according to much finer categories than a single neuron can do. As a rule, the greater
the number of neurons, the finer the categories that a network constructs. However,
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Fig. 16.8 The neuron of a UNN. The feed-backs and feed-forwards are responsible for the most
notable properties of UNNs, including the absence of a training phase

a neural network is useful precisely because it is able to classify a huge amount of
information into a few broad categories. If categories are so fine that they track input
information exactly, then a neural net becomes useless. Thus, the number of neurons
that a network should possess depends on the variability of the input as well as on
user needs.

However, the behaviour of a neural network does not only depend on the number
of its neurons but also on the structure of the connections between them. The fact
is that just like the capabilities of neurons depend on feed-backs and feed-forwards,
the capabilities of a neural network depend on linkages that eventually enable
information to circulate in loops. If information can circulate within the network,
then the whole network acquires a memory.

It is a distributed memory, fundamentally different in nature from the more usual
localized memories. Localized memories such as books, disks, tapes, etc. store
information at a particular point in space. This information can only be retrieved
if one knows where its support is (e.g. the position of a book in a library or the
address of a memory cell on a hard disk).

On the contrary, in a neural network, each neuron may be part of a number of
information circuits where information is “memorized” as long as it does not stop
to circulate. Although this is a memory, one cannot say that information is stored at
any particular place, hence the name.

For obvious reasons, the information stored in a distributed memory cannot be
retrieved by means of an address. However, a piece of information flowing in a
particular loop can be retrieved by some other piece of information that is flowing
close enough to it. Thus, in a distributed memory, information can be retrieved
by means of associations of concepts, with a procedure that reminds of human
“intuition”. Intuition, according to this interpretation, would consist of associations
between concepts that occur when information flowing in different but neighbouring
circuits comes in touch.
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16.6.2 Constraint Satisfaction Networks

Constraint satisfaction networks (CSNs) arrange concepts into coherent theories.
CSNs are characterized by:

• Excitatory and inhibitory connections
• Feedbacks between neurons

Nodes represent possibilities, or concepts, or propositions. Connections represent
inferences: an excitatory connection from node A to node B means “A implies B”,
whereas an inhibitory connection from node A to node B means “A implies B”.

Let ai denote the activation (the output) of node i, with ai2R. Let wij2R denote
the weight by which node i multiplies the input arriving from node j. The net
excitatory input to node i is:

Ei D
X

j

wij aj if wijaj 	 0 (16.9)

The net inhibitory input to node i is:

Ii D
X

j

wij aj if wijaj < 0 (16.10)

At each time step, the activation of node i is increased by its excitatory inputs and
decreased by its inhibitory inputs:

	ai D Ei .amax � ai/ C Ii .ai � amin/ (16.11)

where, in general, amax D 1 and amin D � 1. Feedbacks between neurons make the
network maximize consonance:

C D
X

ij

wijaiaj (16.12)

or, equivalently, minimize Energy D � C.
Consonance maximization means that those nodes are strengthened that rep-

resent possibilities, concepts or propositions that are coherent with one another.
Thus, constraint satisfaction networks can be used to model any cognitive process
characterized by a search for coherence. In particular, researchers have emphasized
the ability of CSNs to construct narratives, much like humans actually do.

Notable applications of CSNs are the elaboration of scientific theories, which
amounts to arrange empirical findings in a network of coherent causal relations,
as well as the evaluation of guilt or innocence in a trial, which amounts to
fitting testimonies in a coherent frame. Under this respect, CSNs share a common
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concern with Evidence Theory or, to be more precise, with its Dempster-Shafer’s
combination rule reported in Eq. (16.16) of Sect. 16.6.3.

When modelling decision-making, CSNs can be used to model the process of
emphasizing the positive aspects of one alternative and the negative aspects of its
competing alternatives until a coherent frame is available and a decision can be
made. Notably, this oscillation between competing explanations reproduces at least
one important aspect of Gestalt theories, namely, the idea that the human mind may
shift among alternative interpretations of reality, as exemplified by Rubin’s vase and
other images where at least two interpretations are possible.4 Many cues suggest that
this is a fundamental pattern in decision-making.

A clear limitation of CSNs is that they work with given possibilities, concepts
or propositions. In other words, CSN can reproduce the arrangement of possibilities
and concepts into narratives, but not their arousal. By contrast, UNNs reproduce the
arousal of concepts out of empirical experiences. Possibly, future models will be
able to couple UNNs to CSNs in order to model both processes at a time.

16.6.3 Evidence Theory

Evidence Theory is a branch of the mathematics of uncertain reasoning that,
unlike probability theory, does not assume that decision-makers know the set of all
possible events. Rather than defining a “residual event” for anything that cannot be
clearly expressed, Evidence Theory leaves a decision-maker’s possibility set open
to novelties.

This feature is implemented by assuming that the possibility set is not an algebra,
in the sense that no operation is defined on it. A consequence of this assumption is
that with no operation available, no residual event can be defined—simply because
complementation does not exist. Therefore, the mathematical framework does not
force any event into the system beyond those that a person has conceived. Novel
possibilities can appear in the possibility set in the course of the calculations, and the
possibility set is called frame of discernment in order to stress its cognitive nature.

Evidence Theory does not take a gambler as its prototypical subject but a judge
or a detective. The reason is that a gambler playing with dice or throwing a coin
knows what possibilities can occur. On the contrary, judges and detectives know
that unexpected proves and testimonies may open up novel possibilities. Possibly,
managers making investments, politicians steering their countries or just anyone in
the important choices of her daily life is more akin to a judge or a detective looking
for cues than a gambler looking for luck.

4The simplest picture of this kind is a cube depicted by its edges: it is up to the observer to choose
which face stays in the front and which face stays in the rear. Rubin’s vase is white and stands
against a black background. The observer may see a white vase or two black profiles in front of
one another.



400 G. Fioretti

Let us consider a frame of discernment ‚. Let us suppose that a person
receives testimonies, or bodies of evidence, as numbers that to various extents
support a set of possibilities A1 , A2 , : : : AN , where A1 � ‚ , A2 � ‚ , : : : AN � ‚

and where the Ais are not necessarily disjoint sets.5 Let us denote these numbers
fm(A1), m(A2), : : : m(‚)g, where m(Ai) measures the amount of empirical evidence
that supports possibility Ai.

Numbers m are exogenous to the person (the judge, the detective) who owns the
frame of discernment. They are not subjective measures for this person, though they
may be subjective evaluations of those who provide the testimonies. Numbers m are
cardinal measures of the amount of empirical evidence supporting each possibility.

Since no operation is defined on the frame of discernment, the number m that has
been assigned to ‚ does not concern any specific possibility. Rather, it indicates how
small the evidence is that supports the possibilities envisaged in the testimony or, in
other words, how strongly a person fears that the possibilities that she is envisaging
are not exhaustive. The greater the ignorance of a person on what possibilities exist,
the greater m(‚).

Note that m(‚) can be smaller than any m of the Ais that ‚ entails. Indeed, this
applies to the Ais as well: if Ai 
 Aj, this does not imply that m(Ai) > m(Aj). Although
not strictly essential for Evidence Theory, numbers m are generally normalized by
requiring that:

NX

iD1

m .Ai/ C m .‚/ D 1 (16.13)

For instance, if the original format of the testimony is:
f5; 32; 12; 3g

by applying Eq. (16.13) we obtain:

f0.096, 0.615, 0.231, 0.058g
where numbers sum up to one.

Let us suppose that a decision-maker wants to evaluate to what extent the
available empirical evidence supports certain hypotheses that she is entertaining
in her mind. Since a hypothesis concerns the truth of a possibility or a set of
possibilities, hypotheses are subsets of the frame of discernment just as possibilities
are. A body of evidence fm(A1), m(A2), : : : m(‚)g supports a hypothesis H to the
extent that some Ais are included or at least intersect H.

Note that while the possibilities Ai entailed in the testimonies cannot be combined
with one another (intersected, complemented, etc.) to form novel possibilities, a
hypothesis H represents a construct of the owner of a frame of discernment (the
judge, the detective, etc.). This person is absolutely free to conceive any hypothesis
H as well as its opposite H. Given a testimony fm(A1), m(A2), : : : m(‚)g, the belief
in hypothesis H is expressed by the following belief function:

5For simplicity, the theory is expounded with respect to a finite number of possibilities. No
substantial change is needed if an infinite number of possibilities is considered.
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Bel.H/ D
X

Ai�H

m .Ai/ (16.14)

By definition, Bel(˛) D 0 and Bel(‚) D 1. However, this last condition does
not imply that any of the possibilities included in the frame of discernment must
necessarily be realized. It simply means that any possibility must be conceived
within the frame of discernment, independently of what possibilities are envisaged
at a certain point in time. The belief function takes account of all evidence included
in H. The plausibility function takes account of all evidence that intersect H:

Pl.H/ D
X

H\Ai¤˛
m .Ai/ (16.15)

It can be shown that belief and plausibility are linked by the relation Pl.H/ D
1 � Bel

�
H

�
, where H denotes the hypothesis opposite to H. If m(‚) > 0 these two

measures are not equivalent, so both of them need to be considered. In general,
Bel(H) � Pl(H).

Let us suppose that some unexpected facts occur that are told by a new testimony.
The new testimony must be combined with previous knowledge, confirming it to the
extent that it is coherent with it. On the contrary, previous beliefs must be weakened
if the new evidence disconfirms them.

Let fm(B1), m(B2), : : : m(‚)g be the new testimony, which must be combined
with fm(A1), m(A2), : : : m(‚)g. The new testimony may entail possibilities that are
coherent with those of the previous testimony, possibilities that contradict those
of the previous testimony and possibilities that partially support and partially
contradict the previous testimony. Figure 16.9 illustrates contradictory, coherent
and partially coherent/contradictory possibilities on the frame of discernment.
Contradictory possibilities appear as disjoint sets. A possibility is coherent with
another if it is included in it. Finally, two possibilities that are partially coherent,
partially contradictory, intersect one another.

Let us suppose that two testimonies

fm .A1/ ; m .A2/ ; : : : m .‚/g

Fig. 16.9 Left, two contradictory possibilities. Centre, two coherent possibilities. Right, two
partially coherent and partially contradictory possibilities
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and
fm .B1/ ; m .B2/ ; : : : m .‚/g

both of which satisfy Eq. (16.13) must be combined into a testimony

fm .C1/ ; m .C2/ ; : : : m .‚/g

that also satisfies Eq. (16.13). Dempster-Shafer’s combination rule yields a com-
bined testimony fm(Ck)g where the coherent possibilities between fm(Ai)g and
fm(Bj)g have been stressed. According to Dempster-Shafer’s combination rule, pos-
sibilities fCkg are defined by all intersections of each possibility in fA1, A2, : : : ‚g
with each possibility in fB1, B2, : : : ‚g. For any possibility Ck, the amount of
empirical evidence is:

m .Ck/ D
P

Ai
T

BjDCk
m .Ai/ m

�
Bj

�

1 � P
Ai

T
BjD˛ m .Ai/ m

�
Bj

� (16.16)

The numerator of Eq. (16.16) measures the extent to which both the first and the
second testimonies support the possibility Ck. Indeed, for each possible Ck, the sum
extends to all pairs of possibilities from the two testimonies that are coherent on Ck

(see Fig. 16.9). The more the intersections between the Ais and the Bjs give rise to
Ck and the greater their amounts of evidence, the larger the numerator.

The denominator is the complement to one of those elements of the second
testimony that contradict the first one, for the complement to one is made on those
Ais and Bjs that are disjoint sets (see Fig. 16.9). The denominator represents a
measure of the extent to which the two testimonies are coherent, in the sense that all
evidence that supports contradictory possibilities is excluded.

Essentially, Dempster-Shafer’s combination rule says that the evidence
supporting possibility Ck is a fraction of the coherent evidence between
fm(A1), m(A2), : : : m(‚)g and fm(B1), m(B2), : : : m(‚)g. The amount of this fraction
depends on the sum of all elements of the testimonies that support Ck.

Dempster-Shafer’s rule can be iterated to combine any number of testimonies.
The outcome of Dempster-Shafer’s combination rule is independent of the order in
which two testimonies are combined.

The above description stressed that Evidence Theory provides an algorithm for
handling an exogenous flow of new, unexpected possibilities. However, its decision-
makers are not supposed to conceive possibilities. They merely listen to exogenous
testimonies that consist of possibilities and degrees of evidence supporting them and
combine these testimonies into a coherent whole by means of Dempster-Shafer’s
theory. She does not conceive novel possibilities out of a creative effort. Rather,
novel possibilities—the fCkg—arise out of combination of exogenous inputs.

In this respect, Evidence Theory bears some similarity to UNNs, for both
tools are open to novel arrangements of input information. These dynamical,
open arrangements are eventually called “possibilities” in Evidence Theory or
“categories” in UNNs. At the same time, Evidence Theory bears some similarity
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to CSNs when it comes to the combination of evidence, in the sense that both CSNs
and Dempster-Shafer’s combination rule Eq. (16.16) seek to improve the coherence
of available information.

From one point of view, UNNs and CSNs take on the complementary tasks of
modelling (a) the arousal of new concepts and (b) their combination into coherent
narratives. However, Evidence Theory is a mathematical theory that may be
developed into a framework able to encompass both CSNs and UNNs as simulation
tools.

At present, this is pure speculation. However, it is also a possible narrative that
may direct future research efforts.

16.7 Conclusions

This review presented tools to model decision-making according to two different
paradigms, namely, utility maximization and coherence-seeking. The reader may
feel unease because scientists do not provide a univocal answer to the demands of
the modeller.

However, a pragmatic attitude may suggest that tools should be used depending
on conditions. Utility maximization and Game Theory require that all available
alternatives and all of their possible consequences can be listed. Thus, it may be
sensible to make use of these tools when one such exhaustive list is available,
eventually releasing the requirement of perfect rationality and the pursuit of Nash
equilibria while assuming some form of bounded rationality as influence games
do. By contrast, unsupervised neural networks, constraint satisfaction networks and
Evidence Theory may be used when more challenging decision settings must be
modelled. Modellers should remember that constructing narratives makes sense
because decision-makers may be uncertain regarding what possibilities exist, so
these tools become necessary only in this kind of decision settings.

The trouble, in this last case, is that the tools mentioned above have not been
integrated into a unified framework. No simple formula is available to be readily
used, so the modeller must resort to a higher degree of creativity and intuition. Or,
from a more positive point of view, here is an exciting opportunity for modellers to
participate to theory development.

Further Reading

Game Theory is a huge subject. Relevant handbooks are Aumann and Hart (1992,
1994, 2002) and, at a more introductory level, Rasmusen (2007). However, agent-
based modellers should keep in mind that a substantial part of Game Theory has
been developed around equilibrium states, which are generally not a main concern
for them. Evolutionary games, thoroughly discussed in the above handbooks, are
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possibly closer to agent-based modelling. For other evolutionary mechanisms, see
Chap. 21 in this volume (Chattoe-Brown and Edmonds 2012).

Neural networks are a huge subject as well. This field is currently split in two
streams: on the one hand, research on neural networks as a model of cognitive
processes in the brain and on the other hand, research on neural networks as an
engineering tool for signal processing. A handbook oriented towards cognitive
problems is Arbib (2002). Handbooks oriented towards engineering problems
are Hu and Hwang (2002) and Graupe (2007). Specifically, unsupervised neural
networks are often employed in pattern recognition. A comprehensive treatment of
pattern recognition techniques is Ripley (1996).

All other tools and issues discussed in this chapter are in their infancy, so no
generic reading can be mentioned. Interested scholars are better advised to start
with the original papers mentioned in the bibliography, tracking developments on
recent publications and working papers.
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Utility and Games

Utility maximization was pioneered by Frank Ramsay and Bruno De Finetti in
the 1930s and subsequently refined by Leonard Savage in the 1950s. Savage
still provides the most comprehensive explanation of this approach to uncertain
reasoning.

Game Theory was initiated by John Von Neumann and Oskar Morgenstern in
the 1940s. It subsequently developed into a huge research field within economics,
with several specialized journals. Today, Game Theory is a field characterized by
extreme mathematical sophistication and intricate conceptual constructions.

This chapter did not focus on the assumptions and methods of Game Theory
but rather aimed at presenting the main prototypical games that have been devised
hitherto. A classical treatise by Duncan Luce and Howard Raiffa may introduce the
subject more easily than Von Neumann and Morgenstern did. Luce and Raiffa were
first to present the Battle of the Sexes as well as the Prisoner’s Dilemma, which they
ascribed to Albert Tucker anyway.

Readers interested in evolutionary games may rather read the treatises written
by Jörgen Weibull and Herbert Gintis, respectively. The former is more specific on
evolutionary games and also more technical than the second one.

Robert Axelrod is the main reference so far it regards simulations of the iterated
Prisoner’s Dilemma with retaliation strategies. The idea that the iterated Prisoner’s
Dilemma could yield cooperation simply relying on tags is due to Rick Riolo.

The stag hunt and the Game of Chicken are classical, somehow commonsensical
games. The Game of Chicken has been turned into the Hawk-Dove game by
Maynard Smith and George Price. The Hawk-Dove game is not terribly different
from the war of attrition, conceived by Maynard Smith and improved by Timothy
Bishop and Chris Cannings.

The Traveller’s Dilemma and the dollar auction are recent games invented by
Kaushik Basu and Martin Shubik, respectively. Pure coordination games have been
discovered by Thomas Schelling.

Axelrod, R. M. (1984). The evolution of cooperation. New York: Basic Books.
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Shubik, M. (1971). The dollar auction game: A paradox in noncooperative
behavior and escalation. Journal of Conflict Resolution, 15, 109–111.

Smith, J. M., & Price, G. R. (1973) The logic of animal conflict. Nature, 246,
15–18.

Weibull, J. (1997). Evolutionary game theory. Cambridge, MA: The MIT Press.

Influence Games

Ernst Ising introduced his model in the 1920s. Since then, a huge literature appeared.
The Ising model is taught in most Physics courses around the world, so a number

of good introductions are available on the Internet. A printed introduction by Barry
Cipra is mentioned here for completeness.

Schelling’s model of racial segregation was developed independently of the Ising
model. However, it may be considered a variation of it.

The El Farol Bar Problem was conceived by Brian Arthur. Renamed The
Minority Game and properly formalized, it was introduced to physicists by Damien
Challet and Yi-Cheng Zhang.

A huge literature on the minority game has appeared on Physics journals. Good
introductions have been proposed, among others, by Esteban Moro and Chi-Ho
Yeung and Yi-Cheng Zhang.
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Encyclopedia of complexity and systems science. Berlin, Springer. (Also available
online as arXiv:0811.1479v2.).

Some Pitfalls of Utility Maximization

The idea that probabilities measured on samples of size zero are somewhat
awkward is quite old and evidently linked to the frequentist view of probabilities.
Daniel Ellsberg circulated this idea among economists, where in the meantime
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the subjectivist view of probability judgements had become dominant. Subadditive
probabilities were conceived by Bernard Koopman in the 1940s and popularized
among economists by David Schmeidler in the 1980s.

Maurice Allais submitted his decision problem to Leonard Savage, who did not
behave according to his own axioms of rational choice. Since then, Savage presented
utility maximization as a normative, not as a descriptive, theory. Prospect theory was
advanced by Daniel Kahneman and Amos Tversky; it comes in a first version (1953)
and a second version (1992).

The preference reversals highlighted by Paul Slovic have triggered a huge
literature. A recent book edited by Sarah Lichtenstein and Paul Slovic gathers the
most important contributions.

Kenneth Arrow originally devised his paradox as a logical difficulty to the idea
of a Welfare State that would move the economy towards a socially desirable
equilibrium. However, it may concern any form of group decision-making.

Michael Mandler is the main reference for a possible conciliation of Slovic’s
and Arrow’s paradoxes with utility maximization, provided that preferences are
incomplete.
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Decision-Making by Coherence-Seeking

In 1974 and 1976, James March was first to point to the fact that human beings
distort their memories of the past in order to construct coherent stories that guide
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them into the future. This point has been also made by Karl Weick, who wrote a
lengthy treatise on this subject a few decades later.

A number of psychological experiments confirm this idea. Interested readers may
start with the works of Daryl Bem, Michael Conway and Michael Ross and a book
edited by Ulric Neisser and Robyn Fivush.

However, the trouble with the idea of human beings reconstructing the past is
that they are not willing to concede that they do so. Thus it is extremely difficult to
find case studies. The one by David Lane and Robert Maxfield is possibly the only
exception, though they were not allowed to publish all the materials they gathered
during their investigation (Lane, personal communication).

A final remark on lack of communication in this stream of research. James
March, Karl Weick and David Lane worked independently, possibly unaware of
one another, focusing on the same issue but employing different expressions.

Bem, D. J. (1966). Inducing belief in false confessions. Journal of Personality
and Social Psychology, 3, 707–710.

Bem, D. J. (1967). Self-perception: An alternative interpretation of cognitive
dissonance phenomena. Psychological Review, 74, 183–200.

Cohen, M. D., & March, J. G. (1974) Leadership and ambiguity: The American
College President. New York: McGraw-Hill.

Conway, M., & Ross, M. (1984). Getting what you want by revising what you
had. Journal of Personality and Social Psychology, 47, 738–748.

Greenwald, A. (1980). The totalitarian ego: Fabrication and revision of personal
history. American Psychologist, 35, 603–618.

Lane, D. A., & Maxfield, R. R. (2005) Ontological uncertainty and innovation.
Journal of Evolutionary Economics, 15, 3–50.

March, J. G., & Olsen, J. P. (1976). Organizational learning and the ambiguity of
the Past. In J. G. March & J. P. Olsen (Eds.), Ambiguity and choice in organizations.
Bergen, Norway: Universitetsforlaget.

Neisser, U., & Fivush, R. (Eds.). (1994). The remembering self: Construction
and accuracy in the self-narrative. Cambridge: Cambridge University Press.

Ross, M., & Newby-Clark, I. R. (1998). Constructing the past and future. Social
Cognition, 16, 133–150.

Weick, K. E. (1979). The Social psychology of organizing. New York: Random
House.

Weick, K. E. (1995). Sensemaking in organizations. Thousand Oaks, CA: Sage
Publications.

Tools for Modelling Coherence-Seeking

This chapter did not deal with tools where categories pre-exist to the information
that is being received, namely, supervised neural networks and Case-Based Decision
Theory. Readers interested in supervised neural networks may start with the clas-
sical handbook by Rumelhart, McClelland and the PDP Research Group. Readers
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interested in Case-Based Decision Theory may refer to a series of articles by Itzhak
Gilboa and David Schmeidler.

The earliest intuitions on the nature of mental categories date back to Ludwig
Wittgenstein. A good explanation of the main features of mental categories, and
why they are so different from our common idea of what a “category” is, is provided
by George Lakoff in his Women, Fire, and Dangerous Things.

So far it regards unsupervised neural networks; the classic book by Teuvo Koho-
nen is still unrivalled for its combination of mathematical rigour and philosophical
insight. Having been written at an early stage, it still keeps a strong link between
artificial neural networks and the human brain.

Paul Thagard is the basic reference for constraint satisfaction networks. Con-
straint satisfaction networks appear in several contributions to the book The Con-
struction of Preference, edited by Sarah Lichtenstein and Paul Slovic, mentioned in
the section “Some Pitfalls of Utility Maximization”. Regarding the importance of
focussing on two alternatives in order to arrive at a decision, see Fioretti (2012).

Evidence Theory started with a book by Glenn Shafer in 1976 and triggered a
small but continuous flow of mathematical works since then. An article by Guido
Fioretti explains it to social scientists, along with examples of applications to
decision problems.
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Chapter 17
Social Constraint

Martin Neumann

Abstract This chapter examines how a specific type of social constraint operates
in Artificial Societies. The investigation concentrates on bottom-up behaviour
regulation. Freedom of individual action selection is constraint by some kind of
obligations that become operative in the individual decision-making process. This
is the concept of norms. The two-way dynamics of norms is investigated in two
main sections of the chapter: the effect of norms on a social macro-scale and the
operation of social constraints in the individual agent. While normative modelling
is becoming useful for a number of practical purposes, this chapter specifically
addresses the benefits of this expanding research field to understand the dynamics
of human societies. For this reason, both sections begin with an elaboration of
the problem situation, derived from the empirical sciences. This enables to specify
questions to agent-based modelling. Both sections then proceed with an evaluation
of the state of the art in agent-based modelling. In the first case, sociology is
consulted. Agent-based modelling promises an integrated view on the conception of
norms in role theoretic and individualistic theories of society. A sample of existing
models is examined. In the second case, socialisation research is consulted. In the
process of socialisation, the obligatory force of norms becomes internalised by the
individuals. A simulation of the feedback loop back into the mind of agents is only
in the beginning. Research is predominantly on the level of the development of
architectures. For this reason, a sample of architectures is evaluated.

Why Read This Chapter?
To understand social norms and their complexities, including how they can operate,
how they can effectively constrain action and how such processes have been
represented within simulations. The chapter also helps the reader to acquire an
integrated view of norms and become aware of some of the relevant work simulating
them using this framework.
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17.1 Introduction

Some kind of mechanism for action selection has to be implemented in the
agents. The decision-making process of isolated agents may be governed by BDI
architectures. Developed by the philosopher Michael Bratman as a model of rational
decision making—in particular to clarify the role of intentions in practical reasoning
according to the norms of rationality—(Bratman 1987), the BDI framework has
been adopted by Rao and Georgeff for the development of software technology (Rao
and Georgeff 1991). BDI agents are data structures that represent beliefs about the
environment and desires of the agents. Desires enable the goal-directed behaviour
of an agent. Moreover, the decision-making process has to be managed, which is
accomplished in two stages. To achieve a goal, a certain plan has to be selected,
denoted as the intention of the agent. Secondly, the agent undertakes means-ends
calculations, to estimate which actions are necessary to reach its goals. Intentions
are crucial in mediating between the agent’s beliefs and desires and the environment.

In groups, however, behaviour is more effective if agents orient their actions
around other agents. The simplest example is of two robots moving towards each
other. They have to decide how to pass. Hence, individual action selection has to
be restricted by social constraints. In principle, there exist two options to model
social constraints on the individual agent’s action selection: top-down regulation by
a central authority or bottom-up regulation of action selection. Top-down regulation
can be exhibited computationally by a central processor or—in human societies—by
coercion of a central authority. An evaluation of modelling approaches to the former
kind of social regulation can be found in the chapter on Power and Authority. In
bottom-up approaches, freedom of individual action selection is constraint by some
kind of obligatory forces that become operative in the individual decision-making
process even without a controlling authority. This is denoted by the concept of
norms. Normative behaviour regulation can be enforced by some kind of generalised
social influence such as sanctions and encouragement. Crucial for the normative
behaviour regulation is that social constraints are internalised in the individual
agent’s decision-making process. This can range from more or less automatically
executed habits to processes of normative reasoning and balancing competing goals.
In contrast to top-down regulation, it is not based purely on coercion. Since bottom-
up regulation is more flexible than predetermined constraints by a central authority,
the past decades have witnessed a growing interest in the inclusion of norms
in multi-agent simulation models. Numerous factors are responsible for attention
being paid to norms in Artificial Societies, ranging from technical problems in
the co-ordination of multi-agent system, e.g. with moving robots (Shoham and
Tennenholtz 1992; Boman 1999), or practical problems such as e-commerce or
electronic institutions (Lopez and Marquez 2004; Vazquez-Salceda et al. 2005) to
philosophical interest in the foundation of morality (Axelrod 1986; Skyrms 1996,
2004) and the investigation of the wheels of social order (Conte and Castelfranchi
2001). The contribution of Artificial Societies to the latter problem is in the focus
of this chapter: what is the potential contribution of Artificial Societies to the
investigation of social order in human societies?
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However, in the literature—not only, but also in the simulation literature—a
great variety of concepts of norms exist. Typically, these differences are not much
discussed in the AI literature. Nevertheless, some decisions are made, consciously
or unconsciously. For this reason, this chapter aims to introduce the reader to
the different concepts that are often only implicit in the different approaches to
normative simulation models. This requires some background information about the
different concepts of norms in the different empirical sciences. However, one reason
for the variety of concepts of norms is that their investigation is scattered over a vast
variety of different disciplines. For this reason also, this chapter has to concentrate
on some empirical disciplines that are of particular importance for agent-based
modelling. A first restriction is motivated by the decision to concentrate on bottom-
up behaviour regulation in this chapter. This suggests to exclude the literature on
norms that can be found in the political sciences or the theory of law, since these
norm concepts are more closely related to top-down approaches. Secondly, agent-
based modelling is of particular relevance for the study of social mechanisms. These
mechanisms, however, are of some kind of generality. Typically, Artificial Societies
investigate stylised facts. This suggests focussing the examination by excluding
historical narratives that can be found in anthropological studies or historical
sociology such as the work of Michel Foucault or Norbert Elias. Instead, the
survey of the empirical sciences concentrates on the literature that investigates the
theoretical foundation of the specific dynamics between the micro- and the macro-
level that is the particular focus of agent-based modelling. Namely, how norms
influence the operations and effects of social systems and how such a normative
structure of the social system recursively affect the generating agent level. This calls
for a survey of sociology and socialisation research in social psychology. They are
most relevant sciences for an investigation of the contribution of norms to the wheels
of social order.

Beside this introduction, the chapter contains three main sections. Sections 3 and
4 consist of two parts: one providing a broad overview of the empirical counterpart
and a subsequent one about modelling. The sections can be read independently.
A reader with a background in the empirical sciences who wants to get informed
about simulation might concentrate on the parts evaluating simulation models. The
sections provide the following information:

Section 2: first, a brief exposition of the core concepts of norms in the empirical
sciences is provided. It is suggested to have a look at it, because here the core
problems are exposed that are investigated in the following sections. These are
the two main parts.

Section 3: an investigation of the dynamics of norm spreading from individuals to a
social group and how this effects the operations of the social system is undertaken
in this part. This refers to the sociological question of the operations and effects
of normative behaviour regulation on the social macro-level (the emergence of a
behaviour regularity). The section is divided into two parts: first, the sociological
questions to agent-based modelling are developed. Then a sample of models is
examined. The sample is divided into two categories of models: models inspired
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by a game theoretic problem description and cognitive models in an AI tradition.
This section is particular relevant for modelling normative regulation in Artificial
Societies.

Section 4: in this part, the recursive feedback loop is investigated. It is examined
how social behaviour regulation is executed in the individual agent. This refers
to the socio-psychological problem of norm internalisation. To represent this
process, cognitively rich agents are necessary. Also this section is divided into
two parts: first, a problem exposition will be provided. This refers to theories
of socialisation. Then a sample of architectures is examined with regard to the
question how norms become effective within the agent. This section might be the
most interesting one for readers interested cognitive modelling.

Finally, the main findings of the chapter are summarised in concluding remarks
and further reading suggested for those who want to investigate further.

17.2 The Concept of Norms

Before turning the attention to an examination of existing modelling approaches,
a brief exposition of the core concepts of norms will be provided. In some way,
some of these aspects have to be represented in a normative simulation model.
Dependent on the research question, the developer of a normative simulation model
may concentrate on only some aspects. In fact, no model includes all aspects.
However, it might be useful to be aware of a more comprehensive perspective. Oper-
ationally, norms can be described as correlated structures. Agent behaviour exhibits
regularities that can be found—to a certain degree—in an entire population. This can
be described as a social constraint. From a social science perspective, norms are the
most important concept of social constraints on behaviour regulation. Norms belong
to the fundamental concepts in sociology to explain human behaviour. Summarising
the individual and social aspects of norms, Gibbs provided the definition that ‘a
norm is a belief shared to some extent by members of a social unit as to what
conduct ought to be in particular situations or circumstances’ (Gibbs 1981, p. 7).
Unfolding this concise definition reveals three essential components:

• An individual component: a belief.
• A social component: the belief is shared by other members of a social unit.
• A deontic: a conduct is obliged.

1. The capability to understand the meaning of a deontic language game is acquired
in the childhood. The deontic prescribes individual behaviour. The capacity to
play language games that are centred around words such as ‘you ought’ is the
precondition for a normative orientation. It allows for the internalisation of
norms. Although in the past decades consideration has been given to under-
standing processes of internalisation over an individual’s entire life span, the
central processes arguably take place during childhood. Indeed, the transmission
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of cultural values has even been denoted as a ‘second birth’ (Claessens 1972). An
individual may become accepted into a wider society through a variety of means.
Norm internalisation is argued to represent one of the stronger mechanisms by
which this process occurs. It is argued that in contrast to compliance under
coercion or to simply copying other behaviour patterns, internalisation is coupled
with an individual’s intrinsic motivation and sense of identity. The mechanisms
by which this occurs are the focus of socialisation research. Socialisation is the
bridge between the individual and society (Krappmann 2006). Hence, sociali-
sation research is at the border of psychology and sociology, and contributions
from both disciplines can be found in the literature.

2. It is a central element of the concept of norms that it implies both a psychological
component, namely, the mental state of a belief, as well as a social component.
This becomes apparent by the fact that this belief is shared by a number of
individuals. Norms are thus essential for a comprehension of the relation between
structure and agency. This is often denoted as the micro-macro link. While the
aspect of agency can be found in the psychological aspect of norms, structure
is entailed in the social prescription. This makes norms a fundamental building
block of the wheels of social order. An understanding of norms is thus crucial for
an understanding of the social world. They are a central mechanism in the two-
way dynamics creating of social order. On the one hand, individual interactions
might produce social macro-patterns, namely, a normative order. On the other
hand, once the agents on the individual level recognise patterns on the resultant
social level, these patterns might have an effect on the mind of the individual
agent, namely, the recognition of a deontic prescription. This complex dynamics
can be embraced in the following schema (Fig. 17.1):

This schema can be illustrated by an example: interactions of individual actors
might lead to a certain aggregate result, for instance, social stratification. This
macro-property, however, might have an effect on how the actor cognitively

Fig. 17.1 The two-way
dynamics of norms

Structure

Agency

Inter – agent 
process

Intra – agent 
process
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structures the perception of the world. This is an intra-agent process. For instance,
actors might regard themselves as helpless losers or they might think that you can
get what you want. This world perception, in turn, has an effect on how these actors
behave in the interactions between the agents. Now the feedback loop is closed: the
interactions result again in an aggregated macro-structure. The reader may think of
other examples appropriate for his or her purpose. Presumably, it will turn out that
the dynamics of the particular models can be described in terms of such a two-way
dynamics between inter- and intra-agent processes.

17.2.1 The Sociological Perspective

In this section, process (1) is considered: the emergence and the properties of a
normative macro-structure. Hence, this section will concentrate mainly on the social
aspect of norms, i.e. the one-way dynamics of inter-agent processes. Before turning
the attention to existing modelling approaches, the questions will be developed that
need to be posed to normative multi-agent models for a comprehension of the effects
and operations of norms in a social system. For this purpose, sociological theory will
be utilised. Readers that are either familiar with this subject or with a purely practical
interest might go on to Sect. 3.2). However, a more or less implicit reference to the
problems posed by social theory can be discerned in most of the simulation models.

The function of normative behaviour regulation for social integration (i.e. a
social structure) has been particularly emphasised by the classical role theoretic
account within the sociological theory (Neumann 2008b). It can be traced back to
the functionalist sociology of Durkheim and Parsons. This theoretical account was
decisively influenced by anthropological research of the late 1920s when cultural
anthropologists discovered the variety of the organisation of the social life and
the correlation of the structure of personality and society (Malinowski 1927; Mead
1928). Role theory claims that action is guided by a normative orientation, insofar
as social roles are described by social norms. The concept of norms is introduced
in this account as a structural constraint of individual actors. This theory of action
is often paraphrased as the ‘homo sociologicus’. For a long time, this remained the
dominant stream of sociological theory.

To specify where norms are placed in the theoretical architecture, let us consider
the example of the famous Mr. Smith, introduced by Ralf Dahrendorf (1956) in his
analysis of the ‘homo sociologicus’ to characterise key elements of sociological role
theory. We first meet him at a cocktail party (in the early 1950s) and want to learn
more about him. What is there to find out?

Mr. Smith is an adult male, ca. 35 years old. He holds a PhD and is an academic.
Since he wears a wedding ring, we know that he is married. He lives in a middle-
sized town in Germany and is a German citizen. Moreover, we discover that he
is Protestant and that he arrived as a refugee after the Second World War in a
town populated mostly by Catholics. We are told that this situation caused some
difficulties for him. He is a lecturer by profession and he has two kids. Finally,
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we learn that he is the third chairmen of the local section of a political party, Y, a
passionate and skilful card player and a similarly passionate though not very good
driver. This approximates to what his friends would tell us.

In fact, we may have the feeling that we know him rather better now. After all,
we have some expectations as to how a lecturer is likely to behave. As a lecturer, he
stands in certain relations to colleagues and pupils. As a father, he will love and care
for his children, and card playing is also typically associated with certain habits. If
we know the party Y, we will know a lot more about his political values. However, all
that we have found out represent social facts. There are a lot more lecturers, fathers
and German citizens beside Mr. Smith. In fact, none of this information tell us
anything about the unique identity of Mr. Smith. We simply discovered information
about social positions, which can, of course, be occupied by varying persons.
However, social positions are associated with specific social roles. Roles are defined
by the specific attributes, behaviour and social relations required of them. Demands
of society determine—to a certain degree—individual behaviour. Individuals are
faced with obligations and expectations. This social demand is transmitted to the
individual by norms. Norms are the ‘casting mould’ (Durkheim 1895) of individual
action. They regulate how lecturers, fathers and members of political parties ought
to act to fulfil the role expectations of society. However, nowadays, it is improbable
that we will be told anything about driving competence. Thus, we have learned
another lesson: norms may change over the course of time. In particular, Talcott
Parsons (1937) emphasised that the ends of individual actions are not arbitrary but
rather are prescribed by social norms. Thus, norms represent a key concept within
sociological role theory.

To examine the explanatory account of this theoretical approach, the present
investigation will abstract from a description of the content of concrete norms. We
concentrate on the methodological characteristics of norms in general, rather than
the content of specific norms. On closer inspection of this example, we find out that
the concept of social norms is characterised by three key elements:

First, norms show some degree of generality. They are regarded as the ‘casting
mould’ of individual action (Durkheim 1895). The very idea of role theory is
that a social role must not be restricted to a unique individual. For instance, the
roles of lecturer or chairman of a political party can be performed by different
individuals. It might not, of course, be arbitrary as to who will play this role. In
fact, it is a major focus of the empirical counterpart of role theory, statistical
analysis of variables, to investigate the distribution of roles. For instance,
monetary background might determine an individual’s chances of securing an
academic position. Nevertheless, academic positions are a feature of society,
not the individual. In the classical account, the generality of norms is simply
a given. However, agent-based models start from individual agents. Thus, in the
individualistic approach norms have to spread in some way from one agent to
another to gain generality. The explanation of norm spreading is essential for a
reconstruction of social norms in terms of individual actors.
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Secondly, the role set of father or lecturer encompasses a huge action repertoire.
The choice of a concrete action cannot be determined only solely by an external
force. The ends of an action have to be determined internally by the individual
actor executing a specific role. This means that the ends of individual actions
are (to a certain degree) determined by the society. For instance, it is a social
norm how a caring father would look like and what kind of actions are to
be undertaken. In fact, this varies between societies. This knowledge is often
denoted as internalisation, even though the psychological mechanisms are not
in the focus of sociological theory. Thus, already a comprehension of the inter-
agent processes that constitute a social role calls for a related subjective element
at the level of the individual agent.

Thirdly, this approach is characterised by a certain type of analysis: the normative
integration of society (Parsons 1937; Davies and Moore 1945; Merton 1957).
Hence, the question is to a lesser extent concerned with the origin of norms than
with the function of norms for a society. For instance, the role of the father is to
educate his child. The role of the lecturer is crucial for the socialisation of pupils.
Thus, both roles are functionally relevant for the reproduction of the society.

However, in the past decades, this paradigm has been severely criticised: firstly,
role theory has been criticised for sketching an oversocialised picture of man
(Wrong 1961). Already in the 1960s, Homans (1964) claimed to ‘bring man back
in’. In fact, the individual actors of the role theory have often been regarded as
more or less social automata. If they have properly internalised the norms, they
execute the programme prescribed by their roles. Secondly, role theory is built on
the claim that social phenomena should be explained with social factors (Durkheim
1895). Roles are a pregiven element in this theoretical architecture. Roles (and,
thus, norms) emanate from society. However, the origin of both roles and society
is left unexplained. In this so-called functionalist methodology of the role theoretic
account, it is argued that to perform a social role is to perform a social function, and
this social function is argued to be the source of the norm. However, this perspective
lacks a description of a mechanism by which norms become effectively established.
This deficit suggests to ‘bring man back in’.

In fact, the explanatory deficit engendered an alternative. Others have suggested
building sociology on the foundations of individual actors. This built on views
advocated by John Stuart Mill. This is the programme of the so-called method-
ological individualism (Boudon 1981; Raub and Voss 1981; Coleman 1990; Esser
1993). A shift ‘from factors to actors’ (Macy and Willer 2002) can be observed
in the foundations of sociology in the recent decades. This approach regards the
appearance of norms as an aggregate product of a sum of individual actions. This
approach to norms has been particularly stressed by rational choice theories. The
deficit of this approach, however, is a lack of a cognitive mechanism that could
explain the deontic component of norms, i.e. how the social level may exhibit an
obligatory force on the individual by norms. Agent-based modelling promises to
overcome the complementary deficits of both theoretical accounts.
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On the one hand, agent-based models contribute to the individualist theory build-
ing strategy: obviously, agents are the fundamental building block of agent-based
models. In agent-based simulation models (Artificial Societies), structures emerge
from individual interaction. On the other hand, however, the great advantage of this
methodology is that it allows to explicitly consider the complexity generated by
individual interactions. Compared to purely analytical models, it is a great advantage
of simulation approaches that they are not restricted to single or representative
actors. This complexity generated by this particular feature enables the investigation
of the feedback loop between individual interaction and collective dynamics. This
has led to a growing awareness of its potential for investigating the building blocks
of social structure. For this reason, it is even claimed that agent-based simulation
allows us to ‘discover the language in which the great book of social reality is
written’ (Deffuant et al. 2006), by constituting the promise to understand ‘how
actors produce, and are at the same time a product of social reality’ (Deffuant et al.
2006). Since structures on the macro-level are a product of individual interaction, a
causal understanding of the processes at work seems possible that might fill the gap
between individual action and social structure with agent-based models.

This feature of agent-based modelling suggests that this methodology enables to
bring together the role theoretic perspective that norms are a structural constraints
and the individualistic perspective of norms as an aggregated product of a sum
of individual actions. Hence, it might provide both a causal mechanism of how
normative action constraints get established as well as how social forces exhibit
cognitive power. For this reason, the focus will now shift to an evaluation of
simulation models.

17.2.2 Simulation Models of Norms

After the theoretical problem exposition, the particular focus of this section is an
investigation of the contribution of simulation experiments to sociological theory.
The recourse to sociological theory in Sect. 3.1) revealed the following questions:

• Can they provide insights into the normative regulation of society, that is, do they
also reproduce the findings of a functional analysis of the effects and operations
of norms in a society (focus of contribution)?

• Moreover, do they allow for a causal reconstruction of the mechanisms that
generate the functional interconnectedness on the social level? This implies that
two further questions have to be addressed.

• What transforms the agents in such a way that they factually follow norms? That
is, what are the causal mechanisms at work that enable an internalisation of norms
(transformation problem)?

• By what mechanisms in the model can norm-abiding behaviour spread to or
decay from one agent to another (transmission problem)?
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These questions will be examined in this section. It has to be emphasised that the
investigation concentrates on methodology, not on the contents of norms governing
concrete roles such as father or lecturer. However, existing models are clustered
around various intuitions about norms, conventions or standards of behaviour. The
concrete research question differs from model to model. Some models concentrate
on the emergence or spreading of norms. Others concentrate on functional aspects
or the feedback of norms on individual agent’s behaviour. A multiplicity of concepts
is at hand. Hence, a comprehensive review of all models and accounts that may
be in some way related to the study of norms would go beyond the scope of this
investigation.

The overwhelming mass of models, however, can be traced back to (or is at
least influenced by) two traditions in particular: first, game theory and, secondly, an
architecture of cognitive agents with some roots in artificial intelligence. Tradition
and theoretical background has a direct impact on the terminology used. Depending
on their background, the models tend to be communicated in different scientific
communities. Additionally, references in articles tend to depend on their authors’
background. Under the perspective of content, the models in the AI tradition
typically contain references to conceptual articles relating to agent architectures.
Articles with models in a more game theoretical tradition typically refer to game
theoretic literature for the characterisation of the interaction structures in which
the authors are interested. Of course, this tradition-influenced framing, publishing
and referencing is a tendency. It does not constitute a clear-cut disjunction without
any intersection. It has to be emphasised that this is neither a very precise nor a
disjunctive categorisation. To some degree, the distinction between game theory and
DAI is a distinction in the mode of speech employed by the authors. Some problems
of game theoretic models could also be formulated in a DAI language and vice versa.
The categorisation of models as following the DAI tradition shall only indicate that
the agents employed by these models are in some way cognitively richer than those
in the so-called game theoretic models.

Nevertheless, this distinction gives a rough sketch of the line of thought
followed by the models and also of the kind of problems, the concepts for their
investigation and the mode of speech in which the paper is presented. Moreover,
this categorisation provides hints to other areas of research that are closely related
to the models considered in this article. For instance, simulation is only a small
subdiscipline of game theory in general, and the distinction between analytical and
simulation results is only gradual. Simulation models might describe problems in
game theoretic terms, but the method of resolution is not that of analytical game
theory (Binmore 1998). In fact, investigating norms with the means of analytical
game theory is a highly active research field.
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17.2.2.1 Models Using a Game Theoretic Problem Description

First, a closer examination of a sample of models applying a game theoretic problem
description will be undertaken. The models investigated here build on the framework
described in Chap. 16 on games and utility in this handbook (Fioretti 2017).

Axelrod (1986) studies the evolution of a standard not to cheat via a ‘norms game’
and a ‘meta-norms game’. In the ‘norms game’, defectors may be punished
by observers. In the ‘meta-norms game’, it is also the case that observers of a
defection that do not punish the defector may be punished. Only the latter game
leads to a widespread standard of not defecting.

Coleman (1987) investigates the effect of interaction structures on the evolution of
cooperation in a prisoner’s dilemma situation. Only small groups can prevent the
exploitation of strangers.

Macy and Sato (2002) examine the effect of mobility on the emergence of trust
among strangers in a trust game. While agents with low mobility trust only their
neighbours, high mobility supports the evolution of trust among strangers.

Vieth (2003) investigates the evolution of fair division of a commodity in an
ultimatum game. Including the ability to signal emotions leads to a perfectly
fair share. If detection of emotions is costly the proposals even exceed fair share.

Bicchieri et al. (2003) present a model of a trust game. It demonstrates how a trust
and reciprocate norm emerges in interactions among strangers. This is realised
by several different conditional strategies.

Savarimuthu et al. (2007) study the convergence of different norms in the interac-
tions of two different societies. Both societies play an ultimatum game against
each other. Two mechanisms are examined: a normative advisor and a role model
agent.

In the model by Sen and Airiau (2007), a co-ordination and a social dilemma
game are examined. Agents learn norms in repeated interactions with different
agents. This is denoted as social learning to distinguish this interaction type
from repeated games with the same player. The whole population converges to a
consistent norm.

Obviously, all models have been developed for differing concrete purposes. To
examine the extent to which these models capture the explanatory problems of
the contribution problem, transformation problem and transmission problem, the
various accounts of the different models will be outlined in a table. Moreover, a
short hint to the concrete implementation is provided. This will enable an evaluation
inasmuch normative agent-based models have so far reached the goal to discover
‘the language in which social reality is written’. These models are summarised in
Table 17.1.

Lessons

The classical model employing a game theoretical approach for the problem
description is Axelrod’s model. The main contribution of this approach is a

http://dx.doi.org/10.1007/978-3-319-66948-9_16
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Table 17.1 A sample of models using a game theoretic problem description

Contribution Transformation Transmission Implementation

Axelrod (1986) Norm dynamics
(norms broadly
conceived!)

Sanctions Social
learning;
replicator
dynamics

Dynamical
propensities

Coleman (1987) Norm dynamics Punishment by
defections
(memory
restrictions for
identifying
defections as
sanctions)

(a) group size
(acquaintance)
(b)
additionally:
Replicator
dynamics

Conditional
strategies

Macy and Sato
(2002)

Norm dynamics Losses by
exclusion from
interaction

Social learning Dynamical
propensities

Vieth (2003) Norm dynamics Losses by
rejection

Social
learning;
replicator
dynamics

Dynamical
propensities

Bicchieri et al.
(2003)

Norm dynamics Sanctions by
retaliating
super game
strategies

Strategy
evolution;
replicator
dynamics

Conditional
strategies

Savarimuthu et al.
(2007)

Norm dynamics;
functional
analysis

Losses by
rejection;
advice

Advice
updating based
on collective
experience

Dynamical
propensities

Sen and Airiau
(2007)

Norm dynamics Experience Social learning
guiding
behaviour
convergence

Dynamical
propensities

clear understanding of the emergence of (commonly shared) normative behaviour
constraints. The starting point of the models is a dilemma situation. This is a
consequence of the game theoretic problem description. Simulation allows for an
evolutionary perspective by analysing repeated games. Typically, in the long run
and under specific conditions (which vary from model to model), it is possible
that behaviour conventions emerge, which are in the benefit of all agents or that
represent some intuitions about fairness. The diffusion of a behavioural regularity
is then regarded as norms. The subjective side of an obligatory force is not in the
focus of this approach. Hence, what lessons can be gained from the investigation
of this conception to model normative action constraints with regard to the specific
questions?
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Contribution

Already Axelrod’s classical model provides a causal explanation for norm spread-
ing. This includes a designation of mechanisms of norm transmission and normative
transformation. An investigation of the functional effect of norms on the society is
left aside. This orientation remained predominant in this line of research. Typically,
models with a game theoretic background concentrate on the question of norm
dynamics. They ask how a behaviour regularity emerges in an agent population.
This is the problem of the rational choice tradition in sociological theory, namely,
the perspective of norms as an aggregated product of a sum of individual actions.

Transformation

It is striking that, except for the model by Sen and Airiau, the transformation of
individual behaviour in all models is driven by some kind of sanctions. However,
also in the Sen and Airiau model, agents react to losses of utility values. This is
the causal mechanism of norm spreading. The great advantage of this account is to
shed light on the process of norm change. As it has become apparent in discussing
Mr. Smith, this process can also be observed in human societies. However, norm
change is only barely captured by the functional account of role theory. On the other
hand, the models of this tradition only include a restricted functional perspective:
on an individual level, the agents’ choice of action is guided by the functional
consideration of calculating the expected utility. However, a corresponding analysis
on the social macro-level can be found only in Savarimuthu et al.’s model.

Transmission

With regard to the transmission of norms, it is striking that social learning is
implemented in many game theoretic models by a replicator dynamics. Typically,
this is interpreted as social learning by imitation. If applied in a context where no
real natural selection, rather than some kind of learning is at work, then using a
replicator dynamics amounts to saying: somehow the individuals learn in a way
that—measured by the relative overall success of their type of behaviour—more
successful types of behaviour become more frequent. As an effect, this may be true.
However, no mechanism is indicated. In this dimension, the models struggle with the
same kind of problem as functional analysis which the individualistic programme
tries to resolve, namely, the lack of a causal explanation.

Implementation

From the perspective of the role theory of action, a weakness of this approach
becomes apparent, one immediately related to the game theoretic problem descrip-
tion. Agents are faced with a strategic (binary) decision situation. Thus, they have
a fixed set of behaviour (Moss 2001). For this reason, behaviour change can be
implemented by dynamical propensities (i.e. the propensity to defect is dynamically
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updated). Faced with this situation, agents choose the alternative that maximises
their expected utility. However, behaviour change goes not along with goal change.
Agents can do no more than react to different environmental conditions. The
agents’ behaviour is guided strategic adaptation. An active element of normative
orientation in the choice relating to the ends of action cannot be found in a game
theoretic approach. This is simply due to the fact that agents do not possess any
internal mechanism to reflect and eventually change their behaviour, other than
the desire to maximise utility. This point has already been highlighted in Parsons’
critique of ‘utilitarian theories’ of action (Parsons 1937), namely, that the ends
of individual actions are in some way arbitrary. Even though the modelling of
behaviour transformation is the strength of this kind of models, the ends of the
action remain unchanged: the goal is to maximise utility. In this respect, the relation
between the action and the ends of the action remains arbitrary.

However, the very idea of role theory is to provide an answer to the question:
where do ends come from? Parsons’ (and Durkheim’s) answer was the internali-
sation of norms. A corresponding answer to this problem is not supplied in game
theoretical models. This is due to the fact that agents do not act because they want
to obey (or deviate from) a norm. They do not even ‘know’ norms. Even though
the model provides a mechanism for the transformation of the agents, this is not
identical with norm internalisation. This remains beyond the scope of this account.
The agents’ behaviour can only be interpreted as normative from the perspective
of an external observer. Thus, transformation is not identical with internalisation.
While the model provides a mechanism for behaviour transformation, it cannot
capture the process of internalisation. Compared to the classical role theory, this
is a principle limitation of a game theoretical description of the problem situation.

17.2.2.2 Models Utilising Cognitive Agents

This shortcoming calls for cognitively richer agents. For this reason, a sample of
models in the AI tradition will be examined more closely.

Conte and Castelfranchi (1995b) investigate three different populations of food
gathering agents: aggressive, strategic and normative agent populations. Aggres-
sive agents attack ‘eating’ agents, strategic agents attack only weaker agents, and
normative agents obey a finder-keeper norm. The aggregated performance of the
normative population is the best with regard to the degree of aggression, welfare
and equality.

In an extension of the above model, Castelfranchi et al. (1998) study the interaction
of the different agent populations. Interaction leads to a breakdown of the
beneficent effects of norms, which can only be preserved with the introduction
of normative reputation and communication among agents.1

1For a more in-depth discussion of this model, the interested reader is referred to the chapter on
reputation (Giardini et al. 2013).
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Saam and Harrer (1999) present a further extension of Conte and Castelfranchi’s
model. They investigate the influence of social inequality and power relations on
the effectiveness of a ‘finder-keeper’ norm.

Epstein (2000) examines the effect of norms on both the social macro- and the
individual micro-level. On the macro-level, the model generates patterns of local
conformity and global diversity. At the level of the individual agents, norms have
the effect of relieving agents from individual thinking.

Flentge et al. (2001) study the emergence and effects of a possession norm by
processes of memetic contagion. The norm is beneficent for the society but has
short-term disadvantages for individual agents. Hence, the norm can only be
retained in the presence of a sanctioning norm.

Verhagen (2001) tries to obtain predictability of social systems while preserving
autonomy on the agent level through the introduction of norms. In the model, the
degree of norm spreading and internalisation is studied.

Hales (2002) extends the Conte/Castelfranchi model by introducing stereotyping
agents. Reputation is projected not on individual agents but on whole groups.
This works effectively only when stereotyping is based on correct information.
Even slight noise causes the norms to breakdown.

Burke et al. (2006) investigate the emergence of a spatial distribution of a binary
norm. Patterns of local conformity and global diversity are generated by a
decision process which is dependent on the local interactions with neighbouring
agents.

The contribution of these models to the questions specified above can be
summarised in Table 17.2, which also includes a brief remark on the implementation
specification.

Lessons

The classical model of this kind of models is the one developed by Conte and
Castelfranchi in 1995. It was the starting point for several extensions. While the
scope of these models has been significantly extended in the past decade, the most
significant contribution of this approach still can be regarded as to enhance the
understanding of the operation and effects of normative behaviour constraints.

Epstein, Burke et al. and Verhagen do not study specific norms but examine
mechanisms related to the operations of norms. In particular, the spreading of
norms is studied by these authors. In this respect, they recover and refine (by the
notion of local conformity and global diversity, a pattern that cannot be found
in game theoretic models) the findings of game theoretic models with the means
of cognitive agents. The other models concentrate mainly on studying the effects
and operations of specific norms in the society. Analysed are questions such as the
effect of possession norms, for instance, under the condition of social inequality and
power relations. This is strongly influenced by Conte and Castelfranchi’s problem
exposition.
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Table 17.2 A sample of models using cognitive agents

Contribution Transformation Transmission Implementation

Conte and
Castelfranchi
(1995b)

Functional
analysis

�/�a �/�a Conditional
strategies

Castelfranchi
et al. (1998)

Functional
analysis

Updating
conditionals (of
strategies) through
knowledge

Updating
knowledge by
experience (and
communicationb)

Conditional
strategies

Saam and
Harrer (1999)

Functional
analysis

(a) �/�a (a) �/�a Conditional
strategies

(b) internalisationb (b) obligationb

Epstein
(2000)

Norm dynamics;
functional
analysis

Observation Social learning Dynamical
updating

Flentge et al.
(2001)

Functional
analysis

Memetic contagion Contact Conditional
strategies

Verhagen
(2001)

Norm dynamics Internalisation Communication Decision tree

Hales (2002) Functional
analysis

Updating
conditionals (of
strategies) through
knowledge

Updating
knowledge by
experience (and
communicationb)

Conditional
strategies

Burke et al.
(2006)

Norm dynamics Signals Social learning
guiding
behaviour
convergence

Dynamical
propensities
(threshold)

aThe agents are/are not already moral agents
bOnly in a second experiment

What lessons can be gain from the investigation of this conception to model
normative action constraints with regard to the specific questions?

Contribution

A striking feature of these models is that they demonstrate how agent-based models
are able to contribute to a functional analysis of norms. However, in contrast to
the classical scheme of functional explanations in the social sciences, this result is
reached by interactions of individual agents. Moreover, in these models, a much
stronger notion of norms is deployed than typically in game theoretic models.
Norms are not just reached by mutual agreement but are an explicitly prescribed
action routine. The concept of norms in these models is in line with the role
theoretical conception of norms as a structural constraint of individual actors. This
conception of norms allows for a wider field of applications that could cover the role
theoretic norm conception: these can be interpreted as internalised properties of the
agents.
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Transformation

There exist a wide range of varieties how agents change their behaviour. Behaviour
transformation is not as straightforward as in game theoretic models. However, it
has to be emphasised that the very first model of Conte and Castelfranchi did not
include any behaviour transformation at all. Agents have no individual freedom in
this model. As critics accuse the role theory, the action repertoire is also (depending
on conditions) deterministic. Thus, even though the authors succeed in ‘bringing
man back in’, the agents in the model are merely normative automata. Insofar as the
norms are a pregiven element in the model, the approach can also be regarded as an
‘over-socialised’ conception of man.

This limitation has been overcome by the subsequent developments. With regard
to the transformation problem, the agents have become more flexible than in the
very first model. However, a key difference to game theoretic models still remains:
while game theoretic models mostly concentrate on sanctioning, in models of
cognitive agents, sanctions are only employed by Flentge et al. as the transformation
mechanism.

However, while the norms in these models can be interpreted as internalised
properties of the agents, an investigation of the process of internalisation is only
in the beginning. So far no commonly accepted mechanism of internalisation has
been identified. Memetic contagion is a candidate. In Verhagen’s model, a quite
sophisticated account is undertaken, including a self-model, a group model and a
degree of autonomy. It is highly advanced in constructing a feedback loop between
individual and collective dynamics. By the combination of a self-model and a group
model, a representation of the (presumed) beliefs held in the society is integrated in
the belief system of individual agents. Conceptually, this is quite close to Mr. Smith.
However, it might be doubted whether the mechanisms applied are a theoretically
valid representation of real processes.

Transmission

Complementary to the wide range of different mechanisms of agent transformation,
also a variety of different transmission mechanisms are applied. Basically, agents
apply some kind of knowledge updating process, if agent transformation takes
place at all. Up to date, the transmission problem is no longer a blind spot of
cognitive agents as it was the case in the (Conte and Castelfranchi 1995a, b) model.
By comparison, communication plays a much more important role than in game
theoretic models and is much more explicitly modelled in models within the AI
tradition. The processes utilised are more realistic mechanisms than the replicator
dynamics of game theoretic models. However, no consensus has been reached, what
an appropriate mechanism would be. This is also due to the fact that a modelling
of agent transformation and norm transmission is computationally more demanding
than in game theoretic models. It has to be emphasised, however, that with regard to
the transformation and the transmission problem, the borderlines of both approaches
are no longer clear-cut. The models of Verhagen and Savarimuthu et al. include
elements of the other line of thought.
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Implementation

Since actions performed by cognitive agents cannot be reduced to the binary
decision to cooperate or defect, more complex behaviour rules than dynamic
propensities have to be applied. The dominant approach for the implementation of
normative behaviour constraints in cognitive agents is based on a straightforward
intuition, namely, to apply conditional strategies that are conditionally based on
the agent’s knowledge base. The strategy repertoire, however, depends on the
concrete model. The overview of existing models has revealed that the focus of
their contribution is mainly on the dynamics on the macro-level. The questions of
norm transmission and the focus of contribution concentrate on the social macro-
scale. The analysis is focused on the one-way dynamics of effects and operations of
norms on the social level. Hence, the analysis is focused on the emergence of social
structure out of individual interaction rather than on the relation between structure
and agency. This is one aspect of the full dynamics, namely, the following process:

inter-agent processes W interaction ) macro-property W structure

17.3 Socialisation: Norm Internalisation

It has been outlined, however, that the definition of a norm possesses social and
psychological components. Norms are essential for a comprehension of the relation
of structure and agency. While processes of emergence of aggregated behaviour
standards from interaction among individual agents has been extensively studied, a
comprehension of the reverse process how the aggregate level gets back into agents’
minds is not as yet fully reached. A full comprehension of normative behaviour
regulation, however, has also to include the reverse dynamics of the effect of social
structure on the individual agency. Already the problem of agent transformation
refers to the effect of structure on the level of the individual agent. This is the most
problematic aspect in the agents’ design. It would include the following dynamics:

structure ) Intra-agent processes W agency

This would be a step towards closing the feedback loop of the two-way dynamics.
Obviously, intra-agent processes are closely related to learning. The reader can find
a more comprehensive examination of the state of the art in the chapter on evolution
and learning. In particular, the effect of structure on (a transformation of) individual
agency is particular relevant for studying the effects of norms, if agency is not
restricted to a representative agent.

To represent such intra-agent processes, in particular the concept of social
learning is well known in agent-based models. It is applied in a number of game
theoretic models and can also be found in models of the AI tradition. The concepts
of social learning, but also knowledge updating, can be traced back to behaviouristic
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psychological theories. Behaviourism is a theory of learning developed principally
through experiments with animals. For instance, the conditioning experiments of
Ivan Pavlov are well known: he demonstrated that dogs can be trained to exhibit
a specific reaction such as salivation by presenting a specific stimulus such as the
sound of a bell together with food (Pavlov 1927). Bandura (1962, 1969) extended
the behaviouristic approach with a social dimension by developing a theory of social
learning through imitation. From a behaviouristic perspective, norms constitute a
learned behaviour and thus have to be explained using these theories. The dynamical
propensities of models inspired by game theoretical concepts are a straightforward
implementation of such a view on intra-agent processes. The propensity to cooperate
or defect is updated in proportion to the propensity of sanctions. The propensity of
sanctions, however, is a structural component resulting from inter-agent processes.
Hence, agents learn to modify their behaviour according to structural conditions.

Here we find the feedback loop between social and individual components that
are in fact essential for the concept of norms. However, the third component is
missing: this approach does not include a concept of obligations. Deontics are
out of the scope of this approach. This shortcoming can be traced back to the
psychological theory that is represented in the agents: behaviourism is not capable of
capturing mental processes. Indeed, it specifically avoids commenting on the mental
processes involved. Under the influence of positivism, reference to unobservable
entities such as the ‘mind’ has been regarded as not scientifically valid. Obligations
are such unobservable entities. Hence, they cannot be represented by the means of
behaviouristic learning theories that are applied in agent models.

In socialisation research, the complex cognitive processes necessary for grasping
the meaning of an obligation is denoted as internalisation. It has already been shown
that agent transformation is not the same as the internalisation of norms. This is also
behaviourally important because normative behaviour, guided by deontics, need not
be a statistical regularity, guided by propensities. In particular if moral reasoning is
involved, deviant behaviour is not explained by chance variation, leading to some
kind of normal distribution (where the mean value might be updated). There is a
difference between norms and the normal.

To represent a complex cognitive concept such as norm internalisation calls
for the cognitively rich agents of the AI tradition. However, the examination of
current models has revealed that a comprehension of the cognitive mechanisms
by which social behaviour regulation becomes effective in the individual mind is
still in its fledgling stages. It has been shown that a multiplicity of concepts is at
hand: while in the very beginning the agents were merely normative automata, there
exist conceptualisations of normative agent transformation ranging from updating
conditionals (of strategies) through knowledge to signalling and memetic contagion.
However, no consensus is reached what are the most relevant mechanisms. It can
be suspected that they remain effect generating rather than process representation
mechanisms. As an agenda for the next decade, a closer examination of the
processes by which normative obligation becomes accepted by humans might be
useful. For this purpose, it is necessary to recall socialisation theory. This will
help to clarify the problem situation. However, the results of socialisation research
are not unequivocal. Hence, in the development of a normative architecture, some
fundamental decisions have to be made.
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17.3.1 The Perspective of Socialisation Research on Norms

To grasp an understanding of the decisions that have to be made in the cognitive
design of an agent, first, some fundamental aspects of theories of socialisation
are briefly highlighted. Subsequently, current architectures of normative agents are
evaluated with regard to the questions posed by the empirical science.

Broadly speaking a conceptual dichotomy of two main approaches can be
identified (Geulen 1991) in socialisation research concerning the relation between
the individual and society: One position assumes a harmony between, or identity of,
the individual and society. Philosophical precursors of this approach are Aristotle,
Leibniz and Hegel. The second position stands in contrast and postulates an
antagonism between the individual and society. Within this position, two further
standpoints can be distinguished already in the philosophical tradition: Hobbes, for
example, is representative of the argument that society should tame the individual.
By contrast, the position of Rousseau is paradigmatic of an approach that advocates
the need for releasing the individual from society. Both philosophers share the
assumption that an antagonism exists between the individual and society, although
they disagree about the implications.

As it has been outlined, socialisation research sits at the border of psychology
and sociology, and contributions from both disciplines can be found in the litera-
ture. From a sociological perspective, the beginning of investigating socialisation
processes cumulated in the work of Emil Durkheim, founding father of sociology
and professor of pedagogy. Starting from a clinical and psychological perspective,
Sigmund Freud developed a theory of socialisation, which in many aspects is
surprisingly akin to Durkheim’s approach.

The early theories of Freud and Durkheim agree in that they assume an antago-
nism between individual and society. Durkheim asserted that the individual consists
of two parts: first, a private domain that is egoistic and guided purely by basic drives.
The egoistic domain corresponds to that of the newborn child. The original human
is a ‘tabula rasa’ in which social norms have to be implemented. Only through
the process of socialisation do humans become socially and morally responsible
persons. This is the second ‘part’ of the individual. Durkheim claimed that the best
of us is of a social nature. Society, however, is coercive (Durkheim 1895) and can
even compel individuals to commit suicide (Durkheim 1897). Norms are finally
internalised once the individual no longer perceives this coercion (Durkheim 1907).
Yet for Durkheim coercion nonetheless remains. As with Durkheim, Freud assumed
the existence of an antagonism between individuals and society. This assumption
can be discerned in his distinction between ego, id and superego. The id represents
the drives of the child-like portion of the person. It is highly impulsive and takes
into account only what it wants. It exclusively follows the pleasure principle (Freud
1932). The superego enables control of the primary drives: it represents the moral
code of a society and involves feelings of shame and guilt (Freud 1955). It is the
place where social norms can be found. It has been argued that the degree to which
feelings of guilt are experienced is indicative of the degree of norm internalisation
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(Kohlberg 1996). Finally, the ego is the controlling instance: it coordinates the
demands of id, superego and outer world. According to Freud, the superego is
the mirror of the society. Freud’s theory of ego, superego and id, then, parallels
Durkheim’s assumption that the internalisation of norms involves social coercion
(Geulen 1991). From the perspective of both, society is in radical conflict with
human nature. Norms are given as an external fact. Both Durkheim and Freud regard
the individual as passive and internalisation as a unidirectional process.

Building on G.H. Mead (1934), and the theories of cognitive and moral develop-
ment of Piaget (1932, 1947) and Kohlberg (1996), in recent times identity theories
have become influential in socialisation research. In contrast to an orientation based
solely either on the individual subject or the society, identity theories emphasise the
interaction of culture and individuals in the development of a morally responsible
person (Bosma and Kunner 2001; Fuhrer and Trautner 2005; Keupp 1999).

Mead developed a concept of identity that in contrast to Durkheim did not reduce
the individual to a private subject guided purely by drives. Instead, he developed
a theory of the social constitution of individual identity. A crucial mechanism in
the development of personality is the capability of role taking: to regard oneself
from the perspective of the other. This ability enables individuals to anticipate the
perspectives and expectations of others and thereby to come to accept social norms.
In the process of role taking, the individual develops a consciousness whereby the
individual is itself a stimulus for the reaction of the other in situations of social
interaction. This is the distinction between the spontaneous ‘I’ and self-reflected
‘me’. Together, they form what Mead denoted as identity: in other words, the ‘self’.
An abstraction of this process leads to the notion of the ‘generalised other’. This is
not a specific interaction partner but a placeholder for anybody. The notion of the
‘generalised other’ is the representation of society.

Identity theories follow Mead in seeing individual identity as the key link
between person and culture. In contrast to the perspective to regard the social as
constraining the individual, identity theories argue that socially embedded identity
enables action selection. Action determination can be intrinsically or extrinsically
motivated. The identity of individuals contributes to the development of their
intrinsic motivation. There exist clear empirical evidence that sanctions and even
incentives undermine intrinsic motivation (Deci and Ryan 2000). Norms, however,
constitute a socially determined pattern of behaviour. Thus, norm obedience is
always extrinsically motivated. However, at this point, internalisation comes into
play. Extrinsic motivation can be internalised to different degrees, ranging from
purely extrinsic behavioural regulation (e.g. sanctions) to motivations that are
integrated into the self. Integration is attained when external guidelines have
become part of personal identity. This is the highest degree of a transformation
of external regulation into self-determination and is denoted as self-determined
extrinsic motivation (Deci and Ryan 2000). In this case, a person is in line with itself
if he or she orients behaviour around social norms. Integrated behaviour regulation
is highly salient. Since norms are in full accordance with the personal values,
action is regarded as autonomously motivated. Hence, the scale of internalisation
from external regulation to integration is regarded as the scale from external
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control to autonomy. Internalisation of extrinsic motivation represents the bridge
between psychological integrity and social cohesion. While intrinsic motivation is
the paradigm of autonomous motivation, in the case of social behaviour regulation,
autonomy can only be reached through a process of internalisation.

How is the concept of identity described? With reference to William James
(1890), criteria for identity are formulated as consistency, continuity and effective-
ness. Identity consists of an inner and outer perspective. Moreover, personal and
social identities are differentiated (Tajfel 1970; Turner 1982; Turner and Onorato
1999). While the inner perspective is grounded on individual decisions, the outer
perspective is based on ascription of others. Examples are ethnic or gender identity.
However, the individual might decide to identify with these ascriptions. Then the
ascription becomes part of the inner perspective. Examples can be found throughout
the history. For instance, (beside other factors) elements of this psychological
mechanism can be revealed in the black power movement in the 1960s or the raise
of ethnic conflicts since the 1990s. Personal identity is the self-construction of a
personal biography. Social identity is determined by peer and reference groups. This
refers to social networks. While peers are the group to which the individual factually
belongs, the individual need not belong to the reference group. It is sufficient
to identify with the values of this group. For instance, this identification might
constitute sympathy for a political party. The social identity is decisively responsible
for the process by which social norms and values become part of individual
goals. This is particularly dependent on the salience of group membership. Norm
internalisation, however, is not a unidirectional process of the transmission of a
given norm. While embedded in a social environment, the individual has an active
role in the social group.

17.3.2 Normative Architectures

The brief overview of socialisation research suggests that for the design of normative
agents in particular two main decisions have to be made:

Is an antagonism or an identity (respective harmony) between individual and society
presumed? Hence, does the Artificial Society represent the theories of Durkheim
and Freud, or identity theories that follow G. H. Mead?

How is the effect of normative behaviour regulation on the individual agent
represented? Does the individual agent play an active or a passive role, i.e. has the
individual agent something comparable to a personal identity?

The second question leads to a follow-up question, namely:

If agents play an active role, if and how can this represent a process of identity
formation? In particular, are agents embedded in social networks of peer or
reference groups?
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It will now be examined how current architectures can be assessed from an empir-
ical perspective. As the examination of current simulation models has revealed, a
comprehension of the effects of the social level on individual agents is far from being
sufficient so far. To provide an outlook of possible future modelling approaches
of the effects of social norms on individual agents, a brief sample of normative
agent architectures will be provided. In fact, the number of conceptually oriented
articles on the architecture of normative agents exceeds the number of existing
models. These architectures study how these processes could be modelled in
principle. Typically, norms in concrete models are less sophisticated than concepts
proposed in formal architectures (Conte and Dignum 2001). The development of
architectures is a kind of requirement analysis: it specifies the essential components
of normative agents. It can be expected that future implementations will be guided
by deliberations that can be found in these architectures. For this reason, a sample
of cases is selected (Neumann 2008a) for a closer examination with regard to
the question of what decisions are made on how to represent effects of norms on
individual agents.

Andrighetto et al. (2007) investigate the process of norm innovation. The behaviour
of an agent may be interpreted by an observing agent as normative if it is marked
as salient in the observer’s normative board. Thus, norm instantiation is regarded
as an inter-agent process.

Boella and van der Torre (2003) differentiate between three types of agents: agents
who are the subject of norms, so-called defender agents, who are responsible
for norm control and a normative authority that has legislative power and that
monitors defender agents.

Boella and van der Torre (2006) rely on John Searle’s notion of institutional
facts (so-called ‘counts-as’ conditionals) to represent social reality in the agent
architecture. A normative base and a ‘counts-as’ component transforms brute
facts into obligations and permissions.

The Belief-Obligation-Intentions-Desire (BOID) architecture (Broersen et al. 2001)
is the classical approach to represent norms in agent architectures. Obligations
are added to the BDI architecture to represent social norms while preserving the
agent’s autonomy. Principles of the resolution of conflicts between the different
components are investigated in the paper.

Boman (1999) proposes the use of supersoft decision theory to characterise real-
time decision-making in the presence of risk and uncertainty. Moreover, agents
can communicate with a normative decision module to act in accordance with
social demands. Norms act as global constraints on individual behaviour.

Castelfranchi et al. (2000) explore the principles of deliberative normative reason-
ing. Agents are able to receive information about norms and society. The data
is processed in a multi-level cognitive architecture. On this basis, norms can be
adopted and used as meta-goals in the agent decision process.

Conte and Castelfranchi (1999) distinguish between a conventionalist (in rational
philosophy) and a prescriptive (in philosophy of law) perspective on norms. A
logical framework is introduced to preserve a weak intuition of the prescriptive
perspective which is capable of integrating the conventionalist intuition.
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Conte and Dignum (2001) argue that imitation is not sufficient to establish a
cognitive representation of norms in an agent. Agents infer abstract standards
from observed behaviour. This allows for normative reasoning and normative
influence in accepting (or defeating) and defending norms.

Dignum et al. (2002) investigate the relations and possible conflicts between differ-
ent components in an agent’s decision process. The decision-making process of
so-called B-doing agents is designed as a two-stage process, including norms as
desires of society. The authors differentiate between abstract norms and concrete
obligations.

Garcia-Camino et al. (2006) introduce norms as constraints for regulating the rules
of interaction between agents in situations such as a Dutch auction protocol.
These norms are regulated by an electronic institution (a virtual auctioneer) with
an explicitly represented normative layer.

Lopez and Marquez (2004) explore the process of adopting or rejecting a normative
goal in the BDI framework. Agents must recognise themselves as addressees of
norms and must evaluate whether a normative goal has a higher or lower priority
than those hindered by punishment for violating the norm.

Sadri et al. (2006) extend their concept of knowledge, goals and plan (KGP) agents
by including norms based on the roles played by the agents. For this reason, the
knowledge base KB of agents is upgraded by KBsoc, which caters for normative
reasoning, and KBrev, which resolves conflicts between personal and social goals.

Shoham and Tennenholtz (1992) propose building social laws into the action
representation to guarantee the successful coexistence of multiple programmes
(i.e. agents) and programmers. Norms are constraints on individual freedom. The
authors investigate the problem of automatically deriving social laws that enable
the execution of each agent’s action plans in the agent system.

Vazquez-Salceda et al. (2005) provide a framework for the normative regulation
of electronic institutions. Norms are instantiated and controlled by a central
institution, which must consist of a means to detect norm violation and a means
to sanction norm violators and repair the system.

How can these examples be evaluated with regard to the design decision
suggested by socialisation research? The existing approaches can be regarded as
a hierarchy of increasingly sophisticated accounts, ranging from mere constraints to
abstract concepts. Broadly speaking, three concepts of norms can be differentiated:
norms as constraints (the simplest choice), as obligations or as abstract concepts
(the most sophisticated choice). This is summarised Table 17.3.

17.3.2.1 Constraints

The simplest and most straightforward way is to regard norms as mere constraints
on the behaviour of individual agents. For example, the norm to drive on the right-
hand side of the road restricts individual freedom. In this case, norms need not
necessarily be recognised as such. They can be implemented off-line or can emerge
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Table 17.3 A categorisation of approaches: constraints, obligations and abstract concepts

Constraints Obligations Abstract concepts

Garcia-Camino et al. (2006) Sadri et al. (2005) Dignum et al. (2002)
Boman (1999) Broersen et al. (2001) Andrighetto et al. (2007)
Shoham and Tennenholtz
(1992)

Boella and van der Torre
(2006)

Conte and Dignum (2001)

Lopez and Marquez (2004)
Boella and van der Torre
(2003)
Conte and Castelfranchi
(1999)
Vazquez-Salceda et al. (2005)
Castelfranchi et al. (2000)

in interaction processes. This may be sufficient for practical purposes. However,
it follows that it is not possible to distinguish the norm from the normal. Hence,
even though norms cannot be in contrast to individual desires in this account, the
agents have no concept of obligations. They do not ‘know’ norms. Agents have a
purely passive role. Since no decisions are possible, they remain merely normative
automata.

17.3.2.2 Obligations

More sophisticated accounts treat norms as mental objects (Castelfranchi et al. 2000;
Conte and Castelfranchi 1995a, b). This allows for deliberation about norms and, in
particular, for the conscious violation of norms. Norms intervene in the process
of goal generation, which might—or might not—lead to the revision of existing
personal goals and the formation of normative goals. A number of accounts (such
as the BOID architecture) rely on the notion of obligations. Obligations are explicit
prescriptions that are always conditional to specific circumstances. One example
of an obligation is not being permitted to smoke in restaurants. The rationale for
including a separate obligation component next to a component of individual desires
is geared towards ensuring an agent’s autonomy: by explicitly separating individual
and social desires, it is possible that the agent can deliberate over which component
has priority. Conflicts may arise between different components. Compared to the
literature on socialisation, a partial convergence with older theories can be observed.
In particular, it is striking that Freud’s architecture of the human psyche has some
parallels to BOID agents: the Id, guided by egoistic drives taking into account
only what it wants, can be found in the ‘desires’ component. Moreover, there is an
obvious temptation to identify Freud’s superego with the ‘obligations’ component.
In fact, ‘obligations’ have been explicitly described as the desires of a society
(Dignum et al. 2002). This conception is well supported by Freud’s theory. With
regard to current identity theories and the theory of self-determination, the situation
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is different: these theories emphasise that a full internalisation of norms is only
realised when they have become part of one’s identity. Thus, internalised norms
form part of the person’s own goals. According to identity theories, agents of this
kind of architecture have not yet fully internalised norms. Norms, implemented in
an ‘obligations’ component, do not represent complete external regulation, but by
the same token, they are not part of the agent’s own desires. In fact, the dichotomy
between obligations and desires becomes only effective once conflicts between both
components arise. This is explicitly wanted: the ‘obligations’ component is added
to the architecture to enable norm compliance as well as violation. It is claimed that
this process preserves the agent’s autonomy. Hence, the dichotomy of obligations
and desires refers to an antagonism between an individual and society. To represent
the process of norm internalisation as described by modern theories, a dynamic
relation between the components ‘obligations’ and ‘desires’ would be required:
contingent on the salience of a norm, elements of the ‘obligations’ component
should be imported to the ‘desires’ component.

17.3.2.3 Abstract Concepts

Agents may face several obligations that may contradict one another. For this reason,
some authors differentiate between norms and obligations. Norms are regarded as
more stable and abstract concepts than mere obligations (Dignum et al. 2002; Conte
and Dignum 2001). One example of such an abstract norm is ‘being altruistic’:
further inference processes are needed for the formation of concrete action goals
from this abstract norm. The striking feature of this approach is to allow for
normative reasoning. This calls for an active role of the agent. This conception of
norms is a precondition for a modelling approach of social behaviour regulation
based on identity conceptions.

In particular, the cognitive capacity of role taking constitutes a crucially impor-
tant step in the development of goals from abstract concepts: that is, the ability to
regard oneself from another’s perspective. Interestingly, steps in this direction can
be found in the AI literature. In Boella and van der Torre’s architecture of a ‘norm-
governed system’ (Boella and van der Torre 2003), the agent’s decision-making
process is governed by the belief that they are observed by other agents and by
the belief that the other agents have expectancies with regard to how they ought to
behave. This can be regarded as a first step in simulating identity theory. However,
from the perspective of socio-psychological identity theories, it is a shortcoming
of this architecture that the agents regard themselves only in terms of the question
concerning whether they fulfil their—externally given—social role. Identity consists
of an inner and outer perspective. The inner perspective is dependent on one’s
personal decisions. This is not the case in this architecture, which consists solely
of an outer perspective. It can be questioned if and how an inner perspective can be
modelled: among other things, the development of an inner perspective is correlated
to a social identity. This social identity, however, is correlated to peer groups and
reference groups. Hence, it refers to social networks, which can be simulated. In
principle, a propensity to take over group norms could be simulated, dependent on
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the salience of group membership. To model such cognitive development, the agents
thus need to be embedded in micro-social structures.

In conclusion, the concepts of norms as obligations and as an abstract concept are
more closely related to concepts in empirical sciences than a mere constraint, which
might be perfectly sufficient for practical purposes. It has to be noted, however,
that they refer to different theories: the obligation concept of norms presumes an
antagonism between the individual and the society, which is in line with Durkheim
and Freud. The idea of norms as an abstract concept demands for a more active role
of the agents. This is a precondition for modelling identity. There exist very first
attempts that can be regarded as a modelling approach towards identity formation.
Yet, it has to be emphasised that these are very first steps, and much is still not
realised, such as to implement a correlation between network structures and salience
of normative orientation. However, one principle deficiency of current models and
architectures in attempting to represent the process of norm internalisation remains;
namely, that agents do not have a childhood (Guerin 2008). However, socialisation
theory describes childhood as the most important site for the internalisation of
norms. Since agents have no childhood, the process of human cognitive development
cannot be represented.

17.4 Conclusion

In conclusion, it can be retained that the interaction processes, resulting in macro-
structural constraints, are quite well understood. In particular, the perspective to
regard norms as an aggregated product of individual interactions is considerably
elaborated. This is the view of sociological rational choice theories. In particular, the
game theoretic paradigm has proved to be an effective means to study the dynamics
of collective behaviour regularities. However, it lacks of an active element of
normative orientation in the choice of the ends of action. The agents do not ‘know’
norms. Thus, these models do not capture the process of norm internalisation.
Behaviour is merely guided by adaptation of agents to changing environmental
conditions.

The role theoretic tradition emphasises that norms are structural constraints of
individual behaviour. While models of cognitive agents in the AI tradition also have
reached a substantial insights into norm dynamics, this aspect has been particularly
studied these models. They have provided considerable insights into the effects of
such structural constraints on a social macro-level. Hence, the inter-agent processes
of interaction, leading to a macro-property of some kind of normatively structured
social macro-level, are relatively good understood. There is, however, still a lot to
do with regard to achieving a comprehensive understanding of how actors produce
and are at the same time a product of social reality. While agent-based modelling
has reached a substantial understanding of inter-agent processes, an investigation of
the recursive impact on intra-agent processes is still in its fledgling stages.
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This becomes apparent when considering socialisation theories of norm internal-
isation. An investigation of the effects of social behaviour regulation on individual
agents is mostly at the level of conceptual considerations in the development
of architectures. Here, the development of new models has to be aware of the
decisions to be made. The philosophical orientation that implicitly underlies the
BOID architecture is inspired by the classical accounts of Durkheim and Freud:
by opposing obligations and desires, an antagonism between individuals and
society is assumed. However, it has to be (and—implicitly—is) decided whether
an antagonism individual and society is assumed or not. This is the question,
whether the social macro-level is perceived as action constraint or as enabling action
selection. Empirical research suggests that a social embedding in networks of peer
and reference groups has a substantial impact on normative reasoning and thereby
on the process of action selection (i.e. the agents’ desires).

A comprehension of the two-way dynamics of the operations and effects of social
behaviour regulation on a psychological as well as on the social level calls for
interdisciplinary research. Agent-based modelling is an appropriate methodological
tool for this effort. However, it has to be emphasised that developmental processes
in the socialisation process are only barely captured by current simulations.

Further Reading

Even though they are quite old and some of their findings are out of date by now, it
is still a good start (and not too much effort) to study the following two models to
become familiar with the research field of normative agent-based models: Axelrod’s
(1986) evolutionary approach to norms and Conte and Castelfranchi’s (1995a, b)
paper on understanding the functions of norms in social groups (using simulation).

As an introduction into the design and logical foundations of normative architec-
tures, the following anthologies are suggested: Boella et al. (2005) and Boella et al.
(2007).

The relation of modelling and theory is particularly highlighted in the two
anthologies (Conte and Dellarocas 2001; Lindemann et al. 2004). Here the reader
will also find hints for further readings about the empirical and theoretical back-
ground.

For an overview of the theoretical background and developments in theorising
norms, it is suggested to refer to Conte and Castelfranchi (1995a, b) and Therborn
(2002).
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Chapter 18
Reputation for Complex Societies

Francesca Giardini, Rosaria Conte, and Mario Paolucci

Abstract Reputation, the germ of gossip, is addressed in this chapter as a dis-
tributed instrument for social order. In literature, reputation is shown to promote
(a) social control in cooperative contexts—like social groups and subgroups—
and (b) partner selection in competitive ones, like (e-) markets and industrial
districts. Current technology that affects, employs and extends reputation, applied
to electronic markets or multi-agent systems, is discussed in light of its theoretical
background. In order to compare reputation systems with their original analogue, a
social cognitive model of reputation is presented. The application of the model to
the theoretical study of norm-abiding behaviour and partner selection are discussed,
as well as the refinement and improvement of current reputation technology. The
chapter concludes with remarks and ideas for future research.

18.1 Reputation in Social Systems: A General Introduction

Ever since hominid settlements started to grow, human societies have needed to cope
with problems of social order. How to avoid fraud and cheating in wider, unfamiliar
groups? How to choose trustworthy partners when the likelihood of re-encounter
is low? How to isolate cheaters and establish worthwhile alliances with the “good
guys”?

Social knowledge like reputation and its transmission (i.e. gossip) play a
fundamental role in creating and maintaining social order, adding at the same
time cohesiveness to social groups and allowing for distributed social control and
sanctioning (plus a number of other functionalities; see Boehm 1999). Reputation
is a property that even unwilling and unaware individuals derive from the gen-
eration, transmission and manipulation of a special type of social belief, which
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has contributed to the regulation of natural societies from the dawn of mankind
(Dunbar 1996). People use reputational information for many things, including: to
make decisions about possible interactions, to evaluate candidate partners and to
understand and predict their behaviours (Alexander 1987).

It has long been known that reputation is a fundamental generator, vehicle
and manipulator of social knowledge for enforcing reciprocity and other social
norms (Conte and Paolucci 2002). In particular, in the study of cooperation and
social dilemmas, the role of reputation as a partner selection mechanism started to
be appreciated since the early 1980s (Kreps and Wilson 1982). However, at that
stage, there was little understanding of its dynamic and cognitive underpinnings.
Despite its critical role in the enforcement of altruism, cooperation and social
exchange, the socio-cognitive study of reputation is relatively new. Hence, how
this critical type of knowledge is manipulated in the minds of agents, how social
structures and infrastructures generate, transmit and transform it, has not yet been
fully clarified. Consequently, the full picture of how it affects agents’ behaviour
is also unclear. Partly, this is because reputation extends beyond the boundaries of
academic disciplines, emerging as a prototypical cross-disciplinary topic (Paolucci
and Sichman 2014).

The aim of this chapter is to guide the reader through the multiplicity of com-
putational approaches concerned with the reputation mechanism and its dynamics.
Reputation is a complex social phenomenon that cannot be treated as a static
attribute of agenthood, with no regard for the underlying process of transmission.
We claim that reputation is both the process and the effect of transmitting informa-
tion and that further specifications about the process and its mechanisms are needed.
We will follow this with three different applications of the cognitive theory of
reputation to model social phenomena: the Sim-Norm model, the Socrate framework
and the Repage architecture.

This introduction will be followed. In order to lay the ground for understanding
the multiplicity of reputation, we will present by an outline of reputation research in
some different domains, namely, social psychology, management and experimental
economics and agent-based simulation. This will show the variety of viewpoints
that can be used to describe and explore this complex phenomenon. We will then
focus on some of the work in electronic markets and multi-agent simulations that
include reputation mechanisms. Electronic markets are a typical example of a
complex environment where centralized control is not possible and decentralized
solutions are far from being effective. In recent years, the Internet has contributed
to a growing number of auction sites that facilitate the exchange of goods between
individual consumers, without guaranteeing either transparency or the safety of the
transactions. On the other hand, multi-agent applications are concerned with the
problem of assessing the reliability of single agents and of social networks.

In Sect. 18.6 we propose a cognitive model of reputation, which aims to solve
some of the problems left open by existing systems, starting from a theoretical
analysis of cognitive underpinnings of reputation formation and spreading. This
model will be tested in the following section, where a description of three different
implementations is of the model and their results are then provided. We also describe
a set of simulation studies on gossip, in which private transmission of unverified
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information is able to support cooperation in a public goods game. Moving from
the observation that reputation and punishment are considered the most important
mechanisms for social control, a systematic comparison of their effects will show
that their combination represents a powerful way of detecting and deterring cheaters.
Finally, we draw some conclusions about some future directions for research in this
area.

18.2 State of the Art: An Overview on Reputation in Natural
and Artificial Societies

According to Frith and Frith (2006), there are three ways to learn about other people:
through direct experience, through observation and through “cultural information”.
When the first two modalities are not available, reputational information becomes
essential in order to obtain some knowledge about potential partner(s) in an interac-
tion and thus to form expectations about their behaviour. Reputation allows people
to predict, at least partially or approximately, what kind of social interaction they
can expect and how that interaction may possibly develop. Reputation is therefore
a coordination device whose predictive power is essential in social interactions
(Paolucci and Conte 2009).

Reputation and its transmission (gossip) have an extraordinary preventive power:
it substitutes personal experience in (a) identifying cheaters and isolating them and
in (b) finding trustful partners. It makes available most of the benefits of evaluating
someone, without the costs of direct interaction.

Furthermore, in human societies gossip facilitates the formation of groups
(Gluckman 1963): gossipers share and transmit relevant social information about
members within the group (Barkow 1996) while, at the same time, isolating those in
out-groups. Gossip contributes to stratification and social control, since it works as
a tool for sanctioning deviant behaviours and for promoting those behaviours that
are functional with respect to the group’s goals and objectives (e.g. via a learning
process). Reputation is also considered as a means for sustaining and promoting
the diffusion of norms and norm conformity (Wilson et al. 2000). On the other
hand, reputation can be used to pursuit self-interest, either by promoting one’s
achievements or by spreading negative information about others (Paine 1967; Noon
and Delbridge 1993).

Reputation plays a key role in evolutionary theories of cooperation, supporting
indirect reciprocity (Nowak and Sigmund 1998a, b, 2005). Theories of indirect
reciprocity explain large-scale human cooperation in terms of conditional helping
by individuals who want to uphold a reputation and then to be included in future
cooperation (Panchanathan and Boyd 2004). By means of computer simulations,
Nowak and Sigmund (1998a, b) showed that reputation can sustain the emergence
of indirect reciprocity—getting people to cooperate (even with strangers) in order
to receive cooperation, without the necessity of any kind of contract or keeping
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track of contributions. Theories of indirect reciprocity explain large-scale human
cooperation in terms of conditional helping by individuals who want to uphold a
reputation and then to be included in future cooperation (Panchanathan and Boyd
2004). In a “market for cooperators” (Noë and Hammerstein 1994), or in partner
choice, building a positive reputation for generosity can be seen as a long-term
investment. Here, individuals may compete for the most altruistic partners, leading
non-altruists to become ostracized (Roberts 1998).

As Alexander (1987) pointed out “indirect reciprocity involves reputation
and status, and results in everyone in the group continually being assessed and
reassessed”. In the last few years, attention to reputation has grown both within
single disciplines and in interdisciplinary contexts (Milinski 2016; Wu et al.
2016). This has involved a variety of methodologies, going from online large-
scale experimental studies using dynamic networks (Rand et al. 2011; Wang et al.
2012) to economic laboratory experiments, and has included important advances in
the study of reputation as a means to support cooperation in a variety of contexts
(Beersma and Van Kleef 2011; Piazza and Bering 2008; Sommerfeld et al. 2008).

Reputation and gossip are also crucial in other fields of the social sciences
like management and organization science, governance and business ethics, where
the importance of reputation in branding became apparent (Fombrun and Shanley
1990). The economic interest in the subject matter came from the fact that reputation
can be applied at the super-individual level; corporate reputation is considered as
an external and intangible asset tied to the history of a firm and coming from
stakeholders’ and consumers’ perceptions (Fombrun 1996). Rose and Thomsen
(2004) claim that a good reputation and a good financial performance are mutually
dependent—a good reputation may influence the financial assets of a firm and
vice versa. Several researchers have tried to create a corporate reputation index
containing the most relevant dimensions to take into account when dealing with
corporate reputation. Cravens et al. (2003) interviewed 650 CEOs in order to create
a reliable index, but their index has so many entries, ranging from global strategy
to employees’ attributes, that it is not easy to foresee how such a tool could be
used. Gray and Balmer (1998) distinguish between corporate image and corporate
reputation. Corporate image is the mental picture consumers hold about a firm, and
is thus similar to individual perception, whereas the reputation results more from
the firm’s communication and long-term strategy. Generally speaking, corporate
reputation is treated as an aggregate evaluation that stakeholders, consumers,
managers, employees and institutions form about a firm. However, the mechanisms
leading to the final result are not well defined.

If social order is a constant of human evolution, it is particularly crucial in an
e-society where the boundaries of interaction are widening. The increasingly fast
development of ICT technologies dramatically enlarges the range of interaction
among users, generating new types of aggregation, from civic communities to
electronic markets and from professional networking to e-citizenship. What is
the effect of this widening of social boundaries? Communication and interaction
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technologies modify the range, structures and modalities of interaction, with
consequences that are only partially explored, often only to resume the stereotype
of technological unfriendliness (e.g. the negative impact of computer terminals, as
opposed to face-to-face interaction, on subjects’ cooperativeness in experimental
studies of collective and social dilemmas (Sell and Wilson 1991; Rocco and
Warglien 1995). Detailed studies of the effects of technological infrastructures on
interaction styles and modes are lacking. Perhaps, an exception to this is represented
by the research on the effects of asymmetry of information within the markets.
Asymmetry of information is known to encourage fraud and low-quality production
in many situations. As exemplified by Akerlof (1970), asymmetry of information
can drive honest traders and high-quality goods out of the market. The result is a
market where only “lemons”, or fraudulent commodities, are available—often to the
detriment of both sellers and buyers. The classical example of such a market is the
used car market, where only sellers have information about problems with the cars
they are selling, and most consumers are incapable of discerning these problems.
This phenomenon is an intrinsic feature of e-markets, but goes back to eleventh-
century Maghribi traders moving along the coast of the Mediterranean Sea (Greif
1993). Contemporary online traders such as users of Internet auction sites face the
same problem of mediaeval traders: online buyers can learn about the quality (or
condition) of the good only once they have already paid for it.

Auction sites vary from the very generic, concerning the products being offered
and operated on a global scale (e.g. eBay), to those that focus on specific products
on a national scale (many car auction sites). Buying through auction sites offers less
control to the buyers than even online retailers, as the sellers are not visible and have
not made major investments. Consumers who purchase through auction sites must
rely on the accuracy and reliability of the seller. Sellers on the Internet may actively
try to communicate their reputation to potential buyers, increasing the expected
impact of reputation on buying decisions. Melnik and Alm (2002) investigated
whether an e-seller’s reputation matters. Their results indicated that reputation had a
positive—albeit relatively small—impact on the price levels consumers were willing
to pay. Moreover, Yamagishi et al. (2004) show that reputation has a significant
positive effect on the quality of products. In any case, the strength of reputational
mechanisms does not seem to be diminished by the spread of anonymous contexts
in which interactions take place at a distance and are mediated by a computer (as
happens online). In this sense, the new technologies allow for more information. A
greater number of people can interact due to overcoming spatial limitations. These
new opportunities for large-scale interaction, as well as the chance to make opinions
accessible to the community of Internet users (i.e. bidirectionality), have allowed the
development of systems based on online feedback mechanisms (Dellarocas 2003).
We are witnessing the proliferation of services that rely on reputation systems (e.g.
eBay, Amazon, TripAdvisor), and experimental studies show that even in online
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anonymous contexts, where the way in which reputation is assigned is opaque,
reputation is used to actively avoid defectors (Capraro et al. 2016). Technical
challenges for large-scale systems can be met with the use of simple reputation
systems, as in the case of collaborative filtering algorithms (Petroni et al. 2016).

Despite the role of reputation in economic transactions, online reputation systems
are only moderately efficient (Bolton et al. 2004; Resnick and Zeckhauser 2001),
showing a stronger effect of negative feedbacks on price reduction than a positive
one on price increase (Diekmann et al. 2014).

In all of these cases, the notion of reputation is weak and essentially reduced to
centralized image: no direct exchange of information takes place among participants
but only reports to a central authority, which calculates the resultant reputation
score. This mechanism is debatable alone and can be insufficient, but it can be
complemented by detailed comments or forums. For example, when forums are
available, this is the solution chosen by TripAdvisor, whose users can provide
detailed comments about hotels, restaurants, tourist attractions and services. These
comments are displayed along with real reputation exchanges that are performed in
parallel, thus offering interested users as much information as possible. Moreover,
many people do not bother to provide reputational feedback (under-provision), and
if they do, they lean on providing only positive reports (overscoring).

Agent-based social simulation has taught us some lessons: (1) what matters about
reputation is its transmission (Castelfranchi et al. 1998), since by this means agents
acquire-cost; (2) reputation has more impact than directly acquired information. In
a simulation study, Pinyol et al. (2008) showed that if agents transmitted only their
own evaluations about one another (image), the circulation of social knowledge
ceases quickly. To exchange information about reputation, agents need to participate
in circulating reputation whether they believe it or not (gossip), and, to preserve
their autonomy, they must decide how, when and about whom to gossip. In a
simulation study, Pinyol et al. (2008) showed that if agents transmitted only their
own evaluations about one another (image), the circulation of social knowledge
ceases quickly. To exchange information about reputation, agents need to participate
in circulating reputation whether they believe it or not (gossip) and, to preserve
their autonomy, they must decide how, when and about whom to gossip. What is
missing in the study of reputation is the merging of these separate directions in an
interdisciplinary integrated approach, which accounts for both its social cognitive
mechanisms and structures.

18.3 Simulating Reputation: Current Systems

So far, the simulation-based study of reputation has been undertaken for the sake
of social theory, namely, in the account of prosocial behaviour—be it cooperative,
altruistic or norm abiding—among autonomous, i.e. self-interested agents. Thanks
to computational methods, social simulation has contributed to our understanding
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of reputation as a means to promote norm-abiding behaviour in social groups and
as a tool for improving partner selection in electronic markets and computational
settings.

Several attempts have been made to model and use reputation in artificial
societies, especially in two subfields of information technology: computerized
interaction (with a special reference to electronic marketplaces) and agent-mediated
interaction. It is worth emphasizing that in these domains trust and reputation are
actually treated as the same phenomenon, and often the fundamentals of reputation
mechanisms are derived from trust algorithms (Moukas et al. 1999; Zacharia 1999;
Zacharia et al. 1999). We will review some of the main contributions in online
reputation reporting systems and in multi-agent systems, in order to achieve a
better understanding of the complex issue of implementing and effectively using
reputation in artificial societies.

18.3.1 Online Reputation Reporting Systems

The continuously growing volume of transactions on the World Wide Web and the
growing number of frauds that appears to entail1 have led scholars from different
disciplines to develop new online reputation reporting systems. These systems are
intended to provide a reliable way to deal with reputation scores or feedbacks,
allowing agents to find cooperative partners and avoid cheaters.

The existing systems can be roughly divided into two subsets, agent-oriented
individual approaches and agent-oriented social approaches, depending on how
agents acquire reputational information about other agents.

The agent-oriented individual approach has been dominated by Marsh’s ideas on
trust (Marsh 1992, 1994a, b), on which many further developments and algorithms
are based. This kind of approach is characterized by two attributes: (1) any one
agent may seek potential cooperation partners, and (2) the agent only relies on
its experiences from earlier transactions. When a potential partner proposes a
transaction, the recipient calculates the “situational reputation” by weighing the
reputation of his potential trading partner against other factors, such as potential
output and the importance of the transaction. If the resulting value is higher than a
certain “cooperation threshold”, the transaction takes place and the agent updates
the reputation value according to the outcomes of the transaction. If the threshold is
not reached, the agent rejects the transaction offer, an action that may be punished
by a “reputation decline”. These individual-based models (Bachmann 1998; Marsh
1994a; Ripperger 1998) differ with regard to their memory span. Agents may forget
their experiences slowly, fast or never, and this has important consequences for the
dynamics of the overall level of trust in the system.

1According to the US-based Internet Crime Complaint Center (IC3), losses as a result of auto-
auction fraud exceeded $8.2 million dollars in 2011.
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In agent-oriented social approaches, agents not only rely on their direct experi-
ence but are also allowed to consider third-party information (Abdul-Rahman and
Hailes 1997; Rasmusson 1996; Rasmusson and Janson 1996;Yu and Singh 2000).
Although these approaches share the same basic idea—i.e. experiences of other
agents in the network can be used when searching for the right transaction partner—
they use upon different methods to weigh the third-party information and to deal
with “friends of friends”. Thus the question arises as to how to react to information
from agents who do not seem to be very trustworthy. A similar problem arises
with the storage and distribution of information. To form a complete picture of its
potential trading partners, each agent needs both direct (its own) and indirect (third-
party) evaluations in order to be able to estimate the validity and the informational
content of such a picture.

Regan and Cohen (2005) propose a system for computing indirect and direct rep-
utation within a computer-mediated market. Buyers rely on reputation information
about sellers when choosing from whom to buy a product. If they do not have direct
experience from previous transactions with a particular seller, they take indirect
reputation into account by asking other buyers for their evaluations of the potential
sellers. The received information is then combined to mitigate effects of deception.
The objective of this system is to propose a mechanism which reduces reputation
in the face of undesirable practices in online applications, especially on the part of
sellers, and to prevent the market from turning into a “lemons market” where only
low-quality goods are listed for sale.

One serious problem with the model by Regan and Cohen and similar other
models concerns the transmission of reputation. In these kinds of models, agents
only react to reputation requests, while proactive, spontaneous delivery of reputation
information to selected recipients is not considered. However, this simple solution is
quite effective. On the other hand, despite its simplicity, these types of model tackle
the problem of collusion between rating agents, because by keeping the evaluation
of sellers remains among buyers (i.e. not disclosing it to the sellers). Therefore
sellers cannot influence their own scores.

Turning to electronic marketplaces, classic systems like eBay show a charac-
teristic bias towards positive evaluations (Resnick and Zeckhauser 2002). This
suggests that factual cooperation among users at the information level may lead to a
“courtesy” equilibrium (Conte and Paolucci 2003). As Cabral and Hortaçsu (2010)
formally prove, negative feedbacks trigger a decline in sale price that drives the
targeted sellers out of the market. Good sellers, however, can gain from “buying a
reputation” by building up a record of favourable feedback through purchases rather
than sales. Thus those who suffer a bad reputation stay out—at least until they decide
to change identity—while those who stay in can but enjoy a good reputation: after
a good start, they will hardly receive negative feedback and even if they do, it will
not get to the point of spoiling their good name. Under such conditions, even good
sellers may have an incentive to sell lemons, considering that it takes time for their
reputation scores to go down.

Intuitively, the courtesy equilibrium reduces the deterrent effect of reputation. If
a reputation system is meant to reduce frauds and improve the quality of products,
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it needs to be constructed in such a way as to avoid the emergence of a courtesy
equilibrium. It is not by chance that among the possible remedies to ameliorate
eBay, Dellarocas (2003) suggested a short-memory system, erasing all feedbacks
but the very last one.

18.3.2 MAS Applications

Models of trust and reputation for multi-agent systems applications (e.g. Yu and
Singh 2000; Carbo et al. 2002; Sabater and Sierra 2002; Schillo et al. 2000; Huynh
et al. 2004; for exhaustive reviews see Ramchurn et al. 2004; Sabater and Sierra
2004; Pinyol and Sabater-Mir 2013) present interesting ideas and advances over
conventional online reputation systems, with their notion of a distributed reputation.

Yu and Singh (2000) proposed an agent-oriented model for social reputation and
trust management, which focuses on electronic societies and MAS. Their model
introduces a gossip mechanism for informing neighbours of defective transaction
partners, in which the gossip is transferred link-by-link through the network of
agents. It also has a mechanism to allow agents to include other agents’ testimonies
in its reputation calculations. Agents store information about the outcome of every
transaction they ever had and recall this information in case they are planning
to bargain with the same agent again (direct evaluation). If the agent meets an
agent it has not traded with before, the reputation mechanism comes into play. In
this mechanism, so-called referral chains are generated that can make third-party
information available across several intermediate stations. An agent is thus able to
gain reputation information with the help of other agents in the network. Since a
referral chain represents only a small part of the whole network, the information
delivered will most likely be a partial view instead of global score as in centralized
systems like eBay.

In the context of several extensive experiments, Yu and Singh showed that
the implementation of their mechanism results in a stable system, in which the
reputation of cheaters decreases rapidly while cooperating agents experienced a
slow, almost linear increase in reputation. However, some problems remain. The
model does not allow agents to combine their own experience with the network
information. Thus, it might take unnecessarily long to react to a suddenly defecting
agent that cooperated before. In addition, Yu and Singh do not give an explanation
of how their agent-centred storage of social knowledge (e.g. the referral chains) is
supposed to be organized. Consequently, no analysis of network load and storage
intensity can be done.

ReGreT (Sabater 2004) is another MAS application in which the link between
trust and reputation is very strong. In this, reputation is only one of the dimensions
an agent resort to in order to evaluate the trustworthiness of another agent. In
ReGreT, reputational information and direct experience have different values, and
the former is considered less reliable than the latter.
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A system called Liar Identification for Agent Reputation (LIAR) has been
proposed by Muller and Vercouter (2008), based on three levels of reputation: direct,
indirect and recommendation based. To implement those elements, LIAR explicitly
models a social commitment mechanism, social norms and the operations over them.

SOARI (Service Oriented Architecture for Reputation Interaction) is a reputation
ontology that has been proposed by Nardin et al. (2008). SOARI is a service-
oriented architecture that provides support to the semantic interoperability among
agents that implement heterogeneous reputation models. The main contribute of
SOARI is to provide a mapping among different reputation models, represented by
a common reputation ontology especially designed for agents’ interaction, in the
form of a service that can be executed externally to agents and is available online as
an on-demand service for agents.

As these example shows, the “agentized environment” produces interesting
solutions that may apply also to online communities. This is for two main reasons.
Firstly, in this environment two problems of order arise: meeting users’ expectations
(external efficiency) and promoting agents’ performance (internal efficiency). Inter-
nal efficiency is instrumental to the external one, but it re-proposes the problem of
social control at the level of the agent. In order to promote the former, agents must
be in an environment where they evaluate and act upon each other’s behaviours.
Secondly, agent systems can be used to help determine (a) what type of agents, (b)
what type of beliefs and (c) what type of processes among agents are required to
achieve useful social control. More specifically, they can be used to map out what
type of agent and processes are needed for which desirable result, including better
efficiency, encouraging equity (and hence users’ trust), discouraging discrimination
and fostering collaboration at the information level or object level (or both).

However, in models of Internet systems, the notion of reputation is weak and
essentially reduced to centralized image: participants do not exchange information
directly but only report their evaluations to a central authority, which calculates their
global reputation value. The solutions proposed for MAS systems are interesting,
but these are insufficient to meet the problems left open by online contexts. There
is a tendency to consider reputation as an external attribute of agents without taking
into account the processes of creation and transmission of that reputation. Is there
an alternative? How can we understand the effects of reputation on transactions if
we do not model the process of reputation creation and transmission?

18.4 An Alternative Approach: The Social Cognitive
Process of Reputation

Current models operate with a highly simplified model of reputation, in which
different experiences and items of information are reduced to a single accumulator.
In this section, we will model reputation as a social cognitive process and briefly
discuss advantages and disadvantages of this approach.
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A social cognitive process involves symbolic mental representations (e.g. social
beliefs and goals2) that are manipulated by individuals and agents in the process of
social reasoning by means of the operations that agents perform upon them (social
reasoning).

Social cognitive processes are aimed at modelling (and possibly implementing)
systems acting in a social—be it natural or artificial—environment. These processes
employ explicit representations of a variety of mental states (including social goals,
motivations, obligations) and operations (such as social reasoning and decision-
making) necessary for an intelligent social system to act in some domain and
influence other agents thus triggering the processes of (social learning, influence,
and control). To represent reputation as a social cognitive process, two different
constructs are needed, namely, image and reputation. After giving the definition of
those constructs, we will show how agents can behave when evaluating someone and
transmitting these evaluations. Thus playing one of three different roles: evaluator,
beneficiary and target.

18.4.1 Image and Reputation

An image consists of a set of evaluative beliefs (Miceli and Castelfranchi 2000)
held by an agent (the “evaluator”) concerning the characteristics of another agent
(the “target”). It is an assessment of its positive or negative qualities with regard to a
norm or competence. The image relevant for social reputation may concern a subset
of the target’s characteristics, e.g. its willingness to comply with socially accepted
norms and customs.

An agent’s reputation we argue is distinct from, although closely related to,
its image. More precisely, we define reputation as consisting of three distinct but
interrelated objects: (1) a cognitive representation, i.e. a believed evaluation of
another agent; (2) a population object, i.e. an evaluation that is propagated to
others; and (3) an objective emergent property at the agent level, i.e. what the
agent is believed to be. As an illustration, when we say that “John has a very
good reputation as a dentist”, we are implicitly assuming that (1) someone believes
that he is good at his job, (2) an indefinite number of people share that belief, and
(3) he actually possesses some skills; therefore his reputation is grounded in some
objective properties.

Reputation is a highly dynamic phenomenon in two distinct senses: it is subject
to change, especially due to the effect of corruption, errors and deception, and it
emerges as an effect of a multilevel process within the society of agents (Conte
and Paolucci 2002). This involves emergence both from agents to society and from

2A belief or a goal is social when it mentions another agent and possibly one or more of his or her
mental states (for an in-depth discussion of these notions, see Conte and Castelfranchi 1995; Conte
1999).



454 F. Giardini et al.

society back to the individual agents. In particular, it proceeds from the level of
individual cognition to the level of social propagation (population level) and from
there back to individual cognition. Once it reaches the population level, it gives
rise to an additional property at the agent level. Reputation is the immaterial, more
powerful equivalent of the scarlet letter sewn to one’s clothes Nathaniel Hawthorne
described in his masterpiece. It is more powerful because it may not be perceived by
the individual to whom it is attached and therefore harder for an individual (him/her)
to control or manipulate. The objective nature of reputation (in our sense) also makes
it impersonal, and therefore, spreading reputation can carry less responsibility than
spreading image.

To formalize these concepts, we will begin by defining the building blocks of
“image”. An agent has made an evaluation when he or she believes that a given
entity, be it another agent, an organization, a firm, etc., can achieve a specific goal
of some agent who is (often, but not always) the same as the evaluator. An agent
has made a social evaluation when his or her belief concerns another agent as a
means for achieving this goal. Thus, E targets T and benefits B. Evaluations may
concern physical, mental and social properties of targets; agents may evaluate a
target with regard to both capacity and willingness to achieve a shared goal. The
latter, willingness to achieve a goal or interest, is particular to social evaluations.
Formally, e (with e2E) may evaluate t (t2T) with regard to a state of the world that
is in b’s (b2B) interest, but of which b may not be aware.

To make this analysis more concrete, we will start with an example in which
we consider a classic multi-agent situation in which a set of agents fight for access
to a scarce resource (food). Assume that a norm of “precedence”—a proscription
against attacking agents who are consuming their “own” resources—is applied to
reduce conflicts. The norm is disadvantageous for the norm follower in the short
run, but is advantageous for the community and thus eventually for the individual
followers. We will call N the set of norm followers, or normative agents, and C the
set of cheaters, or violators of the norm. With regard to social evaluations (image),
the targets coincide with the set of all agents; T D N[C (all are evaluated). For
reasons of simplicity, the agents carrying out the evaluation are restricted to the
norm followers: E D N D N[C: indeed, if normative agents benefit globally from
the presence of the norm, cheaters in this simple setting benefit even more; they
can attack the weaker while they themselves are safe from attacks by the gullible
normative.

It is very easy to find examples where all three sets (E, T and B) coincide. General
behavioural norms, such as “Do not commit murder”, apply to, benefit, and are
evaluated by all agents. However, there are also situations in which beneficiaries,
targets and evaluators are separate, for example, when norms safeguard the interests
of a subset of the population. Consider the quality of TV programmes for children,
broadcast in the afternoon. Here, we can identify three more or less distinct sets. The
children are the beneficiaries, while adults entrusted with taking care of children are
the evaluators. It could be argued that B and E still overlap, since E may be said to
adopt B’s interests. The targets of evaluation are the writers of programmes and the
decision-makers at the broadcast stations. There may be a non-empty intersection
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between E and T but no full overlap. If the target of evaluation is the broadcaster
itself (a supra-individual entity), the intersection can be considered to be empty.

Extending this formalization to include reputation, we have to differentiate it
further. To assume that a target t is assigned, a given reputation implies assuming
that t is believed to be “good” or “bad”, but it does not imply sharing either
evaluation. While image is based on direct experience or observation, therefore an
evaluator is assumed to believe his/her own evaluation; reputation therefore involves
one more set of agents: in addition to evaluators E, targets T and beneficiaries B, we
have a set M of memetic agents who share the meta-belief. This means that they
simply believe that some other agents had a positive experience with John, therefore
they hold the meta-belief that John has a positive reputation (“I believe that others
believe that he is a good dentist”). It is important to stress the fact that a memetic
agent does not need to hold the evaluation belief, but she simply need to transmit
it. If they contribute to the diffusion of reputation, the memetic agents can also be
labelled as gossipers G. Often, E can be taken as a subset of M; the evaluators are
aware of the effect of evaluation. In most situations, the intersection between the
two sets is at least non-empty.

18.4.2 Identifying Reputational Roles

We have seen that agents may play more than one role simultaneously: evaluator,
beneficiary, target and memetic/gossiper. In order to implement a socio-cognitive
model of reputation, we need to describe the characteristics of the four roles in
more detail.

18.4.2.1 Evaluator

Autonomous agents continually asses their environment and form evaluations as
effect of interaction and perception. Social evaluations are formed when agents
evaluate one another with regard to their goals (Castelfranchi 1998).

This image, based on direct experience, drives future actions: it serves to identify
friends and to avoid enemies or cheating partners. Agents also observe interactions
between third parties and evaluate them with regard to the goals or interests of a
given set of agents (the beneficiaries). Information thus obtained may be used to
draw inferences about the target’s likelihood to violate other rights in the future.
Agents evaluate one another with regard to their own goals and the goals they adopt
from either other individual agents (e.g. their children) or supra-individual agents,
such as groups, organizations or abstract social entities.
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18.4.2.2 Beneficiary

A beneficiary is the entity that benefits from the action with regard to which targets
are evaluated. Beneficiaries can be individual agents, groups and organizations or
even abstract social entities like social values and institutions. Beneficiaries may be
aware of their goals and interests, and of the evaluations, but this is not necessarily
the case. In principle, their goals might simply be adopted by the evaluators—as
it happens, for example, when members of the majority support norms protecting
minorities. Evaluators often are a subset of the beneficiaries.

Beneficiaries may be implicit in the evaluation. This is particularly the case when
it refers to a social value (honesty, altruism, etc.); the benefit itself and those who
take advantage of it are left implicit and may coincide with the whole society. The
beneficiary of the behaviour under evaluation is also a beneficiary of this evaluation:
the more an (accurate) evaluation spreads, the likelier the execution of the positively
evaluated behaviour.

18.4.2.3 Target

The target of social evaluation is the entity that is evaluated. Targets of reputation
(targets) should be autonomous agents endowed with mental states, possibly with
an explicit decision-making or deliberative capacity. Consequently, they are a locus
of social responsibility: they hold the power to prevent social harm and possibly to
respond for it, in case any harm occurs.

Other than beneficiaries, targets are always explicit. They may be individual
entities or supra-individual like a group, a collective, an abstract entity or a social
artefact, such as an institution.

18.4.2.4 Gossiper (Memetic Agent)

An agent is a (potential) memetic agent if she transmits (is in position to transmit)
reputation information about a target to another agent or set of agents. Although
sharing awareness of a given target reputation, memetic agents do not necessarily
share the corresponding image (social evaluation) of the target. That is, they do not
necessarily believe it to be true.

Memetic agents (if they are also targets) may deserve a negative evaluation; they
may actually convey information that they hold to be false in order to enjoy the
advantages of sharing reputation information. By sharing reputation, the agent will
be considered as part of the in-group by other evaluators, and therefore gain a good
reputation without sustaining the costs of its acquisition.
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18.5 Implementing the Social and Cognitive Processes
of Reputation: Sim-Norm and Repage

Sim-Norm was the first attempt to implement the social and cognitive theory of
reputation. The model was developed to examine the effect of reputation on the
efficiency of a norm of precedence (Conte et al. 1998; Conte and Paolucci 1999;
Paolucci 2000) in reducing aggression, measured both at the global (i.e. societal)
and local (i.e. individual) level. In particular, Sim-Norm was designed to explore
why self-interested agents exercise social control, and its results confirmed that
reputation can have a positive impact on social control.

Sim-Norm revolved around the question of which ingredients are necessary for
social order to be established in a society of agents. The role of norms as aggression
controllers in artificial populations living under conditions of resource scarcity was
addressed. We set out to explore two hypotheses:

1. Norm-based social order can be maintained, and its costs reduced via distributed
social control.

2. Social cognitive mechanisms are needed to account for distributed social control.
In particular, the propagation of social beliefs plays a decisive role in distributing
social control at low or zero individual costs and high global benefit. More
precisely, while individually acquired evaluation of other agents gave norm
executors no significant advantage, the transmission of these evaluations among
norm executors proved decisive in levelling the outcomes of norm-abiders and
cheaters (if numerically balanced).

The model defines agents as objects moving in a two-dimensional environment
(a 10 � 10 grid) with randomly scattered food. At the beginning of each run, agents
and food items are assigned locations at random. A location is a cell in the grid. The
same cell cannot contain more than one object at a time (except when an agent is
eating). The agents move through the grid in search of food, stopping to eat to build
up their strength when they find it. The agents can be attacked only when eating; no
other type of aggression is allowed. At the beginning of each step of the simulation,
every agent selects an action from the six available routines: eat, move-to-food-seen,
move-to-food-smelled, attack, move-random and pause. Actions are supposed to be
simultaneous and time consuming.

To investigate the role of norms in the control of aggression, we compared
scenarios in which agents follow a norm—implemented as a restriction on attacks—
with identical scenarios, in which they follow utilitarian rules. In all scenarios, each
agent can perform only one of three strategies:

• Blind aggression, or control condition, in which aggression is not constrained. If
the agent can perform no better move (eating, moving to food seen or smelled),
then it will attack without further considerations. Blind agents have access to
neither their own strength nor the eater’s strength; these parameters never enter
their decision-making process.
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• Utilitarian, in which aggression is constrained by strategic reasoning. Agents
will only attack those eaters whose strength is lower than their own. An eater’s
strength is “visible”, that is, one step away from the agent’s current location.
While blind agents observe no rule at all, utilitarian agents observe a rule of
personal utility, which does not qualify as a norm.

• Normative (N), in which aggression is constrained by a norm. We introduced a
finder-keeper precept, assigning a “moral right” to food items to finders, who
become possessors of the food. Possession of food is ascribed to an agent on
the grounds of spatial vicinity; food owned is flagged, and every player knows
to whom it belongs. Each food unit may have up to five owners, decided on the
basis of proximity at the time of creation. The norm then prescribes that agents
cannot attack other agents who are eating their own food.

The strategies can also be characterized by the kind of agents they allow to attack:
while blind agents attack anybody, the utilitarian agents attack only the weaker, and
the normative agents, respecting a norm of private property, will not attack agents
who are eating their own food.

These strategies were compared (Castelfranchi et al. 1998) using an efficiency
measure (the average strength of the population after n periods of simulation) and
a fairness measure (the individual deviation from the average strength). The first
two series of experiments showed that normative agents perform less well than
nonnormative agents in mixed populations, as they alone bear the costs of social
control and are exploited by utilitarian agents.

In a following series of experiments, image was added to the preceding exper-
imental picture. In this model, useful knowledge can be drawn from personal
experience, but therefore still at one’s own cost. To reduce cost differences among
subpopulations, image is insufficient. Henceforth, we provided the cooperative
agents with the capacity to exchange with their (believed-to-be) respectful neigh-
bours at distance one from them images of other agents. With the implementation of
a mechanism of transmission of information, we can speak of a reputation system.
We ran the experiments again with normative agents exchanging information about
cheaters. The results suggest that circulating knowledge about others’ behaviours
significantly improves normative agents’ outcomes in a mixed population.

The spreading of reputation can then be interpreted as a mechanism of cost
redistribution for the normative population. Communication allows compliant
agents to easily acquire preventive information, sparing them the costs of direct
confrontations with cheaters. By spreading the news that some “guys” cheat, the
good guys (1) protect themselves, (2) at the same time punish the cheaters and
possibly (3) exercise an indirect influence on the bad guys to obey the norm. Social
control is therefore explained as an indirect effect of a “reciprocal altruism” of
knowledge. The model inspired further research in the social simulation community:
Saam and Harrer (1999) used the same model to explore the interaction between
normative control and power, whereas Hales (2002) applied an extended version
of Sim-Norm to investigate the effects of group reputation. In his model, agents
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are given the cognitive capacity to categorize other agents as members of a group
and project reputation onto whole groups instead of individual agents (a form of
stereotyping).

Repage (Sabater et al. 2006) is a computational system for reputation manage-
ment. Based on a model of reputation, image and their interplay, Repage provides
evaluations of potential partners and is fed with information transmitted from others
plus outcomes from direct experience. This is fundamental to account for (and to
design) limited autonomous agents as exchange partners. To select good partners,
agents need to form and update own social evaluations; hence, they must exchange
evaluations with one another.

In order to preserve their autonomy, agents need to decide whether to share
others’ evaluations of a given target. If agents would automatically accept reported
evaluations and transmit them as their own, they would not be autonomous anymore.
In addition, in order to exchange information about reputation, agents need to
participate in circulating it, whether they believe it or not; but again to preserve
their autonomy, they must decide how, when and about whom to gossip.

In sum, the distinction between image and reputation suggests a way out from
the paradox of sociality, i.e. the trade-off between agents’ autonomy and their need
to adapt to social environment. On one hand, agents are autonomous if they select
partners based on their social evaluations (images). On the other, they need to update
evaluations by taking into account others’ evaluations. Hence, social evaluations
must circulate and be represented as “reported evaluations” (reputation), before
and in order for agents to decide whether to accept them or not. To represent this
level of cognitive detail in artificial agents’ design, there is a need for a specialized
subsystem. This is what Repage provides.

Repage is a sophisticated cognitive architecture that operates on a subset of the
predicates that constitute the memory of the agent, that is, of those predicates that
are relevant for dealing with image and reputation. Predicates about reputation, as
discussed above, must contain an evaluation about a target which contains three
aspects: the type of the evaluation (either personal experience or image or third
party image), the role of the target (either informant or seller) and the actual content.
To store the content, a simple number is used, as in eBay and in most reputation
systems. This sharp representation, however, is quite implausible in inter-agent
communication, which is one of the central aspects of Repage; in real life no one
tells that “People are saying that Jane is 0.234 good”. To capture the lack of precision
coming from vague utterances, e.g. “I believe that agent X is good, I mean, very
good — good, that is”, and from noise in the communication or in the recollection
from memory, the actual value of an evaluation is represented in a fuzzy way, by a
n-tuple of positive real values that sum to one.

Finally, each predicate has a strength value associated to it. This value is a
function of the strength of its antecedents and of some special characteristics
intrinsic to that type of predicate. The network of dependencies specifies which
predicates contribute to the values of other predicates. In fact, each predicate in the
Repage memory has a set of antecedents and a set of consequences. If an antecedent
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changes its value or is removed, the predicate is notified, thanks to the work of the
detectors. Then the predicate recalculates its value and notifies the change to its
consequences. Aggregation and other interesting properties of these representations
are detailed in Sabater and Paolucci (2007). An example of Repage in action can be
found in Quattrociocchi et al. (2008).

To illustrate the behaviour of Repage, let us consider an example about a
potential purchase. The scenario is the following: agent X is a buyer who knows
that agent Y sells what he needs but knows nothing about the quality of agent
Y (the target of the evaluations) as a seller. Therefore, he turns to other agents
in search for information—the kind of behaviour that can be found, for example,
in Internet forums, auctions and in most agent systems. Then, agent X receives a
communication from agent Z saying that his image of agent Y as a seller is very
good. Since agent X does not yet have an image about agent Z as an informer, he
resorts to a default image (i.e. usually quite low). The uncertain image as an informer
adds uncertainty to the value of the communication, resulting in a decision to look
for more information.

Later on, agent X has received six communications from different agents
containing their image of agent Z as an informer. Three of them give a good report
and three a bad one. This information is enough for agent X now to build an image
about agent Z as an informer, so this new image substitutes the default candidate
image that was used so far. However, the newly formed image is insufficient to take
any strategic decision—the target seems to show an irregular behaviour.

At this point, agent X decides to try a direct interaction with agent Y. Because
he is not sure about agent Y, he resorts to a low-risk interaction. The result of
this interaction is completely satisfactory and has important effects in the Repage
memory. The candidate image about agent Y as a seller becomes a full image, in
this case a positive one.

Moreover, this positive image is compared (via the fuzzy metric presented above)
with the information provided by agent Z (which was a positive evaluation of agent Y
as a seller); since the comparison shows that the evaluations are coherent, a positive
confirmation of the image of agent Z as an informer is generated. This reinforcement
of the image of agent Z as a good informer at the same time reinforces the image
of agent Y as a good seller. Consequently, there is a positive feedback between the
image of agent Y as a good seller and the image of agent Z as a good informer. As a
final wave of feedback, the image of the three agents who gave a good evaluation of
Z as an informer is increased, while the image of the other three is decreased. This
feedback is a necessary and relevant part of the Repage model.

Taking into account the correlations between different reputation attributes,
Nardin et al. (2014) compare Repage with other architectures via a multivariate
statistical approach. Their analysis shows that, in most cases, there is a benefit in
using a more expressive communication language.
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18.5.1 A Simulation Model of Reputation Spreading
in an Industrial District: SOCRATE

SOCRATE is an attempt to test the cognitive theory of reputation in an ideal-typical
economic setting, modelled after an industrial district in which firms exchange
goods and information (Giardini et al. 2008; Di Tosto et al. 2010). In this model, the
focus is on the interplay between the market structure and the social relationships
among agents. Social links and the resulting social structure, usually informal, are
defining features of industrial clusters (Porter 1998; Fioretti 2005; Squazzoni and
Boero 2002), in which trust and reputation play a crucial role. Social evaluations
are the building blocks of social and economic relationships inside the cluster; they
are used to select trustworthy partners, to create and enlarge the social network and
to exert social control on cheaters. We designed an artificial environment in which
agents can choose among several potential suppliers by relying either on their own
evaluations or on other agents’ evaluations. In the latter case, the availability of
truthful information could help agents to find reliable partners without bearing the
costs of potentially harmful interactions with bad suppliers. Moreover, evaluations
can be transmitted either as image (with an explicit source and the consequent risk
of retaliation) or as reputation.

This model was developed with the aim of answering the following questions:
How does false information affect the quality of the cluster? What are the effects of
image and reputation, respectively, on the economic performance of firms?

There are two different kinds of interactions among agents in the model: material
exchange and evaluation exchange. The former refers to the exchange of products
between leader firms and their suppliers, and it leads to the creation of a supply
chain network. The latter consists in the flow of social evaluations among the firms,
which is of paramount importance in this setting, where agents can transmit true or
false evaluations in order to either help or hamper their fellows searching for a good
partner.

Agents are firms organized into different layers, in line with their role in the
production cycle. The number of layers can vary according to the characteristics of
the cluster, but a minimum of two layers is required. We implemented three layers:
Layer 0 (L0) is represented by leader firms that supply the final product and are
supplied by firms on Layer 1 (L1). On Layer 2 (L2), there are firms providing raw
material to firms in L1.

Reputation and image transmission are exchanged within layers, so for instance
firms on L0 and L1 are not allowed to talk each other. Agents in L0 have to
select suppliers that produce with a quality above the average among all L1 agents.
Suppliers can be directly tested or they can be chosen, thanks to the information
received by other L0 firms acting as informers. Buying products from L1 and asking
for information to L0 fellows are competing activities that cannot be performed
contemporaneously. In turn, once received an order for a product, L1 firms should
select a good supplier (above the average quality) among those in L2. After each
interaction with a supplier, both L0 and L1 agents create an evaluation, i.e. an
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image, of it, comparing the quality of the product they bought with the quality
threshold value. Agents are endowed with a table in which all the values of the
tested partners are recorded and stored for future selections. Under the reputation
condition, evaluations are exchanged without revealing their source, thus injecting
the cluster with untested information. In this condition, retaliation against untrustful
informers is unattainable.

Our results showed that the quality of products was higher in the cluster
with reputational information, compared to the cluster with image, for the same
percentages of cheating. We also replicated the results by varying the distribution of
firms on the three layers, thus designing a market with harsh competition for good
partners, and we found that the exchange of reputational information also allows the
whole cluster to obtain higher profits (Di Tosto et al. 2010).

SOCRATE results provided further support to the hypotheses about the impor-
tance of reputation for social control, showing again that social evaluations and their
features have consequences also in economic terms.

18.6 Gossip as Reputation Transmission and Its Effect
on Cooperation in Social Dilemmas

Gossip is a multifaceted social phenomenon, widespread in human societies and
serving several functions: it is a valuable source of information about community
and its members, but it is also essential to map the social environment, to promote
membership and to sanction deviant behaviours in a public way (Giardini and
Conte 2012). In human groups, exchanging evaluations serves as a means to
create and maintain relationships between individuals, and it might be pivotal to
either the creation or the enforcement of other kinds of relationships (friendship,
acquaintances, business, etc.).

When cooperation is framed as a public goods game (Hardin 1968; Gardner,
Ostrom, Walker 1990), cooperation can emerge only if individuals sacrifice short-
term gains in favour of the long-term collective good. In large groups, this translates
into a high probability that individuals will tend to interact with complete strangers
with little or no opportunities for positive reciprocity. Simulation data and lab
experiments show that cooperation can hardly be sustained in groups, unless
costly punishment is provided (Carpenter 2007; Fehr and Gachter 2000). Although
effective in many contexts, costly punishment increases the amount of cooperation
but not the average pay-off of the group (Dreber et al. 2008). Those who punish
pay a cost for that. In repeated games, cooperators who do not bear the costs of
punishing defectors are better off than cooperators who punish (Ohtsuki et al. 2009).
Evidence from different kinds of communities show that an essential mechanism for
supporting cooperation is gossip and reputational threats can effectively promote
trust (Greif 1993).
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Giardini et al. (2014) developed a computational model in which they tested
whether different reputation-based strategies may have an effect on cooperation
rates in mixed populations. An essential element in the functioning of reputation
is the action linked to it, although sometimes this action is implicit, for example,
when that reputation is used to avoid cheaters. When partner selection is available,
cheaters are avoided because of their reputations (Roberts 2008), but in indirect
reciprocity models where cooperators cannot choose with whom to interact, players
with bad image scores do not receive donations (Nowak and Sigmund 1998a).

In order to understand how the action linked to reputation might affect the overall
cooperation levels, three different “reputation-based strategies” were defined, as
follows:

• Refuse means that gossipers can refuse to contribute to the group when they know
(on the basis of direct experience and gossip) that there is a majority of defectors
in the group.

• Compare refers to the action of comparing between groups and actively looking
for a better group.

• Leader is a refined form of partner choice in which group formation is delegated
to a single agent, randomly selected to act as a leader and then allowed to choose
its group mates. When the leader belongs to the population of “gossipers”, it
can use information received about others in order to select the best partners.
A remarkable feature of this model is that information is privately transmitted
among gossipers; therefore, it can become redundant and unreliable.

The results show that cooperation rates are higher when agents can compare their
present situation and switch to a better one, i.e. when they can avoid free-riders, and
this solution allows gossipers to get the highest scores in large groups of 25 agents.
Moreover, the combination of punishment and gossip can make cooperation increase
to its maximum in large groups, irrespective of the specific gossip strategy.

Group size can be a crucial factor, as showed by Suzuki and Akiyama (2005),
who implemented a simulation model in which players in a PGG game can know
other players’ image score. In their work, cooperation can emerge in groups of
four individuals, but increasing the size of groups inevitably leads to a decrease
in the frequency of cooperation. The authors explain this result in terms of the
limited observability of reputations in large communities with many individuals.
In order to test whether this group size limitation also holds when agents are
arranged on different networks, Vilone et al. (2016) compared two different network
topologies, a small-world network and a bipartite graph. When reputation-based
partner selection was available in a population distributed on a bipartite graph,
full cooperation was reached after ten generations, also for larger groups of 20
individuals. This result has been replicated also with private gossip and errors in
transmissions (Giardini and Vilone 2016) showing the importance of reputation in
promoting informal social control and sustaining cooperation.
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18.7 Conclusion and Future Work

Over the last two decades, there has been a significant increase in research on
reputation and gossip. There is growing evidence that the presence of reputation
can strongly promote cooperation and represents an effective way to maintain social
control (Milinski 2016). Since reputation is a social coordination device emerging
from the interplay of different information flowing in the social space, it could
be difficult to test for emerging dynamics in a laboratory. This is especially true
if we want to verify the difference in the usage of information with and without
an explicit source, and we want to measure such a difference emerging from
multiple interactions. Using artificial agents, i.e. computer programmes that behave
according to some rules defined by the experimenter, we are able to investigate the
complex interplay between the micro level of agents’ motivations and the macro
level of collective behaviours.

In this chapter, we discussed current studies of reputation as a distributed instru-
ment for social order. After a critical review of current technologies of reputation
in electronic institutions and agentized environments, a theory of reputation as
a social cognitive artefact was presented. In this view, reputation allows agents
to cooperate at a social meta-level, exchanging information for partner selection
in competitive settings like markets and for cheater isolation and punishment in
cooperative settings like teamwork and grouping.

To exemplify both functionalities, we introduced two major simulation models
of reputation in artificial societies. Both have been used mainly as a theory-building
tool. The first, Sim-Norm, is a reputation-based model for norm compliance. The
main findings from simulations show that, if circulated among norm-abiders only,
reputation allows for the costs of compliance to be redistributed between two
balanced subpopulations of norm-abiders and cheaters. In such a way, it contributes
to the fitness of the former, neutralizing the advantage of cheaters. However, results
also show that as soon as the latter start to bluff and optimistic errors begin to spread
in the population, things worsen for norm-abiders, to the point that the advantage
produced by reputation is nullified.

Repage, a much more complex computational model than Sim-Norm, was
developed to test the impact of image, reputation and their interaction on the market.
Based on our social cognitive theory, it allows the distinction between image and
reputation to be made and the trade-off between agents’ autonomy and their liability
to social influence to be coped with. Repage allows the circulation of reputation
whether or not third parties accept it as true. Socrate is an attempt to combine
complex agents (endowed with a memory and able to manage different kinds of
evaluations) with a market in which agents must protect themselves from both
informational and material cheating. In this context, reputation has been proven
useful to punish cheaters, but it also prevented the social network from collapse. We
also discussed agent-based models of the evolution of cooperation in which gossip
and punishment were compared as tools for social control, showing the importance
of the former as an informal way of sanctioning non-cooperators.
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These results clearly show that differentiating image from reputation provides a
means for coping with informational cheating and that further work is needed to
achieve a better understanding of this complex phenomenon. The long-term results
of these studies are expected to do several things, as follows:

(a) Answer the question as to how to cope with informational cheating (by testing
the above hypothesis)

(b) Provide guidelines about how to realize technologies of reputation that achieve
specified objectives (e.g. promoting respect of contracts vs. increasing volume
of transactions)

(c) Show the impact of reputation on the competitiveness of firms within and
between districts
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Further Reading

For a more in-depth treatment of the contents of this chapter, we refer the reader
to the monograph Reputation in Artificial Societies (Conte and Paolucci 2002).
For more on the same line of research, with an easier presentation aimed to
dissemination, we suggest the booklet published as the result of the eRep project
(Paolucci et al. 2009). More recently, Hendrikx, Bubendorfer and Chard (2014)
published a review of existing reputation systems, and the book by Bertino and
Matei (2014) illustrated a project for the study of reputation in Wikipedia.

Due to the focus on the theoretical background of reputation, only a narrow
selection of simulation models of reputation could be discussed in this chapter.
Sabater and Sierra (2004) give a detailed and well-informed overview of current
models of trust and reputation using a variety of mechanisms. Another good starting
point for the reader interested in different models and mechanisms is the review by
Ramchurn and colleagues (Ramchurn et al. 2004).

Further advanced issues for specialized reputation subfields can be found in
Jøsang et al. (2007), a review of online trust and reputation systems, and in Koenig
et al. (2008), regarding the Internet of Services approach to Grid Computing.
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Chapter 19
Social Networks and Spatial Distribution

Frédéric Amblard and Walter Quattrociocchi

Abstract In most agent-based social simulation models, the issue of the organi-
sation of the agents’ population matters. The topology, in which agents interact,
be it spatially structured or a social network, can have important impacts on the
obtained results in social simulation. Unfortunately, the necessary data about the
target system is often lacking; therefore, you have to use models in order to
reproduce realistic spatial distributions of the population and/or realistic social
networks among the agents. In this chapter, we identify the main issues concerning
this point and describe several models of social networks or of spatial distribution
that can be integrated in agent-based simulation to go a step forwards from the use
of a purely random model. In each case, we identify several output measures that
allow quantifying their impacts.

Why Read This Chapter?
To learn about interaction topologies for agents, from social networks to structures
representing geographical space and the main questions and options an agent-based
modeller has to face when developing and initialising a model.

19.1 Introduction

Independent of the methodology followed to build a model, any agent-based
modeller has to face not only the design of the agents and their behaviour but also the
design of the topology in which the agents interact. This can be a spatial structure,
so that the agents are distributed within a representation of geographical space, or a
social structure, linking agents as nodes in a network, or even both.
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Interaction topologies can be determined explicitly or implicitly. They are explicit
when they are specified as modelling hypotheses and thus clearly defined within
the model. Conversely, topologies are implicit when they are inferred from other
processes and thus not a definite part of the model. We will come back to the
consequences of such a classification in the next section.

There are three major issues to solve when dealing with social and spatial
structures:

Implementation: How to represent the structure in the model, e.g. continuous versus
discrete representation of space or which data structure to choose for the social
network.

Initialisation: How to initialise the chosen structure, e.g. which initial shape of the
network should be chosen and how should the population of agents be distributed
on this network.

Observation: How to characterise a given structure and/or its evolution, potentially
taking into account agents’ states related to their place in the structure. This latter
point raises the question of the indicators to observe during the simulation in
order to follow changes in either spatial or social structures.

Since the answers to these questions differ quite substantially for spatial and
social structures, we will discuss them separately in Sects. 3 and 4. The follow-
ing section, while focussing on the topic of explicitly versus implicitly defined
interaction topologies, will also discuss the situation where both social and spatial
structures have to be taken into account at the same time, leading to either spatially
embedded networks or graph-like representations of spatial structures.

19.2 Explicit and Implicit Structures

As mentioned in the introduction, there is a difference between explicit and
implicit structures. We define explicit structures as clearly implemented modelling
hypotheses, which can therefore be identified in the model. Implicit structures, on
the other hand, are not directly defined in the model and are rather determined as a
result of other processes and/or hypotheses in the model. We will demonstrate the
difference with the help of two examples and then go on to explore the consequences
of ex- versus implicitness with regard to the three issues of implementation,
initialisation and observation introduced above.

19.2.1 Example 1: Schelling’s Segregation Model

To present it briefly, the segregation model of Thomas Schelling (1971) is composed
of a set of agents, some red, the others green. Each agent is positioned on an
empty square of a chessboard (representing the environment). If the proportion of
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Fig. 19.1 Schelling’s segregation model in NetLogo, the spatial structure is represented on the left
and the inferred social structure represented as a graph on the right figure

neighbours of the same colour falls below the value of the agent’s tolerance variable,
the agent moves to a randomly chosen empty square (originally: the nearest empty
square at which it would be satisfied with the neighbourhood); otherwise, it stays
where it is.

The spatial structure of this model is explicit and is represented explicitly as a
grid. As such, it is discrete, regular and static (the distribution of the agents on this
structure evolves, not the structure itself). The social structure, on the other hand, is
implicit in this model. During the simulation the agents take into account the type
(green or red) of their neighbours on the grid, but the corresponding social structure
is not defined as such and is inferred from the spatial distribution of the agents (cf.
Fig. 19.1). As discussed later, it can be interesting in such a case to characterise
the implicit social structure of the model, as this is the one that drives the model,
whereas the spatial structure merely acts as a constraint (in particular concerning
the maximal number of neighbours) on the evolution of the social structure.

19.2.2 Example 2: IMAGES Innovation Dynamics Model

In the innovation dynamics model developed in the FAIR-IMAGES project
(IMAGES 2004), agents, representing farmers, are linked via a social network.
This defines the paths, over which information is diffused, and controls which
agents influence each other. The social network is determined, at least in part, from
the geographical locations of the agents to account for the fact that geographical
neighbours tend to know each other. In this example, the social structure is explicit
as it is built into the model by the hypothesis (Fig. 19.2).
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Fig. 19.2 Reconstruction of the social network among agents incorporating the geographical
distance (IMAGES 2004)

19.2.3 Questions Linked to the Implicit/Explicit Property
of the Structures

The property of being explicit or implicit enables us to narrow down the range
of possible answers to the three questions raised in the introduction. To begin
with, the question of implementation can only be asked when dealing with explicit
structures; the same is true for the question of initialisation. However, characterising
the implicit social structure in spatial models, i.e. identifying at a given time step
the whole set of interactions among agents that could or do take place, can give
useful hints for understanding the underlying dynamics. Identifying, for instance,
separate components in the implicit social network inferred from a spatial model is
more informative than solely identifying spatial clusters as it confirms that there is
effectively no connection among the different groups.

In the next two sections, we will discuss the conditions in which social and
spatial structures can be considered as independent features of social analysis and
can therefore be presented independently. This is generally the case but, as we will
detail in the last section, there are some exceptions.

19.3 Social Networks

Social networks have been analysed extensively during the last decade. From the
social network of scientists (co-authorship network or co-citation network) (New-
man 2001; Jeong et al. 2002; Newman 2004; Meyer et al. 2009) to the social network
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of dolphins (Lusseau 2003), many empirical studies on large graphs popularised this
fascinating subject: “social” links between social beings. Neither empirical analysis
nor theoretical modelling is new in this field. From the formalisation of graphs by
Euler in the eighteenth century in order to represent paths in Königsberg, which led
to the now well-established graph theory, to social network analysis in sociology,
originating from the use of the socio-matrix of Moreno, social networks are now
quite commonly used in agent-based simulation to explicitly represent the topology
of interactions among a population of agents.

In order to clarify the kind of modelling issues you are dealing with, we can
divide modelling of social networks into three categories: (a) static networks, (b)
dynamic networks with the dynamics independent of the agents’ states (for instance,
random rewiring process) and (c) dynamic networks evolving dependent on the
agents’ states. In this chapter we will concentrate on the first case since it is the
most common, although the use of the second case has recently started to grow
rapidly, while the third case is still in its incipient stage.

In each case, the same three questions arise with regard to implementation,
initialisation and observation:

• Which data structure is best suited to represent the network?
• Which initial (and in the static case, only) network configuration to use?
• How to identify something interesting from my simulation including the network

(e.g. a social network effect)?

19.3.1 Which Data Structure to Use?

Although it could seem trivial, especially when you use a high-level modelling
platform such as NetLogo or Repast, this issue is important concerning the execution
efficiency of your model. More important is that even, depending on your choice,
biases are linked to some data structures when using particular classes of networks
such as scale-free networks.

Basically, using an object-oriented approach, you have two choices: either to
embed social links within the agent as pointers to other agents or to externalise the
whole set of links as a global collection (called SocialNetwork, for instance). The
former is more practical when having 1–n interactions rather than 1–1 interactions,
i.e. taking into account all neighbours’ states to determine the new state of the
agent rather than picking one agent at random in the neighbourhood. The difference
between the two solutions is mainly related to the scheduling you will use. You
can choose either to first schedule the agents, picking an agent at random from the
population and then selecting one (or more) of its social links, or you can choose to
pick a random link from the global collection and then execute the corresponding
interaction. While this choice will depend a lot on the kind of model you are
implementing, it is crucial when using scale-free networks since both options may
produce a bias, and you will have to choose the solution that is more relevant for the
purpose of your model.
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To be able to explain this further, we need to quickly introduce scale-free
networks (they will be presented in more detail in Sect. 3.2.4). Their main property
is that the distribution of the number of links per agent (node) follows a power law,
meaning that very few agents—the so-called hubs—have a lot of links, while the
majority of agents have only a few.

If you now choose to schedule the agents first, you effectively apply an egalitarian
rule on the individuals, which however results in the links involving the hubs being
less frequently scheduled than the links involving agents with few social relations.
Take for example a population of 100 agents where one agent has 30 links and
another has only one link. Each of these two agents has the same probability to be
scheduled (0.01), but if you then proceed to select a random link from the scheduled
agent, the links of the hub agent each have a 0.01/30 probability to be chosen, while
the one link of the other agent still has a 0.01 probability to be picked.

Conversely, if you schedule the collection of links first, i.e. apply an egalitarian
rule on the individual links, the influence of the hubs in the global dynamics will be
strengthened, as they are involved in more links. Therefore, the initial states of the
hub agents are also interesting with respect to the whole dynamics of the model.

19.3.2 Which Initial Network Configuration to Use?

This question mainly arises when choosing which (initial) social structure to
implement. There is a large choice of models—each with some advantages and
some drawbacks—that can be distinguished into four categories: (a) regular graphs,
lattices or grids being the most long-standing structure used in social simulation
(inherited from the cellular automata approaches), (b) random graphs, (c) small-
world networks and (d) scale-free networks. Concerning the latter three categories,
Newman et al. (2006) regroup an important set of articles that can be useful as
advanced material on this point.

19.3.2.1 Lattices

The field of social modelling inherited many tools from mathematics and physics
and in particular cellular automata (Wolfram 1986). The corresponding underlying
interaction structure is then in general a grid and in many cases a torus. The cells of
the automata represent the agents, and their social neighbourhood is defined from
the regular grid with a von Neumann or a Moore neighbourhood. The von Neumann
neighbourhood links a cell to its four adjacent cells (north, east, south, west), while a
Moore neighbourhood adds four more neighbours (NE, SE, SW, NW; cf. Fig. 19.3).

The main advantage of using regular grids stems from visualisation, regular grids
enabling very efficient visualisations of diffusion processes or clustering process (cf.
Fig. 19.4).
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Fig. 19.3 von Neumann (a) and 3 � 3 Moore neighbourhood (b) on a regular grid; the illustration
on the right shows a torus, i.e. the result of linking the borders (north with south, east with west)
of a grid (Flache and Hegselmann 2001)

Fig. 19.4 Opinion dynamics
model on a regular grid (Jager
and Amblard 2005)

The first important point concerning the regular structures deals with connec-
tivity. In contrast to other kinds of networks (random ones, for instance; see next
section), using regular networks makes it difficult to change the connectivity of the
structure, i.e. the number of links per agent. The exploration of connectivity effects
on the model behaviour is limited in this case to specific values (4, 8, 12, 24, : : : in
the case of a two-dimensional regular grid).

The second point deals with the dimension of the regular structure. A one-
dimensional lattice corresponds to a circle (see Fig. 19.5), two-dimensional struc-
tures to grids (chessboard) and three-dimensional structures to cubic graphs.
However, we have to notice that only 2D regular structures benefit from a visu-
alisation advantage, higher dimensions suffering from the classical disadvantage
associated with the visualisation of dynamics on complex graphs.

The presence or absence of borders is important in regular graphs. A classic
example is the 2D grid, which—if not implemented as a torus—is not a regular
structure anymore, since agents localised at the borders have fewer connections.
Moreover, these agents being linked to each other create a bias in the simulation
(Chopard and Droz 1998). This bias is sometimes needed for any dynamics to
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Fig. 19.5 Regular 1D
structure with
connectivity D 4

Fig. 19.6 The “-model of Watts (1999) enables to go from regular graphs (on the left) to random
graphs (on the right) using rewiring of edges

happen and could either correspond to a modelling hypothesis or to an unwanted
artefact. This point is probably far clearer on one-dimensional graphs, where
if you do not close the circle, the diameter1 is approximately the size of the
population, whereas if you close it, the diameter is half the population size. This
issue corresponds to border effects identified on cellular automata.

19.3.2.2 Random Graphs

Another kind of model that can be used to generate social structures is the random
graph model (Solomonoff and Rapoport 1951; Erdös and Rényi 1960); see Fig. 19.6
on the right for an illustration. As told by Newman et al. (2006), there are two ways
to build random graphs containing n vertices: one (denoted as Gn,m) is to specify the
number m of edges between vertex pairs chosen at random, and the other (denoted
as Gn,p) is to specify a probability p for an edge to link any two vertices. Both of
them correspond to graphs that have on average the same properties when they are

1The diameter of a graph is defined as the length of the longest-shortest path in the graph.
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big enough. The only difference is that in Gn,m the number of edges is fixed, while
in Gn,p it may fluctuate from one instance to the other; but on average it is also fixed.

The first important property of random graphs is that they show a phase transition
when the average degree of a vertex is 1. Below this transition, we obtain a
number of small components, while above this threshold, the model exhibits a giant
component with some isolated nodes. The giant component is a subset of the graph
vertices, each of which is reachable from any of the others along some path(s). The
random graphs that are used most often in agent-based social simulation are slightly
above the threshold, in the giant-component phase with some isolated nodes.

Another important point concerns the degree distribution. The properties and
behaviour of a network are affected in many ways by its degree distribution (Albert
et al. 2000; Cohen et al. 2000; Callaway et al. 2000). Gn,p has a binomial degree
distribution (Poisson distribution for large n), which is sharply peaked and has a tail
that decays quicker than any exponential distribution.

It is possible to define random graphs with any desired degree distribution
(Bender and Canfield 1978; Luczak 1992; Molloy and Reed 1995). In this case, one
considers graphs with a given degree sequence rather than with a degree distribution.
A degree sequence is a set of degrees k1, k2, k3, : : : for each of the corresponding
vertices 1, 2, 3, : : : . Molloy and Reed (1995) suggest the following algorithm:

• Create a list in which the label i of each vertex appears exactly ki times.
• Pair up elements from this list uniformly at random until none remain.
• Add an edge to the graph joining the two vertices of each pair.

According to Molloy and Reed (1995), these graphs possess a phase transition at
which a giant component appears, just as in the standard Poisson random graph.

In the context of agent-based social simulation, a great advantage of random
graphs over regular graphs is that you can easily change and precisely tune the
average connectivity of the graph and—applying Molloy and Reed’s algorithm—
the distribution of the edges among vertices.

Replacing regular graphs with random graphs, several scientists experienced
a “social network” effect, i.e. models having different macroscopic behaviours
depending on the chosen interaction structure (Stocker et al. 2001; Stocker et al.
2002; Holme and Grönlund 2005; Huet et al. 2007; Deffuant 2006; Gong and Xiao
2007; Kottonau and Pahl-Wostl 2004; Pujol et al. 2005). The fact is that these two
classes of networks have very different characteristics. In terms of clustering, regular
graphs exhibit more clustering or local redundancy than random graphs. On the
other hand, random graphs lead to a shorter diameter and average path length among
the pairs of individuals than a regular graph. The mean path length for a random
graph scales logarithmically with graph size. For more details concerning random
graphs models, we refer the interested reader to Bollobas (2001).

19.3.2.3 Small-World Networks

The question arising at this stage is are there classes of graphs between these two
extremes (random and regular graphs) that may have other characteristics? Watts
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and Strogatz (1998) introduced such a model, motivated by the observation that
many real-world graphs share two main properties:

• The small-world effect, i.e. most vertices are connected via a short path in the
network.2

• High clustering, corresponding to the phenomenon that the more neighbours two
individuals have in common, the more likely they are to be connected themselves.

Watts and Strogatz defined a network to be a small-world network if it exhibits
both of these properties, that is, if the mean vertex-vertex distance l is comparable
to that of a random graph and the clustering coefficient is comparable to that of a
regular lattice.

To construct such a network, Watts and Strogatz found the following algorithm.
Starting from a regular lattice with the desired degree, each link has a probability p
to be rewired, i.e. to be disconnected from one of its vertices and reconnected with
another vertex chosen uniformly at random. The result is the creation of shortcuts in
the regular structure. Watts and Strogatz (1998) imposed additional constraints on
the rewiring process: a vertex cannot be linked to itself, and any two vertices cannot
be linked by more than one edge. Moreover, the rewiring process only rewired one
end and not both ends of the link. These added conditions prevent the resulting
network from being a random graph even in the limit p D 1.

A simplified version of this model was proposed by Newman and Watts (1999).
Starting with a lattice and taking each link one by one, add another link between
a pair of vertices chosen at random with the probability p without removing the
existing one. This corresponds to the addition of Lkp new links on average to the
starting lattice, Lk being the initial number of links in the graph (Fig. 19.7).

Fig. 19.7 Average path
length (red) and clustering
coefficient (green)
represented as the probability
of rewiring evolves

2Short path being defined by Watts and Strogatz as comparable to those found in random graphs
of the same size and average degree.
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A number of other models have been proposed to achieve the combination of
short path length with high clustering coefficient. The oldest one is the random
biased net of Rapoport (1957), in which clustering is added to a random graph
by triadic closure, i.e. the deliberate completion of connected triples of vertices to
form triangles in the network, thereby increasing the clustering coefficient. Another
attempt to model clustering was made in the 1980s by Holland and Leinhardt (1981),
using the class of network models known as exponential random graphs. Another
method for generating clustering in networks could be membership of individuals in
groups. This has been investigated by Newman et al. (2001; 2003b) using so-called
bipartite graph models.

19.3.2.4 Scale-Free Networks

Even with the small-world effect, the hypothesis that complex systems such as
cells or social systems are based upon components—i.e. molecules or individuals—
randomly wired together has proven to be incomplete.

In fact, several empirical data analyses of real networks found out that for
many systems, including citation networks, the World Wide Web, the Internet, and
metabolic networks, the degree distribution approximates a power law (de Solla
Price 1965; Albert et al. 1999; Faloutsos et al. 1999; Broder et al. 2000).

This corresponds to a new class of network since neither of the previously
discussed networks such as random graphs and small-world models have a power-
law degree distribution. Barabási and Albert (1999) called these graphs scale-free
networks and proposed that power laws could potentially be a generic property of
many networks and that the properties of these networks can be explained by having
the graph grow dynamically rather than being static. Their paper proposes a specific
model of a growing network that generates power-law degree distributions similar
to those seen in the World Wide Web and other networks.

Their suggested mechanism has two components: (1) the network is growing, i.e.
vertices are added continuously to it, and (2) vertices gain new edges in proportion
to the number they already have, a process that Barabási and Albert call preferential
attachment.3 Therefore, the network grows by addition of a single new vertex at
each time step, with m edges connected to it. The other end of the edge is chosen at
random with probability proportional to degree.

P .ki/ D kiP
j kj

(19.1)

3The preferential attachment mechanism has appeared in several different fields under different
names. In information science, it is known as cumulative advantage (de Solla Price 1976), in
sociology as the Matthew effect (Merton 1968) and in economics as the Gibrat principle (Simon
1955).
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An extension to this model proposed by the same authors (Albert and Barabási
2000) follows another way of building the graph. In this model one of three events
occurs at each time step:

• With probability p, m new edges are added to the network. One end of each new
edge is connected to a node selected uniformly at random from the network and
the other to a node chosen using the preferential attachment process according to
the probability given just before.

• With probability q, m edges are rewired, meaning that a vertex i is selected at
random, and one of its edges chosen at random is removed and replaced with a
new edge whose other end is connected to a vertex chosen again according to the
preferential attachment process.

• With probability 1 – p � q, a new node is added to the network. The new node
has m new edges that are connected to nodes already present in the system via
preferential attachment in the normal fashion.

This model produces a degree distribution that again has a power-law tail, with
an exponent � that depends on the parameters p, q and m, and can vary anywhere in
the range from 2 to 1.

Dorogovtsev et al. (2000) consider a variation on the preceding model applied to
directed graphs, in which preferential attachment takes place with respect only to
the incoming edges at each vertex. Each vertex has m outgoing edges, which attach
to other pre-existing vertices with attachment probability proportional only to those
vertices’ in-degree.

Another extension proposed by Krapivsky et al. (2000) explores what happens
when …(k), the probability distribution of connectivity per node, is not linear in k.
They studied the case in which …(k) takes the power-law form ˘ (k) / k˛.

In a subsequent model, Bianconi and Barabási (2001), motivated by the Google
effect (emergence of a new hub from an existing scale-free network), introduced the
idea that some nodes are intrinsically “better” or faster growing than others. In the
model, each vertex in the network has a fixed fitness value 
i, chosen from some
distribution �(
), that corresponds to an intrinsic ability to compete for edges at the
expense of other vertices. Each such vertex connects to m others, the probability of
connecting to vertex i being proportional to the product of the degree and the fitness
of i:

… D 
ikiP
j 
jkj

(19.2)

The use of models like preferential attachment in an agent-based social simula-
tion context follows two motivations that are relatively distinct. On the one hand,
such models are used as initial configurations for the simulation: therefore the
construction of the scale-free network, even if it could be considered as a model
of a growing network, should rather be envisaged as an algorithm to build the initial
state of the simulation. On the other hand, it can also be seen as a subject of research,
the focus of a model, for instance, in the field of modelling social network dynamics.
In this case, preferential attachment mechanisms could be included in the model of
social network evolution (if such a mechanism is relevant, of course) (Fig. 19.8).
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Fig. 19.8 Scale-free network generated using the preferential attachment model implemented in
NetLogo (left) and the distribution of number of nodes per degree (right), which follows a scale-
free distribution

As the structure and the evolution of a scale-free network cannot be considered
as separate concepts, the same holds true for the topology and the overlying inter-
actions among components. For instance, Pastor-Satorras and Vespignani (2001)
discovered that the epidemic threshold on top of scale-free networks converges
towards 0, meaning that in scale-free topologies, even weak viruses diffuse fast
within the network. In particular, the dynamic aspects of real phenomena occurring
on top of scale-free networks would allow investigating several properties of real
social networks, for instance, how changes in the network structure trigger emergent
phenomena by local interaction.

19.3.3 How to Distribute Agents on the Network?

This question deals with the efficiency of the model, because each link between
nodes (agents) represents an interaction, and the shape of the topology, i.e. the
interaction space that we are interested in, characterising its emergent properties.
To exemplify, let us take the example of an opinion dynamics model including
extremist agents that have a significant impact on the global dynamics. What should
the initial state of the population be? Are the extremists homogeneously distributed
in the population, i.e. over the social network, or are they organised in dense
communities, or any case in between? This question could have an important impact
on the emerging phenomenon and is the consequence of two choices: a modelling
choice, i.e. what is the initial state of your model, and a more technical choice, i.e.
the possibility to generate the distribution wanted. With regard to the latter, you
can always generate an ad-hoc situation either using real data or building them
artificially; however, it is often the case that you wish to use a generic way to
distribute agents among a network. Usually, the starting point would be to use a
random distribution. You first generate your network, and you distribute the different
agents uniformly over this network assuming that each agent’s state is independent
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from its location in the network. However, you do not have to believe strongly in
any social determinism to question this independence and to wish to explore other
kinds of distributions. Two cases occur then:

You have modelling hypotheses concerning the relation between the existence of a
link between two agents and their actual state. In this case, you would probably
proceed using a stochastic algorithm that enables some flexibility applying this
relation.

You are only able to describe the global state you want to attain. In this case,
you probably have to operate iterative permutations among the agents. For each
permutation, you have to compute the result. If it is better (i.e. closer to the state
wanted), then you keep the permutation, and if not, you reject this permutation
and keep the previous state.

Note that the latter solution can become very expensive with regard to the
evaluation of a given state and is not guaranteed to obtain the wanted final state
in a finite time. Therefore, the most prudent approach would be to take the agents’
characteristics into account when deciding on the presence of a link between two
agents. Such a solution has been proposed by Thiriot and Kant (2008) explicitly
drawing on agents’ attributes and link types for the generation of interaction
networks. In this perspective, the generated social network is a part of the modelling
hypotheses, and it has been shown that the corresponding graphs differ a lot from
the ones obtained with abstract models like the ones described in this section.

19.3.4 Which Measures to Use?

Once you have your model running, especially when it deals with agents changing
their state over a (possibly evolving, irregular) social network, the first image is
usually a messy network with overlapping links and nodes changing colours over
time. Without specific efforts dedicated to the network layout (which is not a trivial
task), the global picture is not understandable at first glance. Therefore, you would
want to add some indicators enabling you to better understand what happens in
the model. There are two main categories: the first one—which is currently under
development—concerns indicators linking the states of nodes with their position
in the network, while the more classical indicators of the second category help to
characterise the structure of the network only.

Some important properties associated with graphs influence the characteristics
of the dynamics taking place on the graph. This is mainly the case for the diameter,
especially dealing with diffusion processes, and the clustering coefficient, dealing,
for instance, with influence processes. In the particular case of a regular network,
where all nodes are equal, it can be determined depending on the connectivity
and the dimension of the graph. The average path length gives information that
is equivalent. The clustering coefficient is defined locally as, for a given node, the
rate of existing links among its neighbours compared to the number of possible
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links. Local redundancy of links is therefore important as an inertial process that
can reinforce or go against an influence dynamics. In the following paragraphs, we
will briefly describe the main indicators you can use to gain some insight about the
phenomena emerging in the model.

The first question you could ask is, looking at a particular dimension of the
agents’ state vector, do they have a tendency to regroup or cluster according to
this state or not. Or phrased in a different way: do connected agents tend to become
similar? A useful indicator for this would be an averaged similarity measure over
the network, calculating the mean distance among all connected agents of the
population.

In order to characterise the two main features of small-world networks (i.e. small-
world effect and high clustering), several indicators are used. The small-world effect
is measured simply by averaging the distance among any pair of vertices in the
graph. This results in the average path length index.

Concerning the clustering, a number of indicators have been proposed. Watts
and Strogatz (1998) suggested the clustering coefficient, used classically in social
network analysis and consisting in averaging a local clustering coefficient over all
vertices of the network. The local clustering coefficient Ci of the vertex i is defined
as the number of existing links among the neighbours of the vertex i, divided by
the number of possible links among these neighbours. This quantity is 1 for a fully
connected graph but tends towards 0 for a random graph as the graph becomes large.

The problem is that this indicator is heavily biased in favour of vertices with
a low degree due to the small number of possible links (denominator) they have.
When averaging the local clustering coefficient over all nodes without additional
weighting, this could make a huge difference in the value of C. A better way to
calculate the average probability of a pair of neighbours being connected is to
count the total number of pairs of vertices on the entire graph that have a common
neighbour and the total number of such pairs that are themselves connected, and
divide the one by the other. Newman et al. (2001) have expressed this, i.e. the
fraction of transitive triples, as:

C D 3* (number of triangles on the graph)/(number of connected triples of vertices)

Another definition for clustering coefficient proposed by Newman (2003a)
consists in calculating the probability that the friend of your friend is also your
friend, resulting in:

C D 6* (number of triangles on the graph)/(number of paths of length 2)

Dealing with small-world networks, Watts and Strogatz (1998) defined a network
to have high clustering if C � Crg (this latter being the clustering coefficient for
random graphs).

Watts and Strogatz defined a network to be a small-world network if it shows
both of those properties, that is, if the mean vertex-vertex distance l is comparable
with that on a random graph (lrg), and the clustering coefficient is much greater than
that for a random graph. Walsh (1999) used this idea to define the proximity ratio:

� D C=Crg

l=lrg
(19.3)
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which is of order 1 on a random graph but much greater than 1 on a network obeying
the Watts-Strogatz definition of a small-world network.

One of the most important properties of social networks is the so-called notion
of power. As a shared definition of power is still object of debate, the design of
metrics able to characterise its causes and consequences is a pressing challenge.
In particular, the social network approach emphasises the concept of power as
inherently relational, i.e. determined by the network topology. Hence, the focus must
be put on the relative positions of nodes. In order to characterise such a property,
the concept of centrality has emerged. The simplest centrality metric, namely, the
degree centrality, measures the number of edges that connect a node to other nodes
in a network. Over the years, many more complex centrality metrics have been
proposed and studied, including status score (Katz 1953), ’-centrality (Bonacich
and Lloyd 2001), betweenness centrality (Freeman 1979) and several others based
on the random walk, the most famous of which is the eigenvector centrality used by
Google’s PageRank algorithm (Page et al. 1999). The temporal declination of these
concepts is meaningful, and Kossinets et al. (2008) have shown that nodes that are
topologically more central are not necessarily central from a temporal point of view,
hence the concept of temporal centrality. The temporalisation of network metrics is
currently a pressing scientific challenge (Casteigts et al. 2010; Santoro et al. 2011).

19.3.5 What Kind of Network Effect Can You Anticipate?

As mentioned by Newman et al. (2006), the behaviour of dynamical systems on
networks is one of the most challenging areas of research. At the end of their paper,
Watts and Strogatz (1998) present one of the most tractable problems in the field
that is the spread of disease using the SIR (susceptible/infective/removed) epidemic
model. They measure the position of the epidemic threshold—the critical value
of the probability r of infection of a susceptible individual by an infective one
at which the disease first becomes an epidemic, spreading through the population
rather than dying out. They found a clear decline in the critical r with increasing p,
the probability of links rewiring, indicating that the small-world topology makes it
easier for the disease to spread. They also found that the typical time for the disease
to spread through the population decreases while increasing p.

One of the simplest models of the spread of non-conserved information on a
network is one in which an idea or a disease starts at a single vertex and spreads first
to all its neighbouring vertices. From these, it spreads to all of their neighbours, and
so forth, until there are no accessible vertices left that have not yet been infected.
This process is known in computer science as breadth-first search. Depending on
the type of network model chosen, it could happen (this is mostly the case on real
networks) that you obtain a large number of small components plus, optionally,
a single giant component. If we simulate the spread of a rumour or disease on
such a network using breadth-first search, either we will see a small outbreak
corresponding to one of the small components or, if there is a giant component and
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we happen to start a breadth-first search within it, we will see a giant outbreak that
fills a large portion of the system. The latter is precisely what we call an epidemic,
when we are talking about disease, and the phase transition at which the giant
component appears in a graph is also a phase transition between a regime in which
epidemics are not possible and a regime in which they are. In fact, if the disease
starts its breadth-first search at a randomly chosen vertex in the network, then the
probability of seeing an epidemic is precisely equal to the fraction of the graph
occupied by the giant component. By studying, either analytically or numerically,
the behaviour of various epidemiological models on networks, the authors hope to
get a better idea of how real diseases will behave, and in some cases, they have found
entirely new behaviours that had not previously been observed in epidemiological
models.

Ball et al. (1997) consider networks with two levels of mixing, meaning that
each vertex in the network belongs both to the network as a whole and to one of a
specified set of subgroups (e.g. family) with different properties of spread within the
network. Disease spreading is again modelled using the SIR model. In the model,
people can be in one of three states: susceptible (S), meaning they can catch the
disease but haven’t yet; infective (I), meaning they have caught the disease and can
pass it on to others; and removed (R), meaning they have recovered from the disease
and can neither pass it on nor catch it again, or they have died. Ball et al. (1997)
found that the rapid spread of a disease within groups such as families can lead
to epidemic outbreaks in the population as a whole, even when the probability of
interfamily communication of the disease is low enough that epidemic outbreaks
normally would not be possible. The reason for this is the following: if transmission
between family members takes place readily enough that most members of a family
will contract the disease once one of them does, then we can regard the disease as
spreading on a super-network in which vertices are the families, not individuals.
Roughly speaking, the spread of the disease between families will take place with
n2 times the normal person-to-person probability, where n is the number of people
in a family.

An alternative approach to calculating the effect of clustering on SIR epidemics
has been presented by Keeling (1999). What Keeling’s method does is to include,
in approximate form, the effect of the short-scale structure of the network—the
clustering—but treat everything else using a standard fully mixed approximation.
Thus, things like the effect of degree distributions is absent from his calculations.
But the effect of clustering is made very clear. Keeling found that a lower fraction
of the population needs to be vaccinated against a disease to prevent an epidemic if
the clustering coefficient is high.

In another paper, Pastor-Satorras and Vespignani (2001) address the behaviour
of an endemic disease model on networks with scale-free degree distributions.
Their motivation for the work was an interest in the dynamics of computer
virus infections, which is why they look at scale-free networks; computer viruses
spread over the Internet and the Internet has a scale-free form, as demonstrated
by Faloutsos et al. (1999). They used a derivation of the SIR model, the SIS
(susceptible/infected/susceptible) model, which simply considers that individuals
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recover with no immunity to the disease and are thus immediately susceptible once
they have recovered. In their work, Pastor-Satorras and Vespignani grow networks
according to the scale-free model of Barabási and Albert (1999) and then simulate
the SIS model on this network starting with some fixed initial number of infective
computers. Pastor-Satorras and Vespignani do not find oscillations in the number of
infected individuals for any value of the independent parameter of the model. No
matter what value the parameter takes, the system is always in the epidemic regime;
there is no epidemic threshold in this system. No matter how short a time computers
spend in the infective state or how little they pass on the virus, the virus remains
endemic. Moreover, the average fraction of the population infected at any one time
decreases exponentially with the infectiousness of the disease.

Watts (2002) has looked at the behaviour of cascading processes. Unlike disease,
the spread of some kinds of information, such as rumours, fashions, or opinion,
depends not only on susceptible individuals having contacts with infective ones but
also on their having contact with such individuals in sufficient numbers to persuade
them to change their position or beliefs on an issue. People have a threshold for
adoption of trends. Each individual has a threshold t for adoption of the trend
being modelled, which is chosen at random from a specified distribution. When
the proportion of a person’s contacts that have already adopted the trend rises above
this threshold, the person will also adopt it. This model is similar to the rioting
model of Granovetter (1978). Watts gives an exact solution for his model on random
graphs for the case where initially a low density of vertices has adopted the trend.
The solution depends crucially on the presence of individuals who have very low
thresholds t. In particular, there must exist a sufficient density of individuals in
the network whose thresholds are so low that they will adopt the trend if only a
single one of their neighbours does. As Watts argues, the trend will only propagate
and cause a cascade if the density of these individuals is high enough to form a
percolating subgraph in the network. The fundamental result of this analysis is that,
as a function of the average degree z of a vertex in the graph, there are two different
thresholds for cascading the spread of information. Below z D 1, no cascades happen
because the network itself has no giant component. Cascades also cease occurring
when z is quite large, the exact value depending on the chosen distribution of t. The
reason for this upper threshold is that as z becomes large, the value of t for vertices
that adopt the trend when only a single neighbour does so becomes small, and hence
there are fewer of such vertices. For large enough z, these vertices fail to percolate
and so cascades stop happening.

Another field of application deals with the robustness of networks. If we have
information or disease propagating through a network, how robust is the propagation
to failure or removal of vertices? The Internet, for example, is a highly robust
network because there are many different paths by which information can get from
any vertex to any other. The question can also be rephrased in terms of disease. If
a certain fraction of all the people in a network are removed in some way from a
network—by immunisation against disease, for instance—what effect will this have
on the spread of the disease?
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Albert et al. (2000) discuss network resilience for two specific types of model
networks, random graphs and scale-free networks. The principal conclusion of
the paper is that scale-free networks are substantially more robust to the random
deletion of vertices than Erdös-Rényi random graphs, but substantially less robust
to deletion specifically targeting the vertices with the highest degrees. The mean
vertex-vertex distance in the scale-free network increases as vertices are deleted,
but it does so much more slowly than in the random graph. Similarly, the size of the
largest component goes down substantially more slowly as vertices are deleted in
the scale-free network than in the random graph. By contrast, the random graph’s
behaviour is almost identical whether one deletes the highest-degree vertices or
vertices chosen at random. Thus scale-free networks are highly robust to random
failure, but highly fragile to targeted attacks. More recent work has shown that
there are networks with even higher resilience than scale-free networks (Costa 2004;
Rozenfeld and Ben-Avraham 2004; Tanizawa et al. 2005).

As a conclusion on network effects, the existence of isolated components and
the average degree of the graph are the first important factors that play a role in the
dynamics occurring in agent-based social simulation. After that, depending on the
kind of phenomenon studied, social influence or diffusion dynamics, for instance,
clustering coefficient and average path length should be considered.

19.4 Spatial Structure

19.4.1 Which Spatial Structure to Use?

Despite the increased use of social networks in agent-based simulation, in many
cases, one has to take into account the spatial dimension. In this section, we will
first present some issues dealing with this point, then some models that allow the
distribution of a population of agents in a geographical space, as well as some
measures to try and qualify such distributions and their effects on the simulation.

19.4.1.1 Torus or Not?

There may also be arbitrary effects introduced by the spatial bounds or limits placed
on the phenomenon or study area. This occurs since spatial phenomena may be
unbounded or have ambiguous transition zones in reality. In the model, ignoring
spatial dependency or interaction outside the study area may create edge effects. For
example, in Schelling’s segregation model, there is a higher probability to stabilise
when you have fewer neighbours (e.g. three in the corners or five on a border) for a
particular density.

The choice of spatial bounds also imposes artificial shapes on the study area
that can affect apparent spatial patterns such as the degree of clustering. A possible
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solution is similar to the sensitivity analysis strategy for the modifiable areal unit
problem or MAUP: change the limits of the study area and compare the results of
the analysis under each realisation. Another possible solution is to overbound the
study area, i.e. to deliberately model an area that encompasses the actual study area.
It is also feasible to eliminate edge effects in spatial modelling and simulation by
mapping the region to a boundless object such as a torus or sphere.

19.4.2 How to Distribute Agents on the Space?

To begin with the simplest case, let us present the Poisson process in a 2D
continuous space. Such a distribution can be used in particular to define the null
hypothesis of a totally random structure for spatial distribution that will enable us
to compare other kinds of spatial structures. In order to simulate a Poisson process
of intensity � on a domain of surface D, we first define the number of points N to
be distributed, picking it at random from a Poisson law of parameter �D. For each
point Ai, the coordinates xi and yi are therefore taken at random from a uniform law.
For a rectangular domain, it is sufficient to bound the values of x and y depending on
the studied domain. For more complex zones, the method can be the same, deleting
the points in a larger rectangle that are not part of the specific zone. Studying a
population where the number of agents N is known, we can use the same method
without picking the number N at random and using the known value instead. The
corresponding process is called a binomial process (Tomppo 1986). Moreover, note
that because in a Poisson process random points can be infinitely close, the space
occupied by the represented agents is not taken into account. Some processes have
been developed to deal with this (Ripley 1977; Cressie 1993), corresponding to a
random repartition of the points under the constraint that two points have to be at
least 2R apart, where R is the specified radius of an agent. It can also be interpreted
as the random repartition of nonoverlapping disks of radius R.

Practically, spatial structures are rarely totally random, and it is quite frequent
to have more aggregated structures. The Neyman-Scott cluster process can be
used to simulate such more elaborated structures (Ripley 1977; Cressie 1993). The
Neyman-Scott process is built from a master Poisson process whose Nag (number of
aggregates) points are used as centres for the aggregates. Each aggregate is then
composed of a random number of points whose positions are independent and
distributed within a radius R around the centre of the aggregate (Fig. 19.9).

In order to simulate complex interaction, the Gibbs process can be useful.
The general class of Gibbs processes allows obtaining various complex structures
(Tomppo 1986). The main idea of the Gibbs process is to distribute the points of
the pattern according to attraction/repulsion relations with a range. Such a process
can be defined using a cost function f (r) which represents the cost associated to the
presence of two points in the pattern separated by a distance r. For a given point
pattern, we can calculate a total cost, equal to the sum of the costs associated to
each couple of points (see Eq. (19.4) below). By definition, the lower the total cost
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Fig. 19.9 Two different spatial distributions, random (left) and aggregated (right) from Goreaud
(2000)

obtained on a pattern, the stronger is the probability for this pattern to be the result
of the Gibbs process considered. For a given r, if the cost function f (r) is positive,
the probability is low to have two points at a distance r (we could say that there is
repulsion at distance r). Conversely, if the cost function f (r) is negative, it is highly
probable to find a couple of points separated by a distance r (we could say there is
attraction at a distance r):

totalCost D
X

i;j

f
�
d

�
Ai; Aj

��
(19.4)

where d is the distance between points Ai and Aj.

To obtain the most probable realisation of the process, we aim to simulate
patterns whose total costs are low enough, i.e. get closer to a minimum of the
cost function. Such patterns can be obtained using an algorithm of depletions
and replacements: starting, for instance, from a Poisson pattern, we iterate a big
number of times a modification of this pattern, which consists in moving randomly
an arbitrarily chosen point. If this move increases the total cost, the previous
configuration is kept unchanged, else the new position is kept. Then, the attractions
and repulsions among points lead to a progressive reorganisation of the original
pattern towards a pattern that is more aggregated or more regular. Following
Tomppo (1986), this algorithm converges quickly enough towards a realisation of
the process.

In the preceding paragraphs, we were discussing the spatial distribution of
homogeneous points. What if the points are heterogeneous? In the case of het-
erogeneous patterns that do not correspond to the superposition of independent
distributions of different homogeneous groups, the preceding methodology can be
used independently for each class of points.
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In order to consider a more difficult case, let us consider that now each point can
have a radius as well as a colour. More generally speaking, the variables associated
to the points are called “marks”, and the following approach can be applied either
to qualitative (the colour) or quantitative (the radius) marks. We can then define
stochastic processes whose realisations are marked point patterns. These are marked
punctual processes, some mathematical objects that can generate an infinite number
of marked point patterns, all different, but sharing some common properties, in
particular the spatial structure of points and marks (Stoyan 1987; Goulard et al.
1995).

For a marked pattern, one can consider the position of points (the pattern as such)
and the attribution of marks separately. The positioning of points can be done using
tools and methods from the preceding part. Rather than to consider probabilities
of having points separated by a distance r, we now have to reason about the joint
probability P (see Eq. (19.5)) that two points at a distance r have marks m and m0.
This function expresses neighbourhood relationships among values of a mark. The
function gM(r, m, m0) can moreover be linked to the number of neighbours having a
mark m’ at a distance r of a point marked m:

P
�
M .A1/ D m and M .A2/ D m0� D �M.m/ �M

�
m0� gM

�
r; m; m0� (19.5)

The hypothesis of a totally random distribution of marks can be used as null
hypothesis for marked stochastic processes. Then if, for a given case, the points of
a subpopulation SP2 are less often near the points of a subpopulation SP1 than in
the null hypothesis, we can speak about repulsion between the two subpopulations
considered. Conversely, if the points from SP2 are more numerous in the vicinity of
SP1 than in the null hypothesis, we can talk about attraction of SP2 by SP1.

One can easily use a “depletion and replacement” algorithm with an associated
cost function in this particular case to generate marked point patterns of the wanted
properties with regard to inter- and intra-attraction/repulsion among the elements of
the different groups.

This situation can be seen as two different cases that could be treated using
nearly the same methods: the case where mark values are drawn at random from
a known statistical law and the case where mark values are fixed from an existing
distribution (histogram, for instance) and where we have to distribute these mark
values spatially. This corresponds to a random distribution of marks and to a list of
given marks, respectively.

19.4.3 Which Measures to Use?

To analyse a spatial structure, there are several established methods from spatial
statistics to characterise the spatial structure of point patterns (Ripley 1981; Diggle
1983; Cressie 1993).

One can distinguish between methods based on quadrants, the required data for
which are the number of individuals in the quadrants, having variable position and
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Fig. 19.10 Estimation of the K(r) function for different repartitions (aggregated, Poisson and
regular) from Goreaud (2000)

size (Chessel 1978), and methods based on distance, for which the distances among
points or individuals or positions are used as input. Indicators à la “Clark and Evans”
(Clark and Evans 1954) are classical examples of methods based on distance. They
calculate for each point an index of spatial structure considering the n (fixed) closest
neighbours. The average value of this index can then be compared to the theoretical
value calculated for a null hypothesis (for instance, a Poisson process) in order to
characterise the spatial structure with regard to aggregates or regularity, attraction
or repulsion, etc. (Pretzsch 1993; Füldner 1995).

For a homogeneous punctual process having a density �, Ripley (1976, 1977)
showed that it is possible to characterise the second-order propriety using a function
K(r) such that �K(r) is the expected value of the number of neighbours at a distance
r of a point chosen at random from the pattern. This function is linked directly to
the function of density of a couple of points g(r) defined previously:

�K.r/ D E .number of neighbours at distance < r from Ai/

K.r/ D
rZ

sD0

g.s/2� sds (19.6)

For the Poisson process, which serves as null hypothesis, the expected value of
the number of neighbours at distance r of a given point from the pattern is ��r2,
and then K(r) D �r2. For an aggregated process, the points have on average more
neighbours than in the null hypothesis and thus K(r) > �r2. Conversely, for a regular
process, the points have on average fewer neighbours than in the null hypothesis
and K(r) < �r2 (Fig. 19.10). In the most frequent case where we do not know the
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process, the function K(r) has to be estimated with the unique known realisation: the
real point pattern. We then approach the expected value of the number of neighbours
around a given point using its average on the whole set of individuals belonging to
the pattern. We then obtain a first approximated indicator of K(r), noted as bK.r/
defined as follows:

bK.r/ D 1

�

1

N

NX

iD1

X

j¤i

kij (19.7)

N is the number of points in the studied domain of surface D; � D N/D is the
estimator of the process density; and kij takes the value 1 if the distance between
points i and j is below r and 0 otherwise.

This first estimator is unfortunately biased as it underestimates the values of K(r)
because of the points situated close to the border of the studied domain having fewer
neighbours than a given point of the process. This general problem, known as border
or edge effect and discussed in Sect. 4.1.1, is met in a lot of methods for the analysis
of spatial structure.

To correct the border effect, two methods are known from the literature:

• Ohser and Stoyan (Stoyan et al. 1995) propose a global correction method, which
is based on the geometrical properties of the studied domain. This method has the
advantage of being quite simple, so quick enough to calculate.

• Ripley (1977) proposes a local correction method that is based on the contri-
bution of each point situated nearby the border. This local correction has the
advantage of being equally usable to calculate the individual indices relative to
each point of the pattern, just as those proposed by Getis and Franklin (1987).
Some works seem to show that this class of estimators is more robust than the
estimators of the Ohser and Stoyan type (Kiêu and Mora 1999).

This latter solution consists in replacing the coefficient kij with the inverse of
the proportion of the perimeter of the circle Cij (centred on Ai and passing through
Aj) for the points situated near the border of the domain studied. It corresponds to
an estimation of the number of points situated at the same distance that would be
outside of this domain. Ripley (1977) shows this estimator is not biased:

kij D totalPerimeter

PerimeterInsideTheZone
D 2�r

Cinside
	 1 (19.8)

An alternative to the function K(r) is the function L(r) proposed by Besag (1977)
which is easier to interpret. For a Poisson process, for any distance r, L(r) D 0.
Aggregated processes and regular ones are situated under and above the x-axis,
respectively:

L.r/ D
r

K.r/

�
� r estimated by bL.r/ D

s
bK.r/

�
� r (19.9)



19 Social Networks and Spatial Distribution 495

Fig. 19.11 Estimation of the L(r) function for different repartitions (aggregated, Poisson and
regular) from Goreaud (2000)

However, appropriate such methods of punctual processes are to deal with
agent-based simulations and allow initialising and measuring and therefore char-
acterising such systems, agent-based simulations have an important aspect that is
not addressed by this literature: the dynamics. In many cases, the agents in such
systems will move in the environment, and the spatial properties of the system are
represented more accurately considering a set of trajectories of the agents rather than
a succession of static spatial repartition. Even though punctual processes enable to
capture spatial clustering effects, when considering, for example, the Boids model
(Reynolds 1987), the dynamics of the flock will be overlooked. Therefore, there is
a need for statistical tools that enable to characterise the interrelations between sets
of trajectories to analyse some models properly (Fig. 19.11).

19.4.4 What Effects Can You Anticipate?

In spatial agent-based simulation, and without aiming at being exhaustive, the
main phenomena you can look at and therefore characterise depend greatly on
the population of agents in the model. Dealing with a homogeneous population
of agents, you may observe spatial clustering, i.e. the formation of groups in
space, that could be characterised by the methods presented beforehand. Introducing
heterogeneity into the population, the main question deals with the spatial mixing of
subpopulations, as present, for instance, in Schelling’s segregation model. Dealing
with a population of agents which may change their states, methods to characterise
diffusion processes could be used. However, one of the most interesting points in this
case does not really deal with the efficiency of the diffusion (evolution of the number
of infected agents in an epidemiological model, for instance) but rather with the
characterisation of the shape of such a diffusion. In this case, considering a diffusion
process that takes place, you aim at characterising the shape of the interface rather
than the global phenomenon that takes place. To this aim, fractal analysis gives
interesting hints but is not appropriate for many phenomena, especially dynamical
ones.
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Finally, an important phenomenon that can occur at the macro-level of any spatial
agent-based simulation concerns the density dependence of the results. For an
identified phenomenon (if we take, for instance, the segregation model of Schelling),
there will be an impact of the density of agents (either locally or globally) on the
appearance of the phenomenon. This is exactly the case of segregation in Schelling’s
model, where a very low number of empty places (thus, a high density of agents)
can freeze the system.

19.5 Conclusion

This chapter aims at presenting ways to deal with the distribution of agents in social
simulation. Two kinds of distributions considered are distribution over a graph or
social network on the one hand and spatial distribution on the other hand. While
these two cases are very common in social simulation, too little effort is spent on
either the characterisation or the investigation of the impact of the distribution on
the final results. The methods presented in this chapter are certainly not exhaustive
and not even pertinent to all cases, but they do present a first step towards pointing
the curiosity of agent-based modellers at techniques that would definitely be useful
for social simulation.

Further Reading

The literature on dynamic aspects of social networks is rapidly developing. For
social network models and their analysis, we currently recommend Newman et
al. (2006). For spatial aspects, we recommend Diggle (1983). For more details
concerning random graphs models, we refer the interested reader to Bollobas
(2001).
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Chapter 20
Learning

Michael W. Macy, Steve Benard, and Andreas Flache

Abstract Learning and evolution are adaptive or “backward-looking” models of
social and biological systems. Learning changes the probability distribution of traits
within an individual through direct and vicarious reinforcement, while evolution
changes the probability distribution of traits within a population through reproduc-
tion and selection. Compared to forward-looking models of rational calculation that
identify equilibrium outcomes, adaptive models pose fewer cognitive requirements
and reveal both equilibrium and out-of-equilibrium dynamics. However, they are
also less general than analytical models and require relatively stable environments.
In this chapter, we review the conceptual and practical foundations of several
approaches to models of learning that offer powerful tools for modeling social pro-
cesses. These include the Bush-Mosteller stochastic learning model, the Roth-Erev
matching model, feed-forward and attractor neural networks, and belief learning.
Evolutionary approaches include replicator dynamics and genetic algorithms. A
unifying theme is showing how complex patterns can arise from relatively simple
adaptive rules.

Why Read This Chapter?
To understand the properties of various individual or collective learning algorithms
and be able to implement them within an agent (where evolution is considered as a
particular kind of collective learning).
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20.1 Introduction

Evolution and learning are basic explanatory mechanisms for consequentialist
theories of adaptive self-organization in complex systems.1 These theories are
consequentialist in that behavioral traits are selected by their outcomes. Positive
outcomes increase the probability that the associated trait will be repeated (in
learning theory) or reproduced (in evolutionary theory), while negative outcomes
reduce it. Explanatory outcomes might be rewards and punishments (in learning
theory), survival and reproduction (in evolutionary models), systemic requisites (in
functionalism), equilibrium payoffs (in game theory), or the interests of a dominant
class (in conflict theory).

An obvious problem in consequentialist models is that the explanatory logic runs
in the opposite direction from the temporal ordering of events. Behavioral traits
are the explanandum and their outcomes the explanans. This explanatory strategy
collapses into teleology unless mechanisms can be identified that bridge the tem-
poral gap. While expected utility theory and game theory posit a forward-looking
and analytic causal mechanism, learning and evolution provide a backward-looking
and experiential link. In everyday life, decisions are often highly routine, with
little conscious deliberation. These routines can take the form of social norms,
protocols, habits, traditions, and rituals. Learning and evolution explain how these
routines emerge, proliferate, and change in the course of consequential social
interaction, based on experience instead of calculation. In these models, repetition,
not prediction, brings the future to bear on the present, by recycling the lessons
of the past. Through repeated exposure to a recurrent problem, the consequences
of alternative courses of action can be iteratively explored, by the individual actor
(learning) or by a population (evolution).

Backward-looking rationality is based on rules rather than choices (Vanberg
1994). A choice is an instrumental, case-specific comparison of alternative courses
of action, while rules are behavioral routines that provide standard solutions to
recurrent problems. Rules can take the form of strategies, norms, customs, habits,
morals, conventions, traditions, rituals, or heuristics. Rule-based decision-making is
backward-looking in that the link between outcomes and the actions that produce
them runs backward in time. The outcomes that explain the actions are not those
the action will produce in the future; they are the outcomes that were previously
experienced when the rule was followed in the past.

Learning alters the probability distribution of behavioral traits within a given
individual, through processes of direct and vicarious reinforcement. Evolution
alters the frequency distribution of traits within a population, through processes
of reproduction and selection. Whether selection operates at the individual or
population level, the units of adaptation need not be limited to human actors but
may include larger entities such as firms or organizations that adapt their behavior

1Much of the material in this chapter has been previously published in Macy (1996, 1997, 1998,
2004) Macy and Flache (2002), and Flache and Macy (2002).
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in response to environmental feedback. Nor is evolutionary adaptation limited to
genetic propagation. In cultural evolution, norms, customs, conventions, and rituals
propagate via role modeling, occupational training, social influence, imitation, and
persuasion. For example, a firm’s problem-solving strategies improve over time
through exposure to recurrent choices, under the relentless selection pressure of
market competition. Suboptimal routines are removed from the repertoires of actors
by learning and imitation, and any residuals are removed from the population by
bankruptcy and takeover. The outcomes may not be optimal, but we are often left
with well-crafted routines that make their bearers look much more calculating than
they really are (or need to be), like a veteran outfielder who catches a fly ball as if
she had computed its trajectory.

20.2 Evolution

Selection pressures influence the probability that particular traits will be replicated,
in the course of competition for scarce resources (ecological selection) or com-
petition for a mate (sexual selection). Although evolution is often equated with
ecological selection, sexual selection is at least as important. By building on partial
solutions rather than discarding them, genetic crossover in sexual reproduction
can exponentially increase the rate at which a species can explore an adaptive
landscape, compared to reliance on trial and error. Paradoxically, sexual selection
can sometimes inhibit ecological adaptation, especially among males. Gender
differences in parental investment cause females to be choosier about mates and thus
sexual selection to be more pronounced in males. An example is the peacock’s large
and cumbersome tail, which attracts the attention of peahens (who are relatively
drab) as well as predators. Sexually selected traits tend to become exaggerated as
males trap one another in an arms race to see who can have the largest antlers or to
be bravest in battle.

Selection pressures can operate at multiple levels in a nested hierarchy, from
groups of individuals with similar traits down to individual carriers of those traits,
down to the traits themselves. Evolution through group selection was advanced
by Wynne-Edwards (1962, 1986) as a solution to one of evolution’s persistent
puzzles—the viability of altruism in the face of egoistic ecological counterpressures.
Pro-social in-group behavior confers a collective advantage over rival groups of
rugged individualists. However, the theory was later dismissed by Williams in
Adaptation and Natural Selection (Williams 1966), which showed that between-
group variation gets swamped by within-group variation as group size increases.
Moreover, group selection relies entirely on differential rates of extinction, with no
plausible mechanism for the whole-cloth replication of successful groups.

Sexual selection suggests a more plausible explanation for the persistence of
altruistic behaviors that reduce the chances of ecological selection. Contrary to
Herbert Spencer’s infamous view of evolution as “survival of the fittest,” generosity
can flourish even when these traits are ecologically disadvantageous, by attracting
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females who have evolved a preference for “romantic” males who are ready to
sacrifice for their partner. Traits that reduce the ecological fitness of an individual
carrier can also flourish if the trait increases the selection chances of other
individuals with that trait. Hamilton (1964) introduced this gene-centric theory of
kin altruism, later popularized by Dawkins’ in the Selfish Gene (Dawkins 1976).

Allison (1992) extended the theory to benevolence based on cultural relatedness,
such as geographical proximity or a shared cultural marker. This may explain why
gene-culture coevolution seems to favor a tendency to associate with those who are
similar, to differentiate from “outsiders,” and to defend the in-group against social
trespass with the emotional ferocity of parents defending their offspring.

This model also shows how evolutionary principles initially developed to explain
biological adaptation can be extended to explain social and cultural change. Promi-
nent examples include the evolution of languages, religions, laws, organizations,
and institutions. This approach has a long and checkered history. Social Darwinism
is a discredited nineteenth-century theory that used biological principles as analogs
for social processes such as market competition and colonial domination. Many
sociologists still reject all theories of social or cultural evolution, along with
biological explanations of human behavior, which they associate with racist and
elitist theories of “survival of the fittest.” Others, like the sociobiologist E. O.
Wilson (1988, p. 167), believe “genes hold culture on a leash,” leaving little
room for cultural evolution to modify the products of natural selection. Similarly,
evolutionary psychologists like Cosmides and Tooby search for the historical origins
of human behavior as the product of ancestral natural selection rather than ongoing
social or cultural evolution.

In contrast, a growing number of sociologists and economists are exploring the
possibility that human behaviors and institutions may be heavily influenced by
processes of social and cultural selection that are independent of biological impera-
tives. These include DiMaggio and Powell (the new institutional sociology), Nelson
and Winter (evolutionary economics), and Hannan and Freeman (organizational
ecology).

One particularly compelling application is the explanation of cultural diversity.
In biological evolution, speciation occurs when geographic separation allows popu-
lations to evolve in different directions to the point that individuals from each group
can no longer mate. Speciation implies that all life has evolved from a very small
number of common ancestors, perhaps only one. The theory has been applied to the
evolution of myriad Indo-European languages that are mutually incomprehensible
despite having a common ancestor. In sociocultural models, speciation operates
through homophily (attraction to those who are similar), xenophobia (aversion to
those who are different), and influence (the tendency to become more similar to
those to whom we are attracted and to differentiate from those we despise).

Critics counter that sociocultural evolutionists have failed to identify any under-
lying replicative device equivalent to the gene. Dawkins has proposed the “meme”
as the unit of cultural evolution, but there is as yet no evidence that these exist.
Yet Charles Darwin developed the theory of natural selection without knowing that
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phenotypes are coded genetically in DNA. Perhaps the secrets of cultural evolution
are waiting to be unlocked by impending breakthroughs in cognitive psychology.

The boundary between learning and evolution becomes muddied by a hybrid
mechanism, often characterized as “cultural evolution.” In cultural evolution,
norms, customs, conventions, and rituals propagate via role modeling, occupational
training, social influence, and imitation. Cultural evolution resembles learning in
that the rules are soft wired and can therefore be changed without replacing the
carrier. Cultural evolution also resembles biological evolution in that rules used by
successful carriers are more likely to propagate to other members of the population.
However, because cultural rules are soft wired, the rules can propagate without
replacing the carriers. For example, norms can jump from one organism to another
by imitation (Dawkins 1976; Durham 1992; Boyd and Richerson 1985; Lopreato
1990). A successful norm is one that can cause its carrier to act in ways that increase
the chances that the norm will be adopted by others. Cultural evolution can also
be driven by social learning (Bandura 1977) in which individuals respond to the
effects of vicarious reinforcement. Social learning and role modeling can provide
an efficient shortcut past the hard lessons of direct experience.

Imitation of successful role models is the principal rationale for modeling cultural
evolution as an analog of natural selection (Boyd and Richerson 1985; Dawkins
1976). However, social influence differs decisively from sociobiological adaptation.
Softwired rules can spread without replacement of their carriers, which means
that reproductive fitness loses its privileged position as the criteria for replication.
While “imitation of the fittest” is a reasonable specification of cultural selection
pressures, it is clearly not the only possibility. Replication of hardwired rules may
be a misleading model for cultural evolution, and researchers need to be cautious in
using Darwinian analogs as templates for modeling the diffusion of cultural rules. In
cultural models of “imitation of the fittest,” actors must not only know which actor
is most successful; they must also know the underlying strategy that is responsible
for that success. Yet successful actors may not be willing to share this information.
For very simple strategies, it may be sufficient to observe successful behaviors.
However, conditional strategies based on “if-then” rules cannot always be deduced
from systematic observation. Researchers should therefore exercise caution in using
biological models based on Darwinian principles to model cultural evolution, which
is a hybrid of the ideal types of evolution and learning.

20.3 Learning

The most elementary principle of learning is simple reinforcement. Thorndike
(1898) first formulated the theory of reinforcement as the “law of effect,” based on
the principle that “pleasure stamps in, pain stamps out.” If a behavioral response has
a favorable outcome, the neural pathways that triggered the behavior are strength-
ened, which “loads the dice in favor of those of its performances which make
for the most permanent interests of the brain’s owner” (James 1981, p. 143). This
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connectionist theory anticipates the error back propagation used in contemporary
neural networks (Rumelhart and McClelland 1988). These models show how highly
complex behavioral responses can be acquired through repeated exposure to a
problem.

Reinforcement theory relaxes three key behavioral assumptions in models of
forward-looking rationality:

1. Propinquity replaces causality as the link between choices and payoffs.
2. Reward and punishment replace utility as the motivation for choice.
3. Melioration replaces optimization as the basis for the distribution of choices over

time.

We consider each of these in turn.

1. Propinquity, not causality. Compared to forward-looking calculation, the law
of effect imposes a lighter cognitive load on decision makers by assuming
experiential induction rather than logical deduction. Players explore the likely
consequences of alternative choices and develop preferences for those associated
with better outcomes, even though the association may be coincident, “super-
stitious,” or causally spurious. The outcomes that matter are those that have
already occurred, not those that an analytical actor might predict in the future.
Anticipated outcomes are but the consciously projected distillations of prior
exposure to a recurring problem. Research using fMRI supports the view that
purposive assessment of means and ends can take place after decisions are made,
suggesting that “rational choice” may be not so much a theory of decision but a
theory of how decisions are rationalized to self and others.

Reinforcement learning applies to both intended and unintended conse-
quences of action. Because repetition, not foresight, links payoffs back to the
choices that produce them, learning models need not assume that the payoffs
are the intended consequences of action. Thus, the models can be applied to
expressive behaviors that lack a deliberate or instrumental motive. Frank’s (1988)
evolutionary model of trust and commitment formalizes the backward-looking
rationality of emotions like vengeance and sympathy. An angry or frightened
actor may not be capable of deliberate and sober optimization of self-interest,
yet the response to the stimulus has consequences for the individual, and these in
turn can modify the probability that the associated behavior will be repeated.

2. Reward and punishment, not utility. Learning theory differs from expected
utility theory in positing two distinct cognitive mechanisms that guide decisions
toward better outcomes, approach (driven by reward) and avoidance (driven by
punishment). The distinction means that aspiration levels are very important for
learning theory. The effect of an outcome depends decisively on whether it is
coded as gain or loss, satisfactory or unsatisfactory, pleasant or aversive.

3. Melioration, not optimization. Melioration refers to suboptimal gradient climb-
ing when confronted with what Herrnstein and Drazin (1991) call “distributed
choice” across recurrent decisions. A good example of distributed choice is
the decision whether to cooperate in an iterated prisoner’s dilemma game.
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Suppose each side is satisfied when the partner cooperates and dissatisfied
when the partner defects. Melioration implies a tendency to repeat choices with
satisfactory outcomes even if other choices have higher utility, a behavioral
tendency March and Simon (1958) call “satisficing.” In contrast, unsatisfactory
outcomes induce searching for alternative outcomes, including a tendency to
revisit alternative choices whose outcomes are even worse, a pattern we call
“dissatisficing.” While satisficing is suboptimal when judged by conventional
game-theoretic criteria, it may be more effective in leading actors out of a
suboptimal equilibrium than if they were to use more sophisticated decision
rules, such as “testing the waters” to see if they could occasionally get away
with cheating. Gradient search is highly path dependent and not very good
at backing out of evolutionary cul-de-sacs. Course correction can sometimes
steer adaptive individuals to globally optimal solutions, making simple gradient
climbers look much smarter than they need to be. Often, however, adaptive
actors get stuck in local optima. Both reinforcement and reproduction are biased
toward better strategies, but they carry no guarantee of finding the highest peak
on the adaptive landscape, however relentless the search. Thus, learning theory
can be usefully applied to the equilibrium selection problem in game theory.
In repeated games (such as an ongoing prisoner’s dilemma), there is often an
indefinitely large number of analytic equilibria. However, not all these equilibria
are learnable, either by individuals (via reinforcement) or by populations (via
evolution). Learning theory has also been used to identify a fundamental solution
concept for these games—stochastic collusion—based on a random walk from
a self-limiting noncooperative equilibrium into a self-reinforcing cooperative
equilibrium (Macy and Flache 2002).

20.4 Modeling Evolution

Replicator dynamics are the most widely used model of evolutionary selection
(Taylor and Jonker 1978). In these models, the frequency of a strategy changes
from generation to generation as a monotonic function of its “payoff advantage,”
defined in terms of the difference between the average payoff of that strategy and
the average payoff in the population as a whole. The more successful a strategy is
on average, the more frequent it tends to be in the next generation.

Replicator dynamics typically assume that in every generation, every population
member encounters every other member exactly once, and replication is based on
the outcome of this interaction relative to the payoff earned by all other members
of the population. However, in natural settings, actors are unlikely to interact
with or have information about the relative success of every member of a large
population. The mechanism can also be implemented based on local interaction
(limited to network “neighbors”) and local replication (neighbors compete only with
one another for offspring).
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The outcomes of replicator dynamics depend on the initial distribution of strate-
gies, since the performance of any given strategy will depend on its effectiveness in
interaction with other strategies. For example, aggressive strategies perform much
better in a population that is accommodating than one that is equally aggressive. It
is also not possible for replicator dynamics to invent new strategies that were not
present at the outset.

These limitations are minimized by using genetic algorithms. The genetic
algorithm was proposed by Holland (1975) as a problem-solving device, modeled
after the recursive system in natural ecologies. The algorithm provides a simple
but elegant way to write a computer program that can improve through experience.
The program consists of a string of symbols that carry machine instructions. The
symbols are often binary digits called “bits” with values of 0 and 1. The string
is analogous to a chromosome containing multiple genes. The analog of the gene
is a bit or combination of bits that comprises a specific instruction. The values
of the bits and bit combinations are analogous to the alleles of the gene. A one-
bit gene has two alleles (0 and 1), a two-bit gene has four alleles (00, 01, 10,
and 11), and so on. The number of bits in a gene depends on the instruction. An
instruction to go left or right requires only a single bit. However, an instruction
to go left, right, up, or down requires two bits. When the gene’s instructions
are followed, there is some performance evaluation that measures the program’s
reproductive fitness relative to other programs in a computational ecology. Relative
fitness determines the probability that each strategy will propagate. Propagation
occurs when two mated programs recombine through processes like “crossover”
and “inversion.” In crossover, the mated programs (or strings) are randomly split,
and the “left” half of one string is combined with the “right” half of the other, and
vice versa, creating two new strings. If two different protocols are each effective,
but in different ways, crossover allows them to create an entirely new strategy that
may combine the best abilities of each parent, making it superior to either. If so, then
the new rule may go on to eventually displace both parent rules in the population
of strategies. In addition, the new strings contain random copying errors. These
mutations continually refresh the heterogeneity of the population, in the face of
selection pressures that tend to reduce it.

To illustrate, consider the eight-bit string 10011010 mated with 11000101. (The
typefaces might represent gender, although the algorithm does not require sexual
reproduction.) Each bit could be a specific gene, such as whether to trust a partner
under eight different conditions (Macy and Skvoretz 1998). In mating, the two
parent strings are randomly broken, say after the third gene. The two offspring
would then be 10000101 and 11011010. However, a chance copying error on the
last gene might make the second child a mutant, with 11011011. At the end of
each generation, each individual’s probability of mating is a monotonic (often
linear) function of relative performance during that generation, based on stochastic
sampling (Goldberg 1989):

Pij D Fi

NP
nD1

Fn for j D 1 to N; j ¤ i (20.1)
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where Pij is the probability that j is mated with i, Fi is i’s “fitness” (or cumulative
payoff over all previous rounds in that generation), and N is the size of the
population. If the best strategy had only a small performance edge over the worst,
it had only a small edge in the race to reproduce. With stochastic sampling, each
individual, even the least fit, selects a mate from the fitness-weighted pool of
eligibles. In each pairing, the two parents combined their chromosomes to create a
single offspring that replaces the less fit parent. The two chromosomes are combined
through crossover.

20.5 Learning Models

The need for a cognitive alternative to evolutionary models is reflected in a growing
number of formal learning-theoretic models of behavior (Macy 1991; Roth and Erev
1995; Fudenberg and Levine 1998; Young 1998; Cohen et al. 2001). In general form,
learning models consist of a probabilistic decision rule and a learning algorithm in
which outcomes are evaluated relative to an aspiration level, and the corresponding
decision rules are updated accordingly.

All stochastic learning models share two important principles, the law of effect
and probabilistic decision-making (Macy 1989, 1991; Börgers & Sarin 1997; Roth
and Erev 1995; Erev and Roth 1998, Erev et al. 1999; for more references cf. Erev
et al. 1999). The law of effect implies that the propensity of an action increases if
it is associated with a positively evaluated outcome, and it declines if the outcome
is negatively evaluated. Probabilistic choice means that actors hold a propensity qX
for every action X. The probability pX to choose action X then increases in the
magnitude of the propensity for X relative to the propensities for the other actions.

Whether an outcome is evaluated as positive or negative depends on the evalua-
tion function. An outcome is positive if it exceeds the actor’s aspirations. There are
basically three substantively different approaches for modeling the aspiration level,
fixed interior aspiration, fixed zero aspiration, and moving average aspiration. Fixed
interior aspiration assumes that some payoffs are below the aspiration level and
are evaluated negatively, while other payoffs are above the aspiration level and are
evaluated positively (e.g., Macy 1989, 1991; Fudenberg and Levine 1998). The fixed
zero aspiration approach also fixes the aspiration level, but it does so at the minimum
possible payoff (Roth and Erev 1995; Börgers and Sarin 1997; Erev and Roth 1998).
In other words, in the fixed zero aspiration model, every payoff is deemed “good
enough” to increase or at least not reduce the corresponding propensity, but higher
payoffs increase propensities more than lower payoffs do. Finally, moving average
aspiration models assume that the aspiration level approaches the average of the
payoffs experienced recently, so that players get used to whatever outcome they may
experience often enough (Macy and Flache 2002; Börgers and Sarin 1997; Erev and
Rapoport 1998; Erev et al. 1999). Clearly, these assumptions have profound effects
on model dynamics.
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20.5.1 Bush-Mosteller Stochastic Learning Model

One of the simplest models of reinforcement learning is the Bush-Mosteller model
(Bush and Mosteller 1950). The Bush-Mosteller stochastic learning algorithm
updates probabilities following an action a as follows:

pa;tC1 D
8
<

:

pa;t C .1 � pa;t/ l sa;t; sa;t 	 0

pa;t C pa;t l sa;t; sa;t < 0

; a 2 fC; Dg (20.2)

In Eq. (20.2), pa,t is the probability of action a at time t, and sa , t is a positive
or negative stimulus (0 � sa , t � 1). The change in the probability for the action
not taken, b, obtains from the constraint that probabilities always sum to one, i.e.,
pb , t C 1 D 1 � pa , t C 1. The parameter l is a constant (0 < l < 1) that scales the learning
rate. With l � 0, learning is very slow, and with l � 1, the model approximates a
“win-stay, lose-shift” strategy (Catania 1992).

For any value of l, Eq. (20.2) implies a decreasing effect of reward as the associ-
ated propensity approaches unity, but an increasing effect of punishment. Similarly,
as the propensity approaches zero, there is a decreasing effect of punishment and a
growing effect of reward. This constrains probabilities to approach asymptotically
their natural limits.

20.5.2 The Roth-Erev Matching Model

Roth and Erev (Roth and Erev 1995; Erev and Roth 1998; Erev et al. 1999)
have proposed a learning-theoretic alternative to the Bush-Mosteller formulation.
Their model draws on the “matching law” which holds that adaptive actors will
choose between alternatives in a ratio that matches the ratio of reward. Like the
Bush-Mosteller model, the Roth-Erev payoff matching model implements the three
basic principles that distinguish learning from utility theory—experiential induction
(vs. logical deduction), reward and punishment (vs. utility), and melioration (vs.
optimization). The similarity in substantive assumptions makes it tempting to
assume that the two models are mathematically equivalent or, if not, that they
nevertheless give equivalent solutions.

On closer inspection, however, we find important differences, identified by
Flache and Macy (2002). Each specification implements reinforcement learning in
different ways and with different results. Roth and Erev (1995, Erev & Roth 1998)
propose a baseline model of reinforcement learning with a fixed zero reference
point. The law of effect is implemented such that the propensity for action X is
simply the sum of all payoffs a player ever experienced when playing X. The
probability to choose action X at time t is then the propensity for X divided by the
sum of all action propensities at time t. The sum of the propensities increases over
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time, such that payoffs have decreasing effects on choice probabilities. However,
this also undermines the law of effect. Suppose, after some time, a new action is
carried out and yields a higher payoff than every other action experienced before.
The probability of repetition of this action will nevertheless be negligible, because
its recent payoff is small in comparison with the accumulated payoffs stored in the
propensities for the other actions. As a consequence, the baseline model of Roth
and Erev (1995) fails to identify particular results, because it has the tendency to
lock the learning dynamics into any outcome that occurs sufficiently often early
on. Roth and Erev amend this problem by introducing a “forgetting parameter”
that keeps propensities low relative to recent payoffs. With this, they increase the
sensitivity of the model to recent reinforcement. Roth and Erev used a variant of this
baseline model to estimate globally applicable parameters from data collected across
a variety of human subject experiments. They concluded that “low rationality”
models of reinforcement learning may often provide a more accurate prediction
than forward-looking models. Like the Bush-Mosteller, the Roth-Erev model is
stochastic, but the probabilities are not equivalent to propensities. The propensity
q for action a at time T is the sum of all stimuli sa a player has ever received when
playing a:

qa;T D
TX

tD1

sa;t; a 2 fC; Dg : (20.3)

Roth and Erev then use a “probabilistic choice rule” to translate propensities into
probabilities. The probability pa of action a at time tC1 is the propensity for a
divided by the sum of the propensities at time t:

pa;tC1 D qa;t

qa;t C qb;t
; .a; b/ 2 fC; Dg ; a ¤ b (20.4)

where a and b represent binary choices. Following action a, the associated propen-
sity qa increases if the payoff is positive relative to aspirations (by increasing the
numerator in Eq. (20.4)) and decreases if negative. The propensity for b remains
constant, but the probability of b declines (by increasing the denominator in the
equivalent expression for pb,tC1).

20.5.3 Artificial Neural Networks

Bush-Mosteller and Roth-Erev are very simple learning models that allow an actor
to identify strategies that generally have more satisfactory outcomes. However, the
actor cannot learn the conditions in which a strategy is more or less effective.
Artificial neural nets add perception to reinforcement, so that actors can learn
conditional strategies.
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Fig. 20.1 Simple example of a feed-forward network with one hidden layer

An artificial neural network is a simple type of self-programmable learning
device based on parallel distributed processing (Rumelhart and McClelland 1988).
Like genetic algorithms, neural nets have a biological analog, in this case, the
nerve systems of living organisms. In elementary form, the device consists of a
web of neuron-like nodes (or neurodes) that fire when triggered by impulses of
sufficient strength and in turn stimulate other nodes when fired. The magnitude of
an impulse depends on the strength of the connection (or “synapses”) between the
two neurodes. The network learns by modifying these path coefficients, usually in
response to environmental feedback about its performance.

There are two broad classes of neural networks that are most relevant to social
scientists, feed-forward networks, and attractor networks. Feed-forward networks
consist of four types of nodes, usually arranged in layers, as illustrated in Fig. 20.1.
The most straightforward are input (sensory) and output (response) nodes. Input
nodes are triggered by stimuli from the environment. In Fig. 20.1, there are two input
nodes. I1 has been activated by the environment (C1), while I2 has not (�1). Output
nodes, in turn, trigger action by the organism on the environment. In Fig. 20.1,
output node O1 has been triggered, as indicated by the output value of C1.

The other two types of nodes are less intuitive. Intermediate (or “hidden”) nodes
link sensory and response nodes so as to increase the combinations of multiple
stimuli that can be differentiated. Figure 20.1 shows a network with a single layer
containing two hidden nodes, H1 and H2. The number of hidden layers and the
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number of hidden nodes in each layer vary with the complexity of the stimulus
patterns the network must learn to recognize and the complexity of the responses the
network must learn to perform. Unlike sensory and response nodes, hidden nodes
have no direct contact with the environment, hence their name.

Bias nodes are a type of hidden node that has no inputs. Instead, a bias node
continuously fires, creating a predisposition toward excitation or inhibition in the
nodes it stimulates, depending on the size and sign of the weights on the pathway
from the bias node to the nodes it influences. If the path weight is positive, the bias
is toward excitation, and if the path is negative, the bias is toward inhibition. The
weighted paths from the bias node to other hidden and output nodes correspond to
the activation thresholds for these nodes.

A feed-forward network involves two processes—action (firing of the output
nodes) and learning (error correction). The action phase consists of the forward
propagation of influence (either excitation or inhibition) from the input nodes to
the hidden nodes to the output nodes. The influence of a node depends on the state
of the node and the weight of the neural pathway to a node further forward in the
network. The learning phase consists of the backward propagation of error from the
output nodes to the hidden nodes to the input nodes, followed by the adjustment of
the weights so as to reduce the error in the output nodes.

The action phase begins with the input nodes. Each node has a “state” which can
be binary (e.g., 0 or 1 to indicate whether the node “fires”) or continuous (e.g., 9 to
indicate that the node did not fire as strongly as one whose state is 1.0). The states
of the input nodes are controlled entirely by the environment and correspond to a
pattern that the network perceives. The input nodes can influence the output nodes
directly as well as via hidden nodes that are connected to the input nodes.

To illustrate, consider a neural network in which the input nodes are numbered
from i D 1 to I. The ith input is selected, and the input register to all nodes j
influenced by i is then updated by multiplying the state of i times the weight wij

on the ij path. This updating is repeated for each input node. The pathways that
link the nodes are weighted with values that determine the strength of the signals
moving along the path. A low absolute value means that an input has little influence
on the output. A large positive weight makes the input operate as an excitor. When
it fires, the input excites an otherwise inhibited output. A large negative path weight
makes the input operate as an inhibitor. When it fires, the input inhibits an otherwise
excited output.

Next, the nodes whose input registers have been fully updated (e.g., the nodes
in the first layer of hidden nodes) must update their states. The state of a node is
updated by aggregating the values in the node’s input register, including the input
from its bias node (which always fires, e.g., Bi D 1).

Updating states is based on the activation function. Three activation functions
are commonly used. Hard-limit functions fire the node iff the aggregate input
exceeds zero. Sigmoid stochastic functions fire the node with a probability given
by the aggregate input. Sigmoid deterministic functions fire the node with a
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magnitude given by the aggregate input.2 For example, if node k is influenced
by two input nodes, i and j and a bias node b, then k sums the influence
ik D i*wij C k*wik C b*wib. Positive weights cause i, j, and b to activate k and
negative weights inhibit. If j is hard limited, then if ik > 0, k D 1, else k D 0. If the
activation function is stochastic, k is activated with a probability p D 1/(1 C e(�ik).
If the sigmoid function is deterministic, k is activated with magnitude p.

Once the states have been activated for all nodes whose input registers have been
fully updated (e.g., the first layer of hidden nodes and/or one or more output nodes
that are directly connected to an input node), these nodes in turn update the input
registers of nodes they influence going forward (e.g., the second layer of hidden
nodes and/or some or all of the output nodes). Once this updating is complete, all
nodes whose input registers have been fully updated aggregate across their inputs
and update their states, and so on until the states of the output nodes have been
updated. This completes the action phase.

The network learns by modifying the path weights linking the neurodes. Learning
only occurs when the response to a given sensory input pattern is unsatisfactory. The
paths are then adjusted so as to reduce the probability of repeating the mistake the
next time this pattern is encountered. In many applications, neural nets are trained
to recognize certain patterns or combinations of inputs. For example, suppose we
want to train a neural net to predict stock prices from a set of market indicators. We
first train the net to correctly predict known prices. The net begins with random path
coefficients. These generate a prediction. The error is then used to adjust the weights
in an iterative process that improves the predictions. These weights are analogous
to those in a linear regression, and like a regression, the weights can then be applied
to new data to predict the unknown.

20.5.3.1 Back Propagation of Error

A feed-forward neural network is trained by adjusting the weights on the paths
between the nodes. These weights correspond to the influence that a node will
have in causing nodes further forward in the network to fire. When those nodes fire
incorrectly, the weights responsible for the error must be adjusted accordingly. Just
as the influence process propagates forward, from the input nodes to the hidden layer
to the output nodes, the attribution of responsibility for errors propagates backward,
from the output nodes to the hidden layers. The back propagation of error begins
with the output nodes and works back through the network to the input nodes, in the
opposite direction from the influence process that “feeds forward” from input nodes
to hidden nodes to output nodes. First, the output error is calculated for each output
node. This is simply the difference between the expected state of the ith output
node (bSi), and the state that was observed (Si). For an output node, error refers to

2A multilayer neural net requires a nonlinear activation function (such as a sigmoid). If the
functions are linear, the multilayer net reduces to a single-layer I-O network.
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the difference between the expected output for a given pattern of inputs and the
observed output:

eo D so .1 � so/ .bso � so/ (20.5)

where the term so (1 � so) limits the error to the unit interval. If the initial weights
were randomly assigned, it is unlikely that the output will be correct. For example,
if we observe an output value of 0.37 and we expected 1, then the error is �0.53.

Once the error has been updated for each output node, these errors are used to
update the error for the nodes that influenced the output nodes. These nodes are
usually located in the last layer of hidden nodes, but they can be anywhere and can
even include input nodes that are wired directly to an output.3 Then the errors of
the nodes in the last hidden layer are used to update error back further still to the
hidden nodes that influenced the last layer of hidden nodes, and so on, back to the
first layer of hidden nodes, until the errors for all hidden nodes have been updated.
Input nodes cannot have error, since they simply represent an exogenous pattern that
the network is asked to learn. Back propagation means that the error observed in an
output node o .bso � so/ is allocated not only to o but to all the hidden nodes that
influenced o, based on the strength of their influence. The total error of a hidden
node h is then simply the summation over all nh allocated errors from the n nodes i
that h influenced, including output nodes as well as other hidden nodes:

eh D sh .1 � sh/

nX

iD1

whiei (20.6)

Once the errors for all hidden, bias, and output nodes have been back propagated,
the weight on the path from i to j is updated:

w0
ij D wij C �siej (20.7)

where � is a fractional learning rate. The learning algorithm means that the influence
of i on j increases if j’s error was positive (i.e., the expected output exceeded the
observed) and decreases if j’s influence was negative.

Note that the Bush-Mosteller model is equivalent to a neural net with only a
single bias unit and an output, but with no sensory inputs or hidden units. Such
a device is capable of learning how often to act, but not when to act, that is, it
is incapable of learning conditional strategies. In contrast, a feed-forward network
can learn to differentiate environmental cues and respond using more sophisticated
protocols for contingent strategies.

3However, if an input node is wired to hidden nodes as well as output nodes, the error for this node
cannot be updated until the errors for all hidden nodes that it influenced have been updated.
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20.5.3.2 Attractor Neural Network

Feed-forward networks are the most widely used but not the only type of artificial
neural network. An alternative design is the attractor neural network (Churchland
and Sejnowski 1994; Quinlan 1991), originally developed and investigated by
Hopfield (1982; Hopfield and Tank 1985). In a recent article, Nowak and Vallacher
(1998) note the potential of these computational networks for modeling group
dynamics. This approach promises to provide a fertile expansion to social network
analysis, which has often assumed that social ties are binary and static. A neural
network provides a way to dynamically model a social network in which learning
occurs at both the individual and structural levels, as relations evolve in response to
the behaviors they constrain.

Unlike feed-forward neural networks (Rumelhart and McClelland 1988), which
are organized into hierarchies of input, hidden, and output nodes, attractor (or
“feed-lateral”) networks are internally undifferentiated. Nodes differ only in their
states and in their relational alignments, but they are functionally identical. Without
input units to receive directed feedback from the environment, these models are
“unsupervised” and thus have no centralized mechanism to coordinate learning of
efficient solutions. In the absence of formal training, each node operates using a set
of behavioral rules or functions that compute changes of state (“decisions”) in light
of available information. Zeggelink (1994) calls these “object-oriented models,”
where each agent receives input from other agents and may transform these inputs
into a change of state, which in turn serves as input for other agents.

An important agent-level rule that characterizes attractor networks is that indi-
vidual nodes seek to minimize “energy” (also “stress” or “dissonance”) across all
relations with other nodes. As with feed-forward networks, this adaptation occurs
in two discrete stages. In the action phase, nodes change their states to maximize
similarity with nodes to which they are strongly connected. In the learning phase,
they update their weights to strengthen ties to similar nodes. Thus, beginning with
some (perhaps random) configuration, the network proceeds to search over an
optimization landscape as nodes repeatedly cycle through these changes of weights
and states.

In addition to variation in path strength, neural networks typically have paths that
inhibit as well as excite. That is, nodes may be connected with negative as well as
positive weights. In a social network application, agents connected by negative ties
might correspond to “negative referents” (Schwartz and Ames 1977), who provoke
differentiation rather than imitation.

Ultimately, these systems are able to locate stable configurations (called “attrac-
tors”), for which any change of state or weight would result in a net increase in stress
for the affected nodes. Hopfield (1982) compares these equilibria to memories and
shows that these systems of undifferentiated nodes can learn to implement higher-
order cognitive functions. However, although the system may converge at a stable
equilibrium that allows all nodes to be locally satisfied (i.e., a “local optimum”), this
does not guarantee that the converged pattern will minimize overall dissonance (a
“global optimum”).
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This class of models generally uses complete networks, with each node char-
acterized by one or more binary or continuous states and linked to other nodes
through endogenous weights. Like other neural networks, attractor networks learn
stable configurations by iteratively adjusting the weights between individual nodes,
without any global coordination. In this case, the weights change over time through
a Hebbian learning rule: the weight wij is a function of the correlation of states
for nodes i and j over time. Specifically, Hebbian learning implies the following
rules:

• To the extent that nodes i and j adopt the same states at the same time, the weight
of their common tie will increase until it approaches some upper limit (e.g., 1.0).

• To the extent that nodes i and j simultaneously adopt different states, the weight
of their common tie will decrease until it approaches some lower limit (e.g., 0.0).

Although Hebbian learning was developed to study memory in cognitive sys-
tems, it corresponds to the homophily principle in social psychology (Homans
1951) and social network theory (McPherson and Smith-Lovin 1987), which holds
that agents tend to be attracted to those whom they more closely resemble. This
hypothesis is also consistent with structural balance theory (Cartwright and Harary
1956; Heider 1958) and has been widely supported in studies of interpersonal
attraction and interaction, where it has been called “the law of attraction” (Byrne
1971; Byrne and Griffitt 1966).

An important property of attractor networks is that individual nodes seek to
minimize “energy” (or dissonance) across all relations with other nodes—a process
that parallels but differs from the pursuit of balanced relations in structural balance
theory. These networks also posit self-reinforcing dynamics of attraction and
influence as well as repulsion and differentiation.

Following Nowak and Vallacher (1998), Macy et al. (2003) apply the Hopfield
model of dynamic attraction to the study of polarization in social networks. In this
application, observed similarity/difference between states determines the strength
and valence of the tie to a given referent. This attraction and repulsion may be
described anecdotally in terms of liking, respect, or credibility and their opposites.
In their application of the Hopfield model, each node has N � 1 undirected ties to
other nodes. These ties include weights, which determine the strength and valence
of influence between agents. Formally, social pressure on agent i to adopt a binary
state s (where s D ˙1) is the sum of the states of all other agents j, where influence
from each agent is conditioned by the weight (wij) of the dyadic tie between i and j
(�1.0 < wij < 1.0):

Pis D

NP
jD1

wijsj

N � 1
; j ¤ i (20.8)

Thus, social pressure (�1 < Pis < 1) to adopt s becomes increasingly positive as
i’s “friends” adopt s (s D 1) and i’s “enemies” reject s (s D �1). The pressure
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can also become negative in the opposite circumstances. The model extends to
multiple states in a straightforward way, where Eq. (20.8) independently determines
the pressure on agent i for each binary state s. Strong positive or negative social
pressure does not guarantee that an agent will accommodate, however. It is effective
only if i is willing and able to respond to peer influence. If i is closed-minded or if
a given trait is not under i’s control (e.g., ethnicity or gender), then no change to s
will occur. The probability � that agent i will change state s is a cumulative logistic
function of social pressure:

�is D 1

1 C e�10Pis
(20.9)

Agent i adopts s if � > C C 
, where C is the inflection point of the sigmoid,

 is a random number drawn from a uniform distribution in the interval [C � ",
C C "], and " is an exogenous error parameter (0 � " � 1). At one extreme, " D 0
produces highly deterministic behavior, such that any social pressure above the
trigger value always leads to conformity and pressures below the trigger value entail
differentiation. Following Harsanyi (1973), " > 0 allows for a “smoothed best reply”
in which pressure levels near the trigger point leave the agent relatively indifferent
and thus likely to explore behaviors on either side of the threshold. In the Hopfield
model, the path weight wij changes as a function of similarity in the states of node
i and j. Weights begin with uniformly distributed random values, subject to the
constraints that weights are symmetric (wij D wji). Across a vector of K distinct
states sik (or the position of agent i on issue k), agent i compares its own states to
the observed states of another agent j and adjusts the weight upward or downward
corresponding to their aggregated level of agreement or disagreement. Based on the
correspondence of states for agents i and j, their weight will change at each discrete
time point t in proportion to a parameter �, which defines the rate of structural
learning (0 < � < 1):

wij;tC1 D wijt .1 � �/ C �

K

KX

kD1

sjktsikt; j ¤ i (20.10)

As correspondence of states can be positive (agreement) or negative (disagree-
ment), ties can grow positive or negative over time, with weights between any two
agents always symmetric.

Note one significant departure from structural balance theory. Although the
agents in this model are clearly designed to maintain balance in their behaviors
with both positive and negative referents, this assumption is not “wired in” to the
relations themselves. That is, two agents i and j feel no direct need for consistency in
their relations with a third agent h. Indeed, i has no knowledge of the jh relationship
and thus no ability to adjust the ij relation so as to balance the triad.

Given an initially random configuration of states and weights, these agents will
search for a profile that minimizes dissonance across their relations. Structural bal-
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ance theory predicts that system-level stability can only occur when the group either
has become uniform or has polarized into two (Cartwright and Harary 1956) or
more (Davis 1967) internally cohesive and mutually antipathetic cliques. However,
there is no guarantee in this model that they will achieve a globally optimal state in
structural balance.

20.5.4 Belief Learning

Actors learn not only what is useful for obtaining rewards and avoiding pun-
ishments; they also update their beliefs about what is true and what is false.
There are two main models of belief learning in the literature, Bayesian belief
learning and fictitious play4 (cf. Offerman 1997; Fudenberg and Levine 1998).
These models differ in their assumptions about how players learn from observations.
Both models assume that players believe that something is true with some fixed
unknown probability p. In Bayesian learning, players then use Bayes’ learning rule
to rationally update over time their beliefs about p. In a nutshell, Bayes’ learning
rule implies that actors’ assessment of the true value of p converges in the long
run on the relative frequency of events that they observe. However, in the short and
medium term, Bayesian learners remain suspicious in the sense that they take into
account that observed events are an imperfect indication of p (Offerman 1997).

Fudenberg and Levine note that fictitious play is a special case of Bayesian
learning. Fictitious play is a form of Bayesian learning that always puts full weight
on the belief that the true value of p corresponds to the relative frequency observed
in past events. Fudenberg and Levine (1998) note that it is an implausible property of
fictitious play that a slight change in beliefs may radically alter behavior. The reason
is that the best reply function always is a step function. As a remedy, Fudenberg
and Levine introduce a smooth reply curve. The reply curve assigns a probability
distribution that corresponds to the relative frequency of events. With strict best
reply, the reply curve is a step function. Instead, a smooth reply curve assigns some
probability to the action that is not strict best reply. This probability decreases in
the difference between the expected payoffs. Specifically, when expected payoffs
are equal, actors choose with equal probability, whereas their choice probabilities
converge on pure strategies when the difference in expected payoffs approaches the
maximum value.

The strict best reply function corresponds to the rule, “play X if the expected
payoff for X is better than the expected payoff for Y, given your belief p. Otherwise
play Y.” Smooth best reply is then introduced with the modification to play the strict
best reply strategy only with a probability of 1 � 
, whereas the alternative is played

4The Cournot rule may be considered as a third degenerate model of belief learning. According
to the Cournot rule, players assume that the behavior of the opponent in the previous round will
always occur again in the present round.



520 M.W. Macy et al.

with probability 
. The probability 
, in turn, decreases in the absolute difference
between expected payoffs juX(p) � uY(p)j, where 
 D 0.5 if players are indifferent.

Belief learning generally converges with the predictions of evolutionary selection
models. The approaches are also similar in the predicted effects of initial conditions
on end results. Broadly, the initial distribution of strategies in independent popula-
tions in evolutionary selection corresponds to the initial beliefs players’ hold about
their opponent. For example, when two pure strategy Nash equilibria are feasible,
then the one tends to be selected toward which the initial strategy distribution in
evolutionary selection or initial beliefs in belief learning are biased.

20.6 Conclusion

Evolution and learning are examples of backward-looking consequentialist models,
in which outcomes of agents’ past actions influence their future choices, either
through selection (in the case of evolution) or reinforcement (in the case of learn-
ing). Backward-looking models make weaker assumptions about agents’ cognitive
capacities than forward-looking models and thus may be appropriate for settings in
which agents lack the ability, resources, information, and motivation to engage in
intensive cognitive processing, as in most everyday instances of collective action.
Backward-looking models may also be useful for understanding behavior driven by
affect, rather than calculation. Forward-looking models may be more appropriate
in applications such as investment decisions, international diplomacy, or military
strategy, where the stakes are high enough to warrant collection of all relevant
information and the actors are highly skilled strategists. However, even where the
cognitive assumptions of the models are plausible, forward-looking models are
generally limited to the identification of static equilibria but not necessarily whether
and how agents will reach those equilibria.

When implemented computationally, backward-looking models can show how
likely agents are to reach particular equilibria, as well as the paths by which those
equilibria may be reached. However, computational models are also less general
than analytical models. Furthermore, backward-looking models will be of little help
if change in the environment outpaces the rate of adaptation. These limitations
underscore the importance of robustness testing over a range of parameter values.

Evolutionary models are most appropriate for theoretical questions in which
adaptation takes place at the population level, through processes of selection.
Biological evolution is the most obvious analog, but social and cultural evolution
are likely to be more important for social scientists. However, as we note above,
researchers must be cautious about drawing analogies from the biological to
social/cultural dynamics.

Learning models based on reinforcement and Bayesian updating are useful in
applications that do not require conditional strategies based on pattern recognition.
When agents must learn more complex conditional strategies, feed-forward neural
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networks may be employed. Furthermore, attractor neural networks are useful for
modeling structural influence, such as conformity pressures from peers.

Models of evolution and learning are powerful tools for modeling social pro-
cesses. Both show how complex patterns can arise when agents rely on relatively
simple, experience-driven decision rules. This chapter seeks to provide researchers
with an overview of promising research in this area and the tools necessary to further
develop this research.

Further Reading

We refer readers interested in particular learning models and their application in
agent-based simulation to Macy and Flache (2002), which gives a brief introduction
into principles of reinforcement learning and discusses by means of simulation
models how reinforcement learning affects behavior in social dilemma situations,
whereas Macy (1996) compares two different approaches of modeling learning
behavior by means of computer simulations. Fudenberg and Levine (1998) give
a very good overview on how various learning rules relate to game-theoretic
rationality and equilibrium concepts.

For some wider background reading, we recommend Macy (2004), which
introduces the basic principles of learning theory applied to social behavior; Holland
et al. (1986), which presents a framework in terms of rule-based mental models
for understanding inductive reasoning and learning; and Sun (2008), which is a
handbook of computational cognitive modeling.
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Chapter 21
Evolutionary Mechanisms

Edmund Chattoe-Brown and Bruce Edmonds

Abstract After an introduction, the abstract idea of evolution is analysed into four
processes which are illustrated with respect to a simple evolutionary game. A brief
history of evolutionary ideas in the social sciences is given, illustrating the different
ways in which the idea of evolution has been used. The technique of Genetic
Algorithms (GA) is then described and discussed including the representation of
the problem and the composition of the initial population, the Fitness Function,
the reproduction process, the Genetic Operators, issues of convergence and some
generalisations of the approach including endogenising the evolutionary process.
Genetic Programming (GP) and Classifier Systems (CS) are also briefly introduced
as potential developments of GA. Four detailed examples of social science applica-
tions of evolutionary techniques are then presented: the use of GA in the Arifovic
“cobweb” model, using CS in a model of price setting developed by Moss, the
role of GP in understanding decision-making processes in a stock market model
and relating evolutionary ideas to social science in a model of survival for “strict”
churches. The chapter concludes with a discussion of the prospects and difficulties
of using the idea of biological evolution in the social sciences.

Why Read This Chapter?
To learn about techniques that may be useful in designing simulations of adaptive
systems including Genetic Algorithms (GA), Classifier Systems (CS) and Genetic
Programming (GP). The chapter will also tell you about simulations that have a fun-
damentally evolutionary structure—those with variation, selection and replications
of entities—showing how this might be made relevant to social science problems.
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21.1 Introduction

There are now many simulations of complex social phenomena that have structures
or component processes analogous to biological evolution (see Arifovic (1994),
Chattoe (2006a), Dosi et al. (1999), Lomborg (1996), Nelson and Winter (1982),
Oliphant (1996), Windrum and Birchenhall (1998) to get a flavour of the diversity
of approach and applications). Clearly the process of biological evolution is complex
and has resulted in the development of complex (and in several cases social)
systems. However, biological evolution follows very specific mechanisms and
is clearly not strictly isomorphic with social processes. For a start, biological
evolution occurs over larger time spans than most social processes. Further, it is
unlikely, as sociobiology (Wilson 1975) and evolutionary psychology (Buss 2015)
are sometimes supposed to imply, that the domain of social behaviour will actually
prove reducible to genetics. Thus, it is not immediately apparent why evolution-
ary ideas have had such an influence upon the modelling of social processes.
Nevertheless, simulations of social phenomena have been strongly influenced by
our understanding of biological evolution, and this has occurred via two main
routes: through analogies with biological evolution and through computer science
approaches.

In the first case, conceptions of evolution have been used as a way of understand-
ing social processes, and then simulations have been made using these conceptions.
For example, Nelson and Winter (1982) modelled growth and change in firms
using the idea of random variation (new products or production processes) and
selective retention (whether these novelties in fact sustain profitability—the survival
requirement for firms—in an environment defined by what other firms are currently
doing).

In the second case, computer science has taken up the ideas of evolution and
applied it to engineering problems. Most importantly in machine learning, ideas
from biological evolution have inspired whole families of techniques in what
has become known as “evolutionary computation”. The most famous of these
techniques are Genetic Algorithms (Holland 1975; Mitchell 1996) and Genetic
Programming (Koza 1992a, 1994) discussed below. These algorithms have then
been applied in social simulations with different degrees of modification, from
using them unchanged as “off the shelf” plug-ins (e.g. to model learning processes)
to specifying simulation processes that use the core evolutionary idea but are
completely re-engineered for a particular modelling purpose or domain. There is
no a priori reason to suppose that a particular technique from computer science will
be the most appropriate algorithm in a social simulation (including those with a
biological inspiration) as we shall see below, but it certainly presents a wealth of
evolutionary ideas and results that are potentially applicable in some form. Like any
theory, the trick is to use good judgement and a clear specification in applying an
algorithm to a particular social domain (Chattoe 1998, 2006b).

What is certainly the case is that biological evolution offers an example of
how complex and self-organised phenomena can emerge from randomness, so it is



21 Evolutionary Mechanisms 527

natural to look to this as a possible conceptual framework with which to understand
social phenomena with similar properties. (In particular, while it may be reasonable
to assume deliberation and rationality in some social contexts, it is extremely
unlikely to apply to all social structures and phenomena. As such, some kind of blind
variation and retention—evolution—is probably the only well-defined theoretical
alternative). The extent to which evolution-like processes are generally applicable
to social phenomena is unknown (largely because this foundational issue has not
received much attention to date), but these processes certainly are a rich source of
ideas, and it may be that there are some aspects of social complexity that will prove
to be explicable by models thus inspired. It is already the case that many social
simulation models have taken this path and thus have the potential to play a part
in helping us to understand social complexity (even if they only serve as horrible
examples).

This chapter looks at some of the most widely used approaches to this kind of
modelling, discusses others, gives examples and critically discusses the field along
with areas of potential development.

21.2 An Abstract Description of Biological Evolution

We will not provide full details of biological evolution as currently understood
in the neo-Darwinian synthesis.1 Rather we will take from this a generalised
model of evolution that will potentially cover a variety of social processes. This
description will then be used to discuss an example from evolutionary game theory
(Vega-Redondo 1996). This will unpack the implications of the abstract description
and demonstrate its generality. This generalisation is a preliminary to discussing
evolutionary simulations of social phenomena based on the abstract description as a
framework.

21.2.1 The Four Process Description

The basic components in the biological theory are the genotype (the set of instruc-
tions or genome) and the phenotype (the “body” which the genotype specifies)
in which these instructions are embedded. The phenotype is constructed using
“instructions” encoded in the genotype. The phenotype has various capabilities
including reproduction. Maintenance of the phenotype (and the embedded geno-
type) requires a number of potentially scarce inputs (food, water). The phenotypic
capabilities include management of inputs and outputs to the organism. Poor adapta-
tion of these capabilities with respect to either external or internal environment will

1For details about this, see any good textbook on biology (e.g. Dobzhansky et al. 1977).
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result in malfunction and consequent death. The death of a particular phenotype
also ends its reproductive activity and removes the corresponding genotype from
the population. Variation occurs by mutation during reproduction, giving rise to
novel genotypes (and hence subsequent phenotypes) in the resulting offspring.
Genotypic variations are not selected directly by the environment but according to
the overall capabilities of their phenotypes. In biology, phenotype alterations cannot
be transmitted to the genotype for physiological reasons, but in social systems,
this “Lamarckian” adjunct to evolution (which is not, however, adequate to explain
change in its own right) is both possible and plausible. In particular, it allows for
combinations of evolutionary learning at the social level and deliberate action at the
individual level (Chattoe 2006a).

A full specification of an evolutionary model requires descriptions of the
following processes:

1. Generation of phenotypes: A specification of the genotypes and the phenotypes
these correspond to. This may not specify a 1-1 mapping between genotypes
and phenotypes but describe the process by which phenotypes are actually
constructed from genotypes. This is necessary when genotypes cannot be
enumerated.

2. Capabilities of the phenotypes: A specification of ways in which phenotypes may
use their capabilities to affect the internal and external environment, including
the behaviour and numbers of other phenotypes. Lamarckian systems include
the capability to modify the genotype using environmental feedback during the
lifetime of the phenotype.

3. Mechanisms of reproduction and variation: A specification of the process by
which phenotypes reproduce including possible differences between ancestor
and successor genotypes resulting from reproduction. Reproduction may involve
a single ancestor genotype (parthenogenesis) or a pair (sexual reproduction). In
principle, multiple parents could be modelled if appropriate for particular social
domains (like policies decided by committees) though this approach has not been
used so far.

4. Mechanism of selection: A specification of all the processes impinging on the
phenotype and their effects. This is the converse of the second mechanism;
the capabilities of one phenotype form part of the selection process for the
others. Some processes, such as fighting to the death, can be seen as directly
selective. However, even indirect processes like global warming may interact
with phenotypic capabilities in ways that affect fitness.

In these process specifications, it may be convenient to distinguish (and model
separately) the “environment” as the subset of objects impinging on phenotypes
which display no processes of the first three types. Whether a separate representation
of the environment is useful depends on the process being modelled. At one extreme,
a person in a desert is almost exclusively dealing with the environment. At the other,
rats in an otherwise empty cage interact almost entirely with each other.

Obviously, some of these specifications could be extremely complex depending
on the system being modelled. The division into system components is necessarily
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imprecise but not arbitrary. It is based on the considerable observed integrity of
organisms relative to their environment. (This integrity is also observed in social
“organisms” like firms which have clearly—and often legally—defined boundaries).
The first and third specifications involve processes internal to the organism, while
the second and fourth represent the organism’s effect on the external world and the
converse.

Of course, social processes, even “evolutionary social processes”, are not
constrained by the above specification. For example, what most closely corresponds
to the genotype might not be separable from what corresponds to the phenotype.
Nevertheless, however, for a very broad class of evolutionary simulations, it will be
necessary to implement something very similar to the above four categories.

21.2.2 Illustrative Example: A Simple Evolutionary Game

Despite the potential complexity of specifying complete models for biological
systems, this description can also be used to clarify and analyse relatively simple
evolutionary systems. In this section, we shall provide a description for an evo-
lutionary game. The purpose is not to comment on evolutionary game theory per
se but to show how the description raises issues relevant to our understanding of
evolutionary models.

For each agent, the genotype is one of a set of finite state automata producing
a single action in each period, for example, the complete set of one- and two-state
automata leading to the actions “co-operate” (C) and “defect” (D) in a prisoner’s
dilemma (see, e.g. Lomborg 1996). The action is compared with the action of a co-
player (another agent), and the result is an adjustment to the “energy level” for each
agent depending on the game payoffs and chosen strategies. If agents reach a certain
energy level, they produce an exact copy. (This model dispenses with variation
and involves asexual reproduction.) If the energy level of any agent reaches zero,
it dies and is removed from the environment. Reproduction reduces the energy level
considerably. Merely existing also does so but at a much lower rate.

With some qualifications, this is an example of a complete description discussed
in the last section. It reveals some interesting things about the process of construct-
ing such descriptions.

Firstly, this model involves a very attenuated environment compared to real
social systems. Agents have a single external capability involving one of two
actions and thus affecting the energy levels of their co-players. The effect of these
actions is also the only environmental process that impinges on agents. The model
of the environment just consists of mechanisms for deciding when and which
agents will play, administering actions and energy changes, producing copies and
removing dead agents. In real social systems, exogenous events (both social and
environmental) are likely to be very important.

Secondly, the discussion of energy levels still sounds biological, but this is simply
to make the interpretation of the example more straightforward in the light of the



530 E. Chattoe-Brown and B. Edmonds

recent discussion. As we shall show subsequently, the survival criterion can just as
easily be profitability or organisation membership levels.

Thirdly (and perhaps most importantly), there has been sleight of hand in
the description of the model. We have already described Lamarckism (genotype
modification by the phenotype during the organism’s lifetime), and the construction
of the phenotype by the genotype during gestation is a fundamental part of the evo-
lutionary process. But in this example, the genotype is effectively “reconstructing”
the phenotype every time the finite state automaton generates an action. There is
nothing observable about a particular agent, given the description above, except the
sequence of actions they choose. There is no way for an agent to establish that
another is actually the same when it plays D on one occasion and C on another or
that two plays of D in successive periods actually come from two different agents.
In fact, this is the point at which models of social evolution develop intuitively
from the simple description of biological evolution used so far. The capabilities
of social agents (such as consumers, families, churches and firms) include the
“senses” that give them the ability to record actions and reactions in memory.
Furthermore, they have mental capabilities that permit the processing of sense
data in various ways, some subset of which we might call rationality. The simple
automata described above are reactive, in that their actions depend in systematic
ways on external stimuli, but they can hardly be said to be rational or reflective in
that their “decision process” involves no choice points, internal representations of
the world or “deliberation”. Such distinctions shelve into the deep waters of defining
intelligence, but the important point is that we can make useful distinctions between
different kinds of adaptability based on the specifications of process we use in our
models without compromising the evolutionary framework we have set up. It is in
this way that the complex relationship between selection and reasoned action may
begin to be addressed.

Thus, even in this simple example, one can see not only the general evolutionary
structure of the simulation but also that the conception differs in significant ways
from the corresponding biological process.

21.3 Evolutionary Ideas in the Social Sciences

From early on, since the publication of On the Origin of Species (Darwin 1859),
Darwin’s ideas of evolution have influenced those who have studied social phe-
nomena. For example, Tarde (1884) published a paper discussing “natural” and
“social” Darwinism. This marked a shift from looking at the social organisation
of individuals to the patterns of social products (fashions, ideas, tunes, laws and so
on). Tarde (1903, p.74) put it like this:

but self-propagation and not self-organisation is the prime demand of the social as well as
of the vital thing. Organisation is but the means of which propagation, of which generative
or imitative imitation, is the end.
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However, it was from the latter half of the twentieth century that the full force
of the analogy with biological evolution (as understood in the neo-Darwinian
synthesis) was felt in the social sciences. There were those who sought to understand
the continuous change in cultural behaviours over long time scales in this way, for
example (Boyd and Richerson 1985; Campbell 1965; Cavalli-Sforza and Feldman
1973; Cloak 1975; Csányi 1989). Richard Dawkins coined the term “meme”
as a discrete and identifiable unit of cultural inheritance corresponding to the
biological gene (Dawkins 1976, 1982), an idea which has influenced a multitude
of thinkers including Costall (1991), Lynch (1996), Dennett (1990), Heyes and
Plotkin (1989), Hull (1982, 1988) and Westoby (1994). Another stream of influence
has been the philosophy of science via the idea that truth might result from the
evolution of competing hypotheses (Popper 1979), a position known as evolutionary
epistemology since (Campbell 1974). The ultimate reflection of the shift described
by Tarde above is that the human mind is “merely” the niche where memes survive
(Blackmore 1999) or which they exploit (as “viruses of the mind”, Dawkins 1993)—
the human brain is programmed by the memes, rather than using them (Dennett
1990). This fits in with the idea of the social intelligence hypothesis (Kummer
et al. 1997) that the biological reason the brain evolved is because it allows specific
cultures to develop in groups giving specific survival value with respect to the
ecological niches they inhabit (Reader 1970). All of these ideas hinge on the
importance of imitation (Dautenhahn and Nehaniv 2002), since without this process,
individual memes, ideas or cultural patterns would be quickly lost.

Evolutionary theories are applied in a wide variety of disciplines. As mentioned
above, evolutionary theories are applied to culture and anthropology, as in the work
of Boyd and Richerson, Cavalli-Sforza and Feldman and Csányi. The evolution
of language can be seen as an analogy to biological evolution, as described
by Hoenigswald and Wiener (1987). In computer science, Genetic Programming
and Genetic Algorithms (as well as the more rarely used Classifier Systems) are
descendants of the evolutionary view as well, for example, in the work of several
individuals at the Santa Fe Institute (Holland 1975; Kauffman 1993). Learning
theories of humans, applied to individuals, groups and society, can be tied to
evolutionary theory, as shown in the work of Campbell (1965, 1974). The work
of several philosophers of science also shows an evolutionary perspective on
knowledge, as in the work of Popper (1979) and Kuhn (1970). Such theories have
been used to account for brain development by Gerald Edelman (1992) and extended
to the milliseconds-to-minutes time scale of thought and action by William Calvin
(1996a, 1996b). Evolutionary theory (and in some cases, explicit modelling) is
present in economics, often tied to the development of technology, as in the work of
Nelson and Winter (1982), or to the evolution of institutions and practices as in the
work of Dosi et al. (1999), Hodgson (1993) and North (1990). Sociology too has
used evolutionary ideas and simulations to understand the evolution of social order
(Lomborg 1996; Macy 1996), changing populations of organisations (Hannan and
Freeman 1993) and the survival of so-called strict churches (Chattoe 2006a).

Interestingly, however, against these creative approaches must be set forces
in particular social sciences that have slowed or marginalised their adoption. In
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sociology, the conversion of functionalism (potentially a form of social evolution)
into a virtual religion was followed by a huge backlash against untestable grand
theory which made these ideas virtually beyond the pale for 20 years or so (Chattoe
2002; Runciman 1998). It is quite likely that confused associations with social
Darwinism, eugenics and even Nazism have not helped the use of biological analo-
gies in social science from the 1940s until quite recently. In economics, the focus
on deliberate rationality and well-defined equilibria has meant that evolutionary
approaches are judged ad hoc unless they can be reinterpreted to support the core
assumptions of economics. (This can be observed, e.g. in evolutionary approaches
to equilibrium selection where the object is not to understand the dynamics of the
system but to support the claim that particular equilibria are robust.) In psychology,
while there appears to be no overt objection to evolutionary approaches, it seems to
be the case (perhaps for historical reasons) that the main interest in these ideas is
to explain behaviour using genetic accounts of cognitive structure rather than using
evolutionary analogies.

In subsequent sections, having shown that interest in evolutionary ideas is
widespread, we turn to technical details of various kinds of evolutionary algorithm,
their strengths, weaknesses and social applicability, so the reader is able to evaluate
their use and consider applications in their own areas of research interest. We start
with the Genetic Algorithm, which is easiest to describe, and then move to Genetic
Programming and the (more rarely used but in some sense more satisfactory as an
analogy) Classifier Systems. The final example doesn’t rely directly on the use of
an evolutionary algorithm but clearly attempts to model a social process using a
biological analogy.

21.4 The Basic Genetic Algorithm

This section describes the basic operation and limitations of the Genetic Algorithm.
This leads to a description of ways in which the Genetic Algorithm can be
generalised and a detailed discussion of one specific way of generalising it (Genetic
Programming) in the subsequent section.

21.4.1 What Is a Genetic Algorithm?

The Genetic Algorithm is actually a family of programmes developed by John
Holland (1975) and his coworkers at the University of Michigan. The following
algorithm describes the structure of a typical Genetic Algorithm. It is the different
ways in which various parts of the algorithm can be implemented which produces
the wide variety of Genetic Algorithms available. Each part of the algorithm
will be discussed in more detail in a subsequent section. For the purposes of
illustration, consider an attempt to solve the notorious Travelling Salesman Problem
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that involves producing the shortest tour of a set of cities at known distances visiting
each once only (Grefenstette et al. 1985).

1. Represent potential solutions to the problem as data structures.
2. Generate a number of these solutions/structures and store them in a composite

data structure called the Solution Pool.
3. Evaluate the “fitness” of each solution in the Solution Pool using a Fitness

Function.
4. Make copies of each solution in the Solution Pool, the number of copies

depending positively on its fitness according to a Reproduction Function. These
copies are stored in a second (temporary) composite data structure called the
Breeding Pool.

5. Apply Genetic Operators to copies in the Breeding Pool chosen as “parents” and
return one or more of the resulting “offspring” to the Solution Pool, randomly
overwriting solutions which are already there. Repeat this step until some
proportion of the Solution Pool has been replaced.

6. Repeat steps 3, 4 and 5 until the population of the Solution Pool satisfies a
stopping condition. One such condition is that the Solution Pool should be within
a certain distance of homogeneity.

There is an obvious parallel between this algorithm and the process of bio-
logical evolution that inspired it. The string representing a solution to a problem
corresponds to the genotype and each element to a gene. The Fitness Function
represents the environment that selects whole genotypes on the basis of their relative
performance. The Genetic Operators correspond to the processes causing genetic
variation in biology that allow better genes to propagate, while poorer ones are
selected out. This class of Genetic Algorithms has a number of interesting properties
(for further discussion, see Goldberg 1989).

1. It is evolutionary. Genetic Operators combine and modify solutions directly
to generate new ones. Non-evolutionary search algorithms typically generate
solutions “from scratch” even if the location of these solutions is determined
by the current location of the search process. The common Genetic Operators
are based on biological processes of variation. Genetic Operators permit short
subsections of parent solutions to be propagated unchanged in their offspring.
These subsections (called schemata) are selected through their effect on the
overall fitness of solutions. Schemata that produce high fitness for the solutions in
which they occur continue to be propagated, while those producing lower fitness
tend to die out. (Note that while it is not possible to assign a meaningful fitness
to single genes, it is possible to talk about the relative fitness of whole genotypes
differing by one or more genes. By extension, this permits talk about successful
“combinations” of genes.) The Genetic Operators also mix “genetic material”
(different solutions in the Breeding Pool) and thus help to ensure that all the
promising areas of the Problem Space are explored continuously. These ideas
clearly resonate with the social production of knowledge, in science, for example.
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2. It is non-local. Each solution is potentially exploring a different area of the
Problem Space although solutions can “cluster” in promising areas to explore
them more thoroughly. This allows for societies to be “smarter” than their
members.

3. It is probabilistic. The Fitness Function ensures that fitter solutions participate in
Genetic Operators more often because they have more copies in the Breeding
Pool and are thus more likely to propagate their useful schemata. However,
it sometimes happens that a solution of low overall fitness contains useful
schemata. The probabilistic replacement of only a proportion of the Solution
Pool with new solutions means that a small number of poor solutions will
survive for sufficient generations that these schemata have a good chance of
being incorporated into fitter solutions. This probabilistic approach to survival
(when coupled with non-locality and the use of Genetic Operators) means that
the Genetic Algorithm avoids getting stuck on nonoptimal peaks in the Problem
Space. Consider a Problem Space with two peaks, one higher than the other.
A simple hill-climbing algorithm, if it happens to start “near” the lower peak,
will climb up it and then be stuck at a nonoptimal position. By contrast, there
is nothing to prevent the Genetic Operators from producing a new solution
somewhere on the higher peak. Once this happens, there is a possibility of
solutions fitter than those at the top of the lower peak and these will come to
dominate the population. The search process can thus “jump” from one peak to
another which most variants of hill climbing don’t do.

4. It is implicitly parallel. In contrast with the behaviour of serial search algorithms
that operate on a single best solution and improve it further, the Genetic
Algorithm uses a population of solutions and simultaneously explores the area
each occupies in the Problem Space. The results of these explorations are
repeatedly used to modify the direction taken by each solution. The parallelism
arises because the “side effects” of exploring the area surrounding each solution
affect all the other solutions through the functioning of Genetic Operators. The
whole is thus greater than the sum of its parts.

5. It is highly general. The Genetic Algorithm makes relatively few assumptions
about the Problem Space in advance. Instead, it tries to extract the maximum
amount of information from the process of traversing it. For example, non-
evolutionary heuristic search algorithms use features like the gradient (first
differential) which may not be calculable for highly irregular Problem Spaces.
By contrast, in the Genetic Algorithm, all operations take place directly on
a representation of the potential solution. The Fitness Function also evaluates
fitness directly from solutions rather than using derived measures. Although no
search technique escapes the fact that all such techniques exploit some properties
of the problem space they are applied upon, in practice, Genetic Algorithms
are good at finding acceptable solutions to hard problems (which, in some
cases, defeat other methods), albeit not always the best solution. Ironically,
social evolutionary learning may be better at finding the solutions to difficult
problems than rationality which struggles without high levels of knowledge about
environmental structure.
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21.4.2 The Problem Representation and Initial Population

The most important step in developing a Genetic Algorithm also requires the
most human ingenuity. A good representation for solutions to the problem is
vital to efficient convergence. Some solutions have more obvious representations
than others do. In the Travelling Salesman Problem, for example, the obvious
representation is an ordered list of numbers representing cities. For example, the
solution (1 4 3 2) involves starting at city 1, then going to city 4 and so on.
Once a representation has been developed, a number of solutions are generated
and form the initial population in the Solution Pool. These solutions can be
generated randomly, or they may make use of some other (perhaps “quick and
dirty”) algorithm producing better than random fitness. The optimum size of the
initial population depends on the size of the Problem Space. A population of almost
any size will ultimately converge. But the efficiency of the Genetic Algorithm relies
on the availability of useful genetic material that can be propagated and developed
by the Genetic Operators. The larger the initial population, the greater the likelihood
that it will already contain schemata of an arbitrary quality. This must be set against
the increased computational cost of manipulating the larger Solution Pool. The
initial population must also be sufficiently large that it covers the Problem Space
adequately. One natural criterion is that any given point in the Problem Space should
not be more than a certain “distance” from some initial solution. A final requirement
for a good solution representation is that all “genes” should be similarly important
to overall fitness, rather than some “genes” being much more important than others.
Equivalent variations at different positions should have a broadly similar effect on
overall fitness. In the Travelling Salesman Problem, all the positions in the list
are equivalent. They all represent cities. The efficiency of the Genetic Algorithms
relies on the exponential propagation of successful schemata, and this efficiency is
impaired if schemata differ too much in importance as the system then becomes
“bottlenecked” on certain genes.

21.4.3 The Fitness Function

The Fitness Function is at least as important as the solution representation for the
efficiency of the Genetic Algorithm. It assigns fitness to each solution by reference
to the problem that solution is designed to solve. The main requirement for the
Fitness Function is that it must generate a fitness for any syntactically correct
solution. (These are commonly referred to as “legal” solutions.) In the Travelling
Salesman Problem, an obvious Fitness Function satisfying this requirement would
be the reciprocal of the tour length. The reciprocal is used because the definition
of the problem involves finding the shortest tour. Given this goal, we should regard
shorter tours as fitter. More complicated problems like constrained optimisation can
also be handled using the Fitness Function. One approach is simply to reject all
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solutions that do not satisfy the constraints. This involves assigning them a fitness
of 0. However, where solutions satisfying the constraints are sparse, a more efficient
method is to add terms to the Fitness Function reflecting the extent of constraint
satisfaction. These “penalty terms” lower the fitness of solutions that fail to satisfy
the constraints but do not necessarily reduce it to zero.

21.4.4 The Process of Reproduction

Reproduction is sometimes classified as a Genetic Operator in that it takes a
number of solutions (the Solution Pool) and produces a new set (the Breeding
Pool). However, it is a Genetic Operator of a special type in that it uses additional
information (the fitness of solutions and the Reproduction Function) in generating
that population. The Reproduction Function links the fitness of individual solutions
and the number of copies they produce. This process mimics the reproductive
success of fitter organisms in biological systems. The number of copies depends on
the type of Genetic Algorithm. Typically, the fittest solutions in the Solution Pool
may produce two or three copies, while the worst may produce none. In order that
potentially useful “genetic material” be retained, it is important that fitter solutions
do not proliferate too rapidly, nor less fit solutions die out too fast. Despite their low
fitness, poor solutions may contain useful schemata that need to be incorporated into
better solutions. Ensuring “adequate” survival for instrumental efficiency is a matter
of trial and error and depends on the problem and the type of Genetic Algorithm
being used. There are two main types of reproduction strategies.

In the first, the Holland-type algorithm (Holland 1975), the copies of each
solution make up the Breeding Pool as described above. The Breeding Pool thus
contains more copies of fitter solutions. There are two main kinds of Reproduction
Function. The first is proportional fitness: Here the number of copies produced
for each solution is equal to the size of the Solution Pool normalised by some
function according to the “share of fitness” accruing to each particular solution.
Fitter solutions, responsible for a larger share of total fitness, produce more copies.
This system is similar to that used in replicator dynamics (Vega-Redondo 1996): It
is performance relative to the average that determines the number of offspring. The
second possibility is rank-based fitness. In this case, the number of copies depends
on fitness rank. For example, the fittest five solutions may receive two copies each,
the least fit receive no copies, and all others receive one. Both types of function
have probabilistic equivalents. Instead of determining the actual number of copies,
the function can determine the probability of drawing each type. The reproduction
operator is then applied repeatedly, drawing from the probability distribution until
the Breeding Pool is full. Clearly, this will still result in a greater proportion of
fitter solutions in the Breeding Pool. The Reproduction Function can be linear or
arbitrarily complex. In practice, the “shape” of the Reproduction Function is chosen
on the basis of experience to optimise the performance of the Genetic Algorithm.
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The second reproduction strategy, the GENITOR algorithm (Whitley 1989), does
not involve a Breeding Pool. Instead of copying solutions into the Breeding Pool
and then copying the results of Genetic Operators back again, the GENITOR takes
parent solutions sequentially from the Solution Pool, applies Genetic Operators and
returns the offspring immediately to the Solution Pool. The Solution Pool is kept
sorted by rank, and new solutions are appropriately placed according to fitness.
A new solution either overwrites the solution with fitness nearest to its own or is
inserted into the Solution Pool so that all solutions with lower fitness move down one
place and the solution with the lowest fitness is removed altogether. The GENITOR
algorithm ensures that fitter solutions are more likely to become parents by using a
skewed distribution to select them.

The differences between these strategies are instructive. The GENITOR algo-
rithm is more similar to the interaction of biological organisms. The parents produce
offspring that are introduced into a population that probably still contains at least
one parent. Fitness affects which parents will mate, rather than generating offspring
from all individuals in the Solution Pool. Even the “pecking order” interpretation
of the introduction of offspring seems relatively intelligible. By contrast, the
Breeding Pool in the Holland-type algorithm seems to be an abstraction with little
descriptive plausibility. The Holland-type algorithm effectively splits the process of
reproduction into two parts: the proliferation of fitter individuals and the subsequent
generation of variation in their offspring. In biological systems, both processes result
from the “same” act of reproduction. Furthermore, the differential production of
offspring emerges from the relative fitness of parents. It is not explicitly designed
into the system. In functional terms, both types of algorithm promote the survival
of the fittest through variation and selective retention. In instrumental terms, one
is sometimes more suitable than the other for a particular Problem Space. In
descriptive terms, the GENITOR algorithm seems more appropriate to biological
systems. (It can also be given a more plausible behavioural interpretation in social
contexts).

21.4.5 The Genetic Operators

There are two main types of Genetic Operator that correspond to the biological
phenomena of recombination and mutation. These are the original Genetic Opera-
tors developed by Holland (1975). Recombination Genetic Operators involve more
than one solution and the exchange of genetic material to produce offspring. The
commonest example is the Crossover Operator. Two solutions are broken at the
same randomly selected point (n), and the “head” of each solution is joined to the
“tail” of the other to produce two new solutions as shown in Fig. 21.1. Here ai

identifies an ordered set of k genes from one parent, and bi identifies those from
another.

One of the two new solutions is then chosen with equal probability as the
offspring to be placed in the Solution Pool.
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Fig. 21.1 The Crossover
Operator

Fig. 21.2 The (point)
Mutation Operator

Fig. 21.3 The Inversion
Operator

Mutation Genetic Operators involve a single solution and introduce new genetic
possibilities. The two main kinds of mutation Genetic Operators used in Genetic
Algorithms correspond to so-called large scale and point mutation. In the Mutation
Operator (realising point mutation), one gene is altered to another value from the
legal range (selected with equal probability) and shown in Fig. 21.2 as hn.

One commonly used Genetic Operator (corresponding to large-scale chromoso-
mal mutation) is the Inversion Operator (see Fig. 21.3) which involves reversing
the order of a set of genes between two randomly selected points (n and m) in the
genotype.

The Inversion Operator provides an opportunity to discuss positional effects in
solution representations although these can arise in all Genetic Operators except
point mutation. It is not problematic to invert (reverse) the order in which a section
of a city tour takes place in the Travelling Salesman Problem. However, there
may be problem representations for which we have no reason to expect that the
Inversion Operator will generate solutions that are even syntactically correct let
alone fit. There are two solutions to the production of illegal solutions by Genetic
Operators. One is to use the penalty method. The other is simply to avoid unsuitable
Genetic Operators by design. Positional effects pose particular problems if genes
have different meanings, some representing one sort of object and some another. In
this case, inverted solutions are almost certain not to be legal. This difficulty will be
addressed further in the section on developing the Genetic Algorithm.
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In biological systems, recombination ensures that the genes of sexually repro-
duced offspring are different from those of both parents. Various forms of mutation
guarantee that entirely new genetic possibilities are also being introduced continu-
ously into the gene pool. In the Genetic Algorithm, the Genetic Operators perform
the same function, but the probability with which each is applied has to be tuned
to ensure that useful genetic material can be properly incorporated before it is lost.
Typically, the Crossover Operator is applied with a high probability to each solution
and the Mutation Operator with a low probability to each gene leading to a moderate
probability of some mutation occurring in each solution. Other Genetic Operators
are applied with intermediate probability. These probabilities are intended to reflect
very approximately the relative importance of each process in biological systems.

For instrumental uses of the Genetic Algorithm, the setting of probabilities is a
matter of experience. If the probabilities of application are too low, especially for the
Mutation Operator, there is a danger of premature convergence on a local optimum
followed by inefficient “mutation only” search. (In such cases, the advantages of
parallel search are lost and the Genetic Algorithm effectively reverts to undirected
serial search.) By contrast, if the probabilities of application are too high, excessive
mixing destroys useful schemata before they can be combined into fit solutions.

There is a wide variety of other Genetic Operators discussed in the literature
(Goldberg 1989; Mitchell 1996), some developed descriptively from biological
systems, and others designed instrumentally to work on particular problems. The
descriptive use of Genetic Operators in the example provided here means that
although it is important to bear the instrumental examples in mind, they should not
be regarded as definitive. The processes of variation that affect the social analogues
of genotypes should be established empirically just as they were for biological
genes.

21.4.6 Convergence

Because the Genetic Algorithm is a powerful technique, many of the problems it
is used to solve are very hard to tackle by other means. Although it is possible
to test the Genetic Algorithm by comparison with other techniques for simple
problems, there is a danger that conclusions about performance will not scale
to more complex cases. One consequence of this is the difficulty of defining
satisfactory conditions for convergence. Provided the Problem Space is suitable,
a non-evolutionary algorithm will find the best solution within a certain time. In the
same time, the Genetic Algorithm is only statistically likely to converge (though, in
practice, it will actually do so for a far larger class of problems). As a result, unlike
some iterative procedures, the Genetic Algorithm cannot simply be stopped after
a fixed number of generations. Instead, the properties of the Solution Pool must
be analysed to determine when the programme should stop. The simplest method
involves stopping when the fittest solution is “good enough”. Clearly, this involves
a value judgement external to the definition of the problem. Another possibility is
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to stop the programme when the rate of change in best solution fitness drops below
a specified level. Unfortunately, the behaviour of the Genetic Algorithm means that
improvements in fitness are often “stepped” as the Genetic Operators give rise to
whole ranges of new possibilities to be explored. For this reason more sophisticated
approaches analyse the Solution Pool continuously and measure fitness in the whole
population. Another advantage of this technique is that it allows for the fact that
convergence is never total because of the Mutation Operator. There is always a
certain amount of “mutation noise” in the Solution Pool even when it has converged.

21.4.7 Developing the Genetic Algorithm

The previous section was intended to provide a summary of the main aspects of
design and a feel for the operation of a typical instrumental Genetic Algorithm
(one that is supposed to solve a predefined problem as efficiently as possible).
In the next two subsections, we describe a variety of generalisations that move
the Genetic Algorithm away from the instrumental interpretation and towards
the possibility of realistic description of certain social processes. This involves
enriching the syntax for solution representations, developing formal techniques for
analysing the behaviour of evolutionary models and making various aspects of
the evolutionary process endogenous. The fact that these generalisations develop
naturally from previous discussions suggests that a suitably sophisticated Genetic
Algorithm might serve as a framework for evolutionary models of (carefully chosen)
social phenomena. We shall try to show that Genetic Programming (as an extension
of Genetic Algorithms) is particularly suitable for this purpose.

21.4.7.1 Generalising the Solution Representation

In the simplest Genetic Algorithm, the solution representation is just a list of
numbers with a fixed length. Each gene (number) in the genotype (list) represents
an object like a city in the Travelling Salesman Problem. But there is no reason
why the Genetic Algorithm should be limited to solving problems using such a
restricted representation. The enrichment of the syntax for solution representations
has proceeded in three overlapping domains: the computational improvement of
programmes implementing Genetic Algorithms, the incorporation of useful insights
from biology and the study of theoretical requirements for the use of different
solution representations.

Developments of the first sort are those which broaden the capabilities of the
Genetic Algorithm itself. Instead of solutions of fixed length “hard coded” by the
programmer, Goldberg et al. (1990) have developed a “messy” Genetic Algorithm.
This evolves an encoding of optimal length by varying the lengths of potential
solutions as well as their encoding interpretations. Schraudolph and Belew (1992)
have also addressed this problem, developing a technique called Dynamic Parameter
Encoding that changes the solution encoding in response to an analysis of the
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current Solution Pool. (This technique avoids the loss of efficiency that results
from premature convergence and the consequent failure of parallel search.) Finally,
Harvey (1993) has stressed the importance of variable length genotypes in systems
that are to display genuine increases in behavioural complexity.

Developments of the second sort have arisen from the study of biological
systems. Smith et al. (1992) have developed a Genetic Algorithm that produces
a diverse coexistent population of solutions in “equilibrium” rather than one
dominated by a single “optimal” solution. In this way, the coexistent population
is capable of generalisation. This approach also forms the basis of the Classifier
Systems discussed in Forrest (1991). Here groups of “if [condition]-then [action]”
rules form coexistent data structures that can jointly perform computational tasks.
Belew (1989, 1990) has developed this notion further by considering models in
which the solutions themselves take in information from the environment and carry
out a simple form of learning. Koza (1992b, 1992c) considers the possibility of
co-evolution. This is a process in which the fitness of a solution population is
not defined relative to a fixed environment or Fitness Function but rather in terms
of another population. He applies this technique to game strategy learning by
Genetic Programmes. Clearly this development is important to models of social
systems where we can seldom define, let alone agree, a clear objective ranking of
alternative social arrangements. In a sense, it is the existence of a Fitness Function
that identifies instrumental (rather than descriptive) applications of evolutionary
algorithms. The exception might be a model in which different solutions to a
problem were created “subconsciously” in the style of a Genetic Algorithm but were
then evaluated “rationally” by an agent. For an example, see Chattoe and Gilbert
(1997).

Developments of the third sort involve the adaptation of formal systems such
as grammars to serve as solution representations. Antoinisse has developed a
representation and set of Genetic Operators that can be used for any problem
in which legal solutions can be expressed as statements in a formal grammar
(Antoinisse 1991). Koza (1992a, 1994) has developed a similar though far more
general representation involving the syntax of computer languages. This approach
(called Genetic Programming) will receive detailed discussion in its own section
shortly.

21.4.7.2 Making the Process of Evolution Endogenous

So far, most of the Genetic Algorithm generalisations discussed have been instru-
mental in their motivation and use. The abstractions and limitations in the simple
Genetic Algorithm have not been viewed as unrealistic but merely unhelpful (since
they are engineering solutions rather than attempts to describe and understand
complex social behaviour). The interesting question from the perspective of this
chapter is how it is possible to develop simulations based on evolutionary algorithms
which are not just instrumentally effective (e.g. allowing firms to survive by learning
about their market situation) but actually provide a convincing (“descriptive”)
insight into their decision processes and the complexity of the resulting system. At
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the same time, the powerful self-organising capabilities of evolutionary algorithms
may serve to provide an alternative explanation of observed stability (and instability)
in social systems which do not (or cannot) involve a high level of individual
rationality. Despite the instrumental nature of most current developments in Genetic
Algorithms, the trend of these developments suggests an important issue for the
design of descriptive models.

Most of the developments discussed above can be characterised as making var-
ious aspects of the process of evolution endogenous. Instead of exogenous system
level parameters that are externally “tuned” by the programmer for instrumental
purposes, various parts of the evolutionary process become internalised attributes of
the individual solutions. They need not be represented in the solution explicitly as
numerical parameters. They are parameters in the more general sense that they alter
the process of evolution and may be adjusted by the programmer. For example, the
level of mutation may emerge from some other process (such as endogenous copy-
ing of information through imitation) rather than being “applied” to the solutions.
Co-evolution provides a good example of this approach. In the instrumental Genetic
Algorithm, the Fitness Function is specified by the programmer and applied equally
to all solutions, producing an answer to some question of interest. To follow an old
Darwinian example, this is equivalent to the deliberate breeding of particular dog
breeds. In co-evolving Genetic Algorithms, as in biological evolution, there is no
fixed Fitness Function. Fitness can only be measured relative to the behaviour of
other agents that constitute an important part of the environment. This is equivalent
to the production of the dog species by biological evolution. Another example is
provided by the Classifier Systems briefly discussed above. The simple Genetic
Algorithm assumes that the fitness of an individual solution is independent of the
fitness of other solutions. In practice, the fitness of one solution may depend on
the existence and behaviour of other solutions. In biology, this is acknowledged in
the treatment of altruism (Becker 1976; Boorman and Levitt 1980) and of group
selection (Hughes 1988).

The use of solutions that are syntactically identical also abstracts from another
important feature of evolution. Because the solutions only differ semantically, there
is no sense in measuring the relative “cost” of each. By contrast, when solutions
differ syntactically, selection pressure may operate to produce shorter solutions as
well as better ones. In descriptive models, “fitness” no longer measures an abstract
quantity but describes the efficient scheduling of all scarce resources used including
time. The less time is spent making decisions (provided they are sensible), the
more time can be spent on other things. To put this point in its most general terms,
organisms (and firms) are dynamic solutions to a dynamic environment, while the
simple Genetic Algorithm is a static solution to a static environment. Since social
environments are dynamic, one way in which social agents can evolve or adapt is
by evolving or adapting their models of that environment. Thus, an important way
in which descriptive models can make the evolutionary process endogenous is by
simulating agents that develop and test their own interpretations of the world in an
evolutionary manner rather than being “gifted” with a fixed set of interpretations or
decision processes by the modeller (Dosi et al. 1999).
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The value of making parts of the process specification endogenous can only be
assessed in specific cases using descriptive plausibility as the main criterion. For
example, if the rate of mutation can realistically be treated as fixed over the lifetime
of a given evolutionary process, it makes little practical difference whether it is
represented as an extra global parameter or as part of the representation for each
solution. In such cases, instrumental considerations such as computational efficiency
may as well decide the matter. By contrast, making fitness endogenous will probably
have a major effect on the behaviour of the system. In particular, there will be a
tension between the descriptive plausibility of this change and the “instrumental”
desirability of convergence to a unique optimum facilitated by an external Fitness
Function.

This aspect of Genetic Algorithm design provides a new insight into the
distinction between instrumental and descriptive models. Instrumental models are
those that allow the programmer to achieve her goals whatever they are. By contrast,
the only goal that is permitted to shape a descriptive model is that of effective
description as determined by empirical evidence. What determines the extent to
which mutation should be modelled as a process inhering in agents is the extent to
which the mutation process inheres in agents. Only once it has been shown that the
mutation rate does not vary significantly across agents should it be represented as
an environmental variable.

To sum up then, Genetic Algorithms constitute a broad class of powerful
evolutionary search mechanisms with an active research agenda. Some (but not
all) of the subsequent developments to the basic Genetic Algorithm are valuable to
the descriptive modelling of social systems. (In addition, some developments may
have value in the characterisation of models. In the long term, it may be possible
to prove formal convergence results for descriptively realistic systems.) We now
turn to a discussion of Genetic Programming, a significant variant of the Genetic
Algorithm based on the idea of “evolving” computer programmes which can both
solve instrumental problems and represent sets of practices agents use to address the
problems their environment creates for them.

21.5 Genetic Programming

The fundamental insight of Genetic Programming (Koza 1992a, 1994) is that
evolutionary algorithms do not need to be limited to static representations or
adaptation in a static environment. The approach originated in an instrumental
concern, the possibility of evolving efficient computer programmes rather than
having to design them explicitly (Koza 1991). However, it rapidly became clear
that the power of the technique could be extended to any process which could
be represented as an algorithm provided the fitness of different solutions could be
measured (Koza 1992d). The possibility of developing descriptive models of agents
was also considered early on Koza (1992c). In most models of this kind, however,
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the fitness of the programme representing an agent is assessed by its ability to fulfil
exogenous goals. Agents typically “compete” against the environment on an equal
footing rather than constituting that environment.

The potential of such an approach is tremendous. It involves the possibility
of an evolutionary process that operates on the richest representation language
we can envisage: the set of computable functions. These functions can model
the capability to collect, abstract, store and process data from the environment,
transfer it between agents and use it to determine action. Furthermore, we know
that (in principle at least) languages within the class of computable functions can
also represent important features of human consciousness like self-awareness and
self-modification of complex mental representations (Kampis 1991; Metcalfe 1994;
Fagin et al. 1995).

A simple example illustrates the most common solution representation used in
Genetic Programming. This can be visualised as a tree structure and translates
exactly into the set of “S-expressions” available in the LISP programming language
(Friedman and Felleisen 1987). This is convenient for programming purposes
because LISP comes already equipped to perform operations on S-expressions and
can therefore easily and efficiently implement suitable Genetic Operators. The tree
structure in Fig. 21.4 is equivalent to the S-expression (OR (AND (NOT D0) (NOT
D1))) (AND D0 D1)). This is the definition of the XOR (exclusive or) function.
For obvious reasons, D0 and D1 are referred to as terminals, and the set fAND,
OR, NOTg are referred to as functions. The choice of a suitable set of functions and
terminals (the equivalent of the solution representation in Genetic Algorithms) is a
key part of Genetic Programming. Functions are by no means limited to the logical
operators. They can also include mathematical operators and programming language

Fig. 21.4 An S-expression
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instructions. Similarly, terminals can represent numerical (or physical) constants, a
variety of “sensor” inputs from the environment (including the observable actions
of other agents) and “symbolic” variables like “true” and “false”.

The instrumental measurement of fitness involves providing the S-expressions
with different “inputs” (in this case truth values for D0 and D1) and assessing
the extent to which the desired “output” results. For example, in Koza (1991), a
programme to generate random numbers was tested by measuring the statistical
properties of the number sequences it generated and rewarding such features as
uncorrelated residuals. If S-expressions represent agents that are capable of action
in an environment, success can be measured by the ability to modify the relationship
between the agent and the environment in a certain way, for example, by following a
trail successfully. (The further along the trail an agent gets, the fitter its programme.)
It should be noted that the instrumental measurement of fitness requires a fairly
precisely defined problem and solution grammar. On the other hand, the descriptive
modelling of interaction need not. In order to do “well enough” in the market, a firm
only needs to make some profit in every period sufficient to cover its costs. It may or
may not have an internal goal to do better than this or even to make as much profit
as it possibly can, but this goal is not required for its survival (and may, in some
cases, actually be counterproductive).

This discussion raises several potential difficulties with the descriptive use of
Genetic Programming. However, these appear to recede on further consideration of
the corresponding solutions to these problems in instrumental applications. The first
difficulty is designing Genetic Operators that are guaranteed to produce meaningful
offspring. In the S-expression representation, it is clear that a cut can be made at
any point on the tree and the crossing of two such fragmented parents will always
result in two legal offspring. However, the price to be paid for this advantage is that
solutions must have a hierarchical form. More complicated function sets, mixing
numerical and logical functions, for example, must restrict Crossover to prevent
such outcomes as (C4 TRUE) or (NOT 6).

However, given the descriptive interpretation of Genetic Operators, it is plausible
that agents should know the syntactic rules of combination for the set of terminals
and operators they possess. As such, the relevant “descriptive” Genetic Operators
may execute rather more slowly than the simple instrumental ones, but it is not
unreasonable to suppose that only syntactically correct trees will result. However,
this raises another interesting possibility for using Genetic Operators. A good
illustration is provided by a second difficulty with Genetic Programming, that
of “bloating”. This occurs because Genetic Programmes sometimes grow very
large and contain substantial amounts of syntactically redundant material. (If a
tree is trying to converge on a specific numerical value, for example any sub-
trees evaluating to 0 are syntactically redundant.) Bloating produces a number of
difficulties. Firstly, it slows down the evaluation of trees. Secondly, it becomes
harder to interpret the trees and assess their behavioural plausibility. Finally, it
is descriptively unsatisfactory. We do not expect real human decision processes
to contain pointless operations (although bureaucratically specified production
processes might for example). Unfortunately, the obvious solution (the exogenous
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penalisation of long solutions) lacks precision. It is not possible to establish how
long solutions to a particular problem “ought” to be without making arbitrary
assumptions. The result is an ungrounded trade-off between length and quality. An
interesting alternative is to introduce “purely syntactic” Genetic Operators. These
take no account of tree fitness but simply look for redundant material within trees.
For example, a Genetic Operator which replaced instances of the pattern (* constant
0) with 0 would be very simple to implement.

This approach allows firms, for example, to apply plausible syntactic knowledge
to the structure of their decision processes (“rationalisation” in the non-pejorative
sense) without compromising the assumption (opposed to extreme economic ratio-
nality) that they cannot evaluate the fitness of a strategy without trying it in the
market.

It also suggests a possible solution to another persistent problem with Genetic
Programmes, that of interpretation. Even quite small trees are often hard to interpret
and thus to evaluate behaviourally. Application of syntactic Genetic Operators may
reduce the tree to a form in which it can be more easily interpreted. Another
approach might be to use a Genetic Programming instrumentally to interpret trees,
giving the greatest fitness to the shortest tree which can predict the output of a
decision process tree to within a certain degree of accuracy. Thus, in principle at
least, the Genetic Programming approach can be extended to include processes that
are behaviourally similar to abstraction and refinement of the decision process itself.

As in the discussion of Genetic Algorithms above, we have kept this discussion
of Genetic Programming relatively technical with some digressions about its general
relevance to modelling social behaviour. In the final section of this chapter, we
will present some evolutionary models in social science specifically based on
evolutionary algorithms. This discussion allows us to move from general to specific
issues about the applicability of biological analogies to social systems. In particular,
we will try to show why models based on Genetic Programming and some Classifier
Systems are more behaviourally plausible than those based on Genetic Algorithms.

21.6 Example Applications of Evolutionary Algorithms

21.6.1 Example Using Genetic Algorithms: The Arifovic
“Cobweb” Model

Arifovic (1994) is probably responsible for the best-known simulation of this type
representing the quantity setting decisions of firms to show convergence in a cobweb
model.2 She argues that the Genetic Algorithm both produces convergence over a

2A cobweb model is one in which the amount produced in a market must be chosen before market
prices are observed. It is intended to explain why prices might be subject to periodic fluctuations
in certain types of markets.
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wider range of model parameters than various forms of rational and adaptive learn-
ing but also that it mimics the convergence behaviour of humans in experimental
cobweb markets. Arifovic draws attention to two different interpretations of the
Genetic Algorithm and explores the behaviour of both. In the “single population
interpretation”, each firm constitutes a single genotype, and the Genetic Algorithm
operates over the whole market. In the “multiple population interpretation”, each
firm has a number of genotypes representing alternate solutions to the quantity
setting decision and operates its own “internal” Genetic Algorithm to choose
between them.

She shows that using a basic Holland-type Genetic Algorithm, neither inter-
pretation leads to convergence on the rational expectations equilibrium for the
cobweb market. When she adds her “Election” Genetic Operator, however, both
interpretations do so. The Election Operator involves using Crossover but then
evaluating the offspring for profitability on the basis of the price prevailing in the
previous period. The effect of this is to add some “direction” to the application of
Genetic Operators, in fact a hill-climbing component. An offspring is only added
to the population if it would have performed better than its parents did in the
previous period. This approach does not require any implausible knowledge as it
is based on past events. However, it appears that the motivation for introducing
the Election Operator is instrumental, namely, to ensure perfect convergence to the
rational expectations equilibrium (a goal of economic theory rather than a property
of real markets necessarily). Interestingly, the graphs shown in the paper suggest
that the Genetic Algorithm has done very well in converging to a stable (if mutation
noise augmented) price fairly close to the rational expectations equilibrium. In
fact, Arifovic shows how the Election Operator endogenously reduces the effective
mutation rate to zero as the system approaches the theoretical equilibrium. She
also points out that the Election Operator does not harm the ability of the Genetic
Algorithm to learn a new equilibrium if the parameters of the cobweb model change.
What she doesn’t explain is why the goal of the model should be to produce the
theoretical equilibrium.

In fact, there are problems with both of her models that serve as instructive
examples in the application of evolutionary ideas. The single population interpre-
tation seems to involve a standard Holland-type Genetic Algorithm even down to a
Breeding Pool that has no behavioural interpretation in real systems. There is also
a problem with the use of Genetic Operators that is general in Genetic Algorithms.
The way in which the bit strings are interpreted is very precise. If one firm uses
Crossover involving the price strategy of another, it is necessary to “gift” a common
representation to all firms and assume that firms know precisely where bit strings
should “fit” in their own strategies. Given the encoding Arifovic uses, inserting a bit
string one position to the left by mistake doubles the price it produces. In descriptive
terms, this seems to be the worst of both worlds. It is easy to see how one firm could
charge the same price as another or (with more difficulty) acquire a “narrative”
strategy fragment like “keep investment in a fixed ratio to profit” but not how
firms could come to share a very precise arbitrary representation and copy instances
around exactly. More generally, encoding price in this way is just behaviourally odd.



548 E. Chattoe-Brown and B. Edmonds

It is hard to imagine what a firm would think it was doing if it took a “bit” of one
of its prices and “inserted it” into another. Of course, the effect would be to raise or
lower the price, but the way of going about it is very bizarre.

We think the reason for this is that an encoding is not a procedure that is
endogenously evolved. A Genetic Programme that calculates price by taking the
previous price of another firm, adding unit cost and then adding 2 is telling a firm
behaviourally how to determine price. These are “real” procedures given by the
ontology of what a firm knows: the set of operators and terminals. By contrast there
has to be reason why a firm would bother to encode its price as a bit string rather
than just operating on it directly. Unless this encoding is “gifted”, it is not clear how
(or why) the firm would develop it.

The multiple population interpretation is much more plausible in behavioural
terms since the problem representation only needs to be the same within a firm,
although the strangeness of “combining” prices remains. A firm applying Genetic
Operators to its own strategies can reasonably be assumed to know how they are
encoded, however.

However, both interpretations come up against a serious empirical problem noted
by Olivetti (1994). Because the Election Operator is effectively a hill-climbing
algorithm, it fails to converge under quite small changes to the assumptions of
the model. In particular, Olivetti shows that the system doesn’t converge when a
white noise stochastic disturbance is added to the demand function. This suggests
that Arifovic has not understood the main advantage of the Genetic Algorithm, and
her pursuit of instrumental convergence at the expense of behavioural plausibility
is actually counterproductive. In a sense, this is just a reprise of the previous
instrumental insight. Genetic Algorithms perform better on difficult problems
precisely because they do not “hill climb” (as the Election Operator does) and can
thus “jump” from one optimum to another through parallel search.

21.6.2 Example Using Classifier Systems: The Moss Price
Setting Model

As discussed briefly above, Classifier Systems consist of sets of “if [condition]-
then [action]” rules that can collectively solve problems. They are evolutionary
because new rules are typically generated using a Genetic Algorithm to select,
recombine and mutate the most effective rules in the population. However, there is
one significant (and potentially problematic) difference between Classifier Systems
and Genetic Algorithms or Genetic Programming. This is the allocation of fitness to
the individual rules, frequently using the so-called bucket brigade algorithm. This
allows individual rules to “bid” fitness in order to take part in the set that is used
to solve the problem in a particular instance. Rules taking part in a successful
outcome then receive “recompense” also in terms of fitness. Unfortunately, the
behavioural interpretation for this algorithm is not clear. In addition, the system
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is required to make decisions about how to “allocate” fitness between participating
rules. This is the “credit assignment problem” recognised in artificial intelligence,
and it is hard to produce effective general solutions. In particular, rules that are
only used occasionally may nonetheless be essential under specific circumstances.
(It is possible that an instrumental approach and lack of biological awareness have
created this problem but that it is not actually intrinsic to this kind of modelling. In
biological evolution, there is no credit assignment. Phenotypic traits stand and fall
together.)

That said, the Classifier System has one definite advantage over both Genetic
Programming and Genetic Algorithms assuming these difficulties can be overcome.
This is that the individual rules may be much simpler (and hence more easily
interpreted behaviourally) than Genetic Programmes. This ease of interpretation
also makes it more plausible that individual rules (rather than sub-trees from Genetic
Programmes or very precisely encoded bit strings from Genetic Algorithms) might
be transferred meaningfully between firms either by interpretation of observable
actions or “gossip”. Interestingly, despite their advantages, Classifier Systems are
easily the least applied evolutionary algorithms for understanding social behaviour,
and this lacuna offers real opportunities for new research.

In what appears to be one of the earliest applications to firm decision-making,
Moss (1992) compares a Classifier System and a (non-evolutionary) algorithm of his
own design on the task of price setting in a monopoly. His algorithm hypothesises
specific relationships between variables in the market and then tests these. For
example, if an inverse relationship between price and profit is postulated, the firm
experiments by raising price and seeing whether profit actually falls. If not, the
hypothesis is rejected and another generated. If it works, but only over a range, then
the hypothesis is progressively refined. The conclusion that Moss draws from this
approach illustrates an important advantage of Genetic Programming over Genetic
Algorithms and (some) Classifier Systems—that its solutions are explicitly based
on process and therefore explanatory. Moss points out that the simple Classifier
System simply evolves a price, while his algorithm shows how the firm evolves
a representation of the world that allows it to set a price. Although not doing it
quite as explicitly as his algorithm, a Genetic Programme may incorporate a stylised
representation of market relationships into the encoding of the decision process. (Of
course, in certain circumstances, the firm may lack the operators and terminals to
deduce these relationships adequately, or they may not form a reliable basis for
action. In this case, simpler strategies like “price following”—simply setting the
same price as another firm—are likely to result.)

To return to the point made by Moss, all the Classifier System models so far
developed to study firm behaviour seem to be “flat” and “hard coded”. By “flat”
we mean that only a single rule is needed to bridge the gap between information
received and action taken. In practice, the Classifier System paradigm is capable
of representing sets of rules that may trigger each other in complex patterns to
generate the final output. This set of rules may also encapsulate evolved knowledge
of the environment although “hard coding” prevents this. For example, we might
model the production process as a Classifier System in which the rules describe the
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microstructure of the factory floor: where each worker went to get raw materials,
what sequence of actions they performed to transform them and where they put the
results. In such a model, events (the arrival of a partially assembled computer at
your position on the production line) trigger actions (the insertion of a particular
component). However, running out of “your” component would trigger a whole
other set of actions like stopping the production line and calling the warehouse.
The construction of such “thick” Classifier Systems is a task for future research.

“Hard coding” implies that each rule bridges the gap between input and output
in the same way, suggesting the common representation of Genetic Algorithms with
its attendant behavioural implausibility. In the models described above, decision-
makers do not have the option to add to the set of conditions or to change the
mappings between conditions and actions: changing price on the basis of customer
loyalty rather than costs, for example. There is nothing in the Classifier System
architecture to prevent this, but all the current models seem to implement the
architecture in a simplified and behaviourally implausible way that makes it more
like a Genetic Algorithm than Genetic Programming in terms of “hard coding” of
representations and decision processes.

21.6.3 Example Using Genetic Programming: An Artificial
Stock Market

In this example (Edmonds 2002), there is a simulated market for a limited number of
stocks, with a fixed number of simulated traders and a single “market maker”. Each
trader starts off with an amount of cash and can, in each trading period, seek to buy
or sell each of the kinds of stock. Thus, at any time, a trader might have a mixture
of cash and amounts of each stock. A single market maker sets the prices of each
stock at the beginning of each trading period depending on the last price and the
previous amount of buying and selling of it. The “fundamental” is the dividend paid
on each stock, which for each stock is modelled as a slowly moving random walk.
There is a transaction cost for each buy or sell action by the traders. Thus, there is
some incentive to buy and hold stocks and not trade too much, but in general, more
money can be made (or lost) in short-term speculation. The market is endogenous
except for the slowly changing dividend rate so that the prices depend on the buy
and sell actions and a trader’s success depends on “outsmarting” the other traders.

In the original artificial stock market model (Arthur et al. 1997), each artificial
trader had a fixed set of price prediction strategies. At each time interval, they would
see which of these strategies was most successful at predicting the price in the
recent past (fixed number of time cycles) and rely on the best of these to predict
the immediate future price movements. Depending on its prediction using this best
strategy, it would either buy or sell.

In the model presented here, each trader has a small population of action
strategies for each stock, encoded as a GP tree. In each time period, each artificial
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trader evaluates each of these strategies for each stock. The strategies are evaluated
against the recent past (a fixed number of time cycles) to calculate how much value
(current value based on cash plus stock holdings at current market prices) the trader
would have had if they had used this strategy (taking into account transactions costs
and dividends gained), assuming that the prices were as in the recent past. The
trader then picks the best strategy for each stock and (given constraints of cash
and holdings) tries to apply this strategy in their next buy and sell (or hold) actions.

At the end of each trading period, the set of action strategy trees are slightly
evolved using the GP algorithm. That is to say that they are probabilistically
“remembered” in the next trading round depending on their evaluated success, with
a few of them crossed in a GP manner to produce new variations on the old strategies
and very few utterly new random strategies introduced. As a result of this, a lot of
evolution of small populations is occurring, namely, a population for each trader and
each stock. Here, each GP tree represents a possible strategy that the trader could
think of for that stock. The Genetic Programming algorithm represents the trader’s
learning process for each stock, thinking up new variations of remembered strate-
gies, discarding strategies that are currently unsuccessful and occasionally thinking
up completely novel strategies. This is a direct implementation of Campbell’s model
of creative thinking known as “Blind Variation and Selective Attention” (Campbell
1965). Further, it introduces notions of analogy and expertise into the model. A
strategy that is good for one stock is a priori likely to be good for another similar
stock. Thus, if a new stock is introduced, agents may use existing strategies to
decide what to do about it. A new trader will have relatively poor strategies generally
and will not necessarily have the feedback to choose the most appropriate strategy
for a new stock. By contrast, an expert will have both a good set of strategies to
choose from and better judgement of which to choose. These aspects of social
(evolutionary) learning are clearly important in domains where there is genuine
novelty which many traditional approaches do not handle well (or in some cases
at all).

The nodes of the strategy trees can be any mixture of appropriate nodes and
types. This model uses a relatively rich set of nodes, allowing arithmetic, logic,
conditionals, branching, averaging, statistical market indices, random numbers,
comparisons, time lags and the past observed actions of other traders. With a certain
amount of extra programming, the trees can be strongly typed (Haynes et al. 1996),
i.e. certain nodes can take inputs that are only a specific type (say numeric) and
output a different type (say Boolean)—for example, the comparison “greater than”.
This complicates the programming of the Genetic Operators but can result in richer
and more specific trees.

Below are a couple of examples of strategies in this version of the stock market
model. The output of the expression is ultimately a numeric value which indicates
buy or sell (for positive or negative numbers), but only if that buy or sell is of a
greater magnitude than a minimal threshold (which is a parameter, allowing for the
“do nothing”—hold—option):
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• [minus [priceNow ‘stock-1’] [maxHistoricalPrice ‘stock-1’]]—Sell if price is
greater than the maximum historical price otherwise buy.

• [lagNumeric [2] [divide [doneByLast ‘trader-2’ ‘stock-3’] [indexNow]]]—Buy
or sell according to what was done by trader-2 for stock-3 divided by the price
index three time periods ago.

The field of evolutionary computation is primarily concerned with the efficiency
and effectiveness of its algorithms in solving explicitly posed problems. However,
efficiency is not the primary consideration here but rather how to make such
algorithms correspond to the behaviour of observed social actors. In this model,
a large population of strategies within each individual would correspond to a
very powerful ability in a human to find near-optimal strategies, which is clearly
unrealistic. Thus, a relatively small population of strategies is “better” since it does
mean that particular traders get “locked in” to a narrow range of strategies for a
period of time (maybe they all do so badly that a random, novel strategy does better
eventually). This reflects the existence of “group think” and trading “styles” that can
reasonably be anticipated in real markets.

Other relevant issues might be that traders are unlikely to ever completely discard
a strategy that has worked well in the past. (Many evolutionary models fail to
take account of the fact that humans are much better at recall from structured
memory than they are at reasoning. Such a model might thus “file” all past strategies
but only have a very small subset of the currently most effective ones in live
memory. However, if things started going very badly, it would be easy to choose not
from randomly generated strategies but from “past successes”. It is an interesting
question whether this would be a more effective strategy.) Clearly however, the
only ultimate tests are whether the resulting learning behaviour sufficiently matches
that of observed markets and whether the set of operators and terminals can be
grounded in (or at least abstracted from) the strategies used by real traders. (Either
test taken alone is insufficient. Simply matching behaviour may be a coincidence,
while “realistic” trading strategies that don’t match behaviour have either been
abstracted inappropriately or don’t really capture what traders do. It is quite possible
that what they are able to report doing is only part of what they actually do.)

Given such a market and trader structure, what transpires is a sort of learning
“arms-race” where each trader is trying to “outlearn” the others, detecting the
patterns in their actions and exploiting them. The fact that all agents are following
some strategy at all times ensures that (potentially) there are patterns in existence
to be outlearned. Under a wide range of conditions and parameter settings, one
readily observes many of the qualitative patterns observed in real stock markets—
speculative bubbles and crashes, clustered volatility, long-term inflation of prices
and so on. Based on the simulation methodology proposed by Gilbert and Troitzsch
(2005) and the idea of generative social science put forward by Epstein (2007),
this outcome shows how a set of assumptions about individual actions (how traders
implement and evolve their strategies) can potentially be falsified against aggregate
properties of the system such as price trends across the range of stocks. Such models
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are an active area of research; a recent PhD, which surveys these, is Martinez-
Jaramillo (2007).

21.6.4 Example: The Functional Survival of “Strict” Churches

There are clear advantages to using existing evolutionary algorithms to understand
complex social processes as we hope we have shown through the examples above.
Apart from an opportunity to discuss the “technicalities” of evolutionary algorithms
through looking at simple cases, it is valuable to have programmes that can be used
“off the shelf” (rather than needing to be developed from scratch) and for which
there is an active research agenda of technical developments and formal analysis
which can be drawn on. However, the major downside of the approach has also
been hinted at (and will be discussed in more detail in the conclusion). Great care
must be exercised in choosing a domain of application for evolutionary algorithms
in understanding complex social systems. The more an evolutionary algorithm is
used “as is”, the smaller its potential domain of social application is likely to
be. Furthermore, while it is possible, by careful choice of the exact algorithm, to
relax some of the more socially unhelpful assumptions of evolutionary algorithms
(the example of an external Fitness Function and a separate Breeding Pool have
already been discussed), the danger is that some domains will simply require too
much modification of the basic evolutionary algorithm to the point where the result
becomes awkward or the algorithm incoherent. (A major problem with existing
models has been the inability of their interpretations to stand up to scrutiny. In
some cases, such as the Election Operator proposed by Arifovic, it appears that even
the designers of these models are not fully aware of the implications of biological
evolution.)

As suggested at the beginning of the chapter, the other approach, formerly rare
but now increasingly popular, is to start not with an evolutionary algorithm but with
a social system and build a simulation that is nonetheless evolutionary based on
the structure of that. The challenge of choosing domains with a clear analogy to
biological evolution remains but is not further complicated by the need to unpick
and redesign the assumptions of an evolutionary algorithm. Such an example of a
“bespoke” evolutionary simulation is provided in this section.

Iannaccone (1994) puts forward an interesting argument to explain the potentially
counter-intuitive finding that “strict churches are strong”. It might seem that a
church that asked a lot of you, in terms of money, time and appropriate behaviour,
would be less robust (in this consumerist era) than one that simply allowed you
to attend on “high days and holidays” (choosing your own level of participation).
However, the evidence suggests that it is the liberal churches that are losing
members fastest. Iannaccone proposes that this can be explained by reflecting on
the nature of religious experience. The satisfaction that people get out of an act
of worship depends not just on their own level of involvement but also that of
all other participants. This creates a free rider problem for “rational” worshippers.
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Each would like to derive the social benefit while minimising their individual
contribution. Churches are thus constantly at the mercy of those who want to turn up
at Christmas to a full and lively church but don’t want to take part in the everyday
work (like learning to sing the hymns together) that makes this possible.

Iannaccone then argues that an interesting social process can potentially deal with
this problem. If we suppose that churches do things like demanding time, money
and appropriate behaviour from their worshippers, this affects the satisfaction that
worshippers can derive from certain patterns of activity. If the church can somehow
make non-religious activities less possible and less comfortable, it shifts the time
allocations of a “rational” worshipper towards the religious activities and can
simultaneously reward him or her with the greater social benefit that comes from
the church “guiding” its members in this way. To take a mildly contrived example,
Muslims don’t drink alcohol. They also dress distinctively. A Muslim who wanted
to drink couldn’t safely ask his friends to join him, could easily be seen entering
or leaving a pub by other Muslims and would probably feel out of place and
uncomfortable once inside (quite apart from any guilt the church had managed to
instil). The net effect is that Muslims do not spend much time in pubs (while many
others in the UK do) and have more time for religious activity. Of course, it is easy
to pick holes in the specifics of Iannaccone’s argument. Why would the Muslim
not dress up in other clothes? (That itself might need explanation though). Why not
engage in another non-religious activity that was not forbidden? Why assume that
only religious activities are club goods? (Isn’t a good night at the pub just as much
a result of collective effort?)

However, regardless of the details, the basic evolutionary point is this. Religious
groups set up relatively fixed “creeds” that tell members when and how to worship,
what to wear and eat, how much money must be given to the church and so on.
Given these creeds, worshippers join and leave churches. To survive, churches need
worshippers and a certain amount of “labour” and income to maintain buildings,
pay religious leaders and so on. Is it in fact the case as Iannaccone argues that the
dynamics of this system will result in the differential survival of strict churches at
the expense of liberal ones? This is, in fact, a very general framework for looking
at social change. Organisations like firms depend on the ability to sell their product
and recruit workers in a way that generates profit. Organisations like hospitals are
simultaneously required to meet external goals set by their funders and honour
their commitments to their “customers”: On one hand, the budget for surgery may
be exhausted. On the other, you can’t turn away someone who is nearly dead
from a car crash knowing they will never survive to the next nearest accident and
emergency department. This evolutionary interplay between organisations facing
external constraints and their members is ubiquitous in social systems.

Before reporting the results and discussing their implications, two issues must
be dealt with. Because this is a “two-sided” process (involving worshippers and
churches), we must attend to the assumptions made about the behaviour of these
groups. In the model discussed here, it was assumed that churches were simply
defined by a fixed set of practices and did not adapt themselves. This is clearly
a simplification but not a foolish one. Although creeds do adapt, they often do
so over very long periods, and this is a risky process. If worshippers feel that a
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creed is just being changed for expedience (rather than in a way consistent with
doctrine), they may lose faith just as fast as in a church whose creed is clearly
irrelevant to changed circumstances. Speculatively, the great religions are those that
have homed in on the unchanging challenges and solutions that people face in all
times and all places, while the ephemeral ones are those that are particular to a place
or set of circumstances. Conversely, the model assumes that worshippers are strictly
rational in choosing the allocations of time to different activities that maximise their
satisfaction. Again, this assumption isn’t as artificial as it may seem. Although we
do not choose religions like we choose baked beans, there is still a sense in which
a religion must strike a chord in us (or come to do so). It is hard to imagine that a
religion that someone hated and disbelieved in could be followed for long merely out
of a sense of duty. Thus, here, satisfaction is being used in a strictly subjective sense
without inquiring into any potential objective correlates. This life, for me, is better
than that life. In terms of predicting individual behaviour, this renders satisfaction
a truism, but in the context of the model (and explaining the survival of different
kinds of churches), what matters is not what people happen to like but the fact that
they pursue it. To sum up, we could have represented the churches as more adaptive
and the worshippers as less adaptive, but since we are interested in the interplay of
their behaviours (and, incidentally, this novel approach reveals a shortage of social
science data about how creeds change and worshippers participate in detail), there
is no definite advantage to doing so.

In a nutshell, the model works as follows (more details can be found in Chattoe
(2006a)). Each agent allocates their time to activities generating satisfaction (and
different agents like different things to different extents). They can generate new
time allocations in two main ways. One is by introspection, simply reflecting that
a bit more of this and a bit less of that might be nicer. The other is by meeting
other agents and seeing if their time allocations would work better. This means, for
example, that an agnostic who meets a worshipper from church A may suddenly
realise that leading their life in faith A would actually be much more satisfying than
anything they have come up with themselves. Conversely, someone “brought up in”
church B (and thus mainly getting ideas from other B worshippers about “the good
life”) may suddenly realise that a life involving no churchgoing at all is much better
for him or her (after meeting an agnostic). Of course, who you meet will depend
on which church you are in and how big the churches (and agnostic populations)
are. It may be hard to meet agnostics if you are in a big strict church, and similarly,
there are those whom a more unusual religion might suit very well who will simply
not encounter its creed. Churches are created at a low rate, and each one comes
with a creed that specifies how much time and money members must contribute
and how many non-religious activities are “forbidden”. Members can only have
time allocations that are compatible with the creed of the church. These allocations
determine the social benefits of membership discussed above. If a church cannot
meet minimum membership and money constraints, it disappears. Thus, over time,
churches come and go, differing in their “strictness”, and their survival is decided by
their ability to attract worshippers and contributions. Worshippers make decisions
that are reasonable (but not strictly rational in that they are not able instantaneously
to choose the best time allocation and church for them—which may include no
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church—for any state of the environment). This system reproduces some stylised
facts about religion. New churches start small and are often (but not always) slow to
grow. Churches can appear to fade and then experience resurgences. There are a lot
of small churches and very few large ones.

What happens? In fact, there is almost no difference between the lifetimes of
liberal churches and mildly strict ones. What is clear however is that very strict
churches (and especially cults—which proscribe all non-religious activities) do not
last very long at all. It is important to be clear about this as people often confuse
membership with longevity. It is true that strict churches can grow very fast and
(for a while) very large, but the issue at stake here is whether they will survive in
the long term. To the extent that the assumptions of the simulation are realistic, the
answer would appear to be no. Thus, we have seen how it is possible to implement
a reasonably coherent biological analogy in a social context without using a pre-
existing evolutionary algorithm.

21.7 Conclusion: Using Biological Analogies to Understand
Social Systems

Having presented a number of case studies of evolutionary algorithms in different
application areas, we are now in a position to draw some general conclusions
about the design and use of evolutionary simulations. Despite the fact that some
have claimed that a generalised version of evolution (Blind Variation and Selective
Attention) is the basic template for human creativity (Campbell 1965) and that it
is plausible that some processes similar to biological evolution do occur in human
societies, it is unlikely that these processes will be direct translations of biological
evolution in all its details. For this reason, we would propose that research into
evolutionary models proceeds as follows (although it is inevitable that there will
be some backward and forward interplay between the stages for reasons discussed
below):

1. Start with your substantive research domain of interest (linguistics, stock mar-
kets, the rise and fall of religious groups) and consider the general arguments
for representing these (or parts of them) in evolutionary terms. While it is
seldom spelt out explicitly, there are actually rather few candidate “general social
theories” to explain the dynamic interaction of choice and change. Unless one
believes that individuals have the power and knowledge required for rational
action to benefit them (and note that this condition isn’t met in situations as
simple as the two-person one-shot prisoner’s dilemma), evolution is really the
only coherent and completely specified theory available.3 Thus (and obviously

3In fact, it might be argued that it is the only one. Rational choice cannot contend with novelty
or the origin of social order. By focusing on relative performance, no matter how absolutely poor,
evolution can produce order from randomness.
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the authors are biassed in this regard) if you believe that agents act on imperfect
knowledge in an independently operating4 environment (such that there often is
a gap between what you expect to happen and what happens however effectively
you collect and process data about your environment), it is worth considering
an evolutionary approach. We would argue that these conditions are met in most
social settings, but economists would disagree.

2. Consider the explicit specification of an evolutionary process for your particular
domain of research (perhaps using the four process specification above as a
guide). The key choice made in this context is a “coherent” object of selec-
tion (OOS) whose presence or absence is empirically accessible. This makes
organisations and firms with any kind of formal status particularly suitable. For
informal groups like families, for example, it is much less clear what constitutes
a “unit”. (Is it, in a traditional society setting, that they physically survive
or, in a modern setting, that they still cohabit or are still on speaking terms?
The problems here are evident). Interestingly, individuals (while obviously
“physically” coherent) are still problematic as objects of selection. Unless the
model involves “bare” survival, it is less obvious what happens when an agent is
“selected”. However, examples still exist, such as who is trading in particular
markets. Most of the rest of the evolutionary process specification follows
naturally from the choice of an OOS. It then becomes fairly clear what the
resource driving selection is (food for tribal groups, profit for firms, membership
for voluntary organisations, attention for memes), what causes the birth and death
of OOS (sexual reproduction, merger, religious inspiration, bankruptcy, lack of
interest or memorability and so on) and what variation occurs between OOS.

This last is an interesting area and one where it is very important to have
a clearly specified domain of application. For example, consider industrial
organisation. Textbook economic theory creates in the mind an image of the
archetypal kettle factory (of variable size), selling kettles “at the factory gates”
directly to customers and ploughing profits straight back into growth and better
technology. In such a world, a firm that is successful early on can make lots of
poor judgements later because it has efficient technology, market dominance,
retained profit and so on. As such, evolutionary pressure rapidly ceases to
operate. Further, this kind of firm does not “reproduce” (it merely gets larger),
and even imitation of its strategy by other firms (that are smaller and poorer) may
not cause the effective “spread” of social practices required by an evolutionary
approach. (What works for the dominant firm may actually be harmful to smaller
“followers”.)

By contrast, we can see the more modern forms of competition by franchises
and chains (Chattoe 1999) or the more realistic detail of “supply chain produc-
tion” as much more naturally modelled in evolutionary terms. In the first case,
firms do directly “reproduce” a set of practices (and style of product, décor,

4This independence comes both from other social actors and physical processes like climate and
erosion.
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amount of choice and so on) from branch to branch. More successful chains
have more branches. Furthermore, the “scale” of competition is determined by
the number of branches, and it is thus reasonable to say that successful business
practices proliferate. Wimpy may drive out “Joe Smith’s Diner” from a particular
town, but Joe Smith is never a real competitor with the Wimpy organisation even
if he deters them from setting up a branch in that town. This means that selection
pressure continues to operate with chains at any scale competing with other
chains at similar scales. Short of outright monopoly, there is never a dominant
market position that is stable.5

In the second case, we can see how open-ended evolution may create new
opportunities for business and that supply chains as a whole constitute “ecolo-
gies” (Chattoe-Brown 2009). Initially, each firm may transport its own goods to
market, but once markets are sufficiently distant and numerous, there may be
economies of scale in offering specialist transport and logistics services (e.g. all
goods going from Bristol to Cardiff in one week may be carried by a single carter,
or a firm may create a distribution infrastructure, so not all goods are transported
directly from origin to destination but via cost-saving looped routes). Again, it is
clear how the organisations here must operate successful practices that satisfy
both suppliers (those who want to deliver goods) and customers (those who
want to receive them) and, further, how the nature of the business environment
may change continuously as a consequence of innovation (whether technical or
social). The creation of the refrigerated ship or the internal combustion engine
may foreclose some business opportunities (like raising animals in the city or
harness making) and give rise to others which may or may not be taken up (spot
markets, garages).

These examples show several things. Firstly, it is necessary to be very clear
what you are trying to understand as only then can the fitness of the evolutionary
analogy be assessed. Secondly, it is useful to have a systematic way (Chattoe
1998, 2006b) of specifying evolutionary models since these stand or fall on
their most implausible assumptions (particularly in social sciences which aren’t
very keen on this approach).6 Thirdly, there are a lot more opportunities for
evolutionary modelling than are visible to the “naked eye”, particularly to
those who take the trouble to develop both domain knowledge and a broad
evolutionary perspective. Considering the ubiquity of branch competition and
intermediate production in the real world, the economic literature is amazingly
distorted towards the “autonomous kettle factory view”, and simulation models
of realistic market structures are scarcer still (though this is just starting to
change). The price of adopting a novel method is scepticism by one’s peers

5This is probably because the market is spatially distributed, and the only way of making additional
profits is by opening more branches (with associated costs). There are no major economies of
scale to be exploited as when the kettle factory simply gets bigger and bigger with all customers
continuing to bear the transport costs.
6More informally, “the assumptions you don’t realise you are making are the ones that will do
you in”.
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(and associated difficulties in “routine” academic advancement), but the rewards
are large domains of unexplored research opportunities and the consequent
possibility for real innovation. Finally, don’t forget that it is always possible to
use an evolutionary algorithm as a “black box learning system” within the “mind”
of an agent or organisation, although there is a design issue about interpreting
this kind of model discussed previously. Further, even as a “black box”, the
learning algorithm can make a crucial difference in simulations (Edmonds and
Moss 2001), and one cannot simply assume that any learning algorithm will do.

3. Explore whether data for your chosen domain is available (or can readily be got
using standard social science methods).7 If it is available, does it exist at both the
individual level and in aggregate? For example, is there observational data about
firm price setting practices (e.g. in board meetings) and long-term historical data
about the birth, death and merger of firms in a particular industry and their prices
over time? Because simulation is a relatively new method, it is still possible to
build and publish exploratory (or less flatteringly “toy”) models of evolutionary
processes, but it is likely to get harder and may become impossible unless the
evolutionary model or the application domain is novel. It is almost certainly
good scientific practice to make the accessibility of data part of the research
design, but it does not follow from this that only models based on available
data are scientific. The requirement of falsifiability is served by the data being
collectable “in principle”, not already collected. The best argument to support
claims of scientific status for a simulation is to consider (as a design principle)
how each parameter could be calibrated using existing data or existing research
methods. (The case is obviously weaker if someone has to come up with a new
data collection method first although it helps if its approach or requirements can
be sketched out a priori.)

This aspect of research design also feeds into the decision about whether
to use an existing evolutionary algorithm and, if so, which one. The emerging
methodology of social simulation (Gilbert and Troitzsch 2005, pp. 15–18;
Epstein 2007) is to make a set of empirically grounded hypotheses at the micro
level (firms set prices thus) and then to falsify this ensemble at the macro level.
(The real distribution of survival times for firms is thus: It does or does not
match the simulated distribution of survival times produced by the model.) A
problem will arise if it is hard to interpret the simulated price setting practices.
Suppose, for example, we use GP to model the evolution of trading strategies in
stock markets. We may use interviews or observation of real traders to decide
what terminals and operators are appropriate but, having let the simulation run
and observed plausible aggregate properties, we may still not know (and find
it extremely hard to work out because of the interpretation issue) whether the

7In a way, it is a black mark against simulation that this needs to be said. Nobody would dream
of designing a piece of statistical or ethnographic work without reference to the availability or
accessibility of data!
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evolved strategies used are actually anything like those which traders would (or
could) use.

Equating the empirical validation of the GP grammar with the validation of
the strategies evolved from it is bit like assuming that, because we have derived
a Swahili grammar from listening to native speakers, we are then qualified to
decide when Swahili speakers are telling the truth (rather than simply talking
intelligibly). It muddles syntax and semantics. The design principle here is then
to consider how the chosen evolutionary algorithm will be interpreted to establish
the validity of evolved practices. (Creative approaches may be possible here like
getting real traders to design or choose GP trees to trade for them or getting them
to “critique” what are effectively verbal “translations” of strategies derived from
apparently successful GP trees as if they were from real traders.) In this regard,
it is their potential ease of interpretation that makes the relative neglect of CS
models seem more surprising in evolutionary modelling.

4. Having first got a clear sense of what needs to be modelled, it is then possible to
choose a modelling technique in a principled way. As the analysis of case studies
suggests, the danger with a “method-led” approach is that the social domain will
be stylised (or simply falsified) to fit the method. A subsidiary difficulty with
the method-led approach is that even if the researcher is wise enough to use
a modified evolutionary algorithm to mirror a social process accurately (rather
than distorting or abstracting the domain to fit the method), inadequate technical
understanding may render the modified algorithm incoherent or ineffective. It
is thus very important to understand fully any methods you plan to apply
particularly with regard to any instrumental assumptions they contain. (In making
convergence her goal for the GA cobweb model, Arifovic introduced an election
operator which actually rendered the GA less effective in solving hard problems.
This issue would probably have been foreseen in advance by a competent instru-
mental user of the GA technique. The muddle arose from the interface between
social description and the GA as a highly effective instrumental optimisation
device.)

Having chosen a modelling technique, all its supporting assumptions must
also be examined in the light of the application domain. For example, it is very
important not to confuse single and multiple population interpretations of a GA:
Do firms each have multiple candidate pricing strategies and choose them by an
evolutionary process, or is there one overall evolutionary process, in which single
pricing strategies succeed and fail with the associated firms “carrying” them?
Each model (or some combination) might be justified on empirical grounds but
only if the difference in interpretation is kept clearly in mind. Although we
are sceptical that systems of realistic social complexity would allow this, the
principled choice of methods means that it is even possible that some domains
would not require simulation at all but could be handled by mathematical models
of evolution like replicator dynamics (Weibull 1995) or stochastic models (Moran
1962).

By contrast, however, if the properties of the chosen social domain are
too far from a standard evolutionary algorithm (such that it can neither be
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used wholesale or deconstructed without collapsing into incoherence), the best
solution is to build a bespoke evolutionary model as was done for the “strict
churches” case study. (At the end of the day, evolutionary algorithms were
themselves “evolved” in a completely different engineering environment, and we
would not therefore expect them to apply widely in social systems. Thus, great
care needs to be taken to use them only where they clearly do apply and thus
have real value.) With free and widely used agent-based modelling packages like
NetLogo8 and associated teaching materials (Gilbert and Troitzsch 2005, Gilbert
2007), this is now much easier than it was. Ten years ago, one reason to use
an existing algorithm was simply the significant cost of building your own from
scratch. To sum up this strategy of research, the decision to use, modify or build
an evolutionary algorithm from scratch should be a conscious and principled one
based on a clear understanding of the domain and existing social science data
about it.

The final piece of advice is not technical or methodological but presentational.
In applying a novel method, be prepared to suffer equally at the hands of those who
don’t understand it and those who do! One of the hardest things to do in academia
is to strike a balance between rejecting ill-founded criticisms or those that translate
to “I just don’t like this” without also rejecting real objections that may devalue
months (or even years) of your effort (and still, frustratingly for you, be part of “good
science”). To judge criticisms in a novel area, you must be especially well informed
and thus confident of your ground. For example, there is no clear-cut evidence for
Lamarckism (modification of the genotype by the phenotype during the life of the
organism in a way that can then be transmitted by reproduction) in biology, but
in social systems, such processes are ubiquitous. (Someone discovers a good way
to discipline children. Those who were thus disciplined do the same thing to their
children. This is an acid test because, with hindsight, the “victims” have to see
it as beneficial and thus not have been warped by it, even if it was hateful at the
time. Punishments so nasty that the victims won’t inflict them, or so ineffective
that the parents stop bothering, will die out.) Failure to understand this issue may
either set you on the path of non-Lamarckian (and thus quite possibly implausible)
evolutionary models of social systems or of apologising mistakenly for building
Lamarckian models which don’t “truly” reflect biological evolution (when that was
never the design criterion for using biological analogies in social science anyway).

The best way to address these issues is hopefully to follow the systematic
procedure outlined above. This minimises the chances that you will miss things
which critics can use to reject your models (and if they are hostile enough, your
whole approach) and ensures that by justifying the models to yourself, you can
actually justify them to others. In popular scientific folklore, Darwin (still the
greatest evolutionist) spent a considerable period trying to anticipate all possible
objections to his theory and see how valid they were (and what counters he could

8http://ccl.northwestern.edu/netlogo/

http://ccl.northwestern.edu/netlogo
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provide) before he presented his work. Given how fraught the acceptance of his
theory has been anyway, imagine if he had not troubled to take that step!

We hope we have shown, by the use of diverse case studies and different
evolutionary modelling techniques, both the considerable advantages and (poten-
tially avoidable) limitations of this approach and encourage interested readers to
take these ideas forward both in developing new kinds of models and applying
evolutionary models to novel domains. The field is still wide open, and we are
always pleased to hear from potential students, coworkers, collaborators, supporters
or funders!
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Further Reading

Gilbert and Troitzsch (2005) is a good general introduction to social science
simulation and deals with evolutionary techniques explicitly, while Gilbert (2007)
is recommended as an introduction to this kind of simulation for studying evolution
in social systems. For deeper introductions to the basic techniques, see Goldberg
(1989), which is still an excellent introduction to GA despite its age (for a more
up-to-date introduction, see Mitchell (1996), and Koza (1992a, 1994)) for a very
accessible explanation of GP with lots of examples. Forrest (1991) is a good
introduction to techniques in Classifier Systems.

More details about the four example models are given in the following: Chattoe
(2006a) shows how a simulation using an evolutionary approach can be related
to mainstream social science issues, Edmonds (2002) gives an example of the
application of a GP-based simulation to an economic case, and Moss (1992) is a
relatively rare example of a classifier-based model.
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Chapter 22
Agent-Based Modelling and Simulation Applied
to Environmental Management

Christophe Le Page, Didier Bazile, Nicolas Becu, Pierre Bommel,
François Bousquet, Michel Etienne, Raphael Mathevet, Véronique Souchère,
Guy Trébuil, and Jacques Weber

Abstract The purpose of this chapter is to summarize how agent-based modelling
and simulation (ABMS) is being used in the area of environmental management.
With the science of complex systems now being widely recognized as an appropriate
one to tackle the main issues of ecological management, ABMS is emerging as
one of the most promising approaches. To avoid any confusion and disbelief about
the actual usefulness of ABMS, the objectives of the modelling process have to
be unambiguously made explicit. It is still quite common to consider ABMS as
mostly useful to deliver recommendations to a lone decision-maker, yet a variety
of different purposes have progressively emerged, from gaining understanding
through raising awareness, facilitating communication, promoting coordination or
mitigating conflicts. Whatever the goal, the description of an agent-based model
remains challenging. Some standard protocols have been recently proposed, but
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still a comprehensive description requires a lot of space, often too much for the
maximum length of a paper authorized by a scientific journal. To account for the
diversity and the swelling of ABMS in the field of ecological management, a review
of recent publications based on a lightened descriptive framework is proposed. The
objective of the descriptions is not to allow the replication of the models but rather
to characterize the types of spatial representation, the properties of the agents and
the features of the scenarios that have been explored and also to mention which
simulation platforms were used to implement them (if any). This chapter concludes
with a discussion of recurrent questions and stimulating challenges currently faced
by ABMS for environmental management.

Why Read This Chapter?
To understand the recent shift of paradigms prevailing in both environmental
modelling and renewable resource management that led to the emerging rise in
the application of ABMS. Also, to learn about a practical way to characterize
applications of ABMS to environmental management and to see this framework
applied to review a selection of recent applications of ABMS from various fields
related to environmental management including the dynamics of land use changes,
water, forest and wildlife management, agriculture, livestock productions and
epidemiology.

22.1 Introduction

In this chapter, we state that there is a combined shift in the way of thinking in
both ecosystem management and ecological modelling fields. For the last 20 years,
the status of computer simulation in the field of renewable resource management
has changed. This chapter investigates how agent-based modelling and simulation
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(ABMS) may have contributed to this evolution and what are the challenges it has
to face for such a combination to remain fruitful.

Biosphere 2, an artificial closed ecological system built in Arizona (USA) in
the late 1980s, was supposed to test if and how people could live and work in a
closed biosphere. It proved to be sustainable for eight humans for 2 years, when low
oxygen level and wild fluctuations in carbon dioxide led to the end of the experience.
Biosphere 2 represents the quest for “engineering nature” that has fascinated a lot
of people (including a non-scientific audience) during the second part of the last
century. The human aspect of this “adventure” mainly dealt with the psychological
impact on a few people living in enclosed environments. In the real world, the
relationships between human beings and the biosphere are based on tight linkages
between cultural and biological diversity. Launched around 20 years before the
Biosphere 2 project, the Man and Biosphere Programme (MAB) of UNESCO is
seeking to improve the global relationship between people and their environment.
This is now the kind of approach—in line with the Millennium Development Goal
#7 from the United Nations—that is attracting more and more interest.

In ecological management, the place of people directly involved in the manage-
ment scheme is now widely recognized as central, and the impact of their activities
has both to be considered as promoting and endangering different types of biodiver-
sity. At the same time, ABMS has progressively demonstrated its ability to explicitly
represent the way people are using resources, the impact of this management on
plant and animal dynamics and the way ecosystems adapt to it. The next section
discusses how both trends have been reinforcing each other in more detail.

The third section of this chapter gives a review of recent applications of
ABMS in the field of environmental management. To avoid confusion due to the
coexistence of multiple terms not clearly distinguishable, we use ABMS here as an
umbrella term to refer indifferently to what authors may have denominated “agent-
based modelling”, “multi-agent simulation” or even “multi-agent-based simulation”
(also the name of an international workshop where applications dealing with
environmental management are regularly presented). Our review is covering the
dynamics of land use changes; water, forest and wildlife management; but also
agriculture, livestock productions and epidemiology. We are focusing here on
models with explicit consideration of the stakeholders (in this chapter, this is how we
will denominate people directly concerned by the local environmental management
system). Bousquet and Le Page (2004) proposed a more extensive review of ABMS
in ecological modelling. For a specific review of ABMS dealing with animal social
behaviour, see Chap. 24 in this handbook (Hemelrijk 2017).

22.2 A Shift in Intertwined Paradigms

During the last two decades, evidences accumulate that the interlinked fields of
ecosystem management and environmental modelling are changing from one way
of thinking to another. This is a kind of paired dynamics where agents of change
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from one field are fostering the evolution of conceptual views in the other one.
A survey of the articles published in Journal of Environmental Management and
Ecological Modelling—just to refer to a couple of authoritative journals in those
fields—clearly reveals this combined shift of paradigms. Another indication from
the scientific literature was given when the former Conservation Ecology journal
was renamed Ecology and Society in June 1997.

Among ecologists, it has become well accepted that classical equilibrium
theories are inadequate and that ecosystems are facing cycles of adaptive change
made of persistence and novelty (Holling 1986). Concepts from the sciences of
complexity are now widely adopted in ecology (Levin 1998), and the perception of
ecosystems as complex adaptive systems, in which patterns at higher levels emerge
from localized interactions and selection processes acting at lower levels, has begun
to affect the management of renewable resources (Levin 1999).

Beyond the standard concept of “integrated renewable resource management”,
the challenge is now to develop a new “integrative science for resilience and
sustainability” focusing on the interactions between ecological and social compo-
nents and taking into account the heterogeneity and interdependent dynamics of
these components (Berkes and Folke 1998). The relationships between stakeholders
dealing with the access and use of renewable resources are the core of these
intertwined ecological and social dynamics that are driving the changes observed
in many ecosystems.

Panarchy is a useful concept to understand how renewable resource management
is affected by this new paradigm in ecology. It has been formalized as the process by
which ecological and social systems grow, adapt, transform and abruptly collapse
(Gunderson and Holling 2002). The back loop of such changes is a critical time
when uncertainties arise and when resilience is tested and established (Holling
2004). This new theoretical background is making sense to social scientists working
on renewable resource management (Abel 1998) and to interdisciplinary groups
expanding ecological regime shifts theory to dynamics in social and economic
systems (Kinzig et al. 2006).

For a long period, the mainstream postulate in ecological modelling has been
that science should first help to understand the “natural functioning” of a given
ecosystem, so that the impacts of external shocks due to human activities (“anthropic
pressures”) could be monitored. Models were mainly predictive, oriented towards
decision-makers who were supposed to be supported by powerful tools (expert
systems, decision support systems) in selecting the “best”, “optimal” management
option. Nowadays, command-and-control approaches are seen as “being worse than
inadequate” (Levin 1999).

Evidently, there is a growing need for more flexible (usable and understandable
by diverse participants) and adaptive (easily modified to accommodate unforeseen
situations and new ideas) models that should allow any involved stakeholders
(ecosystem and resource managers among others) to gain insights through explo-
ration of simulation scenarios that mimic the challenges they face. Similar to
the role of metaphor in narratives, such simulation models do not strive for



22 Agent-Based Modelling and Simulation Applied to Environmental Management 573

prediction anymore, but rather aim at sparking creativity, facilitating discussion,
clarifying communication and contributing to collective understanding of problems
and potential solutions (Carpenter et al. 1999). To underline the change of status of
simulation models used in such a way, the term “companion modelling” has been
proposed (ComMod 2003; Etienne 2011).

In recent years, ABMS has attracted more and more attention in the field of
environmental management (Bousquet and Le Page 2004; Hare and Deadman
2004). Recent compilations of experiences have been edited (Gimblett 2002;
Janssen 2002; Bousquet et al. 2005; Perez and Batten 2006). We propose to review
recent ABMS applications in the field of environmental management based on a
simplified framework presented in the next section.

22.3 A Framework for Characterizing Applications
of ABMS to Environmental Management

To standardize the description of ecological models based on the interactions
between elementary entities (individual-based models and agent-based models),
Grimm et al. (2006) have recently proposed a protocol based on a three-block
sequence: overview, design concepts and details (ODD). It is a kind of guideline for
authors wishing to publish their model whose fulfilment corresponds to an entire
article devoted to communicating the details of the model. Hare and Deadman
(2004) also proposed a first classification scheme from the analysis of 11 case
studies. Revisiting some elements from these two contributions, we propose here
to successively give some insights about (1) the purpose of the model, (2) the way
the environment is represented, (3) the architecture of the different agents, (4) the
implementation (translation of the conceptual model into a computer programme)
and (5) the simulation scenarios.

22.3.1 What Is the Model’s Purpose?

As recommended by Grimm and the 27 other participants to the collective design
of the ODD protocol (2006), a concise formulation of the model’s purpose has to
be stated first: it is crucial to understand why some aspects of reality are included
while others are ignored. The reasons leading to start a modelling process are not
always clearly given. Is it mainly to gain understanding and increase scientific
knowledge? Is it more about raising awareness of stakeholders who do not have
a clear picture of a complex system? Does it aim at facilitating communication or
supporting decision? The more the information about the model’s purpose will be
precise, the less confusion and disbelieving about its real usefulness will remain.
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22.3.2 How Is the Environment Represented?

Applications of ABMS to investigate environmental management issues are rely-
ing on a fundamental principle: they represent interacting social and ecological
dynamics. On the one hand, agents represent some sort of stakeholders: individual
people at the micro level and/or at more aggregated levels some groups of indi-
viduals defining (lato sensu) institutions (social groups such as families, economic
groups such as farmers’ organizations, political groups such as nongovernmental
organizations). On the other hand, the environment, holding some sort of renewable
resources, stands for the landscape. The renewable resources are contributing
to define the landscape, and in turn the way the landscape is structured and
developed influences the renewable resources. Typically, the resources are modified
by direct actions of agents on their environment, whereas the resources also
exhibit some intrinsic natural dynamics (growth, dispersal, etc.). At the same
time, agents’ decisions are somehow modified by the environment as the state of
resources evolves. In such situations, the implementation of the social dynamics is
performed through defining the behaviours of agents, whereas the implementation
of the natural dynamics is commonly ascribed to the spatial entities defining the
environment. Furthermore, spatial entities viewed as “management entities” can
support the reification of the specific relationships between a stakeholder using the
renewable resource and the renewable resource itself.

Yet some applications of ABMS to environmental management do not represent
any spatially explicit natural dynamics. The data related to the environmental
conditions (i.e. the overall quantity of available resource), used by the agents to
make their decisions, are managed just like any other kind of information. But
even when the environmental conditions are not spatially explicit, the explicit
representation of space can help to structure the interactions among the agents. For
instance, in the simulation of land use changes, the cognitive reasoning of agents can
be embedded in cellular automata (CA) where each cell (space portion) represents a
decisional entity that considers its neighbourhood to evaluate the transition function
determining the next land use. Typically, acquaintances are then straightforwardly
set from direct geographical proximity. It is still possible to stick on CA with more
flexible “social-oriented” ways to define the acquaintances, but as soon as decisional
entities control more than a single space portion, they have to be disembodied from
the spatial entities. The FEARLUS model proposed by Polhill et al. (2001) and
described in Sect. 4 is a good illustration of such a situation.

Applications of ABMS explicitly representing some renewable resources have
to deal with the fact that renewable resources are usually heterogeneously scattered
over the landscape being shaped by their patterns. Any irregularities or specificities
in the topological properties of the environment legitimate to incorporate a spa-
tially explicit representation of the environment. The combined use of geographic
information systems (GIS) and ABMS is a promising approach to implement such
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integration (Gimblett 2002), particularly when there is a need to refer explicitly to
an actual landscape in a realistic way. More generally, the relationship between an
artificial landscape and a real one can be pinpointed by referring to three levels
of proximity: (1) none, in case of theoretical, abstract landscape; (2) intermediate,
when the reference to a given landscape is implicit; and (3) high, when the reference
to a given landscape is explicit. Theoretical ABMS applications frequently use
purely abstract landscapes, such as in the well-known sugar and spice virtual world
of Sugarscape (Epstein and Axtell 1996). In the intermediate case, the implicit
reference to a given landscape may exist through matching proportions in the
composition of the landscape and similar patterns in its spatial configuration. When
the reference to an actual landscape is explicit, the use of GIS is required to design
the environment. An example of such realistic representation of a given landscape is
given by Etienne et al. (2003). Characterizing the relationship between the simulated
environment and the reality is a good way to estimate to what extent the model
may provide a wide scope: the rule “the more realistic, the less generic” is hardly
refutable.

From a technical point of view, the representation of space in ABMS applications
with spatially explicit representation of the environment could be either continuous
or discrete. Most of the time, the representation of space is based on a raster grid
(the space is regularly dissected into a matrix of similar elementary components),
and less frequently it is made of a collection of vector polygons. The continuous
mode is quite uncommon in ABMS. This is related to the standard scheduling of
ABMS that relies on either a discrete-time approach or on a discrete-event approach.
Therefore, dealing with time (regular or irregular) intervals, the spatial resolution of
the virtual landscape can be chosen so that the elementary spatial entity (defined as
the smallest homogeneous portion of space) can be used as the unit to characterize
distances or neighbourhood. Using a discrete mode to represent the space allows
to easily define aggregated spatial entities that directly refer to different ecological
scales relevant to specific natural or social dynamics, as well as to the management
units specifically handled by the stakeholders. The corresponding spatial entities are
interrelated according to a hierarchical organization, through aggregations.

22.3.3 How Are the Agents Modelled?

As we restrict our study to the sole applications with explicit consideration of
the stakeholders, by “agent” we mean a computer entity representing a kind of
stakeholder (individual) or a group of stakeholders. We stick with that operational
definition even when the authors opt for another terminology and propose to
characterize each kind of agent by considering two aspects: internal reasoning
leading to decision-making and interactions with the other agents (coordination).
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22.3.3.1 Internal Reasoning

Decision-making is the internal process that specifies how an agent behaves.
It encompasses two dimensions: sophistication (from reactive to cognitive) and
adaptiveness (through evaluation). What is called the “behaviour” of an agent
refers to a wide range of notions. In some situations, the behaviour of an agent
is simply and straightforwardly characterized by the value of a key parameter, as
in the theoretical exploration of the tragedy of the commons by Pepper and Smuts
(2000) where agents are either restrained (intake rate of resource is set to 50%) or
unrestrained (intake rate of resource is set to 99%) in their foraging activity, when
all the other biological functions (perception, movement, reproduction, mortality)
are the same. In some other cases, the behaviour of a given agent does not only
depend on internal characteristics, like the driftwood collector agents proposed by
Thébaud and Locatelli (2001) who are stealing wood collected by other agents only
when their attitude is still disrespectful (internal property) and when they cannot be
observed (no peer pressure). Whatever the factors determining the behaviour of an
agent are, this behaviour may or may not change over time. When the behaviour is
simply characterized by a value of a key parameter, the adaptiveness can be taken
into account without any particular architectural design. For more sophisticated
behaviours, it becomes necessary to use a design pattern linking the agent to its
behavioural attitude. With such a design pattern, the different behavioural attitudes
are made explicit through corresponding subclasses, as shown in Fig. 22.1 with an
example taken from the Dricol model (Thébaud and Locatelli 2001). The adoption
of a particular attitude is updated according to some evaluation function.

Collector

-evaluateAttitude()

-goBackToPile()
-emptyBasket()

-collectWood()

+step()

Disrespectful

-perceptionRange = 3

+freeDestinations()

+isWatched()
+evaluate()

Attitude

-threshold = 15

+freeDestinations()
+evaluate()

Respectful

+evaluate()

adopts1 1

Fig. 22.1 Design pattern of the driftwood collector agents (Thébaud and Locatelli 2001)
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Representation

(Believes on the state of 

the system)

Perception

Observations

- Soil structure

- Crop yield

Cognition

(Believes on the functioning of the 
system)

- Soil fertility depends on its 
structure and pH

- Crop yield is an indicator of soil 
fertility

Objectives

- Improve soil fertility

Decision making

- Crop choice

Execution

- Plant

- Use soil input

- Soil fertility (good/bad)

- Request soil pH test

Fig. 22.2 Architecture of farmer agents from the CATCHSCAPE model (Becu et al. 2003)

Regarding the degree of sophistication of the decision-making process, the
so-called reactive agents implement a direct coupling between perception (often
related to little instantaneous information) and action. The forager agents of Pepper
and Smuts (2000) mentioned above are typical reactive agents. On the opposite
side, cognitive agents implement more complex decision-making processes by
explicitly deliberating about different possibilities of action and by referring to
specific representations of their environment, which is of particular importance
for applications of ABMS to environmental management (Bousquet and Le Page
2004). An example of such agents is given by Becu et al. (2003): farmer agents
evaluate direct observations and messages received from others (social network),
update their knowledge base and evaluate options according to their objectives (see
the corresponding architecture in Fig. 22.2).

22.3.3.2 Interactions with Other Agents (Coordination)

Bousquet (2001) synthesized his general approach of multi-agent systems to study
environmental management issues with a diagram (see Fig. 22.3). We will refer here
to the three kinds of interactions depicted in Fig. 22.3 to describe the types of agents
implemented in applications of ABMS to environmental management.

The deliberative process of one agent is quite often influenced by some other
closely related agents. The proximity may be either spatial (local neighbourhood)
or social (acquaintances). In situations like the Dricol model (Thébaud and Locatelli
2001), what matters is just the presence of other agents in the surroundings. When
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Fig. 22.3 Interactions
between agents via the
environment (Ie), through
peer-to-peer communication
(Ii) and via the collective
level (Ic) (Bousquet 2001)

collective level

environment

individual level

Ie

Ic

Ii

collective level

environment

Ie

Ic

Ii

more information about the related agents is needed, then the rules to access
this information have to be specified. It is often assumed that the information is
directly accessible through browsing the agents belonging to a given network. This
corresponds to “Ie” in Fig. 22.3: other agents perceived through the environment are
considered as part of the environment of one agent.

Agents may strictly control the access to their internal information unless they
intentionally decide to communicate it (“Ii” in Fig. 22.3). Then the sharing of
information has to go through direct exchanges of peer-to-peer messages, with a
specified protocol of communication.

Relating agents directly to the collective level (“Ic” in Fig. 22.3) is most often
achieved via the notion of groups to which they can belong and for which they
can be representative to outsiders. Inspired by the Aalaadin metamodel proposed
by Ferber and Gutknecht (1998), recent applications of ABMS to agricultural
water (Abrami 2004) and waste water (Courdier et al. 2002, described in the next
section) management as well as to epidemiology (Muller et al. 2004, described
in the next section) illustrate how both notions of group and role are useful to
handle levels of organization and behaviours within levels of organization. Even
when “Ic” are not implemented through specific features of the agents’ architecture,
the mutual influence of both collective and individual levels is fundamental in
renewable resource management. On one hand, individuals’ behaviours are driven
by collective norms and rules; on the other hand, these norms and rules are evolving
through agents’ interactions. This individual-society dynamic linkage, introducing
the notion of institution, relies on the representation of common referents (Bousquet
2001). Such “mediatory objects” are, for instance, the water temples involved in the
coordination of a complex rice terraces system in Bali (Lansing and Kremer 1993;
Janssen 2007).
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22.3.4 Implementation

We believe it is useful to indicate whether a simulation platform was used or
not to implement the model. Nowadays, some established generic tools such as
Ascape, Cormas, Mason, (Net)(Star)Logo, Repast or Swarm are being used by large
communities of users. Intending to release researchers from low-level technical-
operational issues, their development is boosted by their comparisons performed
through the implementation of simple benchmark models (Railsback et al. 2006) and
the analysis of their abilities to fulfil identified requirements (Marietto et al. 2003).
The maintainers and developers of such generic platforms have also taken into
consideration some sensitive technical aspects (floating point arithmetic, random
numbers generators, etc.) recently pointed out (Polhill et al. 2006) and provide
some elements to help users to escape these numerical traps. Additionally to the
benefit of not having to re-implement basic functionalities from scratch, it may
also happen that a previous model, made available online in the library of existing
models, presents some similarities with the new model to be developed.

Nevertheless, using a generic platform is not a panacea. It may incidentally lead
to poorer presentation of the developed models if the authors (wrongly) assume that
any reader is aware of the platform’s general principles. A new research stream
(model-to-model comparison) recently emerged from the fact that it is very difficult
to replicate simulation models from what is reported in publications (Hales et al.
2003). Reproducing results, however, is a sine qua non condition for making ABMS
a more rigorous tool for science. It may be achieved through a better description of
individual models, but also through the maintenance and development of strong
communities of users sharing the same tools for implementation. This kind of
stimulating diversity of the simulation platforms may contribute to identify some
generic “shorthand” conventions that could minimize the effort to describe the
model rigorously and completely (Grimm et al. 2006).

22.3.5 Simulation Scenarios

Some ABMS platforms like NetLogo, for simplicity purposes, merge in the
same (unique) implementation file the definition of the domain entities with the
specification of the simulation scenario. In their ODD protocol, Grimm et al. (2006)
suggest to state the elements pertaining to the scheduling of a “standard” simulation
scenario in the first part (overview) of the sequential protocol, then come back
to some specific design concepts characterizing the domain entities (discussed
here in Sect. 22.3.3) in the second part (design) of the sequential protocol, and
finally to describe the initialization of a standard scenario in the third and last part
(details). Yet, a clear separation between model and simulation should be promoted
when seeking genericity. At the level of the agents, focusing on the description of
their internal structure and potential behaviour may help to identify some modules



580 C. Le Page et al.

of their architecture that could be reused in other contexts. At the level of the
initialization and scheduling of the simulation, the same benefit can be expected: for
instance, generating parameter values for a population of agents from a statistical
distribution or creating an initial landscape fitting some schematic patterns (Berger
and Schreinemachers 2006).

The notion of “standard” scenario is not always very easily recognizable. Some
authors prefer to start by presenting what they call “reference” scenarios that corre-
spond to “extreme” situations. For instance, whenever the structure of a given model
makes sense to mention it, a “no agents” simulation scenario should be available
without any modifications, i.e. just initializing the number of agents to zero. These
scenarios can be used either as a verification step in the modelling process (to test
that the implementation is a faithful translation of the conceptual model) or as a
reference to compare the outputs obtained from more plausible simulation scenarios.
More generally, simulation scenarios have to address validation by questioning the
results through looking back at the system under study. In ABMS, validation is
a multidimensional notion. Depending on the purpose assigned to the model, the
focus will be mainly set on (1) checking if the simulated data are fitting available
real datasets, (2) looking for comparable processes observed in other case studies
and (3) evaluating to what extent the stakeholders accept the model and its outputs
as a fair representation of their system. For a more detailed discussion of validation,
see Chap. 9 in this volume (David et al. 2017).

Another essential dimension of simulation scenarios relates to the model output
used to observe them. Confronting the interpretations of the same simulated results
built from specific stakeholders’ viewpoints may be an effective way to share the
different opinions and then highlight the need to improve the agents’ coordination
mechanisms or even to achieve a compromise (Etienne et al. 2003).

22.4 A Review of Recent Applications of ABMS
to Environmental Management

To classify the recent applications of ABMS in environmental management is
not an easy task, as the range of covered topics is wide: dynamics of land use
changes; water, forest and wildlife management; but also agriculture, livestock
productions and epidemiology. Some topics like epidemiology can easily be treated
separately. Some others are likely to be appearing simultaneously in some case
studies, especially for those dealing with multiple uses of the same renewable
resource and/or representing landscape with several land-use types. This latter
situation frames an entire research field in human geography that is focusing on the
dynamics of land-use/cover changes (LUCC). In the classification proposed below,
some applications clearly related to LUCC are listed in other subsections (mainly
in “agriculture” and in “forest”). Conversely, the “LUCC” subsection contains
applications that are related to some other topics specifically addressed later on.

http://dx.doi.org/10.1007/978-3-319-66948-9_9
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Finally, some other topics like biodiversity are multidimensional, and thus the
related case studies can be split into several other topics (for instance, biodiversity
related to endangered species is reversed into “wildlife”). Whenever it undoubtedly
exists for an application, we are mentioning the relevance to other topics. A specific
category has been added to group the examples of ABMS addressing theoretical
issues in ecological management.

As the number of publications related to the use of ABMS in ecological
management is booming, it is almost impossible to analyse all of them. So for each
of the categories presented above, we had to select only a few representative case
studies to be briefly described by referring as much as possible to the elements
discussed in previous sections (the case studies that were not selected to be analysed
are just mentioned in the introduction paragraph of each category). Following
Hare and Deadman (2004) who proposed a taxonomy of ABMS in environmental
management as a first step to provoke discussion and feedback, our purpose here
is to contribute to the framing of a practical bibliographic survey by proposing
some key characteristics useful for comparing applications of ABMS in ecological
management. See “Appendix” for a table recording the key characteristics of the
selected case studies.

22.4.1 Theoretical Issues in Environmental Management

Thébaud and Locatelli (2001) have designed a simple model of driftwood collection
to study the emergence of resource-sharing conventions; Pepper and Smuts (2000)
have investigated the evolution of cooperation in an ecological context with simple
reactive agents foraging either almost everything or just half of a renewable
resource. Schreinemachers and Berger (2006) have compared respective advantages
of heuristic and optimizing agent decision architectures; Rouchier et al. (2001) have
compared economic and social rationales of nomad herdsmen securing their access
to rangelands; Evans and Kelley (2004) have compared experimental economics and
ABMS results to explore land-use decision-making dynamics; Soulié and Thébaud
(2006) represent a virtual fishery targeting different species in different areas to
analyse the effects of spatial fishing bans as management tools.

22.4.2 Dynamics of Land-Use/Cover Changes

Parker et al. (2003) have recently reviewed the application of multi-agent systems
to better understand the forces driving land-use/cover change (MAS/LUCC). Their
detailed state of the art presents a wide range of explanatory and descriptive
applications. Since this authoritative paper has been published, new applications
related to LUCC have continued to flourish. For instance, Caplat et al. (2006)
have simulated pine encroachment in a Mediterranean upland, Matthews (2006) has
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proposed a generic tool called PALM (People and Landscape Model) for simulating
resource flows in a rural livestock-based subsistence community; LUCITA (Lim
et al. 2002), an ABM representing colonist household decision-making and land-
use change in the Amazon rainforest, has been developed further (Deadman et al.
2004); Bonaudo et al. (2005) have designed an ABM to simulate the pioneer fronts
in the same Transamazon highway region, but at a lower scale; Manson (2005, 2006)
has continued to explore scenarios of population and institutional changes in the
Southern Yucatan Peninsular Region of Mexico; Huigen (2004) and Huigen et al.
(2006) have developed MameLuke to simulate settling decisions and behaviours
in the San Mariano watershed, Philippines. Below we describe in more detail a
selection of applications that are also characterized in the overview table presented
in the “Appendix”.

22.4.2.1 FEARLUS, Land-Use and Land Ownership Dynamics (Polhill
et al. 2001)

FEARLUS, an abstract model of land use and land ownership implemented with
Swarm, has been developed to improve the understanding of LUCC in rural Scotland
by simulating the relative success of imitative versus nonimitative process of land-
use selection in different kinds of environment. An abstract regional environment
is defined as a toroidal raster grid made out of 8-connex land parcels, each being
characterized by fixed biophysical conditions. The same external conditions that
vary over time apply in the same way to all land parcels. These two factors are
determining the economic return of a given land use at a particular time and place.
The land manager agents decide about the land uses of the land parcels they
own (initially a single one) according to a specific selection algorithm. During
the simulation, they can buy and sell land parcels (landless managers leave the
simulation; new ones may enter it by buying a land parcel). Simulation scenarios
were defined on several grids by pairing selection algorithms from the predefined
sets of five imitative and five nonimitative selection algorithms.

22.4.2.2 Greenbelt to Control Residential Development (Brown et al.
2004)

This ABM, the simplest version of which being strictly equivalent to a mathematical
model, has been developed to investigate the effectiveness of a greenbelt located
beside a developed area for delaying residential development outside the greenbelt.
The environment is represented as an abstract cellular lattice where each cell is
characterized by two values: a constant one to account for aesthetic quality and
a variable one to denote the proximity to service centres. Service centres are called
agents but actually they are more passive entities as they do not exhibit any decision-
making. Residential agents, all equipped with the same aesthetic and service centre
preferences, decide their location among a set of randomly selected cells according
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to a given utility function. The Swarm platform was used for implementation.
Scenarios, scheduled with periodic introductions of new agents, are based on the
values of residential agents’ preferences and on the spatial distribution of aesthetic
quality.

22.4.2.3 LUCC in the Northern Mountains of Vietnam (Castella et al.
2005, 2005; Castella and Verburg 2007)

Castella et al. (2005) developed the SAMBA model under the Cormas simula-
tion platform to simulate the land-use changes during the transition period of
decollectivization in a commune of the northern Vietnam uplands. This simple
and adaptable model with heuristic value represented the diversity of land-use
systems during the 1980s as a function of household demographic composition and
paddy field endowment in the lowland areas. The environment in which agents
make decisions was made of a 2500 cell grid, and 6 different land-use types
could be attributed to each cell, representing a plot of 1000 m2, also characterized
by its distance to the village. While there was no coordination among farmer
agents with reactive behaviour in the early version of the model, interactions
among them were added later and the model coupled to a GIS to extrapolate the
dynamics to the regional landscape level (Castella et al. 2005). The simulated
scenarios tested the effects of the size of the environment, the overall population
and household composition and the rules for the allocation of the paddy fields
on the agricultural dynamics and differentiation among farming households. More
recently, this process-oriented model was compared to a spatially explicit statistical
regression-based pattern-oriented model (CLUE-s) implemented at the same site.
While SAMBA better represented the land-use structure related to villages, CLUE-s
captured the overall pattern better. Such complementarity supports a pattern-to-
process modelling approach to add knowledge of the area to empirically calibrated
models (Castella and Verburg 2007).

22.4.2.4 Competing Rangeland and Rice Cropping Land Uses in Senegal
(D’Aquino et al. 2003)

To test the direct design and use of role-playing games (RPG) and ABMS
with farmers and herders competing for land use in the Senegal River Valley,
participatory simulation workshops were organized in several villages. The ABM
used during the last day of the workshops was straightforwardly implemented
with the Cormas platform from the characteristics and rules collectively agreed the
day before when crafting and testing a RPG representing stakeholders’ activities
related to agriculture and cattle raising. The environment is set as a raster grid
incorporating soil, vegetation and water properties of the village landscape as
stated by the stakeholders (a GIS was used only to clear ambiguities). The same
crude rules defined and applied during the RPG were used to implement the
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autonomous reactive farmer agents. After displaying the scenario identified during
the RPG, new questions emerged and were investigated by running the correspond-
ing simulation scenarios. The hot debates that emerged demonstrate the potential of
these tools for the improvement of collective processes about renewable resource
management.

22.4.2.5 Landscape Dynamics in the Méjan Plateau, Massif Central,
France (Etienne et al. 2003)

Etienne et al. (2003) developed a multi-agent system in order to support a
companion modelling approach on landscape dynamics in the Méjan plateau of
the Massif Central, the mountain range of central France. The purpose of the
model is to support the coordination process among stakeholders concerned with
pine encroachment. The environment is a cellular automaton coming from the
rasterization of a vector map. Several procedures account for vegetation changes
due to pine encroachment according to natural succession trends and range, timber
or conservation management decisions. The three agent types (sheep farmers,
foresters and the National Park) are concerned by this global biological process,
but it affects their management goals in a very different way (sheep production,
timber production, nature conservation). The model is used to simulate and compare
collectively contrasting management scenarios arising from different agreements.
Simulation results were used to support the emergence of collective projects leading
to a jointly agreed management plan.

22.4.2.6 GEMACE: Multiple Uses of the Rhone River Delta, Southern
France (Mathevet et al. 2003)

This ABM developed with the Cormas platform simulates the socio-economic
dynamic between hunting managers and farmers in the Camargue (Rhone river
delta, southern France), through the market of the wildfowling leasing system, in
interaction with ecological and spatial dynamics. A CA represents an archetypal
region based on a spatial representation of the main types of estates, distributed
around a nature reserve. Each cell is characterized by water and salt levels through
land relief, land-use history, infrastructure, spatial neighbourhood and current land
use. A wintering duck population, heterogeneously distributed in its habitats, is
affected by various factors such as land-use changes, wetland management, hunting
harvest and disturbance. Land-use decisions are made at farmland level by farmers
and hunting managers that are communicating agents. Their strategy, farming
or hunting oriented, is based on crop rotation, allocation of land use and water
management and may change according to some specific representations and values
related to farming and hunting. Scenario runs allowed discussing the structuring of
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the waterfowl hunting area resulting from the individual functioning of farms in con-
junction with a nature reserve and other hunting units and the conservation policy.

22.4.3 Water Management

In the field of sustainable development, water management resources are an issue
of major importance. ABMS dealing with water management is used to simulate
the management of irrigated ecosystems, to represent the interactions among stake-
holders by capturing their views and formalizing the decision-making mechanisms
(especially negotiation processes), to capture the socio-economic aspects of potable
water management and evaluate scenarios based on alternative control measures,
etc. For instance, Haffner and Gramel (2001) have investigated strategies for water
supply companies to deal with nitrate pollution; Janssen (2001) has simulated the
effects of tax rates related to the intensive use of phosphorus on lake eutrophication;
Becu et al. (2003) have developed CATCHSCAPE to simulate the impact of
upstream irrigation management on downstream agricultural viability in a small
catchment of Northern Thailand; Krywkow et al. (2002) have simulated the effects
of river engineering alternatives on the water balance of the Meuse river in the
Netherlands and have related this hydrological module to stakeholders’ negotiations
and decisions. Below we describe in more detail a selection of applications that are
also characterized in the table presented in the “Appendix”.

22.4.3.1 SHADOC: Viability of Irrigated Systems in the Senegal River
Valley (Barreteau and Bousquet 2000; Barreteau et al. 2004)

To examine how existing social networks affect the viability of irrigated systems
in the Senegal River Valley, the SHADOC ABM focuses on rules used for
credit assignment, water allocation and cropping season assessment, as well as
on organization and coordination of farmers in an irrigation scheme represented
as a place of acquisition and distribution of two resources: water and credit. The
model used a spatially non-explicit representation: all plots are subject to the same
hydrological cycle regardless of their exact geographical position. The societal
model is structured with three types of group agents in charge of credit management,
watercourse and pumping station management. As far as individual agents (farmers)
are concerned, the model employs a four-level social categorization with different
types of farmers according to their own cultivation objective. Each agent acts
according to a set of rules local to him. Each agent also has its own point of view
about the state of the system and especially its potential relations with other agents.
SHADOC was first designed as a tool for simulating scenarios of collective rules
and individual behaviours.
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22.4.3.2 MANGA: Collective Rules of Water Allocation in a Watershed
(Le Bars et al. 2005)

MANGA has been developed to test the economics, environmental and ethical
consequences of particular water rules in order to improve the collective man-
agement of water resources according to agricultural constraints, different actors’
behaviours and confrontation of decision rules of each actor. Their modelling
approach takes into account cognitive agents (farmers or water supplier) trying
to obtain the water they need via negotiation with the others as a result of its
individual preferences, rationality and objectives. The MANGA model used a
spatially non-explicit representation for coupling social and environmental models.
To implement the decision-making process of the cognitive agents, the authors used
the BDI formalism and more particularly the PRS architecture. During simulations,
MANGA allows to test several water allocation rules based on water request,
irrigated corn area or behaviour evolution.

22.4.3.3 Sinuse: Water Demand Management in Tunisia (Feuillette et al.
2003)

Sinuse is a simulator conceived to simulate the interactions between a water table
and the decisions of farmers in Tunisia. The farmers’ decisions are driven by
economic objectives, but the dynamics of the system is mainly dependent on
the interactions among agents. The agents interact through message sending to
exchange land and to team up to build wells. They also interact through imitation
and influence on the land price. They interact through the environment as they
share a common resource, the water table which has its own dynamics and depends
on the number of active wells. The model was developed with Cormas platform.
Simulations study the influence of various policies such as subsidies for improved
irrigation equipment.

22.4.3.4 Water Management and Water Temple Networks in Bali
(Janssen 2007; Lansing and Kremer 1993)

Do irrigation systems necessarily need a centralized authority to solve complex
coordination problems? An ancestral Balinese system of coordination based on
villages of organized rice farmers (subaks) linked via irrigation canals has served
as a case study to investigate this question. Actions to be done on each specific
date for each subak are traditionally related to offerings to temples. The original
model was recently re-implemented to deeper investigate why the temple level
would be the best level for coordination. The environment is set as a network of 172
subaks, together with a network of 12 dams allocating the water to the subaks. Each
subak has up to four neighbouring subaks. It selects one cropping plan out of 49
predefined ones. The corresponding water demand is affecting the runoff between
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dams. Harvests are affected by water stresses and pest outbreaks. The densities of
pest in subaks are changing due to local growth (related to the presence of rice)
and migration (based on a diffusion process). Six simulation scenarios based on the
level of social coordination were explored by Lansing and Kremer. Additionally,
to the two extreme scenarios defined with a single group of all 172 subaks (full
synchronization) and 172 separate groups (no synchronization), four intermediate
scenarios were tested, based on groups defined from the existing system of
temples.

22.4.3.5 Sharing Irrigation Water in the Lingmuteychu Watershed,
Bhutan (Gurung et al. 2006)

Raj Gurung and colleagues used ABMS, following the companion modelling
approach, to facilitate water management negotiations in Bhutan. A conceptual
model was first implemented as a role-playing game to validate the proposed
environment, the behavioural rules and the emergent properties of the game. It
was then translated into a computerized multi-agent system under the Cormas
platform, which allowed different scenarios to be explored. Communicating farmer-
agent exchanged water and labour, either within a kinship network or among
an acquaintance network. Different modes of communication (intra-village and
intervillage) were simulated, and a communication observer displayed the exchange
of water among farmers.

22.4.4 Forestry

Applications of ABMS in forestry are either focusing on LUCC issues or on
management issues. For instance, Moreno et al. (2007) have simulated social and
environmental aspects of deforestation in the Caparo Forest Reserve of Venezuela;
Nute et al. (2004) have developed NED-2, an agent-based decision support system
that integrates vegetation growth, wildlife and silviculture modules to simulate
forest ecosystem management plans and perform goal analysis on different views of
the management unit. Below we describe in more detail a selection of applications
that are also characterized in the table presented in the “Appendix”.

22.4.4.1 Deforestation and Afforestation in South-Central Indiana
(Hoffmann et al. 2002)

Hoffmann et al. (2002) propose an original way of using ABMS to improve
scientific knowledge on the interactions between human activities and forest patterns
in Indiana, during the last 200 years. The environment is a raster artificial landscape
randomly generated from the 1820s land-cover ratio between crops, fallows and
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forests and randomly calculated slopes. Farmer is the only type of agent identified,
but they can behave differently according to two potential goals (utility maximizing
or learning reinforcement) and two actions: deforestation or afforestation. Simula-
tions are used to check through statistical analysis of a high number of runs the
impact of ecological (slope), social (stakeholders goals) or economic (agricultural
prices, returns) factors in changing land-use patterns.

22.4.4.2 Forest Plantation Co-management (Purnomo and Guizol 2006;
Purnomo et al. 2005)

This ABMS modelling approach links social, economic and biophysical dynamics
to explore scenarios of co-management of forest resources in Indonesia. The
purpose is to create a common dynamic representation to facilitate negotiations
between stakeholders for growing trees. The environment is a simplified forest
landscape (forest plots, road, agricultural land) represented on a cellular automaton.
Each stakeholder has explicit communication capacities, behaviours and rationales
from which emerge specific actions that impact landscape dynamics. The model
is used to simulate different types of collaboration between stakeholders, and
both biophysical and economic indicators are provided to measure the impact of
each scenario on forest landscape and smallholder incomes. Simulation results are
supposed to support the selection of the system of governance providing the best
pathway to accelerate plantation development, local community poverty alleviation
and forest landscape improvement.

22.4.5 Wildlife

Understanding how human activities impact on the population of animals in the wild
is a concern shared by conservationists, by external harvesters (hunters, fishermen)
and by local people. Viewed as a source of food or as an emblem of biodiversity,
management schemes first have to ensure the viability of the population. Viewed
as competitors for the living space of local people, management schemes have to
control the population. For instance, Zunga et al. (1998) have simulated conflicts
between elephants and people in the Mid-Zambezi Valley; Galvin et al. (2006) have
used ABMS to analyse how the situation in the Ngorongoro Conservation Area
(NCA) in northern Tanzania could be modified to improve human welfare without
compromising wildlife conservation value; Jepsen et al. (2005) have investigated the
ecological impacts of pesticide use in Denmark. Below we describe in more detail
a selection of applications that are also characterized in the table presented in the
“Appendix”.
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22.4.5.1 Water Management in Mediterranean Reedbeds (Mathevet et al.
2003)

Using the Cormas platform, the authors have developed an ABM to be used in
environmental planning and to support collective decision-making by allowing
evaluation of the long-term impact of several water management scenarios on the
habitat and its fauna of large Mediterranean reedbeds. A hydro-ecological module
(water level, reedbed, fish, common and rare bird populations) is linked to a socio-
economic module (reed market and management). Each cell was assigned a type of
land use, land tenure and topography from a GIS to create a virtual reedbed similar
to the studied wetland. Five types of interacting agents represent the users of the
wetland. They are characterized by specific attributes (satisfaction, cash amount,
estates, etc.) and exploit several hydro-functional units. The behaviour of the agents
depends on their utility function based on their evaluation of the access cost to
the reedbed and on their beliefs. The ecological and socio-economic consequences
of individual management decisions go beyond the estates and relate to the whole
system at a different timescale.

22.4.5.2 Giant Pandas in China (An et al. 2005)

Using data from Wolong Nature Reserve for giant pandas (China), this ABM
simulates the impact of the growing rural population on the forests and panda
habitat. The model was implemented using Java-Swarm 2.1.1 and IMSHED that
provides a graphical interface to set parameters and run the program. It has
three major components: household development, fuelwood demand and fuelwood
growth and harvesting. The simulated landscape was built from GIS data. Two
resolutions were identified for sub-models requiring extensive human demographic
factors and for landscape sub-models. Both person and household are cognitive
agents that were defined from socio-economic survey. They allowed simulating the
demographic and household dynamics. Agents interact with each other and their
environment through their activities according to a set of rules. The main interaction
between humans and the environment is realized through fuelwood collection
according to demand. This model was used to test several scenarios and particular
features of complexity, to understand the roles of socio-economic and demographic
factors, identifying particular areas of special concern, and conservation policy.

22.4.5.3 Traditional Hunting of Small Antelopes in Cameroon (Bousquet
et al. 2001)

To investigate the viability of populations of blue duikers, a small antelope
traditionally hunted by villagers in the forests of Eastern Cameroon, an ABM has
been developed with the Cormas platform. The raster spatial grid was defined by
reading data from a GIS map corresponding to a village that was surveyed during
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several months. Each cell represents 4 ha (the size of the blue duiker habitat) and
is characterized by a cover (river, road or village) and a reference to a hunting
locality. The population dynamics of the blue duiker is simulated through the
implementation of biological functions (growth, age-dependent natural mortality,
migration, reproduction) applied to all the individual antelope agents. Hunter agents
decide on the location of their traps by selecting one hunting locality out of the
four they use. A first set of simulation scenarios was based on unilateral decisions
of hunter agents, all of them following the same general rule. Coordination among
kinship groups of hunters was introduced in a second set of experiences.

22.4.5.4 Whale Watching in Canada (Anwar et al. 2007)

To investigate the interactions between whale-watching boats and marine mammals
in the Saguenay St. Lawrence Marine Park and the adjacent Marine Protected Area
in the St. Lawrence estuary, in Quebec, this ABM was implemented with the Repast
platform. A raster grid defined from a GIS database represents the landscape of
the studied area. The boats are cognitive agents and whales are simple reactive
agents. Several simulations were run to explore various decision strategies of the
boat agents and how these strategies can impact on whales. For each simulation, the
happiness factor was used as an indicator of how successful the boat agents were
in achieving their goals. Results showed that cooperative behaviour that involves
a combination of innovator and imitator strategies based on information sharing
yields a higher average happiness factor over non-cooperative and purely innovator
behaviours. However, this cooperative behaviour creates increased risk for the whale
population in the estuary.

22.4.6 Agriculture

ABMS applied to agriculture is mainly focussing on decision-making processes at
the farm level (typically, agents represent households). Economic aspects usually
play a pivotal role, and standard procedures like linear programming are often used
to represent individual choices among available production, investment, marketing
alternatives, etc. This economic module is then embedded into a more integrated
framework to explicitly represent spatial and social aspects. For instance, to inves-
tigate technology diffusion, resource use changes and policy analysis in a Chilean
region, Berger (2001) has connected an economic sub-model based on recursive
linear programming to an hydrological sub-model; Ziervogel et al. (2005) have
used ABMS to assess the impact of using seasonal forecasts among smallholder
farmers in Lesotho; Sulistyawati et al. (2005) have analysed the consequence at
the landscape level of swidden cultivation of rice and the planting and tapping of
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rubber by Indonesian households whose demography and economic welfare are
simulated. Below we describe in more detail a selection of applications that are
also characterized in the table presented in the “Appendix”.

22.4.6.1 Agricultural Pest and Disease Incursions in Australia (Elliston
and Beare 2006)

To analyse the effectiveness and regional economic implications of alternative
management strategies for a range of different scenarios of a disease incursion
in the agricultural sector, an ABM has been developed with the Cormas platform
and applied to the case of the wheat disease Karnal bunt in a region of South East
Queensland, Australia. A cellular spatial grid allows representing the spread of the
pest across neighbouring paddocks and a range of potential transmission pathways
including the wind, farm inputs and agents (farmers, contractors and quarantine
officers) through their movement over the spatial grid. Farmers make cropping
decisions about planting, spraying for weeds, harvesting and the use of contract
labour. They can directly identify and report signs of a Karnal bunt incursion
on their property. The incursion can also be detected from quality inspection
when farm production reaches the collective storage unit. Then a quarantine
response, based on a recursive checking in the neighbourhood of infected farms,
is implemented by officer agents. Simulation scenarios are based on one hand on
levels of farmer detection and reporting and on the other hand on the way the disease
was first introduced into the system (limited and slowly expanding incursion versus
potentially rapid expansion from a wide use of contaminated fertilizer).

22.4.6.2 Agripolis: Policy Impact on Farms’ Structural Changes
in Western Europe (Happe et al. 2006)

Agripolis is the evolution of a model developed by Balmann (1997). It describes
the dynamics of an agricultural region composed of farms managed by farmers
(an agent represents both of these concepts). The landscape and the market are
the other agents. The farm agent has a cognitive decision-making process: this
process corresponds to the traditional modelling in agricultural economics, where
agents try to maximize their income. The land market is the central interaction
institution between agents in Agripolis. Farm agents extend their land by renting
land from farm landowners. The allocation of land is done through auctions. The
Agripolis model was used to study a region in southwest Germany. A sensitivity
analysis is done to analyse the relationship between policy change and determinants
of structural changes such as the interest rate, managerial abilities and technical
change.
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22.4.6.3 Adaptive Watershed Management in the Mountains of Northern
Thailand (Barnaud et al. 2007)

This companion modelling experiment aims at facilitating a learning process among
Akha highlanders about the socio-economic aspects (i.e. allocation of formal and
informal credit, on- and off-farm employment) of the expansion of plantation
crops to mitigate soil erosion risk on steep land. Farmers’ individual decision-
making regarding investment in perennial crops, assignment of family labour to
off-farm wage-earning activities and search for credit were modelled. The simulated
scenarios looked at the effects of the duration of the grace period of the loans, the
distribution of formal credit among the three types of farms and different structures
of the networks of acquaintances for informal credit. Two main indicators were
used to analyse the results of the simulations for each type of farm: (1) the total
area under plantation crops (ecological indicator) and (2) the proportion of bankrupt
farms leaving the agricultural sector (socio-economic indicator).

22.4.7 Livestock Management

Janssen et al. (2000) have used adaptive agents to study the co-evolution of man-
agement and policies in a complex rangeland system; another work lead by Janssen
(Janssen et al. 2002) has investigated the implications of spatial heterogeneity of
grazing pressure on the resilience of rangelands; Bah et al. (2006) have simulated the
multiple uses of land and resources around drillings in Sahel under variable rainfall
patterns; Milner-Gulland et al. (2006) have built an ABM of livestock owners’
decision-making, based on data collected over 2 years in five villages in southeast
Kazakhstan. Below we describe in more detail a selection of applications that are
also characterized in the table presented in the “Appendix”.

22.4.7.1 Rangeland Patterns in Australia (Gross et al. 2006)

To evaluate general behaviours of rangeland systems in Australia, this ABM
represents a landscape made of enterprises, which are cognitive agents that represent
a commercial grazing property. Each property is defined by an area, the quality of
land in each patch and its livestock. Behaviours of the enterprise agents are defined
by a strategy set comprised of a set of rules, which evolves over time to represent
learning. A government agent has an institutional strategy set that also varies
through time. Its main roles are to collect taxes and deliver drought relief in the
form of interest payment subsidies. The biophysical sub-models allow simulating
plant and livestock dynamics. Pastoral decisions are made by the enterprise agents
according to a set of rules. The variation in the level of financial weakness leads
to the adoption of a new strategy by an enterprise. Each one is randomly associated



22 Agent-Based Modelling and Simulation Applied to Environmental Management 593

with a rate of learning. Implemented in the CCC programming language, the model
is fed by inputs of historical data. The simulations emphasize consequences of
interactions between environmental heterogeneity and learning rate.

22.4.7.2 Collective Management of Animal Wastes in La Reunion
(Courdier et al. 2002)

To investigate the collective management of livestock farming wastes on La Reunion
Island, an ABM called Biomas has been developed with the Geamas platform.
Biomas simulates the organization of transfers of organic materials between two
kinds of agents: surplus-producing farms (i.e. farms where livestock-raising activity
dominates) and deficit farms (i.e. predominantly crop production). The environment
is represented as a network of “situated objects”. Their association with the Geamas
agents enables the agents to act on the environment (e.g. “crop” agents are linked to
“plot” situated objects). Some situated objects like “road sections” are only related
to other situated objects. Graphs of connected situated objects allow representing
itineraries. The agents in Biomas are interacting through direct exchanges of
messages; they are also linked to a “group” agent through a membership process.
The “group” agent is responsible for imposing the management constraints on all
its members or individual agents by means of contracts and implements a penalty
system in the case of disregard of the regulations. The simulation scenarios are based
on the constraints and regulations defined at this “group” level.

22.4.8 Epidemiology

Models developed for the spread of infectious diseases in human populations
are typically implemented assuming homogeneous population mixing, without a
spatial dimension, social (and network) dimension or symptom-based behaviour.
ABMS offers a great potential to challenge these assumptions. Recently Ling Bian
(2004) proposed a conceptual framework for individual-based spatially explicit
epidemiological modelling, discussing four aspects: (1) population segments or
unique individuals as the modelling unit, (2) continuous process or discrete events
for disease development through time, (3) travelling wave or network dispersion for
transmission of diseases in space and (4) interactions within and between night-time
(at home) and daytime (at work) groups. As an illustration, she compares a simple
population-based model of influenza to an equivalent schematic individual-based
one. This abstract model has been utilized by Dunham (2005) to develop a generic
ABMS tool. Recently, the fear of bioterrorism has also stimulated intensive studies
in the USA; see, for instance, BioWar, developed by Carley et al. (2006) to simulate
anthrax and smallpox attacks on the scale of a city.
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22.4.8.1 Bovine Leukaemia (Bagni et al. 2002)

Two methodologies (system dynamics and agent based) used to simulate the spread
of a viral disease (bovine leukaemia) are compared. The purpose is, through “what-
if” analysis, to assess the system’s behaviour under various conditions and to
evaluate alternative sanitary policies. Based from the same set of Unified Modelling
Language (UML) diagrams, Vensim and Swarm are the two platforms that have
been used to implement the conceptual model. The environment represents in an
abstract way a dairy farm segmented into sectors. “Cow” and “farm sector” are the
two types of autonomous agents in this model. The integration at the farm level is
directly achieved through the “model swarm”. Scenarios focus particularly on the
number of cows detected as positive at sanitary controls (as opposed to the total
number of infected cows).

22.4.8.2 Malaria in Haiti (Rateb et al. 2005)

To assess the impact of education on malaria healthcare in Haiti, an ABM with
a realistic representation of Haiti has been designed. The environment is set as
a raster grid with cells characterized by land covers (sea, road, land, mountain,
city, school and hospital) associated with specific contamination probabilities (this
is how mosquitoes are represented in the model). Apart from an epidemiological
status, autonomous agents (representing individual people) are characterized by a
mobility capability and an education score which value corresponds to the time
agents take to attribute existing symptoms to malaria and therefore to go to a
hospital. Implemented in StarLogo, three scenarios based on the number of schools
and hospitals have been discussed.

22.4.8.3 Sleeping Sickness in Cameroon (Muller et al. 2004)

To understand the spread of human African trypanosomiasis, and ultimately to
elaborate a tool to evaluate risk and test control strategies, an ABM has been
developed with the MadKit platform and tested with data from one village in
Southern Cameroon. The space is not explicitly represented in this model. This is
due to the metamodel associated with the MadKit platform: the system under study
has to be described through “agent-group-role” interactions (Ferber and Gutknecht
1998). Hence, surprisingly, locations can only be depicted as agents here (see
Fig. 22.4). They are characterized by a proportional surface area and a number of
animals.

Location agents, as “groups”, are responsible for “enrolling” tsetse and human
agents that will, as members of the same group, be able to interact through the
sending of “bite” messages. The probability for a human agent to be bitten is
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Fig. 22.4 The representation
of space as clustering of three
kinds of “location” agents:
village (pentagons), cocoa
plantations (hexagons) and
forest (rectangles). (Muller
et al. 2004)

inversely proportional to the number of animals. Simulation scenarios are based
on the organization of space, to investigate the effect of the size and number of
transmission areas.

22.4.9 General Considerations

To fill in the table presented in the “Appendix” from the description of the models
found in publications was not always easy. This is partly due to the fact that the
elements to be detailed in the columns of the table require further refinements and
more precise definitions. But this can also be attributed to the heterogeneity in the
way model contents are detailed by the authors. The lack of a general framework
to document such kind of models is patent, and all designers of ABM should
become aware and refer to the framework proposed by Grimm et al. (2006). Even
when the code of the implemented model is published (in appendices of articles
or on a website), it is quite challenging and time-consuming to dive into it to
retrieve specific information. This difficulty has triggered a bias: we have tended
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to select the applications we know better. As the co-authors of this chapter all
belong to the same scientific network, the representativeness of the selected case
studies may be questioned. This kind of task—a systematic survey based on a
set of unambiguously defined characteristics—should be undertaken at the whole
scientific community level, in a continuous way. Ideally, it should use an effective
tool for mass collaborative authoring like wiki.

The environment, abstract or realistic, is most often represented as a raster grid.
The spatial resolution, when it makes sense to define it precisely (for realistic
simulated landscapes), is always clearly related to a key characteristic of one of
the model’s components.

The number of applications with interactions involving the collective level is
rather low. This does not necessarily imply cognitive agents. In the model of
Bousquet et al. (2001), for instance, the collective level is related to the kinship
structure of the small antelopes’ population; when a young individual becomes
mature, it leaves the parental habitat territory and starts to move around to look
for a potential partner to establish a new family group in an unoccupied habitat. The
group left by the young adult is affected in such a way that the reproduction can be
activated again.

In our review, theoretical case studies are less numerous than empirical case
studies. The prevalence of theoretical case studies is only significant for the LUCC
category. It suggests that the proportion of empirical applications of ABMS is
gaining ground compared to theoretical and abstract contributions. As analysed
by Janssen and Ostrom (2006), this could be explained by the fact that theoretical
models, more frequent at the beginning, have demonstrated that ABMS can provide
novel insights to scientific inquiry. The increased availability of more and more
relevant ecological and socio-economics data then paved the way to the rise of
empirically based ABMS.

22.5 Why ABMS Is More and More Applied
to Environmental Management

If ABMS is becoming more and more popular in environmental modelling, it is
mainly because it demonstrates a potential to overcome the limitations of other kinds
of models to take into account elements and processes that can hardly be ignored
to consider the underlying research questions. Another aspect has to be stressed:
ABMS is structurally an integrative modelling approach. It can easily be expressed
with other modelling formalisms and tools. Additionally, to the evidential use of CA
as a way to represent the space in ABMS applications dealing with environmental
management, several other fruitful associations with complementary tools (GIS to
handle spatial requests, linear programming modules directly used by agents to
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perform maximization of utility functions, etc.) have already been explored. Beyond
technical aspects, ABMS can also be seen as a methodological step of a wider
approach, like in companion modelling when it is jointly used with role-playing
games to allow stakeholders’ participation in the design of the tools used during
participatory simulation workshops (Bousquet et al. 2002).

22.5.1 Getting Rid of Empirically Implausible Assumptions

In ecology, traditional general population models are assuming that (1) individuals
are identical, (2) the interaction between individuals is global and (3) the spatial dis-
tribution of individuals is uniform. Required to ensure analytical tractability, these
overly simplified assumptions significantly limit the usefulness of such population-
based approaches. The assumption of “perfect mixing” on which population-based
modelling approaches rely (two individuals randomly picked can be interchanged) is
only valid when the environment is homogeneous or when all individuals facing the
same environmental conditions react in exactly the same way. One way to account
for heterogeneity is to define subpopulations as classes of similar individuals (for
instance, based on their age). Then a distribution function of the individual states
is sufficient. But when interactions between individuals are depending on the
local configuration of the environment (including the other individuals), the spatial
heterogeneity and the interindividual variability (two key drivers of evolution)
cannot be left out anymore. Spatially explicit individual-based models (IBM) allow
representing any kind of details critical to the system under study, thus relaxing
assumptions distorting the reality in an unacceptable manner. This is the main reason
why for more than two decades now (DeAngelis and Gross 1992; Huston et al. 1988;
Judson 1994; Kawata and Toquenaga 1994), IBM has been more and more widely
used in ecological modelling (for a recent guideline to make IBM more coherent
and effective, see Grimm and Railsback 2005).

When it comes to include human decision-making processes into models, the
standard way consists in assuming that all individuals equally informed (perfect
information sharing) exhibit a standard behaviour based on rationality to achieve
optimization. It is well known that renewable resource management addresses self-
referential situations. The success of an individual strategy highly depends on the
ability to “best guess” what the other individuals may do over time (Batten 2007).
This is closely related to the notion of “representation” defined by Rouchier et al.
(2000) as the understanding an agent has of what it perceives and that enables it to
evaluate and then to choose the actions it can undertake on its environment. Do all
agents agree, or do they have very different approaches to the same object or agent?
One of the main interests of ABMS is to offer the possibility to explore the second
option.
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More generally, ABMS is a valid technical methodology to take into account
heterogeneity in parameter values and in behaviours. In abstract and theoretical
ABMS, standard statistical distribution functions can be used to assign particular
parameter values to the different instances of agents created from the same class.
Railsback et al. (2006) have compared how the main generic ABMS simulation
platforms handle the initialization of one attribute of a population of agents from a
random normal distribution (see version #14 of their benchmark “StupidModel”).
For more realistic applications of ABMS, Berger and Schreinemachers (2006)
recently introduced a straightforward approach to empirical parameterization using
a common sampling frame to randomly select observation units for both biophysical
measurements and socio-economic surveys. The heterogeneity in behaviours is
usually considered with each agent having to select one behavioural module from
a set of existing ones. From a conceptual design point of view, heterogeneity of
behaviours is easier to represent with a hierarchy of classes. Subclasses of a generic
agent class are a proper design when a given agent does not update its behaviour
over time. To account for such an adaptive ability, the agent class has to be linked to
a hierarchy of behaviours, as shown in Fig. 22.1. Beyond selecting an alternative out
of a predefined set of options, it is even possible to define innovative agents equipped
with some evolutionary programming to drive the creation of new behavioural
patterns by recombining elementary behavioural components.

22.5.2 Dealing with Multiple Nested Levels

The seminal paper of Simon (1973) envisions hierarchical organizations as adaptive
structures and not only as top-down sequences of authoritative control. This view
was instilled in ecology by Allen and Starr (1982), who promoted the idea that biotic
and abiotic processes at work in ecosystems are developing mutually reinforcing
relationships over distinct ranges of scales. Each level, made from components
interacting at the same timescale, communicates some information to the next
higher and slower level. Reciprocally, any level can contribute to maintain the
stability of faster and smaller levels. In the field of environmental management, both
social and biophysical systems are characterized by hierarchical, nested structures.
For example, family members interact to form a household, which may interact
with other households in a village through political and economic institutions.
Populations formed of individual species members aggregate to form communities,
which, in turn, collectively define ecosystems. Holling (2001) nicely illustrates this
with two mirroring examples: on one side the components of the boreal forest
represented over time and space scales (from needle to landscape) and on the other
side the institutional hierarchy of rule sets (from the decisions of small groups of
individuals to constitution and culture) represented along dimensions of the number
of people involved and the turnover times.
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These ideas have been conceptualized to frame the emerging paradigm of
“panarchy” (Gunderson and Holling 2002): the hierarchical structure of socio-
ecological systems is exhibiting never-ending cycles of growth, accumulation,
restructuring and renewal. The key concepts of this heuristic model are undoubtedly
expanding the theoretical understanding of environmental management. What is
their concrete contribution to the evolution of ecological modelling? To what
extent can ABMS claim to represent them in a better way than other kinds of
models?

The aggregation between hierarchical levels is very difficult to model in a purely
analytical or statistical framework. In ecology, aggregation methods are applicable
for models involving two levels of organization (individual and population) and
their corresponding timescales (fast and slow) to reduce the dimension of the initial
dynamical system to an aggregated one governing few global variables evolving
at the slow timescale (Auger et al. 2000). The reverse way is much more difficult
to integrate to models. How to account for the influence of changes at the global
level on transitions at the microscopic level? Moreover, how to simulate both
ways simultaneously at work? The main challenge deals with the coordination and
scheduling of the different processes running at different levels: at the collective
level, explicit decisions about temporarily giving back the control to lower-level
component entities and conversely decisions from lower-level entities to create
a group and to give the control to it. In the scientific community of ABMS,
these ideas have directly inspired the production of conceptual organizational
metamodels like Aalaadin (Ferber and Gutknecht 1998), specific features in generic
simulation platforms like the threaded scheduling of agents in Swarm as well as
applications like simulating hydrological processes (runoff, erosion and infiltration
on heterogeneous soil surfaces) with “waterball”, pond and river agents (Servat et al.
1998).

22.5.3 Beyond Decision Support Systems: Exploring New
Dimensions in the Way to Use Models

As they represent complex adaptive systems which are unpredictable as a whole,
ABMS applied to environmental management should caution about the large
uncertainties related to their predictive abilities (Bradbury 2002). Still, empirically
based ABMS can be used as a decision support system, for instance, to assist
policymakers in prioritizing and targeting alternative policy interventions, as Berger
et al. (2006) did in Uganda and Chile. Nevertheless, when multiple perceptions of
the reality coexist, the statement “everything is defined by the reality of the observed
phenomena” can be questioned. Therefore, ABMS in the field of ecological
management should take some distance with the positivist posture that designates
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the scientific knowledge as the only authentic one. Relating empirical observations
of phenomena to each other, in a way which is consistent with fundamental theory,
phenomenological modelling is a means to represent the phenomena in a formalized
and synthetic way. Descriptive rather than explanatory, this approach does not truly
gain understanding of the phenomena, but can claim, in simple cases, to predict
them. Parker et al. (2003) refer to these two distinct explanatory and descriptive
approaches to clarify the potential roles of ABMS in LUCC. Anyway, the general
rule “the more realistic the application, the more descriptive the approach” may
not necessarily always apply. Explanatory goals can be assigned to models closely
related to a real situation as well.

In contrast to the positivist approach, the constructivist approach refers to
“constructed” knowledge, contingent on human perception and social experience
and not necessarily reflecting any external “transcendent” realities. Starting “from
scratch” to collectively design a model is a straightforward implementation of the
constructivist approach. Among scientists, it will integrate within and between
disciplines. By involving stakeholders, instead of showing them a simplification of
their knowledge, the collective design of the model is seeking a mutual recognition
of everyone’s representation. In such a context, ABMS is more a communication
platform to facilitate collective learning than a turnkey itinerary for piloting
renewable resource management (Bousquet et al. 1999; ComMod 2003; Etienne
et al. 2003; Gurung et al. 2006).

22.6 Drawbacks, Pitfalls and Remaining Challenges

22.6.1 Verification and Validation of ABMS

This is a problem challenging ABMS in general that is addressed in Chaps. 7
(Galán et al. 2017) and 9 (David et al. 2017) of this book. In the field of ecological
management, as in other fields of applications, some authors claim to intentionally
bridle the development of their agent-based model to design a strict equivalent to
a mathematical equation-based model, as a means to verify it (Brown et al. 2004).
The same process has been tested with mathematical representations of discrete
distributed systems like Petri nets (Bakam et al. 2001).

http://dx.doi.org/10.1007/978-3-319-66948-9_7
http://dx.doi.org/10.1007/978-3-319-66948-9_9
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22.6.2 Capturing the Metarules Governing the Adoption
of Alternative Strategies

Nowadays, a set of tested and reliable tools and methods is available to better
understand decision rules of actors and integrate them in computer agents (Janssen
and Ostrom 2006). What remains much more challenging is to capture the rules
governing the changes in agents’ behaviours. An example of such a kind of
“metarule” is the “evaluateAttitude” of the collector agent (see Fig. 22.1) defined
by Thébaud and Locatelli (2001). In such a stylized model, the metarule is simply
based on a threshold value of a specific parameter (the size of the pile of collected
driftwood). When it comes to making the rules explicit to governing the changes of
behavioural rules of human beings in real situations, methods are still weak. The
metarules, if they exist, that control changes of strategies are difficult to grasp and
elicit and by consequence to implement in an empirical-based ABM. One reason is
the timescale which is greater for these metarules than for decision rules and which
makes direct observation and verification harder to carry.

22.6.3 Improving the Representation of Space

Representing space with a CA, by far the most frequent way in current applications
of ABMS in environmental management, is easy. But, as recently pointed out
by Bithell and Macmillan (2007), imposition of a fixed grid upon the dynamics
may cause important phenomena to be misrepresented when interactions between
individuals are mediated by their size and may become too consumed by computer
resources when the system scale exceeds the size of individuals by a large factor.
How to handle discrete spatial data that is potentially completely unstructured
and how to discover patterns of neighbourhood relationships between the discrete
individuals within it? New directions like particle in cell are suggested.

In the next few years, we can also expect more applications based on autonomous
agents moving over a GIS-based model of the landscape, with rendering algorithms
determining what an individual agent is able to “see”. Already used to simulate
recreational activities (see, for instance, Bishop and Gimblett, 2000), behavioural
responses to 3D virtual landscape may become more common.
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Topic and Issue

When multiple topics are covered by a case study, the first in the list indicates the one
we used to classify it. Within each topic we have tried to order the case studies from
the more abstract and theoretical ones to the more realistic ones. This information
can be retrieved from the issue: only case studies representing a real system mention
a geographical location.

Environment

• First line: mode of representation, with the general following pattern:
[none, network, raster, vector] N(x)
N indicates the number of elementary spatial entities (nodes of network,

cells or polygons), when raster mode, N, is given as number of lines x number
of columns, unless some cells have been discarded from the rectangular grid
because they were out of bound (then only the total number is given), and (x)
indicates the spatial resolution.

• Second line: level of organization at which the issue is considered (for instance,
village, biophysical entity (watershed, forest massif, plateau, etc.), city, conurba-
tion, province, country, etc.)

Agents

One line per type of agent (the practical definition given in this paper applies, regard-
less of the terminology used by the authors). The general pattern of information
looks like:

name(x) [Ho;HeC;HeB(y)] [Ie;Ii;Ic] [R;C]

• (x) indicates the number of instances defined when initializing a standard
scenario, italic mentions that this initial number change during simulation.

• When x > 1, to account for the heterogeneity of the population of agents,
we propose the following coding: “Ho” stands for a homogeneous population
(identical agents), and “He” stands for a heterogeneous population. “HeP”
indicates that the heterogeneity lies only in parameter values, while “HeB”
indicates that the heterogeneity lies in behaviours. In such a case, each agent
is equipped with one behavioural module selected from a set of (y) existing
ones. Italic points out adaptive agents updating either parameter value (HeP) or
behaviour (HeB) during simulation.

• [Ie, Ii, Ic] indicates the nature of relationships as defined in the text and shown in
Fig. 22.3.

• [R; C] indicates if agents are clearly either reactive or cognitive.



22 Agent-Based Modelling and Simulation Applied to Environmental Management 607

Further Reading

1. The special issue of JASSS in 20011 on “ABM, Game Theory and Natural
Resource Management issues” presents a set of papers selected from a workshop
held in Montpellier in March 2000, most of them dealing with collective
decision-making processes in the field of natural resource management and
environment.

2. Gimblett (2002) is a book on integrating GIS and ABM, derived from a workshop
held in March 1998 at the Santa Fe Institute. It provides contributions from
computer scientists, geographers, landscape architects, biologists, anthropolo-
gists, social scientists and ecologists focusing on spatially explicit simulation
modelling with agents.

3. Janssen (2002) provides a state-of-the-art review of the theory and application
of multi-agent systems for ecosystem management and addresses a number of
important topics including the participatory use of models. For a detailed review
of this book, see Terna (2005).

4. López Paredes and Hernández Iglesias (2008) advocate why agent-based sim-
ulations provide a new and exciting avenue for natural resource planning and
management: researches and advisers can compare and explore alternative
scenarios and institutional arrangements to evaluate the consequences of policy
actions in terms of economic, social and ecological impacts. But as a new field
it demands from the modellers a great deal of creativeness, expertise and “wise
choice”, as the papers collected in this book show.
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Chapter 23
Distributed Computer Systems

David Hales

Abstract Ideas derived from social simulation models can directly inform the
design of distributed computer systems. This is particularly the case when systems
are “open”, in the sense of having no centralised control, where traditional design
approaches struggle. In this chapter, we indicate the key features of social simu-
lation work that are valuable for distributed systems design. We also discuss the
differences between social and biological models in this respect. We give examples
of socially inspired systems from the currently active area of peer-to-peer systems,
and finally we discuss open areas for future research in the field.

Why Read This Chapter?
To understand how simulating social complexity might be used in the process of
designing distributed computer systems.

23.1 Introduction

Massive and open distributed computer systems provide a major application area
for ideas and techniques developed within social simulation and complex systems
modelling. In the early years of the twenty-first century, there has been an explosion
in global networking infrastructure in the form of wired and wireless broadband
connections to the Internet encompassing both traditional general-purpose computer
systems, mobile devices and specialist appliances and services. The challenge is
to utilise such diverse infrastructure to provide novel services that satisfy user
needs reliably. Traditional methods of software design and testing are not always
applicable to this challenge. Why is this? And what can social simulation and
complexity perspectives bring to addressing the challenge? This chapter answers
these questions by providing a general overview of some of the major benefits of
approaching design from socially inspired perspectives in addition to examples of
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applications in the area of peer-to-peer (P2P) systems and protocols. Finally, we will
speculate on possible future directions in the area.

This chapter is not an exhaustive survey of the area, for example, we have not
discussed the application of social network analysis techniques to web graphs and
social networks that are constructed within, or facilitated by, distributed software
systems (Staab et al. 2005). Both these are active areas. Further, we have not
discussed the active research area based on randomised “Gossiping” approaches,
where information is diffused over networks through randomised copying of
information between adjacent nodes (Wang et al. 2007).

23.2 What Is Wrong with Traditional Design Approaches?

Traditional design approaches to systems and software often assume that systems
are essentially “closed”—meaning they are under the control of some administrative
authority that can control access, authenticate users and manage system resources
such as issuing software components and updates. Consider the simplest situation in
which we have a single computer system, which is not connected to a network, that
is required to solve some task. Here, design follows a traditional process of analysis
of requirements, specification of requirements then design and iterative refinement,
until the system meets the specified requirements. User requirements are assumed to
be discoverable and translatable into specifications at a level of detail that can inform
a design. The designer has, generally, freedom to dictate how the system should
achieve the required tasks via the coordination of various software components.
This coordination generally follows an elaborate sequencing of events where the
output from one component becomes the input to others. The design task is to get
that sequence right.

In “open systems”, it is assumed that there are multiple authorities. This means
that the components that comprise the system cannot be assumed to be under central
control. An extreme example of this might be an open peer-to-peer (P2P) system in
which each node in the system executes on a user machine under the control of a
different user. Popular file sharing systems operate in this way, allowing each user
to run any variant of client software they choose. These kinds of systems function
because the client software implements publicly available peer communication
protocols, allowing the nodes to interconnect and provide functionality. However,
due to the open nature of such systems, it is not possible for the designer, a priori,
to control the sequence of processing in each node. Hence the designer needs to
consider what kinds of protocols will produce acceptable system level behaviours
under plausible assumptions of node behaviour. This requires a radically different
design perspective in which systems need to be designed as self-repairing and
self-organising systems in which behaviour emerges bottom-up rather than being
centrally controlled.

One term for this approach, based on self-organisation and emergence, is
so-called self-star (or self-*) systems (Babaoglu et al. 2005). The term is a broad
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expression that aims to capture all kinds of self-organising computer systems that
continue to function acceptably under realistic conditions.

But what kinds of design approach can be employed? Currently there is no
accepted general theory of self-organisation or emergence—rather there are some
interesting models at different levels of abstraction that capture certain phenomena.
Many such models have been produced within the biological sciences to explain
complex self-organising biological phenomena. Biological systems, particularly co-
evolving systems, appear to evidence many of the desirable properties required by
self-* computer systems. Hence, several proposed self-* techniques have drawn on
biological inspiration (Babaoglu et al. 2006).

23.3 Social Versus Biological Inspiration

It is useful to ask in what way social organisation differs from the biological level. In
this section we briefly consider this question with regard to desirable properties for
information systems. An important aspect of human social systems (HSS) is their
ability (like biological systems) to both preserve structures—with organisations
and institutions persisting over time—and adapt to changing environments and
needs. The evolution of HSS is not based on DNA, but rather on a complex
interplay between behaviour, learning and individual goals. Here we present some
distinguishing aspects of HSS.

23.3.1 Rapid Change

A feature of HSS is the speed at which reorganisations can occur. Revolutions in
social organisation can take place within the lifetime of a single individual. Hence,
although HSS often show stable patterns over long periods, rapid change is possible.
The ability to respond rapidly would appear to be a desirable property in rapidly
changing information system environments; however, for engineering purposes, one
must ensure that such fast changes (unlike revolutions!) can be both predicted and
controlled.

23.3.2 Non-Darwinian Evolution

HSS do not evolve in a Darwinian fashion. Cultural and social evolution is not
mediated by random mutations and selection of some base replicator over vast
time periods, but rather follows a kind of collective learning process. That is, the
information storage media supporting the change by learning—and hence (as noted
above), both the mechanisms for change and their time scale—are very different
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from those of Darwinian evolution. Individuals within HSS can learn both directly
from their own parents (vertical transmission), from other members of the older
generation (diagonal transmission) or from their peers (horizontal transmission).
Hence, new cultural traits (behaviours, beliefs, skills) can be propagated quickly
through a HSS. This can be contrasted with simple Darwinian transmission in
which, typically, only vertical transmission of genetic information is possible.
Although it is possible to characterise certain processes of cultural evolution based
on the fitness of cultural replicators (Boyd and Richerson 1985) or memes (Dawkins
1976), it is important to realise such replicators are not physical, like DNA, but
part of a socio-cognitive process—passing through human minds—and may follow
many kinds of selective process (Lumsden and Wilson 1981). The problems of using
the idea of biological evolution in the social sciences are discussed in more detail in
Chap. 21 (Chattoe-Brown and Edmonds 2017) of this volume.

23.3.3 Stable Under Internal Conflict

HSS exist because individuals need others to achieve their aims and goals. Produc-
tion in all HSS is collective, involving some specialisation of roles. In large modern
and post-modern HSS, roles are highly specialised, requiring large and complex
coordination and redistribution methods. However, although HSS may sometime
appear well integrated, they also embody inherent conflicts and tensions between
individual and group goals. What may be in the interests of one individual or group
may be in direct opposition to another. Hence, HSS embody and mediate conflict on
many levels.

This aspect is highly relevant to distributed and open information systems. A
major shift from the closed monolithic design approach is the need to deal with
and tolerate inevitable conflicts between subcomponents of a system. For example,
different users may have different goals that directly conflict. Some components
may want to destroy the entire system. In open systems this behaviour cannot be
eliminated and hence needs in some way to be tolerated.

23.3.4 Only Partial Views and Controversy

Although HSS are composed of goal-directed intelligent agents, there is little
evidence that individuals or groups within them have a full view or understanding
of the HSS. Each individual tends to have a partial view often resulting from
specialisation within, and complexity of, the system. Such partial views, often
dictated by immediate material goals, may have a normative (how things “should”
be) character rather than a more scientific descriptive one (how things “are”).
Consequently, the ideas that circulate within HSS concerning the HSS itself
tend to take on an “ideological” form. Given this, social theories are rarely as

http://dx.doi.org/10.1007/978-3-319-66948-9_21
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consensual as those from biological sciences. Thus, social theories include a high
degree of controversy, and they lack the generally accepted foundational structure
found in our understanding of biology. However, from an information systems
perspective, such controversy is not problematic: we do not care if a given social
theory is true for HSS or not; we only care if the ideas and mechanisms in
the theory can be usefully applied in information systems. This last point, of
course, also holds for controversial theories from biology as well (e.g. Lamarckian
evolution).

23.3.5 Trust and Socially Beneficial Norms

In trying to understand the stability of socially functional behaviour, much work
within the social sciences has focused on the formation and fixation of “norms”
of behaviour. Many researchers working with multi-agent systems (MAS) have
attempted to create artificial versions of norms to regulate MAS behaviours—
although much of these have not been based on theories from HSS (although see
Conte and Paolucci 2002). Certainly the establishment and stability of beneficial
norms (such as not cheating one’s neighbour) is a desirable property visible in
all stable HSS (Hales 2002). This point (the existence and power of norms) is of
course closely related to the previous point, which notes that norms can influence
understanding and perception.

It is widely agreed that, in HSS, many observed behaviours do not follow the
same pattern as would be expected from simple Darwinian evolution or individual
“rational” behaviour—in the sense of maximising the chance of achieving individual
goals. Behaviour is often more socially beneficial and cooperative or altruistic,
generally directed towards the good of the group or organisation within which
the individual is embedded. (We note the widespread appearance of altruistic
behaviour among many species of social mammals—such that, once again, we
speak here of a difference in degree between HSS and other social animals.) Many
theories and mechanisms have been proposed by social scientists for this kind of
behaviour (Axelrod 1984), with many of these formalised as computer algorithms;
furthermore, several of these have already been translated for use in information
systems (Cohen 2003; Hales and Edmonds 2005).

23.3.6 Generalised Exchange and Economics

Almost all HSS evidence some kind of generalised exchange mechanisms (GEM)
—i.e. some kind of money. The emergence of GEM allows for coordination through
trade and markets. That is, collective coordination can occur where individual
entities (individuals or firms) behave to achieve their own goals. It is an open
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(and perhaps overly simplified) question whether certain norms are required to
support GEM or, rather, most norms are created via economic behaviour within
GEM (Edmonds and Hales 2005). Certainly, the formation and maintenance of
GEM would be an essential feature of any self-organised economic behaviour within
information systems—currently many information systems work by assuming an
existing GEM a priori, i.e. they are parasitic on HSS supplying the trust and norms
required. Such systems require trusted and centralised nodes before they can operate
because they do not emerge such nodes in on-going interaction. However, given
that GEM exist, a huge amount of economic theory, including new evolutionary
economics and game theory, can be applied to information systems.

23.4 What Can Social Simulation Offer the Designer?

Social simulation work has the potential to offer a number of insights that can be
applied to aid design of distributed computer systems. Social simulators have had no
choice but to start from the assumption of open systems composed of autonomous
agents—since most social systems embody these aspects. In addition, much social
simulation work is concerned with key aspects of self-* systems such as:

• Emergence and self-organisation: understanding the micro-to-macro and the
macro-to-micro link. Phenomena of interest often result from bottom-up pro-
cesses that create emergent structures that then constrain or guide (top-down) the
dynamics of the system.

• Cooperation and trust: getting disparate components to “hang together” even
with bad guys around. In order for socially integrated cooperation to emerge, it
is generally necessary to employ distributed mechanisms to control selfish and
free-riding behaviour. One mechanism for this is to use markets (see Chap. 25 in
this volume, Rouchier 2017) but there are other methods.

• Evolving robust network structure: constructing and maintaining functional
topologies robustly. Distributed systems often form dynamic networks in which
the maintenance of certain topological structures improves system level perfor-
mance.

• Constructing adaptive/evolutionary heuristics rather than rational action models.
Models of both software and user behaviour in distributed systems are based on
implicit or explicit models. Traditional approaches in game theory and economics
have assumed rational action, but these are rarely applicable in distributed
systems.

These key aspects have import into two broad areas of systems design. Firstly,
simulation models that produce desirable properties can be adapted into distributed
system protocols that attempt to reproduce those properties. Secondly, models of
agent behaviour, other than rational action approaches, can be borrowed as models
of user behaviour in order to test existing and new protocols.

http://dx.doi.org/10.1007/978-3-319-66948-9_25
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Currently, however, it is an open question as to how results obtained from
social simulation models can be productively applied to the design of distributed
information systems. There is currently no general method whereby desirable results
from a social simulation model can be imported into a distributed system. It is
certainly not currently the case that techniques and models can be simply “slotted
into” distributed systems. Extensive experimentation and modification is required.
Hence, in this chapter we give specific examples from P2P systems where such an
approach has been applied.

23.5 What About Agent-Orientated Design Approaches?

Multi-agent system (MAS) design approaches have previously been proposed
(Wooldridge and Jennings 1995), which attempt to address some of the design
issues raised by open systems. Those approaches start with a “blank sheet” design
approach rather than looking for biological or social inspiration. The focus therefore
has tended to be on logical foundations, proof, agent languages and communication
protocols. For example, the BDI agent framework starts from the assumption
that agents within a system follow a particular logical architecture based on
“folk psychological” cognitive objects—such as beliefs or intentions (Rao and
Georgeff 1991). However, such approaches have difficulty scaling to large societies
with complex interactions particularly where the effects of emergence and self-
organisation are important. A more recent approach within MAS work has been
to look towards self-organising approaches using simulation to capture processes
of emergence (Brueckner et al. 2006). In this work heavy use has been made of
biological and socially inspired approaches.

23.6 Examples of Socially Inspired P2P Systems

Here we give very brief outlines of some P2P protocols that have been directly
inspired by social simulation models. While P2P systems have not been the only
distributed systems that benefited from social inspiration, we have focused on this
particular technology because it is currently, at the time of writing, a very active
research area and increasingly widely deployed on the Internet.

23.6.1 Reciprocity-Based BitTorrent P2P System

BitTorrent (Cohen 2003) is an open P2P file sharing system that draws directly
from the social simulation work of Robert Axelrod (1984) on the evolution of
cooperation. The protocol is based on a form of the famous Tit-For-Tat (TFT)
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strategy popularised by Axelrod computer simulation tournaments. Strategies were
compared by having agents play the canonical prisoner’s dilemma (PD) game.

The PD game captures a social dilemma in the form of a minimal game in which
two players each select a move from two alternatives (either to cooperate or defect)
and then each player receives a score (or pay-off). If both players cooperate, then
both get a reward pay-off (R). If both defect they are punished, both obtaining pay-
off P. If one player selects defect and the other selects cooperate, then the defector
gets T (the “temptation”), and the other receives S (the “sucker”). When these pay-
offs, which are numbers representing some kind of desirable utility (e.g. money),
obey the following constraints T > R > P > S and 2R > T C S, then we say the game
represents a prisoner’s dilemma. When both players cooperate, this maximises the
collective good, but when one player defects and another cooperates, this represents
a form of free riding with the defector gaining a higher score (T) at the expense of
the cooperator (S).

Axelrod asked researchers to submit computer programs to a “tournament” where
they repeatedly played the PD against each other accumulating pay-offs. The result
of the tournaments was that a simple strategy, TFT, did remarkably well against the
majority of other submitted programs—although other strategies can also survive
within the complex ecology that occurs when there is a population of competing
strategies.

TFT operates in environments where the PD is played repeatedly with the same
partners for a number of rounds. The basic strategy is simple: a player starts by
cooperating and then in subsequent rounds copies the move made in the previous
round by its opponent. This means defectors are punished in the future: the strategy
relies on future reciprocity. To put it another way, the “shadow” of future interactions
motivates cooperative behaviour in the present. In many situations this simple
strategy can outperform pure defection.

In the context of BitTorrent, the basic mechanism is simple: files are split into
small chunks (about 1 MB each) and downloaded by peers, initially, from a single
hosting source. Peers then effectively “trade” chunks with each other using a TFT-
like strategy—i.e. if two peers offer each other a required chunk, then this equates to
mutual cooperation. However, if either does not reciprocate, then this is analogous
to a defect, and the suckered peer will retaliate in future interactions.

The process is actually a little more subtle because each peer is constantly
looking at the upload rate/download rate from each connected peer in time—
so it does not work just by file chunk but by time unit within each file chunk.
While a file is being downloaded between peers, each peer maintains a rolling
average of the download rate from each of the peers it is connected to. It then
tries to match its uploading rate accordingly. If a peer determines that another is
not downloading fast enough, then it may “choke” (stop uploading) to that other.
Figure 23.1 shows a schematic diagram of the way the BitTorrent protocol structures
population interactions.

Additionally, peers periodically try connecting to new peers randomly by
uploading to them—testing for better rates. This means that if a peer does not
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Fig. 23.1 A schematic of a portion of a BitTorrent system. The trackers support swarms of peers
each downloading the same file from each other. Thick lines indicate file data. They are constantly
in flux due to the application of the TFT-like “choking” protocol. Trackers store references to each
peer in each supported swarms. It is not unknown for trackers to support thousands of swarms and
for swarms to contain hundreds of peers. Arrows show how peers might, through user intervention,
move between swarms. Generally at least one peer in each swarm would be a “seeder” that holds
a full copy of the file being shared

upload data to other peers (a kind of defecting strategy), then it is punished by other
peers in the future (by not sharing file chunks)—hence, a TFT-like strategy based
on punishment in future interactions is used.

Axelrod used the TFT result to justify sociological hypotheses such as under-
standing how fraternisation broke out between enemies across the trenches of WW1.
Cohen has applied a modified form of TFT to produce a file sharing system resistant
to free riding. However, TFT has certain limitations, it requires future interactions
with the same individuals, and each has to keep records of the last move made by
each opponent. Without fixed identities it is possible for hacked clients to cheat
BitTorrent. Although it appears that widespread cheating has not actually spread in
the population of clients. It is an open question as to why this might be (but see
(Hales and Patarin 2006) for a hypothesis).
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23.6.2 Group Selection-Based P2P Systems

Recent work, drawing on agent-based simulations of cooperative group formation
based on “tags” (social labels or cues) and dynamic social networks suggests
a mechanism that does not require reciprocal arrangements but can produce
cooperation and specialisation between nodes in a P2P (Riolo et al. 2001; Hales
and Edmonds 2005). It is based on the idea of cultural group selection and the well-
known social psychological phenomena that people tend to favour those believed to
be similar to themselves—even when this is based on seemingly arbitrary criteria
(e.g. supporting the same football team). Despite the rather complex lineage, like
TFT, the mechanism is refreshingly simple. Individuals interact in cliques (subsets
of the population). Periodically, if they find another individual who is getting higher
utility than themselves, they copy them—changing to their clique and adopting their
strategy. Also, periodically, individuals form new cliques by joining with a randomly
selected other.

Defectors can do well initially, suckering the cooperators in their clique—but
ultimately all the cooperators leave the clique for pastures new, leaving the defectors
all alone with nobody to free ride on. Those copying a defector (who does well
initially) will also copy their strategy, further reducing the free-riding potential in the
clique. So a clique containing any free riders quickly dissolves, but those containing
only cooperators grow.

Given an open system of autonomous agents, all cliques will eventually be
invaded by a free rider who will exploit and dissolve the clique. However, so long
as other new cooperative cliques are being created, cooperation will persist in the
overall population. In the context of social labels or “tags”, cliques are defined as
those individuals sharing particular labels (e.g. supporting the same football team).
In the context of P2P systems, the clique is defined as all the other peers each peer is
connected to (its neighbourhood), and movement between cliques follows a process
of network “rewiring”.

Through agent-based simulation, the formation and maintenance of high levels
of cooperation in the single round PD and in a P2P file sharing scenario has been
demonstrated (Hales and Edmonds 2005). The mechanism appears to be highly
scalable with zero scaling cost—i.e. it does not take longer to establish cooperation
in bigger populations. Figure 23.2 shows the evolution of cooperative clusters within
a simulated network of peer nodes. A similar approach was presented by Hales and
Arteconi (2006) that produced small-world connected cooperative networks rather
than disconnected components.

In addition to maintaining cooperation between nodes in P2P, the same group
selection approach has been applied to other areas such as the coordination of robots
in a simulated warehouse scenario and to support specialisation between nodes in a
P2P job sharing system (Hales and Edmonds 2003; Hales 2006).
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Fig. 23.2 Evolution of the connection network between nodes playing the prisoner’s dilemma.
From an initially random topology composed of all nodes playing the defect strategy (dark shaded
nodes), components quickly evolve, still containing all defect nodes (a). Then a large cooperative
component emerges in which all nodes cooperate (b). Subsequently the large component begins to
break apart as defect nodes invade the large cooperative component and make it less desirable for
cooperative nodes (c). Finally an ecology of cooperative components dynamically persists as new
components form and old components die (d). Note: the cooperative status of a node is indicated
by a light shade

23.6.3 Segregation-Based P2P Systems

The model of segregation proposed by Thomas Schelling is well known within
social simulation (Schelling 1969, 1971). The model demonstrates how a macro-
structure of segregated clusters or regions robustly emerges from simple local
behaviour rules. Schelling’s original model consists of agents on a two-dimensional
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Fig. 23.3 Example run of the Schelling segregation model. From an initially random distribution
of agents (a) clusters emerge over successive iterations (b) and (c). In this example the satisfaction
proportion is 0.5, meaning that agents are unsatisfied if less than 50% of neighbours in the grid are
a different colour (taken from Edmonds and Hales (2005))

grid. Each grid location can hold a single agent or may be empty. Each agent
maintains a periodically updated satisfaction function. Agents take one of two
colours that are fixed. An agent is said to be satisfied if at least some proportion
of adjacent agents on the grid have the same colour; otherwise, the agent is said to
be not satisfied. Unsatisfied agents move randomly in the grid to a free location.
The main finding of the model is that even if the satisfaction proportion is very low,
this still leads to high levels of segregation by colour—i.e. large clusters of agents
emerge with the same colour. Figure 23.3 shows an example run of the model in
which clusters of similar colours emerge over time.

The results of the segregation model are robust even when nodes randomly leave
and enter the system—the clusters are maintained. Also agents in the segregation
model only require local information in order to decide on their actions. These
properties are highly desirable for producing distributed information systems, and
therefore it is not surprising that designs based on the model have been proposed.

Sing and Haahr (2006) propose a general framework for applying a modified
form of Schelling’s model to topology adoption in a P2P network. They show how
a simple protocol can be derived that maintains a “hub-based” backbone topology
within unstructured networks. Hubs are nodes in a network that maintain many links
to other nodes. By maintaining certain proportions of these within networks, it is
possible to improve system performance for certain tasks. For many tasks linking the
hubs to form a backbone within the network can further increase performance. For
example, the Gnutella1 file sharing network maintains high-bandwidth hubs called
“super-peers” that speed file queries and data transfer between nodes. Figure 23.4
shows an example of a small network maintaining a hub backbone.

In the P2P model nodes represent agents, and neighbours are represented by
explicit lists of neighbour links (a so-called view in P2P terminology). Nodes adapt

1http://www.gnutella.com.

http://www.gnutella.com
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hub to hub connection

hub

ordinary peer

Fig. 23.4 An example of a hub-based peer-to-peer topology. Hubs are linked and perform
specialist functions that improve system performance (taken from Singh and Haahr (2006))

their links based on a satisfaction function. Hub nodes (in the minority) are only
satisfied if they have at least some number of other hubs in their view. Normal
nodes are only satisfied if they have at least one hub node in their view. Hence
different node types use different satisfaction functions and exist in a network rather
than lattice. It is demonstrated via simulation that the network maintains a stable
and connected topology supporting a hub backbone under a number of conditions,
including dynamic networks in which nodes enter and leave the network over time.

The approach presented by Sing and Haahr is given as a general approach (a
template design pattern) that may be specialised to other P2P application areas rather
than just self-organising hub topologies. For example, they apply the same pattern
to decrease bandwidth bottlenecks and increase system performance of a P2P by
clustering similar nodes based on bandwidth capacity (Singh and Haahr 2004).

23.7 Possible Future Research

In the following sections, we give a brief outline of some promising possible areas
related to socially inspired distributed systems research.

23.7.1 Design Patterns

Social simulators and distributed systems researchers currently constitute very
different communities with different backgrounds and goals. A major problem for
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moving knowledge between these disciplines is the different language, assumptions
and outlets used by them. One promising approach for communicating techniques
from social simulation to distributed systems designers is to develop so-called
design patterns which provide general templates of application for given tech-
niques. This approach has been influential within object-oriented programming, and
recently biologically inspired approaches have been cast as design patterns (Gamma
et al. 1995; Babaoglu et al. 2006). Design patterns are not formal and need not
be tied to a specific computer language but rather provide a consistent framework
and nomenclature in which to describe techniques that solve recurrent problems
the designer may encounter. At the time of writing, few, if any, detailed attempts
have been made to present techniques from social simulation within a consistent
framework of design patterns.

23.7.2 The Human in the Loop: Techno-Social Systems

Most distributed and open systems function via human user behaviour being
embedded within them. In order to understand and design such systems, some model
of user behaviour is required. This is particularly important when certain kinds of
user intervention are required for the system to operate effectively. For example,
for current file sharing systems (e.g. BitTorrent) to operate, users are required to
perform certain kinds of altruistic actions such as initially uploading new files and
maintaining sharing of files after they have been downloaded (so-called seeding).
Web2.0 systems often require users to create, upload and maintain content (e.g.
Wikipedia). It seems that classical notions of rational action are not appropriate
models of user behaviour in these contexts. Hence, explicitly or implicitly, such
distributed systems require models of user behaviour which capture, at some level,
realistic behaviour. Such systems can be viewed as techno-social systems—social
systems that are highly technologically mediated.

One promising method for understanding and modelling such systems is to
make use of the participatory modelling approach discussed in Chap. 12 (Barreteau
et al. 2017). In such a system, user behaviour is monitored within simulations
of the technical infrastructure that mediates their interactions. Such an approach
can generate empirically informed and experimentally derived behaviour models
derived from situated social interactions. This is currently, at the time of writing, an
underdeveloped research area.

Interestingly, from the perspective of distributed systems, if it is possible to
model user behaviour at a sufficient level of detail based on experimental result,
then certain aspects of that behaviour could be incorporated into the technological
infrastructure itself as protocols.

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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23.7.3 Power, Leadership and Hierarchy

A major area of interest to social scientists is the concept of power—what kinds
of process can lead to some individuals and groups becoming more powerful than
others? Most explanations are tightly related to theories of inequality and economic
relationships; hence, this is a vast and complex area.

Here we give just a brief very speculative sketch of recent computational
work, motivated by sociological questions, that could have significant import into
understanding and engineering certain kinds of properties (e.g. in peer-to-peer
systems), in which differential power relationships emerge and may, perhaps, be
utilised in a functional way. See Chap. 27 in this volume (Geller and Moss 2017)
for a detailed overview of modelling power and authority in social simulation.

Interactions in human society are increasingly seen as being situated within
formal and informal networks (Kirman and Vriend 2001). These interactions are
often modelled using the abstraction of a game capturing interaction possibilities
between linked agents (Zimmermann et al. 2001). When agents have the ability to
change their networks based on past experience and some goals or predisposition,
then, over time, networks evolve and change.

Interestingly, even if agents start with more-or-less equal endowments and
freedom to act, and follow the same rules, vastly unequal outcomes can be produced.
This can lead to a situation in which some nodes become objectively more powerful
than other nodes through topological location (within the evolved network) and
exploitative game interactions over time.

Zimmermann et al. (2001) found this in their simulations of agents playing a
version of the prisoner’s dilemma on an evolving network. Their motivation and
interpretation is socio-economic: agents accumulate “wealth” from the pay-offs
of playing games with neighbours and make or break connections to neighbours
based on a simple satisfaction heuristic similar to a rule discussed in Kirman
(1993).

Figure 23.5 shows an example of an emergent stable hierarchical network
structure. Interestingly, it was found that, over time, some nodes accumulate large
amounts of “wealth” (through exploitative game behaviour) and other nodes become
“leaders” by being at the top of a hierarchy. These unequal topological and wealth
distributions emerge from simple self-interested behaviour within the network.
Essentially, leaders, through their own actions, can rearrange the topology of the
network significantly, whereas those on the bottom of the hierarchy have little
“topological power”.

The idea of explicitly recognising the possibility of differential power between
subunits in self-* systems and harnessing this is an idea rarely discussed in
engineering contexts but could offer new ways to solve difficult coordination
problems.

Considering P2P applications, one can envisage certain kinds of task in which
differential power would be required for efficient operation. Consider, e.g. two nodes
negotiating an exchange on behalf of their group or follower nodes. This might

http://dx.doi.org/10.1007/978-3-319-66948-9_27
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Fig. 23.5 Forms of
“hierarchy”, “leadership” and
unequal wealth distribution
have been observed to emerge
in simulated interaction
networks (from Zimmermann
et al. (2001)). Nodes play
PD-like games with
neighbours and break
connections based on a
simple satisfaction rule.
Hierarchies are produced in
which some nodes are more
connected and hence can
affect the network
dramatically by their
individual actions—a form of
“topological power”

be more efficient than individual nodes having to negotiate with each other every
time they wished to interact. Or consider a node reducing intra-group conflict by
imposing a central plan of action.

We mention the notion of engineering emergent power structures, briefly and
speculatively here, because we consider power to be an under-explored phenomenon
within evolving information systems. Agents, units or nodes are often assumed
to have equal power. It is rare for human societies to possess such egalitarian
properties, and perhaps many self-*-like properties are facilitated by the application
of unequal power relationships. We consider this a fascinating area for future work.

23.8 Summary

We have introduced the idea of social inspiration for distributed systems design
and given some specific examples from P2P systems. We have argued that social
simulation work can directly inform protocol designs. We have identified some of
the current open issues and problem areas within this research space and pointed out
promising areas for future research.

Increasingly, distributed systems designers are looking at self-organisation as
a way to address their difficult design problems. In addition, there has been an
explosive growth in the use of such systems over the Internet, particularly with the
high take-up of peer-to-peer systems. The idea of “social software” and the so-called
“Web2.0” approach also indicate that social processes are becoming increasingly
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central to systems design. We believe that the wealth of models and methods
produced with social simulation should have a major impact in this area over the
coming decade.

Further Reading

The interested reader could look at the recent series of the IEEE Self-Adaptive and
Self-Organising systems (SASO) conference proceedings, which started in 2007
and have been organised annually (http://www.saso-conference.org/). To get an
idea of current work in social simulation, a good place to start is the open access
online Journal Artificial Societies and Social Simulation (JASSS); see http://jasss.
soc.surrey.ac.uk/JASSS.html.
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Chapter 24
Simulating Complexity of Animal Social
Behaviour

Charlotte Hemelrijk

Abstract Complex social phenomena occur not only among humans, but also
throughout the animal kingdom, from bacteria and amoebae to non-human primates.
At a lower complexity they concern phenomena such as the formation of groups
and their coordination (during travelling, foraging, and nest choice) and at a higher
complexity they deal with individuals that develop individual differences that affect
the social structure of a group (such as its dominance hierarchy, dominance style,
social relationships and task division). In this chapter, we survey models that give
insight into the way in which such complex social phenomena may originate by
self-organisation in groups of beetle larvae, in colonies of ants and bumblebees, in
groups of fish, and groups of primates. We confine ourselves to simulations and
models within the framework of complexity science. These models show that the
interactions of an individual with others and with its environment lead to patterns at
a group level that are emergent and are not coded in the individual (genetically or
physiologically), such as the oblong shape of a fish school, variable shape in bird
flocks, specific swarming pattern in ants, the centrality of dominants in primates,
patterns of exchange and of ‘reconciliation’ and the task division among bumble
bees. The hypotheses provided by these models appear to be more parsimonious
than usual in the number of adaptive traits and the degree of cognitive sophistication
involved. With regard to the usefulness of these simulations, we discuss for each
model what kind of insight it provides, whether it is biologically relevant, and if so,
whether it is specific to the species and environment and to what extent it delivers
testable hypotheses.

Why Read This Chapter?
To get an overview of simulation models aimed at understanding animal social
behaviour, such as travelling, foraging, dominance or task division. The chapter also
provides an analysis of the kinds of insight each simulation provides, how specific
these insights are and whether they are testable.
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24.1 Introduction

Many complex social phenomena of human behaviour are also observed in animals.
For instance, humans coordinate their movement while searching for the right
restaurant. They also make and follow paths on lawns in between different university
buildings in order to cross between them. This resembles the path marking and
following behaviour of ants as they forage and select different food sources.
Furthermore, a division of tasks is found in both human social organisations and
in large colonies of social insects, such as honeybees. Human social relationships
are diverse, and so are the social relationships of primates. In groups of humans
and animals, competition results in stable relationships in which one individual
consistently beats the other. Within a group, individuals can be ordered in a
dominance hierarchy. Furthermore, dominant relationships are also found between
groups and between classes of individuals, such as between the sexes. Further,
societies may differ in their dominance style, such as whether they are egalitarian
or despotic. In summary, despite their hugely inferior cognitive capacities, animals
show a number of complex social phenomena that resemble those of humans.
From this the question arises whether or not these complex phenomena originate
by self-organisation in the same way for both humans and animals. Therefore, it
is important to survey complex social behaviour in animals in addition to that of
humans.

We divide the chapter in subsections dealing with different (groups of) complex
phenomena ordered in increasing complexity: From group formation (which is
simple in animals) and coordination under various circumstances (such as during
travelling, foraging, selection of shelter and nest site) we continue to the social
organisation of the group (its dominance hierarchy, dominance style, dominance
classes, social relationships, personality style and task division).

We mainly confine ourselves to individual-based models that are spatially
explicit. Individuals in the model are steered by behavioural rules that are fixed
or that are based on parameters that change (compare self-organisation with(out)
structural changes, Pfeifer and Scheier 1999); they react to their local environment
only. The environment may contain only other individuals or may also contain food.
Food may be continuously abundant, or it may be depleted and may regrow or not
after being eaten.

In general, we discuss for each model whether it has led to a new perspective
in the study of the phenomenon; whether this perspective is more ‘parsimonious’
than previous explanations in terms of cognitive sophistication and the number of
specific behavioural adaptations; whether the new explanation concerns a general
principle or is specific to a certain species or environment; and whether it produces
hypotheses that can easily be tested in real animals. In the evaluation we also provide
literature for further reading and indicate important areas for future modelling.
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24.2 Group Formation and Coordination

Everywhere in nature groups are formed. They are formed among individuals of
all kinds of species in all stages of their lives, and in a few cases groups contain
several species. Groups may differ in size, longevity, the degree of heterogeneity and
also in the way they are formed. We distinguish two processes of group formation,
namely social and environmental processes. Social processes concern forms of
social attraction, and environmental processes relate to attraction to food resources,
shelter and the like. Below we discuss models for each process separately and for
their combination.

24.2.1 Social Attraction

Attraction is often mediated through visual and chemical cues. Visual attraction
is important in many species of fish and birds. Chemical attraction (through
pheromones) occurs among single-celled individuals (such as bacteria and amoe-
bae), ants and beetle larvae.

One of the simplest aggregation processes has been studied in certain experi-
ments and models of cluster formation of beetle larvae (Camazine et al. 2001). In
their natural habitat, these beetle larvae live in oak trees, and grouping helps them to
overcome the production of toxic resin by the host tree. They emit a pheromone and
move towards higher concentrations of this chemical. In the experimental setup,
larvae are kept in a Petri dish. In the model, the behavioural rules of following a
gradient are represented in individuals that roam in an environment that resembles
a Petri dish. It appears that both in the model and in the experiment the speed
of cluster growth and the final number and distribution of clusters depend on
the initial distribution and density of the larvae. By means of both model and
experimental data it has been shown that cluster growth can be explained by a
positive feedback. A larger group emits more pheromone and therefore attracts
more members. Consequently, its size increases in turn emitting more pheromone,
etc. This process is faster at a higher density, because individuals meet each other
more frequently. Thus clusters appear sooner. Furthermore, growth is faster at higher
densities, because more individuals are available for growing.

The location of the clusters has been studied. After starting from a random
distribution of individuals, a single cluster remains in the centre of the Petri dish.
This location is due to the higher frequency with which individuals visit the centre
than the periphery. Starting from a peripheral cluster, there is an attraction to both
the peripheral cluster and the centre. Thus, there is a kind of competition between
clusters to attract additional individuals. The final distribution of clusters may
consist of one cluster (at the centre, at the periphery or at an intermediate location)
or of two clusters (in the periphery and in the centre). The final distribution depends
on self-organisation and on three factors, namely, the initial density of individuals,
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initial distribution of clusters, and whether there is social attraction. Although the
model is devised for the specific experimental setup and species, the mechanisms
of group formation and growth shown in the model are found in many animal
species. For instance, similar patterns are observed in models and experiments of
cockroaches.

Cockroaches aggregate by sensing the relative humidity. They tend to move
towards lower humidity. Here larger groups grow faster, because individuals have
a higher tendency to stop and form a group if they collide with a larger number
of others. Besides, they rest longer if more individuals are resting close by. They
use the relative humidity as a cue to estimate the number of individuals. A lower
relative humidity correlates with a higher number of individuals close by Jeanson et
al. (2005). Despite the different underlying process of social attraction (pheromonal,
visual or based on relative humidity), pattern formation is similar to that of beetle
larvae.

24.2.2 Foraging

A model that deals with group formation solely through environmental causes
concerns the splitting and merging of groups as it is found in the so-called fission-
fusion system of primates, in particular that of spider monkeys (Ramos-Fernández
et al. 2006). It relates the pattern of group formation to various distributions of
food, because particularly in these fission-fusion societies, the food distribution
may have an effect on grouping. In the model, the food distribution is based on
a distribution of resources in forests that follows an inverse power law as described
by Enquist and co-authors (Enquist and Niklas 2001; Enquist et al. 1999). The
foragers maximise their food intake by moving to larger food patches that are closer
by (they minimise the factor distance divided by patch size). Further, they do not
visit patches that they have visited before. Individuals have no social behaviour, and
they meet in groups only because they accidentally visit the same food patch. For
a distribution with both large and small trees (patches) in roughly equal numbers
the model leads to a frequency distribution of subgroup sizes that resembles that of
spider monkeys. Results hold, however, only if foragers have complete knowledge
of the environment in terms of patch size and distance. The resemblance is not found
if individuals only know (a random) part of the environment. Furthermore, if they
have complete knowledge, individuals meet with certain partners more often than
expected if the choice of the food patch is a random choice. In this way, certain
networks of encounters develop. Another serious shortcoming of the model is that
food can only be depleted: there is no food renewal, and individuals do not return
to former food patches. The main conclusion is that the ecological environment
influences grouping: Ecologies that differ in the variation of their patch sizes (high,
medium or low variance) also differ in the distribution of subgroup sizes. This model
delivers mainly a proof of principle.
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24.2.3 Combination of Social and Environmental Processes

The relation between ecology and subgroup formation is also shown in a simulation
study of orang-utans in the Ketambe forest in Indonesia (te Boekhorst and Hogeweg
1994a). The predictions for and resemblance to empirical data that are delivered in
this model (te Boekhorst and Hogeweg 1994a) are more specific than those in the
model of spider monkeys discussed above (Ramos-Fernández et al. 2006). Here,
realistic patterns of grouping arise from simple foraging rules in interaction with
the structure of the forest and in the presence of two social rules. The environment
and population are built to resemble the Ketambe area in the composition of the
community and the size of the habitat. Two main categories of food trees are
distinguished, figs (very large and non-seasonal) and fruit trees (small and seasonal).
There are 480,000 trees of which 1200 bear fruit at the same time, once a year for ten
consecutive days unless depleted earlier by the individuals. The crop size and spatial
distribution of trees are specified: fig trees are clustered and fruit trees distributed
randomly. Furthermore there are randomly distributed sources of protein. These
are renewed immediately after being eaten. In the fruiting season extra individuals
migrate into the area. With regard to the behavioural rules, individuals first search
for a fig tree. If this is not found while moving approximately in the direction of
others, because other individuals may indicate the presence of food on a distant fig
tree, individuals look for fruits close by. Upon entering a tree, the individual feeds
until satiated or the tree is emptied. Next the individual rests close by and starts all
over again later on. A further social rule causes adult males to avoid each other.

The resulting grouping patterns in the model resemble those of real orang-
utans in many respects: Temporary aggregations are found in the enormous fig
trees. This happens because in these big trees, individuals may feed until satiated
and then leave separately. However, when feeding in the much smaller fruit trees,
food is insufficient, and therefore individuals move to the next tree. This causes
them to travel together. Thus, travelling bands develop mainly in the fruit season.
In this season parties are larger than when fruit is scarce. Groupings emerge as
a consequence of simple foraging rules in interaction with the forest structure.
Thus, the model makes clear that differences between forest structures will lead
to different grouping patterns in apes. This is a parsimonious explanation, because
it is not necessary to think in terms of costs and benefits of sociality to explain
these grouping patterns, rather they arise as a side effect of feeding behaviour. The
empirical data analysis and ideas for the model of orang-utans were inspired by
findings in another model on grouping in chimpanzees.

This model of chimpanzees concerns both foraging and social attraction and
is meant to explain group formation, in particular the fission-fusion society (te
Boekhorst and Hogeweg 1994b). It offers new explanations for the relatively solitary
life of females and the numerous and large subgroups of males. Subgroups of males
had so far been supposed to form in order to join in defending the community.
To explain such cooperation, males were believed to be genetically related to each
other. Further, the solitary life of females was attributed to competition for food.
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Fig. 24.1 Behavioural rules of artificial chimpanzees (te Boekhorst and Hogeweg 1994b)

However, the model shows that their patterns of grouping may arise in an entirely
different way: they may result from a difference between the sexes in diet and in the
priority of foraging versus reproduction. The model resembles a certain community
of chimpanzees in Gombe in its community composition (number of males and
females, 11 and 14, respectively, and the number of females that are synchronously
in oestrus) and its habitat size (4 km2), its number of trees, the number of trees
that bear fruit at the same time, the length of their fruit bearing, their crop size
and the speed of their depletion. The number of protein resources is modelled
more arbitrarily, approximating such forests. With regard to their behavioural rules,
individuals of both sexes look for fruit and when satiated have a rest close to the tree
(Fig. 24.1). If not satiated, they move towards the next fruit tree. They continue to
do this until they are satiated. If there is no fruit on a specific tree, females (but not
males) look for proteins before searching another fruit tree. Males have one priority
over finding food: finding females. Whenever they see a chimpanzee, they approach
it to investigate whether it is a female in oestrus. If this is the case, males in the
model follow her until she is no longer in oestrus.

In the model, patterns of grouping resemble those of real chimpanzees. Male
groups emerge because all males have the same diet, which differs from that
of females, and because they will follow the same female in oestrus together.
Furthermore, in the model, as in real chimpanzees, males appear to travel over
longer distances per day than females. They do so because they are travelling in
larger groups, and this leads to faster depletion of food sources, and therefore
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they have to visit a larger number of trees in order to become satiated. This
interconnection between the number of trees visited, group size and distance
covered led to the hypothesis for orang-utans that different kinds of groupings
(aggregation and travel bands) originate in different trees (fig and fruit). Note that
these results were robust for a large range of different ecological variables and
different compositions of the community. Here, a difference between the sexes in
their diet and their priorities for sex and food appeared essential. With regard to
the chimpanzee community, the authors conclude that, to explain its fission-fusion
structure, the genetically based theory that kin-related males are jointly defending
the community is not needed. In fact, in subsequent DNA studies no special genetic
relatedness was found among cooperating male chimpanzees in Kibale (Goldberg
and Wrangham 1997). Instead, chimpanzee-like party structures may emerge by
self-organisation if chimpanzees search for food and for mates in a forest. Besides,
the model can be used to explain the frequent bisexual groups observed in bonobos
as being caused by their prolonged period of oestrus. Whereas these models have
been controversial among primatologists for a long time, their usefulness is slowly
becoming accepted (Aureli et al. 2008).

24.2.4 Group Coordination and Foraging

Groups of social insects, for instance ants, are remarkably efficient in foraging. They
collectively choose a food source that is closer rather than one (of the same quality)
that is further away (Deneubourg and Goss 1989). Their choice is made without
comparing the distance to different food sources. Experiments and models show
that ants use trail pheromones as a mechanism of collective ‘decision-making’:
Individuals mark their path with pheromone and at crossings follow the path that
is more strongly marked. As they return to the nest sooner when the food source is
close by, they obviously imprint the shorter path more often with pheromones. This
results in a positive feedback: as the shorter path receives stronger markings, it also
receives more ants, etc. Thus, the interaction between ants and their environment
results in the adaptive and efficient exploitation of food sources. The ‘preference’
for a food source nearby rather than one further away is a side effect of pheromonal
marking. This marking also helps a single ant to find its way and may initially have
been an adaptation to cause the ant to return to its nest. It is actually more than just
that, because its intensity is adapted to the quality of the food source. The process of
marking and following may also lead to mistakes. For instance, if a path is initially
developed to a food source of low quality, and later on a food source of high quality
is introduced elsewhere, the ants may remain fixated on the source of low quality
even if it is further from the nest due to ‘historical constraint’.

Army ants live in colonies of 200,000 individuals; they are virtually blind; they
travel in a swarm with about 100,000 workers back and forth to collect food.
Different species of army ants display highly structured patterns of swarming that
may be species specific (Fig. 24.2a, b). For example, Eciton burchellii has a more
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Fig. 24.2 Foraging patterns of two species of army ants, E. burchellii and E. rapax, empirical data
and models. Empirical data: E. burchellii (a) and E. rapax (b); models: (c) a few food clumps, (d)
frequent occurrence of single food items, and (e) network of nodes (after Deneubourg and Goss
1989)

dispersed swarm than Eciton rapax. Such species-specific differences in swarming
are usually regarded as a separate adaptation, which is assumed to be based on
corresponding differences in the underlying behavioural tendencies of coordination.
Deneubourg and co-authors, however, give a simpler explanation (Deneubourg
and Goss 1989; Deneubourg et al. 1998). In a model, they have shown that such
markedly different swarming patterns may arise from a single-rule system of laying
and following pheromone trails when ants are raiding food sources with different
spatial distributions (Fig. 24.2c, d). The authors have shown this in a model in
which ‘artificial ants’ move in a network of points (Fig. 24.2e) and mark their
path with pheromones. When choosing between left and right, they prefer the more
strongly marked direction. By introducing different distributions of food in the
model (either uniformly distributed single insects or sparsely distributed colonies
of insects), different swarming patterns arise from the interaction between the flow
of ants heading away from the nest to collect food and the spatial distribution of
the foragers returning with the food. These different swarm types are remarkably
similar to those of the two species of army ants mentioned above (for empirical
confirmation see Franks et al. 1991). Therefore, these different swarm forms reflect
the variation in diet of the different species. Thus, the explanation of the model
is more parsimonious than if we assume the different swarm forms to arise from
a specific adaptation in rules of swarming. In summary, this model teaches us the
effects of the environment on swarm coordination.
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With regard to its evolution, natural selection shapes the necessary traits for the
successful marking and following of trails depending on the size of the food source
and other environmental characteristics (for an evolutionary model of this, see Solé
et al. 2001).

24.2.5 Group Coordination in a Homogeneous Environment

Even in environments (such as the open sea, savannah and sky) that are virtually
uniform without environmental structure, remarkable coordination is observed in
the swarms of many animal species, e.g. of insects, fish, birds and ungulates. Coordi-
nation appears flexible even in swarms of a very large size (for instance, of up to ten
million individuals in certain species of fish). Swarming behaviour has been mod-
elled in several ways. The most simplistic representations of emergent phenomena
have used partial differential equations. Slightly more complex behaviour has been
obtained using particle-based models derived from statistical mechanics in physics
(Vicsek et al. 1995). These models have been used to explain the phase transition of
unordered to ordered swarms in locusts (Buhl et al. 2006). Yet the biologically most
relevant results come from models wherein individuals coordinate with their local
neighbours by following only three rules based on zones of perception (Fig. 24.3):
They avoid neighbours that are close by (separation), align to others up to an
intermediate distance (alignment) and approach those further away (cohesion).
These models have been applied to describe herds of ungulates (Gueron et al. 1996),
schools of fish (Couzin et al. 2002; Hemelrijk and Kunz 2005; Huth and Wissel
1992; Huth and Wissel 1994; Kunz and Hemelrijk 2003; for a review see Parrish
and Viscido 2005) and swarms of birds (Hildenbrandt et al. 2010; Reynolds 1987).

Fig. 24.3 Behavioural areas
of avoidance (separation),
alignment and attraction
(cohesion) with a dead (blind)
angle at the back (from
Hemelrijk and Hildenbrandt
2008). The separation angle is
indicated as ¢
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Through these models we obtain insight into a number of important biological
aspects of swarming, which have mainly been related to schools of fish.

Firstly, we get insight into the coordination of schools. Schools coordinate with
remarkable flexibility even into the absence of a leader and without a directional
preference. The direction of their movement is merely the consequence of the
location and heading of others in the school. With regard to the question whether
there is a leader in a swarm, such a leader fish is supposed to be located at the front
(Bumann and Krause 1993). However, neither in such models of fish schools nor
in real swarms individuals appear to have a fixed location. Instead frontal locations
are continuously switched in the model on average every 2 s, in real fish every 1.4 s
(Gnatapogon elongates, Huth and Wissel 1994). Thus, there cannot be consistent
leaders.

Furthermore, if a number of individuals have a directional preference (for
instance, for certain food sources or breeding locations), but most of them do not,
those with such a preference will automatically lead the school. Huse et al. (2002)
showed that even if the percentage of individuals with a certain preferred direction is
very small (though above 7%), this may influence the direction of the entire school.

If individuals prefer a different direction, for instance, because they aim to go to
different food locations, the school may react differently depending on the degree
to which two preferred directions differ (Couzin et al. 2005): If the directions differ
little, the group will follow the average direction between the two (‘a compromise’).
If the angle between both directions is large, the group will either follow the
direction that is preferred by the majority or in the absence of a ‘convincing
majority’ it will randomly choose one of the two. In these examples of swarming
the models help us to understand the processes that determine the direction in which
a school is heading.

Secondly, we obtain insight into the segregation of individuals that differ in a
certain trait. In a school, individuals may be segregated, for example, according
to size. Usually this is attributed to an intentional or genetic preference for being
near individuals of the same size or body form. Models show, however, that this
segregation may also arise directly as a side effect of differences in body size without
any preference (e.g. see Couzin et al. 2002; Hemelrijk 2005; Kunz and Hemelrijk
2003). This may, for instance, arise because larger individuals due to their larger
body have a larger range at which they avoid others who are too close. Thus, by
avoiding smaller individuals more often than the reverse, large individuals may end
up at the periphery leaving the small ones in the centre (as has been found in water
insects (Romey 1995)).

Thirdly, natural schools of fish show a number of traits that are believed to
be helpful in the protection against predators: Their shape is oblong and their
density is highest at the front. Bumann et al. (1997) argue that an oblong form and
high frontal density protect against predation: the oblong shape reduces the size of
the frontal area, where predators are supposed to attack and high frontal density
protects individuals against approaching predators. Hemelrijk and co-authors have
noted that it is unlikely that individual fish actively organise themselves so as to
create these two patterns (Hemelrijk and Hildenbrandt 2008; Hemelrijk and Kunz
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2005). Therefore, the authors studied in a model whether these patterns might arise
by self-organisation as a side effect of their coordinated movements. This indeed
appeared to be the case, and their emergence appeared to be robust (independent
of school size and speed). These patterns come about because, during travelling,
individuals avoid collisions mostly by slowing down (as they do not perceive others
to be directly behind them, in the so-called blind angle, Fig. 24.3). Consequently,
they leave a gap between their former forward neighbours, and subsequently these
former neighbours move inwards to be closer together. Thus, the school becomes
oblong.

Furthermore, when individuals fall back, a loose tail builds up, and this auto-
matically leaves the highest density at the front. In the model it appears that larger
schools are relatively more oblong because they are denser, and so more individuals
fall back to avoid collision. Faster schools appear to be less oblong. This arises
because fast individuals have greater difficulty to turn; thus, the path of the school is
straighter, the school is more aligned (polarised) and therefore, fewer individuals fall
back. Consequently, the core of a faster school is denser, and the tail is looser than
they are in slower schools. Recent tests in real fish (mullets) confirm the specific
relationships between group shape and its size, density and polarisation as found
in the model (Hemelrijk et al. 2010). Although this indicates that the shape in real
schools develops in a similar way, it is still necessary to investigate shape and frontal
density in more species and to study the effects of different speeds on these traits.

Fourth, these models help us to understand why flocks of birds are more variable
in their shapes than schools of fish (when they are not under attack). The cause of
the variable shapes lies in their difference in locomotion, birds fly and fish swim
(Hemelrijk and Hildenbrandt 2012). Flying behaviour implies that during turns,
birds do neither speed up in the outer corner nor slowdown in the inner corner.
Instead all individuals make a turn at the same constant speed and with the same
curvature (Fig. 24.4, top left; Hemelrijk and Hildenbrandt 2012). This causes the
shape of the flock to change relative to the movement direction with each turn.
If a flock is wide in its shape and it turns under 90 degrees to the right, it will
subsequently be oblong. Here, an individual that is situated at the left of the flock
before the turn will be located at the rear of the flock after the turn. Thus individuals
change location in the flock during turns. Furthermore, during turns individuals need
to roll over their shoulder if they want to make the turn sharp (Fig. 24.4, top right).
As a side effect they lose lift and consequently, move downwards a bit. The flock
thus loses altitude temporarily and may change shape vertically (Fig. 24.4, bottom;
Hemelrijk and Hildenbrandt 2012).

Fifth, in real animals predation and attacks on swarms result in a spectacular
range of behavioural patterns of evasion by schooling prey. These patterns are
supposed to confuse the predator. They have been labelled ‘tight ball’, ‘bend,
‘hourglass’, ‘fountain effect’, ‘vacuole’, ‘split’, ‘join’ and ‘herd’. They have been
described for schools of several prey species and predators (Axelsen et al. 2001;
Lee 2006; Nottestad and Axelsen 1999; Parrish 1993; Pitcher and Wyche 1983).
Most of these patterns may be obtained in a model by simple behavioural rules
of prey and predator (see e.g. Inada and Kawachi 2002). Many of the different
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Fig. 24.4 Flock turning in StarDisplay (Hemelrijk and Hildenbrandt 2012). (Top left) Turning of
a flock by 90ı at almost fixed speed. (Top right) Loss of effective lift during turning, with L D lift,
W D weight, Leff D effective lift, Cp D centripetal force, Cf D centrifugal force. (Bottom) Loss
of altitude while turning approximately each 10s during an interval of 60s

patterns of evasion result in self-organisation in models of schooling, which are built
in such a way that upon detecting the predator, individuals compromise between
their tendency to avoid the predator and to coordinate with their group members.
Though these models do not exactly fit real data, they give us insight into how
specific collective evasion patterns may arise.

One pattern of collective escape was not obtained in these models, the ‘wave of
agitation’. In flocks of starlings, it is observed as a dark band moving away from
the predator, usually a Peregrine falcon (Procaccini et al. 2011). It was unknown
what individual manoeuvre caused the wave. It could be a density wave, where
individuals flee from danger and come temporarily closer together to other flock
members, or an orientation wave, where individuals make a skitter movement,
rolling sideward and back again, temporarily displaying a larger surface of their
wing area. This cannot be distinguished in video recordings, because birds are
too far away, at a distance of about 1 km. When trying out waves of each escape
manoeuvre in a computational model, StarDisplay, it became apparent that the
observation of a dark band moving over the flock surface happened only when a
skittering escape movement was displayed, not when individuals were fleeing from
danger by moving closer to other group members (Hemelrijk et al. 2015). Thus,
the model delivers the hypothesis that in starling flocks the dark, moving bands
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Fig. 24.5 Agitation waves in starling flocks. (Top) Agitation wave of real starlings (photo by
Carere, Procaccini et al. 2011). (Bottom, left) Wave of agitation due to the zigzag-like manoeuvre
in Stardisplay (black band moving to the right) (Bottom, right) Shape of bird when observing wing
area from above and from the side (Hemelrijk et al. 2015)

of agitation waves are reflecting a skittering escape motion, because it causes us
to temporarily see a larger wing surface due to the associated rolling behaviour
(Fig. 24.5).

24.3 Social Organisation

Although groups may be beneficial for their members in so far as they provide
protection against predation, they also result in competition for food, mates and
space. If individuals meet for the first time, such competitive interactions may
initially have a random outcome. Over time, however, a dominance hierarchy
develops, whereby certain individuals are consistently victorious over others and
are said to have a higher dominance value than others (Drews 1993). Individuals
may perceive the dominance value of the other from the body posture of the other
(in primates) or from their pheromone composition (in insects).

With regard to the question which individual becomes dominant, there are two
extremely opposing views: dominance as a fixed trait by inherited predisposition and
dominance by chance and self-organisation. While some argue for the importance of
predisposition of dominance by its (genetic) inheritance (Ellis 1991), others reject
this for the following reasons: Experimental results show that the dominance of
an individual depends on the order of its introduction in a group (Bernstein and
Gordon 1980). Dominance changes with experience, because the effects of victory
and defeat in conflicts are self-reinforcing, the so-called winner-loser effect. This
implies that winning a fight increases the probability of victory in the next fight
and losing a fight increases the probability of defeat the next time. This effect has
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Fig. 24.6 Flowchart of the behavioural rules of individuals in DomWorld. PerSpace, NearView
and MaxView indicate close, intermediate and long distances

been established empirically in many animal species and is accompanied by psycho-
logical and physiological changes, such as hormonal fluctuations (Bonabeau et al.
1996a; see Chase et al. 1994; Hemelrijk 2000; for a recent review, see Hsu et al.
2006; Mazur 1985).

The self-reinforcing effects of fighting are the core of a model called DomWorld,
which concerns individuals that group and compete (Hemelrijk 1996, 1999b;
Hemelrijk and Wantia 2005). It leads to a number of emergent phenomena that
have relevance for many species, in particular for primates and more specifically
macaques.

24.3.1 The Basic DomWorld Model

The model DomWorld consists of a homogeneous world in which individuals are
grouping and competing. It does not specify what they compete about. Grouping is
implemented by making individuals react to others in different manners depending
on the distance to the other (Fig. 24.6). An individual is attracted to others far away
(within MaxView), it continues to follow its direction if it perceives others at an
intermediate distance (within NearView), and it decides whether or not to perform a
competitive dominance interaction if it encounters others close by (within PerSpace)
(Hemelrijk 2000). After winning a dominance interaction, it chases away the other,
and after losing a fight, it flees from it.

Dominance interactions are implemented after the DoDom interactions by
Hogeweg and Hesper (1985), which were extended to reflect differences in the
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intensity of aggression between species and between the sexes and with the decision
whether or not to attack depending on risks involved (Hemelrijk 1998, 1999b).
Each individual has a dominance value which indicates the individual’s capacity
to win. At the beginning of a competitive interaction, both individuals display their
dominance value and observe that of the other. The outcome of the fight depends on
the relative dominance of both partners and on chance. The probability of winning is
higher the higher the dominance value of an individual in relation to that of the other.
Initially, the dominance values are the same for all individuals. Thus, during the first
encounter, chance decides who wins. After winning, the dominance of the winner
increases and that of the loser decreases. Consequently, the winner has a greater
chance to win again (and vice versa) which reflects the self-reinforcing effects of
the victories (and defeats) in conflicts of real animals.

We allow for rank reversals; when, unexpectedly, a lower-ranking individual
defeats a higher-ranking opponent; this outcome has a greater impact on the
dominance values of both opponents, which change with a greater amount than
when, as we would expect, the same individual conquers a lower-ranking opponent
(conform to detailed behavioural studies on bumble bees by Honk and Hogeweg
1981). Furthermore, in their decision whether or not to attack, we made individuals
sensitive to the risks, i.e. the ‘will’ to undertake an aggressive interaction (instead
of remaining nonaggressively close by) increases with the chance to defeat the
opponent, which depends on the relative dominance ranks of both opponents
(Hemelrijk 1998).

We also represented the intensity of aggression in which primate societies differ
(in some species individuals bite, in other species they merely approach, threaten
and slap) as a scaling factor (called StepDom) that weighs the changes in dominance
value after a fight more heavily if the fight was intense (such as biting) than if
the fight was mild (involving threats and slaps or merely approaches and retreats)
(Hemelrijk 1999b). In several models, we distinguished two types of individuals
representing males and females (Hemelrijk et al. 2003). We gave males a higher
initial dominance value and a higher intensity of aggression (reflecting their larger
body size, stronger muscular structure and larger canines than those of females). In
fights between both types of individuals, the intensity of the fight was determined
by the initiator (the attacker).

24.3.2 Spatial Structure

The major advantage of group life is supposedly to be protection against predators.
Central positions are supposed to be safest, because here individuals are shielded
by other group members from predators approaching from the outside. Therefore,
according to the well-known ‘selfish herd’ theory of Hamilton (1971), individuals
have evolved a preference for a position in the centre, the so-called ‘centripetal
instinct’. If competition for this location is won by dominants, dominants will
end up in the centre. This is thought to be the main reason why in many animal
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Fig. 24.7 Spatial-social structure. Darker shading indicates areas with individuals of decreasing
dominance rank

species dominants are seen to occupy the centre. However, in DomWorld this
spatial structure emerges, even though such a preference is lacking, and there is
no ‘centripetal instinct’ nor threat of predation (Hemelrijk 2000).

The spatial configuration, with dominant individuals in the centre and sub-
ordinates at the periphery of the group (Fig. 24.7), emerges in the model due
to a feedback between the dominance hierarchy and the spatial location of the
individuals of different rank. During the development of the hierarchy, some
individuals become permanent losers. Such low-ranking individuals must end
up at the periphery by being constantly chased away. This automatically leaves
dominants in the centre. Also, in real animals, such a spatial structure may occur
although its members have no centripetal instinct nor experience a threat of
predation. For instance, in the elegant experiments with fish by Krause (1993),
central dominants were observed, although no centre-oriented locomotion appeared
(Krause and Tegeder 1994). Furthermore, this spatial structure has been described in
hammerhead sharks in spite of the absence of any predatory threat (Klimley 1985).
Thus, the model provides a new way of understanding spatial structure.

24.3.3 Dominance Style: Egalitarian and Despotic Societies

High dominance ranking is supposed to be associated with benefits such as
priority of access to mates, food and safe locations. If benefits are strongly biased
towards higher-ranking individuals, the society is called ‘despotic’, whereas if
access to resources is more equally distributed, it is called ‘egalitarian’. These
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terms have been used to classify social systems of many animal species (such as
insects, birds and primates). Egalitarian and despotic species of primates, such
as macaques, appear to differ in many other traits too, such as in group density,
their intensity and frequency of aggression and in their frequency and patterns of
affiliation (grooming). Usually these differences are explained from the perspective
of optimisation of single traits by natural selection. However, Thierry (1990b)
suggests that in macaques the many behavioural differences can be traced back
to two inherited differences, namely degree of nepotism (i.e. cooperation among
kin) and intensity of aggression. Note that despotic macaques display aggression of
a higher intensity, i.e. they bite more often, whereas egalitarian macaques display
aggression that is milder, they only threaten and slap.

The model DomWorld presents an even simpler hypothesis (Hemelrijk 1999b),
namely that a mere difference in intensity of aggression produces both types of
societies. By increasing the value of one parameter, namely that of intensity of
aggression, the artificial society switches from a typically egalitarian society to a
despotic one. For instance, compared to egalitarian artificial societies, despotic ones
are more loosely grouped, showing a higher frequency of attack, their behaviour is
more rank-related, aggression is more asymmetric, spatial centrality of dominants is
clearer and female dominance over males is greater. All these differences between
despotic and egalitarian societies arise via feedback between the development
of the hierarchy and spatial structure, and this happens only at a high intensity
of aggression. The steep hierarchy develops from the high aggression intensity,
because each outcome has a stronger impact than at a low intensity and it is
strengthened further via a mutual feedback between the hierarchy and the spatial
structure with dominants in the centre and subordinates at the periphery (Hemelrijk
1999b, 2000).

Pronounced rank-development causes low-ranking individuals to be continu-
ously chased away by others, and thus the group spreads out (1 in Fig. 24.8).
Consequently, the frequency of attack diminishes among the individuals (2 in Fig.
24.8), and therefore the hierarchy stabilises (3 in Fig. 24.8). While low-ranking
individuals flee from everyone, this automatically leaves dominants in the centre,
and thus a spatial-social structure develops (Fig. 24.7). Since individuals of similar
dominance are treated by others in more or less the same way, similar individuals
remain close together; therefore, they interact mainly with others of similar rank;
thus, if a rank reversal between two opponents occurs, it is only a minor one
because opponents are often similar in dominance. In this way the spatial structure
stabilises the hierarchy, and it maintains the hierarchical differentiation (4 and 5
in Fig. 24.8). Also, the hierarchical differentiation and the hierarchical stability
mutually strengthen each other (6 in Fig. 24.8).

In short, the model (Hemelrijk 1999b) makes it clear that changing a single
parameter representing the intensity of aggression may cause a switch from an
egalitarian to a despotic society. Since all the differences resemble those found
between egalitarian and despotic societies of macaques, this implies that in real
macaques these differences may also be entirely due to a single trait, intensity of
aggression. Apart from intense aggression, such as biting, however, a high frequency
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Fig. 24.8 Interconnection between variables causing spatial-social structuring at a high aggression
intensity

of aggression can also cause this switch (Hemelrijk 1999a). A higher frequency of
aggression also leads to a steeper hierarchy. This in turn results in a clearer spatial
structure, which again strengthens the development of the hierarchy, and this has the
cascade of consequences as described for aggression intensity.

The lack of individual recognition among group members may be considered as
one of the shortcomings of the model. In a subsequent model, this was corrected
by having each individual keep a record of the dominance value of each group
member. This value was updated depending on its experiences gained with other
group members (Hemelrijk 1996, 2000). With regard to the development of spatial
structure, hierarchy and dominance style remained similar, but patterns were weaker
than in the case of a direct perception of dominance without individual recognition.
Weaker patterns arise due to the contradictory experiences that different individuals
have with specific others. This will impede a hierarchical development and thus
weaken the accompanying consequences. Even though this may be more realistic
for certain modelling purposes, it is more useful to have clearer patterns in a simpler
model. Such a caricature is more helpful for building upon understanding and
developing new ideas.

Dominance style is usually considered to be species specific, but Preuschoft
et al. (1998) raised the question whether competitive regimes (egalitarian versus
despotic) should not rather be considered as sex specific. In their study of the
competitive regime of both sexes of Barbary macaques, they found an unexpected
sex difference: males behave in an egalitarian way, whereas females are despotic.
It is unexpected that the sex with the larger body size and fiercer aggression
evolved a more egalitarian dominance style. Therefore, it seems to be a separate
adaptation. However, the same difference in dominance style between the sexes was
also found in DomWorld: males appear to be more egalitarian than females. The
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unexpectedly stronger egalitarianism of males in the model is due to yet another
difference between the sexes, the higher initial dominance of males compared to
females (which relates to differences in body size). Consequently, single events of
victory and defeat have less impact on their overall power or dominance. Therefore,
they lead to less hierarchical differentiation than among females, who are much
smaller and weaker and on whom each victory and defeat therefore has more impact.
The greater the sexual difference in initial dominance between the sexes, the more
egalitarian the males behave among themselves compared to the behaviour of the
females among themselves. The conclusion of this study is that the degree of sexual
dimorphism may influence the competitive regime of each sex, in the model and in
real primates. Further empirical studies are needed to investigate whether the degree
of sexual dimorphism is directly proportional to the steepness of the gradient of the
hierarchy of females compared to males.

With regard to its evolution, dominance style is supposed to be a consequence
of different degrees of competition within and between groups (van Schaik 1989).
According to this theory, when competition within groups is high and that between
groups is low, despotic societies evolve and if it is reversed, and competition
between groups is high, egalitarian groups emerge. In line with this, DomWorld
already shows that high competition within a group leads to a despotic society
(Hemelrijk 1999b). However, in a subsequent study, competition between groups
appears to favour despotic rather than egalitarian groups (Wantia 2007). To study
effects of competition between groups, the DomWorld model was extended to
several groups (GroupWorld, Wantia 2007). Here, as in real primates, usually
individuals of high rank participate in encounters between groups (see e.g. Cooper
2004).

The model generates a number of unexpected results. Firstly, among groups of
the same dominance style, competition between groups does not affect dominance
style, since it happens at a very low frequency compared to competition within
groups. However, in competition between groups of different dominance style,
remarkable results came to light. Unexpectedly, under most conditions groups with
a more despotic dominance style were victorious over others with a more egalitarian
style. This arose due to the greater power of individuals of the highest rank of
the despotic group compared to that of the egalitarian group. In the model, this
is a consequence of the stronger hierarchy in despotic groups compared to that
in egalitarian groups. In reality this effect may be even stronger, because higher-
ranking individuals may also obtain relatively more resources in a despotic group
than in an egalitarian one. The outcome of fights between groups depends, however,
on the details of the fights between groups and the composition of the group. When
participants of intergroup fights fought in dyads or in coalitions of equal size,
the despotic group out-competed the egalitarian one. If, however, individuals of
egalitarian groups, for one reason or another, fought in coalitions of a larger size
or if their coalitions included more males than those of the despotic groups, the
egalitarian group had a chance to win. Thus, the main conclusion of the study is
that it depends on a number of factors simultaneously, which dominance style will
be favoured. Therefore, this model suggests that group composition and details of
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what happens in fights between groups should be studied in order to increase our
understanding of the origination of dominance style.

24.3.4 Distribution of Affiliation, Grooming

Grooming (to clean the pelage of dirt and parasites) is supposed to be altruistic
and therefore it should be rewarded in return (Trivers 1971). Using the theory
of social exchange, Seyfarth (1977) argues that female primates try to exchange
grooming for receipt of support in fights. For this, they direct the supposedly
altruistic grooming behaviour more towards higher- than towards lower-ranking
partners. As a consequence of this supposed competition for grooming partners
of high rank, and by being defeated by dominant competitors, females will end
up grooming close-ranking partners most frequently and are groomed themselves
most often by females ranking just below them. According to him, this explains
the following grooming patterns that are apparent among female primates: (a) high-
ranking individuals receive more grooming than others and (b) most grooming takes
place between individuals that are adjacent in rank.

DomWorld presents a simpler alternative to the explanation by Seyfarth (Hemel-
rijk 2002b) in which a mental mechanism of social exchange for future social
benefits is absent. This is important, because it is doubtful whether grooming
involves any real costs at all (see Wilkinson 1988).

The core of the argument is that individuals more often groom those whom they
encounter more frequently. In the case of spatial structure with dominants in the
centre and individuals in closer proximity to those that are closer in dominance (as
described for primates (e.g. see Itani 1954), these patterns will follow automatically.
Individuals more often groom those that are nearby in rank (as found by Seyfarth
1977). Further, because dominants are more often in the centre, they are frequently
surrounded on all sides by others. Subordinates, however, are at the edge of the
group, and therefore have nobody on one side. Consequently, dominants simply
meet others more frequently than subordinates do (as is shown in DomWorld,
Hemelrijk 2000). Therefore, dominants are more often involved in grooming than
subordinates (as found by Seyfarth).

In support of the model, grooming patterns in despotic macaques appear to be
more dominance oriented, and in egalitarian species grooming is more often directed
at anyone (Thierry et al. 1990). To establish the relevance of this model-based
hypothesis for real primates, it should be tested further in more species and groups,
whether or not the patterns of grooming among individuals of similar rank and of
the receipt of grooming by individuals of higher rank occur especially in groups
with centrally located dominants, and less so in those with a weak spatial structure.

Also the generally noted pattern of reciprocation of grooming in primates can be
explained as a side effect of spatial-social structuring rather than being ‘calculated’
in the sense that individuals keep track of the number of acts received and tune the
acts they give correspondingly (as has been the standard explanation). Instead, the
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model suggests that reciprocation emerges by self-organisation. Since individuals
are more often close to some than to others (Fig. 24.7), they will groom them more
often than that they groom others and be groomed by them more often than by others
(Puga-Gonzalez et al. 2009).

In primates it is often observed that when two individuals are fighting, they
also groom each other soon after a fight. This has been labelled ‘reconciliation’
(Aureli et al. 2002). In primates about 10% of the fights are followed (within
10 minutes) by such ‘immediate’ grooming or reconciliation. To explain this, it has
been assumed that primates understand the importance of reconciliation in order
for maintaining ‘good relationships’. This has been used for explaining that they
reconcile fights especially with those with whom they groom more frequently, their
‘friends’, because these friends are their most important relationships. A simpler
explanation for these patterns in terms of the cognition involved by the individuals
performing it is given when grooming behaviour is added to the model DomWorld,
called GroofiWorld (Puga-Gonzalez et al. 2009). In GroofiWorld, upon meeting
someone close by (in PerSpace), individuals groom the other if they think they
will be defeated by it. This model generates patterns of ‘reconciliation’ that are
statistically similar to empirical data but without individuals having any intention
to maintain good relationships with others or especially with friends. Instead, the
patterns of ‘reconciliation’ emerge because individuals have a higher number of
opportunities to groom with the former opponent soon after a fight than at another
randomly chosen point in time. After their fight, the former opponents are closer
together in space than they are at another, randomly chosen point in time. Indeed
in studies of reconciliation in animals, be it primates, horses or goats, former
opponents are closer in space after a fight than at other, randomly chosen points
in time and thus have more opportunities to groom. The higher percentage of fights
that individuals reconcile with their ‘friends’ (frequent grooming partners) rather
than with others is simpler explained by the model as well: Compared to others,
‘friends’ are more often groomed anyhow, thus also after a fight. This is probably
due to their closer spatial proximity compared to non-friends, which in the model is
a side effect of dominance interactions. Similar explanations are also given by the
model for the supposedly cognitively sophisticated pattern of ‘consolation’ (Puga-
Gonzalez et al. 2014).

24.3.5 Dominance Relationships Between the Sexes

Most primate species live in bisexual groups. Apart from the order of Lemuriformes,
males are usually dominant. However, variation occurs and even if males are larger
than females, females are sometimes dominant over a number of them (Smuts 1987).
To study whether this may arise through chance and the self-reinforcing effects
of dominance interactions, the sexes are modelled in DomWorld. When, for the
sake of simplicity, the sexes in DomWorld are distinguished only in terms of an
inferior fighting capacity of females compared to that of males, surprisingly, males
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Fig. 24.9 Female dominance over males or degree of rank overlap: (a, b) Female dominance
over males over time and aggression intensity (Hemelrijk 1999a, b), (c) Degree of rank overlap
of females with males (i.e. female dominance over males) in groups of egalitarian macaques (in
black) and in groups of despotic macaques (in lighter shades of grey) (Hemelrijk et al. 2008)

appear to become less dominant over females at a high intensity of aggression than
at a low intensity (Hemelrijk 1999b; Hemelrijk et al. 2003). This is due to the
stronger hierarchical differentiation, which causes the hierarchy to develop in a more
pronounced way. This implies that the hierarchy is also more strongly developed for
each sex separately. Since this differentiation increases the overlap in dominance
between the sexes, it causes more females to be dominant over males (Fig. 24.9b)
than in the case of a hierarchy that has been less developed (Fig. 24.9a).

Similarly to females, adolescent males of despotic macaques have more ease than
those of egalitarian species in outranking adult females (Thierry 1990a). Thierry
explains this as a consequence of the stronger cooperation to suppress males among
related females of despotic macaques than of egalitarian ones, and van Schaik
(1989) emphasises the greater benefits associated with coalitions for females of
despotic species than egalitarian ones. However, DomWorld explains greater female
dominance, as we have seen, simply as a side effect of more pronounced hierarchical
differentiation.

Differences in overlap of ranks between the sexes may affect sexual behaviour.
Males of certain species, such as Bonnet macaques, have difficulty in mating with
females that outrank them (Rosenblum and Nadler 1971). Therefore, following the
model, we expect that despotic females (because they outrank more males) have
fewer males to mate with than egalitarian ones. In line with this, in macaques
despotic females are observed to mate with fewer partners and almost exclusively
with males of the highest ranks (Caldecott 1986); this observation is attributed to
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the evolution of a more pronounced female preference in despotic than in egalitarian
species of macaques. The explanation derived from the model, however, is simpler.
In a subsequent study, in support of this hypothesis, the relative dominance position
of both sexes in egalitarian and despotic macaque species indeed appeared to
differ in macaques as expected: females of despotic species were dominant over
a significantly higher percentage of the males in their group than females of
egalitarian species. (Fig. 24.9c).

In a similar way as high aggression intensity, a high frequency of aggression in
the model also results in more female dominance. A higher frequency of aggression
in the model can be obtained by increasing the SearchAngle over which individuals
search for others, when no one is perceived as dominant (Fig. 24.6). Due to a greater
SearchAngle they return to the others sooner, the group becomes denser, and thus
the frequency of aggression is higher. A difference in group density may be of
relevance to the difference in female dominance between common chimpanzees
and bonobos (also known as pygmy chimpanzees (Stanford 1998)). Despite their
similar sexual dimorphism, female dominance in pygmy chimpanzees is higher
than among common chimpanzees. This is usually attributed to more intensive
coalition formation among pygmy females against males. However, in line with
DomWorld, we may also explain it as a side effect of the difference in density
between both species (Hemelrijk 2002a; Hemelrijk et al. 2003). Density is high in
groups of pygmy chimpanzees. Due to the higher density there is a higher frequency
of aggression and according to DomWorld this may result in more female dominance
over males. This hypothesis should be tested by comparing different groups of
bonobos and by studying the relationship between female dominance and frequency
of aggression.

Sexual attraction in real animals is usually thought to be accompanied by
strategies of exchange. For instance, chimpanzee males are described as exchanging
sex for food with females (Goodall 1986; Stanford 1996; Tutin 1980). Yet, in
spite of detailed statistical studies, we have found no evidence that males obtain
more copulations with or more offspring from those females whom they allow to
share their food more often (Hemelrijk et al. 1999, 2001, 1992; Meier et al. 2000).
Male tolerance of females seems to increase during the females’ period of oestrus
even without noticeable benefits. Thus, we need another explanation for male
tolerance of females. DomWorld provides us with such an alternative hypothesis.
‘Sexual attraction’ of males to females is implemented in such a way that males
have a greater inclination to approach females than individuals of their own sex.
In the model (and in the preceding models and empirical studies of Fig. 24.9),
we measure the relative dominance position of females compared to males by
counting the number of males ranking below each female and calculating this figure
(Mann-Whitney U-value, Fig. 24.10a). It appears that this value of relative female
dominance to males increases with sexual attraction as an automatic consequence
of the more frequent encounters between the sexes (Fig. 24.10b, synchronous).
This result is in line with the observation that female dominance in chimpanzees
increases when males are sexually attracted to the females (Yerkes 1940). The
question of whether female dominance over males also increases during sexual
attraction in other species should be studied in the future.
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Fig. 24.10 Female dominance over males and sexual attraction. (a) Measurement of female
dominance; (b) Female dominance over males over time without attraction (control) and when
attracted to females that cycle synchronously and asynchronously; (c) number of interactions
between sexes with(out) attraction during (a)synchronous cycling; (d) number of interactions
among males with(out) attraction during (a)synchronous cycling. Asyn asynchronous cycling, syn
synchronous cycling; 5, 13, 52 are durations of oestrus period

Whereas the examples mentioned above concern species in which females
are synchronously sexually attractive (tumescent), in other species they cycle
asynchronously. In the model, however, female dominance over males is relatively
similar regardless of whether they are attractive synchronously or asynchronously
(Fig. 24.10b, syn, asyn). The process leading to increased female dominance differs,
however, for the two conditions. If single females are attractive in turn, many
males cluster close to a single female. Consequently, in contrast to synchronous
tumescence, the frequency of interaction between the sexes remains similar to that
when females are not attractive to males, but the frequency of male-male interactions
is increased markedly (Fig. 24.10c, d). Due to the higher frequency of interactions
among males, the differentiation of the male hierarchy is stronger than without
attraction and this causes certain males to become subordinate to some females
(Fig. 24.10b, asyn).

Furthermore, the adult sex ratio (or percentage of males) in the group influences
the relative dominance of females compared to that of males (Hemelrijk et al. 2008).
Female dominance appears to be higher when there are more males in the group.
This arises from a shift in the relative number of intra- and inter-sexual interactions.
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Fig. 24.11 Percentage of males in the group and female dominance over males. (a) Model
(average and SE), (b) Real data of primates. Six-letter codes indicate species. Environmental
conditions: N natural, F free-ranging, C captive condition

A higher proportion of males causes both sexes to interact more often with males.
Due to the males’ higher intensity of aggression, this causes a greater differentiation
of the dominance values of both females and males. Consequently, at a high intensity
of aggression, the hierarchy of females overlaps more with that of males, and thus,
the dominance position of females is higher in relation to males than if there are
fewer males in the group. Subsequent analysis of these patterns in real primates
has confirmed that female dominance increases with a higher percentage of males
in the group (Fig. 24.11b). It appeared that in line with the preceding modelling
results, in groups of a despotic species (rhesus macaques) a higher percentage of
males appeared to be correlated with greater female dominance over them, whereas
such a correlation was absent among groups of an egalitarian species (stump-tailed
macaques). Similarly, when studying the influence of women (students) on decisions
taken in a group with a high level of conflict, women were shown to have more
influence the higher the percentage of males in the group (Stroebe et al. 2016).

24.3.6 Strategies of Attack

When real animals are brought together for the first time, they perform dominance
interactions only during a limited period. This has been empirically established in
several animal species, e.g. chickens (Guhl 1968) and primates (Kummer 1974). The
interpretation is that individuals fight to reduce the ambiguity of their relationships
(Pagel & Dawkins 1997); once these are clear, energy should be saved. On the other
hand, it has also been suggested that individuals should continuously strive for a
higher ranking and therefore always attack, unless an opponent is clearly believed
to be superior (e.g. see Datta & Beauchamp 1991).
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Fig. 24.12 Development of mean distance (top) and frequency of aggressive interactions (bottom)
among individuals for different attack strategies and intensities of aggression (logarithmic line
fitting). Open circles represent StepDom of 0.1, closed blocks of 1.0

In the DomWorld model, we compare these popular ethological views with each
other and a control strategy, in which individuals invariably attack others upon
meeting them (this is called the ‘Obligate’ attack strategy). Here, the ‘Ambiguity-
Reducing’ strategy is a symmetrical rule in which individuals are more likely to
attack opponents closer in rank to themselves. In the so-called ‘Risk Sensitive’
strategy, the probability of an attack is higher when the opponent is of a lower
rank (Hemelrijk 1998). Remarkably, it appears that, with time, the frequency of
aggression decreases in all three attack strategies, at least when groups are cohesive
and the intensity of aggression is sufficiently high (Fig. 24.12).

This decrease of aggression is a direct consequence of the ‘Ambiguity-Reducing’
strategy, but unexpectedly it also develops in the other two (see Fig. 24.12). Due to
the high intensity of aggression, each interaction has a strong impact on the rank of
both partners; thus a steep hierarchy develops. This automatically implies that some
individuals become permanent losers, and that, by fleeing repeatedly, they move
further and further away from others. The increased distance among individuals in
turn results in a decrease of the frequency of encounters and hence aggression. This
provides a test for the real world: it has to be examined whether the development of
the dominance hierarchy is accompanied not only by a reduction of aggression but
also by an increase in interindividual distances.
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Fig. 24.13 Dominance distribution and personality types: (a) example of hierarchical devel-
opment of mixed group (fat lines: obligate attackers, dotted lines: risk-sensitive individuals).
N D 10, 5 of each type. (b) Hierarchical differentiation in mixed groups with different ratios of
obligatorily attacking (OBL) and risk-sensitive (RS) individuals. CV Mean coefficient of variation
of DomValues. Box D SE, whiskers D SD

24.3.7 Personality Types

Two of these attack strategies, i.e. ‘risk-sensitive’ and ‘obligate’ attack (Hemelrijk
2000) resemble the attack strategies of individuals of different personality types,
namely those of the cautious and the bold personality, respectively (Koolhaas
et al. 2001). When groups in the model consist of both types (mixed groups),
the differentiation of dominance values appears to be greater among individuals
that are attacking obligatorily than risk sensitively due to their higher frequency
of attack (Hemelrijk 2000). Consequently, obligate attackers rise very high and
descend very low in the hierarchy (resulting in a bimodal distribution of dominance
values, Fig. 24.13a), whereas risk-sensitive attack leads to less variation, a unimodal
distribution of values (Fig. 24.13a) and therefore to more intermediate dominance
positions. Further, among risk-sensitive individuals, the average dominance is
slightly higher than among those that always attack. This is due to higher ‘intel-
ligence’ of the risk-sensitive attack strategy, because these individuals preferably
attack when the risk of losing the fight is minimal.

This resembles the distribution of dominance in mixed groups of a bird species,
the great tits (Verbeek et al. 1999). Here, bold individuals ascend very high up in
the dominance hierarchy or descend very low, whereas cautious individuals have
intermediate ranks that on average are above those of bold individuals. Differences
in high and low rank of individuals were explained by the different stages of
moulting of their feathers, a difference in tendency to attack from a familiar territory
or an unfamiliar one, and a difference in speed of recovery from defeats. DomWorld
shows that there is no need to add causes based on different stages of moulting or
on familiarity with a territory or to different speed of recovery. Thus, the model
produces a far simpler explanation for the distribution of dominance values in these
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groups of great tits. To verify these results empirically, differences in risk sensitivity
of both types of personality need to be confirmed empirically.

Secondly, the model provides us with an alternative explanation for the asso-
ciations between dominance behaviour and personality type in great tits found by
Dingemanse and Goede (2004). This association appears to differ among individuals
who own a territory and those who do not; whereas among territory owners bold
ones were dominant over cautious ones, the reverse held for those without a territory.
To explain this, the authors use a context-specific argument in which they need an
additional trait, namely speed of recovery from defeat (Carere et al. 2001). They
argue that among those individuals without a territory, bolds have more difficulty
in recovering from defeat than cautious ones and therefore become low in rank,
whereas territory owners do not suffer this setback, and therefore, they become
higher in rank.

Alternatively, a simpler explanation in line with our model may apply. Here,
we start from existing dominance relationships and suppose that these exert a
decisive influence on the question who will obtain a territory (instead of the other
way around). We assume that, because territories are limited in numbers, the
higher-ranking individuals (say the top half of them) will acquire them, whereas
individuals in the lower part of the hierarchy are unable to get one. Due to the
bimodal distribution of dominance values among the bold birds, and the unimodal
distribution of the cautious ones, the most extreme dominance positions in the
colony will be occupied by bold ones, whereas the cautious ones are located in
the middle of the hierarchy. Thus, among individuals in the top half of the hierarchy
(the territory owners) the bolds will rank above the cautious, whereas in the bottom
half of the hierarchy, namely among the individuals without a territory, the reverse
is true (Fig. 24.13a). For this explanation to be proven correct, we must verify
whether territory owners belong to the upper half of the dominance hierarchy or
not. Thus, DomWorld produces new explanations for dominance relationships of
these ‘personality styles’ in great tits.

An important question regarding personality is how different types, bold and
cautious, may co-exist, and why one type does not take over. Although there are a
number of explanations for various species, none of them applies to primates. Since
in primates group survival and individual survival depend on competition within
and between groups, Wantia and Hemelrijk have studied the two personality types
in these contexts (Wantia 2007). They have found that risk-sensitive individuals
out-competed obligate attackers in fights within groups, but that in fights between
groups the obligate attackers did better: the higher the percentage of individuals
who attacked obligatorily in fights between groups, the greater the chance of the
group winning (Fig. 24.13b). The better performance within groups of risk-sensitive
individuals was due to their more cautious and deliberate strategy: to attack when
the chance of winning is high. Greater success by obligate attackers in fights
between groups was a consequence of the higher dominance value of the highest-
ranking individuals in groups with more obligate attackers. This is due to the steeper
hierarchy as a consequence of the higher frequency of aggression in groups with
more individuals that carry out obligatory attacks. Thus, whereas risk-sensitive
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individuals out-compete obligate attackers in conflicts within groups, the reverse
happens in conflicts between groups. Since competition within and between groups
is essential for primate societies (van Schaik and van Hooff 1983), and the success
of both attack strategies depends on these contexts, we may imagine that a similar
differential performance may contribute to the coexistence of bold and cautious
primates.

24.3.8 Distribution of Tasks

It seems a miracle that a colony of social insects consisting of tens of thousands
of individuals is able to cope with the huge socio-economic demands of foraging,
building, cleaning nests and nursing the brood. It appears that group members
are somehow able to divide the work efficiently among them. Such a division
of labour is flexible, i.e. the ratio of workers performing different tasks varies
according to changes in the needs and circumstances of the colony. There are several
ways in which this task division may arise. Different mechanisms may operate
in different species (for a review, see Beshers and Fewell 2001). Task division
may be based on a genetic difference in predisposition (e.g. Moritz et al. 1996;
Robinson 1998; Robinson and Page 1988) or a response threshold to perform certain
tasks (Bonabeau et al. 1996b). Such a threshold may be combined with a self-
reinforcing learning process (Gautrais et al. 2002; Theraulaz et al. 1998). Thus,
after performing, the threshold is lessened (by learning), and after a long period of
no involvement in the task, it increases by forgetting.

The execution of tasks may also be a consequence of dominance values, as is
shown in a model of bumblebees (Bombus terrestris) developed by Hogeweg and
Hesper (1983, 1985). This was based on an earlier experimental study (Honk and
Hogeweg 1981) that showed that during the growth of the colony, workers develop
into two types, the low-ranking, so-called ‘common’, and the high-ranking, so-
called ‘elite’, workers. The activities carried out by the two types differ noticeably:
Whereas the ‘common’ workers mainly forage and take rest, the ‘elite’ workers
are more active, feed the brood, interact with each other and with the queen
and sometimes lay eggs. In their study of the minimal conditions needed for the
formation of the two types of workers (on the assumption that all workers are
identical when hatching), Hogeweg and Hesper (1983, 1985) used an individual-
based model based on empirical data concerning the time of the development of
eggs, larvae, pupae, etc. Space in the model is divided into two parts, peripheral
(where inactive common workers doze for part of the time) and central (where the
brood is, and all interactions take place). The rules of the artificial, adult bumblebees
operate ‘locally’ in so far as their behaviour is triggered by what they encounter.
What they encounter in the model is chosen randomly from what is available in the
space in which the bumblebee finds itself. For instance, if an adult bumblebee meets
a larva, it feeds it; if it meets a pupa of the proper age, it starts building a cell in which
a new egg can be laid, etc. All workers start with the same dominance value after
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hatching, with only the queen gifted with a much higher dominance rank. When
an adult meets another, a dominance interaction takes place, the outcome of which
(victory or defeat) is self-reinforcing. Dominance values of the artificial bumblebees
influence almost all their behavioural activities (for instance, individuals of low rank
are more likely to forage).

This model automatically, and unexpectedly, generates two stable classes, those
of ‘commons’ (low-ranking) and ‘elites’ (high-ranking) with their typical conduct.
This differentiation only occurs if the nest is divided into a centre and a periphery
(as in real nests).

The flexibility of the distribution of tasks among individuals manifests when
we take half the work force out of the model. In line with observations in similar
experiments with real bumblebees, this reduction in work force causes the remaining
ones to take over the work. In the model this arises because the decreased number of
workers reduces the frequency of encounters among them and increases encounters
between them and the brood (which has not been reduced in number). An increased
rate of encounters with brood induces workers to collect food more frequently.
Therefore, workers are absent from the next more often, and consequently, they
meet other workers less frequently.

In real bumblebees the queen switches from producing sterile female offspring
to fertile offspring (males and females) at the end of the season. Note that while
females are produced from fertilised eggs, males are produced from unfertilised
eggs. Usually females will develop into sterile workers, but if they are fed extra
‘queen food’ during larval development, they will develop into queens. The switch
seems to take place at an optimal moment, because it occurs at the time when the
colony is at its largest and can take care of the largest number of offspring. Oster and
Wilson (1978) point out that it is difficult to think of a possible external signal that
could trigger such a switch, because it takes three weeks to raise fertile offspring
and during these three weeks there must still be enough food.

Hogeweg and Hesper (1983) discovered that no such external signal is needed in
their bumblebee model, but that the switch originates automatically as if scheduled
by a socially regulated ‘clock’; it arises from the interaction between colony growth
and stress development of the queen as follows. During the development of the
colony, the queen produces a certain pheromone that inhibits extra feeding of larvae
(which leads to queens) and worker ovipositions (i.e. unfertilised male eggs) by
‘elite’ workers. Just before she is killed, the queen can no longer suppress the ‘elite’
workers from feeding larvae to become queens and from laying drone eggs, because
the colony has grown too large. Consequently, individual workers meet the queen
less often and are less subjected to the dominance of the queen, so they start to lay
unfertilised (drone) eggs. Furthermore, the stress on the queen increases whenever
she has to perform dominance interactions with workers during her egg laying.
When the stress on the queen has reached a certain threshold value she switches
to producing male eggs (drones).

Because generative offspring are also sometimes found in small nests, Blom
(1986) challenges the notion that dominance interactions induce stress in the queen
and thus lead to this switch. However, in the model, it is not the number of workers
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that causes the switch: Hogeweg and Hesper (1985) have shown that in small nests
the switch also appears to occur at the same time in the season as in large nests.
For this they studied the bumblebee model for a reduced speed of growth. They
found that the switch occurs at a similar moment due to the following complicated
feedback process. If the colony grows faster, the heavy duties of caring for the brood
leave the workers little time to interact with each other and the queen. Consequently,
the dominance hierarchy among workers only develops weakly. Therefore, if
workers interact with the queen, they do not pose much of a threat to her and as
a result, the queen is not severely stressed and the colony can grow very large. In
contrast, in a slowly growing colony, the small number of brood gives the workers
little work and leaves them time to interact with each other. Consequently, their
dominance relationships are clearly differentiated. Furthermore, by often interacting
with the queen, they become on average higher-ranking themselves. In the end, the
queen receives as much stress from frequent interactions with a few high-ranking
workers in a slowly growing nest as from few interactions with very many low-
ranking workers in a fast growing nest. Consequently, the switch to reproductive
offspring takes place at about the same moment in both nests in the model.

24.4 Evaluation

The power of these kinds of models is the generation of phenomena that are emer-
gent. These emergent phenomena lead to explanations that are more parsimonious
than usual, because the patterns emerge from the interaction among individuals
and their environment rather than from the cognition of an individual. These
explanations can be tested empirically.

Considering the kind of questions posed in the models discussed above, it
becomes clear that most of them can only be studied using certain kinds of agent-
based models. Other kinds of models, such as partial differential equations based
on density functions or even individual-based models of fluids and gases, cannot
incorporate the complexity of the rules and/or emergent effects.

The behavioural rules of the agents in the agent-based models that were treated
here were in all cases biologically inspired. In some cases, behavioural rules were
based on precise experimental results specific to a certain species, such as in the case
of group formation (Camazine et al. 2001; Jeanson et al. 2005). Usually, however,
parameters were tuned only loosely to the real system (e.g. the angle of vision in
fish is set at about 270ı and that of mammals at 120ı). Sometimes, mathematical
equations were used that were developed for a different species, such as in the
case of dominance interactions. Here, the equations were initially derived for the
self-reinforcing effects in bumblebees (Honk and Hogeweg 1981) and subsequently
extended and applied to explain social systems in primates (Hemelrijk 1999b). In
all cases the behavioural rules are supposed to capture the essentials of those of real
animals.
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If, however, macro-patterns are obtained that resemble patterns observed in
the real system, this is still no proof of the correctness of the rules in reflecting
behavioural rules of real animals, because different sets of rules may lead to the
same macro-pattern. The relevance of the rules and other aspects of the model could
be studied further by investigating additional hypotheses and comparing further
results of the model to natural systems.

Agent-based models appear to be particularly useful in showing the conse-
quences of interactions among individuals for social structure and the reverse,
i.e. from social structure to social interactions. In this way, they teach us about
the integration of traits. This is particularly apparent when the models include a
representation of space (time is always represented). The representation of time and
space is of general importance, because all real individuals live in time and space
and thus it is unrealistic to ignore these aspects. It appears that by representing
the interaction of individuals with their social and physical environment in time
and space, patterns result in such a way that explanations become unusually
parsimonious in terms of their specific adaptive traits and the cognition needed (in
line with findings of situated cognition Pfeifer and Scheier 1999).

These explanations give a new insight into the phenomenon of social complexity
that may either be very general (e.g. conceptual model) or specific to the type of
animal and the kind of behaviour under investigation. Usually, it leads to hypotheses
that are easily tested in the real system. These hypotheses make unexpected
connections between variables, such as between the production of sterile and
reproductively active offspring with colony dynamics in bumblebees. Testing can
be done by natural observation, for example, by studying the effects of different
group sizes on group shape in case of fish. Furthermore, testing can be done by
experimental interventions, such as by putting together individuals of both sexes in
different group compositions to study effects on relative dominance of females to
males.

While ignoring models of certain topic areas where no emergent effects appeared
(so-called output-oriented models), we have here surveyed a large number of the
most important models of social complexity in animals. Of course, it is impossible
to discuss them all. Note that we have not treated models concerning biological
evolution since only a few are related to social systems (such as Kunz et al. 2006;
Oboshi et al. 2003; Ulbrich et al. 1996; Post et al. 2016). This is due to the fact
that evolution usually happens on a far larger timescale than phenomena of social
complexity. However, see Chap. 21 in this handbook (Chattoe-Brown and Edmonds
2017) on how concepts from biological evolution have influenced recent approaches
in programming simulation models.

Furthermore, we have not treated a number of other complex phenomena, such
as synchronisation of lighting behaviour of insects, temperature regulation of nests
and the building of nests, because in these cases no agent-based models have been
used, or the behaviour is insufficiently social. These topics are, however, covered by
Camazine et al. (2001).

http://dx.doi.org/10.1007/978-3-319-66948-9_21
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24.5 Future Work

With regard to areas that may be important for future work, I suggest (1) models
of self-organisation that help us understand specific social systems better by being
closely tuned to empirical systems, such as fish schools, insect colonies or primate
groups, (2) models that present social behaviour and its ontogenetical development
in greater detail and (3) evolutionary models that include also spatial effects.
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on an earlier draft. I thank Daan Reid for correcting the English.

Further Reading

For further reading I recommend the book on self-organisation in biological systems
by Camazine et al. (2001). This is an extensive introduction to almost all topics
treated above and more (with the exception of task division and social systems of
primates). Furthermore, new extensions of a number of the models are treated by
Sumpter (2010). The above-mentioned book by Camazine and co-authors is also a
good choice for teaching purposes, in addition to the well-written book by Resnick
(1994). This latter book has been used in secondary schools and teaches to think in
terms of complexity and self-organisation in general. For more advanced readers, I
recommend “Self-organisation and Evolution of Social Systems” (Hemelrijk 2005).
This is an edited book and contains recent articles on modelling of social systems,
including those of humans.
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Chapter 25
Agent-Based Simulation as a Useful Tool
for the Study of Markets

Juliette Rouchier

Abstract This chapter describes a number of agent-based market models. They
can be seen as belonging to different trends in that different types of markets are
presented (goods markets, with or without stocks, or financial markets with diverse
price mechanisms or even markets with or without money), but they also represent
different aims that can be achieved with the simulation tool. For example, it is
possible to develop precise interaction processes to include loyalty among actors;
try to mimic as well as possible the behaviour of real humans, which have been
recorded in experiments; or try to integrate psychological data to show a diffusion
process. All these market models share a deep interest in what is fundamental in
agent-based simulation, such as the role of interaction, interindividual influence and
learning, which induces a change in the representation that agents have of their
environment.

Why Read This Chapter?
To understand the various elements that might be needed in a simulation of a
market, including some options for implementing learning by agents in a market
simulation, the role and kinds of market indicator and kinds of buyer-seller
interaction (bargaining, loyalty based and reputation based). The chapter will give
you an overview of the complexity of markets, including multi-goods markets
and complicated/decentralized supply chains. It will help you understand financial
markets (especially in contrast to markets for tangible goods) and the double-auction
mechanism. Finally, it will give some indications of how such models either have
informed or might inform the design of markets.
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25.1 Introduction

In recent years, there has been a growing recognition that an analysis of economic
systems—which includes markets—as being complex could lead to a better under-
standing of the participating individuals’ actions. In particular, one element that
could be incorporated in such analyses is the heterogeneity of agents and of their
rationality. For example, the existence of multiple prices on a market for the same
product, sold at the same moment and at the same place, cannot be captured in an
equilibrium model, whereas it appears in real life and can be reproduced easily in
an agent-based model (Axtell 2005).

This issue is at the centre of much debate among economists. In classical
economy, agents are considered as rational, having a perfect knowledge of their
environment, and hence are homogeneous. This view of agents stayed unchallenged
for a while. Friedman (1953) argued, for example, that non-rational agents would
be driven out of the market by rational agents, who would trade against them
and simply earn higher profits. However, in the 1960s, the view on rationality
evolved. Even Becker (1962) suspected that agents could be irrational and yet
produce the same results as rational agents (i.e. the negative slope of market demand
curves). However, the author who definitely changed the view on economic agents
is Simon, who stated that any individual could be seen as a “bounded rational”
agent, which means that it has an imperfect knowledge and has limited computing
abilities (Simon 1955). In most markets, agents do not have perfect knowledge of
the behaviour and preferences of other agents, which makes them unable to compute
an optimal choice. If they do have perfect knowledge, they will require unlimited
computational capacity in order to calculate their optimal choices.1

Indeed, for some contemporary authors, the understanding that one can get of
real market dynamics is more accurate if the assumption of a representative agent or
of the homogeneity of agents is dropped at the same time as the perfect knowledge
assumption (Kirman 2001). The way bounded rationality is approached can be very
formal and tentatively predictive (Kahneman and Tversky 1979), but some authors
go even further by stating that the notion of rationality has been abandoned to be
changed to the idea that agents possess rules of behaviours that they select thanks to
diverse mechanisms, which are most of the time based on past evaluation of actions
(Kirman 2001). Some authors also compare the different results one can get from a

1For example, an issue that anyone representing learning (not only on markets) has to face is the
exploration-exploitation dilemma. When an action gives a reward that is considered as “good”,
the agent performing it has to decide either to continue with this action—and hence possibly miss
other, more rewarding actions—or to search for alternative actions, which implies indeterminate
results. Leloup (2002), using the multi-armed bandit (Rothschild 1974) to represent this dilemma,
showed that a nonoptimal learning procedure could lead to a better outcome than an optimal—but
non-computable—procedure.
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representative agent approach and a bounded rationality approach for agents and try
to integrate both simplicity and complexity of these two points of view (Hommes
2007).

To complete the view that agents have bounded rationality in a market and
that they evolve through time, it is necessary to consider one more aspect of their
belonging to a complex system: their interactions. The seminal works on markets
with interacting heterogeneous agents date back to the beginning of the 1990s (e.g.
Palmer et al. 1993; Arthur et al. 1997a); many of them were collected in the post-
proceedings of a conference at the Santa Fe Institute (Arthur et al. 1997b). Since
then, a large part of research in agent-based simulation concerns market situations,
as can, for example, be seen in the cycles of WEHIA/ESHIA conferences and ESSA
conferences. The former ones gather many physicists who apply dynamic systems
techniques to representing heterogeneous interacting agents to deal with economics
issues, and they tend to buy the “agent-based computational economics” (ACE)
approach of simulated markets promoted by Leigh Tesfatsion2 (Phan 2003). In the
latter ones, not only economy but also sociology, renewable resources management
and computer science participate and often try to generate subtle representations of
cognition and institutions and a strong view of agents as computerized independent
entities to deal with broad social issues and are thus being closer to multi-agent
social simulation (MAS). We will refer to both terms (ACE or MAS) separately.

Not only the techniques can be different when studying markets with distributed
agents, but also the aims can be. Some try to infer theoretical results about rationality
and collective actions (Vriend 2000) or about market processes (Weisbuch et al.
2000). Others want to create algorithms to represent human rationality on markets
and try to assess the value of these algorithms by comparing the simulated behaviour
with actions of real humans in order to understand the latter (Hommes and Lux
2008; Duffy 2001; Arthur 1994). Eventually some explorations about the impact of
diverse rationalities in a market context enable the identification of possible worlds
using a sort of artificial society approach (Rouchier et al. 2001).

Being part of a handbook, this chapter should provide tools to be able to build
and use agent-based simulation techniques to create artificial markets and analyse
results. However, a “know-how” description of the building of artificial market is
so dependent on the type of issue that is addressed, that it was decided instead to
establish a classification of the type of markets and modelling techniques that can
be found in agent-based simulation research. We are interested in representations
of markets that focus on a micro-representation of decision processes, with limited
information or limited computational abilities for agents and which take place in
a precise communication framework. This form of representation forces authors to
focus on new notions such as interaction or information gathering, and this induces
new issues such as the bases for loyalty or the exploration-exploitation dilemma.
The use of stylized facts is fundamental in this branch, where modellers try to mimic
some elements of the world in their research, focusing either on representations

2http://www.econ.iastate.edu/tesfatsi/ace.htm.
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of reasoning that are inferred from observed micro-behaviours or trying to mimic
global behaviour through learning algorithms, thereby to stay closer to common
view orthodox economics.

Contrary to this view, which does not distinguish among individual rationalities
and assumes aggregate, centralized knowledge and decision-making, researchers
involved in the use of multi-agent simulation usually try to understand the local
point of view of agents and its influence on global indicators. Since the agent is
then seen as unable to have complete knowledge, it has to accumulate data about
its environment and treat those data according to its aims. The study of markets is
interesting when it comes to this type of analysis because markets display a much
more simple set of possible actions and motivations than many other social settings.
Income and reproduction of activity are direct motivations, which imply choices in
the short and the long term, prices and quantities are what have to be chosen (as well
as sometimes acquaintances, in the case of bilateral bargaining), and information is
limited to offers and demands, as well as responses to these two types of proposals.

This chapter presents the main fields of application for multi-agent simulation
dealing with markets, to show how researchers have focused on different aspects of
this institution and to conclude on the great interest of agent-based simulation when
trying to understand the very dynamics of these social environments.

In the next section, we will describe the main notions that are covered by
the term “market” in agent-based literature and also the main ways to represent
rationality and learning that can be found. Subsequently, the main topics of market
studies will be described in three parts. In Sect. 25.3, agents are on a market
and actually meet others individually, having private interactions with each other.
Choices that have to be modelled are about matching business partners, as well as
all buying or selling decisions. In all other sections, agents are facing an aggregate
market, and they have to make decisions based on global data, sometimes associated
to networks. In part four, agents are either consumers or producers in a large
market. In part five, we will deal with auctions, financial markets and market
design.

25.2 Market and Agents’ Reasoning

Although the study of market(s) has been predominantly carried out by economists,
ethnographers and sociologists have also been active in this domain (Geertz et al.
1979; White 1995), and the field is now being developed through field studies
and analysis. The main difference for those two approaches is that economists
generally build models that are rather abstract and formal, whereas ethnologists and
sociologists describe actual markets after observing them and generally produce
models that are based on classifications of large amount of data. The notion of
market itself has a double meaning, even more important with the increasing use
of the Internet: it is at the same time the institution that enables individuals to
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coordinate their actions through the fixing of a price or, alternatively, a physical
place where buyers meet sellers. There is no easy decision to choose the scale to
study when dealing with market, neither is the limit of observation that is needed in
the supply chain to understand a phenomenon easy to set. In agent-based simulation,
markets (being open or closed to new entries) are represented as closed societies
with specified agents that are possibly interconnected.

Simulations can be based on very specific case studies and in order to describe
as accurately as possible the behaviour of real actors, but they can also be mainly
theoretic and in an attempt to generate expected theoretical results. In all cases,
a simulated market cannot be implemented as described in neoclassical economic
theory since agents need to be independently specified and interact directly with one
another during the simulation. For example, to develop a model where individual
agents have to make a decision, a demand curve (that gives for any price of a
product, the number of agents that are ready to buy or sell at this price) cannot
be imposed on the model but has to be derived from the determinants of agent
behaviour. One approach is to distribute reservation prices (the maximum price for
buying or minimum for selling) among agents which can then be used to aggregate
demand and offer curves.

The main elements to define a market model are given in the next section. We
will then describe a few approaches to rationality and learning for agents in markets
that depend on the type of market and goods that are represented. A similar analysis,
more oriented towards consumers’ behaviour, can be found in Jager (2007).

25.2.1 Main Elements to Build an Artificial Market

Several dimensions are important on a market, and each description of an element
is easy to relate to a dimension in the building of an artificial system with agents
(simply put, the market institution and the agents’ rules of behaviour). Axtell (2005)
proposes a very abstract view of decentralized exchange on an agent-based market,
where he gives no explanation of the bargaining process that organizes the exchange
but shows the existence of a computationally calculable equilibrium to increase all
agents’ utility. Here, the aim is to find out actual processes that can be used by
modellers to represent markets.

The first distinction that can be made when developing a model is to know if
one is building the representation of a speculative market or a goods market. What
I call a speculative market, typically a financial one, is such that agents who have a
commodity can keep it, sell it or buy it. They have to anticipate prices and wait to
perform their actions so as to make the highest profit. Seminal works on agent-
based simulation were related to speculative markets, which display interesting
regularities in their stylized facts. A large body of literature has developed on this
topic, which is also due to the fact that data to calibrate models are more easily
available than for nonspeculative markets. On a goods market, agents have only one
role, to sell or buy a certain number of units of one or more products, and they
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usually have a reservation price to limit the prices they can accept. The products can
be perishable (with an intrinsic value that decreases over time) or durable so that
stock management is an issue.

Then, both types of market can be organized either through auctions (with diverse
protocols: double-auction, ascending, descending, with posted prices or continuous
announcements) or via pairwise interactions which imply face-to-face negotiation
(with many different protocols, such as “take-it-or-leave-it”, one shot negotiation,
a series of offers and counter-offers, the possibility for buyers to explore several
sellers or not). In the design of the protocol, it can also be important to know if
money exists in the system or if agents exchange one good for another directly.

Agents’ cognition must entail some choice algorithm. Agent-based simulation is
almost always used to design agents with bounded rationality because agents have
limited computational abilities or limited access to information. They have tasks
to perform, within a limited framework, and have to make decisions based on the
context they can perceive. Most of the time, they are given a function, equivalent
to a utility function in economics, that associates a value to each action, enabling
the agents to classify the profit it gets and hence to compare actions. First, an agent
must have constraints in its actions, in order to be able to make arbitration between
all possible options:

– Each commodity is associated a reserve price: if a buyer (resp. seller) goes on
a market, there is a maximum (resp. minimum) price it is willing to pay for the
good.

– The importance of obtaining a commodity can be indicated by the price of entry
to the market. Agents have a greater incentive to buy and get a 0 profit, rather
than not buying. The constraint for selling can be the same.

– In some papers, the price is not represented in the system, and the acquisition of
a product is limited by a utility function, where the agent acquires the product
only if it makes enough profit.

– In the case of negotiation, time constraints are usually put on buyers who can visit
a limited number of sellers, having hence a limit on their search for a commodity.

– There can be a discount factor: at each period, the risk of seeing the market close
is constant, and hence agents never know if they will be able to trade at the next
period.

The type of decisions that agents have to perform on a market:

• For buyers: how many units to buy, who to visit, how to decide to stay in a queue
depending on its length, which price to propose/accept, which product to accept
and more fundamentally to participate or not.

• For sellers: how to deal with the queue of buyers (first-come-first-served or with
a preference for some buyers), which offer to make or accept and, in the case of
repeated markets, how many units to buy for the next time step and, in the case
of a market where quality is involved, which type of product to propose or build
for the next time step
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Due to the increasing complexity when adding another type of decision to a
model, it is rare that all of these decisions will be made in one single model. For
example, although interactions could potentially be represented in a continuous way,
I know of no model where it is the case: all choices and meetings are made and
messages sent at discrete time steps.

25.2.2 Agents’ Learning

As said before, in most markets that are studied with agent-based models, the
central element is that agents are heterogeneous in knowledge as well as in need.
This situation can be decided from initialization or can emerge during the course
of the simulation, while agents learn. Another element that is rarely given at
initialization but is acquired by agents while learning is information about other
agents’ characteristics. In most cases, this learning takes place as a result of action,
at the same time as the acquisition of an object or the acquisition of money.

The way learning is organized is generally linked to a performance of actions,
with a selection of actions that “satisfice” or give the best performance. On a market,
it is often assumed that agents are interested in getting the highest payoff for their
individual actions: the performance is either the profit that agents get from their sells
or the utility they get from consuming the product. In most models, learning agents
have a set of predefined actions they can take, and they have to select the one they
like the best, following a probabilistic choice.

One of the simplest learning models is reinforcement learning (Erev et al. 1999;
Bendor et al. 2001; Macy and Flache 2002; see also Chap. 20 (Macy et al. 2017)
in this volume), where agents attribute a probability of choice for each possible
action that follows a logit function. The algorithm includes a forgetting parameter
and a relative weight attributed to exploitation (going to actions known as having
high value) and exploration (the random choice part in the system). The exploration
parameter can be fixed during the simulation, where the level of randomness has
to be chosen or can vary during the simulation (increase) so that there is a lot of
exploration at the beginning of the simulation and, as time passes, agents focus on
the “best” actions. This issue of which level of exploration and exploitation to put
in a learning algorithm is of current concern in the literature about markets (Moulet
and Rouchier 2007).

Another model of rationality for agents is based on a representation of strategies
of other agents, fictitious play: a distribution of past actions is built by each agent,
and they can then infer the most probable set of actions of others and hence choose
their optimal behaviour (Boylan and El-Gamal 1993). The EWA model has been
proposed by Camerer and Ho (1999) to gather both characteristics of these models:
the agent not only learns what profit it got for each action but also computes notional
gains for each possible action and attributes the resulting notional profit to each of
those possible actions.

http://dx.doi.org/10.1007/978-3-319-66948-9_20
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A slightly more complex representation of knowledge commonly found in the
literature is the classifier system where each decision is made by considering a
context, a choice and the past profit made in this precise context by making this
special choice (Moulet and Rouchier 2007). This type of algorithm is very similar
to what Izquierdo et al. (2004) call case-based learning, but it does not seem to be
applied to market situations. In general the number of possible actions is fixed from
the beginning, but the classifier system can be associated to a genetic algorithm
that generates new rules over the time (Kopel and Dawid 1998). Genetic algorithm
learning is also a quite usual way to represent learning, where the information that is
used by agents to estimate the profit of each rule can be based on actual past actions
(Vriend 2000) or also on the imaginary profit of all possible actions considering the
actions of others (Hommes and Lux 2008). The presence of other agents can also be
relevant information when agents use imitation or social learning.

Brenner (2006) undertook an extensive review of common learning processes.3

In this paper, an interesting element arises: the way “satisficing” rationality can be
developed by having agents not look for the best action but for one which enables
them to get a “good enough” profit; the notion of “good enough”, called “aspiration
level”, can then evolve during the simulation (Cyert and March 1963).

An alternative to learning algorithms that are only based on profit is to consider
that agents have a social utility, which need not have the same dimensionality as
profit. Indeed, it has been demonstrated that translating the social utility in costs
or profits that can be added to monetary profit gives a dynamics of learning and
behaviour that is radically different from a situation where agents reason in two
dimensions, social and monetary, with a lexicographic ordering (Rouchier et al.
2001). A way to implement social utility without lexicographic ordering is to include
in the utility the appreciation of similarity of members of the network, such as in
consumer choice models (Delre et al. 2007).

In most models, action and information gathering are made in one action, and
circulation of information as such is not really modelled. The reason is certainly
because it would take modellers too far from the neoclassical economic approach
to market, where the only information is the observation of transactions, sometimes
of intermediate prices as in auctions or, sometimes, bargaining. One model of a
market by Moss (2002) represents communication among agents before exchange
takes place, and Rouchier and Hales (2003) (whose model evolved into the one of
Rouchier (2004)) also allocate one period out of three every time step for agents to
look for information.

3The main objection to Brenner’s exposition is the lack of homogeneity of notation, which makes
the algorithms difficult to compare and maybe to implement.
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25.2.3 Indicators and Method

Several types of modelling can be found in papers about markets, just like in
any other application domains of simulation. Some prefer to work at a purely
abstract level, while others try to fit as well as possible data that they extract
from observation and experience. Whatever the approach, indicators that are often
observed in markets are prices, efficiency (the total profit that is extracted from
agents compared to the maximum profit that could be extracted) and relative power
of different agents. The notion of convergence is central to the modelling of markets,
since most research refers to economics and has to compare results to economic
static equilibrium. In some cases, what is observed is interaction patterns, which
can be represented as the random part of the agents’ choice when interacting,
e.g. the number of different sellers that a buyer meets in a number of steps. In
bargaining models and in general exchange models, the (non-)existence of an
exchange is also something that is observed. Sometimes, the cognition of agents
themselves is observed: their belief about others’ preferences or even the distribution
of propensities to choose sellers.

Among all the indicators that can be observed in the model, these last ones
cannot be observed in real life and hence cannot be compared to human systems.
In a lot of models, agents’ behaviour is compared to that of humans in order to
establish the validity of the cognitive model. The data are very rarely extracted
from real-life situation (although it sometimes happens) but are mainly constructed
via experiments. Experimental economists control all information circulation and
record all actions of agents. It is thus possible to compare in a very precise and
quantitative way the global behaviour of the group and individual behaviour, on
one side with artificial agents and on the other side with human agents. Real-life
situation can also be seen as the mix of human and of artificial agents, such as in
financial online markets.

Other researchers do not want to match data too precisely. As Vriend (2006)
says, agent-based models, like any other models, are abstract settings that have to
be interpreted as such. The comparison between real and abstract data should go
through a first step which is the building of stylized facts that are already a summary
of human behaviours, where only the most striking elements are integrated. Vriend
is much more interested in the reaction of his abstract model to changes in
parameters and in its self-consistency. It could be said that by construction, a
model can only capture a small part of human cognition, which is full of long-term
experiments and memories and should not be compared to quantitative data without
caution.

Eventually, some researchers want their model to influence real life and try to
use the results they find to give advices on the way to build markets. Different ways
to fit models with real life will be found in each example of a model—be it to fit
precisely, to fit stylized facts or to be an abstract study of the effect of some rules in
a social setting.
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25.3 Buyer-Seller Interactions

In the literature about agent-based markets, a great attention has been given to the
analysis of local interactions, hardly ever studied in classical economics, apart from
rare exceptions (Rubinstein and Wolinsky 1985). An aim is to reproduce as well as
possible the features of real markets. It is indeed to be noticed in real observation
that buyers display regularity in the choice of sellers with whom to interact and
that this regularity emerges in time with experience—this attempt to reproduce
patterns of interaction is the only way to understand, rather than just describe, the
way individuals coordinate (Weisbuch et al. 2000). Authors study local bargaining
processes with great care, as well as repetition of interactions over several days,
where choices are not only based on prices but also on the fact that buyers need
to buy and sellers need to sell. The basic feature of these models is pairwise
interactions on markets with several sellers and buyers where prices are not fixed
and result from negotiation only. The number of visits buyers can undertake, the
way sellers manage queues or the number of steps it takes to negotiate a price
is different in all these systems that focus only on small parts of the whole set
of stylized facts that are observable on such markets. Some aspects that are often
studied are described in the following, and the subsequent choices for modelling the
organization of pairwise interactions are given.

25.3.1 Bargaining Processes

Brenner (2002) studies agents’ learning in a bilateral bargaining market, focusing on
the convergence of prices and the dynamics of bargaining. There is one commodity
in the market, and buyers and sellers meet at every time step to exchange it. Each
buyer can choose one seller for each step, with the selection based on the price being
acceptable. The sellers respond to buyers waiting in their queue in order of arrival
by proposing a price. Buyers have to decide who to visit; sellers have to decide on
the first price to propose and the number of subsequent proposals if the buyer rejects
the offer, bargaining being costly for both agents. All decisions are made following
reinforcement learning based on past experience. Hence, all choices are based on
the satisfaction that is associated with each past action and on a rigidity variable. A
buyer will continue to choose a seller as long as he is satisfied. His probability to
change depends on his expectations with another agent. A seller also calculates the
probability to change behaviour depending on his belief about what he would gain
by performing another choice.

The rigidity parameter, which is the opposite of noise in the system, has a great
impact on results. If rigidity is high, buyers keep visiting the same seller. The cost
of bargaining also is important: if it is relatively high, sellers learn to offer the price
they know to be acceptable to buyers, and they do not bargain after a few rounds. In
this system, since the relations are so individual, the convergence of the price overall
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is not very fast and can be highly variable for a long time, although converging in
the end. The model is extremely sensitive to all parameters that define aspiration
levels for agents.

Brenner’s paper is of the class that compares simulation to theoretical results.
Here, sub-game equilibria are used to compare the possible outcomes and their
efficiency to the generated prices and behaviours. There is no reference to any
real-world data. However, it is interesting that both micro-behaviour (the number
of bargaining steps) and macro-data (prices) are of importance, justifying an agent-
based analysis.

Influenced by this paper, but referring to real data, Moulet and Rouchier (2007)
reported a bargaining model based on two sets of data: qualitative, from a field
study in the wholesale market of Marseilles (Rouchier and Mazaud 2004), and
quantitative, giving all proposals, intermediate and final prices for a series of
transactions in the same market (Kirman et al. 2005). Like the previous model, the
market gathers buyers and sellers who meet at every time step. However, buyers
can visit several sellers in one market opening. The choice for a buyer has several
dimensions: to decide which seller to visit, to decide to accept an offer or to reject it
and to propose a counter-offer or leave and which value to counter-offer. Sellers
must choose the first price to offer and to accept buyer’s counter-offers or not
and the value of the second offer they can make. In this model, decisions evolve
following classifier system learning, where each agent evaluates a list of possible
options following his past experience. The results that are produced are compared
with indicators derived from real-world data: values of offers and counter-offers of
the agents that vary depending of the kind of product that is purchased and ex post
bargaining power of sellers (which is the difference between the first offer and the
price of transaction compared to the difference between the counter-offer and the
price of transaction).

In the simulations, the values that are obtained fit the data quite well in that
the observed bargaining sequences and agents’ behaviours are reproduced. The two
main parameters are the number of sellers that agents can meet (from one to four)
and the speed of learning of sellers. The relative importance of learning for the
agents can be seen as situating them in a negotiation for in-season goods and a
negotiation for out-of-season goods. The model produces results similar to those of
out-of-season goods when agents have to learn repeatedly, when there is no known
market price but a lot of heterogeneity in the buyers’ readiness to pay. In the case
of in-season goods, the market price is more settled, and agents do not explore the
possible values of goods as much, relying instead on their experience. Between the
different in-season goods, the main difference could be the number of visits buyers
make, but this number tends to reduce after a learning period, when buyers have
selected their preferred seller. This aspect of the model—the growing loyalty of
agents—is not the centre of the research and was represented mainly with the aim
of matching the actual behaviours of the market actors. Other papers, described in
the following section, are more focused on this issue.

Another direction for the study of bargaining processes is related to the creation
of robots or artificially adaptive agents (AAA) to participate in electronic commerce
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(Oliver 1997). Such models focus on complicated negotiations in that they integrate
several dimensions of trade in the deal: price, quantity and delivery time. The main
argument for the value of the algorithm that is proposed in the paper is that the
agents learn to negotiate at least “as well as humans”, which means that as many
negotiations lead to an agreement as in human bargaining situations so that profit is
extracted from both sides of the bargaining. The bargaining consists of several steps,
where a customer reacts to the first offer by comparing its profit to a threshold and
the offer is accepted if it is higher than the threshold and rejected with a counter-offer
otherwise. Clearly, such models capture satisficing and bounded rationality rather
than profit maximization. The bargaining can then carry on with several successive
offers being made by customer and seller. Strategies for accepting and counter-
offering evolve through a genetic algorithm. Five different games are used to test
the learning, in a population of 20 agents with three rounds of bargaining at most,
and each agent is given 20 chromosomes for decision-making. It is then proven that
AAA perform better than random, that agents are able to learn general strategies that
can be used against different bargaining partners and eventually that AAA perform
as well as humans (depending on the game, sometimes better and sometimes worse,
maybe depending on affective values for humans) in terms of number of agreements
that are reached. This is an interesting result to consider when one wants to introduce
artificial agents into electronic markets, since one wants to be able to reach as many
agreements as possible.

25.3.2 Loyalty

Loyalty is present in quite a few models of markets where agents interact repeatedly.
It is popular to deal with this topic with agents, mainly because it is related to
two main advances of agent-based modelling: heterogeneity and interactions. There
exist two representations of this loyalty in the literature: either fixed loyalties,
assumed in order to understand its impact (Rouchier 2004), or emerging loyalties,
as the result of endogenous interactions. Vriend refers to “endogenous interactions”
when he uses individual learning to generate an evolution of interactions among
agents (Vriend 2006). The idea is that agents learn to select which actions to perform
as well as which agent to interact with; it is clear that this can lead to the apparition
of loyalty and that it can take different regular patterns.

One main field where this loyalty issue has been important is the study of
perishable goods markets (fruits and vegetables and fish). The participants of
these markets are very dependent on the regularity—which implies predictability—
of their interactions. The main reason is that buyers need to purchase goods
almost every day: they have very little ability to stock, and they must provide
their customers with all possible goods (a retailer can become unattractive to his
customers just because of the lack of one commodity). In case of shortage, they
need to have good relations with a seller to make sure the commodity will be
available to them. Conversely, Rouchier (2004) shows in a model that the presence
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of loyal agents in a perishable goods market is necessary for the sellers to predict
the right number of goods to provide every day. In this artificial market, two types of
buyers interact with sellers: those that look for the cheapest prices (“opportunistic”)
and those that are faithful and try to get the product rather than to get it cheap
(“loyal”). To be able to be opportunistic, agents first gather information about prices
and then decide on the seller they want to meet to make the best transaction. The
more opportunistic agents are present in the market, the more garbage is produced,
and shortage occurs. Although there is some randomization of needs for the buyers,
the presence of loyal agents makes the sellers estimate their stocks in the best way.
This result holds for different learning algorithms (step-by-step learning, simple
reinforcement learning and classifier systems). Considering that the field study on
the fruits and vegetables market of Marseilles, France, showed that most of the
agents are loyal (according to the definition of the model: first loyal and then try to
find all the goods in a minimum of visits to sellers), this result can give a functional
explanation of their action choices.

In a slightly different context, Rouchier et al. (2001) has represented the shape of
emerging patterns of relations that could be created by two types of rationality with
agents. The situation is a market-like situation, where offers are dependent on the
situation in the preceding step, since the commodity is a renewable resource. Agents
are herdsmen and farmers, with the latter selling access rights to their land. If none
or if too many herdsmen are using the same land, it will get depleted, and hence the
offer will be reduced. Two types of micro-behaviour are defined: either the herdsmen
choose the cheapest farmers or they choose the ones that offered them access most
often. In the first case, the simulations resulted in depletion of the resource, with
congestion of demand for the cheapest farmers. The links that were created were
highly stable (once an agent found the cheapest, it would not change), but on the
other hand, agents could not readapt when there was a shock in the resource quantity
(a drought) because everyone would converge to the same farms. With the second
rationality, agents had a representation of a “good” farmer, which was only based
on individual experience, and hence they would be heterogeneous. They would
also have several “good” farmers to visit in case one was not available. This made
them much more flexible in their choice, avoiding depletion of the resource, so
everyone was better off. The macro-situation, although the process is different, also
shows that a loyal micro-behaviour is a help to repartition of goods where there can
be shortages. In this setting, the loyal micro-behaviour also enables a more equal
repartition of gain among farmers as well as herdsmen.

Kirman and Vriend (2001) explored the emergence of loyalty in an artificial
market based on a field study in the fish market of Marseille. The aim is to see
loyalty emerge and in addition to see which emergent behaviour sellers display.
They use classifier systems to represent learning, where their agents can have a lot
of different actions, some of which are, a priori, not good for their profit. Through
the exploration of good and bad possible actions, they select those that bring the
highest profit in the past. Some buyers learn to be loyal, and those that learn this get
higher profit than others in the long term (it is actually a co-evolution where sellers
learn to offer lower prices to those that are loyal). The buyers are then differentiated:
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their reservation price is heterogeneous (e.g. to represent that they do not sell their
fish to the same population, some are in rich neighbourhood, some in poor ones).
Sellers on the market learn to discriminate, and they offer higher prices to those
that have higher reservation prices. Eventually, some of the sellers get themselves
specialized since only low-price buyers can visit them. Using a very basic learning
where agents are not rational but learn by doing, the results are very satisfying
because they reproduce stylized facts of the fish market.

A third model represents the same market but refers more to quantitative data
of this market (Weisbuch et al. 2000). The data represents sales that took place
over more than 3 years and concern 237,162 individuals. From these, it is possible
to observe that most buyers who are faithful to a seller buy a lot of quantities
every month. The model was built in two parts: one which is simple enough to
generate analytical results and a second that displays more realistic hypotheses.
In the analytical model, agents use the logit function to select their action (basic
reinforcement learning), which means that their choice depends on a ˇ value,
between 0 and 1, which decrease gives a higher propensity to randomly test all
sellers and which increase induces a higher propensity to look for the best past
interaction. Agents can either imitate others or only base their choice on their own
learning. The results can be found using the mean field approach, coming from
physics. It is shown that there are radically different behaviours—either totally loyal
or totally “shop around agents” depending non-linearly on ˇ.

The model becomes more complex with sellers being able to sell at two different
prices, high and low. What can happen in this system is that a buyer becomes loyal
to a seller when the price is low and remains loyal even after the price has switched
to high. The only important thing is that, as seen before, the product is actually
provided. One indicator that is used to synthesize diverse information of the model
is “order”, which is defined as the number of loyal agents. The more regular the
agents, the more ordered the society. Although the results, once interpreted, are very
coherent with real data in terms of possible states of the market, it is a bit difficult to
understand precisely some concepts of the paper because it refers mainly to physics
indicators that are translated into social indicators, but this translation is not always
straightforward.

25.3.3 Reputation of Sellers

Pinyol et al. (2007) have developed a market model as a benchmark for a reputation-
based learning algorithm for agents in a social system. The model integrates quality
and judgement of a relationship. Reputation is used in the group to enable agents to
gather enough information in a context when it is scarce. The market that is used
is a rather simple institution, where buyers have to select one seller at each time
step to buy one unit of a commodity. The quality of the commodity is different
for each seller. For a buyer, the acquisition of a commodity of lower quality will
give less utility than the acquisition of a commodity of high quality. Sellers have a
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limited quantity of units, which they can sell at any period (the commodity is non-
perishable) and they disappear from the system when they have sold everything.
The most important information for buyers is the quality of the commodity that
each seller offers. However, when the number of sellers is large, this information
cannot be acquired efficiently if the buyer has to meet a seller to learn of the
quality of his commodity. This is why information circulates among buyers, who
communicate once every time step. A buyer who meets a seller forms an image of
this seller; a buyer who gets information about a seller has access to a reputation
of this seller. When giving information to another buyer, an agent can decide to
give the direct knowledge it has (the image it formed of a seller) or the reputation
it has already received (which is more neutral since it is not its own evaluation).
Reputation can also circulate about the buyers and in that case concerns the validity
of the knowledge they give about sellers. When a buyer is not satisfied with the
information given by another buyer, it can also retaliate and cheat when this very
agent asks him a question.

Pinyol et al. (2007) describe in detail the choices that agents make when asking
a seller for a commodity, asking another buyer for information about a seller or a
buyer, answering a question and the lying process.

The simulated market contains a large number of sellers (100 for 25 buyers).
Simulation runs are defined by (a) the type of information that is used by agents
(only image or image and reputation) and (b) the number of bad-quality sellers in
the system (99, 95, 90 and 50). The addition of reputation to the system makes
the difference between a normal learning mechanism where buyers select their
favourite seller and a learning mechanism where agents aggregate information
of different quality to (maybe) increase their performance. The results show that
globally the agents indeed learn more efficiently when using reputation, in that the
average quality that is bought is higher. The quantity of information that circulates
is much higher, and this enables buyers to increase their utility. This social control
mechanism is especially important when quality is really scarce (1% of good
sellers). This result is all the more interesting since this is a very rare case of
a simulated market where communication among sellers is represented, although
this behaviour is commonly observed in real-life situations. For a more in-depth
discussion of reputation, see Chap. 18 in this handbook (Giardini et al. 2017).

25.4 Consumers, Producers and Chains

Another way to look at the notion of goods markets is to consider large markets,
where individual interactions are not important for the agents who do not record
the characteristics of the ones they meet but only the fact that they can or cannot
perform an exchange. A large market can indeed include numerous goods that are
distributed among different other agents and not necessarily easy to access. Another
interest in large market is to study endogenous preferences for goods and imagine
their evolution depending on the type of good and some cognitive characteristics of

http://dx.doi.org/10.1007/978-3-319-66948-9_18
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agents. Eventually some authors are interested in the coordination process within
the supply chain itself, where the issue is about the amount of information that each
agent has to use to anticipate the needs of distant, end consumers.

25.4.1 Multi-goods Economy

As examples of a market with several goods, we will discuss two very abstract
models where agents have to produce one commodity and consume others, which
they can acquire only through exchanges with other agents. The first model was
built to produce speculative behaviours in agents, which means acquiring a product
that has no value for consumption but only a value for exchange (Duffy 2001); the
second model’s aim is to witness the emergence of commonly used equivalence
value for the goods, which is interpreted as relative prices (Gintis 2006). Both
models are interesting for their pure description of an abstract economy with
minimalist but sufficient assumptions to induce economic exchanges. In the works
cited here, the methodology used in realizing the models is slightly different: one is
purely abstract, whereas the other tries to refer to experimental results and mimic
human players behaviours.

In his paper, John Duffy (2001) designs a model that was originally proposed by
Kiyotaki and Wright (1989) to induce some agents to store a good that is not their
designated consumption good and is more costly to store than their own produced
commodity, because they think it easier to exchange with others. There are three
different goods in the economy; agents need to consume one unit of good to increase
their utility and produce one unit of good each time they have consumed one. There
are also three types of agents: agent type 1 needs good 1 and produces good 2, agent
type 2 consumes good 2 and produces good 3 and agent type 3 consumes good 3
and produces good 1 (in short, agent type i consumes good i and produces good
i C 1 modulo 3). Hence, agents have to exchange when they want to consume, and
not all agents can be satisfied by just one exchange. Indeed, if two agents exchange
their own production goods, one can be satisfied, but the other would get a useless
good, which is neither its own production good nor its consumption good. In this
economy, only bilateral trading exists, and it takes place after a random pairing of
agents. This involves that some agents must keep a good for at least one time step
after production before getting their consumption good.

In this economy, speculation is defined as the storage of the good i C 2, since
the agent does exchange to get this good which it has not produced, only because
of the chances to use it as an exchange good at the next time step. The economy
is made nonsymmetric by having different costs for the storage of goods, here
0 < c1 < c2 < c3. The original Kiyotaki and Wright model is all about calculating,
given the storage costs, the discount factor (the probability that the economy stops at
the end of a time step) and the utility of consumption, based on which agents decide
to get the most expensive good to store or keep their production good. In an economy
with perfect information, the expected profit for each type of agent depends on the
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proportion of agents of type i holding good i C 1 (their production good), which is
1—proportion of agents of type i holding good i C 2 (their “speculative” good).

With this model, John Duffy tries to investigate how agents could learn which
choice to make when they are able to acquire a good they do not consume. Especially
agents of type 1 are those that should hesitate, since good 3 is the most expensive.
A lot of models have been built on this topic (Basci 1999) already, but what
Duffy wants to produce is a setting that is close to laboratory experiments he has
been leading (Duffy and Ochs 1999) in order to be able to judge if his agents
are behaving in a way which is coherent with that of human actors. So, from a
theoretical setting, he builds experiments and simulations and compares all the
results this technique produces. In this paper, he therefore proposes an algorithm that
is close to his intuition of what individuals should do (he has also asked questions
to people involved in his experiments), and he then tries to mimic the results of
his experiments, at a global level and a local level. He also proposes some original
settings where he mixes human agents with artificial agents to test at the same time
his algorithm and how much he can make the human change behaviour depending
on the stimuli they get. He is satisfied with his results, where his model of learning
enables to reproduce human behaviour correctly. Unfortunately, the reproduction of
his model is not so straightforward (Rouchier 2003), but all in all, this description
of a very basic economy with few goods and where agents learn in an intuitively
plausible way is a very interesting example of market for agent-based modellers.

The paper by Gintis (2006) presents similarities, although the aim and the central
question are different. The economy that is presented can be seen in a very general
way but is only implemented in one setting, which is described here. In the economy,
there are three goods and 300 agents. Each agent can produce one good and needs
to consume both goods it cannot produce; hence, it is forced to exchange with other
agents. At the beginning of each period, an agent only holds the good it produces
(in a quantity that it can choose and which is costless) and can meet two agents,
each producing one of the good he needs to acquire. Each agent has a representation
of “prices”, which is here defined as the equivalence quantity between two goods.
There is no common knowledge of prices, and each agent has its own representation.
When an agent meets another agent who can provide him with the needed good, he
offers to trade, by sending as a message its representation of relative “prices”. The
exchange takes place at this exchange rate if it is acceptable to both agents, and
the exchanged quantities are the highest quantity that both can exchange. Agents
cannot choose who they meet; they just pick randomly from the other producers’
groups. After exchanging, they can consume, which gives them utility and defines a
performance for each individual. Learning in this system is an event that takes place
every 20 periods, where 5% of least performing agents (who get the lowest utility)
copy the price representation of the highest performing agents.

What is observed in the system is the efficiency of the represented market,
meaning the sum of all profits, compared to a setting where prices would be
public. When prices are public, all exchanges can take place since all agents
agree right away on the equivalence that is proposed and there is no refusal in
exchange. In the long term, the system converges to the highest possible efficiency,
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so although the agents have private prices, these prices get to be close enough to have
regular exchanges. This result in itself is not very surprising in terms of simulation
(considering the process at stake) but is interesting in economics since it gives, at
least, a process to attain to a common knowledge which is often presupposed to
exist.

25.4.2 Adoption by Consumers

The study of the behaviour of large numbers of consumers facing the introduction
of new products on a market is a topic that is very interesting to approach with
agent-based simulation, since it allows, once more, looking for the influence of
heterogeneity of individuals and of networks in the evolution of global results.
Wander Jager is a prominent figure in this area of research, positioned between
psychology and marketing. In a paper with Marco Janssen, he presents the basic
model (Janssen and Jager 2003). The idea behind the study of the acquisition of a
new product in a group is that agents have a preference that is based on two main
parameters: the individual preference for the consumption of the product and the
interest that the agent has to consume the same product as his acquaintances. Hence,
a utility function depends on these two parameters, and this will influence an agent’s
decision to buy a new product. Agents are heterogeneous in such a system, and the
representation of “early adopters” (in the real world, people who buy a product when
it is just released) is modelled by a low need to conform to others’ behaviour. On
the opposite end of the spectrum, some agents buy a good only because a lot of their
acquaintances have already acquired it.

In Janssen and Jager (2003), the influence of network size and topology is
tested, as well as the influence of the utility brought by the product consumption
and the way agents choose their action. One aspect that is studied is the type of
cognitive process that can be used by the agent (repetition of the same action;
deliberation to find a new action; imitation, where other agents’ consumption is
imitated; social comparison, where other agents are imitated based on their utility).
This indicator is quite rare and shows the psychological grounding of the paper. It
is interesting to observe that the cognitive process changes with the utility gained
by the consumption of the considered product. Agents with a lot of links are very
important for the spreading of product adoption: in a small-world network, many
more products get adopted than in a scale-free network. A discussion is open here
about the type of products, which certainly influence the way people copy others—it
will be different for milk and for computers or clothes.

This last question is actually developed in a different paper: in Delre et al. (2007),
the question that is at stake is to determine how to advertise efficiently depending
on the type of good. Is it better to advertise a lot at the beginning of a campaign or
after a moment; is it better to advertise to a large number of people or to disseminate
information among only a few agents?
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Two products are differentiated: a brown product, which is a high-tech and quite
fancy product that can be compared with other agents of the network (e.g. CD,
DVD player), and a white product which is related to basic need and is not really
compared (fridge or washing machine). Agents are gathered in networks of different
topologies. In this model, the heterogeneity in the utility formula is similar to the
one in the preceding paper: each one is defined by a propensity to be influenced by
others and to be an adopter of a new technology.

The first finding of this model is that the timing of promotion is important to the
success of the campaign. For a first launch, the best strategy is to “throw gravel”, i.e.
to do a little advertising to many distant small and cohesive groups of consumers,
who will then convince their network neighbours. Another element is that not too
many people must be reached at first, since if they see that others have not adopted
the good yet, they might not want it and become impossible to convince afterwards.
This is mainly true for the white good, where it is better to advertise broadly when
at least 10% of agents have already adopted the good, whereas with brown goods,
adoption is much faster, and a campaign helps the takeoff.

The issue of the adoption of a practice within a social context has also been
studied to understand the adoption of electronic commerce for consumers (Darmon
and Torre 2004). The issue at stake is that it should be logical that everyone turns to
electronic commerce, which radically reduces transaction and search costs, but we
observe that a very small proportion of items are as yet traded via the Internet. This
is mainly because consumers have not developed special abilities that are associated
with this form of interaction and do not know how to reduce the risk of performing
a bad transaction. To study the dynamics of adoption of electronic commerce and
learning of agents in a risky setting, a simulation model has been built. The market is
composed of agents who can produce a good and exchange it for the good they want
to consume (hence, all agents are at the same time producers and end consumers).
Agents and goods are located on a circle; the location of an agent defines the
“quality” of the good it produces. For consumption, each agent is defined by an
interval of quality: when consuming a good whose quality is within this interval
(not including its own production good), it will get a strictly positive profit. The
cost of production is heterogeneous and can be constant during the simulation or
evolving.

When trading on the traditional market, an agent can identify the quality of a
product offered by another agent, but it has to talk to many others before finding out
who it can exchange with (depending on the number of agents and of its interval
of choice). The authors also added a notion of friction, which is a probability of
failing to trade when two agents meet. In the electronic market, an agent sees
all other agents at once (no search cost) but cannot identify precisely the quality
that is offered and evaluates it with an error interval. Hence, it potentially accepts
goods with zero utility. Agents are heterogeneous in their ability to perceive the
quality and their learning algorithm. If an agent learns via individual learning, then
it eliminates an agent from its list of potential sellers whenever the previous trade
brought no utility. If agents learn through collective learning, then a part of the whole
society belongs to a community that shares information about the quality (location
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on the circle) of the seller they met at this time step; the agents not belonging to
the community learn individually. In some simulations, for both types of learning,
agents forget a randomly chosen part of what they learnt at each time step.

In the case of individual learning, the dynamics produced depends on the
production cost, which can either change at all time steps (and hence all agents have
the same average production cost over the simulation) or which can be constant
and delineate populations with high or low production costs. When the production
cost changes at each time step, the main result is that eventually all agents switch
to the electronic market, with the move happening in stages. Those that have a
good appreciation of quality go to the electronic market very fast because it is
more profitable for them. Their departure from the traditional market reduces the
probability of exchange for the remaining agents, who eventually move to the
electronic market as well. When production costs are heterogeneous, some agents
cannot switch from traditional to electronic because of their inadequate production
cost. Hence, they never learn how to identify quality and stay in the traditional
market. When agents forget part of what they have learnt, then the size of the
electronic market does not get as large as with perfect learning, and a number of
agents do not switch.

When agents participate in a community and exchange their information, the
highest number of agents will switch to the electronic market, and overall the lowest
number of agents is excluded from exchange. Three groups are created: agents
belonging to the community, who get the highest payoff; agents with low production
cost or high expertise, who can go on the electronic market and make a high profit;
and the remaining agents, which sometimes cannot exchange. This result is rather
coherent with what could be expected, but it is interesting to have it created with
this location-based representation of quality that each individual wants to attain. It
is especially clear that there is little risk that traditional markets should disappear if
the main assumption of the model—that agents need an expertise that takes long to
acquire before switching to the electronic market—is true.

25.4.3 Decentralized Supply Chain

Supply chains are an important aspect of economics, and they are often difficult
to consider, mainly because their dynamics spread in two directions: (1) along the
length of the chain, suppliers have to adapt to demand, and buyers have to adapt to
the speed of production so as to be able to provide the end market with the right
quantity of goods; and (2) another dimension is the fact that suppliers as well as
buyers in the chain are substitutable and that each actor is itself in a market position
and can choose between several offers or demands. In existing agent-based models,
only the first issue is treated. The structure of these models is a series of agents
(firms) that are each linked to two agents: a supplier and a client (except for first
supplier and end consumer, of course, who are linked to only one firm). Each agent
has to decide on its production level at each time step, knowing that it needs to use
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goods from the preceding firm in the production process. It must then anticipate
the demand to order enough, before being able to transform the needed quantity.
Of course, each firm takes some time (number of steps) to transform the product
and be able to sell, and there is a cost in storing its own production when it is not
completely sold.

One very important issue of these chains is at the centre of most research: how
to avoid the so-called bullwhip effect. This effect is a mechanical dynamics that
comes from the slow spreading of information and delay in answer because of the
length of the production process in each firm. When there is variability in demand
coming from end consumers, this variability increases a great deal when it goes up
the chain, right up to the first producer who exhibits the highest variability. It can be
very annoying for organizations to be trapped in such negative dynamics. Several
authors propose algorithms for artificial agents that have to deal with the issue of
anticipating demand at each stage of the chain. For example, Lin and Lin (2006)
describe a system where artificial agents can interact with real agents (and hence
be integrated in a real-life company to help decision-makers) in order to choose
the right level of production and order to reduce costs. Several learning algorithms
are tested and their efficiency attested, even in situations where the environment is
dynamically evolving. The same issue is dealt with by others, for example, Kawagoe
and Wada (2005), who propose another algorithm. They also propose a method to
statistically evaluate the bullwhip effect. Their method is different from the usual
frequency-based statistical measurement (like stochastic dominance) but is based
on descriptive statistics.

25.5 Financial Markets and Auctions

Financial markets have been one of the first examples that were developed to prove
the relevance of agent-based modelling. Arthur et al. (1997a) indeed reproduced
some important stylized facts of asset exchanges on a market, and this paper is
always cited as the first important use of this modelling technique for studying
markets. Contrary to models that were presented before, there is no direct interaction
among agents in these models, only observation of price patterns. One rare example
presented here is an attempt to link a financial market to a consumer market such as
the ones seen in previous sections. Another type of market that does not integrate
any interaction in the economy is the representation of auctions.

25.5.1 Financial Markets

The literature on financial markets is very important in agent-based simulation and
dates back to the 1990s (Arthur 1991, 1994; Arifovic 1996; Arthur et al. 1997b).
This holds also true for the related branch of research, which is called econophysics:
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the use of physics techniques to deal with economic issues in systems that are
composed of a huge number of simple interacting actors (Levy et al. 2000). A
comprehensive review of this topic (Lux 2009) describes the main stylized facts
that can be found in financial markets (and hence are meant to be reproduced
by simulation) and some models that are candidates for explaining these facts.
Another review (Samanidou et al. 2007) describes several agent-based simulations
models dealing with financial markets; unfortunately, these models do not achieve to
reproduce the very general statistical regularities of these markets. As usual, in the
following, I will describe only a selection of models and ways to represent agents’
learning in the context of financial markets. The basic structure of the market, which
defines the type of choice the agent has to make, can vary as well as the aim and
methodology of the researcher building these models, and this is why discussing
a few representative examples in detail seems a better idea than presenting very
generic results.

One reason for using agent-based models is to be able to represent populations
of heterogeneous agents. What is very often found is the representation of two types
of agents with different reactions to information: chartists and fundamentalists.
Fundamentalists base their investment decisions upon market fundamentals such
as dividends, earnings, interest rates or growth indicators. In contrast, technical
traders pay no attention to economic fundamentals but look for regular patterns in
past prices and base their investment decision upon simple trend following trading
rules. Computer simulations such as those of the Santa Fe Artificial Stock Market
(LeBaron et al. 1999; but see also, e.g., Kirman 1991; Lux and Marchesi 1999,
2000) have shown that rational, fundamental traders do not necessarily drive out
technical analysts, who may earn higher profits in certain periods. An evolutionary
competition between these different trader types, where traders tend to follow
strategies that have performed well in the recent past, may lead to irregular switching
between the different strategies and result in complicated, irregular asset price fluc-
tuations. Brock and Hommes (1998) have shown in simple, tractable evolutionary
systems that rational agents and/or fundamental traders do not necessarily drive
out all other trader types but that the market may be characterized by perpetual
evolutionary switching between competing trading strategies. Non-rational traders
may survive evolutionary competition in the market; see, for example, (Hommes
2001) for a survey.

In Hommes and Lux (2008), the chosen market model is the so-called cobweb
model, which is a prediction model on a market, not an actual model of selling
and buying for agents. The model offers, however, a rational expectation value,
which serves as a benchmark. The methodology is to try to fit agents’ behaviour
in an artificial world to real behaviours of individuals in experiments. The game
is such that participants of the experiments have no clear idea of the structure of
the market but still have to predict the price of the next period. They neither know
how many other agents are present nor the equation that calculates the future price
based on the realized price and the expectations of all participants. The simulations
are made based on rather simple models of agents including a genetic algorithm,
simple learning that copies past prices and reinforcement learning. What interests
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the authors most is the GA learning, which is the only one to fit stylized facts
in different treatments. What the GA learns about is a 40-bit string of 0 and 1
representing two values, ˛ (the first 20 bits) and ˇ (the remaining 20 bits), that
predict the price at t C 1 depending on the price at t with p(t C 1) D ˛ C ˇ (p(t) - ˛).

There are three runs both for experiments and for simulations, with one parameter
defining the stability of the price (high, medium or low). The genetic algorithm
being varied for different mutation rates is proven to be largely better than other
learning procedures that have been implemented. “Better” means here that it fits
the stylized facts that have been produced by humans in experiments: (1) the mean
price is close to rational expectation, and the more stable the market, the closer
the mean price is to this rational expectation value; and (2) there is no significant
linear autocorrelation in realized market prices. The reason for the good fit of the
GA given by the authors is really interesting because it is not obvious to imagine
how GAs, which are random learning processes with selection, should be similar to
human learning. The authors assume that the good fit is based on two facts: the fact
that successes are selected positively and that there is heterogeneity in the strategies
among the set that agents can use. Once the assessment of the model is done, it is
used to question the stability of the results of the learning process. One question that
arises is to wonder whether humans would adapt the same way when interacting in
a very large group as they do in a small group of six. This opens many questions
about the scalability of results concerning market dynamics.

In our second example, the interaction of agents is direct and not necessarily
via the price system, as is usual in financial markets. Hoffmann et al. (2007)
indeed consider that many agent-based simulations still take little interest in
representing actual behaviours of decision-makers in financial markets. They argue
that Takahashi and Terano (2003) is the first paper to integrate theories that
come from behavioural finance and represent multiple types of agents, such as
overconfident traders. In their own paper, Hoffmann et al. (2007) present their
platform SimStockExchange™, with agents performing trades and making decision
according to news they perceive and prices they anticipate. They argue that their
model is based on several theories that are empirically sound and that they validated
their model results against data over several years from the Dutch market. As usual,
the platform allows many variations (increase the number of different shares of
agents, change the characteristics of agents) but is tested only with some values
of parameters.

Agents receive news that they forget after one time step and then can perform
two types of action: either sell their stock (if they expect to lose at the next time
step) or buy more shares (in the opposite case). To make sure that they are not
making mistakes, agents can use risk-reducing strategies, which can be clarifying
strategies (such as collecting more data) or simplifying strategies (i.e. imitating
other agents), as well as purely individual (the first one) or social (the latter). In the
presented simulation, strategies are always social, and hence agents’ confidence, C,
determines their use of risk-reducing strategies; the confidence values were deduced
from empirical studies. Each agent is also defined by a tendency R to perform a
simplifying strategy or a clarifying one. R and C are evaluated on the basis of
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surveys made with investors. Agents are imbedded in networks of two different
topologies (torus, scale-free); agents may acquire information from their links or
choose to imitate them. The market itself is designed as an order book, where
proposals for sells and buys are written down with quantity and price and are erased
as soon as an agent answers positively to a particular proposal. The market price
is the average of all proposed bids and asks of the order book—hence it is not a
realized price (average transactions’ price) but an aggregation of desired prices for
agents.

In the results, some statistical properties of the stock exchange have been
reproduced. For example, with weekly data of Dutch stock exchange, linear
autocorrelation can be observed, and this is better reproduced when a torus-shaped
network is used rather than the scale-free one is used. With regard to volatility
clustering, the torus network differs from both the scale-free network and the real
data. This can be due to the high speed of information circulation reducing the
shocks that it can cause. The main aspect of the SimStockExchange that needs
improvement is the news arrival, which is a normal distribution around the present
price. This might have a large impact since the use of different networks integrates
the importance of information spreading.

25.5.2 Relation Between Two Markets

Sallans et al. (2003) report a model integrating two types of markets: a financial
market and a goods market in the same system. Consumers, financial traders and
production firms are interacting, and the aim is to understand how these two markets
influence each other. The good is perishable and hence needs to be purchased
regularly. Consumers make purchase decisions; firms get income from sales and
update products and pricing policies based on performances; traders have shares,
which they can hold, sell or buy. Firms decide upon the features of their products,
which are represented as two binary strings of 10 bits. In choosing actions, the firm
agent uses an action-value function that integrates expectations about future rewards
(firms are not myopic agents) by taking into account the evolution of the price of its
share in the financial market and the profit made by selling products on the goods
market. Consumers have preferences for particular features of a product and its price
and compare any available product to these preferences: they can choose not to buy
if the product is too different from their preferences. In the financial market, agents
build expectations and built representations of future values by projecting actual and
past values into the future. They are divided into two groups: fundamentalists (use
past dividend for projection) and chartists (use the history of stock prices); they are
also heterogeneous regarding their time horizon. The market-clearing mechanism is
a sealed bid auction, and the price is chosen to maximize the number of exchanges
(and randomly among different prices if they produce the same trade volume).

Agents from the financial market and firm agents have different views on the
future of a firm and evaluate future gains in a different way, which might impact the
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firm’s performance negatively. The simulations’ aim is to prove that the model can
be used, in certain parameter settings, to reproduce stylized facts of markets.

Although the central issue is very interesting, the paper itself is not as helpful as
it could be to understanding the dynamics of two markets. In particular, the stylized
facts are not very explicit in the paper (appear only once at the end, when obtained
results are given). They are classical in financial market analysis, but not clearly
shown here: low autocorrelations in stock returns, high kurtosis in marginal return
and volatility clustering. Hypotheses on behaviour are never explained; hence, there
is no understanding of why the stylized facts can be achieved, apart from doing
some random exploration of the parameter space. Thus, while the main issue of the
paper is fascinating, the results are a bit frustrating, and the reciprocal influences of
these two markets, so important in our real world, stay hidden.

25.5.3 Double Auctions

In economics double auction is a very fascinating topic, since it is an extremely
stable market protocol in which predictions can be translated from theory to real life,
which is not really the case for most economic systems. When putting real people in
a double-auction setting, one can observe that the convergence to equilibrium price
occurs. This does not mean that this protocol is efficient, since a lot of exchanges
take place out of equilibrium price, but at least there is a tendency for the group
to converge to a price where the highest number of exchange can be performed and
hence the highest global profit can be extracted. Many authors have therefore wanted
to reproduce a double-auction market in an artificial society in order to understand
the source of this high efficiency.

The continuous double auction (CDA) is a two-sided progressive auction. At any
moment in time, buyers can submit bids (offers to buy), and sellers can submit asks
(offers to sell). Both buyers and sellers may also accept an offer made by others.
If a bid or ask is accepted, a transaction occurs at the offer price. An improvement
rule is imposed on new offers entering the market, requiring submitted bids (asks)
at a higher (lower) price than the standing bid (ask). Each time an offer is satisfying
for one of the participants, she announces the acceptance of the trade at the given
price, and the transaction is completed. Once a transaction is completed, the market
is cleared (meaning there is no standing bid or ask any more), and the agents who
have traded leave the market. At that moment, similar to the opening of the market,
the first offer can take any value, and this proposed price imposes a constraint on any
following offer. When the market closes, after a time decided beforehand, agents
who have not yet traded are not allowed to continue. In this market protocol, all
market events are observed by all (bid, ask, acceptance and remaining time before
market closing) and hence are said to be common knowledge.

Using this double-action setting, a seminal paper by Gode and Sunder (1993,
2004) shows the strength of institutional constraints on the actions of agents. In
their model, agents are perfectly stupid from an economics point of view, since they
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have no understanding of their own interest and only follow a simple rule without
any strategic planning. These so-called zero-intelligence agents are not allowed to
sell (buy) lower (higher) than their reservation price, and they have to bid within the
limits that have been put by others. With this rule, convergence of prices is obtained
very fast. The approach in this paper is quite original in the behavioural economics
literature in the sense that it is close to an “artificial life approach”. The authors do
not pretend to study human rationality but instead focus on the abstract reproduction
of phenomena. It is interesting to note that is not so easy to design a double-auction
market, especially in its continuity. Indeed, in a real situation, if two individuals have
close reservation prices, they will often be able to buy or sell at the same moment.
Who will be first is not obvious, since people have different aspirations for profit.
Gode and Sunders randomly choose an agent between all buyers who can buy or
make a bid and then randomly pick a seller among those who can sell or make an
offer. After trying several methods, they decided on random selection, explaining
that this is a good approximation to continuous double auctions.

Their work is widely criticized because (a) they are not interested in rationality
but in a specific market protocol and (b) it cannot be generalized to other protocols
(Brenner 2002). However, their result is important and led a lot of researchers to
question it. For example, Brewer et al. (2002) show that humans are able to have
markets converge when the context changes a lot, which Gode and Sunders’ agents
cannot do. They organize a double-auction market, in which agents participate in
the public market but also receive offers from the experimenter privately. Only
one offer is made at a time, and it is the same for all agents that are proposed
the offer, since the equilibrium has to stay the same. The global equilibrium
(which value is described in the paper) is thus constant, but individuals can have
incentives not to participate in the public market if the offer is interesting. This does
change the performance of zero intelligence a lot, since the prices do not converge
anymore in simulations led with this new protocol. On the opposite, humans
performing experiments attain convergence, which could mean that only very
specific institutions constrain participants enough so that they have no choice but
to converge, even while not understanding more than the rules (zero intelligence).

Inspired by Gode and Sunder, but also by the theoretical model of Easley and
Ledyard (1993), Rouchier and Robin (2006) tried to establish the main elements
a rational agent would need to be able to choose the right action in the context
of a double auction. To differentiate among different possible learning procedures,
a comparison with some experimental results was made. The learning procedure
chosen is a simple algorithm that consists of making the agent revise its reservation
price towards past average perceptible prices, depending on two variable elements.
First, the duration after which an agent would change its reservation price (i.e.
a buyer (seller) accepting higher (lower) prices), called the “stress time”, could
change—increasing after a successful transaction and decreasing after a day with
no transaction. Second, the agent could either only perceive its own transactions
or those of any successful transactions in the market. The paper demonstrated
that agents learn faster to converge to the equilibrium price (making the highest
global payoff) if they did not revise their stress time and had a global perception
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of prices. This quick learning would at the same time correspond best to the speed
of convergence that could be found in experiments. What is a bit surprising in this
result is that more “clever” agents (reacting to risk and failure from one day to
another) would neither copy human behaviour well nor get to the equilibrium price
very fast.

25.6 Market Design/Agent Design

In a chapter of the handbook for computational economics (Tesfatsion and Judd
2006), Marks (2006) reviews recent work in market design using agent-based
simulation. Market design is the branch of economic research aiming to provide
insights about which protocol, i.e. interaction structure and information circulation
rules, is the best to obtain certain characteristics of a market. As said repeatedly
in this chapter, this choice is crucial in having certain parts of a population gain
more power than others or having efficiency attained in a short time. Hence,
many scientists have been thinking about this issue, using the game theory (Roth
et al. 1991), as well experimental economics, and more recently computational
exploration. As seen before, sophisticated agents are not the ones who do best in
market situations or copy human behaviour closest.

When designing a market protocol, it is important to see two challenges. First
the “aim” of the protocol needs to be clear since not all positive aspects can be
achieved in a single protocol (see, for example, Myerson and Satterthwaite 1983).
For example, using Dutch auction has the advantage of being fast, whereas double
auction is good because it extracts the highest global profit for all. On the other hand,
one might wish to extract the highest profit for buyers only, for example. LeBaron
(2001) explains that the fitness of a model is as important as all other elements (what
is traded, the motivations of agents, how the interaction and information circulation
is organized, etc.). To achieve this, trade-off between different characteristics is
already a huge choice before starting the design.

Then one has to think on how to achieve this aim. It is indeed not easy to know
how individuals will react to an interaction and information constraint. The basic
use of agent-based simulation can then be to either test a certain agent behaviour
and compare protocols to see what difference it makes in prices or other indicators
(Moulet and Kirman 2008) or to test different learning algorithms in the same setting
(Chan and Shelton 2001). Both approaches are uniquely developed using agent-
based simulation and can indeed help understand the relation between participant
behaviour and market protocol.

Many models, be it for computer scientists or economists, were designed to fit
the context of the electricity market, which is crucial since problems can be very
severe for society (when there are huge unpredicted shortages) and the variations
in price can be very fast. The agents in those models are not designed to represent
human rationality but to try to be as optimal as possible in the adaptation to the
electricity market. Many market protocols can be used, although auctions (which are
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theoretically the most efficient of all market protocols) are most common. Bidding
behaviours, but also the number of sellers and buyers, and the capacity to produce
and sell (Nicolaisen et al. 2001) have an impact on the efficiency, and this can be
explored. As said before, what is explored is the impact of the protocol on efficiency
and market power. Two ways of learning are commonly used for the agents, and
authors sometimes disagree over which one to choose: either social with a genetic
algorithm or individual with reinforcement learning. While it is already well known
that this has a huge impact on global results (Vriend 2000), in this chapter, we cannot
decide on the best choice to make. However, to our view, most results cannot really
be extended to real-life design since the representation of learning for agents can be
badly adapted to the application context (necessity to have long learning in case of
GA or even reinforcement learning).

One original approach that is cited by March (2007) is the “evolutionary
mechanism design” (Phelps et al. 2002), where the strategies of three types of
actors—sellers, buyers and auctioneers—are all submitted to evolution and selection
(the fitness of the auctioneer’s strategy being linked to the total profit of the
participants). This approach is logically different since the protocol itself (via the
auctioneer) is what evolves to get to a better result, with the characteristics of
the participants being fixed (relative number of each and relative production and
demand).

It is interesting to note that another branch of research deals with the represen-
tation of individual agents on large markets and is also quite close to an idea of
design of markets, but from the opposite perspective: by introducing agents into
real markets. Computer scientists interested in the analysis of cognition have the
goal of making artificial agents as efficient as possible in a context of bidding
in auctions, both from the point of view of the seller and the buyer (Kephart
and Greenwald 2002). They are usually not interested in understanding human
behaviour and decisions, but rather in explaining the properties that can emerge
in markets in which many artificial learning agents interact (with each other or
humans), differentiating their strategies, getting heterogeneous payoffs and creating
interesting price dynamics. The focus lies mainly on information treatment. This
applied approach is interesting in that many of its algorithms can also be used for
economic analysis in the framework of models of the type that have been explored
here. However, the aim is slightly different, since the indicator in the latter case is
the individual success of a strategy, whereas the indicators for the previous works
on markets are based on global properties of the system.

25.7 Concluding Remarks

This chapter is not a general review of market simulation in recent research;
instead of giving many examples, we focused on a few to show the diversity of
questions, models, rationality and eventual results that can be found in the literature,
coming from different backgrounds (classical economy, experimental economy,
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computer science). The representation of a market is always linked to the purpose
of the simulation study, and there is never just one way forward. The quantity and
substitutability of goods; the possibility to interact with one or several sellers, with
other buyers; and the memory of the agents themselves all depend on the type of
issue, and this is why we have built the chapter in this manner: to give some ideas of
the issues that have been addressed up until now with agent-based simulation. What
is noticeable is the real difference between this approach and the classical approach
in economics, where the dynamics are not regarded as a central question. However,
the achievements with this new approach are now numerous enough to prove that
agent-based simulation can participate in a better understanding of market protocols
and behaviours of individuals on the market and enhance the institutional choices
of politics. What can be noted in conclusion is that several issues are still at stake
when it comes to the representation of markets.

First, like with most simulation models, the temporal issue is huge. Most models
use discrete time to advance the simulation. This can lead to problems, for example,
in an auction, where different agents might act precisely at the same time and
have a different impact on prices than when they act sequentially. Some people
are specifically working on this issue and build platforms that support a simulated
continuous time4 (Daniel 2006).

Another technical issue is the one of learning sequences of actions. In a situation
where agents evaluate their actions with profit, if they have to perform several
actions in a row (i.e. choosing a seller and then accepting a price or not), it is
impossible to decide which of these actions is the reason for a success or a failure.
Facing this issue, economic papers describe agents that associate the profit to all
actions, as if they were separated. This is clearly not very satisfying in terms of
logic, but no alternative modelling has been proposed yet.

Finally, there is a conceptual gap in all the cited models. As yet, another element
has never been taken into account in the representation of agents’ reasoning on
markets, which would fit in models where agents try to maximize their profit by
choosing the best strategies. In this case, they can scan past actions and the following
profits or their past possible profit with all actions they could have undertaken and
then select the best action in all contexts. While the latter strategy is a bit more
general than the first one, neither lets the agents imagine that a change in their action
will modify other agents’ behaviour as well. This is strange enough, since a lot of
people interested in game theory have been working on agents in markets, but none
of them have produced models of anticipation of others’ choices. In markets where
bargaining is central, it could however be a central feature in the understanding of
real human behaviour.

Acknowledgements I wish to thank Bruce Edmonds for his patience and Scott Moss and Sonia
Moulet for their advice.

4Natlab, which can be found at http://www.complexity-research.org/natlab.
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Further Reading

Arthur (1991) is one of the first models incorporating learning agents in a market.
Lux (1998) describes a model of speculation on an asset market with interacting
agents. Duffy (2001) was the first to attempt to link experimental data to simulation
results in order to evaluate the kind of learning within a speculative environment.
Jefferies and Johnson (2002) give a general overview of market models including
their structures and learning by agents. Moulet and Rouchier (2007) use data on
negotiation behaviours from a real market in order to fit the parameters of a
two-sided learning model. Finally, Kirman (2010) summarizes many interesting
dimensions that can be captured using agent-based models.
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Chapter 26
Movement of People and Goods

Linda Ramstedt, Johanna Törnquist Krasemann, and Paul Davidsson

Abstract Due to the continuous growth of traffic and transportation and thus
an increased urgency to analyze resource usage and system behavior, the use of
computer simulation within this area has become more frequent and acceptable. This
chapter presents an overview of modeling and simulation of traffic and transport
systems and focuses in particular on the imitation of social behavior and individual
decision-making in these systems. We distinguish between transport and traffic.
Transport is an activity where goods or people are moved between points A and
B, while traffic is referred to as the collection of several transports in a common
network such as a road network. We investigate to what extent and how the social
characteristics of the users of these different traffic and transport systems are
reflected in the simulation models and software. Moreover, we highlight some trends
and current issues within this field and provide further reading advice.

Why Read This Chapter?
To gain an overview of approaches to the simulation of traffic and transportation
by way of representative examples and also to reflect on the characteristics and
benefits of using social simulation as opposed to other methods within the domain.
The chapter will inform both researchers and practitioners in the traffic and
transportation domain of some of the applications and benefits of social simulation
and relevant issues.
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26.1 Introduction

The continuous growth of traffic and transportation is increasing the interest in lim-
iting their negative impact on society. Moreover, the different stakeholders involved
in traffic and transportation are interested in utilizing the available resources in the
best way possible. This has stimulated the development and use of both various
policies and advanced transport infrastructure systems, as well as the deployment
of information and communication technologies. In order to examine the effects of
such developments prior to or during implementations, computer simulations have
shown to be a useful approach. This chapter addresses modeling and simulation
of traffic and transport systems and focuses in particular on the imitation of social
behavior and individual decision-making.

Traffic and transport systems typically involve numerous different stakeholders
and decision-makers that control or somehow affect the systems, and the prevalence
of social influence is thus significant. In order to study the behavior of such
systems and model them, it then becomes necessary to capture and include the
significant social aspects to some extent, in addition to the flow of traffic or transport
units that constitute the backbone of such systems. In this context, we consider
a traffic or transport system as a society, consisting of physical components (e.g.,
cars, buses, airplanes, or parcels) and social components (e.g., drivers, passengers,
traffic managers, transport chain coordinators, or even public authorities) where
the interactions between them may play an important role. The social components
determine the physical flow in their common environment (e.g., road or rail networks
and terminals) in line with external restrictions, internal intentions, and so forth.
Depending on the purpose of the simulation study and the sophistication and detail
that is desired in the model, there are different approaches to incorporate social
influence in such systems.

The purpose of this chapter is to present an overview of when and how social
influence and individual behavior within the domain of traffic and transportation
have been modeled in simulation studies. We also provide further reading advice to
related approaches and highlight current issues. We divide the domain into transport
and traffic. Transport is an activity where goods or people are moved between points
in one or several traffic modes (road, rail, waterborne, or air). The types of vehicles
we consider are train, truck, car, bus, ship, ferry, and airplane. While transport refers
to the movement of something from one point to another, traffic refers to the flow of
different transports within a network. One train set is thus a transport (and possibly
also part of a transport chain) that takes part in the train traffic flow. Hence, a
transport can be part of several traffic networks (air, waterborne, road, or rail), and
a traffic network comprises several transports.

Typical points of interest related to transportation in this context are, for instance,
to predict consequences of transport policies aimed at mediating governmental goals
or objectives of companies and to design and synchronize bus timetables at certain
stations to facilitate passenger flows. A typical issue that is interesting to study in the
traffic context is the impact of driving assistance systems where the driving behavior
in road networks is studied.
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In the following sections, the types of simulation approaches that exist within the
traffic and transportation domain, and the motivation behind them, are presented.
The social aspects of the studied systems and models and how they have been
accounted for are also described here. Finally, a concluding discussion is presented
along with some further reading advice.

26.2 Traffic

This section addresses the modeling and simulation of individual and social
behavior within traffic systems. There are several types of simulation models
developed and applied which have different granularity, i.e., macro-, meso-, and
microlevel models. The first two typically represent the traffic behavior by the use
of equations, which are based on aggregated data. Thus, the traffic is modeled as
a collection of rather homogenous entities in contrast to the microscopic models,
which more in depth consider the individual characteristics of the traffic entities
and how these influence each other and the traffic system. Since this handbook
mainly addresses the modeling of social aspects, we will focus on microscopic
models.

Within the domain of traffic system simulation, the dominating focus is on
simulation of road traffic and car driver behavior to evaluate the quality of service
in road traffic networks (Tapani 2008). The development and implementation of
ADAS (advanced driver-assistance systems), ATIS (advanced traveler information
systems), and road traffic control regimes, such as congestion taxation, stipulate an
increasing interest in sophisticated simulation models. There are also approaches
that study the behavior of traffic systems during extraordinary situations such as
urban evacuations. Since users of road traffic systems normally do not communicate
and interact with each other directly but rather indirectly due to the restrictions
of the traffic system, the design of agent communication and protocols is mostly
not considered in these simulation models. Focus is instead on individual behavior
models.

The attention given to the simulation of social aspects in other modes of traffic
such as air and railway traffic is, however, very limited, and we have not found
any publications focusing on this specific subject. One reason may be that the
traffic in these modes to a large extent is managed by central entities, such as
traffic controllers. In this perspective, the behavior and interaction of the individual
vehicles are less interesting to study. However, the interaction between traffic
controllers in these traffic modes seems to be a domain that needs more attention.

Below we will provide a more in-depth presentation of social simulation in road
traffic. Since the movement of people associated with a vehicle is the focus in this
chapter, simulation of pedestrians and crowds will only be presented briefly in the
last section on related research.
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26.2.1 Road Traffic Simulation

In road traffic simulations, there are several distinctions made. First, there is a
distinction made with respect to the problem area in focus and whether it concerns
urban, rural, or motorway traffic. Furthermore, depending on the infrastructure
modeled, there is a distinction between intersection, road, and network model. As
an example, urban traffic is often modeled as a network (Pursula 1999).

One can see that there are three main categories of simulation models with
increasing level of detail in driving behavior. First, there are the empirical macro-
scopic traffic models (e.g., software like TRANSYT provided by TRL Software)
that focus on traffic flow analysis. Then we have the extended microscopic models
with capabilities of representing individual driver behavior by use of different
sub-models or rules for speed adaptation, car following, lane change, as well
as intersection and roundabout movements if relevant (e.g., VISSIM for urban
and freeway environments and TRARR, TWOPAS, and VTISim for rural road
environments (Tapani 2008)). The third type of models has an even more complex
representation of driver behavior by use of, e.g., neural networks (NN) (Lee et al.
2005; Dia and Panwai 2007) or discrete choice models (Dia 2002; Lee et al. 2005).
In some cases, these behavior models can be dynamically configured to imitate
driver behavior adaptation and the effect of learning from experience; see, e.g., the
work by Rossetti et al. (2000).

These three types of models do complement each other, but with the growing
need to evaluate the impact of investments in intelligent transport systems (ITS)
such as ATIS and ADAS, and policies such as road pricing, the need to reflect the
complexity of driver behavior in more detail becomes apparent (Tapani 2008). The
current behavior sub-models for acceleration, lane changing, car following, and so
forth are mainly equation based with threshold values. Toledo (2007) claims in a
review of state of the art in road traffic driver behavior modeling that, in many
cases, these sub-models are insufficient to adequately capture the sophistication of
drivers and the impact of long-term driving goals and considerations. Henceforward,
we will focus on the approaches that emphasize such advanced driving behavior
modeling and refer to Pursula (1999), Mahmassani (2005), Toledo (2007), and
Tapani (2008) for more information about related research.

In the third category of approaches mentioned, the individual drivers are usually
modeled as individual autonomous vehicles represented by intelligent agents. The
main differences between the equation- or rule-based behavior sub-models and the
agent-based models are the increased reasoning capabilities and planning horizon
considered. The traffic network flow in either case could be based on techniques like
cellular automata (CA) (Nagel and Schreckenberg 1992; Esser and Schreckenberg
1997) and queuing theory, while the decision-making of the agent is based on a
possibly more diverse set of objectives and influencing parameters. Sometimes, the
agents use simple decision rules acting in a reactive manner rather than having
sophisticated reasoning capabilities. We refer to Ehlert and Rothkrantz (2001), El
Hadouaj et al. (2000), Wahle and Schreckenberg (2001), and Kumar and Mitra
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(2006) for examples of such reactive behavior. However, these approaches are not
considered part of the third category in this context, and this illustrates that agent
technology does not necessarily imply, but only enables, a representation of more
complex behavior.

The approaches and their models often focus on a certain traffic infrastruc-
ture depending on which aspect to study. Below, we address three main topics:
simulation of road traffic in intersections, evaluation of ATIS and ADAS, and
benchmarking of behavior modeling techniques.

26.2.1.1 Simulation of Road Traffic in Intersections

Urban traffic networks typically involve intersections with a complex coordination
and interplay between vehicles. This is challenging to model, and it is difficult to
prevent deadlocks from occurring during the simulation. One way to handle this is
to use game theory and agents. Mandiau et al. (2008) propose a distributed coordi-
nation and interaction mechanism for the simulation of vehicles in T- and X-shaped
intersections in urban road traffic networks. The vehicles are represented as agents
who can choose between two actions: brake or accelerate. The coordination between
the vehicles crossing the intersection is based on game theory, and a 2x2 decision
matrix for each pair of vehicles is used to compute the decisions. The approach is
also extended to involve a larger traffic volume of n agents (vehicles), where the
memory requirements then increase rapidly due to the n(n�1)/2 decision matrices.
The mechanism does not prevent the occurrence of deadlocks but is able to resolve
them.

Bazzan (2005) does also propose a distributed game theory-based approach for
the coordination of road traffic signals at X-shaped intersections where vehicles are
represented as autonomous intelligent agents. The agents have both local and global
goals and are adaptive in the sense that they are equipped with a memory to register
the outcome (i.e., payoff) of executed actions; via learning rules, they are able to
incorporate their experience in the decision-making. Game theory has also been
used in this context to model the route choice behavior (Schreckenberg and Selten
2004).

26.2.1.2 Evaluation of ATIS and ADAS

The benefits from and application of ATIS and ADAS have become more known
and common in modern road traffic systems. An implementation is, however, often
associated with large investments and limited insight in how the system and its
users would respond to such an implementation in the short and long term. The use
of simulation may then offer some information on possible consequences to guide
the stakeholders. A typical question to address is how the individual drivers would
change their choice of traveling with an increased access to traffic information. Dia
(2002) investigates the implications of subjecting drivers to real-time information
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in a road traffic network. Each vehicle is represented as a BDI agent (Belief-Desire-
Intention), which has a static route-choice multinomial logit model (Ben-Akiva and
Lerman 1985). Static refers to the multinomial logit model not being updated during
simulation and thus not making use of driver/vehicle experience. Panwai and Dia
(2005) extend the approach using NN and then further improve it by giving each
agent a memory and a dynamic behavior model based on NN (Dia and Panwai
2007). The behavior model is updated accordingly during the agent’s journey
allowing the agent to act on the information provided by an ATIS by reevaluating
its strategy en route and possibly changing route if possible and beneficial.

Rossetti et al. (2000) focus on the departure time and route choice model
of commuters in a road traffic network using the DRACULA (Dynamic Route
Assignment Combining User Learning and microsimulAtion) simulation model.
The drivers are represented by autonomous BDI agents, some of which have access
to ATIS and thus more information about the current traffic situation than other
drivers. The agent behavior model is dynamic in the sense that it incorporates the
experience of the commuting driver on a daily basis, but does not allow the driver to
change strategy en route. Before the commuter starts its journey and decides when
to depart and which route to choose, it compares the predicated cost of choosing
its usual daily route with the cost of the alternative route. If the cost of any of the
alternatives is significantly lower than the cost of the daily route, the driver chooses
that. Otherwise, it stays with its usual route. Once the agent has decided on departure
time and route, it will follow that guided by car-following and lane-changing rules
and cannot change its mind.

Chen and Zhan (2008) use the agent-based simulation system Paramics to
simulate the urban evacuation process for a road traffic network and the drivers’
route choice and driving behavior. The vehicles are modeled as individual agents
that have local goals to minimize their travel time, i.e., to choose the fastest way.
Based on traffic information, a car-following model, network queuing constraints,
and a behavior profile (e.g., aggressive or conservative driving style), each agent
dynamically, en route, reevaluates its driving strategy and route choice.

26.2.1.3 Benchmarking of Behavior Modeling Techniques

Since a number of alternative methods to model and simulate road traffic exist, a
few studies have focused on comparisons to evaluate the strengths and weaknesses
of some alternatives. Lee et al. (2005) compare and evaluate the use of three
different route choice models for road traffic drivers with access to trip information:
a traditional multinomial logit model, a traditional NN approach, and an NN
combined with a genetic algorithm (GA). The initial attitude of the authors indicates
a preference for the combined NN-GA solution proposing that it is better suited to
consider the influence of nonlinearity and obscurity in drivers’ decision-making.
Based on their simulation experiments and the mean square error of the different
route choice models, the NN-GA approach is said to be most appropriate.
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Hensher and Ton (2000) make a similar comparison of the predictive potential
of NN and nested logit models for commuter mode choice. They do not make any
judgment about which method is most appropriate but conclude that both require a
lot of historic data to train or construct the models. Due to the characteristics of NN,
they are better at handling noise or lack of data than discrete choice models.

For more in-depth information about human behavior in traffic, we refer to
Schreckenberg and Selten (2004), while Boxill and Yu (2000) present an overview
of road traffic simulation models and Koorey (2002) an overview of software.

26.3 Transportation

In this section, approaches to simulating transportation systems are described,
which include both transportation of freight and people. Transportation is often
described as road, rail, waterborne, or air transportation, but transportation can
also be intermodal. Intermodal transportation refers to a transport chain of two
or more modes of transport where some modal shift activity takes place, for
instance, at a terminal where loading and unloading of goods is done or at a train
station where passengers transfer from train to bus. Supply chains are related to
freight transportation, even if the focus mainly is on the product and its refinement
processes, in contrast to freight transportation where the focus is on the vehicle and
its operations.

Issues in the field of passenger transportation typically concern evaluation of
policies for more efficient bus timetables and pricing policies. Another field within
the domain is emergency transportation, which often concerns the planning of
resources, such as ambulances or fire engines, in order to serve people in need
efficiently with respect to costs, coverage equity, and labor equity. Other issues are
the evaluation of different policies, such as dispatching policies. Goldberg (2004)
has reviewed operations research approaches for emergency transportation and
claims that mathematical programming currently is the dominating method used.
He also states that simulation is a promising approach for future work related to
emergency transportation, especially for vehicle relocation and dispatching, due to
the complexity of the problem domain. However, we have not found any papers
describing approaches of social simulation in the field of emergency transportation.

In papers describing simulation approaches to transportation with a focus on
social aspects and individual behavior, we have only found models for road, rail, and
waterborne transportation, i.e., we have not found any air transportation models.

26.3.1 Freight Transportation

Different approaches are used when modeling and simulating transportation. A
common approach when analyzing transportation is the so-called four-step approach
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(production/attraction, distribution, modal split, and assignment), which primarily is
developed for passenger transportation but also used for freight transportation (de
Jong and Ben-Akiva 2007). This approach is on the macroscopic level, i.e., averaged
characteristics of the population are in focus and aggregated data is used, in contrast
to a microscopic level, which would include more details on the individuals of
the population. A trend in the field of freight transport simulation for predicting
probable consequences of transport policies is to include more details; see, e.g.,
de Jong and Ben-Akiva (2007) and Hunt and Gregor (2008). However, most of
these approaches are still macroscopic approaches, but with some microscopic
characteristics (Ramstedt 2008).

Traditional simulation approaches for simulating supply chains are discrete-event
simulation and dynamic simulation (Terzi and Cavalieri 2004). In such models, the
behavior of the individuals is often only represented as a set of actions related
to a probability function of being executed, not capturing causal behavior of
the simulated system.1 Moreover, interactions between the individuals, such as
negotiations, are not explicitly modeled in traditional supply chain models. Since
modeling and simulating social aspects are the main concern here, we focus on
simulation approaches that address interactions between individuals.

Most simulation approaches of freight transportation have a descriptive pur-
pose, such as predicting the effects of different kinds of policies. For instance,
Gambardella et al. (2002) who simulate intermodal transportation make use of
multi-agent-based simulation to examine policies aimed at improving the operations
at terminals, while simulation approaches of supply chains (Swaminathan et al.
1998; van der Zee and van der Vorst 2005) often focus on evaluating strategies
such as VMI (vendor-managed inventories). Such studies are mainly of interest for
private companies, even if they can be of interest for public authorities as well.
Another example is provided by Davidsson et al. (2008), which studies the possible
effects of transport policies in transport chains, which are of interest for public
authorities. In this approach, the decision-making of actors in transport chains, for
instance, regarding traffic mode choice, selection of supplier, etc., is simulated. New
prerequisites as a consequence of transport policies have the potential to change
these decisions so that a different system behavior occurs. There are also examples
of models with a prescriptive purpose, such as to support the transport planning in
order to improve the efficiency of the usage of transport resources (Fischer et al.
1999).

The simulated system in transport approaches typically consists of a network
of links and nodes served by resources such as vehicles, which have a spatial
explicitness and are time-dependent. In supply chains, the focus is more on the nodes
and their processes, while the links are not explicitly considered.

In the domain of freight transportation and supply chains, the decision-making
of stakeholders is typically modeled and simulated. To model the decision-making,
agents representing real-world roles in transportation, such as customers, transport

1See Chap. 3 in this handbook (Davidsson and Verhagen 2017) for further general discussion.

http://dx.doi.org/10.1007/978-3-319-66948-9_3
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planners, transport buyers, and producers, are typically implemented. Only in a few
cases are physical entities, such as vehicles, also modeled as agents (Gambardella
et al. 2002). Tasks, which are commonly performed by the agents, are selecting (1)
which resources (e.g., terminals, transport, and production resources) to use and
(2) how these resources should be used considering time, cost, availability, etc.
These tasks are often performed as a consequence of a customer request with an
aim of satisfying the demand based on cost, time, and availability. The behaviors
of the agents are often implemented in terms of various types of algorithms or
decision rules. Typically, the agents try to minimize their costs, e.g., labor or fuel
costs, which occur as a consequence of performing a transport task between two
nodes. Of course, restrictions and requirements from other agents – concerning, for
instance, time of delivery – are also taken into account. The implemented algorithms
in the agents can be rather complex, with optimization techniques and heuristics
used to compute the decisions and actions (Holmgren et al. 2007; Fischer et al.
1999).

If some of the simulated agents represent physical entities, the locations of
the entities and their characteristics are typically modeled. If the agents represent
decision-makers, the responsibilities of the agents are also typically modeled, e.g.,
the responsibility of certain types of vehicles on certain infrastructure segments.

The interactions between the agents often take place as negotiations concerning,
for instance, the cost and time of performing a task, such as transportation between
two nodes. The negotiations are then carried out according to interaction protocols,
and the corresponding information exchange between the agents is modeled explic-
itly. As an example, a customer agent requests information concerning possible
transport solutions, or a transport planning agent requests information concerning
available vehicles for the transport task (Davidsson et al. 2008).

The agent-based simulation models are implemented in different ways; in some
cases multi-agent-based simulation platforms are used (e.g., Strader et al. 1998),
while multi-agent system platforms are used in other cases (e.g., Davidsson et al.
2008; Fischer et al. 1999). It is also possible to implement the agent model without
any platform; see, e.g., Swaminathan et al. (1998), Gambardella et al. (2002), and
van der Zee and van der Vorst (2005). Using such platforms may often facilitate the
implementation of the model. However, if the model is very complex, it can also
cause problems due to the structure of the platform; see, for example, Davidsson
et al. (2008) for further discussion.

26.3.2 Passenger Transportation

While more work has been done regarding modeling and simulation of freight trans-
portation, there are some approaches concerning the transportation of passengers
using rail and road. These are described here.
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One example of the simulation of bus transportation is Meignan et al. (2007)
where the main purpose of the simulations is to evaluate bus networks. The bus
networks are assessed based on the interests of travelers, bus operators, and
authorities with respect to, for instance, accessibility, travel time, passenger waiting
time, costs, and profit. Therefore, a potential type of user of the simulation model
is the manager of a bus network. The model includes a road network, a bus
network, and a traveler network. Bus stops, bus stations, bus lines, and itineraries
are part of the modeled system. There are two agent types: buses and passengers. A
typical task of the bus agent is to perform a bus trip. The networks include spatial
explicitness, and time is important for the agents since the bus routes are determined
by timetables and the passengers have a need for travel at certain points in time.
The model combines micro- and macroscopic approaches since the global traffic
situation is taken into consideration in addition to the individual transports. Traffic
assignment and modal choice of the overall demand are made on the macroscopic
level with a discrete choice model. Interactions take place between the buses and
passengers. For instance, the bus agents have to consider the travel demand of
passenger agents, and the passenger agents have to consider the available bus agents.
Moreover, the actual loading and unloading of passengers is one kind of interaction.
Gruer et al. (2001) present a similar approach to evaluate the mean passenger
waiting time at bus stops. Buses, stops, and road sections are modeled as agents,
with the focus on the activities at the bus stops.

Work is also done in the taxi domain where, for instance, Jin et al. (2008) present
a simulation model for planning the allocation of taxis to people requesting taxi
transportation. The model can be used for evaluating different planning policies
for how the allocation should be made, taking issues like vehicle usage, passenger
waiting time, travel time, and travel distance into consideration. Four types of agents
are included in the model: the user agent, the node-station agent, the taxi agent,
and the transport administration agent. The taxi agent represents the physical taxis,
while the other agents have different planning functions. The different agent types
have different goals, and agreements are reached by negotiations between the agents
through the user agent.

Li et al. (2006) present an example of a social simulation of rail passenger
transportation. In this, an activity-based model is outlined for the evaluation of
pricing policies and how they affect the traveler behavior. This approach is similar to
an agent-based approach where passengers are modeled as agents. The focus in the
model is on the traveler behavioral model, where the characteristics and preferences
of travelers and their activities are modeled in terms of activity schedules. Typical
tasks the traveler agent performs are scheduling and planning the journeys as well
as executing these activities. The decisions are typically made based on generalized
costs. In the presented model, the traveler agents can interact with a tool that
provides information regarding available travel options by sending requests of
possible travel options.
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26.3.3 Related Research

Related to the simulation of passenger transportation is the simulation of pedestrians
and crowds. Traditionally, pedestrian simulation has used techniques such as flow-
speed-density equations, thus aggregating pedestrian movement into flows rather
than a crowd of possibly heterogeneous individuals. Klügl and Rindsfüser (2007)
propose an agent-based pedestrian simulation model of the movement and behavior
of train passengers at the railway station in Bern, Switzerland. A similar approach
is Qi et al. (2008), which models the alighting and boarding of passengers in the
Beijing metro using a cellular automata approach. Pelechano et al. (2005) also
discuss social aspects in the simulation of crowds and provide a review of different
crowd simulation approaches.

One special case of crowd simulation is the simulation of emergency evacuation
situations. Animal flocking behavior models are one type of models that have been
applied here (see Chap. 24 in this handbook (Hemelrijk 2017) for an overview
of modeling animal social behavior). For further information on simulation of
emergency evacuation, we refer to Santos and Aguirre (2005), which provides a
review of current simulation models.

Another type of related work is agent-based simulation of seating preferences
of passengers in buses and airplanes (Alam and Werth 2008). The different agents
are then representing different categories of people characterized by ethnicity, age,
cultural background, and their respective seating preferences.

26.4 Discussion

In papers concerning simulation of traffic and transportation, different arguments
are given to support the use of social simulation. A common argument for making
use of multi-agent-based simulation in the transportation domain is that it enables
capturing the complex interactions between individuals, such as coordination and
cooperation (Fischer et al. 1999; Meignan et al. 2007; Liu et al. 2006), and
consequently the emergent behavior of the system. Moreover, including autonomous
and heterogeneous individuals and their behavior is also supported with the agent
approach, as well as modeling and simulating distributed decision-making, which
are important in the transportation domain (Meignan et al. 2007). Since multi-agent
systems provide a modular structure of the system, the possibility to easily exchange
or reuse different parts of the simulated system for different cases is facilitated
(Swaminathan et al. 1998; van der Zee and van der Vorst 2005).

As pointed out earlier, there are new phenomena in the road traffic networks
imposed by the increasing level of technologies facilitating driving as well as new
motivations behind controlling and supervising networks and the effects of such
support systems when the infrastructure capacity becomes a scarce resource. Toledo

http://dx.doi.org/10.1007/978-3-319-66948-9_24
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(2007) argues that to capture the level of sophistication, the modeling capabilities
need to improve where the use of agents can make a contribution.

In contrast to well-established software and methods for traffic and transport
simulations, the data requirements are different, and data is not available to the
same extent for the newer approaches mentioned in this chapter. In addition, the
more novel approaches are all different and are often developed, used, and evaluated
only by the researchers themselves. The level of maturity and acceptance reached
by the traditional approaches and software by being used and evaluated by a
large number of researchers during a long time is naturally difficult to compete
with at this point. However, using social simulation, where individuals and their
interactions are explicitly modeled, provides opportunities for validation due to
the natural, structure-preserving representation of the system. For instance, the
behavioral models of drivers or decision-makers can be validated by the actual
drivers or real-world decision-makers.

It is possible to identify some general differences between traffic and trans-
portation applications. In traffic approaches, the agents typically represent physical
entities actually involved in the movement, i.e., vehicles or drivers are modeled
as agents. In the simulation of freight transportation, on the other hand, the
agents typically represent decision-makers such as customers or transport planners.
Therefore, the physical representation of the agents is not of the same importance
in these approaches. In freight transportation approaches, several agent types are
typically necessary, as opposed to traffic approaches where typically only one agent
type is modeled. Trends in the approaches to passenger transportation are not as
obvious. However, passengers are typically represented as agents (one exception is
the taxi transportation approach), and in the bus and taxi transportation approaches,
vehicles are also represented as agents. Gruer et al. (2001) represent also bus stops
and road sections as agents. Thus, physical entities may be represented as agents,
like in the traffic approaches. The number of different agent types is smaller than in
freight transportation, but there are more agent types than in traffic approaches.

The agent behavior models are typically of a lower level (more detailed) in the
traffic approaches than in the transport approaches. One reason for this difference is
that in traffic approaches, the personalities of the drivers often have a larger impact
on the system and are therefore modeled with corresponding driving behaviors such
as aggressive or calm driving style. The decision-making of the agents in traffic
approaches is typically based on different rules where the choices or the planning in
transport approaches is made based on the best performance metrics such as cost or
time. The agent behaviors sometimes also include learning aspects, which provide
the agents with a dynamic behavior by the use of, e.g., NN.

In transport approaches, the focus is not on modeling the different personalities
of decision-makers but rather on modeling the different types of decision-making
roles and their associated rational behavior. Moreover, (freight) transport approaches
to model the negotiations and the interactions between the decision-makers are
crucial in order to reach a solution. In traffic approaches, the interactions between
the individuals are secondary, while the models of the individuals, their individual
behavior, and consequently the system behavior are focused.
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As far as we have seen, social simulation is not commonly applied to all modes in
traffic and transportation. In the traffic domain, mainly road traffic is studied. Road
traffic includes social aspects in terms of interactions between the vehicles. In air and
rail traffic, the control typically takes place in a more centralized way with common
objectives, which explain why these traffic modes include less social aspects in this
context and therefore do not benefit as much from social simulation studies. For
waterborne traffic, the infrastructure is not a scarce resource in the same sense as in
the other modes; instead, the bottlenecks appear in the ports or other terminals. In
the freight transportation domain, the social aspects mainly concern the interactions
and decision-making of the actors in transport chains. The most common modes that
are included here are road and rail, but also waterborne transportation is sometimes
included. The types of decisions that are most often studied in the freight transport
domain are related to planning and mode choice, which are a consequence of the
interactions between actors in transportation. In passenger transportation, planning
decisions are also sometimes simulated, but sometimes operational behavior, such as
loading of passengers, is also simulated which is a consequence of the interactions
between passengers and vehicles.

Further Reading

For further information about traffic simulation, we refer the interested reader to
Chung and Dumont (2009), Tapani (2008), Toledo (2007), and Koorey (2002). Terzi
and Cavalieri (2004) provide a review of supply chain simulation, while Williams
and Raha (2004) present a review of freight modeling and simulation. For general
information about transport modeling, we suggest to read Ortúzar and Willumsen
(2001). For further information on how agent technologies can be used in the traffic
and transport area, see Davidsson et al. (2005).
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Chapter 27
Modeling Power and Authority: An Emergentist
View from Afghanistan

Armando Geller and Scott Moss

Abstract The aim of this chapter is to provide a critical overview of state-of-the-
art models that deal with power and authority and to present an alternative research
design. The chapter is motivated by the fact that research on power and authority
is confined by a general lack of statistical data. However, the literal complexity
of structures and mechanisms of power and authority requires a formalized and
dynamic approach of analysis if more than a narrative understanding of the object
of investigation is sought. It is demonstrated that evidence-driven and agent-based
social simulation (EDABSS) can contend with the inclusion of qualitative data and
the effects of social complexity at the same time. A model on Afghan power struc-
tures exemplifying this approach is introduced and discussed in detail from the data
collection process and the creation of a higher order intuitive model to the derivation
of the agent rules and the model’s computational implementation. EDABSS not only
deals in a very direct way with social reality but also produces complex artificial
representations of this reality. Explicit sociocultural and epistemological couching
of an EDABSS model is therefore essential and treated as well.

Why Read This Chapter?
To understand how an evidence-driven approach using agent-based social simu-
lation can incorporate qualitative data, and the effects of social complexity, to
capture some of the workings of power and authority, even in the absence of
sufficient statistical data. This is illustrated with a model of Afghan power structures,
which shows how a data collection process, intuitive behavioral models, and
epistemological considerations can be usefully combined. It shows how, even with a
situation as complex as that of Afghanistan, the object under investigation can shape
the theoretical and methodological approach rather that the other way around.
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27.1 Introduction

Notions such as “power” and “authority” are redolent with meaning yet hard to
define. As a result, the number of definitions of power and authority is overwhelm-
ing (Neumann 1950). Weber (1980, p. 53) defines power as the “probability that one
actor within a social relationship will be in a position to carry out his own will in
spite of resistance.” Giddens (1976, p. 111) understands power in a relational sense
as a “property of interaction,” which “may be defined as the capability to secure
outcomes where the realization of these outcomes depends upon the agency of
others. He implies a major distinction between two types of resources in connection
with power, (1) control over material resources and (2) authoritative resources.
Parsons (1952, pp. 121–132) underlines the pragmatic character of the notion of
power even more by stating that power is the capacity to achieve social and societal
objectives, and as such can be seen as analogous to money. Power, consequently, is
the basis of a generalized capacity to attain goals and to invoke consequences upon
another actor (Moss 1981, p. 163).

Neither these nor any other definitions predominate, and the decision to apply
a particular one is subjective and, if not based on normative grounds, most
likely context-dependent. Hence, in this research it is not aimed at applying one
particular theoretical approach to power and authority, but instead it is argued
that such an approach can also be founded on available and contextual evidence.
Evidence is understood as information that is derived from case studies, empirically
tested theories, the high-quality media, and engagement with stakeholders, domain
experts, and policy analysts and makers.

For heuristic reasons—and in awareness of the plethora of conceptual approaches
to power—it is for the time being assumed that the social phenomena of power and
authority occur in a two- (or more-) sided relationship. It is also assumed that power
serves a purpose. What should be of interest to students of power has been identified
by Lasswell (1936): “Who gets what, when, how.” Who and what describe and
explain structures; when and how describe and explain mechanisms1 and processes.
However, Lasswell ignores an important aspect: “why.” Why does someone get
something at a particular moment in time in a particular way? And more generally:
Why did a particular condition of power form?

Castelfranchi (1999) already noted in the year 1990 that social power is a lacuna
in social simulation and (distributed) artificial intelligence. This chapter shows that
although power relations are ubiquitous in social systems, only a small number of
relevant models have been developed. This is despite the fact that social simulation
and in particular evidence-driven and agent-based social simulation (EDABBS) are
valuable complementary techniques to orthodox approaches to the study of power
and authority.

1Schelling (1998) understands a “social mechanism [ : : : ][as] a plausible hypotheses, or set of
plausible hypotheses, that could be the explanation of some social phenomenon, the explanation
being in terms of interactions between individuals and other individuals, or between individuals
and some social aggregate.” Alternatively, a social mechanism is an interpretation, in terms of
individual behavior, of a model that abstractly reproduces the phenomenon that needs explaining.



27 Modeling Power and Authority: An Emergentist View from Afghanistan 723

A prime virtue of EDABSS is that it imposes on the modeler a requirement to
devise an unambiguous formal meaning for such notions as power and authority and
their corresponding concepts. The modeling process and thus formalization should
begin by formulating questions that structure the rich body of narratives that are
available to describe the explanandum:

• Under what conditions would you label someone as powerful or as being in a
position of authority?

• Having labeled someone as being powerful or in a position of authority, how
would you expect that person to behave?

• Having labeled someone as powerful or in a position of authority, how would you
expect yourself/others to behave toward that person?

These questions are not abstract. They form part of a data collection strategy and
aim at enriching general accounts of power and authority, such as that power is a
form of relationship that is exercised between two or more individuals, by more
specific and context-dependent forms of descriptions of power and authority. Often
these descriptions concern actor behavior. Models based on such descriptions can
be closer to the evidence, because this evidence can be straightforwardly translated
into “if-then” rules that can be implemented in logic-like fashion in rule-based or
standard procedural languages using their native if-then structures. The if part
is determined by the first question and the then part by instances of the second
or third questions. Our own preference is for an evidence-driven and declarative
representation of power and authority in order to preserve as much as possible of
the rich data drawn from case studies and evidence in general while maintaining
conceptual clarity.

The computational modeling procedure described in this article is inspired by
the idea to represent reality by means of modeling; it is driven by shortcomings
and advantages of other methodological approaches; and it has matured out of
research on cognitive decision-making as declarative and thus mnemonic implemen-
tations (Moss 1981; Moss 1998; Moss 2000; Moss and Edmonds 1997; Moss and
Kuznetsova 1996; Moss et al. 1996) and on contemporary conflicts (Geller 2006b).
Classical hermeneutic approaches, although they may be strong in argument,
are often methodologically weak. However, they have an important “serendipity”
function and creative role, very much like that of intuitive models (Outhwaite 1987).
Traditional empirical approaches, such as statistical and econometric modeling,
do not represent reality and have difficulties to produce insight into mechanisms,
processes, and structures (cf. Shapiro 2005; Hedström and Swedberg 1998).2

Moreover, regular incorporation of poor proxies and the use of inadequate data do
not contribute to the plausibility of research results. However, rigorous formalization
furnishes desirable clarity and comparability. Finally, qualitative and case-study-
based analysis produces deep structural and processual insight as well as “thick
description,” although at a high—for some too high—price of idiography and thus
lack of generalizability.

2See for a promising corrective Sambanis (2004).
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None of these approaches is incompatible with EDABSS. But we argue here that
a natural modeling procedure starts with an informed but intuitive and theoretical
model that needs to be validated against reality. The intuitive model is to be validated
at micro-level against largely qualitative evidence, so that a rich model develops.
This qualitatively validated and enriched model is then formalized as a computa-
tional model. The social simulation’s output should enhance our understanding of
reality, which, in turn, necessitates adjustments in the model design. This process is
the hermeneutic cycle of EDABSS (cf. Geller 2006b; Geller and Moss 2008b).

A selection of models dealing with power and authority is reviewed in Sect.
27.2. A critical appraisal of these models reveals the strengths and weaknesses
of past modeling approaches and underlines the necessity of the research design
presented here. The selection criteria are evidently influenced by our own modeling
approach and are therefore subjective. However, models have also been chosen
on a functional basis: How successful are they in describing and explaining their
target system? We have also tried to choose exemplary models from a wide
range of modeling philosophies, to elucidate conceptual differences among the
discussed models. Section 27.3 comprises the dialectical result of 2 and discusses
the analytical concepts and methodological tools applied here to analyze power and
authority. The materialization of our approach is presented in Sect. 27.4, where
the model implementation and simulated output is discussed. The model’s context
is conflict-torn Afghanistan. Section 27.5 concludes by embedding our modeling
framework into a broader context of comparable social phenomena, such as conflict
and organized crime, and promotes agent- and evidence-based social simulation as
an efficient approach for the study of power and authority.

27.2 What Can We Learn from (a Selection of) Models
on Power and Authority?

The development of a social simulation model can be informed by intuitive
ideas, theory, or observation. For many simulations, the respective borderlines
cannot be drawn unambiguously. Nevertheless, such a classification is superior
to a more traditional one which only distinguishes between micro- and macro-
models. Although agent-based models entail explicit micro-level foundations, for
example, the micro foundations of econometric models are inherently and at best
implicit. More importantly in relation to complexity, agent-based simulations often
generate emergent phenomena at macro-level. From a modeling point of view, it
is therefore more interesting to understand the level and nature of data that has
guided the researcher to conceptualize a model in a particular way, to what model
output this conceptualization has led, and how a design helped to better understand
mechanisms, processes, and structures in a target system.



27 Modeling Power and Authority: An Emergentist View from Afghanistan 725

27.2.1 Modeling Ideas

A variety of models on power and authority are implemented not strictly based
upon theory but rather on a mixture of intuition and existing theoretical research
in a particular field. These models promise to lend insight into a usually only little
defined social phenomenon in an explorative, and likely to be abstract, way and
therefore operate as an entrée into the object of investigation’s broader field. Robert
Axelrod’s emerging political actor model has been chosen because it epitomizes the
prototype of an explorative model; Rouchier et al.’s model still exemplifies the want
to explore, however, on a more evidence-oriented basis.

27.2.1.1 Emerging Political Actors

In a well-known agent-based model, Axelrod (1995) reasons about the emergence of
new political actors from an aggregation of smaller political actors. His motivation
is to explain the restructuring of the global political landscape after the end of the
cold war and the fact that, although political scientists have a number of concepts
and theories to analyze the emergence of new political actors, they lack models that
account for this emergence endogenously.

In short, Axelrod’s model of emerging actors is a well-structured and intelligible
but empirically ungrounded, conceptual model. The core of his model is a simple
dynamic of “pay or else” resulting in a “tribute system in which an actor can
extract resources from others through tribute payments and use these resources
to extract still more resources” (Axelrod 1995, p. 21). The model consists of ten
agents distributed on a circle. Wealth is the only resource and is distributed to each
agent randomly at the beginning of the simulation. In each simulation iteration,
three agents are randomly chosen to become active. When active, agents can ask
other agents for tribute. When asked, an agent has the choice between paying the
demanded tribute or to fight, depending on his and the demander’s resources. In case
of paying the tribute, a specified amount of wealth is transferred to the demander;
in case of fighting, each agent loses wealth equal to 25% of his opponents’ wealth.
After three iterations all agents exogenously receive again wealth.

The core of any agent-based model is the rules according to which the agents
behave. In Axelrod’s tribute model, the agents have to decide when to demand
tribute and how to respond to such a demand. First, an active agent needs to decide
whom it should address. “A suitable decision rule [ : : : ] is to choose among the
potential targets the one that maximizes the product of the target’s vulnerability
multiplied by its possible payment” (Axelrod 1995, p. 24). If no agent is vulnerable
enough, then no demand is made. The chosen agent responds by fighting only if t
would cost less than paying the tribute.

Agents can form alliances. During the course of the simulation, agents develop
commitments toward each other. Commitment between two agents increases if
one agent pays tribute to the other agent and vice versa and if two agents fight
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another agent together. Commitment decreases if one agent fights at the opposite
side of another agent. Alliance building indirectly increases an agent’s resources
and outreach, as it can only make a demand to an agent if it is either adjacent or
indirectly connected via allied agents.

Axelrod gets six characteristic results: (1) The model does not converge to an
equilibrium. (2) The model’s history is fairly variable in terms of combinations of
wealthy actors, fighting frequency, and overall wealth accumulation. (3) Agents do
not only share the resources with their allies, they also share the costs and thus the
risks. Major conflict can occur as agents can be dragged into fighting. (4) Because of
asymmetric commitment, fighting can erupt among allies. (5) An alliance can host
more than one powerful agent. (6) The initial wealth distribution is not an indicator
for an agent’s success. As an overall result, Axelrod reports that he was able to breed
new political actors of a higher organizational level. These new political actors are
represented in the model as so-called clusters of commitment.

Axelrod’s model demonstrates the realist notion that states do not have
friends but only interests. (Agents initially make commitments out of rational
calculations—“pay or else”— not out of ideological considerations.) These
interests, the model reveals, are attended most efficiently by joining coalitions.
Thus, an effective powerful agent seeks cooperation of some form or the other.

Axelrod’s model is convincing as long as he concentrates on his main task—
letting new political agents emerge in the context of an explorative setup. But
interpreting a positive feedback effect resulting from a total of ten agents as
“imperial overstretch” or interpreting fighting between two agents of the same
cluster of commitment as civil war rings a little hollow. As much as we can learn
from Axelrod about how to setup and present a simple but innovative and explorative
model, as little can we learn about how to discuss it, as Axelrod continually
blurs the distinction between the model and reality which leads to over- and
misinterpretation of his results. Hence, a number of open questions remain, the most
important of which is whether the model would withstand even circumstantially
founded cross-validation. This is naturally related to the question of how much
explanatory power Axelrod’s model holds. With agents so abstract from reality,
agent behavior in Axelrod’s model simply cannot provide any explanatory insight
into real world actor behavior. And while it makes sense to claim that complex
macro-level behavior can emerge from simple micro-level behavior—as is the case
in Axelrod’s model—this macro-outcome, again, is so abstract from reality that it
does not allow for any insight into the real international system. Consequently, the
emergent interplay between the micro- and the macro-level, so typical for complex
systems, cannot have the effects it would have in reality. This accounts for another
loss of explanatory power. Axelrod claims that his model’s objective is to think in
new ways about old problems. However, its lack of evidence-based foundations and
its degree of abstraction from reality might well foster stereotyped perceptions of
the international system instead of critical reflection about it.

An alternative is for agents and their environment to be derived either from
an empirically well-tested theory or from qualitative real-world observations.
Cederman (1997), discussed below, has advanced Axelrod’s work into this direction.
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27.2.1.2 An Artificial Gift-Giving Society

Rouchier et al. (2001) reported a model of an artificial gift-giving society that is
loosely founded on ethnographic research. Gifts structure society and reproduce
habits and values. The giving of gifts can also be a means of redistribution. The
donation, reception, and reciprocation of a gift create relationships, which can
become competitive. Thus, gifts can be a means to create authority, establish
hierarchies, and uphold power structures.

The model’s goal is to create an artificial society in which reputation emerges.
The gift-giving society’s agents are either occupied with working to accumulate
resources, which enables them to give away gifts or by giving away gifts themselves.
The motivation to give away gifts is twofold: On one hand gifts are given away
because agents act according to their self-esteem, i.e., the desire to be able to make
gifts that are acceptable to the group. On the other hand, agents give away gifts
because they want to increase their reputation by swaggering. Agents are fully
informed and share the same decision process to determine what actions to take.
The artificial society’s population consists of 50 agents.

Each agent has to decide at each time step what gift it wants to make to whom.
This decision process stands at the core of the model. Agents can give away gifts,
either for the sake of reputation or sharing. So-called “sharing gifts” are less costly
than prestige gifts. The decision of whom to give what gift is socially embedded
and the agent’s rationality depends on its social position. Making a sharing gift
to any agent adds to the social inclusion of an agent; making a prestige gift to an
agent who is considered as being prestigious fosters a hierarchy among the agents.
Therefore, receiving a sharing gift represents social acceptance; receiving a prestige
gift represents the acceptance of social stratification. The better an agent is socially
integrated, i.e., the higher its self-esteem, the higher is its motivation to give away
gifts. At the same time, high social integration increases the likelihood that an agent
is able to give away prestige gifts.

All agents exchange their gifts after each agent has decided to whom to give
its gift. Subsequently the agents evaluate their ranks within the group and their
reputation on the basis of the gifts they have received. Self-esteem and reputation
are adapted according to the outcome of the gift-giving round. Then the next round
starts.

The authors discuss their findings with regard to donation-reception dynamics
evolving during the simulation, of which most are positive feedback loops (Rouchier
et al. 2001, p. s.5). An agent’s esteem increases with the number of gifts it has
made and received, respectively. The higher this agent’s esteem is, the higher the
likelihood is that it receives even more gifts and that he can give gifts away. The
same holds true with an agent’s reputation, which increases with the reception of
prestige gifts. The higher this agent’s reputation is, the higher is the likelihood that
it receives even more prestige gifts. Moreover, the authors find that esteem and
prestige “go together.” Both help the circulation of gifts, and then the creation of
prestige reputation” (Rouchier et al. 2001: p. 5.3). The gift-giving model provides
insight into the emergence of an elite group based on socially contextualized
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decision processes. Within the gift-giving model, the emergence of social power is
explained by two factors: (1) the willingness and ability to become socially accepted
and (2) the ambition to accumulate reputation. Gift-giving has been introduced and
computationally implemented by (Rouchier et al. 2001) as a process of resource
accumulation and redistribution, an important variant of strategic behavior in many
other contexts.

The authors, while creating a naturalistic model, do not attempt to derive their
agent rules directly from qualitative, in this case likely anthropological research.
This would have allowed them to gain narrative insight into the dynamics of gift
giving and receiving and would have enabled them to directly cross-validate their
findings with accounts made by anthropologists. Micro-level explanation was not
one of the modelers’ main interests. Since the emergence of complex macro-level
outcomes results from micro-level behavior and social interaction, the model is of
limited usefulness in the analysis of real-world social complexity. Formulation of
agent rules from anthropological evidence would also have enabled the authors
to avoid the assumption that agents are totally informed, both, spatially and with
regard to the internal state of other agents. The cognitive processing of information
about other agents is an especially difficult task. For example, the model does not
address the question of when, as well as to whom, agents give gifts. It was not a
purpose of the Rouchier et al. (2001) model to capture strategic decision-making
using incomplete information within a realistic context. To have done so would
usefully have entailed reliance on more evidence-based information available in
the anthropological literature and might then have provided an empirically better
grounded account of social status and power.

27.2.2 Testing Theory

27.2.2.1 Power Games Are Not Games

Game theoretical applications comprise perhaps the most formalized, coherent,
and theoretically unified approach to power, especially in international relations.3

Regularly applied in military-political analysis and international-political economy,
game theory has a straightforward conception of the nation state as interdepen-
dent, goal-seeking, and rational actor embedded in a context free of centralized,
authoritative institutions (Snidal 1985). The application of game theoretical models
in international relations raises questions such as “Who are the relevant actors?,”

3Models not discussed in this subsection but of further interest to the reader are Alam et al. (2005),
Caldas and Coelho (1999), Guyot et al. (2006), Lustick (2000), Mosler (2006), Rouchier and
Thoyer (2006), Saam and Harrer (1999), and Younger (2005). Particularly highlighted should be
the work of Mailliard and Sibertin-Blanc (2010) who merge a multi-agent and social network
approach to the complexity and transactional nature of power with approaches to power from the
French school of sociology and develop against this background a formal logic system.



27 Modeling Power and Authority: An Emergentist View from Afghanistan 729

“What are the rules of the game?,” “What are the choices available to each actor?,”
“What are the payoffs in the game?,” and “Is the issue best characterized as
single-play or repeated-play?” (Snidal 1985, p. 26). Abstract and simplified as
they are, game theoretical models nevertheless intend replicating a particular social
situation and aim at—if the actors’ preferences, strategies, and payoffs are accu-
rately modeled—generating testable predictions and understanding of fundamental
processes governing the system of international relations.

If states are conceived as rational power maximizers in an anarchic system, then
we talk about the realist paradigm of international politics. “Rationality in this
Realist world centers on the struggle for power in an anarchic environment” (Snidal
1985, p. 39). However, compared with reality it would be misleading to conceive
of states as self-defending entities of purely opposing interests. Rather, game theory
teaches us that states exhibit a strategic rationality that incorporates the awareness
that no state can choose its best strategy or attain its best outcome independently of
choices made by others. This awareness is the birth of cooperation. Moreover, from
so-called iterated and dynamic games, we learn that while states have incentives to
defect in the short run, in the longer run, they can achieve benefits from cooperation
through time (Snidal 1985).

Game theory has often been criticized on the grounds that it is unrealistic.
Game theory can, of course, analyze very particular examples of world politics,
such as the Cuban Missile Crisis, nuclear war in a bipolar world or the General
Agreement on Trade and Tariffs (GATT). What can be expected, in more general
terms, are explanations for meta-phenomena or for abstract representations of
particular circumstances. We criticize game theoretical approaches in the social
sciences from an evidence-based point of view. The difference between a game
theoretic model and the target system is enormous. Everything that is a natural
representation of the international system is a special and difficult case in game
theory, for example, nonsymmetric n-person games involving intermediate numbers
of states, and everything that is straightforwardly implementable in game theory is
unrealistic. Yet analogies are quickly drawn between model results and the model’s
target system. Hence, findings rely on oversimplified model ontologies, which may
lead to over-interpretation.

Game theory’s simplistic ontologies also affect a model’s simulation output, as
Moss (2001) argues. An analysis of state-of-the-art game theory as represented by
14 game theoretic papers published in the Journal of Economic Theory in the year
1999 indicates that the game theoretic models’ assumptions (perfect information)
and implementations (e.g., Markov transition matrices and processes) preclude the
emergence of self-organized criticality as reported by Bak (1997) and cannot capture
the necessary interaction as a dynamic process. Game theoretic models on markets
do not entail statistical signatures found in empirical data on markets, such as
power-law distributed data, a characteristic of self-organized criticality. This critique
applies to game theoretic models in international relations as well, as one of the
observed regularities in the international system is the power-law distribution of
wars (Richardson 1948). Whereas Cederman (2003) replicated Richardson’s (1948)
findings by means of agent-based modeling, to our knowledge there exists no game
theoretical reproduction of this statistical signature.
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Although game theory can make statements of the “when” and “why,” it
cannot say anything about the “how” and cannot give insight into the mechanisms
and processes underlying the emergence of power structures. Therefore, game
theoretical modeling is, like most statistical or econometric modeling, a type of
black-box modeling. A rare exception to this is Hirshleifer’s work (Hirshleifer
1991, 1995).

27.2.2.2 Exploring the Limits of Equation-Based Modeling

Hirshleifer (1991) published a seminal paper on the paradox of power. The paradox
of power states that in case of conflict, a weaker contestant is able to ameliorate
his position relative to the stronger actor because his inferiority makes him fight
harder. In other words: “[N]on-conflictual or cooperative strategies tend to be
relatively more rewarding for the better-endowed side” (Hirshleifer 1991, p. 178).
Hirshleifer’s modeling solution for this problem is based on the assumption that
if there exists an equilibrium market economy, then there must also exist an
equilibrium outcome if contestants in two-party interactions compete by struggle
and organized violence. The model’s assumptions are full information, a steady
state, indifference toward geographical factors, and the nondestructive nature of
fighting (Hirshleifer 1991, p. 198).

Hirshleifer’s econometric model leads to a well-specified outcome from which a
number of unequivocal results can be derived. When the paradox of power applies
the “rich end up transferring income to the poor” and this “tends to bring about a
more equal distribution of [ : : : ] income” (Hirshleifer 1991, p. 197). However, he
also states that “the comparative advantage of the poor in conflictual processes can
be overcome when the decisiveness of conflict is sufficiently great, that is, when a
given ratio of fighting effort is very disproportionately effective in determining the
outcome of conflict” (Hirshleifer 1991, p. 197). Hirshleifer validates his analytical
results by providing circumstantial evidence for a number of examples from class-
struggle within nation-states to firms (labor-management conflicts) and protracted
low-level combat.

If one accepts economic theory’s underlying assumptions, Hirshleifer’s results
are indeed compelling and apply to a wide range of social issues related to power.
The paradox of power identifies, perhaps correctly, the expectations weak and strong
actors can have when mutually entering power politics: when the stakes are high,
the weak are likely to get crushed by the strong. This is why the paradox of power
is likely to apply to more limited contests than to full-fledged conflict.

What can we learn from Hirshleifer with regard to modeling power and author-
ity? He elegantly exemplifies state-of-the-art model conceptualization, presentation,
and discussion of results, including the model’s limitations. His presentation of
the analytical tools and his disclosure of the model’s underlying assumptions are
exemplary and render his work amenable to critique. The same applies to the rigid
and straightforward formalizations of the mechanisms underlying the paradox of
power, which are, moreover, well-annotated and embedded in theory. Last, but not
least, the model’s scope and its delimitations are clearly marked by referring to a
number of examples ranging from interstate war to the sociology of the family.
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Hirshleifer informs us precisely of the outcomes from power struggles and of
the factors that cause these outcomes; he fails to produce analytical insight into the
structural arrangements and processes that lead to these outcomes as a consequence
of the methodology itself as is demonstrated in another paper of his.

In “Anarchy and Its Breakdown” Hirshleifer (1995) models anarchy, a social
state lacking auctoritas, as a fragile spontaneous order that may either dissolve into
formless amorphy or a more organized system such as hierarchy. Interesting for
our task is the fact that Hirshleifer produces results that indeed allow insight in
terms of structure. He can, for example, demonstrate that the state of anarchy is
stable if no actor is militarily dominant and if income is high enough to assure one’s
own and the group’s survival. However, concrete processual insight can again not
be delivered, and it is referred to circumstantial evidence to concretize particular
aspects of the model. In fact circumstantial evidence is arguably the only validation
that is feasible with these kinds of very abstract models as the statistical signature
of the model’s output is so ideal-typical that it is not comparable with empirical
data. In short, orthodox theoretically informed models, such as econometric or
statistical models, often do address those issues in which social scientists are really
interested but cannot provide an explanation in involving complexity arising from
social interaction.

One reason for this has already been identified above with relation to game
theory, i.e., the preclusion of emergence of self-organized criticality. Another reason
is highly unrealistic general assumptions, i.e., rational choice, and more specific
unrealistic assumptions, e.g., the nondestructive nature of fighting (as such also
identified by Hirshleifer (1991, pp. 196–199) himself) or monolithic actors lacking
an internal state. Finally, methodological individualism completely ignores the
micro-macro link as well as the heterogeneous nature of political actors. While the
particular assumptions as well as the (homogeneous) agents could be chosen more
realistically, methodological individualism is to most statistical and econometric
modeling relying on homoskedasticity of data points and variances. Such models
cannot be used to describe or explain the evolution of power structures. (For
statistical models this holds true only, of course, if there is sufficient statistical data
that describes power relations.) With this regard, Cederman’s (1997) model is a
paradigmatic shift.

27.2.2.3 When, Why, and How Nations Emerge and Dissolve

Cederman’s (1997) model has been chosen, because it applies the analytical rigor
of formalized approaches to agent-based modeling without relinquishing the latter’s
virtues. He raises fundamental questions regarding realist and methodologically
orthodox approaches to international relations. He introduces an agent-based simu-
lation of the emergence and dissolution of nations. His model is based on a 20 � 20
grid that is initially inhabited by “predator” and “status quo” states. Each period
of time a state is randomly assigned to receive resources for attack and defense.
Given they have an advantage in overall and local resources, respectively, predator
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states can attack and conquer neighboring states. Although Cederman applies
neorealist principles to a dynamic and historical meta-context, his findings challenge
the orthodox neorealist belief that applying alternative methods does make an
epistemological difference. He reports that defense alliances and the dominance of
defense in the international system are paradoxically destabilizing. While defensive
systems of cooperation deter predator states from growing to predator empires, at the
same time they make possible the buildup of a hegemonic predator actor, because
once a predator has reached a critical mass it has, due to the defensive nature of the
system, no rivals.

Cederman (1997, p. 136) asserts that “[s]tates have been mostly modeled as inter-
nally consolidated monoliths, albeit with emergent outer boundaries.” He confronts
this simplifying assumption by supplying his agents with an internal decision-
making mechanism representing a nationalistic two-level-politics mechanism. State
leaders cannot be concerned only with foreign affairs anymore but must also take
into consideration domestic issues (cf. Putnam 1988). Lazer (2001) has stated that
the insight gained from Cederman’s nationalist implementation is not as striking
as the one dating from his emergent polarity implementation. Perhaps this is true
in terms of contents, but in an epistemological perspective, Cederman makes an
important point: his nationalist model inspirits previously dead states. It is not
enough to know that states do something, but from a social scientific point of view,
it is essential to know why they do it and how. This affords realistic, i.e., evidence-
based assumptions and implementations.

Although Cederman (2003) later on introduces technological change and power
projection and Weidmann and Cederman (2005) introduce strategy and self-
evaluation into the decision-making process, Cederman’s models conform to tra-
ditional empirical perceptions of international relations. Consequentially, a number
of issues relevant to the study of power and authority in contemporary conflicts
remain untouched. The state, territorial conquest and consequentially the redrawing
of borderlines have been important explanatory factors for conflicts since the
emergence of territorial states, but they misconceive the nature of a great number
of conflicts throughout history and consequentially can only partially explain the
emergence of power structures in contexts where the nation state or any other
type of centralized political power has only played a marginal role. And even
where such well-defined territory existed, Cederman cannot explain the causes for
conflict if they have been, for example, of ethnic, religious, or economic character.
Other issues that should be taken into consideration are neo-patrimonialism, anomic
states, genocide, transnational organized crime, and external intervention. Models
analyzing such a reality must be multivariate and causal, allowing for an explorative
framework, and—contrary to Cederman (1997)—be able to include atheoretical and
evidence-based information, which is often of a qualitative type.
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27.2.3 Toward Implementing Reality

Modeling reality is not just about modeling particular cases. Modeling reality is
about the development of models that have explanatory power on both the micro-
and macro-level and therefore give also insight into mechanisms, processes, and
structures. A model can hardly claim to exhibit explanatory power when lacking
pivotal aspects of a perceived reality and when abstracting too much from this
reality. Every reasonable model of reality—i.e., a model that describes not only
the who, what, and when but also the why and how—must entail construct validity.4

27.2.3.1 Explaining the Causes for Social Unrest and Organized Violence

Kuznar and Frederick (2007) propose a model in which they explore the impact
of nepotism on social status and thus power. They rely on an innovative model
architecture supported by relevant research results, which are not framed by
dogmatic theory. An agent-based model is employed “to model the origins of the
sort of wealth and status distributions that seem to engender political violence.
In particular, we explore the minimum conditions required to evolve a wealth
distribution from the mild inequalities seen in ancestral human societies of hunter-
gatherers to the more extreme wealth inequalities typical of complex, stratified
societies” (Kuznar and Frederick 2007, p. 31).

Wealth is implemented as a variable that takes an ideal cultural form over which
actors would compete in a particular society. For hunter-gatherer societies, wealth is
distributed in a sigmoid fashion, where agents in the convex parts of the distribution
have more to gain than to lose when taking chances and therefore are risk prone.
The model consists of three building blocks: the distribution of wealth, agent
interaction, and nepotism. Wealth distributions in complex societies are, by contrast,
exponential, with sigmoid oscillations around the exponential curve. Kuznar and
Frederick (2007, p. 32) term this an expo-sigmoid curve. Agent behavior is modeled
along the lines of a coordination game with two equilibria (either both players defect
or both players cooperate) and a Nash optimum which is to play a mixed strategy
of join and defect. Kinship is inherent to nepotism. Thus, agents with many kin
and offspring perform better, i.e., have higher payoffs, in the coordination game and
exhibit higher fertility due to the effect of cultural success.

The result Kuznar and Frederick are getting is that the effects of nepotism
transform a sigmoid wealth distribution into an approximate expo-sigmoid distri-
bution. The explanation for this is the emergence of a distinct three class society:
the poor and their offspring get poorer, a small middle class gets richer without
changing status, and the elites get richer and richer. Thus, the authors conclude the

4A model not discussed in this section but that is of excellent quality, both in terms of content and
innovation is Guyot et al. (2006). The authors analyze and discuss the evolution of power relations
on the basis of participatory simulations of negotiation for common pool resources.
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positive feedback loop working between nepotism and cultural success increases the
structural inequality between a powerful elite and the rest of the population and thus
escalates social unrest and potential organized violence.

Whereas Axelrod (1995) over-interprets his model, Kuznar and Frederick explore
the full potential of their research design: a simple, intuitive, and at the same time
thoroughly grounded model is presented well, specified together with moderate but
auspicious conclusions, which advance research and shed new light on a problem.
The model, however, would be even more compelling if the authors would have had
presented cross-validational results.

Model output should be, if possible, cross-validated against empirical data
originating from the target system (Moss and Edmonds 2005). There are three
strategies: (1) If the simulation leads to statistical output, this output is statistically
analyzed and the resulting significant signatures are compared with the statistical
signatures gained from data originating from the target system. Such signatures can,
for example, be a leptokurtic data distribution, clustered volatility, power laws, or
distinct (e.g., small world) patterns in a social network. If the model yields output
of statistical nature but statistical data is not available for the target system, then
validation must rely on qualitative data. In this case, validation must either (2) seek
systematic structural and processual similarities between the model and the target
system, e.g., cross-network analysis, or (3) find circumstantial evidence in the target
system that can also be found in the simulation. In case of empirical data, scarcity
(3) is often the last resort.

27.2.3.2 Power, Resources, and Violence

Geller (2006a, b) developed an agent-based model of contemporary conflict
informed by evidence. The lack of a unified theory of contemporary conflict
motivated an intuitive and explanatory model of contemporary conflict. This model
is based on three types of interacting actors: a politician, businessman, and warrior.
They engage in six interactions: (1) the politicization of the economy and (2) the
military, (3) the economization of politics and (4) the military, (5) the militarization
of politics, and (6) the economy. To ascertain if this intuitive and simple ontology
can capture the main structural and processual characteristics of contemporary
conflicts, ten cases, such as Afghanistan, Chechnya, and Sierra Leone, have been
analyzed in a primary validation procedure against the backdrop of the intuitive
model. The analytical results in the form of mini case studies based on secondary
literature have been sent out to case experts for a critical review. None of the experts
requested an essential revision of the analytical tool, the intuitive model.

As a next step, Geller enriched the theoretical background of the primarily
validated intuitive model by consulting more relevant literature for further speci-
fication of the model’s structure and agency aspects in order to be able to model
the computational model’s agent rules. The basic idea is that politicians affiliate
with businessmen and warriors to make good business and get protection, while
businessmen affiliate with politicians to get access to the lucrative political arena,
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and warriors seek political representation by politicians. Businessmen affiliate
with warriors for the same reason politicians do, to get protection, while warriors
get money for their provided services. Warriors can kill warriors affiliated with
other politicians or businessmen, whereas civilians are considered as being non-
constitutive to the intuitive model, as they are introduced into the computational
model in a reactive way, meaning that although they can affiliate themselves to
politicians, they can be forcibly recruited and ultimately killed by warriors.

The model offers insight into the dynamics of power in contemporary conflicts.
Contrary to the prevailing “greed and grievance” approach in current conflict stud-
ies, Geller’s model demonstrates that a powerful agent is dependent on businessmen
and warriors at the same time. Powerful is who is most socially embedded. He can
also show that the main organizers of violence are the politicians and that the war-
riors need not exhibit enough organizational capacity for a fully fledged campaign
of organized violence. Hence, the more fragmented the political landscape is, the
greater is the magnitude of organized violence. Geller’s results gain importance as
they are cross-validated against statistical data describing the number of conflict-
related victims on a daily basis in Northern Ireland, Iraq, and Afghanistan. Both the
simulation output and the real-world data suggest that conflict-related victims are
lognormally distributed over time (right-skewed), exhibiting outbreaks of violence
unpredictable in magnitude and timing.

Modeling always involves a degree of arbitrariness. A modeler’s task, then,
should be to reduce arbitrariness by making the model’s design as intersubjectively
comprehensible as possible. Axelrod’s emerging actors model is a good, but
nevertheless simple, example of this. The more evidence oriented a model becomes,
the more difficult it becomes to justify the various omissions, inclusions, and
abstractions. Procedural programming is cumbersome in responding to idiographic
challenges. As described in the next section, a declarative, rule-based approach is
better suited to the translation of evidence-based information of actor behavior into
agent rules.

27.2.4 Discussion

The synopsis presented above has revealed the many approaches through which the
social phenomena of power and authority can be scrutinized: in models based on
ideas interest-oriented states and gift-giving individuals have been implemented;
in highly formalized theoretical models, agents are conceived as rationalist power
maximizers or as neo-realist states internally and externally struggling for survival;
detailed evidence collected from secondary literature is used for modeling processes
and structures that entail a high construct validity. Power structures are complex as
well as dynamic and emerge as a result of a multitude of structure generating inter-
actions among self- and group-oriented actors encompassing manifold interests.

The discussed models allow for insight into dynamic model behavior, as well as
drawing structural conclusions with regard to their object of investigation “whether
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it is theoretical or empirical by nature. Those models that feature an individual
agent architecture also lend insight into aspects of agency. Only these cope with
our stipulation that the explanandi of social simulations of power and authority
must deal with structure and agency. Nevertheless, in most cases the agent rules
have been implemented on a basis, which is underrepresenting evidence, bringing
about the problem that structural emergence cannot be related clearly (i.e., intra-
contextually) to agent behavior. Consequently, the analysis of agent behavior cannot
be related to actor behavior in the target system. This lack of realism in model
design renders validation attempts of simulation results against reality less plausible
and informative. By contrast, homologue models of the type advocated for in this
chapter enable the researcher to gain insight into structure and agency of the sort
that is more directly linkable to actor behavior. As a result, validation results become
more plausible and research can enter the hermeneutic cycle of EDABSS.

27.3 Evidence-Driven and Agent-Based Social Simulation5

EDABSS models seek homology. The modeled mechanisms, structures, and pro-
cesses aim at resembling the mechanisms, processes, and structures identified in
the target system. This has two reasons: (1) Construct validity renders validation
more expressive. (2) An agent-based implementation of the type presented in the
following sections is more than a mere input-output model. It is an “exhibitionist”
model that allows to analytically focus on internal mechanisms, processes, and
structures. From a socio-scientific standpoint, this can only be of interest, if
the modeled mechanisms, processes, and structures exhibit construct validity in
comparison with the target system—otherwise the model is just an arcade game
(cf. Boudon 1998).

The key to homology lies in the agent design. It is the agents and their
interactions, respectively, that trigger the evolution of emergent phenomena. Thus,
at the bottom of EDABSS agent design lays an evidence-gathering process. Posing
the right questions leads to a collection of data (evidence), which directly informs
the modeling of agent behavior and cognition. We have presented such questions in
Sect. 27.1.

27.3.1 Evidence-Based Modeling

The source of information for homologue models must be evidence-based. This
refers to the fact that all information that is used during the process of model

5For a meta-theoretical discussion of what follows see Bhaskar (1979), Boudon (1998),
Cruickshank (2003), Outhwaite (1987), Sawyer (2005), Sayer (1992, 2000).
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design, whether derived from a single case or from a theory, must be empirically
valid (see also Boero and Squazzoni 2005). The bulk of this data is of qualitative
nature, stemming from one or a number of case studies. Case studies that give
concrete information of actor behavior, in particular social circumstances, are of
best use to EDABSS modelers. Such a presupposition excludes assumption-laden
concepts such as rational choice or Belief, Desire, Intention (BDI). EDABSS’s
higher rational is to find models of social simulation on what is social reality and not
what is methodologically convenient or theoretically desirable (cf. Shapiro 2005). It
would be wrong to stipulate that all the details entailed in the dataset must also be
recognized in an EDABSS model. Modeling is an intellectual condensation process,
and it is the modeler who decides what particular aspects of a social phenomenon
are crucial and need to be represented in a stylized way in the model.6

The extensive use of qualitative data in EDABSS can be a virtue in its own, when
statistical data is scarce or not available at all. This applies to a variety of important
topics in the social sciences, such as elites, power structures, conflict, or organized
crime. Logically systematic statistical data collection in these areas of research is
difficult. Although the same holds true for qualitative data collection as well, it is,
nevertheless, better feasible. For example, researchers, journalists, or humanitarian
aid workers very often have the opportunity to conduct an interview or to make an
observation. Often this data becomes available to the public. EDABSS therefore fills
an important lacuna that is set between abstract statistical modeling and idiographic
case study research as it incorporates the advantages of both formalization and
context sensitivity.

The integration of stakeholders in the modeling process plays an important role
in EDABSS. Integrating stakeholders in the modeling process can be rewarding and
delusive at the same time. Stakeholders are keepers of information that others do not
have. For example, if a stakeholder is a powerful person, then s/he can be motivated
in a semi-structured interview to reflect on why s/he thinks s/he is powerful,
how s/he is acting as a powerful person, and how s/he expects others to behave
toward her/him. On the other hand, stakeholder’s accounts can be deliberately
misleading. Consequentially, EDABSS modelers have to be familiar with qualitative
data collection and analysis techniques.7

To presume that evidence-based modeling ignores theory is not justified.
Evidence-based modeling is guided by theory in many respects. First, critical
realism clearly defines a research project’s explanandi: mechanisms, processes,
and structures. Second, it highly depends on the researcher—and is not generic to
evidence-based modeling—how much the research process is guided by theory.

6The term condensation is alternatively denoted by Stachowiak (1973) as reduction and by Casti
(1997) as allegorization. Other important modeling principles are simplicity and pragmatism (Lave
and March 1975).
7The literature on qualitative data research has grown considerably in the last years, and the
interested reader is referred to, among many others, (Lazer 2001) and (Silverman 2004).
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Third, evidence-based modeling seeks generalization by intensively studying a
single unit for the purpose of understanding a larger class of (similar) units (Gerring
2004).8

27.3.2 Endorsements: Reasoning About Power and Authority

Whereas evidence-based models of social simulation incorporate a variety of struc-
tural and processual information of the target system, the actor’s actual reasoning
process cannot be derived from the data. Alternatively, the concept of endorsements
is applied to couch an agent’s reasoning process.

Power relations, as aforementioned, are interactions between at least two actors.
The computational implementation of these interactions must be based on certain
grounds. This can be knowledge an actor has about another actor; it can also be
experiences an actor has made in the past with his environment. Endorsements are
a “natural” way of implementing reasoning about this knowledge or experience.9

They were introduced by Cohen (1985) as a device for resolving conflicts in rule-
based expert systems. Endorsements can be used to describe cognitive trajectories
aimed at achieving information and preferential clarity over an agent or object
from the perspective of the endorsing agent himself. We use endorsements exactly
in this sense, namely, to capture a process of reasoning about preferences and
the establishment of a preferential ordering (Moss 1995, 1998, 2000; Moss and
Edmonds 2005). Endorsements capture an agent’s (the endorser’s) reasoning
process about other agents (the endorsees). That process projects the endorser’s
internal preferences onto the endorsee. These preferences are represented by an
endorsement scheme which is a collection of categories of possible characteristics
of other agents. These categories of endorsements amount to a partial preference
ordering of characteristics perceived in other agents. The ranking of collections of
endorsements is an essentially arbitrary process. Cohen (1985) used a lexicographic
ordering so that the preferred object (in this case, agent) would be that with the
largest number of endorsements in the most valuable category. If several objects
were tied at the top level, the second level of endorsements would be used to break
the tie and then, if necessary, the third or fourth levels, etc. An alternative is to
allow for a large number of less important endorsements to dominate over a small
number of more important endorsements. One way of achieving this is to calculate
endorsement values E for each endorsee as in Eq. (27.1) where b is the number base
(the number of endorsements in one class that will be a matter of indifference with
a single endorsement of the next higher class) and ei is the endorsement class of the

8We are well aware of the ongoing discussion on induction with regard to case-study research and
the interested reader may refer, among others, to Gomm et al. (1992), Eckstein (1992) and Stakes
(1978).
9See for a more complete treatment of endorsements (Alam et al. 2010).
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Fig. 27.1 Schematic representation of the embeddedness of the endorsement process

ith endorsement token (Moss 1995). In choosing from among several other agents,
an agent would choose the endorsee with the highest endorsement value E.
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The process of endorsing an agent must be thought of as being embedded in
an agent’s environmental context, i.e., his neighboring agents (see Fig. 27.1). The
endorsement process allows an agent to find the agent most appropriate to him—it
does not (and cannot) seek the best of all agents.

The main advantage in applying the idea of endorsements lies in the fact that
they allow for combining the efficiency properties of numerical measures, with the
richness and subtleties of non-numerical measures of interest or belief (Moss 1995).

The choice of endorsements and the conditions in which each endorsement will
be attached is entirely context-dependent. Agents concerned with critical incidence
management in water supply (Moss 1998) obviously have different criteria than
agents embedded in the context of contemporary conflicts (Geller and Moss 2008a).
While the former might be interested in actions and information models leading to
the successful resolution of a complicated allocation problem, agents in models of
contemporary conflict might be interested in with whom they should cooperate and
whom they should shun or even fight. For example, it is of importance to an agent
to know if its vis-à-vis is of the same ethnicity, religion, and kin; if it has lived a
similar past; and if it is reliable, corrupt, or wealthy. Power and authority relations
depend on knowledge about these kinds of questions. Section 27.4 addresses this as
well as the question of how to translate the evidence into an adequate endorsement
scheme in more detail.
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27.3.3 Declarative Implementations of Agent-Based Models

A program is declarative if there is a set of statements on a database, rules have a
set of conditions, which are statements with some values left open as variables, and
consequents exist, which are another set of statements. When all of the statements in
the conditions of a rule are matched by statements on the database, then the variables
are given their specific values from the database statements and the consequent
statements are added to the database. When a set of conditions are satisfied and a rule
fires (i.e., puts its consequents on the database), then the state of the environment
as represented by the database is changed, and perhaps other rules will now be able
to fire and so on until all rules have fired and no further matches of conditions
can be found on the database. The sequence of rules that will fire and the particular
instantiations of their variable values are determined only as the program is running.
The sequence of actions represents the process of agent behavior and leads in each
case to a new state of the environment. If all agents are implemented declaratively,
then they will be changing the state of the environment for one another and the
pattern of rules, and therefore actions of all the agents taken together will be
influenced by one another.

In these circumstances, the outcomes of such a model are usually impossible to
predict with any exactitude.10 Frequently, such models exhibit the sort of episodic
volatility associated in the first section with complexity. The same effect can be
achieved by other means, but declarative representations of agents have a number of
virtues in terms of ease of development as new evidence becomes available and in
terms of yielding comprehensible outputs stored as statements on the databases.

The assumption that the fulfillment of conditions triggers the execution of con-
sequents marks, in a homologue model, a natural representation of actor behavior.
Each actor behaves according to a defined set of rules. A rule fires only when the set
of conditions attributed to this rule is satisfied. Accordingly, an agent’s behavior is
governed on the basis of the fulfillment of conditions. It is fairly straightforward to
translate information on actor behavior obtained during the data collection process
into conditions.

Recall the following question from the opening paragraph: “Under what condi-
tions would you label someone as powerful?” A possible answer to this could be “If
a person belongs to a well-known family.” The condition for an agent providing the
abovementioned answer to label another agent as powerful is fulfilled if this other
agent belongs to a well-known family (whereas well known could translate into
socially well connected). Similarly, an agent might provide the answer “If the agent
has won five consecutive battles.” In this case an agent has to follow another agent’s
battle history to be able to tell if it can label him powerful or not. The translation for
a possible answer to the second question is analogous. “Having labeled someone as

10Hence, a declarative model architecture does not allow easily for exact simulation replication.
Other disadvantages are that declarative models tend to be computationally expensive and
ontologically complex.
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being powerful, how would you expect that person to behave?” could be answered
by saying “That the person is generous.” However, the translation now includes two
conditions. Firstly, an agent must have been already labeled powerful. Secondly, an
agent must have experienced the powerful agent being generous to it.

If the conditions of a rule are satisfied, then its consequents are put into effect.
Recall the third question stated in the introduction: “Having labeled someone as
powerful, how would you expect yourself/others to behave towards that person?”
A possible answer could be “Then I would subordinate myself to that person.” The
translation reads as follows: if an agent has labeled another agent as powerful, it
then (as a consequence) subordinates itself to this agent.

Analogously to the examples given, all the collected information that bears
relevance to the modeling process can be translated into declarative program
code. This translation process is essentially an operationalization and formalization
process of (sometimes vague) bits of qualitative information. Power and authority
are not implemented as predefined entities but are “grown” artificially from a
number of evidence-based rules that are proxies for dimensions of power and
authority. Agents become powerful as a consequence of a variety of causally
interconnected conditions and consequents.

27.4 Modeling Power and Authority: A Case
from Afghanistan

This section presents an implementation of what has been discussed above theoret-
ically. Reflections of power and authority in contemporary conflict are presented,
from which an intuitive but evidence-informed model of power and authority in
Afghanistan is derived. Against the background of this model and on the basis
of qualitative data, answers in the form of evidence to the questions posed in the
opening paragraph are presented. From these answers the agent rules are being
developed and translated into program code.

27.4.1 Power and Authority in Contemporary Conflicts11

The anthropogenic nature of power structures (Popitz 1992) has been shown for a
variety of conflict regions, including Afghanistan (Bayart et al. 1999; Reno 1998;
Roy 1994, 1995). Sofsky (2002) argued that conflict societies are societies sui
generis. They function according to their own social laws and are structurally and
processually disjointed from societies lacking a comparable degree of organized
violence. In conflict-torn societies virtually anything goes. This can be illustrated

11Parts of this and the next paragraph have been taken from Geller and Moss (2007).
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by the concept of anomie. Anomie is the situation in which the upper and lower
normative boundaries for the aspirations of members of a society are thrown awry
(Marks 1974). An anomic situation emerges when the means to attain a specific goal,
such as accumulation of wealth or power, run out of social control (Merton 1938).
Accordingly, in a space emptied of restricting norms, i.e., an anomie, virtually
everything goes along with the creation of power structures to one’s own ideas and
interests.

Anomic spaces are political spaces lacking strong modern institutions, such as
the state’s monopoly on organized violence, stability of the law, and protection of
property rights. In these circumstances only highly adaptive stakeholders prevail.
The socio-structural outcomes of this organizational process are manifold and so
are the adopted means that serve one’s interests.

In contemporary conflict societies this outcome is neo-patrimonialism (Geller
2006a; Medard 1990; Reno 1998). Weber (1980) understands patrimonial power
as being based on authority, suppressed subjects, and paid military organizations,
by virtue of which the extent of a ruler’s arbitrary power as well as grace and
mercy increases. Stakeholders interested in gaining power in contemporary conflict
settings have to act neo-patrimonially to accumulate and redistribute material as well
as social resources. The range of related activities is broad and includes corruption,
clientelism, patronage, nepotism, praebendism, and so forth (cf. Medard 1990).

27.4.2 An Intuitive Model of Power and Authority
in Afghanistan

Anthropogeneity, anomie, and neo-patrimonialism—or any other theoretical con-
text relevant to a particular research project—have eminent ramifications for the
perception of power and authority and henceforth for the development of the
model at hand. The evidence presented below should therefore corroborate the
implicit claim that anthropogeneity, anomie, and neo-patrimonialism amalgamate
to a framework describing Afghan power structures and functioning as an evidence-
informed theoretical framework that can be filled with the intricacies of the Afghan
case. In the beginning of a research project, such a framework model provides a
theoretically informed ontological entrée for the object of investigation.

The actual information the model at hand rests upon is derived either from
data collected by ourselves or from relevant secondary data sources. The collected
primary data stems from semi-structured interviews conducted with urban Afghan
elites between May 2006 and October 2007. The secondary data stems from
case studies, most of which are of anthropological type, reports published by
nongovernmental organizations (NGOs) or non-state actors, such as the United
Nations (UN) and the International Committee of the Red Cross (ICRC), or the
print media.
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Although 27 years of conflict accentuated two important factors in Afghan
society, namely, ethnicity and religion, the traditional organizational principle of the
qawm rested sound (Azoy 2003; Roy 1994, 1995; Shahrani 1998). Less mentioned,
however, is a decline of norms and values in Afghan society leading to a Hobbesian
form of society (Tarzi 1993). Today’s Afghanistan can be characterized as an
anomie (Geller 2010).

The causes for this development are complex but nevertheless directly linked to
the Jihad of 1979 to 1989. Although trends of neo-patrimonial politics are already
recognizable in the very beginning of the Jihad—and are indeed a characteristic of
Afghan politics throughout history—the war’s fundamental goals started to mutate
with its increasing duration. Some of the adopted means of warfare have been
traditional, such as organized violence, intrigue, alliance formation, and dissolution;
others have been “imported,” such as religious extremism and radicalization of
ethnicity (cf. Geller 2010; Roy 1998).

The concept of qawm is context-dependent, defined by such social dimensions
as family, kinship, ethnicity, and occupational groups and also more abstract but
related concepts such as solidarity, rivalry, cooperation, and conflict. The notion of
qawm also underlines the fluidity and contextual dependency of social relations in
Afghanistan. Hence, qawm ontologies are devised to codify individual actors, their
behavior and relations between actors, as well as social processes and structures
arising as a result of social interaction (Dorronsoro 2005, pp. 10–11).12 Each of
those aspects is pertinent to the development of our models, which represent and
clarify social processes associated with these overlapping identity spheres and the
actors acting within them.

The notion of qawm varies not only in the literature but also among Afghans
themselves. It can mean (extended) family, tribe, descent group, ethnicity, “people
like us” (Tapper 2008, p. 88), an “occupational group” (Roy 1992, p. 75), and
“persons who mutually assist each other” (Canfield 1973, p. 35), and it can connote
a complex interpersonal “network” (Roy 1995, p. 22; Dorronsoro 2005, p. 10) of
political, social, economic, military, and cultural relations (Mousavi 1997, pp. 46–
48; Tapper 2008; Glatzer 1998, p. 174; Rasuly-Paleczek 1998. pp. 210–214; Roy
1995. pp. 21–25; Shahrani 1998, pp. 218–221).13 In fact, our interview data suggests
that these meanings are not mutually exclusive: qawm do not have clear boundaries
nor do they divide Afghan society into mutually exclusive groups. “[A]n individual
always belongs to more than one [qawm]” (Canfield 1988, p. 194).

qawm face competition with other qawm and internal competition among
members of a qawm (Azoy 2003; Mousavi 1997, pp. 46–48; Roy 1994, p. 74;
Roy 1995, pp. 21–22). qawm need to be sustained, and it is an Afghan leader’s

12Monsutti (2004) “explores the basis of cooperation in a situation of war and migration” among
the Hazara in Afghanistan through the concepts of solidarity and reciprocity. Nancy Tapper
(1991) “reveals the structure of competition and conflict for the control of political and economic
resources” through the concept of marriage.
13Whether a qawm denotes a group or a network is not clear from the evidence. Following Tapper’s
(2008) argument, a qawm can take the form of a group or a network, depending on the context.
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ability to redistribute resources that makes him powerful and eventually successful
(Roy 1994, p. 74). The ability to create a qawm for a particular aim is also
perceived as a demonstration of power (Azoy 2003, p. 36). qawm still “have a
powerful and pervasive effect on contemporary political discourse and the behavior
of Afghans” (Shahrani 1998, p. 220) and have during the years of conflict often
been misused by new elites for the pursuit of conflict and criminal aims (Canfield
1988; Rasuly-Paleczek 1998, pp. 210–214; Roy 1994; Rubin 1992; Shahrani 2002;
Tapper 2008). Manifestations of such abusive behavior are, for example, corruption,
drug production and smuggling, nepotism, massive organized violence, crime, and
ethnic, political, and religious radicalization (Giustozzi 2006; Glatzer 2003; Rubin
1992, 2007; Schetter et al. 2007). qawm are not the cause for conflict in Afghanistan,
as these causes are manifold (Shahrani 2002, p. 716; Dorronsoro 2005), but we will
explore the usefulness of the notion of qawm in analyzing and understanding conflict
in Afghanistan.

Figure 27.2 depicts an informed intuitive and ideal-typical representation of a
qawm. It consists of ten actor types: politicians, religious leaders, commanders
(meritocratic title for a militia leader), businessmen, warriors, civilians, farmers,
drug farmers, organized criminals, and drug dealers. An important abstraction from
reality is that in our model each actor has its distinct role, whereas in reality
actors may incorporate a variety of roles. For example, a commander can be a
(military) commander, a politician and a drug lord at the same time. We proxy
individual role pluralism by mutual interdependence, i.e., each actor has virtues
another actor may be in need of and vice versa, leading to mutual cooperation and
interdependence. This, of course, is also a common pattern in reality, where there is
no clear distinction between role incorporation and cooperation.

The following examples explain the qawm model in terms of agency. If a
politician is in need of military protection, he approaches a commander. In return, a
commander receives political appreciation by mere cooperation with a politician.
If a businessman wants to be awarded an official construction contract by the
government, he relies on a politician’s political connections. In return, the politician
receives a monetary provision, for example, bribes. If a politician wants beneficial
publicity, he asks a religious leader for support. The religious leader, in return,
becomes perceived as a religious authority. If a warrior seeks protection and
subsistence for his family, he lends his services to a commander, who, in return,
provides him with weapons, clothes, food, and/or money. If an organized criminal
wants to carry drugs, he relies on the transport business of a businessman who, in
return, receives a share of the drugs sold. If a drug farmer needs protection for his
poppy fields, he affiliates with a commander, who, in return, receives a tithe of the
drugs sold to a local drug dealer. According to Azoy (2003), such interactions are
also guided by the following four social categories: kinship, residence, class, and
religion. Our model represents this neo-patrimonial behavior. The links between the
agents in Fig. 27.2 can also represent such categories.

The continuing existence of the qawm in times of severe social change as a
means to organize and manage power cannot baffle the fact that the qawm itself
has undergone configurational alteration. Protracted conflict deteriorated not only
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Fig. 27.2 A case study informed intuitive model of a qawm

social structure but also obliterated moral boundaries. Corruption, fraud, mistrust,
crude materialism, and the like systematically found their way into Afghan society.
The power of the qawm and of its members to constantly adapt to new states of
anomie epitomizes the anthropogenic nature of power and authority (Geller 2010).

27.4.3 An Intuitive Model of Power and Authority
in Afghanistan

27.4.3.1 Evidence

The collected interview data explicitly highlights three sources of power in current
Afghanistan: ownership, reputation, and qawm (cf. Azoy 2003). Their meaning
manifests when mirrored against the notions of hisiyat and e’tibar. Hisiyat and
e’tibar, two Dari words that roughly translate into “character” and “credit.” Hisiyat
denotes qualities such as piety and wisdom; e’tibar is about meritocracy. A powerful
actor must dispose of hisiyat and e’tibar.

Traditionally, ownership can be defined as land, access to water, livestock, and
women. References to landownership were made often during interviews, whereas
water and women have never been mentioned. Ownership of livestock was mainly
mentioned to serve reputational means in order to increase one’s own or someone
else’s reputation. The interview data and observations made during the field trips
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suggest that a modern comprehension of ownership has become more materialistic
and less subsistence oriented; mundane symbols of power such as money, houses,
and cars have increased in importance. This raises the issue of the sources for
these goods. While some Afghans undoubtedly were able to build up prospering
businesses or brought assets with them from exile, other sources remain dubious
and are likely to include organized crime, corruption, and clandestinely working for
foreign countries. Thus, a generalized answer to “When would you label someone
as being powerful?” includes that, either being traditional or modern, or, more
likely, a combination of both, a powerful individual must have access to ownership
resources. “[ : : : ][P]ower without wealth is all but possible” (Azoy 2003, p. 30). But
“[w]ealth is just a means to achieve prestige” (Roy 1994, p. 74).

In Afghanistan, authority is nourished by reputation. It is the “ultimate source
of political authority” (Azoy 2003, p. 31). Reputation exhibits a static and dynamic
component. The static component is closely related with ancestry. It is important
what ethnicity, family, or tribe someone belongs to. Hazaras, one of the four major
ethnicities in Afghanistan, are often regarded as working class, while Pashtun, the
largest ethnicity, are often perceived as a warrior elite. A family may be regarded
as politically powerful and/or religiously influential. To have roots in a political,
religious, or scholarly family provides authority. This became obvious during
interview sessions in a variety of ways. Interviewees have regularly been introduced
or have introduced themselves by referring to their family either in a political or
religious context. Two outspoken authoritarian interviewees, for example, claimed
to be Sayyed, i.e., descendants from the Prophet, and scholars at the same time.
The dynamic aspect of reputation relates to an individual’s historicity. Individual
politico-historical background is important. Individual histories link actors to
different social groups and can provide them, depending on the social context, with
esteem, such as in the case of having been a Mujahedin, a resistance fighter during
the time of Soviet occupation. Thus a generic answer based on the interview data
collected to “when would you label someone as being powerful?” would include that
a powerful individual belongs to an important family and/or has played an important
role in his past.

The qawm is the epitomization of network-based power structures in
Afghanistan. A qawm is more than mere reference to an actor’s ethnicity or tribe;
it is more than an extended family. The qawm is an actively used instrument in
the pursuit of power. An appropriate translation would therefore be “power basis”:
a number of people that can be mobilized to achieve a particular political aim.
With changing political aims, this group of people may change as well. Thus a
generalized answer to the question “when would you label someone as powerful?”
includes that a powerful individual not only disposes of a qawm but also exerts
control over it.
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27.4.3.2 Model and Computational Implementation

Based on the evidence, how are a powerful actor and his entourage to be structurally
modeled? First, it needs to be defined who is powerful and who is not by disposition.
The evidence presented above indicates that the following agent types should be
considered as being powerful in our model: politicians, businessmen, religious
leaders, commanders, and organized criminals. These agents are computationally
created as being powerful by definition, because they are politicians, religious
leaders, commanders, etc.14 Hence, social resources do not have to be distributed
explicitly, agents are “born” possessing them—or not.

Secondly, agents must, at the initialization of the model, be equipped with
material resources. These assets are given, pars pro toto, in the form of money,
drugs, and land. The absolute amount of money distributed in the model is arbitrary
as real numbers are not available. Money is distributed lognormally among agents
of one particular agent type. A lognormal distribution of wealth also appears for the
case of Afghanistan a plausible assumption (Limpert et al. 2001). Hence, a small
number of agents are very rich, while most of the people are poor. The data record
for land holdings, which is better than the one for wealth, suggests that holdings
of land should be distributed lognormally as well (Wily 2004). Again, this means
that a small number of agents possess a lot of land, while a large number of agents
will only own little land. Last but not least, drug farmers receive some drugs in the
beginning of the simulation and harvest drugs during the simulation in specified
harvesting periods (UNODC 2006).

Thirdly, agents must be given an internal state, representing what has been
identified above as hisiyat and e’tibar. This internal state is an agent’s endorsement
scheme, which is depicted in Table 27.1. Some of these labels (the endorsements)
are static, others are dynamic. Static endorsements are attributed to each agent
at the beginning of a simulation and cannot be changed during the course of the
simulation: an agent is either an intellectual or he is not; he is either a Tajik, another
important Afghan ethnicity, or he is not; he is either my brother or he is not, etc.
For the time being it is not implemented that an agent’s changing relationships are
taken into account to form an individual political profile, hence the politico-military
background is static. Some hisiyat endorsements are dynamic, such as loyalty,
trustworthiness, neighborhood, or religiousness, and can change their respective
values during a simulation run. All e’tibar endorsements are, by contrast, dynamic,
as e’tibar, i.e., meritocracy, is inherently dynamic and must call for a dynamic
conceptualization. Formerly reliable agents can become unreliable and previously
successful agents can become unsuccessful, etc.

The endorsement scheme does not only depict an agent’s internal state but also
denotes the categories in which an agent reasons about other agents. For example,

14Note that we are not simulating the genesis of a powerful agent, but the emergence of power as
a network-like structure in an evidence-based, artificial society. See for the qualitative description
of such a genesis (Giustozzi 2006).
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Table 27.1 Crosstabular presentation of an agent’s endorsement scheme

Static Dynamic

hisiyat Intellectual/non-scholarly Loyal/disloyal
Shared-ethnicity/different-
ethnicity

Trustworthy/untrustworthy

Shared-religion/different-
religion

Is-neighbor/non-neighbor

Is-kin/non-kin Pious/sinful
Politico-military-background

e’tibar Reliable/unreliable
Successful/unsuccessful
Capable/incapable

assume agent A is Tajik, a Mujahedin, successful, and neighbor of agent B. Further
assume that agent B is Tajik as well, was also a Mujahedin, and evidently is also
neighbor of A. It is then likely that agent B will look favorably at agent A and vice
versa and that the two will establish an affiliation with each other. The endorsement
scheme breaks down why an agent is more powerful than another agent: because
it disposes over an internal state that is seen favorable by other agents. Or to put
it differently: because it internalized a number of qualities that are perceived as
symbols of power by other agents.

It is important to note that although an individual agent is defined at the moment
of its creation as being powerful or not per se, nothing is said about how powerful it
is going to be or spoken differently: how good of a neo-patrimonial agent it will be.
The agent’s performance as well as the social product of its performance, the qawm,
are emerging out of the social simulation model and are not computational artifacts.

27.4.3.3 Behaving Powerfully

Having clarified what makes actors powerful in Afghanistan, it is now important
to know how these powerful actors behave and how other actors behave toward
powerful actors. The corresponding questions from the introduction are: “Having
accepted someone being powerful and/or being an authority, how would you expect
that person to behave?” And: “Having labeled someone as powerful/as being in
a position of authority, how would you expect yourself/others to behave towards
that person?” The freedom of choice an actor has to behave toward a powerful
agent depends on a number of different factors (hisiyat and e’tibar) but is foremost
based on the distinction whether an actor is powerful himself or not. The two
constellations powerful actor/weak actor and powerful actor/powerful actor lead to
different outcomes in the social organization. In our understanding these are patron-
client relationships (powerful/weak) or affiliations (powerful/powerful). However,
in both cases, accumulating and redistributing resources is in the center of actor
behavior.
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Weak actors only have little choice of how to behave toward a powerful actor and
are forced into a patron-client relationship because of grievance. They are either
locked in into economic dependency or are not even a member of the powerful
actor’s qawm and thus cosmos. In both cases weak actors can only submit them-
selves and must fully depend on the powerful actor’s gratitude. Consequentially,
in patron-client relationships, powerful behavior is more of a mundane sort, for
example, supporting a client’s family with food, clothes, and housing. Depending
on what kind of client it is, the patron might ask for dog’s body services in the
case of a civilian, for protective services in the case of a warrior, or for zakhat
(tithe) in the case of a farmer. In general, the patron demands loyalty for his
support. The weak actor exerts power over the powerful actor indirectly insofar
as it is harmful for a powerful actor’s reputation to pay subsidies irregularly or not
at all. The weak actor exerts power directly in case of grass-root opposition as a
result of insensitive politicization by the powerful actor. This social relationship of
dependence is standard in Afghanistan and every powerful man surrounds himself
with such a “service force,” be it small or big. Nevertheless, supporting the weak
should not be considered as being unimportant, as they provide a basis of broad
social support. Moreover, supporting the weak increases a powerful man’s e’tibar as
the following ideal-typical characterization of Pashtun men highlights: he is a man
of honor, with prowess and pride, whose dignity does not forbid him to be attentive
to authorities as well as the weak (Janata and Hassas 1975, p. 84) (translation ours).

Powerful behavior between two or more powerful agents is of a different nature.
Powerful actors have the freedom to choose their behavior toward their vis-à-vis and
can either act cooperatively, conflictously, or submissively. Which type of behavior
is chosen, is based on a deliberate but nevertheless fragile assessment of who must
be considered a supporter and who must be considered a spoiler or even a foe.
Hence, whatever the project that is of concern to a powerful actor, it is intensively
discussed with those people from his social circle who he thinks should be included
in the decision-making process (Azoy 2003).

The evaluation of a project’s—and ultimately of a powerful actor’s behavior—
supporters and opponents constitutes the initialization of a project-based qawm. The
organization of a qawm, whether it is a generic qawm based on kinship or a temporal
qawm, is a delicate operation. Exacerbating is the fact that potential supporters as
well as potential enemies are competitors against whom the powerful actor must
stand up—at all time. Hence, the creation and maintenance of qawm explains the
volatile nature of cooperation, the often and sudden changes of alliances and the
ubiquity of conflict (cf. Azoy 2003).15

In the case of cooperation, powerful actors establish affiliations between each
other. Affiliations are relations between qualitatively equals. Consequentially, pow-
erful agents do not give each other material support, but they provide each other with
social resources. While powerful actors in patron-client relationships accumulate

15We do not consider the emergence of conflict in this chapter. See for a preliminary discussion
(Gerring 2004).
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social resources for redistributing material resources, powerful actors in affiliations
mostly accumulate and redistribute social resources. Politicians guarantee that
commanders are not denigrated as “warlords,” commanders protect politicians,
religious leaders openly designate politicians of being pious, politicians declare a
religious leader their spiritual leader, businessmen financially support a politician’s
campaign, politicians provide businessmen with lucrative state contracts, etc. In
short, powerful actors support each other in increasing their hisiyat and e’tibar
record. The opposite, of course, exists as well. Powerful actors can actively engage
in diminishing another actor’s hisiyat and e’tibar record.

In summary, a powerful actor is able to control his qawm economically and
socially. He is able to redistribute enough material and social resources to keep his
qawm alive. If one would have to measure the power an actor in Afghanistan has,
then it would not suffice to only count his material assets. A comprehensive measure
of power would include this actor’s reputation, measured in terms of his ability to
“call on the services of supporters to help him in whatever enterprise” (Azoy 2003,
p. 32).

27.4.3.4 Model and Computational Implementation

The computational implementation of the behavior of a powerful agent is straight-
forwardly informed by the evidence presented above. Powerful agents want to
accumulate and redistribute material and social resources. For this reason their
hisiyat and e’tibar needs to be relatively superior to their competitors’. Hence,
a powerful agent’s aim must be to establish as many favorable relationships as
possible. He does this in two steps: first he reasons about which agents to endorse,
and second he takes action on the basis of his decision he has taken in step one.

Step one consists of the endorsement process as explained in Sect. 27.3.3 and as
contextualized in Sect. 27.4.3. Each agent continually checks all the agents visible
to him—not all of them are—i.e., he projects his endorsement scheme upon them,
rates the corresponding values, calculates E, compares all Es against each other,
and chooses the one with the highest E to endorse. According to the evidence, the
model implies that during the endorsement process, those agents are more likely
to establish a relationship with each other if they are similar with regard to hisiyat
endorsements and who exhibit higher values with regard to e’tibar endorsements.
Two short examples shall clarify this, one for patron-client relationships and one for
affiliations.

Powerful agents do not seek ordinary agents; rather they are sought out by
the latter. But even though ordinary agents are in misery, they try to choose the
powerful agent who is most suitable for them, given the choice. Assume a civilian,
who is Tajik, a Mujahedin and in need of material support (see for what follows
also Table 27.2). (In the simulation this is the case when the civilian’s holdings of
money are �0.) Before asking every politician for material support the agent can
see, it checks which of the visible politicians are most suitable to him. Assume that
there are two visible politicians. The civilian agent then projects its endorsement
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Table 27.2 Cross-tabular presentation of a sample endorsement process between one civilian and
two politicians

Endorsements Civilian Politician1 Politician2

Same/different ethnicity (˙1) Tajik Hazara/�2* Pashtun/�2*
Same/different politico-military background (˙2) Mujahedin Mujahedin/4 Mujahedin/4
Reliable/unreliable (˙3) – Unreliable/�8* Reliable/8
E – �6 10

The values in parentheses indicate the importance of an endorsement. Values on the left side of each
dash represent “reality”; values on the right side of each dash represent the “weighed reality.” Labels
marked with an asterisk have been multiplied with �1, because in Eq. (27.1), they are part of the
second † sign and are therefore subtracted

scheme upon each of the two politician agents. Recall that the endorsement scheme
not only tells the civilian how important particular characteristics of these two
politicians are to it but also what the categories of its own perceptions are. In
Eq. (27.1) b denotes the number base for which every agent is randomly assigned
a value b > 0. (For b D 0 the expression bx is equal to 1, independently of the
exponent x). In this example, the civilian is assigned b D 2. In Eq. (27.1) ei denotes
the value of the ith endorsement token. This value differs for each endorsement
token and for each agent. In this example the endorsement tokens for the civilian
are same-ethnicity/different-ethnicity, same-politico-military-background/different-
politico-military-background, and reliable/unreliable. Each endorsement token is
randomly assigned a value ei. ei differs for each agent. In the present example,
the following values for ei are assigned for the civilian: 1 for same-ethnicity, �1
for different-ethnicity, 2 for same-politico-military-background, �2 for different-
politico-military-background, 3 for reliable, and �3 for unreliable. These values
are on an ordinal scale and represent the civilian’s endorsement scheme. The
interpretation of this endorsement scheme is that the civilian perceives the labels
same-ethnicity/different-ethnicity less important than the labels same-politico-
military-background/different-politico-military-background and the labels same-
politico-military-background/different-politico-military-background less important
than the labels reliable/unreliable. Politician1 is a Hazara, a Mujahedin and has
never been endorsed reliable by the civilian. Politician2 is an Uzbek, a Mujahedin
and has been endorsed reliable in the past by the civilian. With regard to politician1

the civilian reasons as follows: politician1 is not of the same ethnicity, has the same
politico-military-background, and is unreliable. Depending on this information and
the values assigned above, (1) allows the calculation of E, which is: 22–2j–1j–
2j–3j D �6. For politician2 the civilian reasons as follows: politician2 is not of the
same ethnicity, has the same politico-military-background, and is reliable. Thus, E
can be calculated as follows: 22 C 23–2j–1j D 10. Because politician2 has a higher
E than politician1, the civilian decides to choose politician2. This procedure can be
extended to as many agents and to as large endorsement schemes as necessary.

Once the civilian has taken its decision, which politician to ask for support, the
agent sends a message to this particular politician, requesting support. As long as the
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politician has enough money to support the civilian, it accepts the support request.
The acceptance of the support request is tantamount to the establishment of a patron-
client relationship. In each simulation iteration, the politician pays the civilian a
defined amount of money, as long as it has enough money to do so. In return, the
civilian is required to endorse the politician as being trustworthy. In the event that the
politician cannot pay the civilian anymore, the latter endorses the politician being
unreliable and untrustworthy, leading to a breakup of the patron-client relationship.
The civilian then has to seek another politician, and the endorsement process starts
again. All requests for support by ordinary agents follow this scheme.

Interactions between powerful agents processually do not differ substantially
from the scheme described above. Consider the case where a commander wants
a trustworthy assertion from a politician in order to not be denigrated as “warlord.”
Assume that two politicians are visible to the commander. Again, before sending
off a message to the most suitable politician, the commander assesses which of the
two politicians are most suitable to it, i.e., which one has the higher E. Although
different and further endorsements might apply in this case, the endorsement
process, as described in the civilian-politician case, does not change in essence.
Once the commander has chosen a suitable politician—one, for example, who
is of the same ethnicity, the same politico-military background, and who has a
record of being trustworthy—it then sends a message to this politician requesting
to be endorsed trustworthy. Because the commander has chosen a politician with
a trustworthy record during its endorsement process, the politician is able to do
so, i.e., to endorse the commander trustworthy. However, the politician demands
a service in return. When dealing with a commander, this service is naturally
protection. Hence, the politician agent sends a message to the commander agent,
stating that it will endorse it trustworthy, but only if the commander agent can
protect the politician agent. Naturally, the commander can provide protection only,
if there is at least one warrior with whom he has a patron-client relationship,
established according to the procedure described above. Given he can provide
protection, he accordingly answers the politician’s message. This mutual fulfillment
of conditions triggers a number of mutual endorsements: the politician endorses the
commander as not only being trustworthy, as requested, but also as being capable,
as he is capable of providing protection; the commander endorses the politician
as being trustworthy. Mutually endorsing each other is tantamount to establishing
an affiliation. This affiliation holds as long as the conditions leading to it hold
true: “Is the commander still able to provide protection?,” “Is he still capable?,”
“Is it still trustworthy?,” “Is the politician still trustworthy?” Both agents do this
every simulation iteration. Moreover, all relationships, whether they are patron-
client relationships or affiliations, break up when there is an agent (endorsee) found
who fits an endorser better, because agents continually scan their neighborhood for
better opportunities.

The example given above is representative for all the interactions between
powerful agents: politicians request armed protection from commanders for a
trustworthiness assertion; commanders approach businessmen to invest money;
businessmen pay politicians for courtesy services; politicians request a pious
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assertion from a religious leader for a trustworthiness assertion; and religious
leaders ask commanders for protection and, in return, assert a commander as being
pious. All these affiliation interactions describe the neo-patrimonial usage of social
capital as well as the accumulation and redistribution of material resources.

The quintessential mechanism is the endorsement scheme. It is the interface
through which two agents communicate with each other, and it is the raster that
filters those who are “endorsables” from those who are “unendorsables.” If two
agents match to establish a patron-client relationship or an affiliation, is ultimately
decided via the mechanism of the endorsement scheme. Hence, the evidence that is
enshrined in the endorsement scheme (cf. Sect. 27.4.3 and there in particular Table
27.1) finally leads to the emergence of social reality.

27.4.3.5 Emerging Structures: Simulation Results16

It would be beyond the scope of this chapter to discuss the simulation results and
their validation in detail (see Chap. 9 (David et al. 2017), Chap. 10 (Evans et al.
2017), and Chap. 14 (Sawyer 2017) in this volume, also Moss 2007 for more on
how to do this). Figure 27.3 depicts the output of a representative simulation run at
time t D 100. There are ten different agent types and the total number of agents
is 190: 6 politicians, 6 religious leaders, 6 businessmen, 6 organized criminals,
6 commanders, 10 drug dealers, 35 drug farmers, 35 farmers, 70 civilians, and
20 warriors. In summary, these effects represent the emergence of higher-order
organizational structures or qawm out of the micro-processes and microstructures
introduced above.

Agents affiliated with each other are linked via a line. Two distinct but never-
theless interconnected clusters of agents are apparent in the network. Each cluster
consists of a variety of agent types. This means that the depicted clusters are
not homogeneous organizations of power but rather heterogeneous concentrations
of power generated by mutually dependent and interacting agents/actors. Agents
assumed to be more powerful than others, i.e., politicians, commanders, religious
leaders, and organized criminals are prevalent in each of the two dense clusters.
The reasons for the evolution of this network of clustered affiliations are manifold:
agents affiliate because they share the same ethnicity or religion, because they
have established a business relationship, or because they seek protection with a
commander. But in general, the clusters can be perceived as emergent properties of
agent neo-patrimonial behavior as reified by our agent rules. The model generates
data of the sort we expected and its output can therefore be considered as artificial
representations of qawm.

A cogent argument for this claim is the fact that a cross-validational analysis
between the network constructed from simulation output and a real network,

16This paragraph is a condensed version of Geller and Moss (2008a). See also Geller and Moss
(2007, 2008b).

http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_10
http://dx.doi.org/10.1007/978-3-319-66948-9_14
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Fig. 27.3 Artificial Afghan power structures depicted as a relational network of Afghan agents

constructed by Fuchs (2005), was successfully conducted. Cross-validation provides
a link between the model and its target system, i.e., reality (Moss and Edmonds
2005). Fuchs (2005) has collected open source data on Afghan power structures for
the years 1992–2004/05 which can be compared with the AfghanModel network
depicted in Fig. 27.3.17

The densities for the Fuchs and the AfghanModel networks are 0.0593 and
0.1943* (only strongmen, marked with *) and 0.0697 (208 agents, marked with �).
The clustering coefficient for Fuchs is 0.428, while it is 0.542* and 0.432�,
respectively, for the AfghanModel. Both the Fuchs and the AfghanModel networks
tend to be small world. They exhibit sub-networks that are characterized by the
presence of connections between almost any two nodes within them. Most pairs
of nodes in both networks are connected by at least one short path. There is an
overabundance of hubs in both networks. The average geodesic distances for the
Fuchs and the AfghanModel networks, 2.972, 3.331*, and 2.628�, are relatively
small compared to the number of nodes. Erdős-Rényi random networks of equal size
and density as the Fuchs and the AfghanModel networks exhibit lower clustering

17Fuchs (2005) only collected data of elites. In order to compare her results with those generated
from the simulation presented here, all ordinary agents, i.e., non-elites, had to be removed from
the network to meaningfully calculate the desired network measures. Note that the simulation
parameters remained unchanged. Note also that the two networks vary in size: 62 agents participate
in the Fuchs network and 30 in the AfghanModel network. This can lead to boundary specification
problems.
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coefficients than the Fuchs and the AfghanModel networks, namely, 0.060, 0.212*,
and 0.072�— an indication that neither the clustering of the Fuchs nor of the
AfghanModel network is random. The two Erdős-Rényi random networks have
geodesic distances (2.094*, 2.276�) which are of a comparable order as the geodesic
distances that can be found in the AfghanModel network (3.331*, 2.628�). Thus,
a structural and functional equivalence based on qualitative evidence between the
model and the target system is observable.

27.5 Conclusions

The main task of this chapter was to provide a critical overview of state-of-the-
art models that deal in alternative ways with power and authority and to present
an alternative research design that overcomes the inefficiencies and shortcomings
of these approaches. The work presented is motivated by the fact that research on
power structures is confined on one hand by a general lack of statistical data. On
the other hand, the literal complexity of power structures requires a formalized
and dynamic approach of analysis if more than a narrative understanding of
the object under investigation is sought. The case of Afghanistan has only been
instrumentalized to exemplify such an approach, which would work without doubt
for any other comparable contexts.

With regard to the case in hand the explanandum is power and authority in
Afghanistan. The analysis focuses on power relations dominated by elites. The
qawm, a fluid and goal-oriented solidarity network, has been identified in the data
available to us as the pivotal structural and functional social institution to manage
power and authority in Afghanistan. The totality of qawm in Afghanistan does not
form a unified system of power but a cosmos of mutually interacting power systems.
This qualitative analytical result has been reproduced by our simulation results
and was subsequently cross-validated with independent out-of-sample network
data. This cosmos is a root source for political volatility and unpredictability and
ultimately an important explanatory factor for conflict in Afghanistan. For the time
being, the latter only outlines an a priori statement that needs further corroboration.

The proposed approach starts with an evidence-informed but intuitive model of
power and authority in Afghanistan. Such a model provides an intellectual entree,
identifies and defines a target system, isolates relevant actors and generic actor
behavior, and helps to address appropriate research questions. Based on this intuitive
model, agent structures and rules are developed according to the evidence that
is available. The aim is to develop a homologue, i.e., a construct valid model,
which allows translation of the information describing the model with regard to
structure and processes into program code. Weak agents have been implemented
according to the rational that they seek affiliation with a powerful agent because
of grievance and their will to survive; a powerful agent is implemented according
to the rational that he affiliates himself with other powerful agents in terms of
functional complementarity to subsist his solidarity network, i.e., his qawm, with
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the aim of consolidating or increasing his power. The general underlying notion of
such behavior is neo-patrimonialism. The simulation results are not self-explanatory
but need to be validated against reality. This not only provides new insight into
the target system but also obliges to restart the research process as new evidence
has become available. This is the hermeneutic circle of EDABSS, in which the
manner of how to present simulation results meaningfully to stakeholders still needs
to be considered as being in its experimental stage (though companion modeling
has shown a very fruitful way forward). The approach introduced here does also
constitute a consequent implementation of generative social science, for which,
nevertheless, the research design still needs further formalization and clarification.

Special consideration was given to a cognitive process called “endorsements.”
The idea of endorsements serves two aims: firstly, to differentiate and define
the relevant dimensions agents reason about and, secondly, to implement agent
cognition in a natural way (being able to use the mnemonic tokens found in the
evidence informing the model). Endorsements as they were introduced here lack
two important features: that agent types should have randomized, type-specific
endorsement schemes and that Eq. (27.1) to calculate E should allow for continuous
data formalization. Alam et al. (2010) have proposed a solution for these problems.

What has been gained by this approach? First, tribute has been paid to reality
by taking it seriously into account. Although evidence-driven modeling is about
abstraction and formalization like any other modeling technique, it does it on the
basis of evidence. Secondly, while agent-based modeling accounts in general for an
epistemological shift from an intra-modeling view and disburdens modeling from
serving only a mere input-output function, evidence-driven modeling facilitates
cross-validation also between model and target system interagent mechanisms and
on the systems’ respective meso-levels. Thirdly, the inclusion and generation of
narratives in evidence-driven modeling opens up new ways of engaging stakeholders
and domain experts in the modeling process and in informing policy analysts and
makers in their decision-making.

However, the heuristic usefulness and value of the applied approach can only
be determined against the actual object under investigation, i.e., Afghanistan.
What has been found by modeling Afghan power structures evidence-driven and
agent-based that would have not been detected by applying only a hermeneutic
analysis? Modeling requires not only abstraction but also formalization and thus
disambiguation of the evidence describing the case at hand. In particular we were
forced to dissect the notion of qawm, an inherently context-dependent and fuzzy
concept, with regard to actor behavior and cognition, assigning clear meaning to
all mechanisms deemed to be relevant to the model. This being only a beneficial
side effect of evidence-driven social simulation, emerging social processes and
structures are in the focus of description and analysis, social dynamics that could
hardly be made graspable by pure narrative analysis. Here this is the evidence-
driven generation of a model-based demonstration of an autopoietic system of power
structures taking the form of a small world network.

From the point of view of complexity science, it is interesting to observe how the
introduction of localized mechanisms of power generates order on a higher level, or
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to put it differently: how neo-patrimonial behavior and processes of accumulation
and redistribution in a state of anomie create a social structure which can be
found in Afghanistan, i.e., qawm. Further, EDABSS clarifies an important aspect
of emergentism: it is not satisfactory to state that in agent-based modeling, agents
constitute their own environment (cf. Cederman 2001). In lieu thereof, it should
be replenished that agents and the emergent effects stemming from these agents’
interactions as a whole constitute an agent’s environment. Agent behavior on the
micro-level and social structurization on the macro-level cannot be thought of as
disjointed entities but emblematize the wholeness of what is in essence a complex
system. EDABSS therefore is not only a methodological solution to the micro-
macro gap problem but also an implementational one.

EDABSS implies more than inductive reasoning about social phenomena. It
constitutes a consequent implementation of the generative social science paradigm.
Evidence is the starting point of the research process and evidence denotes its
end. It is the nature of the object under investigation that shapes the theoretical
and methodological approach and not vice versa. This is perhaps EDABSS’ most
important virtue that it takes reality and its subjects seriously: during evidence
collection, model development, and validation.
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Further Reading

Whereas the literature on power and authority is overwhelming, published work
on power and authority and modeling and simulation is, comparatively speaking,
meager. For further reading we suggest Alam et al. (2005) and Rouchier et al.
(2001) for models concerned with the emergence of structures and authority in
gift exchange, Geller and Moss (2008a) and Alam et al. (2008) for empirical
models relevant to power and authority, Axelrod (1995) and Cederman (1997) for
applications of modeling power to conflict in international relations, Mailliard and
Sibertin-Blanc (2010) for a good discussion of multiagent simulation and power
from a sociological perspective, and finally Guyot et al. (2006) for a participatory
modeling approach with relevance to power and authority.
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Chapter 28
Human Societies: Understanding Observed
Social Phenomena

Bruce Edmonds, Pablo Lucas, Juliette Rouchier, and Richard Taylor

Abstract The chapter begins by briefly describing two contrasting simulations: the
iconic system dynamics model publicised under the Limits to Growth book and a
detailed model of first millennium Native American societies in the southwest of
the United States. These are used to bring out the issues of abstraction, replicability,
model comprehensibility, understanding vs. prediction and the extent to which
simulations go beyond what is observed. All of these issues are rooted in some
fundamental difficulties in the project of simulating observed societies that are
then briefly discussed. Both issues and difficulties result in three “dimensions” in
which simulation approaches differ. The core of the chapter is a look at 15 different
possible simulation goals, both abstract and concrete, giving some examples of each
and discussing them. The different inputs and results from such simulations are
briefly discussed as to their importance for simulating human societies.

Why Read This Chapter?
To get an overview of the different ways in which simulation can be used to gain
understanding of human societies and to gain insight into some of the principle
difficulties of these. The chapter will go through the various specific goals one might
have in doing such simulation, giving examples of each. It will provide a critical
view as to the success of reaching these various goals and hence inform about the
current state of such simulation projects.
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28.1 Introduction

Understanding social phenomena is hard. There is all the complexity found in other
fields of enquiry but with additional difficulties due to our being embedded in what
we are studying.1 Despite these, understanding our own nature is naturally important
to us, and our social aspects are a large part of that nature. Indeed, some would go
as far as saying that our social abilities are the defining features of our species (e.g.
Dunbar 1998). The project of understanding human societies is so intricate that we
need to deploy all means at our disposal. Simulation is but one tool in this vast
project, but it has the potential to play an important part.

This chapter considers how and to what extent computer simulation helps us to
understand the social complexity we see all around us. It will start by discussing two
simulations in order to raise the key issues that this project involves, before moving
on to highlight the difficulties of understanding human society in more detail. The
core of the chapter is a review of some of the different purposes that simulation can
be used for, with examples of each. It then looks at a way of assessing the success
and kind of purpose of simulations in terms of their inputs and outputs (Sect. 28.4).

28.1.1 Example 1: The Club of Rome’s “Limits to Growth”
(LTG)

In the early 1970s, on behalf of an international group under the name “The
Club of Rome”, a simulation study was published (Meadows et al. 1972) with
the attempt to convince humankind that there were some serious issues facing
it, in terms of a coming population, resource and pollution catastrophe. To do
this, the group developed a system dynamics model of the world. They chose
a system dynamics model because they felt they needed to capture some of the
feedback cycles between the key factors—factors that would not come out in simple
statistical projections of the available data. They developed this model and ran
it, publishing the findings—a number of model-generated future scenarios—for a
variety of settings and variations. The book (Limits to Growth) considered the world
as a single system, and postulated some relationships between macro variables,
such as population, available resources, pollution, etc. Based on the relationships
it simulated what might happen if the feedbacks between the various variables were
allowed to occur. The simulation outputs were the curves that resulted from this
model as the simulation was continued for future dates. The results indicated that
there was a coming critical point in time and that a lot of suffering would result,
even if humankind managed to survive it.

1This embeddedness has advantages as well, such as prior knowledge.
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The book had a considerable impact, firmly placing the possibility that
humankind could not simply continue to grow indefinitely in the public mind.
It also attracted considerable criticism (e.g. Cole et al. 1973), mainly based on the
plausibility of the model’s assumptions and the sensitivity of its results to those
relationships. (For example, it assumed that growth will be exponential and that
delay loops are extended.) The book presented the results of the simulations as
predictions—a series of what-if scenarios. Whilst the authors did add caveats and
explore various possible versions of their model, depending on what connections
there turned out to be in the world system, the overall intent of the book was
unmistakeable: that if we did not change what we were doing, by limiting our
own economic consumption and population, disaster would strike. This was a work
firmly in the tradition of Malthus (1798) who, 175 years earlier, had predicted a
constant state of near starvation for much of the world based upon a consideration
of the growth processes of population and agriculture.

The authors clearly hoped that by using a simulation (albeit a simplistic one by
present standards), they would be able to make the potential feedback loops real to
people. The simulation illustrated an understanding that the authors of LTG had.
However, the model was not presented as such, but as something more scientific
in some sense.2 A science-driven study that predicted such suffering was a definite
challenge to those who thought the problem was less severe.3 By publishing their
model and making it easy for others to replicate and analyse it, they offered critics
a good opportunity for counter-argumentation.

The model was criticised on many different grounds, but the most effective was
that the model was sensitive to the initial settings of some parameters (Vermeulen
and de Jongh 1976). This raised the question whether the model had to be finely
tuned in order to get the behaviour claimed and thus, since the parameters were
highly abstract and did not directly correspond to anything measurable, questioned
the applicability of the model to the world we live in. Its critics assumed that since
this model did not produce reliable predictions, it could be safely ignored. It also
engendered the general perception that predictive simulation models are not credible
tools for understanding human socio-economic changes—especially for long-term
analyses—and discouraged their use in supporting policy-making.

2The intentions of the authors themselves in terms of what they thought of the simulation itself are
difficult to ascertain and varied between the individuals; however, this was certainly how the work
was perceived.
3Or those whose vested interests may have led them to maintain the status quo concerning the
desirability of continual economic growth.
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28.1.2 Example 2: Modelling First Millennium Native
American Society

A contrasting example to the Club of Rome model is the use of simulation models
to assess and explore explanations of population shifts among the Native American
nations, in the pre-Columbian era. This has been called “generative archaeology”
(GA) by Kohler (2009). Here a spatial model of a population was developed,
which was fitted to a wealth of archaeological and climatological data in order
to find and assess possible explanations of the size, distribution and change in
populations that existed in the first millennium AD in the Southwest US. This case
offers a picture of settlement patterns in the context of relatively high-resolution
reconstructions of changes in climate and resources relevant to the human use of
these landscapes.

The available data in this case is relatively rich, allowing many questions to be
answered directly. However, other interesting aspects are not directly answerable
from a static analysis of the data, for example, those about the possible social
processes that existed. The problem is that different archaeologists can inspect the
same settlement pattern and generate different candidate processes (explanations)
for its generation. Here agent-based modelling helps infer the social processes
(which cannot be directly observed) from the detailed record over time. This is not
a direct or certain inference, since there are still many unknowns involved in that
process.

In (Kohler et al. 2005) and (Kohler et al. 2008),4 agent-based modelling (ABM)
has been mainly used to see what patterns one should expect if households were
approximately minimising their caloric costs for access to adequate amounts of
calories, protein, and water. The differences through time in how well this expec-
tation fits the observed record and the changing directions of departure from those
expectations provide a completely novel source of inference on the archaeological
record. Simulations using the hypothesis of local food sharing during periods of
mild food shortage may be compared to the fit in a simulation where food sharing
does not occur. In this way we can get indirect evidence as to whether food sharing
took place.

The ABM has hence allowed a comparison of a possible process with the
recorded evidence. This comparison is relative to the assumptions that are built
into the model, which tend to be plausible but questionable. However, despite the
uncertainties involved, one is able to make a useful assessment of the possible
explanation, and the assumptions are explicitly documented. This approach to
processes that involve complex interaction would be impossible to do without
a computer simulation. At the very least, such a process reveals new important
questions to ask (and hence new evidence to search for) and the times when the

4For details of the wider project connected with these papers, see the Village Ecodynamics Project,
http://village.anth.wsu.edu.

http://village.anth.wsu.edu
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plausible explanations are demonstrably inadequate. However, for any real progress
in explanation of such cases, a very large amount of data seems to have been
required.

28.1.3 Some Issues that the Aforementioned Examples
Illustrate

The previous examples raise a few issues, common with much social simulation
modelling of human societies. These will now be briefly defined and discussed as an
introduction to the problem of understanding social phenomena using simulation.

1. Abstraction. Abstraction is a crucial step in modelling observed social phenom-
ena, as it involves choices about which aspects are salient in relation to the
problem and what level of analysis is appropriate. The LTG example, being
a macromodel, assumes that distributive aspects such as geography and local
heterogeneity are less important with respect to feedbacks among global growth
variables. In this model, the detail of the whole world is reduced to the interaction
of a few numeric variables. The GA model was more specific and detailed,
including an explicit 2D map of the area and the position of settlements at
different times in the past. It is fair to say that the LTG model was driven by
the goals of its modellers, i.e. showing that the coming crisis could be sharp due
to slow feedback loops, whereas the GA model is rather driven by the available
data, with the model being applied to a number of different questions afterwards.

2. Replicability. Replicability is the extent to which a published model has been
described in a comprehensive and transparent way so that the simulation
experiments can be independently reproduced by another modeller. Replicability
may be considerably easier if care is taken to verify the initial model and if the
original source code is effectively available and well commented. Here the LTG
model was readily replicable and hence open to inspection and criticism. The GA
models are available to download and inspect, but their very complexity makes
them hard to replicate independently of the original implementation.

3. Understanding the model. A modeller’s inferential ability is the extent to which
one can understand one’s own model. Evidence suggests that humans can fully
track systems only for about two or three variables and five or six states (Klein
1998); for higher levels of complexity, additional tools are required. In many
simulations, especially those towards the descriptive end of the spectrum, the
agents can have many behavioural rules, which may interact in unpredictable
ways. This makes simulations very difficult to fully understand and check.
Even in the case of a simple model, such as the LTG model, there can be
unexpected features (such as the fine-tuning that was required). Although the
GA was rich in its depiction of the space and environment, the behavioural
rules of subpopulations were fairly simple and easy to follow at the micro level.
However, this does not rule out subtle errors and complexities that might result
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from the interaction of the microelements. Indeed, this is the point of such
a simulation that we cannot work out these complex outcomes ourselves, but
require a computer program to do it.

4. Prediction vs. understanding. The main lesson to be drawn from the history of
formal modelling is that, for most complex systems, it is impossible to model
with accuracy their evolution beyond an immediate timeframe. Whilst the broad
trends and properties may be forecast to some degree, the particulars, e.g. the
timing and scale of changes in the aggregate variables, generally cannot (Moss
1999). The LTG model attempted to forecast the future, not in terms of the precise
levels but in the presence of a severe crisis—a peak in population followed by a
crash. The GA does not aim to predict any specific thing, but rather it seeks to
establish plausible explanations for the data that is known. Most simulations of
human society restrict themselves to establishing explanations, the simulations
providing a chain of causation that shows that the explanation is possible.5

5. Going beyond what is known. In social science, there are many gaps in our
knowledge, and social simulation methods may be well placed to address some
of these gaps. Given some data, and some plausible assumptions, the simulations
can be used to perform experiments that are consistent with the data and
assumptions and then inspected to answer other questions. Clearly, this depends
on the reliability of the assumptions chosen. In the GA case, this is very clear;
a model with a food-sharing rule and one without can be compared to the
data, seeing which one fits it better. The LTG model attempts something harder,
making severe assumptions about how the aggregate variables relate; it “predicts”
aspects of the future. In general: the more reliable the assumptions and data
(hence the less ambitious the attempt at projection), the more credible the result.

A social scientist, who wants to capture key aspects of observed social phenom-
ena in a simulation model, faces many difficulties. Indeed, the differences between
formal systems and complex, multifaceted and meaning-laden social systems are so
fundamental that some criticise any attempt to bridge this gap (e.g. Clifford 1986).
Modellers have to face these difficulties, and these have an impact as to how social
simulation is done and how useful (or otherwise) such models may be. We briefly
consider six of these difficulties here.

• Firstly, there is the sheer difference in nature between formal models (i.e.
computer programs) that modellers use as compared to the social world that we
observe. The former are explicit, precise, with a formal grammar, predictable
at the micro level, reproducible and work in (mostly) the same way regardless
of the computational context. The latter is vague, fluid, uncertain, subjective,
implicit and imprecise—which often seems to work completely different in
similar situations and whose operation seems to rely on the rich interaction of

5Although in many cases this is dressed up to look like prediction, such as the fitting to out-of-
sample data. Prediction has to be for data unknown to the modeller; otherwise the model will be
implicitly fitted to it.
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meaning in a way that is sometimes explicable but usually unpredictable. In
particular, the gap between essentially formal symbols with precise but limited
meaning and the rich semantic associations of the observed social world (e.g. as
expressed in natural language) is particularly stark. This gap is so wide that some
philosophers have declared it unbridgeable (e.g. Lincoln and Guba 1985, Guba
and Lincoln 1994).

• Secondly, there are the sheer variability, complication and complexity of the
social world. Social phenomena seem to be at least as complex as biological
phenomena but without the central organising principle of evolution as specified
in the neo-Darwinian synthesis. If there are any general organising principles
(and it is not obvious that this is the case), then there are many of these, each
with differing (and sometimes overlapping) domains of application. In that sense,
it is clear that a model will always capture only a small part of the phenomenon
among many other related aspects, hence reducing drastically the possibility to
predict with any degree of certainty.

• Then there is the sheer lack of adequate multifaceted data about social phe-
nomena. Social simulators always seem to have to choose between longitudinal
studies, narrative data, cross-sectional surveys or time-series data. Having all of
these datasets about a single social process or event is to date very unlikely.
There does not seem to be the emphasis on data collection and measurement
in the social sciences that there is in some other sciences and certainly not the
corresponding prestige for those who collect it or invent ways of doing so.

• There is the more mundane difficulty of building, checking, maintaining, and
analysing simulations (Galán et al. 2009). Even the simplest simulations are
beyond our complete understanding, indeed that is often why we need them,
because there is no other practical way to find out the complex ramifications
of a set of interacting agents. This presence of emergent outcomes in the
simulations makes them very difficult to check. Ways to improve confidence
that our simulations in fact correspond to our intentions for them6 include: unit
testing, debugging, and the facility for querying the database of a simulation
(see Chap. 9 (David et al. 2017) in this handbook). Perhaps the strictest test is
the independent replication of simulations—working from the specifications and
checking their results at a high degree of accuracy (Axtell et al. 1996). However,
such replication is usually very difficult and time-consuming, even in relatively
simple cases (Edmonds and Hales 2003).

• Another difficulty is that of the inevitability of background assumptions in all we
do. There is always a wealth of facts, processes and affordances giving meaning
to, and providing the framework for, the foreground actions and causal chains
that we observe. Many of these are not immediately apparent to us since they are
part of the contexts we inhabit and so are not perceptually apparent. This is the
same as in other fields, as it has been argued elsewhere, the concept of causation

6In terms of design and implementation, if one has a good reference case in terms of observed data
then one can also check one’s simulation against this.

http://dx.doi.org/10.1007/978-3-319-66948-9_9
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only makes sense within a context (Edmonds 2007). However, it does seem that
context is more critical in the social world than elsewhere, since it can change
not only the outcomes of events but also their very meaning (and hence kind of
social outcome). Whilst in other fields it might be acceptable to represent extra-
contextual interferences as some kind of random distribution or process, this is
often manifestly inadequate with social phenomena (Edmonds and Hales 2005).

• The uncertainty behind the foreground assumptions in social simulation is also
problematic. Even when we are aware of all of the assumptions, they are often
either too numerous to include in a single model, or we simply lack any evidence
as to what they should be. For example, many social simulation models include
some version of inference, learning or decision-making within the agents of the
model, even when there is no evidence as to whether this actually corresponds to
the one used by the observed actors. It seems that often it is simply hoped that
these details will not matter much in the end—thus becoming a rarely checked,
and sometimes wrong, aspect of simulations (Edmonds 2001; Rouchier 2001).

• Finally, there is a difficulty from the nature of simulation itself. Simulation will
demonstrate possible processes that might follow from a given situation (relative
to the assumptions on which the simulation is built). It does not show all the
possibilities, since it could happen that a future simulation will produce the
same outcomes from the same set-up in a different way (e.g. using a different
cognitive model). Thus, simulation differs in terms of its inferential power from
analytic models (e.g. equation-based ones), where the simplicity of the model
can allow formal proofs of a general formulation of outcomes that may establish
the necessity of conditions as well as their adequacy. This difficulty is the same
for many mathematical formulations since, in their raw form, they are often
unsolvable. Hence, either one has to use numerical simulation of results (in which
case one is back to a simulation) or one has to make simplifying assumptions (in
which case, depending on the strength of these assumptions, one does not know
if the results still apply to the original case).

These difficulties bring up the question of whether some aspects of societies can
be at all understood by means of modelling. The hypothesis asserting that simulation
is a credible method to better explore, understand or explain social processes is
implicitly tested in the current volume and is discussed in some detail below. We
are not going to take any strong position but will restrict ourselves to considering
examples within the context of their use.7 Agent-based social simulation is not
a magic bullet and is not yet a mature technique. It is common sense in the
social simulation community that best results will be achieved by combining social
simulation with other research methods.

7Obviously, we suspect it can be a useful tool; otherwise we would not be bothering with it.
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28.2 Styles of Modelling and Their Impact on Simulation
Issues

28.2.1 Models of Evidence vs. Models of Ideas

One response to the above difficulties is not to model social phenomena directly,
but rather to restrict ourselves to modelling ideas about social phenomena. This is
a lot easier, since our ideas are necessarily a lot simpler and more abstract than
the phenomenon itself (and can be formalised with the notion of pattern modelling
(Grimm et al. 2005) rather than strict adequacy to data). Some ideas need modelling,
in the sense that the ramifications of the ideas are themselves complex. These kinds
of models can be used to improve our understanding of the ideas, and later this
understanding can be applied in a rich, flexible and context-sensitive way. This
distinction is made clear in (Edmonds 2001).

Of course, to some extent, any model is a compact abstraction of the final target
of modelling. There will, presumably, be some reason why one conceptualises what
one is modelling in terms of evidence or experience by someone, and there will
always be some level of theory/assumption that motivates the decision as to what
can be safely left out of a model. Thus, all models are somewhat about ideas, and,
presumably, all models have some relation to the evidence. However, there is still
a clear difference between those models that take their primary structure from an
idea and those whose primary considerations come from the available evidence.
For example, the former tend to be a lot simpler than the latter. The latter will
tend to have specific motivations for each feature, whilst the former will tend to
be motivated in general terms. These two kinds of simulation have a close parallel
with the theoretical and phenomenological models identified by Cartwright (1993).

Unfortunately, these kinds of model are often conflated in academic papers.
This seems frequently not deliberate, but rather due to the strong theoretical
spectacles (Kuhn 1962) that simulation models seem to provide. There is nothing
like developing and playing with a simulation model to make one see the world in
terms of that model. It is not only that the model is your creation and your best effort
in formulating an aspect of the social world but also that you have interacted with
it and changed it to include the features that you, the modeller, think it should have.
Nevertheless, whatever the source, it can take some careful “reading between the
lines” to determine the exact nature of any model and what it purports to represent.

28.2.2 Modelling as Representation of Social Phenomena vs.
as an Intervention in a Social Process

It must be said that some simulation models are not intended to represent anything
but are rather created for another purpose, such as a tool for demonstrating an
approach or an intervention in a decision-making process. This may be deliberate
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and explicit, or not, for various different reasons. Of course if a computer model
does not represent anything at all, it is not really a simulation but simply a computer
program, which may be presented in the style of a simulation. Also for a simulation
to be an effective tool for intervention, it has to have some credibility with the
participants.

However, in some research, representation is either not the primary goal or
the object of representation is deliberately subjective in character. Thus, in some
participatory approaches (see Chap. 12, Barreteau et al. 2017), it may be the primary
goal to raise awareness of an issue, to intervene in or facilitate a social process like
a negotiation or consensus process within a group of people. The modeller may not
focus as much on whether the model captures an objective reality but rather on how
stakeholders8 understand the issues and processes of concern and how this might
influence the outcomes. This does not mean that there will be no elements that are
objective and/or representative in character—for example, such models might have
a well-validated hydrological component to them—but that the parts of the model
that are the focus are checked against the opinions of those being modelled or those
with an interest in the outcomes rather than any independent evidence.

Of course, this is a matter of degree—in a sense most social simulations are a
mixture of objective aspects linked to observations and other aspects derived from
theories, opinions, hypotheses and assumptions. In participatory approaches, the
modellers seek not to put their own ideas forward but rather take the, possibly
more democratic, approach of being expert facilitators expressing the stakeholders’
opinions and knowledge. Whilst some researchers might reject such ideas as too
“anecdotal” to be included in a formal model, it is not obvious that the stakeholders’
ideas about the nature of the processes involved (e.g. how the key players make
decisions) are less reliable than the grander theories of academics. However,
researchers do have a professional obligation to be transparent and honest about
their opinions, documenting assumptions to make them explicit and, at least, not
state things that they think are false. Thus, although social simulations are not a
world away from more traditional models of using simulation, they do have some
different biases and characteristics.

28.2.3 Context and Social Simulation

Human knowledge, but particularly human social knowledge, is usually not context-
free. There is a set of background assumptions, facts, relationships and meanings
that are necessary (to understand the situation) and generally known but not
made explicit. These background features can all be associated with the context
of the knowledge (Edmonds 1999). In a similar way, most social simulation
happens within a particular context as given, for example, the environment in

8I.e. those who are part of or can influence the social phenomenon in question.

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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which racial segregation occurs might be obvious to all concerned. This context
is sometimes indicated in papers but is often left implicit since it is associated
with the many background assumptions that can be safely ignored, either because
they are irrelevant or they do not change in that context. Social simulation would
probably be impossible if one was not able to assume a context whose associated
assumptions need not be questioned for a given model (Edmonds 2010). Without
an effective restriction of scope, every social simulation model would have to
include all potential aspects of human behaviour and social interaction. Whilst such
assumptions concerning the context are common to almost all fields of knowledge,
they are particularly powerful in the social sciences because we unavoidably use our
folk knowledge9 of social situations to make sense of the studied social phenomena.
This process of (social) context identification is often automatic, so that we correctly
identify the appropriate context without expending much conscious thought. For this
reason, the context is often left implicit, despite the fact that it is can be crucial to
the construction and interpretation of a simulation. This leaves the decisions as to
what to implement as foreground, deliberate decisions.

Choosing a social context that is relatively identifiable and self-contained is
important if one is seeking to represent some evidence in a simulation. Being able to
include all the important factors of some social process and obtain some evidence for
their nature allows the building of simulations that are not misleading in the sense of
not missing out factors that might critically change the outcomes. Clearly the more
restricted the context, the easier the representational task. However, in this case one
does not know whether what one learns from the simulation is applicable in other
contexts. Using a simulation developed for one context and purpose for a different
context and/or purpose might well lead to misleading conclusions (Edmonds and
Hales 2005; Lucas 2010; Edmonds 2017).

Those simulations that are more focused on exploring an idea will often seek to
transcend context, in the hope that the models will have some degree of generality—
these often deliberately ignore any particular context. Although these may seem
general, their weakness can become apparent when its applicability is tested. Here
the ideas they represent might give some useful insights but may be misleading
if taken as the defining feature of a specific case study. Clearly, a simulation that
is claimed to have general applicability needs to have been validated across the
claimed scope before being relied upon by others. To date, no social simulation has
been found to be generally applicable beyond theoretical and illustrational purposes
(Lucas 2011).

9Folk knowledge is the set of widely held beliefs about popular psychological and social theories;
this is sometimes used in a rather derogatory way even when the reliability of the academic
alternatives is unclear.
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28.3 A Plethora of Modelling Purposes with Examples

Given the different purposes for which simulation models are used (see Epstein
2012; Edmonds 2017), they will be considered in groups of those with similar goals.
It is only relative to their goals that simulation efforts can be judged. Nowadays it is
widely acknowledged that authors should clearly state the purpose of their models
before describing how the model is constituted (Grimm et al. 2006, 2017). Firstly,
however, it is worth reviewing two goals that are widely pursued in many other fields
but have not been convincingly attained with respect to the simulation of human
society.

The first of these goals is that of predicting what will definitely happen in
unknown circumstances. In other words, social simulation cannot yet make accurate
and precise predictions. The nearest social simulations come (to our knowledge)
is predicting some outcomes in situations where the choices are very constricted,
and the data available is comprehensive. The clearest case of this is the use of
microsimulation models to predict the outcome of elections once about 30% of the
results are known (Curtis and Frith 2008). This constitutes hardly new or unknown
circumstances, and is still not immune from surprises, since such predictions can
be wrong. The microsimulation model relies on the balance between parties in
each constituency and then translates the general switches between parties (and
non-voters) to the undeclared results. Thus, although it is a prediction, its very
nature rules out counter-intuitive or surprising predictions and comes more into
the category of extending known data rather than prediction. The gold standard for
prediction is that of making predictions of outcomes that are unexpected but true.10

The second goal that simulations do not achieve is to decisively test sociological
hypotheses—in other words, they do not convincingly show that any particular
idea about what we observe occurring in human societies can be relied upon or
comprehensively ruled out. Here the distinction between modelling what we observe
and modelling our ideas is important. A simulation that attempts to model what
we observe is a contingent hypothesis that may always be wrong. However, social
simulations of evidence are always dependent on a raft of supportive assumptions—
that the simulation fails to reproduce the desired outcomes may be due to a failure
of any of its assumptions. Of course, if such a model is repeatedly tested against
evidence and fails to be proved wrong, we may come to rely upon it more (Popper
1963), but this success may be for other reasons (e.g. we simply have not tested it
in sufficiently diverse conditions). Hypothesis testing using simulations is always
relative to the totality of assumptions in the simulations, and thus the gain in

10This is when prediction is actually useful, for if it only gives expected values one would not need
the simulation.
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certainty is, at best, incremental and relative.11 Thus, the core assumptions of a field
may be preserved by adjusting “auxiliary” aspects (Lakatos and Musgrave 1970).

If a simulation is about ideas, then a very restricted kind of test is possible: a
counterexample. If it has been assumed that factor A will lead to result B, then one
might be able to show that this might not be the case in a plausible simulation.
Indeed, the simulation may show that to obtain result B from factor A an additional
and implausible assumption C is necessary. This does prove that “it is not necessarily
the case that A leads to B”, but it may shift the burden of proof back onto those who
have assumed A will lead to B. This very restricted test is only useful if the context
of causation between A and B is appropriately identifiable. This case of using a
simulation to establish counterexamples is considered below.

A particular case of seeking for counterexamples is that of testing for the
“existence of a sufficient condition” for some particular results. For example, it may
be possible to show that there is no need to add some particular hypothesis to see a
phenomenon take place, as in economics where it can be shown that in many cases
the assumption of perfect rationality for agents does not need to be made.12

One might be disappointed that simulation provides neither predictions nor
proofs (in the stronger senses of those terms), but that does not stop them being
useful in other ways, which the sections below illustrate.

In the following, we look at how simulations might contribute to the under-
standing of human societies in a number of different ways, with examples from
the literature. Unfortunately many articles describing social simulation research do
not make their goals explicit (as advocated by ODD, see Polhill et al. 2008 and
Chap. 15 Grimm et al. 2017); therefore, the categorisation below is that of the
chapter’s authors and not necessarily the category that the authors of the papers
discussed would choose. In addition, it appears that some researchers have multiple
purposes for their simulations or simply have not thought about their goals clearly.

28.3.1 Abstract Goals

First, we consider simulations that have more abstract goals, i.e. these tend to
be more about ideas and theories than observed evidence (as discussed above in
Sect. 28.2.1).

11If a simulation is not directly related to evidence but is more a model of some ideas, then it might
be simple enough to be able to test hypotheses, but these hypotheses will then be about the abstract
model and not about the target phenomena.
12This fact has led some to argue that such assumptions of perfect rationality should be dropped
and that it might be better to adopt a more naturalistic representation of human’s cognition (Gode
and Sunder 1993; Kirman 2011).

http://dx.doi.org/10.1007/978-3-319-66948-9_15
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28.3.1.1 Illustration of Ideas

Simulations can be good ways of making processes clear, because simulations
are what simulations do. Thus, if one can unpack a simulation to show how the
outcomes result from a set-up or mechanism, then this can demonstrate an idea
clearly and dramatically. Of course, if how the outcomes emerge from the set-up in
a simulation is opaque and/or difficult to understand, then this is not an effective
technique. For this reason, relatively simple simulations prevail that are specifically
designed to bring out the focus idea.

An example is (Rouchier and Thoyer 2006) which models voting and lobbying
in the EU decision-making process. It does make strong assumptions about how the
voting strategies might operate, but it does not pretend to be a descriptive model.
Instead, it makes clear how the links between public opinion, lobbying groups and
elected representatives might operate at the national scale as well as the EU one.

Another example is (Gode and Sunder 1993), a fairly simple demonstration that
in some cases market institutions are so constraining that agents do not even need
to be clever to achieve excellent results in this setting. They take the example of
continuous double auction (CDA), a two-sided progressive auction, which is the
protocol that is most used in financial markets. At any moment, buyers can submit
bids (offers to buy). Similarly, sellers can submit asks (offers to sell). Both buyers
and sellers may propose an offer or accept the offer made by others. The main
constraint is an improvement rule, imposed on new offers entering the market, which
requires submitted bids/asks at a price higher/lower than the standing bid/asks. Each
time an offer is satisfying for one of the participants, he or she announces the
acceptance of the trade at the given price, and the transaction is completed. Once
a transaction is completed, the agents who have traded leave the market, and the
bid-offer process starts again following the same rule starting from any price. The
result of Gode and Sunder’s simulation is that even with completely stupid agents,
who know nothing of the market and only follow two constraints, the bid-offer rule
described above and not selling below or buying above their reservation price, the
market converges and enables agents to get excellent profits. This paper shows how
institutional constraints might act to ensure a reasonable allocation of goods when
agents are very clear about the value of things they want to sell or buy, and that
this does not require any other substantive rationality by the agents. This result
cannot necessarily be extended to any observed markets, which are most of the time
complex, where the agents do have intelligence, where the value of items might be
unclear and where there might be many other social and institutional mechanisms,
but at least this result clarifies an idea about why protocols of this kind might be
important.

The OpenABM project13 has made significant progress in the development of a
community of people using illustrative models to facilitate the communication of
ideas. Working with others, this group in particular promotes the educational value
of agent-based models.

13http://www.openabm.org.

http://www.openabm.org
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A particular case of using a simulation to illustrate an idea is that of using a
simulation in teaching. Whilst demonstrating an idea to one’s peers might lead one
to choose a simulation that emphasises the idea’s generality and power, in teaching
one may well choose to simplify and highlight certain features of the idea that will
be important later on. This is a matter of degree but tends to result in simulations of
a slightly different kind.

For example, researchers at Oxford University Department of Computer Science
have developed a web application to assist students (particularly nonprogrammers)
in understanding the behaviour of systems of interactive agents (Kahn and Noble
2009). They model, for example, the dynamics of epidemics in schools and
workplaces and effect of vaccination or school closing/quarantine periods upon
spread of disease in the population (Scherer and McLean 2002). The students
can quickly and easily test different policies and other parameter combinations or
in intensive sessions can work through a series of guided steps to build models
from pre-existing modular components or “micro-behaviours”—a process called
“composing”. The models can also be run, saved and shared through a web browser
in order to facilitate discussion and collaboration as well as ownership of the ideas
and creative thinking.

28.3.1.2 Establishing The Possibility of a Process

A simulation can be used to show how a mechanism might result in certain
outcomes, and thus establish that a proposed process is possible, demonstrated by
enfolding the process in the simulation. This established plausibility of the process
is relative to the plausibility of the assumptions behind the simulation—clearly, if
the simulation is one that could not convincingly be related to any observed system,
then one would not have established that the process is possible in any encountered
system, but only be a theoretical possibility. This does not require that the simulation
is an accurate representation of any observed system since all that is required is that
one could imagine that a version of the target process in the simulation could occur
in a real system.

A classic example of this is Axelrod’s (1984, 1997) work on the evolution of
cooperation. Previous models in evolutionary biology had suggested that coop-
erative behaviour would not be selected within an evolutionary setting, as any
group of co-operators would be vulnerable to a single non-cooperative invader or
mutant. Axelrod’s books describe simulations in which a population of competing
individuals evolved, playing repeated games against others. Some cooperative
strategies, in particular “tit-for-tat” (cooperate unless your partner did not last time),
were shown to survive and flourish in many game set-ups. Although the simulations
described were highly speculative and abstract, they did firmly establish that it was
possible that cooperative strategies might evolve within an evolutionary setting,
where selfish strategies had a short-term advantage.

One use for establishing the possibility of a process is as a counterexample to
an existing assumption or accepted theory, if the process demonstrated contradicts
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the assumption. Thus, the simulations of Axelrod above can also be seen as a
counterexample to the assumption that cooperative behaviour cannot survive in an
evolutionary setting.

The particular case of the Schelling (1969, 1971) model can be classified in this
trend. Through very simple simulations, which Schelling ran by hand at the time,
he discovered that segregation could be attained at a group level even though each
individual agent had no strong preference for segregation. This paper was important,
because it was one of the first examples of emergent phenomena applied to social
issues. However, the most important element was the positive result obtained with
the model. Schelling used a very intuitive (though not necessarily realistic) way of
describing the change of location of agents in a city where they are surrounded by
neighbours, which can be of two distinct types: identical to themselves or different.
Each agent decides if it is satisfied with its location by judging if the proportion
of neighbours that are different is acceptable to it. If this is not the case, it moves
to a new location. Even when each agent accepts up to 65% of agents different to
itself in its neighbourhood, high levels of segregation in the global society of agents
result. This is a counterexample to the assumption that segregation results from a
high level of intolerance to those of different ethnic origins, since one can see from
the simulation that high levels of segregation in cities could be due to the movement
of people at the edges of segregated areas who are in regions dominated by those of
different ethnicities. Of course, what this does not show is that this is what actually
causes segregation in cities; it merely undermines the assumption that it must be due
to high levels of intolerance.

28.3.1.3 Understanding the Properties of an Abstract Model

With some analytic mathematical models and very few, very simple simulation
models, one might seek to prove some properties of that model, for example, the
parameter values under which a given outcome is reached. If this is not possible
(the usual case), then one has two basic options: to simplify the original to obtain
a model that is analytically tractable or to simulate it. If the simplifications that are
necessary to obtain a tractable model are well understood and plausible, then the
simplified model might be trusted to approximate the original model (although it
is always wise to check). If it is the case that to obtain an analytically tractable
model one has to simplify so much that the relationship between the simplified and
the original model is suspect (e.g. by adding implausibly strong assumptions), then
one cannot say that the simplified model is about the same things as the original
model. At best, the simplified model might be used as an analogy for what was
being modelled—it cannot be relied upon to give correct answers about the original
target of modelling. In this case, if one wants to actually model the original target of
modelling, then simulation models are the only option. In this case, one might wish
to understand the simulation itself by systematically exploring its properties, such
as doing parameter sweeps. In a sense, this is a kind of pseudo-maths, trying to get
a grasp of the general model properties when analytic proof is not feasible.
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An example of such an exploration is (Biggs et al. 2009). The authors examined
regime shifts using a fisheries food web model, in particular looking at the existence
of turning points in a system with two attractors (piscivore- and planktivore-
dominated regimes). Anthropogenic drivers were modelled as gradual changes in
the amount of angling and shoreline development. Simulations were carried out to
investigate the onset of regime shifts in fish populations, the possibilities to detect
these changes and the effectiveness of management responses to avert the shift. In
relation to angling, it was found that shifts could be averted by reducing harvesting
to zero at a relatively late stage (and well into the transition to alternate regime),
whereas with shore development, it required action to be taken substantially earlier,
i.e. the lag time was substantially longer between taking action and the resultant
shift. The behaviour of different indicators to anticipate regime shifts was examined.
This is an example of a mathematical model with stochastic elements that is solved
numerically by means of a simulation.

Such stylised models, although based on well-understood processes, are carica-
tures of real systems and have a number of simplifying assumptions. Nevertheless,
they may provide an insight that would be applicable to many types of real-
world issues. In contrast to this, some seek to understand the properties of some
very abstract models, aiming to uncover some structures and results that might be
quite generally applicable. This is directly analogous to mathematics that seeks
to establish some general structures, theorems and properties that might later be
usefully applied as part of the extensive menu of tools that mathematics applies.
In this case, the usefulness of the exercise depends ultimately on the applicability
of the results in practice. The criteria by which pure mathematics is judged can be
seen as distinguishing those that are likely to be useful in the future: soundness,
generality and importance.

An example of where the study of an abstract class of mechanisms has been
explored thoroughly to establish the general properties is the area of social influence,
in particular the sub-case of opinion dynamics. It can be found in works that use
physics methodologies (Galam 1997) or those adapted from artificial life (Axelrod
1997). The topic in itself is extremely abstract and cannot be validated against data
in any direct manner. In particular, the notion of culture or opinion that is studied
in these models is so abstract that sociologists find this hard to accept (von Randow
2003). In this area, the most studied mechanism is the creation of consensus or
convergence of culture represented by a single real number or a binary string (Galam
1997; Deffuant et al. 2000; Axelrod 1997). Many variations and special cases of
these classes of model exist, for a survey see (Lorenz 2007). Some of these studies
have indeed used a combination of parameter sweeps of simulations and analytic
approximations to give a comprehensive picture of the model behaviour (Deffuant
and Weisbuch 2007). Other merely seems to point out possible variations of the
model.

Sometimes the exploration of abstract properties of models can result in sur-
prises, showing behaviour that was contrary to expectations, so this category can
overlap with the one discussed in the next section.
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28.3.1.4 Exploration of the Safety of Assumptions in Existing Models

This is similar to the previous goal, but instead of trying to establish the behaviour of
the model as it is, one might seek to explore what happens if any of the assumptions
in the model is changed or weakened. Thus, here one is seeking to explore a space
of possibilities around the original model. The idea behind this is often that one has
a hypothesis about a particular assumption the model is based upon. For example,
one might suspect that one would get very different outcomes if one varied some
mechanism in the model in (what might seem) a trivial manner. Or one suspects that
a certain assumption is unnecessary to the outcomes and can be safely dropped.
Hence, for this goal, one is essentially comparing the behaviour of the original
model to that of an altered or extended model.

For example, Izquierdo and Izquierdo (2006) carried out a systematic analysis of
the effect of making slight modifications to structural assumptions in the prisoner’s
dilemma game: in the population size, the mutation rate, the way that pairings were
made, etc., all of which produced large changes in the emergent outcome—the
frequency of strategies employed. The authors conclude that “the type of strategies
that are likely to emerge and be sustained in evolutionary contexts is strongly
dependent on assumptions that traditionally have been thought to be unimportant
or secondary” (Izquierdo and Izquierdo 2006, 181).

How cooperation emerges in a social setting was first fashioned into a game-
theoretical problem by Axelrod (1984). The outcome was long thought to be
dependent upon the defining questions such as which strategies are available, what
are the pay-off values for each strategy, the number of repetitions in a match, etc.,
whereas other structural assumptions, supposed to be unimportant, were ignored.
On further investigation, however, conclusions based on early work were shown to
be rather less general than would be desired and sometimes actually contradicted by
later work.

A different case is explorations of the robustness of the simulation described
in (Riolo et al. 2001). This showed the emergence of a cooperative group in
an evolutionary setting similar to the Axelrod one mentioned above. Here each
individual had a characteristic (modelled as a number between 0 and 1) and a
tolerance in a similar range. Individuals were randomly paired, and if the difference
between their partner’s and their own characteristic was less than or equal to their
tolerance, they cooperated; otherwise they did not. As a result, a group of individuals
with similar characteristics formed that effectively shared with each other. However,
later studies (Roberts and Sherratt 2002 and Edmonds and Hales 2003) probed the
robustness of the model in a number of ways—crucially by altering the rule for
cooperation from “cooperate if the difference between my partner’s and my own
characteristic is less than or equal to my tolerance” to “if the difference between
my partner’s and my own characteristic is strictly less than my tolerance”, i.e. from
“�” to “<”. With this change, the crucial result—the emergence of a cooperative
group—disappeared. It turned out that the (Riolo et al. 2001) effect relied on the
existence of a group of individuals with exactly the same characteristic having to
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cooperate, since the smallest tolerance possible was zero. When the existence of
completely selfish individuals was made possible by this change, the cooperation
disappeared.

28.3.1.5 Exploring Counterfactual Possibilities

We only observe a few of the possible configurations of the social phenomena
around us. Thus, it is natural to wonder what might happen if events or processes
were other than what is observed or known to be the case. This is the world
of artificial societies, where possible worlds loosely related to the one observed
are explored. Sometimes an analogy with artificial life is made, where alternative
algorithmic versions of life in the broadest sense are specified and experimented
with—not life-as-it-is but life-as-it-might-have-been.

An extreme example of this is Jim Doran’s model of a society with knowledge
of the future (Doran 1997)—this can be thought of as what a society might be like
whose members’ predictions of the future happen to be correct. Clearly, this does
not hold in any observed human society.

Such explorations might not contribute much to the understanding of our society,
but it may inform the design of distributed computational systems where the
components have a need to flexibly organise themselves in a way analogous, but
not identical to, how humans organise (see Chap. 23 Hales 2017).

28.3.2 Concrete Goals

Here we consider some of the goals that are more at the concrete and descriptive
end of the simulation spectrum. These tend to be more concerned to relate to
the available evidence and tend to be more specific. In the subsections below,
the “plausibility” of assumptions, results and simulations is a frequent issue. The
simulation of human societies has not yet reached the situation where there is
enough evidence to obtain much more than simple plausibility. At this current stage
of social simulation, getting close enough to be deemed a “plausible” model is
difficult enough, and there is almost never data enough to justify a stronger claim.
Thus, claims of anything stronger should be treated with appropriate scepticism.

28.3.2.1 Building Towards Realism

One common approach is to start with a fairly simple model that is easier to
understand and then to add aspects and mechanisms that are thought to be significant
features of the observed system. That is, to add an additional level of realism to
make the model more plausible or useful in some way, e.g. as a thought experiment.
This is sometimes known as the TAPAS approach (“Take A Previous model and

http://dx.doi.org/10.1007/978-3-319-66948-9_23
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Add Something”). It is consistent with the engineering principle of “KISS”—keep
it simple, stupid. Here, one starts simply and adds more features/aspects one at a
time and only if the simple approach turns out to be inadequate for some purpose.

Accordingly, Izquierdo (2008) starts with some standard models of the iter-
ated prisoner dilemma games and adds some more “realistic” features, such as
case-based learning and reasoning. A key idea in this is to maintain rigorous
understanding of the extended model but take a step towards models that might
eventually be validated against observed data from human interactions.

Whether one would, in fact, reach useable and valid models by this means
is contested, with the alternative approach being to start with a complex model
that reflects the evidence as well as possible and then seek for understanding and
simplifications of this (Edmonds and Moss 2005).

To investigate the social aspects of socio-environmental systems, often some
highly complicated models have to be used that include the relevant biophysical
dynamics, coupled with social simulation. Rather than developing all components
of the simulation model “from scratch” (and because the biophysical parts are
relatively universal), such models may have a modular architecture designed to
be reusable. It may therefore be more accurate to refer to the software as a
“toolkit” from which various sub-models can be configured depending on the
desired purpose of a particular study. In the area of land use simulation, PALM
(Matthews 2006) is one such integrative model, and FEARLUS (Polhill et al. 2001,
2008) is part of another longstanding approach to socioecological modelling. With
each iteration, the toolkit obtains further refinement and new features—whilst the
level of understanding of its user(s) increases. The social simulator is interested in
what additional complexity the human interaction part brings and to what extent it
adds realism to the model’s behaviour when compared with observed evidence.

28.3.2.2 Extending Evidence to Extrapolate to Unobserved Cases

Data about social systems is often limited to measurements from a limited number
of observed cases. Thus, there may be many cases where one would like to estimate
the outcome. Of course, one could use simple statistical techniques such as linear
interpolation or similar to do this, but such techniques depend upon assumptions
concerning the regularity of the results with respect to small changes in the set-up
which may be implausible for some social systems. In this case, one might simulate
the system using plausible assumptions, validate it against the known observations
and then find the outcomes for set-ups that are different to those observed. For the
results of this to be reliable, the simulation needs to be well validated, to correctly
indicate the observed cases, to not differ very much from the observed cases (in
contrast to the case described in Sect. 28.3.2.1), and for any unvalidated assumptions
to be of a mild and uncontroversial nature.

The plausibility of the results from such experiments depends upon the validity
of the original measurements as well as the generality of the assumptions (which
must be plausible for the unobserved as well as observed cases).
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For example, Brown and Harding (2002) use a microsimulation model to extend
regional socio-demographic (census) data to cases that are not directly observed
(synthetic householder-level records for each spatial district). The extension is
attempted with deliberately cautious assumptions.

The “Sienna” programme (Snijders et al. 2010) fits a particular class of dynamic
network model to “waves” of panel data. Simplifying a little, what happens is that
the modeller specifies some basic assumptions (e.g. symmetry of network links)
along with more than one set of panel data concerning the properties of the nodes
at certain points in time. The algorithm then finds the dynamic network model that
is consistent with the given specified constraints and that most closely fits the data.
This is directly analogous to the process of fitting a line to a set of values using
minimum total squared errors (or similar). What one gets out of this are some
“surprise free” projections to network and node properties for times other than those
given in the waves of panel data. This is not simulation in the same sense as other
simulations mentioned here, since what is simulated is not a kind of process (that
is given in the base specification of the family of models this technique uses) but
rather a set of structures and values that fit given data in a statistical sense. When this
technique is reliable and what its particular biases are have not yet been established.

28.3.2.3 Establishing the Consistency of a Process/Assumption
with Evidence

Oftentimes a social process is not included in a study because it is not considered
valid in the same way as a physical or biological principle might be. This is
particularly true in historical examples where social processes are less in evidence.
Going back to our second example of generative archaeology (Sect. 28.1.2), there
are few archaeological findings that suggest a particular social structure and set of
social processes, hence the need often for guesswork and the resulting coexistence
of many competing theories. This is an area where social simulation can make an
important contribution.

Perhaps the most well-known example is the Artificial Anasazi simulation model
(Axtell et al. 2002). The objective was to see if a model could be constructed
broadly consistent with available evidence—the number of households settled in
part of the US southwest region over the period 800 to 1350. The performance of
the model was impressive in its convergence upon the actual historical time series
after a calibration of several parameters (a “fitting” process), which suggested new
social explanations regarding the apparent land abandonment after 1350 might be
possible. Interestingly a later paper (Janssen 2009) demonstrates that the model fit is
mainly explained by two parameters related only to the model’s carrying capacity.
The author argues that a more insightful basis might be to generalise the target
domain, working initially from less concrete goals rather than fitting a particular
case and focusing on one evident and quantifiable trend (such as population). If the
evidence base is broadened to include more ethnographic knowledge, this approach
would resemble the pursuit of abstract goals as discussed in Sect. 28.3.1.
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Data about real-world social networks introduced at the design or validation
stages can be a valuable way of checking the consistency of a model. For example,
Guimera et al. (2005) reconstruct the history of team collaborations in five different
scientific and artistic fields and the development of corresponding collaboration
networks. The authors develop and parameterise a probabilistic model of team
selection. Using real data on team sizes, along with estimation of probabilistic
parameters, to control the team assembly mechanism, the characteristics of the
resulting networks (the degree distribution and the largest component) are compared
with the real ones (independently for each of the five cases). The interest is in
the transition of the collaboration network from “isolated schools” to an “invisible
college”—the point at which the largest component of the network contains 50%
or more of the nodes (which is the case for all representative fields). All simulated
network measurements are shown to be in close agreement with the real networks,
which establishes the plausibility of the proposed team selection mechanism.
However, being a probabilistic model, it does not attribute any particular decision
process to this mechanism that might be able to reveal new questions.

Another example is in White (1999), which attempts to evaluate some statistical
assumptions against data about marriage systems in different cultures using a
“controlled simulation”.

28.3.2.4 Analysis of Influence Factors

In any complex system, it is very difficult to estimate the importance of different
factors on particular outcome measures or results. This is due to the “nonlinearity”
in many social systems where a normally insignificant factor can trigger a system-
wide change in behaviour. However, given a trusted simulation model of the system,
one can perform experiments to determine the importance of each factor in the class
of simulation set-ups that are run. Thus, one does not have to determine the relative
importance of factors on an a priori basis; one can simply run the experiments
and measure the outcomes. Clearly, this approach depends on having a reliable
simulation model.

(Saqalli et al. 2010) investigate a simulation model of the development over
several generations of a rural agrarian society to weigh the importance of several dif-
ferent model parameters on simulation results. In simulation experiments reported,
four parameters were assessed in relation to six state variables—with measurements
taken at the end of the run. The model was based on a case study of the Nigerian
Sahel, typified as a low-data situation where, in particular, little has been published
on the social factors governing access to economic activities (including off-farm
activities so often neglected as an important revenue generating source) or on intra-
household dynamics (which the authors recognise as having a complex structure).
The objective was to assess the robustness of results against variation in socio-
economic and biophysical parameters to show that it is “constrained by the different
parameters of its structure” (Saqalli et al. 2010: para. 3.6). This step provides the
researcher with an improved understanding of the range of possible model outcomes
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and what might constitute a significant or meaningful difference when comparing
outcomes. It is worth noting, however, that the single-parameter approach neglects
any possible parametric interaction that could be identified from a pairwise analysis
of influence factors.

A very different example of this is Yang et al. (2009), which studies the factors
that influenced success in the system of Chinese civil service exams that existed
in the Imperial era in Mainland China. The simulation model used historical data
from civil service records and some assumptions to assess the importance of factors
such as class, wealth and family connections in terms of success at passing this
exam (and hence obtaining a coveted civil service post). It is difficult to see how
such indications about events that are otherwise lost in the past could be obtained,
although this is open to the criticism of being unfalsifiable.

The disadvantages of this approach are that the assessment of influence is only
as good as the simulation model, and it only samples particular sets of initial
conditions—it does not rule out the case where very special values of parameters
cause totally different outcomes (unless one happens to be lucky and sample
these).

28.3.2.5 Assessment of Policy Options

Recently more and more articles have appeared in the literature featuring ABMs that
address policy-making in contemporary issues such as developmental sustainability
and climate change adaptation. For example, Berman et al. (2004) consider eight
employment scenarios defined by different policies for tourism and government
spending, as well as different climate futures, for an ABM case study of sustainabil-
ity in the small arctic community of Old Crow, Yukon. Scenarios were developed
with the input of local residents: tourism being a policy option largely influenced
by the autonomous community of Old Crow (stemming from their land rights)
and attracting great local interest. In ABM, policy options are often addressed as
a certain type of scenario (scenarios are discussed in Sect. 28.3.2.9), embedding
the behaviour of actors within a few possible future contexts. The attraction of this
approach is that the model could potentially be used as a decision support tool,
in a form that is familiar to many analysts, to provide answers to very specific
policy questions. The merit is that it can improve the reckoning of human and social
factors and information into the issues at stake; the drawback is the multiplication
of uncertainties, not least of which is that we do not convincingly know how social
actors might adapt (even if the possible policy options are more concrete).

For example, Alam et al. (2007) investigate the outcomes indicated by a complex
and detailed model of a village in the Sekhukhune district of South Africa. This
model in particular looks at many aspects of the situation, including social network,
family structure, sexual network, HIV/AIDS spread, death, birth, savings clubs,
government grants and local employment prospects. It concludes with hypotheses
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about this particular case. This does not mean that these outcomes will actually
occur, but this does provide a focus for future field research and may provide thought
for policy-makers.14

28.3.2.6 Social Engineering: “Designing” Better Systems

Market design is the branch of economic research aiming to provide insights into
which market protocol, i.e. interaction structure and information circulation rules,
is the best to obtain certain characteristics of a market. Agent-based simulation
seems to be a good method to test several such protocols and see their influence
on economic performances, e.g. efficiency, fairness and power repartition (Marks
2007). Each protocol is already known for its advantages and disadvantages (e.g.
whilst Dutch auction is fast, double auction tends to extract the highest global profit).
Since not every desirable aspect can be achieved with a single protocol, one has to
choose the aim to attain (LeBaron 2006). Assuming agents act rationally, it is then
possible to compare protocols to see what difference they make in prices or other
indicators (e.g. Kirman and Moulet 2008). Many studies have been designed within
the context of electricity markets, which are very crucial since unpredicted shortages
are a problem and prices vary very quickly, and involve a comparison of protocol
(e.g. Nicolaisen et al. 2001). One can also note the use of “evolutionary mechanism
design” (Phelps et al. 2002; March 2007) where strategies of three types of actors—
sellers, buyers and auctioneers—are all submitted to evolution and selection, so
the actual organisation of the market evolves, while the context of production
and demand is fixed. In today’s economy, more and more artificial agents really
interact—either in bidding on consumers’ sites or even in financial markets (Kephart
and Greenwald 2002)—so there is some convergence between real markets and
artificial systems, which utilise market mechanisms. For a more detailed discussion
of modelling and designing markets, see Chap. 25 in this handbook (Rouchier
2017).

28.3.2.7 Data Integration

A mundane and sometimes overlooked aspect of the scientific process is simple
description. That is, recording what has been observed in a suitable form. Tradition-
ally these forms have included the likes of narratives, logs, videos, measurements
and pictures. However, simulations can also be used as a sort of description, where
the aim is not to express a theory about a mechanism, but rather to integrate as
much of the relevant evidence about what is observed as possible about a particular
target. Simulation has some advantages in such a process, since it can allow the

14Although in this particular case, it did not as the model indicated outcomes that the policy-makers
preferred to ignore, being not compatible with the actions they had already decided to take.

http://dx.doi.org/10.1007/978-3-319-66948-9_25
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integration of several different kinds and levels of evidence in one framework. For
example, aspects of narrative texts can be incorporated within the behavioural rules
of an agent; the social network of subcommunities can be compared to those that
result from the simulation; time-series data can be compared to the corresponding
time series derived from measurements on the simulation outcomes and survey
data compared to the equivalent answers at instances of the simulation runs. Such
integration is far from easy, since some aspects are programmed directly (e.g. agent
behaviour), whilst others have to be achieved in terms of the results (e.g. aggregate
statistics about the outcomes). Achieving any particular set of outcomes in a social
simulation is difficult due to the prevalence of unpredictable interactions and effects
(i.e. emergence), so the achievement of a data-integration model is not an easy
one. Such models are not entirely (or solely) a description since the structure of a
simulation sometimes brings into question the consistency of the various parts of the
evidence. Thus, if it is difficult to square an account of how individuals behave with
some of the outcomes, one may be forced to make some choices, including possibly
adding in aspects that are not directly observed. This is all right as long as these
are clearly documented—they can provide fertile issues for future data collection.
However, such data-integration models do not aim for a level of generality beyond
the particular case study (or studies) focused on. In this way, they can avoid “high”
theory to motivate simulation features where this is not supported by the evidence
with respect to the target case. It is not that there is no theory in such simulations—
any description or abstraction, however mild, will rely on some theory, but the point
is that in a descriptive simulation such theory is either well established or relatively
mundane.

Examples of simulations that intend to be descriptive in this sense include (Chris-
tensen and Sasaki 2008) which aims at producing a simulation of the evacuation
from a particular building, with a view to a future evaluation of evacuation plans
and facilities, in particular with regard to disabled people. It uses many particulars
of the building structure but makes assumptions (albeit of a plausible variety) about
how people behave when evacuating. Likewise, Terán et al. (2007) aim to simulate
land use and users within a forest reserve with a view to producing a computational
representation of this. As in similar simulations, there is a mixture of assumptions—
some that are backed by evidence, and some that are just plausible guesses. This
simulation is loosely validated against some data and broadly confirms the results
found from some other models. The ultimate use of this (and similar models) is not
specified.

Such simulations can take a long time to construct, involving many iterations of
model development as well as being complicated and slow to run. The advantage
of such models is that they are a precise and coherent representation of a set
of evidence—in a sense an encapsulation of a particular case study.15 This can
be the basis for further experiments/inspection, which, in turn, can lead to more
abstraction. This kind of process can result in modelling theories of the processes

15To be precise: a possible encapsulation of a particular set of evidence on the case study.
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observed within the data-integration model with simpler models whose properties
are easier to establish but whose outcomes can be checked against targeted
experiments on the data-integration model.

28.3.2.8 Finding New Questions and Areas of Ignorance, Hypothesis
Suggestion

Another use of a simulation is as an aid to good observation. That is, suggesting
issues and questions that should be sought in order to gain an adequate observational
coverage. The simulation is developed as in the data-integration case above,
including different aspects of the observational evidence that are available. It is often
the case that only when one tries to simulate a process, the gaps in our knowledge
become clear. Thus, building a simulation as one is observing can help direct the
data-gathering research in order to complete an adequate computational description.
In this sense, it forms a similar role to simulation in some cognitive science (Newell
1990; Sun 2005).

For example, Moss (1998) exhibits a simulation built on a mixture of bases: (a)
an assumed but plausible cognitive architecture that captures how one might divide a
problem into subproblems until they are doable, (b) some suggestions elicited from
an expert from the domain and (c) plausible guesses for the remainder. This model
attempted to examine behaviour in the face of crises (defined as when one unwanted
event causes another in an out-of-control chain), in particular how the rotating of
crisis management teams and the information they pass on to the next team might
impact their effectiveness at fighting the crisis. The results were not independently
validated, but this is not the point of this simulation. As the author says:

“ : : : results obtained with the North West Water model indicate a clear need for
an investigation of appropriate organizational structures and procedures to deal with
full-blown crises”.

In contrast, Younger (2005) is a very much more abstract model, which is
only loosely built upon evidence, but with the same broad aim of suggesting
hypotheses—in this case, hypotheses concerning the occurrence of violence and
revenge within egalitarian societies. Clearly, the plausibility of the hypotheses or
questions suggested by a simulation will be greater when the simulation is more
firmly rooted in evidence. However, hypotheses and questions can be worthwhile
investigating whatever their source, and at least having a simulation grounds and
defines the question in a precise way, making clear what it might explain and the
sort of other issues and questions that might accompany it.

28.3.2.9 Creation/Critique of Scenarios

Berman et al. (2004) present an example of scenarios being used to constrain models
to produce simulations of the wider consequences of those scenarios (as mea-
sured by relevant socio-economic or environmental indicators or by their possible
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influence on human institutions) that can then be used to inform discussions with
stakeholders and may ultimately produce a better understanding of such changes.
Bharwani et al. (2005) use climate change scenarios to investigate adaptive decision-
making among villagers in the Limpopo province of South Africa, focusing on
the use of seasonal forecast information in farming strategies. Data from the
Hadley Centre climate model—HadAM3—showing a 100-year drying trend with
increasing potential evapotranspiration (PET) were used as model input (providing
PET and precipitation values). Results show that a degree of resilience to these
changes is afforded when the forecast is correct 85% of the time so that farmers
establish increased trust in, and use of, seasonal forecasts. They are able to choose
cropping strategies that are suited to climate change, though this behavioural shift
may only occur over a very long timeframe.

Bharwani et al. (2005) introduce the use of scenarios into the methodology in
a further and very interesting way: by postulating them as “drivers” of actors’
decision-making processes. In this ethnographic approach, the authors combine
simplified scenarios across different domains (irrigation, forecast and market)
asking respondents what they would do under each scenario, in a given context.
This information was then used to produce the model rules for the agents’ decision-
making.

In either case, where conventional scenarios used in future planning can seem
rather terse and lacking in specifics—which may be a limitation to their subsequent
use in policy discussion—simulation outputs that explore scenarios offer a great deal
of detailed information “that would be difficult to imagine otherwise” (Berman et al.
2004, p. 410). Moreover, this can apply at different levels of analysis from trends
in macro variables down to the impacts on different sectors and regions, as well
as differentiated impacts for agents fitting any given “profile” in which the analyst
is interested. Perhaps greater care has to be taken, however, in the use of model-
generated scenarios, to ensure that these are not taken as “more accurate predictions”
by virtue of being “computed” stories rather than conventional “imagined” stories.

Scenarios are often used in policy discussions, e.g. climate change. However,
they are usually somewhat vague and/or only described in qualitative terms.
Simulations can be used to produce consistent scenarios or to produce models that
instantiate aspects of given scenarios.

28.3.2.10 Intervention with Stakeholders

Instead of developing a simulation to represent some aspect of society, one can also
try to use a simulation to intervene in society. That is, use a simulation to change
some interaction between stakeholders, for example, to facilitate collective decision-
making or mutual understanding. One well-known approach is the Companion
Modelling approach, which has been developed since a decade (see Chap. 12,
Barreteau et al. 2017).

An example is demonstrated by Etienne (2003). Here, a model is used in
conjunction with a role-playing game to show chosen participants the issues that can

http://dx.doi.org/10.1007/978-3-319-66948-9_12
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arise when several users compete on a pastoral resource. The model building process
was an integration of multidisciplinary knowledge acquired on French Mediter-
ranean silvopastoral systems into a model capable of representing the interactions
between ecological dynamics and social behaviours. In order to help foresters and
livestock farmers to better integrate these interactions into their planning work,
a multi-agent system was designed to simulate different management strategies
and to compare their impact on forest quality. This model was coupled with a
role-playing game (RPG) initially developed as a didactic support to silvopastoral
training programmes, and very soon, it proved useful in the negotiations and
interactions between livestock farmers and foresters involved in the management
of the same forest. The tool revealed itself flexible enough to make it possible to
play with actively involved stakeholders such as the current users of the resource
(local farmers and foresters), with potential regulators of the system (managers or
administrators), technical experts (extensionists, technicians) or learners concerned
with the topic (students, scientists).

This model is effectively an intervention between the livestock farmers and
foresters by being a subtle mediating tool, allowing the stakeholders to play at
decision-making, to educate them in the possible effects of their choices and to
thus encourage debate and introspection. This model has also been used for didactic
purposes (Sect. 28.3.1.1) by getting agronomy students to play it.

28.4 Inputs and Results of Simulation Models

One method of assessing the use, and ultimately the success, of a simulation for
understanding aspects of society is to tease out what has gone into making a
simulation model, the input, and how the results from the simulation are interpreted
and used, the output. These, the input and the output, together form the mapping
from the computer program and its calculation from and to the target of study. They
are crucial parts of what characterises a simulation, even if they tend to be described
in a less formal manner than the simulation code and behaviour.

28.4.1 Inputs

What is put “in” to the design of a model tends to be more explicitly distinguished
in papers than what comes “out”. This might be because the “job” of a modeller
is seen as a process of deciding what processes and structures will go into a
model and because the inputs are under the control of the modeller in a way that
the results certainly are not and hence can be displayed and talked about with
greater confidence. However, all social simulations are based on a raft of different
assumptions, settings and processes. These are somewhat separated out for analysis
here.
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28.4.1.1 Evidence-Based Assumptions

If there is some evidence about the nature or extent of the processes that are
being observed, then this can be used to inform the set-up or structure of a
simulation. For example, evidence from social psychology might be used to inform
the specification of the behavioural rules of a set of agents in a simulation, or the
narrative account of a participant used as the basis for programming a particular
agent.16 Of course, it is rare that such evidence constrains the possible settings
and algorithms completely but rather that it partially constrains these or constrains
them in conjunction with additional assumptions from another source. Clearly, the
more assumptions can be constrained by evidence (either directly or as the result of
previous research) the better. The presence of other assumptions and inputs does not
make a simulation useless, especially if documented, but any results are then relative
to the assumptions. If assumptions that were included are completely misguided
and critically affect the results, then this would seriously limit the usefulness of the
model with respect to the observed world.

28.4.1.2 Indirectly Inferred Settings

In situations where some parameters are unknown and where there is a relative
abundance of time-series data, one can attempt to infer the values of these
parameters by seeing which parameter values result in the model giving the best fit
to a segment of the time-series data. This is a sort of evidence-based setting, but it
often seems to be used when the parameters concerned do not have any discernable
meaning in terms of the target of modelling. A tradition of using a certain kind
of decision or learning algorithm in an agent might lead to this algorithm being
“fitted” to an initial segment of the data (so-called in-sample data) even when it is
unlikely17 that the algorithm corresponds to how the target agents think. Thus, the
credibility of this technique is dependent on the reliability of the other assumptions
in the model and the meaning of the parameters being fitted. If the parameter was a
scaling parameter, then this might be a sensible way to proceed.

16This can either be done directly as a translation of an interview text into programmed rules or
used to check that such programming is correct by comparing the resulting behaviour of an agent
against what happens when the simulation is run. Thus, there is not a clear distinction between
verification and validation from evidence. In a sense, this second method is verification since the
programming is rejected until correct, but, on the other hand, this is part of the production of a
simulation, which may only be completed later for its validation as a whole.
17Unlikely with regard to the psychological or sociological evidence about the target subjects.
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28.4.1.3 Documented Theoretical Assumptions

Clearly, researchers do not invent all the details and algorithms of their model from
the ground up, but are doing their research with knowledge of certain approaches
and algorithms and within a community of other research, with established tech-
niques and traditions. Thus, many parts of a simulation model will be based on
(parts of) other models or algorithms from other fields. Many models in economics
will use a decision algorithm based on constrained comparisons of predicted utility,
and other models might import techniques from the fields of artificial intelligence
or evolutionary computation. It seems impossible to avoid all such theoretical
assumptions; however, there are distinctions to be made in terms of the strength
of the assumptions, the likely biases behind such assumptions and the degree to
which they are evidence based.

“Strong” assumptions are those that are surprising or seem to specify conditions
that are rarely observed. Thus, an assumption that an agent has in effect a perfect
model of the economy in its head is a very strong assumption, since even experts
find it difficult to understand the economy as a whole. Strong assumptions are
often introduced to allow analytically solvable models to be specified and used, for
example, the assumption of perfect information in game theory. Whilst analytically
tractable models were necessary when there was no other avenue for the precise
modelling of many kinds of phenomena, the advent of cheap computing power
and accessible simulation platforms means that often more appropriate methods are
now available, with analytic models possibly being used to check or understand the
reference simulation model rather than being the focus. Clearly, all other things
being equal, weaker assumptions are preferable to strong ones—the stronger an
assumption, the more evidence is needed to justify its use. In any case, all such
assumptions should be as fully documented as possible.

28.4.1.4 Explored Conditions

In much simulation work, there will be a focus hypothesis or set of hypotheses
that are being investigated. In these cases, it is usual to try the simulation using
that hypothesis and then compare the results to those coming from a version of
the simulation with a different hypothesis implemented. This provides evidence
about the possible effects of that hypothesis on the outcomes, allowing comparison
with evidence and possible subsequent inference as to which is more likely to be
the case. The clearest case of this is testing the significance of the inclusion of a
hypothesis against that of a null model18 to see if the properties of the results that
are deemed significant indeed result from the hypothesis or from other aspects of

18A “null” model is a model version where the claimed causal mechanism is eliminated to see
if the resultant “effect” would have arisen as the result of background (e.g. random) mechanisms
anyway.
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the model. Thus, a simulation of a stock market might compare the results obtained
with intelligent agents (that notice patterns in pricing and try and exploit these)
to the results obtained with agents that buy and sell at random. Unfortunately, it is
sometimes the case that a simulation is presented purporting to show the significance
of a hypothesis without indicating what the comparison case is.

28.4.1.5 Randomness and Other Essentially Arbitrary Assumptions

A simulation modeller is often faced with deciding how to design a part of a
simulation model for which there is neither evidence nor any tradition of modelling
to guide them. In such a case, one might simply make that aspect random. For
example, where it is unknown how a kind of choice is made in the modelled
situation, it might be implemented as a random choice in a simulation model of
that situation.19 This is usually done in conjunction with a “Monte Carlo” approach
that runs the simulation a number of times and averages the resulting different sets
of outcomes. Presumably, this is done under the assumption that the introduced
randomness will be averaged out, leaving only the effects of the other design
settings. However, this assumption is rarely proven but often simply remains a
hope. Of course, if it can be shown that the value of the particular input does
not influence those aspects of the results that are deemed significant by a series of
simulation experiments (or otherwise), then a random input or process might well
be acceptable. However, in this case, a constant value might be simpler and have the
same effect.20

We suspect that many uses of randomness in simulations are in the nature of a
programming “stub”—that is, a stand-in that the programmer intends (or intended)
to expand to a more plausible algorithm at a later date. Whilst this is perfectly
acceptable during model development and to some extent inevitable given that
researchers always have time constraints, such stubs are likely targets for model
criticism by other researchers. At the very least, some exploration of them to assess
the extent to which they affect those aspects of the results deemed significant is
advisable.

Randomness can be considered as a special case of a broader class of assump-
tions: those that are added into the model simply to get it to run, and for no
theoretical or evidence-related reason. We hope that these are honestly declared

19Another option is to try all the possibilities exhaustively in a series of simulations or by using
techniques such as constraint logic programming, but these are technically difficult and require a
lot of computational power.
20There are possible reasons why a constant value might not work, for example, when the input
provides some mechanism of symmetry breaking.
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rather than “dressed up” under some other categories, although often these are
excused under the broad umbrella of “simplicity”.21

28.4.1.6 Undocumented Assumptions

It is not feasible to document all of the assumptions in a model. Firstly, this might
take too much space in a single paper,22 and secondly, many might be previously
established and well known to those in a particular field of work. However, it is also
likely that researchers are simply not aware of all the assumptions inherent in their
simulation models, due to the limitation of human cognition.23 Clearly, it is part of
the job of other researchers to point out undocumented assumptions where these can
be shown to be significant.24

28.4.2 Outputs

A similar set of distinctions can be made about what comes out of a simulation,
the results. There is not an obligation to describe all the outputs from a simulation,
but rather one tends to get a sample of results, which typically is composed of:
sample results, sensitivity analyses, evidence of validation and the outcomes from
experiments designed to test a hypothesis. However, not all the details of the results
are considered as equally significant—we now consider each of these in order of
increasing significance.

• Firstly, there are those aspects of the results that are considered as artefacts of the
model, for example, the randomness that might have been input into the model.

• Secondly, there are those features that might be considered to reflect some of the
model structure and the processes that result from them. These features may not
be judged as reflecting those parts of the simulation that reflect what is being
modelled, but may be caused by theoretical or arbitrary assumptions that were
put in. These features of the results may well not be so much of a surprise to the
modeller.

21There is nothing wrong with assumptions that had to be made due to constraints on resources,
such as time, expertise or computing power, but it is simply disingenuous to pretend that this is
sanctioned by a higher “virtue”.
22However, this is a poor excuse given the ease with which a relatively complete technical paper
can be archived and then cited by a journal article or report discussing the model.
23Alternatively it may be because the simulation designers had not thought about what they were
doing.
24It is trivial to point out that a simulation has missed out some assumption or other, but this is not
very useful. It is far more useful to point out how and why an assumption might be important and
for which purposes.
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• Thirdly, there are those features of the results that are interpreted as indicating
something about what is being modelled. For example, they may suggest a
hypothesis about those phenomena. They indicate a possibility that may be
inherent in what is being modelled or that is inherent in the target of modelling.
This may well go beyond what can be directly validated in the model but, for
example, track counterfactual possibilities concerning what might have occurred.

• Lastly, there are those features that would be positively expected of the phe-
nomena being modelled. That is, if they were not present, this would be taken as
evidence that there was something amiss with the model. In other words, they are
a necessity of the phenomena. It is against this category of results that models are
validated.

It is not easy to distinguish these different categories of significance in terms
of the results, since the causation within a model can be very complicated, being
a result of many model aspects interacting together. It is also usually the case that
the modeller has hypotheses (or assumptions) about what aspects of the results are
significant in which ways, and this is crucially useful information to impart to a
reader interested in the results. However, this is often left implicit.

One might justifiably criticise many social simulations in terms of the lack of
empirical grounding of both inputs and outputs. Many social simulations have only
the weakest connection with anything observed—the inputs are largely assumption
based, and indeed often highly artificial—the outputs only relating in the broadest
way to any data and then only in terms of a few aspects of the possible outputs
(i.e. only a few selected aspects are deemed significant to what is observed and
then in the loosest, “hand-waving”, manner). It may well be that simulating human
society is just very, very difficult, but one suspects that it is simply easier to stick to
considering abstract ideas.

28.5 Conclusion

Simulation has undoubtedly helped to improve our understanding of human society,
although in a number of different and usually indirect ways. It is fair to say that, so
far at least, this has served to improve our understanding of some societal processes
and our ideas about society rather than directly in terms of being able to strongly
predict aspects of society or conclusively test hypotheses about society.

Simulation is not a replacement for other ways of understanding society;25 it
is simply a flexible way of precisely modelling it in a way that can represent
some of the dynamic and complex aspects of it. It can be especially productive
in conjunction with other approaches. For example, analytic models can be used
to check the outputs and properties of a simulation model and help us understand

25At least, not in any of the cases we have as yet come across.
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the model, and, conversely, a simulation can be used to probe and check some of
the simplifications and assumptions employed in an analytic model. In participatory
models, social science techniques of engagement and elicitation can be applied to
inform the construction of agent-based social simulations as well as the simulations
suggesting what might be usefully investigated in terms of the collection of new
data.

Clearly social simulation has some way to go in terms of the maturity of its
method and the reporting and use of simulation models. There are still areas in
which the methodology needs substantial improvement and standardising. There
are also significant unresolved issues, such as how to decide what level of detail to
include and to what extent one should rely on prior theory.

We predict that simulation will be even more significant in helping us understand
human society in the future, in particular where it is used in close conjunction with
other relevant approaches.

Further Reading

A more general and simpler introduction to varying modelling purposes can be
found in Chap. 4 (Edmonds 2017). The best general introduction to social simulation
is (Gilbert and Troitzsch 2005) which covers general issues and gives code
examples. For a wider range of views on social simulation, the published papers
from the US National Academy of Sciences colloquium on “Adaptive Agents,
Intelligence, and Emergent Human Organization: Capturing Complexity through
Agent-Based Modeling” (PNAS 2002) give a good cross-section of the different
approaches people take to this area. It is difficult to point to further good sources as
this topic is so diverse, but the Journal of Artificial Societies and Social Simulation
has many accessible papers.
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Chapter 29
Some Pitfalls to Beware When Applying Models
to Issues of Policy Relevance

Lia ní Aodha and Bruce Edmonds

Abstract This chapter looks at some of the ways things can go wrong when
mathematical or computational models are applied to inform policy on important
issues. It looks at some of the pitfalls in the model construction and development
phase, including choosing assumptions, the effect of ‘theoretical spectacles’, over-
simplified models, not understanding model limitations, and not testing a model
enough. It then goes on to discuss the pitfalls that can occur when a model is applied
to inform policy, including entrenched policies based on models with little or no
evidential support and how models can narrow the evidential base considered. It
also looks at confusions concerning model purpose and kinds of question they may
answer, when models are used out of context, asking unreasonable things of models,
when the uncertainties are too great, when models give a false sense of security,
and when the focus should be on values rather than facts. This discussion is then
illustrated with two examples, one economic and one from fisheries. It concludes
that most of these problems stem from the interface between the modelling and
policy worlds. It ends with some simple recommendations to reduce these mistakes.

Why Read This Chapter?
We have compiled this chapter so that the reader may become aware of a number
of ways in which complex models can do more harm than good or mislead those
who use them. Such awareness may help you avoid these pitfalls as well as help
others to avoid them. In particular, you will learn about some of the dangers that
may arise when models escape from their modelling enclosure to be used in the
policy or public arenas to inform decision making.
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29.1 Introduction

We all use models all the time, albeit usually informal mental models but sometimes
mathematical or computational models. These models help us think about situations
we encounter—both familiar and unfamiliar. While such models, from the very
informal to the most formal, can be helpful, they can also work to limit our
understanding—biasing and even constraining how we think about things or how
we might think about things. An important characteristic of models is that they
are simplified descriptions—representations that are designed by humans. As such,
it is worth remembering that, in much the same way that certain arguments or
concepts can work to obscure more than they illuminate (Moore 2017), so too can
the most sophisticated models. In this chapter, we are considering the impact (and
hence pitfalls) of relying on formal models—that is, mathematical or computational
models. This is what we will mean when we talk about ‘models’ here; if we mean
informal models, we will explicitly say so as in ‘mental models’ or ‘informal
models’.

On balance, it may be argued that people are relatively good at reflecting
and negotiating how we collectively think about things, via social and political
processes—although it should be clarified here that we do not all necessarily possess
the same negotiating capacities or opportunities to affect these processes in a similar
manner. What is relatively new in these social and political negotiating arena(s), and
what we need to carefully consider, is that formal models are increasingly being
introduced into (and their legitimacy questioned within) these processes, in terms of
their results or their underlying ideas. This chapter looks at some of the dangers that
this might introduce.

A complex simulation model can be a powerful tool—capturing and integrating
knowledge that would be almost impossible to do in other ways and then facilitating
calculations from that knowledge. However, these complex tools can be difficult to
construct (adequately) and even more difficult to use (appropriately). Consequently,
there is always an underlying chance of fooling yourself or others when building
or using them and hence the possibility of prompting bad decisions. Furthermore,
complex models can act as a mistake amplifier, making small mistakes have big
consequences. As the saying goes

To err is human, but to really screw things up you need a computer.

This chapter looks at some of these pitfalls in the hope that we might raise aware-
ness of them and their consequences. We have structured our account according to
two phases—firstly, the construction phase (and all that goes or should go with that),
and secondly, the application phase when the model has been released to be used in
the wider world.

In the event that models are to be used to inform policy, both of these stages merit
close consideration, not only by those involved in developing the models but also
by those that will be affected by them. As such, we lay out some of the core issues
that may arise within these stages and highlight how these might present pitfalls for
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the modeller, for the policy maker, and for wider society. This rough categorisation
is simply to aid the reader by giving them some structure and is not to be taken as
definitive—any of the pitfalls might affect anyone.

Not everyone involved and implicated by this process is a modeller or policy
maker. The shortcomings of the interaction between modellers, the modelling
process, policy makers, and the entire policy process are likely to be felt most by
many facets of society that may have had very little (or no) bearing on or input
into this process. A wider awareness by stakeholders and the public of the pitfalls
may encourage them to be more critical of model-informed outcomes and to direct
debate more towards the options being considered and the decisions being made.

29.2 Constructing a Model: Pitfalls for Modellers to Avoid
and Policy Makers to Ask About

There are a number of pitfalls that can occur in the construction phase of the model.
Although there is no shortage of evidence of poor modelling practices and the
negative consequences these can entail for society, many aspects of models are not
usually subject to close examination by people outside the original modelling team1

(Saltelli and Funtowicz 2014). As such, the points made here are aimed at modellers.
However, they hint at the type of questions that those who are considering using a
model (i.e. policy makers) should ask when presented with a model, regardless of
how impressive it may look. Doing so may go some way to avoid some of the
potential pitfalls outlined for the following phase of model application.

It is worth stressing, at this stage, what a model is. Models are abstractions,
formal constructions that represent aspects of the world. They are created by
someone, somewhere, for a particular purpose, most likely to answer a particular
question and most certainly drawing on various assumptions. Indeed, there’s no
getting away from the fact that in engaging in the activity of modelling, assumptions
about reality have to be made. While these assumptions might be more or less
reliable (given the context and purpose of the model), there are potential traps
that even the most experienced, competent, and respected modellers may fall into.
The overarching point we wish to make is that a combination of reflexivity and
transparency is key to avoiding some of these pitfalls.

1At best, examination is by a few in the same domain as themselves—people who likely have
the same assumptions and worldview. Thus, many models are not effectively critiqued in an
independent manner.



804 L.n. Aodha and B. Edmonds

29.2.1 Modelling Assumptions

How we choose to see the world is itself a complex and subtle process that is
not well understood. However, how we view the world, and how we choose to
represent the world impacts both the questions we ask about the world, and how
we try to answer them (Benessia et al. 2016). In this sense, how we conceive of a
problem matters a great deal because it frames how we try and solve that problem
(Moore 2017). The institutionalisation of seeing the world through numerical
abstraction as the most authoritative way of seeing has a long history and one
that is deeply embroiled in facets of power (Bavington 2009, 2010, 2015; Moore
2017; Scott 1998). It is especially interesting that post 2007 crash we continue to
view words largely as ‘interesting points of view’, while numbers ‘never lie’ (or at
least are more convincing), and difficult calculations or simulations often retain an
unwavering authority. What is perhaps even more worrying in this, however, is that
this institutionalisation runs so deep, and is so ingrained in our thought, that often
we fail to recognise that numerical abstractions and complex models can be as laden
with ‘points of view’ as other forms of knowledge. Failing to recognise this is the
first pitfall that both modellers and policy makers are likely to fall into.

As per our aforementioned statement, all models are built on assumptions about
reality, and this includes complex models. These assumptions are both implicit and
explicit. Some may be based on theory, others on empirical evidence, maybe a mix
of both or, perhaps, something altogether more ad hoc, such as those derived from
tradition. We may not even be aware of the implicit assumptions. These assumptions
will determine what goes into a model and, perhaps more importantly, what we
leave out of it (Sterman 2002). Together these will have a bearing on our entire
conceptualisation of the problem at hand.

Some of the assumptions we make will be somewhat reasonable, while others
may be downright unreasonable. A good example of this comes from the models
that are employed in fisheries management, some of which assume that nature is
a stable system (although most current thinking acknowledges that it is anything
but stable). The corollary of this is that goals or policies designed according
to this assumption (e.g. maximum sustainable yield (MSY), which has become
the de facto goal of most fisheries management regimes today) may turn out
to be fairly unreasonable themselves (Bavington 2015). Models populated with
homogenous rational economic agents are another good example. Stiglitz (2011)
has highlighted that many of the standard economic models so deeply implicated
in the last financial crash had critical omissions, along with a raft of incorrect
assumptions, oversimplifications, or the ‘wrong’ simplifications. In turn, policies
that have been designed according to these models were, and continue to be,
worryingly dysfunctional.
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29.2.2 Theoretical Spectacles

As indicated, many things can colour our perception of reality and thus the
assumptions that we make—for a good discussion on this, see Glynn (2015). Among
the factors he highlights are experiential and environmental biases (including
disciplinary biases) that—regardless of how ‘objective’ they view themselves—
scientists are subject to. Their disciplinary orientation will most certainly entail
some commitment to a worldview that leans towards some value systems over others
or to depicting aspects of that worldview over others in their models. Thomas Kuhn
described this effect as wearing ‘theoretical spectacles’ (Kuhn 1962)—the theories
one believes lead one to only notice the aspects of the world that fit the theories, and
not those that do not.

This is often inadequately considered by those engaged in building such models.
In fact, as Sterman (2002) has observed, narrow modelling assumptions are a
common occurrence, even in work that has been published in highly respected
journals. Although some complex models (e.g. agent-based simulations) allow the
avoidance or widening of some of these assumptions, it would be wrong to think
that such models are free from unconsidered or oversimplistic assumptions that
may critically affect the results they give. Thus, a potential pitfall for modellers is
failing to sufficiently consider and/or critique assumptions that underlie a model’s
construction and how useful, or dangerous, these may become down the line.

Modellers tend to spend a significant amount of time with their models—deeply
engaged in constructing them, thinking about them, and tuning them. Thus, the
danger of ‘theoretical spectacles’ is particularly acute for modellers as they often
learn to see the world ‘through’ their models and begin fitting it to adhere to what
they perceive to be true, developing a strong confirmation bias (Sterman 2002).
This process can result in modellers making models that fit ‘their version of reality’
quite well, but it may not necessarily reflect observed ‘reality’ very well.2 What we
perceive to be true is based on our assumptions, and if these are not subjected to
sufficient independent or reflexive examination and critique, then dangerous, brittle,
or simply wrong assumptions may be included in the models we use. The upshot of
this is that we get models built on bad foundations that may perform in a completely
inadequate, indeed sometimes catastrophically mistaken, way.

29.2.3 Oversimplified Models

For models to be understandable, they need to maintain a certain level of simplicity.
However, it is always worth keeping in mind that while simplifying reality it is likely
to become more removed from that which we are trying to represent. As such, it is

2This is shorthand for saying the model’s assumptions make a model useless in terms of its purpose.
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helpful to be aware that a model might not necessarily prove encompassing enough
to incorporate alternative understandings, experiences, values, or needs of those
whose reality is being abstracted. It merits consideration that in our abstractions,
that which we exclude is likely to matter for something, or someone, somewhere. In
this sense, it is worth remembering that highly stylised interpretations can work to
colour our vision from the beginning (Moore 2017)—the more stylised they are, the
stronger the ‘colouring’ might be (since it makes for a more attractive and portable
story).

Agent-based models are generally more straightforward in how they represent the
world—allowing one computational entity for each actor, for example. This means
that they do not need such simplifying assumptions as models, which represent
populations as abstractions. However, they are still subject to the same pressures
as other kinds of model, and there is a strong academic and publication bias towards
simpler models.

Notwithstanding this, many models—even the simplest—can be useful, and
one way or another we are all working off some kind of model (even if only a
mental or informal model). Given that we cannot observe or measure everything,
everywhere all of the time, simplifications can and do help us understand some
complex processes that we may otherwise not understand (Glynn 2015). The pitfall
here for the modeller to avoid, however, is one of oversimplification, and any type
of model can fall guilty to this charge. Complex computational models can become
oversimplified, if the modeller may be constrained by time limitations, information
limitations, their aforementioned worldviews, computational capacities, and so on.
The danger here arises when simplification leads to a level of abstraction that misses
key mechanisms and aspects that really are important in the process we are trying to
understand. For example, this might happen through choosing to restrict what goes
into a model to available numerical data—because it is easier than dealing with
non-numerical data (Sterman 2002). Oversimplification, subsequently, can lead to
many kinds of error, including human errors, computer errors, incorrect/misleading
results, biassed or limited interpretations, and, ultimately, bad decisions (Glynn
2015). Whilst it is very difficult to be sure as to what aspects are crucial to include or
to include every tiny nuance that might be relevant or important (even ethnographers
struggle with this one), the task here is to be upfront about and reflect on these
simplifications and try to catch them out if they are oversimplifications. At the very
least, simplifying assumptions should be clearly acknowledged and documented.

29.2.4 Underestimating Model Limitations

Given the two previous points that have been made—that models are built on
assumptions about reality and even the most complex entails a fair amount of
simplification—it is not difficult to make the point that all models are going to
have some limitations. The usefulness of a model is going to be constrained,
so that an overoptimistic selling of your model for any and all purposes is not
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likely to end well—for anyone. Building a representation of the human or natural
world—or both—is hard, and it would be a mistake to think otherwise. Building an
oversimplified/over-prescriptive model and putting too much faith into what it can
tell us can have many negative repercussions.

Some idea of a model’s limitations can be gleaned through the assumptions that
are built into it—it is unlikely to work well in situations where the assumptions do
not hold. Other clues to a model’s limitations can be found by running the model
under many different considerations, e.g. its sensitivity analysis. However, the final
arbiters of a model’s limitations are usually only apparent when the model is used
in practice. Thus, models need to be continually reviewed as to their continuing
suitability and usefulness.

Particular care is needed when the model is being applied in a context that is very
different to the one it was designed for or tested within. In a way, each time a model
is applied in a different context, its utility there should be separately established, and
not taken for granted. The more different the situation, the more it needs retesting,
but this is often not done due to the cost of this. It is much easier just to reuse the
model and hope for the best—easier in the short-run, that is.

One subtle way that a model can be used beyond its limitations is when it is
subsumed as a sub-model of a bigger, more complex model. In such cases, the
failures of the model can be masked by all the other things going on and not noticed.
However, since models can ‘amplify’ error and bias, it might have an even bigger
impact on the results.

Thus, it is important to remember that even the best models have limitations.
Models are not (or almost never) general-purpose tools but more specific encapsu-
lations of knowledge that have a quite specific scope of use. In many cases, if one
does not know whether a model is being used beyond its scope, then it might be
better to simply not use it at all—sometimes it is better to know the limitations of
one’s knowledge than to think one has some idea (or baseline) of what is happening.

29.2.5 Not Checking and Testing a Model Thoroughly

Clearly if there is any danger that a model might be used to inform real-world
decisions, then the modellers and/or model users have a duty to check and test
the model for its intended purpose as carefully as possible. However, these issues
are dealt with extensively in other chapters in the Methodology section of this
handbook.
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29.3 Unleashing the Model: Pitfalls for Modellers, Policy
Actors, and Society

Saltelli and Funtowicz (2014) have made the case that models should never make
it onto the policy arena without undergoing rigorous and independent sensitivity
auditing. This is a fairly reasonable suggestion, given that many of the pitfalls that
can occur during the development phase (which should include testing) of the model
can have fairly serious implications in the event that it is applied, and its results are
taken seriously, with little question. There have been some very public examples of
this over the past number of years that have had implications for those who are in
the business of developing models, those in the business of designing policy, and, in
turn, those who have to live with the consequences of these policies (e.g. Cavero and
Poinasamy 2013; Cassidy 2013; Pierce 2008). Two such examples will be discussed
in the final section. However, even in the event that best practice has been strictly
adhered to prior to the model’s application, there are still a number of pitfalls to be
avoided at this stage of the process. Thus, some of the big traps to be navigated at
this stage relate to the state of the evidence base and confusion over what a model
can deliver on and what it realistically cannot. Points which merit consideration
here include the purpose for which the model was built, the conditions it was built
to satisfy, high levels of uncertainty, and the inability to answer the less ‘scientific’
questions that are being asked (and that, arguably, call for less ‘scientific’ answers
altogether).

29.3.1 From Lack of Evidential Support, Mistaken
or Misleading Models, to Entrenched But Ill-Informed
Policies

As we have indicated, models are constructed using little snippets of information,
about somebody, something, or some event or process that has been observed. It
is worth reiterating here that even for the most complex models, the ‘real world’
is going to be more complex than the pieces of information we have on it. This
also holds true for ‘good’ models. However, if things go wrong in the construction
phase, you may well be dealing with a fairly inaccurate model. It is also worth
reiterating here that sometimes models are not grounded in empirical evidence
but rather in tradition, that is, disciplinary theories that may well never have been
proved beyond theory. Some of these models may be relying not only on tacit but
wholly unverified assumptions (Saltelli and Funtowicz 2014). It seems reasonable to
suggest that models based loosely on real evidence, or perhaps none at all, are going
to throw up problems at some stage if used in guiding the policy formation process.
An easy target here are the aforementioned but often used, well-versed models on
the policy scene coming from economics. While models such as these may make
policy formation somewhat easier, in that they give a representation of something
in a way that gives it an appearance of manageability, it is worth considering and
questioning in detail their assumptions and the actual wisdom that they encapsulate.
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Unfortunately, history has taught us that mistaken or misleading models can
quickly gain traction. Particularly, if they appear to offer a workable solution that
is amenable to policy making (see the example in Sect. 29.5.1 ). Furthermore, once
these models (or the policies they have justified) become institutionalised—even
when our knowledge has progressed so that we can see that the models (and thus
the policies they inform) are underpinned by incorrect assumptions—it may be very
tempting to continue to use them because the alternative is too messy or appears too
hard. Essentially the pitfall here is that models can become so embedded within
the policy making process that they are difficult to change. This may be for a
variety of reasons, including that they reinforce particular interests or simply out
of sheer habit. ‘We’ve been doing it this way for thirty years, so it must be right’ is
most certainly a pitfall policy makers can (and do) fall into (see Rosewell 2017 p.
163). While this may make the game of policy making easier, it may not make for
the best societal outcomes, and these may range from minor to fairly catastrophic
consequences.

29.3.2 Model Spread

One of the big advantages of formal models is that they can be copied and used
extensively with little effort. This can have big advantages in terms of allowing
others to inspect, critique, and improve these models, but it also has downsides. One
of these downsides is that models, once made and accepted in some way, tend to
proliferate. That is, they tend to spread as if on their own accord. Of course, the ease
of their reuse means that it is tempting to reuse them with little care or attention, in
particular, care to retest or otherwise evaluate the applicability of a model for each
area of application. In addition, once a model becomes widespread, then others take
this as a mark of its suitability, so that it spreads even more.

An example of this is when the ‘Black-Scholes’ formula (Black and Scholes
1973) and its extensions became a common basis on which to price many kinds
of financial derivatives. However, it later turned out that in other than the cir-
cumstances, it was originally conceived for it gives misleading prices, e.g. in the
presence of extreme price changes, long-term price variation, or when dynamic
hedging is not possible. The prevalence of this model has even been blamed for the
bank crash of 2007/2008 (Stewart 2012). As the famous investor, Warren Buffet,
put it in a letter to shareholders ‘The Black–Scholes formula has approached the
status of holy writ in finance : : : If the formula is applied to extended time periods,
however, it can produce absurd results. In fairness, Black and Scholes almost
certainly understood this point well. But their devoted followers may be ignoring
whatever caveats the two men attached when they first unveiled the formula’.3

3http://www.berkshirehathaway.com/letters/2008ltr.pdf (accessed 1 June 2017)

http://www.berkshirehathaway.com/letters/2008ltr.pdf
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29.3.2.1 Narrowing the Base Even Further

Another way that models, once unleashed into the policy making process, can affect
the evidence base is through narrowing it. The case of the Newfoundland cod,
mentioned above, indicates how models can work to constrain the evidence base,
therefore limiting decision making. In this sense, a policy maker pitfall would be
narrowing the evidence base to the part, which is seen as authoritative, and all other
evidence is sidelined. This raises further questions in relation to what a model may
and may not be able to adequately capture, and whether these may be other sources
of evidence better suited to that task. It further raises questions in relation to the
institutionalisation of what we deem to be authoritative evidence.

This point is very much related to our earlier point regarding the ‘theoretical
spectacles’—we all wear some type of spectacles that have been coloured by our
environment and our need to navigate it. A model might be built from one viewpoint
using a particular set of scientific spectacles and used in accordance with the
different spectacles of a policy maker. These spectacles might bias or limit out
vision in innumerable ways. While these limited viewpoints might be ok within
their original context of development and use, they may not adequately capture
things outside of it. For example, this view might not be compatible with the
spectacles those operating in the context, with which the policy is concerned or
will be employed in, are wearing.

This, of course, remains a challenge in policy making today, despite the
widespread rhetoric in favour of stakeholder engagement, participatory governance,
and human dimensions. Pearce et al. (2014, p. 163) have made the case that the
tendency to prioritise technical data (numerical data and the output of formal
models) over all else is still a firm feature of the policy making process. They
highlight that studies indicate that the ‘prevailing order’ of the evidence-based
policy process remains firmly rooted in traditional power hierarchies that are
buttressed by a technocracy. In contrast, qualitative research and local knowledge
are marginalised, so that a belief in the superiority of scientific methods from the
natural sciences remains entrenched. Further, Saltelli and Giampietro (2017) have
argued that modelling, when unleashed onto this space, can actually exacerbate this.

This becomes a pitfall in the sense that, even though a model can help us to
understand something in a way we previously were unable to, it might effectively
limit consideration of other understandings ‘out there’ that are likely to require
consideration or perhaps might even trump the model itself. The danger then
becomes that models may work to propagate established forms of thinking to the
detriment of all others.

Arguably, given the special status we bestow on models (perhaps arising from
their impressive appearance or the authority they gain from their scientific status),
it is worth considering that these processes are imbricated in power in a number
of ways. In this sense, the representations we present and use can work to cement
this. The authoritative role of models may help justify the centralisation of decision
making or perpetuate a top-down hierarchical mode of regulation – precisely the
mode of management that many have increasingly recognised as suffering a crisis
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of legitimacy and from which purportedly we are moving away from. Given the
special status this type of model can command, it can be used to justify decisions—
which may not necessarily have the best outcomes.

Modellers, given the authoritative position of science, or at worst the appearance
of science, can trip into the pitfall of further contributing and perpetuating these
hierarchies, which may result in poorer answers than may have been available
elsewhere. In this way, models may work to further exclude or obscure other ways of
knowing, other ways that might prove to be a better answer to the current complex
global challenges that policy makers and society have to deal with. In this sense,
they may perpetuate the failure to integrate or deal seriously with other forms of
knowledge.

29.4 Some Other Things to be Aware Of

29.4.1 Confusion Over Model Purpose

Good models will have, or should have, a clearly stated purpose—at least those that
are applied to issues of real importance. Such a model will have been designed with
that purpose in mind and tested with respect to this. If it is used for another purpose,
then it is likely to fail at this. Therefore, that model will only be able to help when
used for its particular purpose, e.g. for scenarios where that kind of role is required.
These kinds of confusion are dealt with in Chap. 4 (Edmonds 2017).

29.4.2 Confusion Over the Kind of Question a Model Can
Answer

A related confusion is when a model is designed to answer a question or inform
thinking about one kind of issue is assumed helpful for a different question or
issue. Take, for example, the bioeconomic models of fisheries management. These
models are built using biological and economic parameters and largely ignore social
parameters. They are designed with these objectives in mind. Proponents of these
types of model are sometimes explicit about this and may indicate that although
other social objectives like employment, equality, or biodiversity conservation are
important, they are not explicitly modelled (e.g. see Costello et al. 2016). As a policy
maker, it is worth considering whether these models may be the most appropriate
tool for suitable policy formulation or to which the extent they should be relied upon.
Interestingly, after years of managing fisheries based on these models, the poor
social outcomes with respect to fisheries management are often lamented, though,
arguably, are not at all unexpected.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
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As a policy maker, one should be aware that a lack of clear purpose for a model
is far too common (Chap. 4). It is therefore sensible to inquire carefully into this and
consider whether the purpose of the model is compatible with the kind of policy one
is trying to design and whether it meets one’s objectives. Indeed, Sterman (2002)
argues that, along with incorrect or missing assumptions, models often fail because
more basic questions about the suitability of the model for the intended purpose
were not asked. As such, the pertinent questions to ask become: Are the assumptions
being made in line with the purpose of the model? What would this mean in terms
of policy output? What kind of contradictions might this lead to?4

A pitfall for modellers here would be failing to declare whether the model is
suitable for the particular purpose or whether it might hold up under different
conditions, falling into the trap of being too policy prescriptive on questions that are
inherently political, rather than scientific. Sometimes answering these questions will
require much more than a model that has been built with specific, perhaps narrow,
objectives in mind, using specific assumptions as to how society is, rather than how
it could or ought to be.

29.4.3 When Models Are Used Out of the Context they were
Designed For

Context matters! While a set of assumptions may accurately hold in one context,
they might not in another—other factors could come into play in a new context
that change the outcomes or may even negate them entirely. For example, with
bioeconomic models in fisheries, scientists often acknowledge that the effects of
their policy prescriptions, according to their models, assumptions, and goals, are
likely to be context specific and depend on the social, economic, and ecological
objectives within any given context. The danger here is that the policy maker is
not adequately aware or fails to consider this declared context sensitivity but rather
goes off the tagline whereby the solution is posited without the necessary caveats.
So although scientists may make certain caveats about their model explicitly clear,
this does not necessarily mean that they are heard. Furthermore, these may be lost
as the model moves up the chain to where policy will actually be implemented.

29.4.4 What Models Cannot Reasonably Do

It is worth highlighting that there are some things that models just cannot do. In
these cases, the policy maker should not attempt to ask such questions of a model,
nor should a modeller present (spurious) answers if asked.

4Giampietro and Saltelli (2014) provide a discussion on these questions in relation to the ecological
footprint.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
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Some of the biggest questions we are trying to answer today simply cannot be
answered by science, certainly not alone anyhow, no matter how much we dress
them up with science (Weinberg 1972). Three conditions give rise to such questions.
Firstly, there are questions that science may not be capable of answering due to
limited resources. Secondly, there are questions whereby the subject matter is just
too variable to measure according to narrow positivistic frames (Weinberg explicitly
places the social sciences as such a case). Thirdly, there are the types of questions or
issues that involve moral and aesthetic judgements—they are not about ‘facts’ but
values, although some questions may have elements of both (Weinberg 1972).

For example, if a policy maker asks a model to predict the consequences of a
particular policy and this is simply not predictable, then it is wrong to provide that
prediction, even with caveats (because the modeller knows that the caveats will be
ignored). If a policy maker tries to off-load the responsibility of a decision to the
outcomes of a model, then this too should be resisted—it is the place of modellers
to advise but policy makers to decide.

29.4.5 Uncertainty Is Too Great

All models entail a level of uncertainty. This uncertainty usually increases expo-
nentially with the complexity of the system we are trying to understand. A number
of authors have highlighted this in relation to climate and hence climate change. In
this area, reasonable predictions are simply not feasible given the huge uncertainties
this kind of modelling entails (Saltelli et al. 2015; Saltelli and Giampietro 2017).5

Others have highlighted the total inaccuracy of these for comparing the possible
damage (i.e. climate change costing) (Stern 2016). There are simply too many
processes involved here that we do not have an adequate understanding of, and
as such, models of this kind ought not to be used for justifying policy decisions
(Saltelli et al. 2015), and this is likely to stand regardless of how super our ‘super
computers’ get. The modeller pitfall that arises here is ignoring or hiding the
uncertainties in their models, while for the policy maker, it is allowing yourself
to believe that we can quantify everything, including the uncertainty—which often
we can’t (Saltelli et al. 2015)—or failing to check that levels of uncertainty have
been over- or underestimated. Good science should be very cautious about giving
the impression that its outcomes are more accurate than they merit, unfortunately,
when scientists get involved in the policy process, there is a temptation to capitalise
on their scientific status and use numbers or numerical representation to make their
conclusions seem more certain and dramatic.

Saltelli and Funtowicz (2014) point out that a good indication that something
may be suspicious about a model is if the information or numbers it offers up are

5However, model-based explanations of why climate change has been happening are well founded.
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too precise—something that provides the accuracy this implies just is not in line
with what is usually possible with science.

Furthermore, engaging in this type of speculation has societal implications and
throws up pitfalls for society, who may have little bearing on the actual policy
process, by providing fuel for sceptics. Saltelli et al. (2015) show that introducing
models into debates in relation to climate change may have done more harm than
good, with the authors stating that society is potentially in danger of endless debates
over uncertainties and competing arguments. The authors further highlight another,
just as serious, issue—with excessive confidence in our ability to model the future,
we may well commit to policies that reduce, rather than expand, available options
and thus our ability to cope with what comes in the future.

29.4.6 A False Sense of Security

This point is interrelated with many of the previous points. As we have pointed
out, just because models look very impressive or authoritative or provide us with a
graspable number, they may not always actually be that impressive or authoritative,
and the number may well be just as useful as one that was written down randomly
on a sheet of paper. While at face value they might be quite enticing, they can
lure us into a false sense of security and actually prevent us from doing anything
useful, safe in the illusion that we can predict and hence manage the changes that
are predicted. History has taught us that such an approach does not necessarily end
well. See examples.

Having a tool that can provide us with some kind of forecasts, there is the risk of
relying on this, as a mechanism through which to avoid responsibility for perhaps
the worst-case scenario or the unknown scenario. In this sense, we tend to focus on
the best-case/most tolerable scenario and use a model to justify this restricted focus,
rather than consider the full range of possibilities. For example, is it reasonable to
assume that we can continue on our current growth trajectory while solving the
ecological crises we are facing and the increasingly social facets of each of these
and stay within the best-case scenario limit of, say, climate change?

29.4.7 Not More Facts but Values!

As much of our discussion has indicated, there are just some things that a model
cannot do or compensate for. Models cannot provide us with or replace a moral or
an ethical vision. They are unlikely, on their own, to provide us with a clear answer
to the some of the hardest questions that the policy making process busies itself
with, or with avoiding.

For example, a model may (somewhat) adequately capture some economic
numbers, but it may not be able to capture what is important to real people. These
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personal values may be hard to capture or measure and so are not easily quantified.
Examples of this may be cultural attachments to a place, which we might only garner
through qualitative judgements. It is also unclear as to whether a model can really
give a voice to or include those that they seek to represent adequately—regardless of
how participatory the approach employed has been. In this sense, there are always
going to be qualitative judgements to be made.

There is much scholarship based on looking at ‘what could be’, rather than
drawing on models that look at ‘what might be’ based on assumptions about ‘what
is’—and this might be a more useful consultative tool for some issues. While these
models may present us with some alternative course of action in relation to a specific
question, they may not present us with any real alternatives for the future. If we are
interested in articulating what ‘could be’ in a meaningful sense, models may not
prove to be very useful. So although a model may give us some sense of how things
are, from a particular perspective, they might not be so good at telling us about how
things should be or how things could be (for an anthropological discussion related
to this, see Holbraad et al. 2014).

29.5 Two Examples

29.5.1 An Economic Example

The 2008 crash and the recent financial crisis give ample evidence as to how models
can go wrong—the pitfalls modellers can fall into, the pitfalls policy makers can fall
(or jump) into when consulting models, and the severe societal consequences that
this can entail. However, one really worth citing here, even though it has been widely
cited elsewhere (e.g. Saltelli et al. 2015; Saltelli and Giampietro 2017; Saltelli
and Funtowicz 2014), is the Reinhart and Rogoff case. This case is particularly
illustrative of the far-reaching and long-term consequences for the day-to-day lives
of people potentially entailed when what turns out to be a seriously flawed model is
used to justify particular policies.

This case exemplifies what can go wrong—from dodgy assumptions and basic
coding errors in the construction phase to the uptake (of flawed results) and
implementation (along with institutionalisation) of very prescriptive policies in the
use phase, that once unleashed resulted in really devastating societal outcomes. This
example is particularly pertinent as it shows both the short-term and longer-term
implications, many of which continue to reverberate in the lives of ordinary people
today. It is at least partly imbricated in the current political climate, not only in
Europe but on the other side of the Atlantic as well.

In 2010 Reinhart and Rogoff, two Harvard economists, published a study based
on a model, that would provide the impetus for the implementation of severe
austerity measures in many countries during the economic crisis. Their paper
‘Growth in a Time of Debt’ was widely publicised and actively drawn on by policy
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makers. It argued that high debt had a negative impact on growth, and once this
passed a threshold of 90% this would, potentially, become dangerous and actually
impede growth (Cassidy 2013; Rogoff and Reinhart 2010; Saltelli and Funtowicz
2014; Saltelli et al. 2015; Saltelli and Giampietro 2017).

This was taken up by debt-facing policy makers on both sides of the Atlantic, and
subsequently used to justify huge cuts in government spending and the implemen-
tation of austerity measures and packages in some countries, particularly across the
EU (Cassidy 2013). A 2013 report by Oxfam highlights the shift towards austerity
that occurred in 2010, which marked a turn from earlier more interventionist
approaches to the crisis. In the UK, for example, prior to 2010, the government
had taken the track of implementing a stimulus package, which included increased
spending on social housing and education. This contrasted with post 2010 spending
cuts aimed at reducing the deficit. Cassidy (2013) details references to the Reinhart
and Rogoff paper being made by George Osborne in the House of Commons.
Similar changes to public spending were implemented across the Eurozone and
elsewhere.

Three years later, the work of Reinhart and Rogoff was replicated, and it turned
out to contain some basic errors (Cassidy 2013). The authors of this replication,
Herndon et al. (2013) found: ‘that selective exclusion of available data, coding
errors and inappropriate weighting of summary statistics’ had led to serious
miscalculations and inaccurate representations with respect to the relationship
between public debt and growth. Unfortunately, this came too late for the people
who were subjected (and continue to be subjected) to the policies the original paper
had justified (Cassidy 2013; Saltelli and Funtowicz 2014; Saltelli et al. 2015; Saltelli
and Giampietro 2017). Indeed, many countries within the EU, under a great deal of
‘encouragement’ from the EU, have now institutionalised austerity via changes to
legal mechanisms that mandate a balanced budget (Bruff 2016).

Austerity policies have had some wide-ranging effects. A 2013 Oxfam report
(Cavero and Poinasamy 2013) documented the implications of the austerity pro-
grammes that have been implemented across Europe, arguing that with inequality
and poverty on the rise, Europe is facing a lost decade, with an additional 15–25
million people facing the prospect of living in poverty by 2025 if austerity measures
continue. Indeed, decreased provision of public services, regressive taxation poli-
cies, rising inequality, persisting unemployment (in particular youth unemployment
in some countries), increased food insecurity (as seen the widespread popping up
of food banks), health implications, lower income, debt burdens, and widespread
discontent is evident in many countries (Bruff 2016). Perhaps some of the worst
of these effects have been felt within the ‘bail out’ countries like Greece, but they
have certainly not been restricted to these countries. These effects have been felt
and continue to be felt at the individual, household, societal, and wider political
level, even within those countries now drawn as ‘good examples’ of austerity, such
as Ireland (Bruff 2016). While there are obviously other things at play here (and we
cannot just blame the model), the model certainly is in some way culpable for how
this has played out. In this sense, this story is not intended to prove that the opposite
policies would have turned out differently. We also do not know that the politicians
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involved would not have pursued the same policies anyway. What it does show is
how sloppy modelling can be used to justify the policies that politicians choose,
giving these more credibility than they might otherwise have, and help to insulate
them against criticism and debate and thus to institutionalise the choices.

29.5.2 A Socioecological Example

Bad models are, of course, not only confined to the world of economics and finance
(although at times it may seem that way). The second example we draw on is
one from fisheries management, with respect to the collapse of the Newfoundland
cod. This example, again, gives us a sense of many of the issues and how they
overlap. It also serves to illuminate how models can serve to override other sources
of knowledge.

The story of fisheries and their often lamented status is of course a straight-
forward one—overfishing or ‘too many fishermen catching too much fish’. This
narrative, while often cited, is problematic, in that it gives us little insight into
the reality of modern fishing and all that goes with it, including the way modern
fisheries are managed. Certainly, it gives us little indication of the historical,
political, economic, and ecological contexts of these endeavours and the relations
that structure them. Within this world of fish, fishermen, fisherwomen, scientists,
and managers (state and increasingly non-state actors), models feature highly—
from population models of fish stocks and bioeconomic models of efficiency to
increasingly complex models of a variety of aspects of fisheries, including agent-
based models.

On the 2 July 1992, Canada’s fisheries minister, John Crosbie, placed a morato-
rium on all cod fishing off the northeast coast of Newfoundland and Labrador. That
day 30,000 people lost their jobs and hundreds of years fishing ended. The cod were
declared commercially extinct (Bavington 2010). What happened?

Much work has been done in this area, and many predictable answers have
been put forth. A lot of these tell a simple story of overfishing, environmental
conditions, and poor management. However, a number of authors (Bavington 2010;
Finlayson 1994) have looked at the role of fisheries science in this story, arguing
it and its models played a pivotal role in the collapse of the Newfoundland cod
stocks. As the fishery and the fisheries management surrounding it developed, the
management game became one of counting how many fish there were in the sea and
predicting how many fish could be caught (Bavington 2010; Finlayson 1994), which
in turn fed back onto the scientists engaged in making those predictions, leading to
the development of increasingly intricate mathematical models. Partly due to the
traditions in the field and the increasingly complex data they were trying to fit, these
became more and more divorced from reality during this development (Finley 2008,
in Bavington 2015).

Finlayson (1994) details the series of scientific blunders (based on models)
that were made in the years leading up to the moratorium, in spite of repeated



818 L.n. Aodha and B. Edmonds

concerns being raised by inshore fishermen, with respect to the status of the cod.
Despite a number of Commissions and corresponding reports investigating the
status of the cod in the years leading up to the collapse, despite protestations
from the inshore sector they were seeing declining catches, the science depicted
an increasing resource base. Successive failures were made in making adequate
inferences in relation to the overall stock health—for example, the Kirby Report
indicated that any reported decrease in profitability was merely down to cost-price
squeeze. This report led to more development and investment in the fishery driven
by both the state and individuals. Scientists and the fisheries department throughout
much of the 1980s estimated a 15% annual rate of growth in the stock—figures that
were consistently slated by inshore fishermen. Similarly, the subsequent Alverson
Commission was formed to investigate the declines being reported by inshore
fishermen but cited environmental influences on the annual inshore migrations of
the stock. Again such findings were contested by the inshore sector.

It was not until 1989 that this erroneous forecast for fish stocks was corrected.
The fisheries department issued its annual assessment based upon revised mathe-
matical models to generate stock estimates from research and catch data, which
indicated that abundance had been overestimated by as much as a factor of two. The
subsequent Harris Commission found that the fisheries department’s estimates of
stock strength were based upon data, methodologies, and models of such poor or
uncertain quality as to be essentially useless as a rational basis for management or
commercial planning.

The executive summary of the Harris Report (1990, p. 2) states that:

During the next seven years the euphoria that had been engendered by the declaration of the
exclusive economic zone was reinforced by the steady growth of the stock, by continually
improving catches, and by the belief that the FO.I objective was, indeed, being met. In those
circumstances, scientists, lulled by false data signals and, to some extent, overconfident of
the validity of their predictions, failed to recognize the statistical inadequacies in their bulk
biomass model and failed to properly acknowledge and recognize the high risk involved
with state-of-stock advice based on relatively short and unreliable data series. Furthermore,
the Panel is concerned that weaknesses in scientific management and the peer review
process permitted this to happen.

Finlayson (1994, pp. 12–15) argues that social dynamics were certainly at play in
generating some of the stock assessments in this case. In this instance, scientists and
policy makers had become so committed to their description of reality (despite its
wild inaccuracy) and: ‘the idea of a strongly rebuilding Northern cod stock was
so powerful that it can be shown to have been read back into ambiguous data
through analytical models built upon necessary but hypothetical assumptions about
population and ecosystem dynamics. Further, those models required considerable
subjective judgement as to the choice of weighting of the input variables’ (Finlayson
1994, p. 13).
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29.6 Conclusion

There are many pitfalls in both the modelling and policy arenas, and many of
these feedback upon one another. However, each of these arenas has its own
experts and professionals who will (hopefully) be aware of their own kinds of
pitfall. It is perhaps when the policy and modelling world interact that many of
the worst mistakes are made: when the policy actors do not understand the models
or when the modellers do not understand, or assume adequate responsibility for,
the consequences of their modelling. Thus, particular care needs to be taken when
describing the capabilities or reliability of models to non-modellers, and policy
actors need not to delegate their decision making to a complex model that they
do not understand but retain their critical faculties.

It is also worth highlighting that the efficacy of a model is likely to depend on the
question under investigation. Technical questions may not pose such a problem;
however, more complex problems will likely increase the urgency of the points
that have been raised above and are likely to require more information and wider
consideration than simply drawing on a model.

The demarcation line between these two worlds is blurry in more ways than most
of us like to admit, and this is not something new. As Weinberg (1972) pointed out:

The politician, or some other representative of society, is then expected to say whether
the society ought to proceed in one direction or another. The scientist and science provide
the means; the politician and politics decide the ends—this view of science is of course
oversimplified. Ends and means are hardly separable no matter how straight forward the
question. (Weinberg 1972).

However, the interface between scientists/modellers and the policy world is one that
has increasingly come under scrutiny. Given the points that have been made in this
chapter, we suggest the following for:

• Stop using the word predict and stop expecting the word predict. Be very
sceptical about any models that claim to be able to predict more than anything
else.

• Use models to increase the number of alternative futures that might occur, rather
than to reduce the apparent uncertainty.

• Ensure that models are re-evaluated frequently, especially when being used in a
new context.

• Make effort to ensure that the models, the assumptions they are made from, and
the whole policy process are open to scrutiny from all those affected.

• Even when a model is helpful by informing the formulation of a good policy, it
cannot decide the policy. Deciding a policy is, and should remain, a political and
not a technical process.

• Try and ensure that research and models that focus on what is happening now do
not distract from the question of what ‘could be’—the choices we have for the
future.
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The worst-case scenario is: What if these models or the ways they have been
taken up are just plain wrong6? Society has to live with the consequences. Thus, it
is also important to remember we are not using these models in a vacuum; we are
using them in a social, economic, political, and environmental context that involves
complex relations and power hierarchies. Ignoring the context and just focussing on
the technical aspects of modelling may lead to bad outcomes for everyone.

Further Reading

For further information, we suggest you read the following four reports. Some of
these are books, others are articles.

Bavington, D. (2010). Managed annihilation: an unnatural history of the Newfound-
747 land cod collapse. Vancouver: UBC press.

Cavero, T., & Poinasamy, K. (2013). A cautionary tale: The true cost of austerity
and inequality in Europe. Oxfam International.

Cassidy, J. (2013). The Reinhart and Rogoff controversy: A summing up, avail-
able at http://www.newyorker.com/news/john-cassidy/the-reinhart-and-rogoff-
controversy-a-summing-up

Harris, L. (1990). Independent review of the northern cod stock: Executive summary,
and recommendations, available at http://www.dfo-mpo.gc.ca/Library/114277.
pdf

Other useful reading includes the following.

European Commission. (2015). Workshop ‘significant digits responsible use of
quantitative information’, at https://ec.europa.eu/jrc/en/event/conference/use-
quantitative-information

Glynn, P. D. (2015). Integrated Environmental Modelling: human decisions, human
challenges. Geological Society, London, Special Publications, 408(1), 161–182.

Pierce, A. (2008). The Queen asks why no one saw the credit crunch coming,
available at http://www.telegraph.co.uk/news/uknews/theroyalfamily/3386353/
The-Queen-asks-why-no-one-saw-the-credit-crunch-coming.html

Pilkey, O. H., & Pilkey-Jarvis, L. (2007). Useless arithmetic: why environmental
scientists can’t predict the future. Columbia University Press.

Saltelli, A., & Funtowicz, S. (2014). When all models are wrong. Issues in Science
and Technology, 30(2), 79–85.

6Whilst models are a tool rather than a picture (see Chap. 4), some are so useless at what they are
supposed to do, that it makes sense to call them wrong.

http://www.newyorker.com/news/john-cassidy/the-reinhart-and-rogoff-controversy-a-summing-up
http://www.newyorker.com/news/john-cassidy/the-reinhart-and-rogoff-controversy-a-summing-up
http://www.dfo-mpo.gc.ca/Library/114277.pdf
http://www.dfo-mpo.gc.ca/Library/114277.pdf
https://ec.europa.eu/jrc/en/event/conference/use-quantitative-information
https://ec.europa.eu/jrc/en/event/conference/use-quantitative-information
http://www.telegraph.co.uk/news/uknews/theroyalfamily/3386353/The-Queen-asks-why-no-one-saw-the-credit-crunch-coming.html
http://www.telegraph.co.uk/news/uknews/theroyalfamily/3386353/The-Queen-asks-why-no-one-saw-the-credit-crunch-coming.html
http://dx.doi.org/10.1007/978-3-319-66948-9_4
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market/agent design, 697–698
market and agents’ reasoning

agents’ learning, 677–678
artificial market, elements, 675–677
indicators and method, 679
neoclassical economic theory, 675
notion of market, 674

MAS, 673, 674
WEHIA/ESHIA conferences, 673

Agent-based social simulation (ABSS) model
architectures and patterns, 93–95
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structured and formal languages, 89–93
tools and development environments,

95–96
Agent-oriented software engineering (AOSE),

86, 92
Aggregation, 256
Agile approaches, 88–89
Agripolis model, 591
Algebraic specification languages, 91
Allais’ paradox, 387–388
Ambiguity-reducing strategy, 658
Anasazi model, 197
Animal flocking behavior models, 715
Animal social behaviour

dominant relationships, 634
evaluation, 663–664
foraging, 636
future work, 665
group coordination (see Group

coordination)
social and environmental processes

behavioural rules, artificial
chimpanzees, 638

bonobos, 639
ecology and subgroup formation, 637
fission-fusion society, 637
fission-fusion structure, 639
food trees, 637–638
male vs. female chimpanzees, 638–639

social attraction, 635–636
social organisation

distribution of tasks, 661–663
dominance hierarchy, 645
dominance relationships between sexes,

653–657
dominance style (see Egalitarian and

despotic societies)
DomWorld model, 646–647
grooming, 652–653
personality types, 658–661
pheromone composition, 645
predisposition, 645
self-reinforcing effects, 645–646
spatial structure, 647–648
strategies of attack, 657–658
winner-loser effect, 645

Animal societies, 27
Anomie, 742
ANOVA, 234, 239–241, 248
Antagonism, 430–431
Anthropogeneity, 741, 742
AOSE methodologies, see Agent-oriented

software engineering (AOSE)
Aperiodic communicating class, 315

Arifovic "Cobweb" model, 546–548
“Armchair” theorising, 4, 7
Arrow’s paradox, 390–391
Artefacts and errors

appearance, 133–134
detection

computer scientist’s activities, 135–136
modeller’s activities, 135
programmer’s activities, 136

validation and verification, 131–133
Artificial Anasazi simulation model, 783
Artificial intelligence, 263–264
Artificial lab class definition, 111–112
Artificial neural networks

action phase, 513
activation functions, 513–514
attractor neural network, 516–519
back propagation of error, 514–515
bias nodes, 513
input nodes, 513
intermediate nodes, 512–513

Artificial societies, 27
AtollGame experiment, 281–284
Attractor neural network, 516–519
Autonomous computational agents, 332, 337
Axelrod game theory, 18–19
Axelrod’s culture dissemination model, 191,

196, 725–726, 777

B
Backward-looking rationality, 502
Battle of Sexes (game), 372
Bayesian belief networks, 266
Bayesian learning, 519
Belief-desire-intention (BDI) architecture

human decision-making, 94
road traffic network, 710
socialisation research, 433–434

Belief functions theory, see Evidence theory
Belief-Obligation-Intentions-Desire (BOID)

architecture, 31, 433
Bibb Latané’s dynamic social impact theory,

18
Biomas, 593
Biosphere 2, 571
BioWar, 593
Bipartite graph models, 481
Black-Scholes formula, 809
Breeding Pool, 536, 537
Bucket brigade algorithm, 548
Bush-Mosteller stochastic learning model, 510,

515
Bus transportation simulation, 714
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C
Calibration, of neural networks, 144, 146
Case-Based Decision Theory, 395
CATCHSCAPE model, 577, 585
Causality tracking, 221–222
Causation, 335–336
Cederman’s models, 731–732
Cellular automata models, 18, 29, 324, 476,

478, 574, 715
Centripetal instinct, 647–648
CharityWorld, 321
Checking, 73
Classifier Systems, 548–550
Closed communicating class, 314
Club of Rome model, 764–765
Cluster analysis, 212
Cobweb model, 692
Cognitive agents

Burke investigation, 425
Conte and Castelfranchi investigation, 424
contribution, 426
Epstein model, 425
Flentge study, 425
Hales study, 425
implementation, 428
sample of, 425–426
transformation, 427
transmission, 427
Verhagen study, 425

Coherence-seeking, 391–394
constraint satisfaction networks, 394,

398–399
evidence theory, 394

coherent possibilities, 401–402
contradictory possibilities, 401–402
Dempster-Shafer’s combination rule,

402–403
frame of discernment, 399–401
partially coherent/contradictory

possibilities, 401–402
plausibility function, 401

unsupervised neural networks, 394–397
Coherent narratives, see Coherence-seeking
Communicating class, 313–314
Companion modelling approach, 189,

267–268, 573, 789
Compromise power analysis, 235
Computational simulation, 124–125

aspect of cognition, 5
determination of number of runs,

agent-based model, 229–230
AIPE, 245, 246
configurations of parameters, 231–232

emergent properties, study of, 230
hypothesis generation, 230–231
KISS and KIDS model, 232
measurement, 231
realistic situation, analysis of, 231
statistical power analysis, 236–248
testing theory (see Testing theory)

modelling, 24
task, 24

Computational social science, approaches to,
20

Computer model, see Mathematical analysis
and computer simulation

Computer-supported cooperative work
(CSCW) workshop series, 265

CoMSES Net Computational Model Library,
193

Conditional limiting distribution, 321
Conditional occupancy distribution, 321
Confidence intervals, 195
Constraint satisfaction networks (CSNs), 394,

398–399
Constructed ontologies, 156
Consumat model, 29
Context-specific agent-based models, 197, 198
Continuous double auction (CDA), 695, 776
Controlled simulation, 784
Convergence index, 357, 360
CoolWorld, 304–308
Cormas simulation platform, 583
Correlation, 220–221
Covering law approach, 335–336, 339
Crisiscom, 17
Cross-element validation, see Submodel

comparison
Cross-model validation, 189
Crossover Operator, 539
Crowd simulation, 715
CSNs, see Constraint satisfaction networks

(CSNs)
Cultural evolution, 505

D
Data-integration models, 786–788
Decision-making

coherence-seeking, 391–394
constraint satisfaction networks, 394,

398–399
evidence theory, 394, 399–403
unsupervised neural networks, 394–397

garbage can model, 237
ODD protocol, 361
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utility maximization and game theory (see
Utility maximization and game
theory)

Decision rules, 29
Declarative programs, 356, 357
Decomposition theorem, 314
Deductive-nomological (D-N) approach,

335–336, 339
Degree distribution, 479
Dempster-Shafer’s combination rule, 402–403
Description

definition, 50–51
mitigating measures, 52
motivation, 50
risks, 51–52

Description logics, 153–154
Discrete event system specification (DEVS),

91–92
Distributed artificial intelligence, 332
Distributed computer systems, 25

agent-orientated design approaches, 621
design patterns, 627–628
group selection-based P2P systems, 624,

625
massive and open, 615
power, leadership and hierarchy, 629–630
reciprocity-based BitTorrent P2P system

BitTorrent protocol structures, 622, 623
PD game, 621–622
TFT strategy, 621–623

segregation-based P2P systems
hub-based peer-to-peer topology,

626–627
macro-structure, segregated clusters,

625
Schelling segregation model, 625–626

social simulation, 620–621
social vs. biological inspiration (see Human

social systems (HSS))
techno-social systems, 628
traditional design approaches, 616–617
wired and wireless broadband connections,

615
Distributed memory, 397
Distributional equivalence, 194
Docking, see Model alignment
Documentation, 74
Dollar auction (game), 375–376
Domain-specific languages (DSLs), 88
DomWorld model

aggression intensity, 647
Ambiguity-Reducing strategy, 658
DoDom interactions, 646

dominance relationships between sexes
female dominance over males, 654–656
intra- and inter-sexual interactions, 656
percentage of males, 657
self-reinforcing effects, 653
sexual attraction, 655–656

egalitarian and despotic societies, 649–651
grooming behaviour, 652–653
grouping and competing, 646
MaxView, 646
NearView, 646
personality styles, 658–659
PerSpace, 646
rank reversals, 647
spatial structure, 648
StepDom, 647
subordinates, 652

Double auctions
artificial life approach, 696
CDA, 695
convergence speed, 697
convergence to equilibrium price, 695
global equilibrium, 696
stress time, 696
zero-intelligence agents, 696

Durkheim’s approach, 430–431
Dynamic microsimulation, 28, 30
Dynamic parameter encoding, 540–541
Dynamic route assignment combining user

learning and microsimulation
(DRACULA) simulation model, 710

E
EABSS framework, see Engineering agent

based social simulation (EABSS)
framework

easyABM, 86–87
ECA, see Empirically calibrated agent-based

models (ECA)
Ecological systems, 27
Economic systems, 27
Education

malaria healthcare, 594
simulation, 26

Egalitarian and despotic societies
aggression intensity, 649, 650
definition, 648
degrees of competition, 651–652
macaques, 649
pronounced rank-development, 649
sexes, 650–651
spatial-social structuring, 649, 650
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Eigenvector analyses, 212
El Farol Bar Problem, see Minority game
Ellsberg’s paradox, 385–387
Emergence, 207
Emergency transportation, 711
Emergent phenomena, 333
Empirically calibrated agent-based models

(ECA), 337–338
Endorsements, 750–753, 756
Engineering agent based social simulation

(EABSS) framework
agent and object templates, 104–109
artificial lab class definition, 111–112
interactions, 109–111
key activities, 100, 102–103
knowledge gathering, 98–99
objectives, 99–100
overview, 97
scope, 100–102
stereotypes, 103–104
use case diagram, 102, 103

Entertainment, in simulation, 26
Entropy statistics, 209–210
Environment model, 31
Epstein and Axtell’s Sugarscape model, 191
Equation-based simulation, 24
Errors and artefacts

appearance, 133–134
detection

computer scientist’s activities, 135–136
modeller’s activities, 135
programmer’s activities, 136

validation and verification, 131–133
Event-driven simulator, 33
Event validity, 186
Evidence theory, 394

coherent possibilities, 401–402
contradictory possibilities, 401–402
Dempster-Shafer’s combination rule,

402–403
frame of discernment, 399–401
partially coherent/contradictory

possibilities, 401–402
plausibility function, 401

Evolutionary games
evolutionarily stable strategies, 371
replicator equations, 371
war of attrition, 378

Evolutionary mechanism design, 786
Evolutionary process

Classifier Systems
advantage, 549
bucket brigade algorithm, 548

hard coding, 549–550
Genetic Algorithm

Arifovic "Cobweb" model, 548–550
convergence, 539–540
definition, 532–533
endogenous process, 541–543
Fitness Function, 533, 535–536
Genetic Operators, 533, 537–539
implicitly parallel, 534
initial population, 535
non-local, 534
probabilistic approach, 534
problem representation, 535
Problem Spaces, 534
reproduction process, 536–537
solution representation, 540–541

Genetic Programming
artificial stock market, 550–553
bloating, 545
decision process, 546
Genetic Operators, 545–546
self-awareness and self-modification,

544
S-expressions, 544, 545
static environment, 542

genotype and phenotype, 527–528
reproduction and variation, 528
selection process, 528
simple evolutionary game, 529–531
social sciences, 530–532
strict churches, 553–556

Evolutionary stable strategy, 371, 378
Evolution model

crossover, 508
cultural evolution, 505
genetic algorithms, 508
imitation, 505
payoff advantage, 507
sexual selection, 503–504
social and cultural change, 504
stochastic sampling, 508–509

Exogenous events, 31
Experimentation, 221
Explanation

definition, 45–46
mitigating measures, 47
motivation, 45
risks, 47

Exploratory modelling
code/algorithm, 69–70
and consolidation, 68–69
programming, 69

Exponential random graphs, 481
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F
Face validity, 185
Factorial-type designs, 188
FEARLUS model, 574, 582, 782
Feed-forward networks

action phase, 513
back propagation of error, 514–515

Financial markets
asset exchanges, 691
chartists and fundamentalists, 692
cobweb model, 692
Dutch market, 693
Dutch stock exchange, 694
econophysics, 691–692
GA learning, 693
and goods market, 694–695
non-rational traders, 692
rational expectation value, 692
risk-reducing strategies, 693
SimStockExchange™, 693

First millennium native American society
model, 766–767

Fisheries management, modelling and policy
pitfalls in, 817–818

Fisher’s approach, 232–233
Fitness Function, 533–536, 542
Fit-to-data validation, 150–152, 158–159
Fixed interior aspiration, 509
Fixed zero aspiration, 509
Fluoridation referendum campaign model, 15
Focal measures (FMs), 194
Formal languages, 89–90
Formal models, 7, 297–298, 300–303, 802, 809
Forward-looking models, 511
Freight transportation simulation, 711–713
Fuchs network, 754–755

G
Game of Chicken, 376–378
Game theoretical models

Axelrod’s classical model, 421, 423
Bicchieri study, 421
Coleman investigation, 421
implementation, 423–424
Macy and Sato examination, 421
power and authority, 728–730
sample of, 421–422
Savarimuthu study, 421, 423
Sen and Airiau model, 421, 423
transmission of norms, 423
Vieth investigation, 421

Game theory, see Utility maximization and
game theory

Garbage can model (GCM)
agents, types of, 237
aim of, 237
ANOVA and OLS regression, 239–244,

247–248
goal of, 237
NetLogo screenshot for, 237–238
reasons for selection, 236–237
structure, types of, 238

Geamas platform, 593
Geller’s model, 734–735
Generalised exchange mechanisms (GEM),

619–620
Generalization, 145–146
Generative archaeology (GA) model, 766–768,

783
Genetic Algorithm (GA)

Arifovic "Cobweb" model, 548–550
convergence, 539–540
definition, 532–533
developments

endogenous process, 541–543
solution representation, 540–541

Fitness Function, 533, 535–536
Genetic Operators, 533, 537–539
implicitly parallel, 534
initial population, 535
non-local, 534
probabilistic approach, 534
problem representation, 535
Problem Spaces, 534
reproduction process, 536–537

Genetic Operators, 533, 537–539
Genetic Programming (GP)

artificial stock market, 550–553
bloating, 545
decision process, 546
Genetic Operators, 545–546
self-awareness and self-modification, 544
S-expressions, 544, 545
static environment, 542

GENITOR algorithm, 537
Geographical analysis machine (GAM), 211
Geographically weighted regression (GWR),

210
Gibbs process, 490–491
Gode and Sunder’s simulation, 776
GP, see Genetic Programming (GP)
Graph analysis, 158
Graphical methods, 195
GroofiWorld, 653
Group coordination

and foraging
army ants, 639–640
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Group coordination (cont.)
artificial ants, 640
food distributions, 640
natural selection shapes, 641
pheromonal marking, 639
swarm types, 640
trail pheromones, 639, 641

in homogeneous environment
agitation waves, 644–645
behavioural areas, 641
blind angle, 642, 644
coordination of schools, 642
flock turning, 643, 644
flying behaviour, 644
patterns of evasion by schooling prey,

644–645
phase transition, 641
protection against predators, 642–643
segregation, 642
StarDisplay, 644
swarming behaviour, 641

Group decision support, 254, 264
Group model building, 261–262
Group selection-based P2P systems, 624, 625
GroupWorld, 651

H
Hadley Centre climate model (HadAM3),

789
Hard coding, 550
Hard-limit functions, 513
Hawk-Dove game, 377–378
Hebbian learning, 517
High-variance models, 147
Hirshleifer’s econometric model, 730–731
Historical validity, 185–186
Holland-type algorithm, 536
Hopfield model, 517
HSS, see Human social systems (HSS)
Hub-based peer-to-peer topology, 626–627
Human-centred systems, 26–27
Human simulation, 23
Human social relationships, 634
Human social systems (HSS)

economic theory, 620
GEM, 619–620
non-Darwinian evolution, 617–618
partial views and controversy, 618–619
rapid change, 617
stable under internal conflict, 618
trust and socially beneficial norms, 619

Human societies, simulation of, 26
abstract goals

assumptions, exploration of, 780–781
counterfactual possibilities, 781
ideas, 776–777
model properties, 778–779
process possibility, 777–778

Club of Rome model, 764–765
concrete goals

consistency establishment, 783–784
data-integration models, 786–788
hypotheses and questions, 788
influence assessment, 784–785
policy-making, 785–786
realism, 781–782
scenarios, 788–789
social engineering, 786
stakeholders, 789–790
unobserved cases, 782–783

evidence vs. ideas, 771
first millennium native American society

model, 766–767
hypothesis testing, 774–775
inputs

documented theoretical assumptions,
792

evidence-based assumptions, 791
explored conditions, 792–793
indirectly inferred settings, 791
randomness, 793–794
undocumented assumptions, 794

knowledge gaps, 768
outputs and significance, 794–795
predicting goals, 774
social context, 772–773
social phenomena

abstraction, 767
difficulties, 768–770
model understanding, 767–768
prediction vs. understanding, 768
replicability, 767
representation vs. intervention, 771–772

I
IBM, see Individual-based models (IBM)
Identity theories, 431–432
Illustration

definition, 53–54
mitigating measures, 54
motivation, 52–53
risks, 54

IMAGES innovation dynamics model,
473–474

Individual-based models (IBM), 28–30, 213,
597
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Individual-based simulation
definition, 24
implementation, 33
modelling

environment model, 31
individual model, 28–30
interaction model, 30
modelling decisions, 32

purposes, 25–26
Individual interviews, 263–264
Individual pattern recognition

phase-space maps, 217–218
RPs, 218–219
understanding, 213
visualisation methods, 214–217

Informal models
consolidation approach

checking, 73
documentation, 74
output collection, 73–74
simplification, 73

exploration
code/algorithm, 69–70
and consolidation, 68–69
programming, 69

vs. formal models, 802
model development

aiding systems, 74, 76–77
general systems, 75
intermediate systems, 75
specific modelling, 75

model understanding
case study, 72
controlling, 71–72
visualisation, 72–73

Information flow (IF), 158
Integrated development environment (IDE),

95–96
Integrated renewable resource management,

572
Intelligent agents, 332
Intelligent transport systems (ITS), 708
Interaction model, 30–31
Intermodal transportation simulation, 711, 712
International Microsimulation Association, 14
Internet systems, 452
Interoperability, 156–158, 452
Inversion Operator, 538
IODA methodology, 87
Irreducible time-homogeneous Markov chain,

316–318
Ising model, 379–381
Iterated prisoner’s dilemma (IPD), 338

J
Jim Doran’s model, 781
Joint application design process, 265

K
Keep it Simple Stupid (KISS) approach, 89,

196, 198, 232, 782
KIDS model, 89, 198, 232
KNeTS method, 264
Knowledge capture, 205
Knowledge elicitation techniques, 282
Knowledge engineering, 263–264
Knowledge gathering, 98–99
Knowledge, goals and plan (KGP) agents, 434
Kohonen networks, 396
Kuhn’s “theoretical spectacles,” 63
Kuznar and Frederick’s model, 733–734

L
LEADSTO language, 90
Learning

artificial neural networks
action phase, 513
activation functions, 513–514
attractor neural network, 516–519
back propagation of error, 514–515
bias nodes, 513
input nodes, 513
intermediate nodes, 512–513

backward-looking rationality, 502
belief learning, 519–520
Bush-Mosteller stochastic model, 510
consequentialist models, 502
fixed interior aspiration, 509
fixed zero aspiration, 509
forward-looking rationality, 502
law of effect, 505, 509
melioration, 506–507
moving average aspiration, 509
probabilistic decision-making, 509
propinquity, 506
reward and punishment, 506
Roth-Erev matching model, 510–511

Liar Identification for Agent Reputation
(LIAR), 452

Life simulations, 26
Limiting distribution, 316–317
Limits to growth (LTG) model, 764–765, 767,

768
LISP programming language, 544
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Localized memories, 397
Logic-based languages, 90
LTG model, see Limits to growth (LTG) model
LUCITA model, 582

M
MABS, see Multi-agent-based simulations

(MABS)
Machine learning, 158
MadKit platform, 594
MAIA model, 87
Management flight simulators/microworlds,

262–263
Man and Biosphere Programme (MAB), 571
Market design, 786
Markov chain analysis, 319–322
Mathematical analysis and computer

simulation, 293–295, 324–325
characterisation of dynamics of model,

319–322
formal model, 297–298, 300–303
input–output function, 295–296
mathematical complexity, 323–324
mathematical tractability, simplifications,

322–323
probability distribution, 303

CoolWorld, 304–308
stochastic process, 298–300

time-homogeneous Markov chain
accessibility, 313
closed communicating class, 314
communicating class, 313–314
communication, 313
decomposition theorem, 314
irreducibility, 314
limiting behaviour of, 315–318
periodic and aperiodic communicating

classes, 315
simple one-dimensional randomwalk,

310–311
state spaces, 308–309
transient and recurrent states, 314
transient distribution, 312
transition probabilities, 309–310

Mathematical tractability, 322–323
Mechanism approach, 336–337, 339–340
Mental model, 122, 263, 282, 802
Mental models, 122, 263, 282
Mental state, 28
Metamodel, 188
Methodological individualism, 340–341, 344,

418

Microsimulation models, 14–15, 774,
783

Minority game, 381–385
Mistaken/misleading models, 809
Model alignment, 190–191
Modelling assumptions, 66–67
Modelling purposes

brief summary, 57
description, 50–52
explanation, 45–47
illustration, 52–54
policy formulation, 811–812
prediction, 41–45, 65
risk confusions, 54–56
theoretical exposition, 47–50
verification and validation (V&V)

goal, 179, 181–182
methodological conceptions, 180,

182–184
modelling strategies, 195–199
replication and comparison, 189–195
validation techniques, 184–189

Modelling spectacles, 63, 69
Model replication, 189, 190
Model-to-model (M2M) workshops, 191
Monte Carlo random sampling, 188, 793
Moss price setting model, 548–550
Moving average aspiration, 509
Multi-agent-based simulations (MABS)

AtollGame experiment, 282
autonomous computational agents, 332,

337
D-N/covering law approach, 335–336, 339
ECA method, 337–338
emergence, 333, 342–343
explanation, 334
individualism-collectivism debate, 333
iterated prisoner’s dilemma, 338
mechanism approach, 336–337, 339–340
methodological individualism, 340–341,

344
middle range theories, 334
multiple realizations, 341–343
nonreductive individualism, 343
prisoner’s dilemma game, 338
simulation as theory and experiment,

334–335
suite-of-simulation approach, 342

Multi-agent social simulation (MAS),
451–452, 621, 673, 674

Multidimensional scaling methods, 212
Multiple realizations, 341–343
Mutation operator, 322, 539, 540
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N
Narratives, see Coherence-seeking
Nash equilibrium

Battle of Sexes, 372
definition, 371
Game of Chicken, 376–378
mixed strategies, 371
Prisoner’s Dilemma, 374
pure coordination games, 376
pure strategies, 371
stag hunt, 373
Traveller’s Dilemma, 375

Natural systems, 27
NED-2 system, 587
Neo-patrimonialism, 742
NetLogo programs, 356, 363
Neural networks

vs. agent-based models, 142, 147, 153
bias vs. variance, 146–150
calibration, 144, 146
excitatory connection, 143
fit-to-data validation, 150–152
generalization, 145–146
inhibitory connection, 143
ontologies (see Ontologies validation)
structure simplification, 143–144
validation, 145, 146

Neyman–Pearson test, 233–236
Neyman-Scott cluster process, 490–491
NimetPasleFeu experiment, 279–282
Nonreductive individualism (NRI), 343
Null-hypothesis significance testing (NHST),

236
Numerical identity, 194

O
Object constraint language (OCL), 92
Object-oriented simulation models, 91–92, 516
Observed ontologies, 156
Occupancy distribution, 317, 318
Ockham’s razor, 147, 150
ODD protocol, see Overview, design concepts

and details (ODD) protocol
“Off-the-shelf” model of cognition, 6
OLS regression, 242–244, 248
Omitted variable bias, 145
One-factor-at-a-time (OFAT) approach, 188
Online communities, 452
OntoClean, 154
Ontologies validation

agent-based models, 154
fit-to-data, 158–159
formalized representations, 153–154

interoperability, 156–158
knowledge elicitation, 155–156
logical consistency, 154
ontology comparison, 156
populating with instances, 154–155
stakeholder/expert evaluation, 155
subjective choice, 154

OpenABM project, 776
Opinion interaction, 357, 359–360
Organizations, 27
Output collection, 73–74
Oversimplified models, 805–806
Overview, design concepts and details (ODD)

protocol
benefits, 361, 363
criticisms, 362
ecological models, 573, 579
elements, ABM

design concepts, 353–354, 358
entities, state variables, and scales, 353,

356
initialisation, 354, 358
input data, 354, 359
process overview and scheduling, 353,

357
purpose, 353, 355–356
submodels, 354, 359–361

history of, 350
model descriptions, 192, 351–352
NetLogo programs, 363
purpose of, 350–351

P
PALM, see People and landscape model

(PALM)
Panarchy, 572, 599
Paramics, 710
Participatory approaches and social simulation

AtollGame experiment, 281–284
Bayesian belief network processes, 266
cybernetics and system sciences

group model building, 261–262
management flight

simulators/microworlds, 262–
263

fire hazard case study, 279–282
heterogeneity of actors

heterogeneous group involvement, 275,
277

homogenous group involvement, 275,
276

individual involvement, 275, 276
social simulation modelling, 274
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Participatory approaches and social simulation
(cont.)

knowledge engineering, 263–264
level of involvement, 270–271

co-building of model and control, 274
co-building of model and no control,

273–274
consultation and no control, 272
dialogue with modellers and control,

273
dialogue with modellers and no control,

272–273
information and no control, 271–272

model expectations, 277–278
modelling process, stages of, 268–270
model validation, 189
participants and models, relations between,

284–285
participation support

dynamics and uncertainties, 259–260
social learning, 260

quality of simulation model, 255
distribution of control, 257
efficiency, 256
realism, 256
social diversity, 256–257

social sciences
experimental laboratory settings, 266,

267
policy exercises, 267
role-playing games and agent-based

simulations, 267–268
software engineering

co-design workshops, 265–266
CSCW workshop series, 265
hybrid agents, 264–265
joint application design process, 265

suitability of simulation model’s use
knowledge increase, 258
policymaking, 259

Passenger transportation simulation, 713–714
Pattern hunting algorithms, 216
Pattern-oriented modelling, 89
Pattern recognition, 214, 216

global aggregating statistics, 209–210
individual-level data

phase-space maps, 217–218
RPs, 218–219
understanding, 213
visualisation methods, 214–217

input and output data dimensions, 208, 209
model understanding

causality tracking, 221–222
correlation, 220–221

data and model errors, 223
experimentation, 221
explanations finding, 219–220
identifiability problems, 222
model-to-model comparisons, 223–224
parameter space stability, 222–223

multidimensional scaling methods, 212
regional aggregating statistics, 211–212

Pedestrian simulation, 715
People and landscape model (PALM), 582, 782
Periodic communicating class, 315
Periodic time-homogeneous Markov chain,

317–318
Petri nets, 91
Phase-space maps, 217–218
Physical interaction, 30
Physical simulation, 23
Physical state, 28
Plausibility function, 401
Poisson random graph, 479
Policy exercises, 267
Policy formulation and modelling pitfalls

assumptions, 804
checking and testing issues, 807
context specifics, 812
evidence base narrowing, 810–811
evidential support, 808
fisheries management, 817–818
model limitations, underestimation of,

806–807
model purpose, 811–812
model spread, 809
oversimplified models, 805–806
personal values, 814–815
reasonable conditions, 812–813
Reinhart and Rogoff economic case,

815–817
security, 814
theoretical spectacles, 805, 810
uncertainty level, 813–814

Policymaking, 254, 259, 277
Post hoc power analysis, 235
Power and authority models

Afghanistan
actor’s behavior, 748–750
conflict societies, 741–742
endorsements, 750–753, 756
intuitive model, 742, 745, 755
ownership, 745
powerful agents, 747–748
power sources, 745
power structures, 753–755
primary and secondary data sources,
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qawm, 743–746, 755, 756
reputation, 746
weak actor/powerful actor, 748–750

artificial gift-giving society, 727–728
Axelrod’s model, 725–726
Cederman’s models, 731–732
definitions, 722
EDABSS

case studies, 737
declarative implementations, 740–741
emergentism, 757
endorsements, 738–739
homology, 736
if-then structures, 723
social phenomena, 757
stakeholders integration, 737
statistical data, 737
theory, 737–738

game theoretical models, 728–730
Geller’s model, 734–735
Hirshleifer’s econometric model, 730–731
Kuznar and Frederick’s model, 733–734

Prediction
definition, 42–43
mitigating measures, 44–45
motivation, 41–42
risks, 43–44

Predictive validity, 182–183
Preference reversal, 388–390
Priori power analysis, 235
Prisoner’s dilemma (PD) game, 338, 374,

621–622
Probabilistic approach, 534
Probability distribution, 303

CoolWorld, 304–308
stochastic process, 298–300

Procedural rationality, 4–5
Programming languages, 297
Prolog program, 356, 357
Prospect theory, 387–388
Pseudorandom number generators, 298–300
PSI agent, 26, 28
Pure coordination games, 376

R
Rail passenger transportation, 714
Randomwalk, 310–311
Real-world social networks, 784
Reciprocity-based BitTorrent P2P system

BitTorrent protocol structures, 622, 623
PD game, 621–622
TFT strategy, 621–623

Recurrence plots (RPs), 218–219

Recurrent state, 314
ReGreT, 451
Reinforcement learning algorithm, 324
Reinforcement theory, 506–507
Reinhart and Rogoff economic case, 815–817
Relational alignment, 194
Repage, 459–460
Replicator dynamics, 423
Reproduction process, 536–537
Reputation

academic disciplines, 444
gossip, 462–463
long-term results, 463
natural and artificial societies

agent-based social simulation, 448
auction sites, 447–448
corporate reputation, 446
cultural information, 445
economic transactions, 448
e-society, 446–447
gossip, 445–446
indirect reciprocity, 445–446
TripAdvisor, 448

repage, 459–460
Sim-Norm

blind aggression, 457
communication, 458–459
cooperative agents, 458
normative, 458
social order, 457
two-dimensional environment, 457
utilitarian, 458

simulation-based study
MAS application, 451–452
online reputation reporting systems,

449–451
self-interested agents, 448

social cognitive process, 452
beneficiary, 456
evaluator, 455
image, 453–455
memetic agents, 456
symbolic mental representations, 453
targets, 456

SOCRATE, 461–462
Restricted functional perspective, 423
Retrodictive validity, 183–184
Risk sensitive strategy, 658, 659
Road traffic simulations

approaches, 708–709
ATIS and ADAS, evaluation of, 709–710
driving behavior models, 708
intersections, 709
route choice models, 710–711
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Role-playing game (RPG)
human societies model, 790
participatory approaches, 267–268,

279–281

S
Sammon mapping, 212
Scale-free networks

components, 481
events, 482
global collection, 475
hubs, 476
individual links, 476
power-law, 481, 482
pre-existing vertices, 482
preferential attachment, 481–483
real social networks, 483

Schelling’s segregation model, 18, 381,
472–473, 625–626, 778

SCRUM approach, 89
SearchAngle, 655
Segregation-based P2P systems

hub-based peer-to-peer topology, 626–627
macro-structure, segregated clusters, 625
Schelling segregation model, 625–626

Self-star systems, 616–617
Sensitivity analysis, 187
Service Oriented Architecture for Reputation

Interaction (SOARI), 452
S-expressions, 544, 545
Sexual selection, 503–504
Shared knowledge, 254
Sienna programme, 783
Sigmoid deterministic functions, 513–514
Sim-Norm

blind aggression, 457
communication, 458–459
cooperative agents, 458
normative, 458
social order, 457
two-dimensional environment, 457
utilitarian, 458

Simplification, 73
SimPort, 26
SimStockExchange™, 693
Simulmatics, 16, 17
SITSIM model, 18
Slovic’s paradox, 388–390
Smallest effect size of interest (SESOI), 241
Smooth best reply, 519
Soar model, 29, 30, 94, 198
Social engineering, 786
Social identity, 436

Social laws, 336
Social learning, 260
Social networks

agent-based social simulation, 489
breadth-first search, 486–487
cascading processes, 488
centrality, 486
clustering coefficient, 484–485
collection of links, 476
distribute agents, 483–484
dolphins, 474–475
endemic disease model, 487–488
indicators, 484
lattices, 476–477
local redundancy, 485
modelling issues, 475
network resilience, 489
object-oriented approach, 475
proximity ratio, 485–486
random graph model, 478–480
robustness of networks, 488
scale-free networks (see Scale-free

networks)
SIR model, 486, 487
SIS model, 487–488
small-world networks, 480–481, 485

Social norms
BDI, 412
components, 414
deontic language game, 414–415
example, 415–416
internalisation

abstract concepts, 436–437
AI tradition, 429
constraints, 434–435
feedback loop, 429
follow-up question, 432
individual agency, 428
individual agents, 433–434
intra-agent processes, 428–429
normal distribution, 429
obligations, 435–436
social and psychological components,

428
socialisation research, 430–432

simulation experiments
artificial intelligence, 420
causal reconstruction, 419
cognitive agents (see Cognitive agents)
focus of contribution, 419
game theoretic problem description (see

Game theoretical models)
individual agent’s behaviour, 420
tendency, 420
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transformation problem, 419
transmission problem, 419

sociological theory
agent-based models, 419
aggregate product, 418, 419
degree of generality, 417
homo sociologicus, 416
inter-agent processes, 416
internalisation, 418
methodological individualism, 418
normative behaviour regulation, 416
normative integration of society, 418
oversocialised picture, 418
role theory, 416–417
social facts, 417
structural constraints, 416, 419

two-way dynamics, 415
Social science models, 206–207
Social simulation

multi-agent simulations (see Multi-agent-
based simulations (MABS))

ODD protocol (see Overview, design
concepts and details (ODD)
protocol)

and participatory approaches (see
Participatory approaches and social
simulation)

Socio-cognitive process, 618
Socio-technical systems, 27
Solution Pool, 536, 537
Solution space exploration, 187–188
Space-filling designs, 188
Spatial distribution

density dependence, 496
depletion and replacement algorithm, 492
explicit and implicit structures

IMAGES innovation dynamics model,
473–474

Schelling’s segregation model, 472–473
fractal analysis, 495
Gibbs process, 490–491
homogeneous points, 491
Neyman-Scott cluster process, 490–491
point patterns

Boids model, 495
estimator, 494–495
global correction method, 494
homogeneous punctual process, 493
local correction method, 494
null hypothesis, 493–494
quadrants, 492–493

Poisson process, 490
population of agents, 495
position of points, 492

social networks (see Social networks)
spatial bounds/limits, 489–490

Spatial explicitness, 31
Spin glass model, see Ising model
Stag hunt (game), 373
Statistical hypothesis tests, 194–195
Statistical modelling, 266
Stochastic processes, 298–300
Strict best reply function, 519
Strict churches, 531–532, 553–556
Structural similarity validation, 184
Subadditive probabilities, 385–387
Subjunctive agent-based models, 195–197
Submodel comparison, 191–192
Substantive rationality, 5
Sugarscape, 19
Supervised neural networks (SNNs), 395, 396
Susceptible/infected/susceptible (SIS) model,

487–488
Susceptible/infective/removed (SIR) epidemic

model, 486, 487
Swarm platform, 582, 583, 594
SylvoPast model, 279
System dynamics, 14
System Dynamics Society, 14

T
Take a previous model and add something

(TAPAS) approach, 781
Taxi domain model, 714
Testing theory

compromise power analysis, 235
Fisher’s approach, 232–233
Neyman–Pearson test, 233–236
NHST, 236
parameters, 232
post hoc power analysis, 235
priori power analysis, 235

Theoretical exposition
definition, 48–49
mitigating measures, 50
motivation, 47–48
risks, 49

Theoretical spectacles, 63, 805, 810
Third symbol system, 17–19
Time-driven simulator, 33
Time-homogeneous Markov chain (THMC)

accessibility, 313
closed communicating class, 314
communicating class, 313–314
communication, 313
decomposition theorem, 314
irreducibility, 314
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Time-homogeneous Markov chain (THMC)
(cont.)

limiting behaviour of, 315–318
periodic and aperiodic communicating

classes, 315
simple one-dimensional randomwalk,

310–311
state spaces, 308–309
transient and recurrent states, 314
transient distribution, 312
transition probabilities, 309–310

Tit-for-tat (TFT) strategy, 18–19, 621–623
Token matching, 158
Traffic system simulation, 707. See also Road

traffic simulations
Training

neural networks, 395, 516
simulation, 26

Transient state, 314
Transition probabilities, 28–29, 309–310
Transportation simulation

crowd simulation, 715
emergency transportation, 711
freight transportation, 711–713
intermodal transportation, 711
passenger transportation, 713–714
pedestrian simulation, 715

Traveller’s Dilemma (game), 375
Turing tests, 185

U
Uncertainty analysis, 187
Unified Modelling Language (UML)

activity diagrams, 108–109
class diagrams, 105, 106
ontology validation, 155
sequence diagrams, 109, 110
state machine diagrams, 105, 106
use case diagrams, 100, 103

Unsupervised neural networks (UNNs),
394–397

Utility maximization and game theory,
369–370, 403

Allais’ paradox and prospect theory,
387–388

alternatives, 370, 371
Arrow’s paradox, 390–391
completeness, 370
dollar auction, 375–376
Ellsberg’s paradox and subadditive

probabilities, 385–387
evolutionary games, 371
gambling, 371
independence, 370

individual decision processes, 371
influence games

Ising model, 379–381
minority game, 381–385

Nash equilibrium
Battle of Sexes, 372
definition, 371
Game of Chicken, 376–378
mixed strategies, 371
Prisoner’s Dilemma, 374
pure coordination games, 376
pure strategies, 371
stag hunt, 373
Traveller’s Dilemma, 375

payoff, 371
Slovic’s paradox/preference reversal,

388–390
transitivity, 370
war of attrition, 378
zero-sum games, 371

V
Validation, of neural networks, 145, 146
Vapnik-Chervonenkis (VC) dimension,

148–150
Vehicle simulations, 26
Verification and validation (V&V)

ABMS, 600
computational model, 176–179
errors and artefacts, 131–133
model purpose

goal, 179, 181–182
methodological conceptions, 180,

182–184
modelling strategies, 195–199
replication and comparison, 189–195
validation techniques, 184–189

role, 174
simulation development process, 175–176

Visualisation
model understanding, 72–73, 186
pattern recognition, 214–216

W
War of attrition (game), 378
Wavelet analysis, 211–212
Web Ontology Language (OWL), 153–154
What You Want is What You Get

(WYWIWYG), 216

Z
Zero-intelligence agents, 696
Zero-sum games, 371
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