Understanding Complex Systems S(B\{I}& er :

Bruce Edmonds
Ruth Meyer Editors

Simulating
Social
Complexity

A Handbook
Second Edition

@ Springer

Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems—
cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures. Models
of such systems can be successfully mapped onto quite diverse “real-life” situations like
the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems,
biological cellular networks, the dynamics of stock markets and of the Internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of opinions in
social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs
and networks, cellular automata, adaptive systems, genetic algorithms and computational
intelligence.

The three major book publication platforms of the Springer Complexity program are the
monograph series “Understanding Complex Systems” focusing on the various applications
of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative
theoretical and methodological foundations, and the “Springer Briefs in Complexity” which
are concise and topical working reports, case studies, surveys, essays and lecture notes of
relevance to the field. In addition to the books in these two core series, the program also
incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA

Péter Erdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of
Sciences, Budapest, Hungary

Karl J Friston, Institute of Cognitive Neuroscience, University College London, London, UK

Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille,
France

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland

Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick,
Coventry, UK

Jiirgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Ronaldo Menezes, Florida Institute of Technology, Computer Science Department, 150 W. University Blvd,
Melbourne, FL 32901, USA

Andrzej Nowak, Department of Psychology, Warsaw University, Poland

Hassan Qudrat-Ullah, School of Administrative Studies, York University, Toronto, ON, Canada

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria

Frank Schweitzer, System Design, ETH Ziirich, Ziirich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Ziirich, Ziirich, Switzerland

Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria

Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition-typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels-and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes
new strategies and paradigms for understanding and realizing applications of
complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology, and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes, and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.

More information about this series at http://www.springer.com/series/5394

http://www.springer.com/series/5394

Bruce Edmonds ¢ Ruth Meyer
Editors

Simulating Social
Complexity

A Handbook

Second Edition

@ Springer

Editors

Bruce Edmonds

Centre for Policy Modelling
Manchester Metropolitan University
Business School

Manchester, UK

Ruth Meyer

Centre for Policy Modelling
Manchester Metropolitan University
Business School

Manchester, UK

ISSN 1860-0832

Understanding Complex Systems
ISBN 978-3-319-66947-2 ISBN 978-3-319-66948-9 (eBook)
https://doi.org/10.1007/978-3-319-66948-9

ISSN 1860-0840 (electronic)

Library of Congress Control Number: 2017957650

Ist edition: © Springer-Verlag Berlin Heidelberg 2013

© Springer International Publishing AG 2017, corrected publication 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-66948-9

Contents

Partl Introduction

1 Introductionooiiiiiii i e
Bruce Edmonds and Ruth Meyer

2 Historical Introduction..................ooi it
Klaus G. Troitzsch

3 Typesof Simulationco
Paul Davidsson and Harko Verhagen

4 Different Modelling Purposesccoooiiiiiiiiiiiiiiii
Bruce Edmonds

PartII Methodology

5 Informal Approaches to Developing Simulation Models...............
Emma Norling, Bruce Edmonds, and Ruth Meyer

6 What Software Engineering Has to Offer to Agent-Based
Social Simulation
Peer-Olaf Siebers and Franziska Kliigl

7 Checking Simulations: Detecting and Avoiding Errors
and Artefacts
José M. Galdn, Luis R. Izquierdo, Segismundo S. Izquierdo,
José I. Santos, Ricardo del Olmo, and Adolfo Lépez-Paredes

8 The Importance of Ontological Structure: Why Validation
by ‘Fit-to-Data’ Is Insufficient ...
Gary Polhill and Doug Salt

9 Verifying and Validating Simulations
Nuno David, Nuno Fachada, and Agostinho C. Rosa

vi Contents

10 Understanding Simulation Resultsoooooiiiiiii
Andrew Evans, Alison Heppenstall, and Mark Birkin

11 How Many Times Should One Run a Computational Simulation? ...
Raffaello Seri and Davide Secchi

12 Participatory Approachescooiiiiiiiiiiiiiiiiiiiiiiiiees
Olivier Barreteau, Pieter Bots, Katherine Daniell, Michel Etienne,
Pascal Perez, Cécile Barnaud, Didier Bazile, Nicolas Becu,
Jean-Christophe Castella, William’s Daré, and Guy Trebuil

13 Combining Mathematical and Simulation Approaches
to Understand the Dynamics of Computer Models
Luis R. Izquierdo, Segismundo S. Izquierdo, José M. Galén,
and José 1. Santos

14 Interpreting and Understanding Simulations: The Philosophy
of Social Simulation
R. Keith Sawyer

15 Documenting Social Simulation Models: The ODD Protocol as
aStandard ...
Volker Grimm, Gary Polhill, and Julia Touza

PartIII Mechanisms

16 Utility, Games and Narratives...................cccoiiiiiiiiniiiiinn....
Guido Fioretti

17 Social Constraintttt i
Martin Neumann

18 Reputation for Complex Societiesccooeiiiiiiiiiiiii
Francesca Giardini, Rosaria Conte, and Mario Paolucci

19 Social Networks and Spatial Distribution................................
Frédéric Amblard and Walter Quattrociocchi

20 Learningooooiiiiiiiiiiiii
Michael W. Macy, Steve Benard, and Andreas Flache

21 Evolutionary Mechanismsoooee.. .
Edmund Chattoe-Brown and Bruce Edmonds

Part IV Applications

22 Agent-Based Modelling and Simulation Applied
to Environmental ManagementcciiiiiL.
Christophe Le Page, Didier Bazile, Nicolas Becu, Pierre Bommel,
Francois Bousquet, Michel Etienne, Raphael Mathevet,
Véronique Souchere, Guy Trébuil, and Jacques Weber

Contents

23

24

25

26

27

28

29

Distributed Computer Systemscoooiiiiiiiiiiiiiiiinnnnn.
David Hales

Simulating Complexity of Animal Social Behaviour
Charlotte Hemelrijk

Agent-Based Simulation as a Useful Tool for the Study
of Markets
Juliette Rouchier

Movement of People and Goods........................coiiiiiii.
Linda Ramstedt, Johanna Tornquist Krasemann, and Paul Davidsson

Modeling Power and Authority: An Emergentist View
from Afghanistan
Armando Geller and Scott Moss

Human Societies: Understanding Observed Social Phenomena.......
Bruce Edmonds, Pablo Lucas, Juliette Rouchier, and Richard Taylor

Some Pitfalls to Beware When Applying Models to Issues
of Policy Relevance ...t
Lia ni Aodha and Bruce Edmonds

Erratumm ... o s

vii

Part I
Introduction

Chapter 1
Introduction

Bruce Edmonds and Ruth Meyer

Abstract This introduces the themes of the book inherent in its title: Simulating
Social Complexity. In a deliberate homage to the work of Herbert Simon, it traces
the roots of these themes back to his work. It then explains the structure of the
handbook with its different parts: introductory, methodological on different kinds of
mechanism and applications. It briefly introduces each chapter within this structure.

Why Read This Chapter?
To understand some of the background and motivation for the handbook and how it
is structured.

1.1 Simulating Social Complexity

As the title indicates, this book is about Simulating Social Complexity. Each of these
words is important:

Simulating—the focus here is on individual- or agent-based computational simu-
lation rather than analytic or natural language approaches (although these can
be involved). In other words, this book deals with computer simulations where
the individual elements of the social system are represented as separate elements
of the simulation model. It does not cover models where the whole population
of interacting individuals is collapsed into a single set of variables. Also, it
does not deal with purely qualitative approaches of discussing and understanding
social phenomena, but just those that try to increase their understanding via the
construction and testing of simulation models.

Social—the elements under study have to be usefully interpretable as interacting
elements of a society. The focus will be on human society but can be extended
to include social animals or artificial agents where such work enhances our

B. Edmonds (P<)) * R. Meyer

Centre for Policy Modelling, Manchester Metropolitan University Business School, All Saints
Campus, Oxford Road, Manchester, M1 6BH, UK

e-mail: bruce @edmonds.name

© Springer International Publishing AG 2017 3
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_1

mailto:bruce@edmonds.name
https://doi.org/10.1007/978-3-319-66948-9_1

4 B. Edmonds and R. Meyer

understanding of human society. Thus, this book does not deal with models of
single individuals or where the target system is dealt with as if it were a single
entity. Rather it is the differing states of the individuals and their interactions that
are the focus here.

Complexity—the phenomena of interest result from the interaction of social actors
in an essential way and are not reducible to considering single actors or a
representative actor and a representative environment. It is this complexity
that (typically) makes analytic approaches infeasible and natural language
approaches inadequate for relating intricate cause and effect. This complexity
is expressed in many different ways, for example, as a macro/micro link, as the
social embedding of actors within their society and as emergence. It is with these
kinds of complexity that a simulation model (of the kind we are focussing on)
helps, since the web of interactions is too intricate and tedious to be reliably
followed by the human mind. The simulation allows emergence to be captured in
a formal model and experimented upon.

Since this area is relatively new, it involves researchers from a wide variety of
backgrounds, including computer scientists, sociologists, anthropologists, geogra-
phers, engineers, physicists, philosophers, biologists and even economists. The field
is starting to mature and this handbook is part of that process. We hope that it will
help to introduce and guide newcomers into the field so as to involve more minds and
effort in this endeavour, as well as inform those who enter it from one perspective
to learn about other sides and techniques.

1.2 The Context: Going Back to Herbert Simon

This handbook is in memory of Herbert Simon, since he initiated several key strands
that can be found in the work described here.

He observed how people behave in a social system instead of following some
existing framework of assumptions as to how they behave (Simon 1947). That is, he
tried to change the emphasis of study from a normative to a descriptive approach—
from how academics think people should be behaving to how people are observed to
behave. Famously he criticised “armchair” theorising, the attempt to make theories
about social phenomena without confronting the theory with observation. There is
still a lot of “armchair” theorising in the field of simulating social complexity, with
a “Cambrian explosion” of simulation models, which are relatively unconstrained
by evidence from social systems. If the development of this work is seen as a sort
of evolutionary process, then the forces of variation are there in abundance but the
forces of selection are weak or non-existent (Edmonds 2010).

Importantly for the simulation of complex social systems, Simon observed
that people act with a procedural rather than substantive rationality—they have a
procedure in the form of a sequence of actions that they tend to use to deal with
tasks and choices rather than try to find the best or ideal sequence of actions (Simon

1 Introduction 5

1947, 1976; Sent 1997). With the advent of computational simulation, it is now
fairly common to represent the cognition of agents in a model with a series of rules
or procedures. This is partly because implementing substantive rationality is often
infeasible due to the computational expense of doing do, but more importantly it
seems to produce results with a greater “surface validity” (i.e. it looks right). It turns
out that adding some adaptive or learning ability to individuals and allowing the
individuals to interact can often lead to effective “solutions” for collective problems
(e.g. the entities in Chap. 23). It is not necessary to postulate complex problem-
solving and planning by individuals for this to occur.

Herbert Simon observed further that people tend to change their procedure only
if it becomes unsatisfactory; they have some criteria of sufficient satisfaction for
judging a procedure, and if the results meet this, they do not usually change what
they do. Later Simon (1956) and others (e.g. Sargent 1993) focused on the contrast
between optimisers and satisficers, since the prevailing idea of decision-making was
that many possible actions are considered and compared (using the expected utility
of the respective outcomes) and the optimal action was the one that was chosen.
Unfortunately it is this later distinction that many remember from Simon, and not the
more important distinction between procedural and substantive rationality. Simon’s
point was that he observed that people use a procedural approach to tasks; the
introduction of satisficing was merely a way of modelling this. However, the idea
of thresholds, which people only respond to a stimulus when it becomes sufficiently
intense, is often credible and is seen in many simulations (for some examples of
this, see Chaps. 24 and 27).

Along with Alan Newell, Simon made a contribution of a different kind to the
modelling of humans. He produced a computational model of problem-solving
in the form of a computer program, which would take complex goals and split
them into sub-goals until the sub-goals were achievable (Newell and Simon 1972).
The importance of this, from the point of view of this book, is that it was a
computational model of an aspect of cognition, rather than one expressed in
numerical and analytic form. Not being restricted to models that can be expressed
in tractable analytic forms allows a much greater range of possibilities for the
representation of human individual and social behaviour. Computational models
of aspects of cognition are now often introduced to capture behaviours that are
difficult to represent in more traditional analytic models. Computational power is
now sufficiently available to enable each represented individual to effectively have
its own computational process, allowing a model to be distributed in a similar
way to that of the social systems we observe. Thus, the move to a distributed and
computational approach to modelling social phenomena can be seen as part of a
move away from abstract models divorced from what they model towards a more
descriptive type of representation.

This shift towards a more straightforward (even “natural”’) approach to modelling
also allows for more evidence to be applied. In the past, anecdotal evidence, in the
form of narrative accounts by those being modelled, was deemed as “unscientific”.
One of the reasons that such evidence was rejected is that it could not be used to

http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_27

6 B. Edmonds and R. Meyer

help specify or evaluate formal models; such narrative evidence could only be used
within the sphere of rich human understanding and not at the level of a precise
model. Computational simulation allows some aspects of individual’s narratives to
be used to specify or check the behaviour of agents in a model, as well as the results
being more readily interpretable by non-experts. This has let such computational
simulations to be used in conjunction with stakeholders in a far more direct way
than was previously possible. Chapter 12 looks at this approach.

Herbert Simon did not himself firmly connect the two broad strands of his
work: the observation of people’s procedures in their social context and their
algorithmic modelling in computer models. This is not very surprising as the
computational power to run distributed Al models (which are essentially what
agent-based simulations are) was not available to him. Indeed these two strands
of his work are somewhat in opposition to each other, the one attempting to
construct a general model of an aspect of cognition (e.g. problem-solving) and
the other identifying quite specific and limited cognitive procedures. I think it
is fair to say that whereas Simon did reject the general economic model of
rationality, he did not lose hope of a general model of cognitive processes, which
he hoped would be achieved starting from good observation of people. There
are still many in the social simulation community who hope for (or assume) the
existence of an “off-the-shelf” model of the individuals’ cognition which could
be plugged into a wider simulation model and get reasonable results. Against any
evidence, it is often simply hoped that the details of the individuals’ cognitive
model will not matter once embedded within a network of interaction. This
is an understandable hope, since having to deal with both individual cognitive
complexity and social complexity makes the job of modelling social complexity
much harder—it is far easier to assume that one or the other does not matter
much. Granovetter (1985) addressed precisely this question arguing against both
the under-socialised model of behaviour (that it is the individual cognition that
matters and the social effects can be ignored) and the over-socialised model
(that it is the society that determines behaviour regardless of the individual
cognition).

Herbert Simon did not have at his disposal the techniques of individual-
and agent-based simulation discussed in this handbook. These allow the formal
modelling of socially complex phenomena without requiring the strong assumptions
necessary to make an equation-based approach (which is the alternative formal
technique) analytically tractable. Without such simulation techniques, modellers
are faced with a dilemma: either to “shoehorn” their model into an analytically
tractable form, which usually requires them to make some drastic simplifications
of what they are representing, or to abandon any direct formal modelling of what
they observe. In the latter case, without agent-based techniques, they then would
have two further choices: to simply not do any formal modelling at all remaining in
the world of natural language or to ignore evidence of the phenomena and instead
model their idea concerning the phenomena. In other words, to produce an abstract
but strictly analogical model—a way of thinking about the phenomena expressed

http://dx.doi.org/10.1007/978-3-319-66948-9_12

1 Introduction 7

as a simulation. This latter kind of simulation does not directly relate to any data
derived from observation but to an idea, which, in turn, relates to what is observed in
a rich, informal manner. Of course there is nothing wrong with analogical thinking,
it is a powerful source of ideas, but such a model is not amenable to scientific
testing.

The introduction of accessible agent-based modelling opens up the world of
social complexity to formal representation in a more natural and direct manner.
Each entity in the target system can be represented by a separate entity (agent or
object) in the model, each interaction between entities as a set of messages between
the corresponding entities in the model. Each entity in the model can be different,
with different behaviours and attributes. The behaviour of the modelled entities can
be realised in terms of readily comprehensible rules rather than equations, rules
that can be directly compared to accounts and evidence of the observed entities’
behaviour. Thus, the mapping between the target system and model is simpler
and more obvious than when all the interactions and behaviour are “packaged
up” into an analytic or statistical model. Formal modelling is freed from its
analytical straight jacket, so that the most appropriate model can be formulated
and explored. It is no longer necessary to distort a model with the introduction of
overly strong assumptions simply in order to obtain analytic tractability. Also, agent-
based modelling does not require high levels of mathematical skill and thus is more
accessible to social scientists. The outcomes of such models can be displayed and
animated in ways that make them more interpretable by experts and stakeholders
(for good and ill).

It is interesting to speculate what Herbert Simon would have done if agent-based
modelling was available to him. It is certainly the case that it brings together two
of the research strands he played a large part in initiating: algorithmic models of
aspects of cognition and complex models that are able to take into account more of
the available evidence. We must assume that he would have recognised and felt at
home with such kinds of model. It is possible that he would not have narrowed his
conception of substantive rationality to that of satisficing if he had other productive
ways of formally representing the processes he observed in the way he observed
them occurring.

Itis certainly true that the battle he fought against “armchair theorising” (working
from a neat set of assumptions that are independent of evidence) is still raging.
Even in this volume, you will find proponents (let us call them the optimists) that
still hope that they can find some shortcut that will allow them to usefully capture
social complexity within abstract and simple models (theory-like models) and those
(the pessimists) that think our models will have to be complex, messy and specific
(descriptive models) if they are going to usefully represent anything we observe
in the social world. However, there is now the possibility of debate, since we can
compare the results and success of the optimistic and pessimistic approaches and
indeed they can learn from each other.

It seems that research into social complexity has reached a cusp, between
the “revolutionary” and “normal” phases described by Kuhn (1962). A period of

8 B. Edmonds and R. Meyer

exploratory growth, opposed to previous orthodoxies, has occurred over the last
15-20 years, where it was sufficient to demonstrate a new kind of model, where
opening up new avenues was more important than establishing or testing ideas
about observed systems. Now attention is increasingly turning to the questions
such as how to productively and usefully simulate social complexity; how to do
it with the greatest possible rigour; how to ensure the strongest possible relation
to the evidence; how to compare different simulations; how to check them for
unintentional errors; and how to use simulation techniques in conjunction with
others (analytic, narrative, statistical, discourse analysis, stakeholder engagement,
data collection, etc.). The field—if it is that—is maturing.

This handbook is intended to help in this process of maturation. It brings together
summaries of the best thinking and practice in this area, from many of the top
researchers. In this way, it aims to help those entering into the field so that they
do not have to reinvent the wheel each time. It will help those already in the field
by providing accessible summaries of current thought. It aims to be a reference
point for best current practice and a standard against which future methodological
advances are judged.

1.3 The Structure of the Handbook

The material in this book is divided into four parts: Introductory, Methodology,
Mechanisms and Applications. We have tried to ensure that each chapter within
these parts covers a clearly delineated set of issues. To aid the reader, each chapter
starts with a very brief section called “Why read this chapter?” that sums up the
reasons you would read it in a couple of sentences. This is followed by an abstract,
which summarises the content of the chapter. Each chapter also ends with a section
of “Further Reading” briefly describing three to eight things that a newcomer might
read next if they are interested. This is separate from the list of references, which
contains all the references mentioned in the chapter.

1.3.1 Introductory Part

The introductory part includes four chapters: this chapter, a historical introduction
(Chap. 2) that reviews the development of social simulation providing some context
for the rest of the book, an overview of the different kinds of simulation (Chap. 3)
and an examination of some of the different goals one might have for a simulation
model (Chap. 4).

http://dx.doi.org/10.1007/978-3-319-66948-9_2
http://dx.doi.org/10.1007/978-3-319-66948-9_3
http://dx.doi.org/10.1007/978-3-319-66948-9_4

1 Introduction 9
1.3.2 Methodology Part

The next part on methodology consists of 11 chapters that aim to guide the
reader through the process of simulating complex social phenomena. It starts with
two approaches to designing and building simulation models: formal, i.e. using
approaches from computer science (Chap. 6), and informal (Chap. 5). The former
is more appropriate where the goals and specification of the proposed simulation
are known and fixed, while the latter is more appropriate in the case where possible
models are being explored, in other words when the simulation model one wants
cannot be specified in advance.

However carefully a modeller designs and constructs such models they are
complex entities, which are difficult to understand completely. The next (Chap. 7)
guides the reader through the ways in which a simulation model can be checked
to ensure that it conforms to the programmer’s intentions for it. Chapter 8 looks at
the importance of ontological structure for agent-based simulations, contrasting this
with approaches that have almost no a priori structure. It also takes one through
some of the ways of formalising and checking this structure.

Once one has a simulation model one is happy with, then one needs to decide
what runs of the model are needed to make one’s point. Chapter 11 tackles this
subject giving firm guidelines to ensure one has the right “power” that enables
the required distinctions to be made, but avoiding showing misleading levels of
significance.

Three chapters in this part are concerned with the results of simulations.
Chapter 9 concentrates on the validation of simulation models: the many ways
in which a model and the possible outputs from simulation runs can be related
to data as a check that it is correct for its purpose. Chapter 10 explores ways of
analysing and visualising simulation results, which is vital if the programmer or a
wider audience are to understand what is happening within complex simulations.
Chapter 14 looks at the broader question of the meaning and import of simulations,
in other words the philosophy of social simulation including what sort of theorising
they imply.

Two other chapters consider separate aspects but ones that will grow in impor-
tance over time. Chapter 12 looks at participatory approaches to simulation, that
is, ways of involving stakeholders more directly in the model specification and/or
development process. This is very different to an approach where the simulation
model is built by expert researchers who judge success by the correspondence with
data sets and can almost become an intervention within a social process rather
than a representation of it. Chapter 13 investigates how analytic approaches can
be combined with simulation approaches, both using analytics to approximate and
understand a simulation model and using simulation to test the assumptions within
an analytic model.

http://dx.doi.org/10.1007/978-3-319-66948-9_6
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://dx.doi.org/10.1007/978-3-319-66948-9_7
http://dx.doi.org/10.1007/978-3-319-66948-9_8
http://dx.doi.org/10.1007/978-3-319-66948-9_11
http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_10
http://dx.doi.org/10.1007/978-3-319-66948-9_14
http://dx.doi.org/10.1007/978-3-319-66948-9_12
http://dx.doi.org/10.1007/978-3-319-66948-9_13

10 B. Edmonds and R. Meyer

All of the approaches described in these three chapters are aided by good,
clear documentation. Chapter 15 describes a way of structuring and performing
such documentation that helps to ensure that all necessary information is included
without being an overly heavy burden.

1.3.3 Mechanisms Part

The third part considers types of social mechanisms that have been used and
explored within simulations. It does not attempt to cover all such approaches, but
concentrates upon those with a richer history of use, where knowing about what has
been done might be important and possibly useful.

Chapter 16 takes a critical look at mechanisms that may be associated with
economics. Although this handbook is not about economic simulation,! mechanisms
from economics are often used within simulations with a broader intent. Unfortu-
nately, this is often done without thinking so that, for example, an agent might be
programmed using a version of economic rationality (i.e. considering options for
actions and rating them as to their predicted utility) just because that is what the
modellers know or assume. However, since economic phenomena are a subset of
social phenomena, this chapter does cover these.

Chapter 17 surveys a very different set of mechanisms, those of laws, conventions
and norms. This is where behaviour is constrained from outside the individual in
some way (although due to some decision to accept the constraint from the inside
to differing degrees). Chapter 18 focuses on trust and reputation mechanisms, how
people might come to judge that a particular person is someone they want to deal
with.

Chapter 19 looks at a broad class of structures within simulations, those that
represent physical space or distribution in some way. This is not a cognitive or social
mechanism in the same sense of the other chapters in this part, but has implications
for the kinds of interactions that can occur and indeed facilitates some kinds of
interaction due to partial isolation of local groups.

The last two chapters in this part examine ways in which groups and individuals
might adapt. Learning and evolution are concepts that are not cleanly separable;
evolution is a kind of learning by the collection of entities that are evolving and
has been used to implement learning within an individual (e.g. regarding the set
of competing strategies an individual has) as well as within a society. However,
Chap. 20 investigates these concepts primarily from the point of view of algorithms
for an individual to learn, while Chap. 21 looks at approaches that explicitly take
a population and apply some selective pressures upon it, along with adding some
sources of variation.

IThere is an extensive handbook on this (Tesfatsion and Judd 2006).

http://dx.doi.org/10.1007/978-3-319-66948-9_15
http://dx.doi.org/10.1007/978-3-319-66948-9_16
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_18
http://dx.doi.org/10.1007/978-3-319-66948-9_19
http://dx.doi.org/10.1007/978-3-319-66948-9_20
http://dx.doi.org/10.1007/978-3-319-66948-9_21

1 Introduction 11
1.3.4 Applications Part

The last part looks at eight areas where the techniques that have been described are
being applied. We chose areas where there has been some history of application and
hence some experience of different approaches. Areas of application that are only
just emerging are not covered here.

Chapter 22 reviews applications to ecological management. This is one of the
oldest and most productive areas where simulation approaches have been applied.
Since it is inevitable that the interaction of society and the environment is complex,
analytic approaches are usually too simplistic and approaches that are better suited
are needed.

Chapter 23 explores how a simulation-based understanding of ICT systems
can enable new kinds of distributed systems to be designed and managed, while
Chap. 24 looks at how simulation can help us understand animal interaction.
Chapter 25 describes agent-based simulations as a useful tool to come to a
complex understanding of how markets actually work (in contrast to their economic
idealisations). Chapter 26 considers systems where people and/or goods are being
moved within space or networks including logistics and supply chains.

The next two chapters look at understanding human societies. Chapter 27 focuses
on a descriptive modelling approach to structures of power and authority, with
particular reference to Afghanistan, whereas Chap. 28 reviews the different ways in
which simulations have been used to understand human societies, briefly describing
examples of each.

The final chapter, Chap. 29, looks at some of the pitfalls that can come about
when formal models (especially the complex simulation models considered here)
can be misused or misunderstood when applied in the policy arena.

1.4 Differences in the Second Edition

This edition of the handbook has a number of new chapters, namely, those on
different modelling purposes (Chap. 4), applying computer science to simulation
development (Chap. 5), ontological structure (Chap. 8), how many runs one should
do (Chap. 11) and the final chapter on pitfalls that can occur when such models are
used to inform policy-making or policy delivery (Chap. 29). Furthermore, some
of the chapters have been significantly revised, including those on verification
and validation (Chap. 9); utility, games and haggling (Chap. 16); social constraint
(Chap. 17); reputation (Chap. 17); animal social behaviour (Chap. 24); and human
societies (Chap. 28).

http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_25
http://dx.doi.org/10.1007/978-3-319-66948-9_26
http://dx.doi.org/10.1007/978-3-319-66948-9_27
http://dx.doi.org/10.1007/978-3-319-66948-9_28
http://dx.doi.org/10.1007/978-3-319-66948-9_29
http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://dx.doi.org/10.1007/978-3-319-66948-9_8
http://dx.doi.org/10.1007/978-3-319-66948-9_11
http://dx.doi.org/10.1007/978-3-319-66948-9_29
http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_16
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_17
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_28

12 B. Edmonds and R. Meyer

References

Edmonds, B. (2010). Bootstrapping knowledge about social phenomena using simulation models.
Journal of Artificial Societies and Social Simulation, 13(1). http://jasss.soc.surrey.ac.uk/13/1/
8.html

Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness.
American Journal of Sociology, 91(3), 481-510.

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago
Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Sargent, T. J. (1993). Bounded rationality in macroeconomics: The Arne Ryde Memorial Lectures.
Oxford: Clarendon Press.

Sent, E.-M. (1997). Sargent versus Simon: Bounded rationality unbound. Cambridge Journal of
Economics, 21, 323-338.

Simon, H. A. (1947). Administrative behavior: A study of decision-making processes in adminis-
trative organizations. New York: The Free Press.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review,
63(2), 129-138.

Simon, H. A. (1976). Administrative behavior (3rd ed.). New York: The Free Press.

Tesfatsion, L., & Judd, K. L. (Eds.). (2006). Handbook of computational economics, volume 2:
Agent-based computational economics, Handbooks in economics (Vol. 13). Amsterdam: North
Holland.

http://jasss.soc.surrey.ac.uk/13/1/8.html

Chapter 2
Historical Introduction

Klaus G. Troitzsch

Abstract This chapter gives an overview of early attempts at modelling social
processes in computer simulations. It discusses the early attempts, its successes
and its shortcomings and tries to identify some of them as forerunners of modern
simulation approaches.

Why Read This Chapter?
To understand the historical context of simulation in the social sciences and thus to
better comprehend the developments and achievements in the field.

2.1 Overview

The chapter is organised as follows: the next section will discuss the early attempts
at simulating social processes, mostly aiming at prediction and numerical simulation
of mathematical models of social processes. Section 3 will then be devoted to the
nonnumerical and early agent-based approaches, while Sect. 4 will give a short
conclusion followed by some hints at further reading.

2.2 The First Two Decades

Simulation in the social sciences is nearly as old as computer simulation at large.
This is partly due to the fact that some of the pioneers of computer science—such
as John von Neumann, one of the founders of game theory—were at the same
time pioneers in the formalisation of social science. And one must add Herbert
A. Simon, one of the pioneers in formalising social science, as another early
adopter of computer-assisted methods of building social theories. Thus the first

K.G. Troitzsch (retired)
Universitdt Koblenzt-Landau, Universititsstrale 1, 56070 Koblenz, Germany
e-mail: klaus.g.troitzsch@bluewin.ch

© Springer International Publishing AG 2017 13
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_2

mailto:klaus.g.troitzsch@bluewin.ch
https://doi.org/10.1007/978-3-319-66948-9_2

14 K.G. Troitzsch

two decades of computational social science saw mathematical models and their
inelegant solutions, microsimulation and the first agent-based models before the
name of this approach was coined.

Among the first problems tackled with the help of computer simulation, there
were already predictions of the future of companies (“industrial dynamics”,
Forrester 1961), cities (“urban dynamics”, Forrester 1969) and the world as a
whole (“world dynamics”, Forrester 1971) in the early 1960s and 1970s by Jay W.
Forrester as well as predictions of the consequences of tax and transfer laws for both
the individual household and the national economy in microanalytical simulation,
an attempt that started as early as in 1956 (Orcutt 1957). Other early attempts at
the prediction of election and referendum campaigns also became known in the
1960s, such as Abelson’s and Bernstein’s simulation analysis of a fluoridation
referendum campaign of the Simulmatics Project directed by de Sola Pool. What all
these early simulations have in common is that they were aimed at predicting social
and economic processes in a quantitative manner and that computer simulation was
seen as a “substitute for mathematical derivations” (Coleman 1964, p. 528), and
although Simon and others had already taught computers to deal with nonnumerical
problems as early as in 1955 (“the Logic Theorist, the first computer program that
solved non-numerical problems by selective search”, Simon 1996, pp. 189-190),
Coleman still believed in 1964 that “the computer cannot solve problems in algebra;
it can only carry out computations when actual numbers are fed in”” (Coleman 1964,
p. 529).

As system dynamics and microanalytic simulation—simulation approaches that
continue to be promoted by learned societies such as the System Dynamics Society,
which celebrated its 50th anniversary with an international conference in Boston in
July 2007, or the International Microsimulation Association, which also celebrated
50 years of microsimulation with an international conference held in Vienna in
August 2007—are not the focus of this handbook, this chapter will only give a short
overview of these two approaches and go into the details of some other early models
that remained more or less isolated and were even more or less forgotten.

System dynamics was developed by Jay W. Forrester in the mid-1950s as a tool to
describe systems which could have modelled with large systems of difference and
differential equations containing functions whose mathematical treatment would
have been difficult or impossible. The general idea behind system dynamics was
and is that a system, without considering its components individually, could be
described in terms of its aggregate variables and their changes over time. The best
known examples of system dynamic models are Forrester’s (1971) and Meadows
et al.’s (1974) world models which were inspired by the Club of Rome and won
public attention in the 1970s when they tried to forecast the world population, the
natural resources, the industrial and agricultural capital and the pollution until the
end of the twenty-first century by describing the annual change of these aggregate
variables as functions their current states and numerous parameters which had some
empirical background.

Microsimulation was first described in papers by Orcutt (1957) who designed a
simulation starting with a (sample of a) given population and simulating the indi-

2 Historical Introduction 15

vidual fate of all the members of this population (sample) with the help of transition
probabilities empirically estimated from official statistics. These transitions could
be transitions between different jobs and educational levels, or they could represent
death or the birth of a child or marriage; these models have mainly been used for
predicting demographic changes and the effects of tax and transfer rules. Usually,
these models do not take into account that the overall changes of the aggregated
variables of the population (or the sample) affect the individual behaviour. Thus in
the sense of Coleman (1990, p. 10), these models neglect the “downward causation”
(i.e. the influence of the aggregate on the individual) and focus only the “upward
causation”, namely, the changes on the macro level which are the result of the
(stochastically simulated) behaviour of the individuals.

The fluoridation referendum campaign model already mentioned above (Abelson
and Bernstein 1963) was one of the first models that can be classified as an
early predecessor of today’s agent-based models. It consisted of a large number of
representatives of people living in a community faced with the option of compulsory
fluoridation if drinking water—an issue often discussed in the 1960s—which they
would have to vote upon at the end of a longish campaign in which the media and
local politicians were publishing arguments in favour of or against this issue. In this
model, 500 individuals are exposed to information spread by several communication
channels (or sources), and additionally, they also exchange information among
themselves. It depends on their simulated communication habits to which extent
they actually receive this information and, moreover, to which extent this leads
to changes in their attitudes towards the referendum issue. Abelson and Bernstein
defined 51 rules of behaviour, 22 of which are concerned with the processing of
the information spread over the communication channels, and 27 rules are related
to the information exchange among the individuals; another 2 determine the final
voting behaviour at the end of the referendum campaign. The rules for processing
the information from the public channels and those for processing the information
exchanged among the individual citizens are quite similar, one of these rules—
A3 and B2, respectively—is, for instance, “Receptivity to [source] s is an inverse
function of the extremity of [individual] i’s attitude position”.

This early model did, of course, not endow the model individuals with an
appropriate repertoire of behaviours, but nevertheless it displays a relatively broad
range of communication possibilities among the model individuals which was
neither aimed at in the classical microanalytical simulation approach nor in the
cellular automata approach adopted in the early 1970s in Thomas Schelling’s
seminal paper on segregation. One of the shortcomings of Abelson’s and Bernstein’s
model in the eyes of its critics was the fact that it “has never been fully tested
empirically” (Alker 1974, p. 146), and another is the fact that one never knows “how
adequate are the static representations of citizen belief systems defined primarily
in terms of assertions held, assertions acceptance predispositions, with associated,
more general, conflict levels?” (Alker 1974, p. 146). And, moreover, the assertions
are modelled numerically (not a problem with the proponents of a mathematical
sociology who would even have used a large system of differential equations to
model the citizens’ attitude changes) where obviously real citizens’ attitudes were

16 K.G. Troitzsch

never mapped on to the set of integer or real numbers. More reasons for the fact that
this approach was given up for decades are given by Nowak et al. (1990, p. 371):
“the ad hoc quality of many of the assumptions of the models, perhaps because
of dissatisfaction with the plausibility of their outcomes despite their dependence
on extensive parameter estimation, or perhaps because they were introduced at
a time when computers were still cumbersome and slow and programming time-
consuming and expensive.”

Simulmatics had mainly the same fate as Abelson’s and Bernstein’s model:
Simulmatics was set up “for the Democratic Party during the 1960 campaign. ...
The immediate goal of the project was to estimate rapidly, during the campaign,
the probable impact upon the public, and upon small strategically important groups
within the public, of different issues which might arise or which might be used by
the candidates” (Ithiel de Pool and Abelson 1961, p. 167). The basic components
of this simulation were voter types, 480 of them, not individual voters, with their
attitudes towards a number of “issue clusters” (48 of them), “political characteristics
on which the voter type would have a distribution”. Voter types were mainly
defined by region, agglomeration structure, income, race, religion, gender and party
affiliation, and from different opinion polls and for different points of time, these
voter types were attributed four numbers per “issue cluster”: the number of voters
in this type and “the percentages pro, anti and undecided or confused on the issue”
(168). The simulation then ran in a way that for each voter type, empirical findings
about cross-pressure (e.g. anti-Catholic voters who had voted for the Democratic
Party in the 1958 congressional elections and were likely to stay at home instead
of voting for the Catholic candidate of the Democrats) were used to readjust the
preferences of the voters, type by type. It is an open question whether one would
call this a simulation in current social simulation communities, but as this approach
in some way resembles the classical static microsimulation, where researchers are
interested in the immediate consequences of new tax or transfer laws with no
immediate feedback, one would classify Simulmatics as a simulation project, though
with as little sophistication as static microsimulation has.

Thus the first two decades of computer simulation in the social sciences were
mainly characterised by two beliefs: that computer simulations were nothing but the
numerical solution of more adequate mathematical models and that they were most
useful for predicting the outcome of social processes whose first few phases had
already been observed. This was also the core of the discussion that was opened
in 1968 by Hayward Alker who analysed, among others, the Abelson-Bernstein
community referendum model and came to the conclusion that this “simulation
cannot be ‘solved’: one must project what will be in the media, what elites will be
doing, and know what publics already believe before even contingent predictions
are made about community decisions. In that sense an open simulation is bad
mathematics even if it is a good social system representation” (Alker 1974, p. 153).

In what Federico et al. (1981, p. 515) called “micro-operational computer
simulations”, they saw the opportunity that “computer modeling [could] contribute
to the comprehension of which parameters and variables are most decisive in
determining systemic behavior” (Federico et al. 1981, p. 519) and “produc[e]
surprising emergent properties” (Federico et al. 1981, p. 518). They predicted that

2 Historical Introduction 17

“the future of the social sciences is contingent upon identifying techniques to
simultaneously link a multitude of relatively trivial conceptual structures, producing
realistic outcomes when no premise alone is powerful enough to determine the state
of the system at any moment” (Federico et al. 1981, p. 518). This is certainly a
prediction which came true in the decades to come, as agent-based modelling in
its various modern approaches is more or less correctly described with Federico’s
and Figliozzi’s words. Nevertheless their “classification of computer simulation
studies of psychosocial or sociotechnical systems” (Federico et al. 1981, p. 515)
with its double dichotomy of operational and theoretical nature and micro and
macro scope is no longer in line with current classifications. Putting, for instance,
Abelson’s and Bernstein’s study (see above for details) in the box of operational
(as contrasted to theoretical) macro simulation studies seems strange as this study
connects microbehaviour to macrostructures and does not only look at the macro
level. The same is true for other studies that fall in this cell of Federico’s and
Figliozzi’s cross table. The reason for this is that what they call “microtheoretical
computer simulation studies” is restricted to behaviour in small groups, thus “micro”
does no refer to the individual level of social systems (as it usually does today) but
to small systems such as Hare’s (1961) five person group.

2.3 Computer Simulation in Its Own Right

The Simulmatics Corporation already mentioned in the previous subsection did not
only work in the context of election campaigning, but later on also as a consulting
agency in other political fields. Crisiscom is another example of an early forerunner
of current simulation models of negotiation and decision-making processes. At the
same time, it is an early example of a simulation not aimed at prediction but at “our
understanding of the process of deterrence by exploring how far the behaviour of
political decision makers in crisis can be explained by psychological mechanisms”
(Ithiel de Pool and Kessler 1965, p. 31). Crisiscom dealt with messages of the type
“actor one is related to actor two”, where the set of relations was restricted to just
two relations: affect and salience. In some way, Crisiscom could also be used as
part of a gaming simulation in which one or more of the actors were represented by
human players, whereas the others were represented by the computer programme—
thus in a way it can also be classified as a predecessor of participatory simulation
(see Chap. 11).

The 1970s and 1980s saw a number of new approaches to simulate abstract
social processes, and most of them now were computer simulations in its own right,
as—in terms of Thomas Ostrom—they used the “third symbol system” (Ostrom
1988, p. 384) directly without using it as a machine to manipulate symbols of the
second symbol system, mathematics, but directly translating their ideas from the
first symbol system, natural language, into higher level programming languages.
Although this was already true for Herbert Simon’s Logic Theorist, the General
Problem Solver and other early artificial intelligence programmes, the direct use of

http://dx.doi.org/10.1007/978-3-319-66948-9_11

18 K.G. Troitzsch

the “third symbol system” in social science proper was not introduced before the
first multilevel models and cellular automata that integrated at least primitive agents
in the sense of software modules with some autonomy.

Cellular automata (Farmer et al. 1984; Ilachinski 2001) are a composition
of finite automata which follow the same rule, are ordered in a (mostly) two-
dimensional grid and interact with (receive input from) their neighbours. The
behavioural rules of the individual cells are quite simple in most cases; they have
only a small number of states among which they switch according to relatively
simple rules, as in the famous game of life (Gardener 1970), where the cells have
only two states, alive and dead, and change their states according to the two simple
rules: if the cell is alive, it remains in this state if it has exactly two or three live cells
among its eight neighbours—otherwise it dies—and if the cell is dead, it bursts into
life if among its eight neighbours there are exactly three live cells. The great variety
of outcomes on the level of the cellular automaton as a whole enthused researchers
in complexity science and lay the headstone for innumerable cellular automata in
one or two dimensions.

One of the first applications of cellular automata to problems of social science
is Thomas Schelling’s (1971) segregation model, demo versions of which are
nowadays part of any distribution of simulation tools used for programming
cellular automata and agent-based models—a model that shows impressively that
segregation and the formation of ghettos is inevitable even if individuals tolerate a
majority of neighbours different from themselves.

Another example is Bibb Latané’s dynamic social impact theory with the imple-
mentation of the SITSIM model (Nowak and Latané 1994). This model, similar
to Schelling’s, also ends up in clustering processes and in the emergence of local
structures in an initially randomly distributed population, but unlike Schelling’s
segregation model (where agents move around the grid of a cellular automaton
until they find themselves in an agreeable neighbourhood), the clustering in SITSIM
comes from the fact that immobile agents change their attitudes according to the
attitudes they find in their neighbourhood and according to the persuasive strength
of their neighbours.

Other cellular automata models dealt with n-person cooperation games and
integrated game theory into complex models of interaction between agents and their
neighbourhoods, and these models, too, usually end up in emergent local structures
(Hegselmann 1996).

And in another computer simulation related to game theory run by Axelrod, it
could be shown that the tit-for-tat strategy in the iterated prisoner’s dilemma was
superior to all other strategies which were represented in a computer tournament
(Axelrod 1984). The prisoner’s dilemma had served game theorists, economists
and social scientists as a prominent model of decision processes under restricted
knowledge. The idea stems from the early 1950s, first written down by Albert
Tucker, and is about “two men, charged with a joint violation of law, are held
separately by the police. Each is told that (1) if one confesses and the other does
not, the former will be given a reward ... and the latter will be fined ... (2) if
both confess, each will be fined ... At the same time, each has good reason to

2 Historical Introduction 19

believe that (3) if neither confesses, both will go clear” (Poundstone 1992, pp. 117-
118). In the non-iterated version, the rational solution is that both confess—but if
they believe they can trust each other, they can both win, as both will go clear if
neither confesses. Axelrod’s question was under which conditions a prisoner in
this dilemma would “cooperate” (with his accomplice, not with the police) and
under which condition they would “defect” (i.e. confess, get a reward and let
the accomplice alone in prison). Super-strategies in this tournament had to define
which strategy—cooperate or defect—each player would choose, given the history
of choices of both players, but not knowing the current decision of the partner.
Then every strategy played the iterated game against every other strategy, with
identical payoff matrices—and the tit-for-tat strategy proved to be superior to 13
other strategies proposed by economists, game theorists, sociologists, psychologists
and mathematicians (and it was the strategy that had the shortest description in
terms of lines of code). Although later on several characteristics of several of
the strategies proposed could be analysed mathematically, the tournament had at
least the advantage of easy understandability of the outcomes—which, by the way
is another advantage of the “third symbol system” over the symbol system of
mathematics.

Cellular automata later on became the environment of even more complex
models of abstract social processes. They serve as a landscape where moving,
autonomous, proactive, goal-directed software agents harvest food and trade with
it. Sugarscape is such a landscape which serves as a laboratory for a “generative
social science” (Epstein and Axtell 1996, p. 19) in which the researcher “grows”
the emergent phenomena typical for real-world societies in a way that includes the
explanation of these phenomena. In this artificial world, software agents find several
types of food which they need for their metabolism, but in different proportions,
which gives them an incentive to barter with a kind of food of which they have
plenty, for another kind of food which they urgently need. This kind of a laboratory
gives an insight under which conditions skewed wealth distributions might occur or
be avoided; with some extensions (Konig et al. 2002), agents can even form teams
led be agents who are responsible to spread the information gained by their followers
among their group.

2.4 Conclusion and Suggested Further Reading

This short guided tour through early simulation models should have shown the
optimism of the early adopters of this method: “If it is possible to reproduce, through
computer simulation, much of the complexity of a whole society going through
processes of change, and to do so rapidly, then the opportunities to put social science
to work are vastly increased” (Ithiel de Pool and Abelson 1961, p. 183). Thirty-five
years later, Epstein and Axtell formulate nearly the same optimism when they list
a number of problems that social sciences have to face—suppressing real-world
agents’ heterogeneity, neglecting nonequilibrium dynamics and being preoccupied

20 K.G. Troitzsch

Table 2.1 Overview of important approaches to computational social science

Approach Used since Characteristics
System dynamics Mid-1950s Only one object with a large number of attributes
Microsimulation Mid-1950s A large number of objects representing individuals

that do not interact, neither with each other nor
with their aggregate, with a small number of
attributes each, plus one aggregating object
Cellular automata Mid-1960s Large number of objects representing individuals
that interact with their neighbours, with a very
restricted behaviour rule, no aggregating object,
thus emergent phenomena have to be visualised
Agent-based models | Early 1990s with | Any number of objects (“agents”) representing
some forerunners | individuals and other entities (groups, different

in the 1960s, kinds of individuals in different roles) that interact
afterwards heavily with each other, with an increasingly rich
discontinued repertoire of changeable behaviour rules

(including the ability to learn from other, to
change their behavioural rules and to react
differently to identical stimuli when the situation
in which they are received are different

with static equilibria—and claim “that the methodology developed [in Sugarscape]
can help to overcome these problems” (Epstein and Axtell 1996, p. 2).

To complete this overview, Table 2.1 lists the approaches touched in this
introductory paper with their main features.

As one easily sees from this table, only the agent-based approach can “cover
all the world” (Brassel et al. 1997), as only this one can include the features of
all the others, and only this one can meet the needs of social science, as social
science cannot content itself with models of individuals which cannot exchange
symbolic messages that have to be interpreted by the recipients before they can
take effect. If social science deals with large numbers of individuals in comparable
situations, then microsimulation, cellular automata, sociophysics models and even
systems dynamics can be a good approximation to what happens in human societies.
But if we deal with small communities, including the local communities Abelson
and Bernstein analysed, then the process of persuasion—which needs at least one
persuasive person and one or more persuadable persons—has to be taken into
account, and this calls for a richer structure of agents than the early approaches
could provide.

Most of the literature suggested for further reading has already been mentioned.
Epstein’s and Axtells’s (1996) work on generating societies gives a broad overview
of early applications of agent-based modelling; Epstein (2006) goes even further
as he defines this approach as the oncoming paradigm in social science. For the
state of the art of agent-based modelling in the social sciences at the onset of this
approach, the proceedings of early workshops and conferences on computational
social science are still worth reading (Gilbert and Doran 1994; Gilbert and Conte
1995; Conte et al. 1997; Troitzsch et al. 1996). And a very wide overview of topics

2 Historical Introduction 21

and approaches can be found in three papers devoted to measuring the “intellectual
structures” of two journals which abound in papers on simulation in the social
sciences at large (Meyer et al. 2009, 2010; Hauke et al. 2015).

References

Abelson, R. P., & Bernstein, A. (1963). A computer simulation of community referendum
controversies. Public Opinion Quarterly, 27, 93—122.

Alker Jr., H. R. (1974). Computer simulations: Inelegant mathematics and worse social science.
International Journal of Mathematical Education in Science and Technology, 5, 139-155.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

Brassel, K. H., Mohring, M., Schumacher, E., & Troitzsch, K. G. (1997). Agents cover all the
world? In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena, Lecture
notes in economics and mathematical systems (Vol. 456, pp. 55-72). Berlin: Springer.

Coleman, J.S. (1964). Introduction to Mathematical Sociology. New York: The Free Press.

Coleman, J. S. (1990). The foundations of social theory. Boston: Harvard University Press.

Conte, R., Hegselmann, R., & Terna, P. (1997). Simulating social phenomena, Lecture notes in
economics and mathematical systems (Vol. 456). Berlin: Springer.

Epstein, J. M. (2006). Generative social science. Studies in agent-based computational modeling.
Princeton: Princeton University Press.

Epstein, J. M., & Axtell, R. (1996). Growing artificial societies. Social science from the bottom up.
Washington, MA/Cambridge, MA: Brookings/MIT Press.

Farmer, D., Toffoli, T., & Wolfram, S. (1984). Cellular automata. In Proceedings of an interdisci-
plinary workshop, Los Alamos, New Mexico, March 7-11, 1983. Amsterdam: North-Holland.

Federico, P., Anthony, P., & Figliozzi, W. (1981). Computer simulation of social systems.
Sociological Methods and Research, 9(4), 513-533.

Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT/Wright Allen.

Forrester, J. W. (1969). Urban dynamics. Cambridge, MA: MIT/Wright Allen.

Forrester, J. W. (1971). World dynamics. Cambridge, MA: MIT/Wright Allen.

Gardener, M. (1970). The game of life. Scientific American, 223(4), 120-123.

Gilbert, N., & Conte, R. (1995). Artificial societies: The computer simulation of social life. London:
UCL Press.

Gilbert, N., & Doran, J. E. (1994). Simulating societies: The computer simulation of social
phenomena. London: UCL Press.

Hare, A. P. (1961). Computer simulation of interaction in small groups. Behavioral Science, 6,
261-265.

Hauke, J., Lorscheid, 1., & Meyer, M. (2015). The recent development of social simulation as
reflected in JASSS from 2008-2014: A citation and co-citation analysis. In /1th conference of
the European social simulation association, Groningen, NL.

Hegselmann, R. (1996). Cellular automata in the social sciences. Perspectives, restrictions, and
artefacts. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), Modelling and simulation
in the social sciences from the philosophy of science point of view (pp. 209-234). Dorrecht:
Kluwer.

Ilachinski, A. (2001). Cellular automata. A discrete universe. Singapore: World Scientific.

Ithiel de Pool, S., & Abelson, R. P. (1961). The simulmatics project. Public Opinion Quarterly, 25,
167-183.

Ithiel de Pool, S., & Kessler, A. (1965). The Kaiser, the Czar, and the Computer: Information
processing in a crisis. The American Behavioral Scientist, 8, 32-38.

22 K.G. Troitzsch

Konig, A., Mohring, M., & Troitzsch, K. G. (2002). Agents, hierarchies and sustainability. In F.
Billari & A. Prskawetz-Fiirnkranz (Eds.), Agent based computational demography (pp. 197—
210). Physica: Berlin.

Meadows, D. L., Behrens, W. W., Meadows, D. H., Naill, R. F,, Randers, J., & Zahn, E. (1974).
Dynamics of growth in a finite world. Cambridge, MA: Wright-Allen.

Meyer, M., Lorscheid, 1., & Troitzsch, K. G. (2009). The development of social simulation as
reflected in the first ten years of JASSS: A citation and co-citation analysis. Journal of Artificial
Societies and Social Simulation 12(4), 12. http://jasss.soc.surrey.ac.uk/12/4/12.html

Meyer, M., Zaggl, M. A., & Carley, K. M. (2010). Measuring CMOT’s intellectual structure and
its development. Computational and Mathematical Organization Theory, 17, 1-34.

Nowak, A., & Latané, B. (1994). Simulating the emergence of social order from individual
behaviour. In N. Gilbert & J. Doran (Eds.), Simulating societies: The computer simulation
of social processes (pp. 63-84). London: University College of London Press.

Nowak, A., Szamrej, J., & Latané, B. (1990). From private attitude to public opinion: A dynamic
theory of social impact. Psychological Review, 97, 362-376.

Orcutt, G. (1957). A new type of socio-economic system. Review of Economics and Statistics, 58,
773-797.

Ostrom, T. M. (1988). Computer simulation: The third symbol system. Journal of Experimental
Social Psychology, 24, 381-392.

Poundstone, W. (1992). Prisoner’s dilemma. John von Neumann, game theory, and the puzzle of
the bomb. Oxford: Oxford University Press.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1,
143-186.

Simon, H. A. (1996). Models of my life. Cambridge, MA: MIT Press.

Troitzsch, K. G., Mueller, U., Gilbert, N., & Doran, J. E. (1996). Social science microsimulation.
Berlin: Springer.

http://jasss.soc.surrey.ac.uk/12/4/12.html

Chapter 3
Types of Simulation

Paul Davidsson and Harko Verhagen

Abstract This looks at various ways that computer simulations can differ not in
terms of their detailed mechanisms but in terms of its broader purpose, structure,
ontology (what is represented), and approach to implementation. It starts with some
different roles of people that may be concerned with a simulation and goes on to look
at some of the different contexts within which a simulation is set (thus implying
its use or purpose). It then looks at the kinds of system that might be simulated.
Shifting to the modelling process, it looks at the role of the individuals within the
simulations, the interactions between individuals, and the environment that they are
embedded within. It then discusses the factors to consider in choosing a kind of
model and some of the approaches to implementing it.

Why Read This Chapter?

To understand the different ways that computer simulation can differ in terms
of (a) purpose, (b) targets for simulation, (c) what is represented, and (d) its
implementation and, subsequently, to be more aware of the choices to be made when
simulating social complexity.

3.1 Introduction

Simulation concerns the imitation of some aspects of the reality (past, present,
or future) for some purpose. We should contrast computer simulation to physical
simulation in which physical objects are substituted for the real thing. These
physical objects are often chosen because they are smaller or cheaper than the actual
object or system. When (some of) the objects in a physical simulation are humans,
we may refer to this as human simulation. However, the focus of this book is on

P. Davidsson (0<)
Malmé University, Malmo, Sweden
e-mail: paul.davidsson@mabh.se

H. Verhagen
Stockholm University, Stockholm, Sweden

© Springer International Publishing AG 2017 23
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_3

mailto:paul.davidsson@mah.se
https://doi.org/10.1007/978-3-319-66948-9_3

24 P. Davidsson and H. Verhagen

computer simulation and, in particular, computer simulation of social complexity,
which concerns the imitation of the behaviour of one or more groups of social
entities and their interaction.

Computer simulation, as any other computer programme, can be seen as a tool,
which could be used professionally or used in the user’s spare time, e.g. when
playing computer games. It is possible to distinguish between different types of
professional users, e.g. scientists who use simulation in the research process to
gain new knowledge, policy-makers who use it for making strategic decisions,
managers (of a system) who use it to make operational decisions, and engineers
who use it when developing systems. We can also differentiate two user situations,
namely, the user as participant in the simulation and the user as observer of the
simulation. Computer games and training settings are examples of the former, where
the user is immerged in the simulation. In the case of using simulation as a tool for,
say, scientific research or decision support, the user is an outside observer of the
simulation. (In other words, we may characterize this difference as that between
interactive simulations and batch simulations.)

The main task of computer simulation is the creation and execution of a formal
model of the behaviour and interaction (of the entities) of the system being
simulated. In scientific research, computer simulation is a research methodology
that can be contrasted to empirically driven research.! As such, simulation belongs
to the same family of research as analytical models. One way of formally modelling
a system is to use a mathematical model and then attempt to find analytical solutions
enabling the prediction of the system’s behaviour from a set of parameters and
initial conditions. Computer simulation, on the other hand, is often used when
simple closed form analytic solutions are not possible. Although there are many
different types of computer simulation, they typically attempt to generate a sample
of representative scenarios for a model in which a complete enumeration of all
possible states would be prohibitive or impossible.

It is possible to make a general distinction between two ways of modelling the
system to be simulated. One is to use mathematical models and is referred to as
equation-based (or system dynamics or macro-level) simulation. In such models,
the set of individuals (the population of the system) is viewed as a structure that can
be characterized by a number of variables. In the other way of modelling, which
is referred to as individual-based (or agent-based or micro-level) simulation, the
specific behaviours of specific individuals are explicitly modelled. In contrast to
equation-based simulation, the structure is viewed as emergent from the interactions
between the individuals, thus exploring the standpoint that complex effects need not
have complex causes. We will here, as well as in the remainder of this book, focus
on individual-based simulation.

I'This distinction is of course not set in stone. For an example of an evidence-driven approach to
computer simulation, see Chap. 27 in this volume (Geller and Moss 2017).

http://dx.doi.org/10.1007/978-3-319-66948-9_27

3 Types of Simulation 25

In this chapter, we will describe the main purposes of computer simulation and
also give an overview of the main issues that should be regarded when developing
computer simulations.

3.2 Purposes of Simulation

We can identify a number of distinct purposes of simulation. In general terms,
simulation is almost always used for analysing (some aspects of) a system, typically
by predicting future states. More specifically, we may say that in the case when the
user is observing the simulation, the purpose is often one of the following:

— Management of a system, where simulation of (parts of) this system is used to
support operational decisions, i.e. which action to take, or strategic decisions, i.e.
which policy to use. The chapters on application areas in this book provide some
examples of this purpose; e.g. Chap. 22 addresses environmental management
(Le Page et al. 2017).

— Design or engineering of a system, where simulation is used as a tool to support
design decisions when developing a system. Chapter 23 illustrates how simu-
lation can help in the design of distributed computer systems (Hales 2017). In
fact, many new technical systems are distributed and involve complex interaction
between humans and machines, which makes individual-based simulation a
suitable approach. The idea is to model the behaviour of the human users, which
is useful in situations where it is too expensive, difficult, inconvenient, tiresome,
or even impossible for real human users to test out a new technical system. An
example of this is the simulation of “intelligent buildings” where software agents
model the behaviour of the people in the building (Davidsson 2000).

— Evaluation and verification, where simulation is used to evaluate a particular
theory, model, hypothesis, or system, or compare two or more of these. Moreover,
simulation can be used to verify whether a theory, model, hypothesis, system, or
software is correct. An example of this purpose is found in Chap. 4 of this book
(Edmonds et al. 2017). More generally, in the context of social theory building,
simulations can be seen as an experimental method or as theories in themselves
(Sawyer 2003). In the former case, simulations are run, e.g. to test the predictions
of theories, whereas in the latter case, the simulations themselves are formal
models of theories. Formalizing the ambiguous, natural language-based theories
of the social sciences helps to find inconsistencies and other problems and thus
contributes to theory building.

— Understanding, where simulation is used to gain deeper knowledge of a certain
domain. In such explorative studies, there is no specific theory, model, etc. to be
verified, but we want to study different phenomena (which may however lead to
theory refinement). Chapter 24 in this volume provides a number of examples
how simulation has helped in understanding animal social behaviour (Hemelrijk
2017).

http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_23
http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_24

26 P. Davidsson and H. Verhagen

The focus of this book is on the user as an observer; the role of the user as
participant is just touched upon in Chap. 12 on participatory approaches (Barreteau
et al. 2017). However, to give a more complete picture, we have identified the
following purposes in the case when the user is participating in the simulation:

— Education, where simulation is used to explain or illustrate a phenomenon and
deepen the user’s theoretical knowledge. An example of this is the recently devel-
oped SimPort,”> a multiplayer serious game where the players have to construct a
port area in the vicinity of Rotterdam. One aim of this simulation-based tool is
to give its users better insight into any unforeseen, undesirable, and unintentional
effects of one or more development strategies and design variations in the
medium term (10-30 years) as a result of exogenous uncertainties (economic,
market, technological) and due to strategic behaviour of the parties involved.
Another example of individual-based simulation for educational purpose is the
PSI agent (Kiinzel and Himmer 2006) that supports acquiring theoretical insights
in the realm of psychological theory. It enables students to explore psychological
processes without ethical problems.

— Training, where simulation is used to improve a person’s practical skills in a
certain domain. The main advantage of using simulation for training purposes
is to be part of a real-world-like situation without real-world consequences.
An early work in this area was a tool to help train police officers to manage
large public gatherings, such as crowds and protest marches (Williams 1993).
Another example of agent-based simulation for training purposes is Steve,
an agent integrated with voice synthesis software and virtual reality software
providing a very realistic training environment. For instance, it has been applied
to maintenance tasks in nuclear power plants (Méndez et al. 2003).

— Entertainment, where simulation is used just to please the user. There are a
large number of popular simulation games available. These belong to genres like
construction and management simulations, where players experience managing
a government, a sports team, a business, or a city; life simulations, where players
manage a life form or ecosystem, such as the well-known “Sims” and its sequels;
vehicle simulations, where players experience driving a vehicle, such as an
airplane or a racing car; and of course different types of war games.

3.3 Types of Systems Simulated

It is possible to categorize the systems being simulated:
1. Human-centred systems, such as:

— Human societies, consisting of a set of persons with individual goals. That is, the
goal of different individuals may be conflicting. In Chap. 28 of this book, more
information on the simulation of human societies is given (Edmonds et al. 2017).

Zhttp://www.simport.eu/

http://dx.doi.org/10.1007/978-3-319-66948-9_12
http://dx.doi.org/10.1007/978-3-319-66948-9_28
http://www.simport.eu

3 Types of Simulation 27

— Organizations, which we here define as structures of persons related to each other
in order to purposefully accomplishing work or some other kind of activity. That
is, the persons of an organization share some of their goals. Further details on the
modelling and simulation of organizations are provided in (Dignum 2013).

— Economic systems, which are organized structures in which actors (individuals,
groups, or enterprises) are trading goods or services on a market. Chapter 25
(Rouchier 2017) takes a closer look at markets.

2. Natural systems, such as:

— Animal societies, which consist of a number of interacting animals, such as an ant
colony or a colony of birds. Chapter 24 (Hemelrijk 2017) is devoted to simulation
of animal societies.

— Ecological systems, in which animals and/or plants are living and evolving in a
relationship to each other and in dependence of the environment (even if humans
also are part of the ecological system, they are often not part of these simulation
models). In Chap. 22 (Le Page et al. 2017) more details on the simulation of
ecological systems are discussed.

3. Socio-technical systems, which are hybrid systems consisting of both living
entities (in most cases humans) and technical artefacts interacting with each
other. Examples of this type of system are transportation and traffic systems
concerning the movement of people or goods in a transportation infrastructure
such as a road network. Chapter 26 (Ramstedt et al. 2017) provides a review of
simulation studies in these areas.

4. Artificial societies, which consist of a set of software and/or hardware entities, i.e.
computer programmes and/or robots, with individual goals. One type of artificial
societies, namely, distributed computer systems, is treated in Chap. 23 (Hales
2017).

In addition, there are systems that are interesting to simulate using a micro-
level approach but that we do not regard as social systems and are therefore not
treated in this book. One class of such systems are physiological systems, which
consist of functional organs integrated and co-operating in a living organism, e.g.
subsystems of the human body. Physical systems, which are collections of passive
entities following only physical laws, constitute another type of nonsocial systems.

3.4 Modelling

Let us now focus on how to model the system to be simulated. This depends on
the type of system and the purpose of the simulation study. An individual- or
agent-based model of a system consists of a set of entities and an environment
in which the entities are situated. The entities are either individuals (agents) that
have some decision-making capabilities or objects (resources) that have no agency
and are purely physical. There are a number of characteristics that can be used to

http://dx.doi.org/10.1007/978-3-319-66948-9_25
http://dx.doi.org/10.1007/978-3-319-66948-9_24
http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://dx.doi.org/10.1007/978-3-319-66948-9_26
http://dx.doi.org/10.1007/978-3-319-66948-9_23

28 P. Davidsson and H. Verhagen

differentiate between different types of models. We will first look at how individuals
are being modelled, then on the interaction between the individuals, and finally how
the environment is being modelled.

3.4.1 Individuals

A model of an individual can range from being very simple, such a one binary
variable (e.g. alive or dead) that is changed using only a single rule, to being very
complex. The complexity of the model for a given simulation should be determined
by the complexity of the individuals being simulated. Note, however, that very
complex collective behaviour could be achieved from very simple individual
models, if the number is sufficiently large.

We can distinguish between modelling the state of an individual and the
behaviour of the individual, i.e. the decisions and actions it takes. The state of
an individual, in turn, can be divided into the physical and the mental state. The
description of the physical state may include the position of the individual and
features such as age, sex, and health status. The physical state is typically modelled
as a feature vector, i.e. a list of attribute/value pairs. However, this is not always the
case as in some domain the physical state of individual is not modelled at all. An
example is the PSI agent mentioned earlier that was used to give students theoretical
insights in the area of psychological theory.

Whereas the physical state is often simple to model, representing the mental
state is typically much more complex, especially if the individuals modelled are
human beings. A common approach is to model the beliefs, desires, and intentions
of the individual, for instance, by using the BDI model (Bratman 1987; Georgeff
et al. 1998). Such a model may include the social state of the individual, i.e. which
norms it adheres to, which coalitions it belongs to, etc. Although the BDI model
is not based on any experimental evidence of human cognition, it has proven to be
quite useful in many applications. There has also been some work on incorporating
emotions in models of the mental state of individuals (cf. Bazzan and Bordini 2001)
as well as obligations, like the BOID model (Broersen et al. 2001), which extends
the BDI with obligations.

Modelling the behaviours (and decisions) of the individuals can be done in a
variety of ways, from simple probabilities to sophisticated reasoning and planning
mechanisms. As an example of the former, we should mention dynamic micro-
simulation (Gilbert and Troitzsch 2005), which was one of the first ways of
performing individual-based simulation and is still frequently used. The purpose is
to simulate the effect the passing of time has on individuals. Data (feature vectors)
from a random sample from the population is used to initially characterize the
simulated individuals. A set of transition probabilities are then used to describe
how these features will change over a time period, e.g. there is a probability that an
employed person becomes unemployed during a year. The transition probabilities
are applied to the population for each individual in turn and then repeatedly

3 Types of Simulation 29

reapplied for a number of simulated time periods. In traditional micro-simulation,
the behaviour of each individual is regarded as a “black box”. The behaviour is
modelled in terms of probabilities, and no attempt is made to justify these in terms
of individual preferences, decisions, plans, etc. Thus, better results may be gained if
also the cognitive processes of the individuals were simulated.

Opening the black box of individual decision-making can be done in several
ways. A basic and common approach is to use decision rules, for instance, in the
form of a set of situation-action rules: If an individual and/or the environment is
in state X, then the individual will perform action Y. By combining decision rules
and the BDI model quite sophisticated behaviour can be modelled. Other models
of individual cognition used in agent-based social simulation include the use of
Soar, a computer implementation of Allen Newell’s unified theory of cognition
(Newell 1994), which was used in Steve (discussed above). Another unified theory
of individual cognition, for which a computer implementation exists, is ACT-R
(Anderson et al. 2004), which is realized as a production system. A less general
example is the Consumat model (Janssen and Jager 1999), a meta-model combining
several psychological theories on decision-making in a consumer situation. In
addition, nonsymbolic approaches such as neural networks have been used to model
the agents’ decision-making (Massaguer et al. 2000).

As we have seen, the behaviour of individuals could be either deterministic or
stochastic. Also, the basis for the behaviour of the individuals may vary. We can
identify the following categories:

— The state of the individual itself: In most social simulation models, the physical
and/or mental state of an individual plays an important role in determining its
behaviour.

— The state of the environment: The state of the environment surrounding the
individual often influences the behaviour of an individual. Thus, an individual
may act differently in different contexts although its physical and mental state is
the same.

— The state of other individuals: One popular type of simulation model, where the
behaviour of individuals is (solely) based on the state of other individuals, is
those using cellular automata (Schiff 2008). Such a simulation model consists of
a grid of cells representing individuals, each in one of a finite number of states.
Time is discrete and the state of a cell at time ¢ is a function of the states of a finite
number of cells (called its neighbourhood) at time ¢ — /. These neighbours are a
fixed selection of cells relative to the specified cell. Every cell has the same rule
for updating, based on the values in its neighbourhood. Each time the rules are
applied to the whole grid, a new generation is created. In this case, information
about the state of other individuals can be seen as gained through observations.
Another possibility to gain this information is through communication, and in
this case, the individuals do not have to be limited to the neighbours.

— Social states (norms, etc.) as viewed by the agent: For simulation of social
behaviour, the agents need to be equipped with mechanisms for reasoning at
the social level (unless the social level is regarded as emergent from individual

30 P. Davidsson and H. Verhagen

behaviour and decision-making). Several models have been based on theories
from economy, social psychology, sociology, etc. Guye-Vuilleme (2004) pro-
vides an example of this with his agent-based model for simulating human
interaction in a virtual reality environment. The model is based on sociological
concepts such as roles, values, and norms and motivational theories from social
psychology to simulate persons with social identities and relationships.

In most simulation studies, the behaviour of the individuals is static in the sense
that decision rules or reasoning mechanisms do not change during the simulation.
However, human beings and most animals do have an ability to adapt and learn. To
model dynamic behaviour of individuals through learning/adaptation can be done in
many ways. For instance, both ACT-R and Soar have learning built in. Other types
of learning include the internal modelling of individuals (or the environment) where
the models are updated more or less continuously.

Finally, there are some more general aspects to consider when modelling
individuals. One such aspect is whether all agents share the same behaviour or
whether they behave differently, in other words, representation of behaviour is
either individual or uniform. Another general aspect is the number of individuals
modelled, i.e. the size of the model, which may vary from a few individuals to
billions of individuals. Moreover, the population of individuals could be either
static or dynamic. In dynamic populations, changes in the population are modelled,
typically births and deaths.

3.4.2 Interaction Between Individuals

In dynamic micro-simulation, simulated individuals are considered in isolation
without regard to their interaction with others. However, in many situations, the
interaction between individuals is crucial for the behaviour at system level. In
such cases, better results will be achieved if the interaction between individuals
was included in the model. Two important aspects of interaction are (a) who
is interacting with whom, i.e. the interaction topology, and (b) the form of this
interaction.

A basic form of interaction is physical interaction or interaction based on
spatial proximity. As we have seen, this is used in simulations based on cellular
automata, e.g. in the well-known Game of Life (Gardner 1970). The state of an
individual is determined by how many of its neighbours are alive. Inspired by
this, work researchers developed more refined models, often modelling the social
behaviour of groups of animals or artificial creatures. One example is the BOID
model by Reynolds (1987), which simulates coordinated animal motion such as bird
flocks and fish schools in order to study emergent phenomena. In these examples,
the interaction topology is limited to the individuals immediately surrounding an
individual. In other cases, as we will see below, the interaction topology is defined
more generally in terms of a (social) network. Such a network can be either static,

3 Types of Simulation 31

i.e. the topology does not change during a simulation, or dynamic. In these networks,
interaction is typically language-based. An example is the work by Verhagen
(2001), where agents that are part of a group use direct communication between
the group members to form shared group preferences regarding the decisions they
make. Communication is steered by the structure of the social network regardless of
the physical location of the agents within the simulated world. For a more detailed
discussion of the different options to model interaction topologies, see Chap. 19 in
this volume (Amblard and Quattrociocchi 2017).

3.4.3 The Environment

The state of the environment is usually represented by a set of (global) parameters,
e.g. temperature. In addition, there are a number of important aspects of the
environment model, such as:

— Spatial explicitness: In some models, there is actually no notion of physical
space at all. An example of a scenario where location is of less importance
are “innovation networks” (Gilbert et al. 2001). Individual agents are high-
tech firms that each have a knowledge base used to develop artefacts to launch
on a simulated market. The firms are able to improve their products through
research or by exchanging knowledge with other firms. However, in many
scenarios, location is very important; thus, each individual (and sometimes
objects) is assigned a specific location at each time step of the simulation. In
this case, the individuals may be either static (the entity does not change location
during the simulation) or mobile. The location could either be specified as an
absolute position in the environment or in terms of relative positions between
entities. In some areas, the simulation software is integrated with a Geographical
Information System (GIS) in order to achieve closer match to reality (cf. Schiile
et al. 2004).

— Time: There are in principle two ways to address time, and one is to ignore it. In
static simulation, time is not explicitly modelled; there is only a “before” and an
“after” state. However, most simulations are dynamic, where time is modelled as
a sequence of time steps. Typically, each individual may change state between
each time step.

— Exogenous events: This is the case when the state of the environment, e.g.
the temperature, changes without any influence/action from the individuals.
Exogenous events, if they are modelled, may also change the state of entities,
e.g. decay of resources, or cause new entities to appear. This is a way to make
the environment stochastic rather than deterministic.

http://dx.doi.org/10.1007/978-3-319-66948-9_19

32 P. Davidsson and H. Verhagen
3.4.4 Factors to Consider When Choosing a Model

In contrast to some of the more traditional approaches, such as system dynamics,
individual-based modelling does not yet have any standard procedures that can
support the model development (although some attempts in this direction have been
made, e.g. by Grimm et al. (2006), in the area of ecological systems). In addition,
it is often the case that the only formal description of the model is the actual
programme code. However, it may be useful to use the Unified Modelling Language
(UML) to specify the model.

Some of the modelling decisions are determined by the features of the system
to be simulated, in particular those regarding the interaction model and the
environment model. The hardest design decision is often how the mental state and
the behaviour of individuals should be modelled, in particular when representing
human beings. For simpler animals or machines, a feature vector combined with
a set of transitions rules is often sufficient. Depending on the phenomena being
studied, this may also be adequate when modelling human beings. Gilbert (2006)
provides some guidelines whether a more sophisticated cognitive model is necessary
or not. He states that the most common reason for ignoring other levels is that
the properties of these other levels can be assumed constant and exemplifies this
by studies of markets in equilibrium where the preferences of individual actors
are assumed to remain constant. (Note, however, that this may not always be
true.) Another reason for ignoring other levels, according to Gilbert, is when there
are many alternative processes at the lower level, which could give rise to the
same phenomenon at the macro-level. He illustrates this with the famous study by
Schelling (1971) regarding residential segregation. Although Schelling used a very
crude model of the mental state and behaviour of the individuals, i.e. ignoring the
underlying motivations for household migration, the simulation results were valid
(as the underlying motivations were not relevant for the purpose of Schelling’s
study).

On the other hand, there are many situations where a more sophisticated cognitive
model is useful, in particular when the mental state or behaviour of the individual
constraints or in other ways influences the behaviour at the system level. However,
as Gilbert concludes, the current research is not sufficiently mature in order to give
advice on which cognitive model to use (BDI, Soar, ACT-R, or other). Rather, he
suggests that more pragmatic considerations should guide the selection.

The model of the environment is mostly dictated by the system to be simulated,
with the modeller having to decide on the granularity of the values the environmental
attributes can take. The interaction model is often chosen based on the theory
or practical situation that lies at the heart of the simulation, but sometimes the
limitations of the formal framework used restrict the possibilities. Here, the modeller
also has to decide upon the granularity of attribute values.

3 Types of Simulation 33
3.5 Implementation

We will now discuss some issues regarding the implementation (programming and
running) of a simulator.

A simulator can be time-driven, where the simulated time is advanced in constant
time steps, or event-driven, where the time is advanced based on the next event. In an
event-driven simulation, a simulation engine drives the simulation by continuously
taking the first event out of a time-ordered event list and then simulating the effects
on the system state caused by this event. Since time segments where no event takes
place are not regarded, event-driven simulation is often more efficient than time-
driven simulation. On the other hand, since time is incremented at a constant pace
during a simulation in time-driven mode, this is typically a better option if the
simulation involves user participation.

There are a number of platforms or toolkits for agent-based simulation available,
such as Swarm, NetLogo, and RePast (see Railsback et al. (2006) for a critical
review of these and some other platforms). These are freely available, simplify
the programming, and can be of great help, in particular for modellers that are not
skilled programmers. However, they all impose some limitations on what can be
modelled, which may or may not be crucial for the application at hand. An approach
without such limitation is of course to programme the simulator from scratch using
ordinary programming languages like Java or C, which is more difficult and time-
consuming. In some cases, e.g. if you want to distribute the simulation on a number
of computers, it may be appropriate to use an agent platform, such as JADE. In this
case, the individuals may be implemented as actual software agents. In particular,
when the number of individuals simulated is large and/or the models of individuals
are complex, it may be too time-consuming to run the simulation on a single
computer. Instead, one may distribute the computational load on several computers
in order to get reasonable running times. It should be mentioned that there are some
efforts on making agent-based simulation platforms run on large-scale computer
networks such as Grids (see, e.g. the work by Chen et al. (2008)).

It is worth noting that the resulting software is an approximation of a simulation
model, which in turn is an approximation of the actual system. Thus, there
are several steps of verification and validation that need to be addressed in the
development of a simulation model, as discussed in Chap. 9 (David et al. 2017).

3.6 Conclusion

As we have seen, there are many different types of individual-based social simula-
tion. In the table below, we provide a summary.

http://dx.doi.org/10.1007/978-3-319-66948-9_9

34

P. Davidsson and H. Verhagen

Focus Aspect Options
Usage Users Scientists
Policy-makers
Managers
Non-professionals
Purposes Management of a system

Design or engineering of a system

Evaluation and verification

Understanding

Education

Training

Entertainment

System simulated

Human-centred systems

Human societies

Organizations

Economic systems

Natural systems

Animal societies

Ecological systems

Socio-technical systems

Artificial systems

Individual model

Individual physical state

Feature vector

Individual mental state

Feature vector

BDI

Individual behaviour

Transition probabilities

Decision rules

Cognitive model (soar, ACT-R, etc.)

Basis of behaviour

Own state

State of the environment

State of other individuals

Social states

Uniformity Uniform/non-uniform
Population Static/dynamic
Interaction model Form of interaction No interaction
Physical
Language-based
Interaction topology Static/dynamic
Neighbourhood/network
Environment model Spatial explicitness None

Relative positions

Absolute positions

Time

Static/dynamic

Exogenous events

Yes/no

Implementation

Simulation engine

Time-driven/event-driven

Programming MABS platform (NetLogo, Repast, etc.)
MAS platform (JADE, etc.)
From scratch (C, Java, etc.)
Distributedness Single computer/distributed

3 Types of Simulation 35
Further Reading

Gilbert and Troitzsch (2005) also have sections that describe the different kinds
of simulation available. Railsback and Grimm (2011) present a complementary
analysis, coming from ecological modelling. The introductory chapters in (Gilbert
and Doran 1994) and (Conte and Gilbert 1995) map out many of the key issues and
aspects in which social simulation has developed.

References

Amblard, F, & Quattrociocchi, W. (2017). Social networks and spatial distribution.
doi:https://doi.org/10.1007/978-3-319-66948-9_19.

Anderson, J. R., et al. (2004). An integrated theory of the mind. Psychological Review, 111(4),
1036-1060.

Barreteau, O., Bots, P., Daniell, K., Etienne, M., Perez, P., Barnaud, C., et al. (2017). Participatory
approaches. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook.
Berlin: Springer-Verlag.

Bazzan, A.L.C., & Bordini, R.H. (2001). A framework for the simulation of agents with emotions:
Report on experiments with the iterated prisoners dilemma. In Fifth international conference
on autonomous agents, Montreal, 2001 (pp. 292-299). New York: ACM Press.

Bratman, M. E. (1987). Intentions, plans, and practical reason. Cambridge, MA: Harvard
University Press.

Broersen, J., Dastani, M., Huang, Z., Hulstijn, J., & Van der Torre, L. (2001). The BOID archi-
tecture: Conflicts between beliefs, obligations, intentions and desires. In Fifth international
conference on autonomous agents, Montreal, 2001 (pp. 9-16). New York: ACM Press.

Chen, D., Theodoropoulos, G. K., Turner, S. J., Cai, W., Minson, R., & Zhang, Y. (2008).
Large-scale agent-based simulation on the grid. Future Generation Computer Systems, 24(7),
658-671.

Conte, R., & Gilbert, N. (Eds.). (1995). Artificial societies: The computer simulation of social life.
London: UCL Press.

David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations. In B. Edmonds
& R. Meyer (Eds.), Simulating social complexity: A handbook. Berlin: Springer-Verlag.

Davidsson, P. (2000). Multi agent based simulation: Beyond social simulation. In S. Moss & P.
Davidsson (Eds.), Multi agent based simulation, Lecture notes in computer science (Vol. 1979,
pp- 98-107). Berlin: Springer.

Dignum, V. (2013). Organisational design. In B. Edmonds & R. Meyer (Eds.), Simulating social
complexity — A handbook (pp. 541-562). Berlin: Springer.

Edmonds, B., Lucas, P., Rouchier, J., & Taylor, R. (2017). Human societies: Understanding
observed social phenomena. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity:
A handbook. Berlin: Springer-Verlag.

Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new
solitaire game “Life”. Scientific American, 223(4), 120-124.

Geller, A., & Moss, S. (2017). Modeling power and authority: An emergentist view from
Afghanistan. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook.
Berlin: Springer-Verlag.

Georgeft, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1998). The belief-desire-
intention model of agency. In J. Muller, M. Singh, & A. Rao (Eds.), Intelligent agents V, Lecture
notes in artificial intelligence (Vol. 1555, pp. 1-10). Berlin: Springer.

http://dx.doi.org/10.1007/978-3-319-66948-9_19

36 P. Davidsson and H. Verhagen

Gilbert, N. (2006). When does social simulation need cognitive models? In R. Sun (Ed.), Cognition
and multi-agent interaction: From cognitive modelling to social simulation (pp. 428-432).
Cambridge: Cambridge University Press.

Gilbert, N., & Doran, J. (Eds.). (1994). Simulating societies. London: UCL Press.

Gilbert, N., Pyka, A., & Ahrweiler, P. (2001). Innovation networks: A simulation approach. Journal
of Artificial Societies and Social Simulation, 4(3). http://jasss.soc.surrey.ac.uk/4/3/8.html

Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Maidenhead:
Open University Press & McGraw Hill Education.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard
protocol for describing individual-based and agent-based models. Ecological Modelling, 198,
115-126.

Guye-Vuilleme, A. (2004). Simulation of nonverbal social interaction and small groups dynamics
in virtual environments. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, No 2933.
Hales, D. (2017). Distributed computer systems. doi:https://doi.org/10.1007/978-3-319-66948-9_

23.

Hemelrijk, C. (2017). Animal social behaviour. doi:https://doi.org/10.1007/978-3-319-66948-9_
24.

Janssen M.A., & Jager, W. (1999). An integrated approach to simulating behavioural processes:
A case study of the lock-in of consumption patterns. Journal of Artificial Societies and Social
Simulation, 2(2). http://jasss.soc.surrey.ac.uk/2/2/2 . html

Kiinzel, J., & Hiammer, V. (2006). Simulation in university education: The artificial agent PSI as a
teaching tool. Simulation, 82(11), 761-768.

Le Page, C., Bazile, D., Becu, N.,, Bommel, P, Bousquet, F., Etienne, M., et al.
(2017). Agent-based modelling and simulation applied to environmental management.
doi:https://doi.org/10.1007/978-3-319-66948-9_22.

Massaguer, D., Balasubramanian, V., Mehrotra, S., & Venkatasubramanian, N. (2006, May 8).
Multi-agent simulation of disaster response. In N.R. Jennings, M. Tambe, T. Ishida, & S.D.
Ramchurn (Eds.), First international workshop on agent technology for disaster management,
Hakodate, Hokkaido, Japan (pp. 124—-130). http://users.ecs.soton.ac.uk/sdr/atdm/ws34atdm.pdf

Méndez, G., Rickel, J., & de Antonio, A. (2003). Steve meets Jack: The integration of an intelligent
tutor and a virtual environment with planning capabilities. In Intelligent virtual agents, Lecture
notes on artificial intelligence (Vol. 2792, pp. 325-332). Berlin: Springer.

Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Railsback, S. F,, Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: Review
and development recommendations. Simulation, 82(9), 609-623.

Railsback, S. F.,, & Grimm, V. (2011). Agent-based and individual-based modeling: A practical
introduction. Princeton: Princeton University Press.

Ramstedt, L., Térnquist Krasemann, J., & Davidsson, P. (2017). Movement of people and goods.
doi:https://doi.org/10.1007/978-3-319-66948-9_26.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioural model. Computer
Graphics, 21(4), 25-34.

Rouchier, J. (2017). Agent-Based simulation as a useful tool for the study of markets.
doi:https://doi.org/10.1007/978-3-319-66948-9_25.

Sawyer, R. K. (2003). Artificial societies: Multi-agent systems and the micro-macro link in
sociological theory. Sociological Methods & Research, 31(3), 325-363.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1,
143-186.

Schiff, J. L. (2008). Cellular automata: A discrete view of the world. Oxford: Wiley.

http://jasss.soc.surrey.ac.uk/4/3/8.html
https://doi.org/10.1007/978-3-319-66948-9_23
https://doi.org/10.1007/978-3-319-66948-9_23
https://doi.org/10.1007/978-3-319-66948-9_24
https://doi.org/10.1007/978-3-319-66948-9_24
http://jasss.soc.surrey.ac.uk/2/2/2.html
http://dx.doi.org/10.1007/978-3-319-66948-9_22
http://users.ecs.soton.ac.uk/sdr/atdm/ws34atdm.pdf
http://dx.doi.org/10.1007/978-3-319-66948-9_26
http://dx.doi.org/10.1007/978-3-319-66948-9_25

3 Types of Simulation 37

Schiile, M., Herrler, R., & Kliigl, F. (2004). Coupling GIS and multi-agent simulation: Towards
infrastructure for realistic simulation. In G. Lindemann, J. Denzinger, I.J. Timm, & R. Unland
(Eds.), Multiagent system technologies, second German conference, MATES 2004, LNCS (Vol.
3187, pp. 228-242). Berlin: Springer.

Verhagen, H. (2001). Simulation of the learning of norms. Social Science Computer Review, 19(3),
296-306.

Williams, R. (1993). An agent based simulation environment for public order management training.
In Western simulation multiconference, object-oriented simulation conference (pp. 151-156).

Chapter 4
Different Modelling Purposes

Bruce Edmonds

Abstract How one builds, checks, validates and interprets a model depends on
its ‘purpose’. This is true even if the same model is used for different purposes,
which means that a model built for one purpose but now used for another may
need to be rechecked, revalidated and maybe even rebuilt in a different way. Here
we review some of the different purposes for building a simulation model of
complex social phenomena, focussing on five in particular: theoretical exposition,
prediction, explanation, description and illustration. The chapter looks at some of
the implications in terms of the ways in which the intended purpose might fail. In
particular, it looks at the ways that a confusion of modelling purposes can fatally
weaken modelling projects, whilst giving a false sense of their quality. This analysis
motivates some of the ways in which these ‘dangers’ might be avoided or mitigated.

Why Read This Chapter?

This chapter will help you understand the importance of clearly identifying one’s
goal in developing and using a model and the implications of this decision in terms
of how the model is developed, checked, validated, interpreted and described. It
might thus help you produce models that are more reliable for your intended purpose
and increase the reliability of your modelling. It will help you avoid a situation
where you partially justify your model with respect to different purposes but succeed
at none of them.

B. Edmonds ()

Centre for Policy Modelling, Manchester Metropolitan University, All Saints Campus, Oxford
Road, Manchester, M1 6BH, UK

e-mail: bruce @edmonds.name

© Springer International Publishing AG 2017 39
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_4

mailto:bruce@edmonds.name
https://doi.org/10.1007/978-3-319-66948-9_4

40 B. Edmonds
4.1 Introduction

A common view of modelling is that one builds a ‘lifelike’ reflection of some sys-
tem, which then can be relied upon to act like that system. This is a correspondence
view of modelling where the details in the model correspond in a one-one manner
with those in the modelling target—as if the model were some kind of ‘picture’ of
what it models. However, this view can be misleading since models always differ
from what they model, so that they will capture some aspects of the target system but
not others. With complex phenomena, especially social phenomena, it is inevitable
that any model is, at best, a very partial picture of what it represents—in fact I
suggest that this picture analogy is so unhelpful that it might be best to abandon it
altogether as more misleading than helpful.!

Rather, here I will suggest a more pragmatic approach, where models are viewed
as tools designed and useful for specific purposes. Although a model designed for
one purpose may turn out to be OK for another, it is more productive to use a tool
designed for the job in hand. One may be able to use a kitchen knife for shaping
wood, but it is much better to use a chisel. In particular, I argue that even when
a model (or model component) turns out to be useful for more than one purpose,
it needs to be justified and judged with respect to each of the claimed purposes
separately (and it will probably require recoding). To extend the previous analogy,
a tool with the blade of a chisel but the handle of a kitchen knife may satisfy some
of the criteria for a tool to carve wood and some of the criteria for a tool to carve
cooked meat but fail at both. If one did come up with a new tool that is good at both,
this would be because it could be justified for each purpose separately.

In his paper ‘Why Model?’, Epstein (2008) lists 17 different reasons? for making
a model: from the abstract, ‘discover new questions’, to the practical ‘educate
the general public’. This illustrates both the usefulness of modelling but also the
potential for confusion. As Epstein points out, the power of modelling comes from
making an informal set of ideas formal. That is, they are made precise using
unambiguous code or mathematical symbols. This lack of ambiguity has huge
benefits for the process of science, since it allows researchers to share, critique
and improve models without transmission errors (Edmonds 2010). However, in
many papers on modelling, the purpose that its model was developed for or, more
critically, the purpose under which it is being presented is often left implicit or
confused. Maybe this is due to the prevalence of the ‘correspondence picture’ of
modelling discussed above, maybe the authors conceive of their creations being
useful in many different ways, or maybe they simply developed the model without a
specific purpose in mind. However, regardless of the reason, the consequence is that
readers do not know how to judge the model when presented. This has the result that
models might avoid proper judgement—demonstrating partial success in different
ways with respect to a number of purposes, but not adequacy against any.

'With the exception of the purpose of description where a model is intended to reflect what is
observed

2He discusses ‘prediction” and then lists 16 other reasons to model.

4 Different Modelling Purposes 41

Our use of language helps cement this confusion: we talk about a ‘predictive
model’ as if it something in the code that makes it predictive (forgetting all the work
in directing and justifying this power)—rather I am suggesting a shift from the code
as a thing in itself, to code as a tool for a particular purpose. This marks a shift from
programming, where the focus is on the nature and quality of the code, to modelling,
where the focus is on the relationship of the behaviour of some code to what is being
modelled. Using terms such as ‘explanatory model’ is OK, as long as we understand
that this is shorthand for ‘a model which establishes an explanation’ etc.

Producing, checking and documenting code are labour intensive. As a result,
we often wish to reuse some code produced for one purpose for another purpose.
However, this often causes as much new work as it saves due to the effort required
to justify code for a new purpose and—if this is not done—the risk that time and
energy of many researchers are wasted due to the confusions and false sense of
reliability that can result. In practice, I have seen very little code that does not need
to be rewritten when one has a new purpose in mind. Ideas can be transferred and
well-honed libraries for very well-defined purposes, but not the core code that makes
up a model of complex social phenomena.?

In this chapter, I will look at five common modelling purposes: prediction,
explanation, theoretical exposition, description and illustration.* Each purpose is
motivated, defined and illustrated. For each purpose, a ‘risk analysis’ is presented—
some of the ways one might fail to achieve the stated purpose—along with some
ways of mitigating these risks. In the penultimate section, some common confusions
of purpose are illustrated and discussed, before the chapter concludes with a brief
summary and plea to make one’s purpose clear.

4.2 Prediction

4.2.1 Motivation

If one can reliably predict anything that is not already known, this is undeniably
useful regardless of the nature of the model (e.g. whether its processes are a
reflection of what happens in the observed system or not>). For instance, the gas laws
(stating, e.g. that at a fixed pressure, the increase in volume of gas is proportional
to the increase of temperature) were discovered long before the reason why they
worked.

31 am not ruling out the possibility of reusable model components in the future using some clever
protocol; it is just that I have not seen any good cases of code reuse and many bad ones.

4 A later chapter (Chap. 28 (Edmonds et al. 2017)) takes a more fine-grained approach in the context
of understanding human societies.

3Tt would not really matter even if the code had a bug in it, if the code reliably predicts (though it
might impact upon the knowledge of when we can rely upon it or not).

42 B. Edmonds

However, there is another reason that prediction is valued: it is considered the
gold standard of science—the ability of a model or theory to predict is taken
as the most reliable indicator of a model’s truth. This is done in two principle
ways: (a) model A fits the evidence better than model B, a comparative approach,®
or (b) model A is falsified (or not) by the evidence, a falsification approach. In
either, the idea is that, given a sufficient supply of different models, better models
will be gradually selected over time, either because the bad ones are discarded or
outcompeted by better models.

Definition

By ‘prediction’, we mean the ability to reliably anticipate data that is not currently known
to a useful degree of accuracy via computations using the model.

Unpacking this definition:

e It has to do it reliably—that is, under some known (but not necessarily precise)
conditions, the model will work; otherwise one would not know when one could
use it.

» The data it anticipates has to be unknown to the modeller. ‘Predicting’ out-of-
sample data is not enough, since pressures to redo a model and get a better fit are
huge and negative results are difficult to publish.

* The anticipation has to be to a useful degree of accuracy. This will depend upon
the purpose to which it is being put, e.g. as in weather forecasting.

Unfortunately, there are at least two different uses of the word ‘predict’. Almost
all scientific models ‘predict’ in the weak sense of being used to calculate some
result given some settings or data, but this is different from correctly anticipating
unknown data. For this reason, some use the term ‘forecast’ for anticipating
unknown data and use the word ‘prediction’ for almost any calculation of one aspect
from another using a model. However, this causes confusions in other ways, so
this does not necessarily make things clearer. Firstly, ‘forecasting’ implies that the
unknown data is in the future (which is not always the case), and, secondly, large
parts of science use the word ‘prediction’ for the process of anticipating unknown
data. For example, if a modeller says their model ‘predicts’ something when they
simply mean that it calculates it, then most of the audience may misunderstand and
assume the author is claiming more utility than is intended.

As Watts (2014) points out, useful prediction does not have to be a ‘point’
prediction of a future event. For example, one might predict that some particular
thing will not happen, the existence of something in the past (e.g. the existence of
Pluto), something about the shape or direction of trends or distributions or even
qualitative facts. The important fact is that what is being predicted is not known
beforehand by the modeller and that it can be unambiguously checked when it is
known.

An Example Nate Silver aims to predict social phenomena, such as the results of
elections and the outcome of sports competitions. This is a data-hungry activity,

SWhere model B may be a random or null model but also might be a rival model

4 Different Modelling Purposes 43

which involves the long-term development of simulations that carefully see what
can be inferred from the available data. As well as making predictions, his unit tries
to establish the level of uncertainty in those predictions—being honest about the
probability of those predictions coming about given the likely levels of error and
bias in the data. As described in his book (Silver 2012), this involves a number of
properties and activities, including:

* Repeated testing of the models against unknown data

» Keeping the models fairly simple and transparent so one can understand clearly
what they are doing (and what they do not cover)

* Encoding into the model aspects of the target phenomena that one is relatively
certain about (such as the structure of the US presidential electoral college)

* Being heavily data biased, requiring a lot of data to help eliminate sources of
error and bias

* Producing probabilistic predictions, giving a good idea about the level of
uncertainty in any prediction

* Being clear about what kinds of factors are not covered in the model, so the
predictions are relative to a clear set of declared assumptions and one knows the
kind of circumstances in which one might be able to rely upon the predictions

Post hoc analysis of predictions—explaining why it worked or not—is kept
distinct from the predictive models themselves; this analysis may inform changes to
the predictive model but is not then incorporated into the model. The analysis is thus
kept independent of the predictive model, so it can be an effective check. Making
a good predictive model requires a lot of time getting it wrong with real, unknown
data and trying again before one approaches qualified successful predictions.

4.2.2 Risks

Prediction (as we define it) is very hard for any complex social system. For this
reason, it is rarely attempted.” Many re-evaluations of econometric models against
data that has emerged since publication have revealed a high rate of failure (e.g.
Meese and Rogoff 1983)—37 out of 40 models failed completely. Clearly, although
presented as being predictive models, they did not actually predict unknown data.
Many of these used the strategy of first dividing the data into in-sample and out-of-
sample data, and then parameterising the model on the former and exhibiting the fit
against the latter. Presumably, the apparent fit of the 37 models was not simply a
matter of bad luck, but that all of these models had been (explicitly or implicitly)
fitted to the out-of-sample data, because the out-of-sample data was known to the
modeller before publication. That is, if the model failed to fit the out-of-sample

"To be precise, some people have claimed to predict various social phenomena, but there are very
few cases where the predictions are made public before the data is known and where the number of
failed predictions can be checked. Correctly predicting events after they are known is much easier!

44 B. Edmonds

data the first time the model was tested, it was then adjusted until it did work, or,
alternatively, only those models that fitted the out-of-sample data were published (a
publishing bias). Thus, in these cases, the models were not tested against predicting
the out-of-sample data even though they were presented as such. Fitting known data
is simply not a sufficient test for predictive ability.

There are many reasons why prediction of complex social systems fails, but two
of the most prominent are (1) it is unknown what processes are needed to be included
in the model and (2) a lack of enough quality data of the right kinds. We will discuss
each of these in turn.

1. In the physical sciences, there are often well-validated micro-level models (e.g.
fluid dynamics in the case of weather forecasting) that tell us what processes are
potentially relevant at a coarser level and which are not. In the social sciences,
this is not the case—we do not know what the essential processes are. Here, it is
often the case that there are other processes that the authors have not considered
that, if included, would completely change the results. This is due to two different
causes: (a) we simply do not know much about how and why people behave
in different circumstances, and (b) different limitations of intended context will
mean that different processes are relevant.

2. Unlike in the physical sciences, there has been a paucity of the kind of data we
would need to check the predictive power of models. This paucity can be due
to (a) there is not enough data (or data from enough independent instances) to
enable the iterative checking and adapting of the models on new sets of unknown
data each time we need to, or (b) the data is not of the right kind to do this. What
can often happen is that one has partial sets of data that require some strong
assumptions in order to compare against the predictions in question (e.g. the data
might only be a proxy of what is being predicted, or you need assumptions in
order to link sets of data). In the former case, (a), one simply has not enough to
check the predictive power in multiple cases, so one has to suspend judgement as
to whether the model predicts in general, until the data is available. In the latter
case, (b), the success at prediction is relative to the assumptions made to check
the prediction.

A more subtle risk is that the conditions under which one can rely upon a model
to predict well might not be clear. If this is the case, then it is hard to rely upon the
model for prediction in a new situation, since one does not know its conditions of
application.

4.2.3 Mitigating Measures

To ensure that a model does indeed predict well, one can seek to ensure the
following:

e That the model has been tested on several cases where it has successfully
predicted data unknown to the modeller (at the time of prediction)

4 Different Modelling Purposes 45

e That information about the following are included: exactly what aspects it
predicts, guidelines on when the model can be used to predict and when not,
some guidelines as to the degree or kind of accuracy it predicts with and any
other caveats a user of the model should be aware of

» That the model code is distributed so others can explore when and how well it
predicts

4.3 Explanation

4.3.1 Motivation

Often, especially with complex social phenomena, one is particularly interested in
understanding why something occurs—in other words, explaining it. Even if one
cannot predict something before it is known, you still might be able to explain
it afterwards. This distinction mirrors that in the physical sciences where there
are both phenomenological and explanatory laws (Cartwright 1983)—the former
matches the data, whilst the latter explains why that came about. In mature science,
predictive and explanatory laws are linked in well-understood ways but with less
well-understood phenomena one might have one without the other. For example, the
gas laws that link measurements of temperature, pressure and volume were known
before the explanation in terms of molecules of gas bouncing randomly around and
the formal connection between both accounts only made much later. Understand-
ing is important for managing complex systems as well as understanding when
predictive models might work. Whilst generally with complex social phenomena
explanation is easier than prediction, sometimes prediction comes first (however, if
one can predict then this invites research to explain why the prediction works).

If one makes a simulation in which certain mechanisms or processes are
built in and the outcomes of the simulation match some (known) data, then this
simulation can support an explanation of the data using the built-in mechanisms. The
explanation itself is usually of a more general nature, and the traces of the simulation
runs are examples of that account. Simulations that involve complicated processes
can thus support complex explanations—that are beyond natural language reasoning
to follow. The simulations make the explanation explicit, even if we cannot fully
comprehend its detail. The formal nature of the simulation makes it possible to
test the conditions and cases under which the explanation works and to better its
assumptions.

Definition

By ‘explanation’ we mean establishing a possible causal chain from a set-up to its
consequences in terms of the mechanisms in a simulation.

Unpacking some parts of this:

» The possible causal chain is a set of inferences or computations made as part
of running the simulation—in simulations with random elements, each run will

46 B. Edmonds

be slightly different. In this case, it is either a possibilistic explanation (A could
cause B), in which case one just has to show one run exhibiting the complete
chain, or a probabilistic explanation (A probably causes B, or A causes a
distribution of outcomes around B) in which case one has to look at an assembly
of runs, maybe summarising them using statistics or visual representations.

» For explanatory purposes, the structure of the model is important, because that
limits what the explanation consists of. If, for example, the model consisted of
mechanisms that are known not to occur, any explanation one established would
be in terms of these non-existent mechanisms—which is not very helpful. If one
has parameterised the simulation on some in-sample data (found the values of
the free parameters that made the simulation fit the in-sample data), then the
explanation of the outcomes is also in terms of the in-sample data, mediated by
these ‘magic’-free parameters.®

e The consequences of the simulations are generally measurements of the out-
comes of the simulation. These are compared with the data to see if it ‘fits’. It is
usual that only some of the aspects of the target data and the data the simulation
produces are considered significant—other aspects might not be (e.g. might be
artefacts of the randomness in the simulation or other factors extraneous to the
explanation). The kind of fit between data and simulation outcomes needs to be
assessed in a way that is appropriate to what aspects of the data are significant
and which are not. For example, if it is the level of the outcome that is key, then a
distance or error measure between this and the target data might be appropriate,
but if it is the shape or trend of the outcomes over time that is significant, then
other techniques will be more appropriate (e.g. Thorngate and Edmonds 2013).

Example Stephen Lansing spent time in Bali as an anthropologist, researching
how the Balinese coordinated their water usage (among other things). He and
his collaborator, James Kramer, build a simulation to show how the Balinese
system of temples acted to regulate water usage, through an elaborate system of
agreements between farmers, enforced through the cultural and religious practices
at those temples (Lansing and Kramer 1993). Although their observations could
cover many instances of localities using the same system of negotiation over
water, they were necessarily limited to all their observations being within the
same culture. Their simulation helped establish the nature and robustness of their
explanation by exploring a close universe of ‘what if” questions, which vividly
showed the comparative advantages of the observed system that had developed over
a considerable period. The model does not predict that such systems will develop
in the same circumstances, but it substantially adds to the understanding of the
observed case.

81 am being a little disparaging here, it may be that these have a definite meaning in terms of
relating different scales or some such, but too often, they do not have any clear meaning but just
help the model fit stuff.

4 Different Modelling Purposes 47
4.3.2 Risks

Clearly, there are several risks in the project of establishing a complex explanation
using a simulation—what counts as a good explanation is not as clear-cut as what is
a good prediction.

Firstly, the fit to the target data to be explained might be a very special case. For
example, if many other parameters need to have very special values for the fit to
occur, then the explanation is, at best, brittle and, at worst, an accident.

Secondly, the process that is unfolded in the simulation might be poorly
understood so that the outcomes might depend upon some hidden assumption
encapsulated in the code. In this case, the explanation is dependent upon this
assumption holding, which is problematic if this assumption is very strong or
unlikely.

Thirdly, there may be more than one explanation that fits the target data. So
although the simulation establishes one explanation, it does not guarantee that it
is the only candidate for this.

4.3.3 Mitigating Measures

To improve the quality and reliability of the explanation being established:

* Ensure that the mechanisms built into the simulation are plausible or at least
relate to what is known about the target phenomena in a clear manner.

* Be clear about which aspects of the outcomes are considered significant in terms
of comparison to the target data—i.e. exactly which aspects of that target data
are being explained.

* Probe the simulation to find out the conditions for the explanation holding
using sensitivity analysis, addition of noise, multiple runs, changing processes
not essential to the explanation to see if the results still hold and documenting
assumptions.

* Do experiments in the classic way, to check that the explanation does, in fact,
hold for your simulation code—i.e. check your code and try to refute the
explanation using carefully designed experiments with the model.

4.4 Theoretical Exposition

4.4.1 Motivation

If one has a mathematical model, one can do analysis upon its mathematics to
understand its general properties. This kind of analysis is both easier and harder
with a simulation model—to find out the properties of simulation code, one just

48 B. Edmonds

has to run the code—but this just gives one possible outcome from one set of
initial parameters. Thus, there is the problem that the runs one sees might not be
representative of the behaviour in general. With complex systems, it is not easy
to understand how the outcomes arise, even when one knows the full and correct
specification of their processes, so simply knowing the code is not enough. Thus,
with highly complicated processes, where the human mind cannot keep track of the
parts unaided, one has the problem of understanding how these processes unfold in
general.

Where mathematical analysis is not possible, one has to explore the theoretical
properties using simulation—this is the goal of this kind of model. Of course, with
many kinds of simulation, one wants to understand how its mechanisms work, but
here this is the only goal. Thus, this purpose could be seen as more limited than the
others, since some level of understanding the mechanisms is necessary for the other
purposes (except maybe black-box predictive models). However, with this focus on
just the mechanisms, there is an expectation that a more thorough exploration will be
performed—+how these mechanisms interact and when they produce different kinds
of outcome.

Thus, the purpose here is to give some more general idea of how a set of
mechanisms work, so that modellers can understand them better when used in
models for other purposes. If the mechanisms and exploration are limited, this would
greatly reduce the usefulness of doing this. General insights are what is wanted here.

In practice, this means a mixture of inspection of data coming from the simula-
tion, experiments and maybe some inference upon or checking of the mechanisms.
In scientific terms, one makes a hypothesis about the working of the simulation—
why some kinds of outcome occur in a given range of conditions—and then tests
that hypothesis using well-directed simulation experiments.

The complete set of simulation outcomes over all possible initialisations (includ-
ing random seeds) does encode the complete behaviour of simulation, but that is
too vast and detailed to be comprehensible. Thus, some general truths covering the
important aspects of the outcomes under a given range of conditions are necessary—
the complete and certain generality established by mathematical analysis might
be infeasible with many complex systems, but we would like something that
approximates this using simulation experiments.

Definition

‘Theoretical exposition’ means discovering then establishing (or refuting) hypotheses about
the general behaviour of a set of mechanisms (using a simulation).

Unpacking some key aspects here:

* One may well spend some time illustrating the discovered hypothesis (especially
if it is novel or surprising), followed by a sensitivity analysis, but the crucial
part is showing these hypotheses are refuted or not by a sequence of simulation
experiments.

* The hypotheses need to be (at least somewhat) general to be useful.

4 Different Modelling Purposes 49

* A use of theoretical exposition can be to refute a hypothesis, by exhibiting a
concrete counterexample, or to establish a hypothesis.

e Although any simulation has to have some meaning for it to be a model
(otherwise it would just be some arbitrary code), this does not involve any other
relationship with the observed world in terms of data or evidence.

Example Schelling developed his famous model for a theoretical purpose. He was
advising the Chicago district on what might be done about the high levels of
segregation there. The assumption was that the sharp segregation observed must be a
result of strong racial discrimination by its inhabitants. Schelling’s model (Schelling
1969, 1971) showed that segregation could result from just weak preferences of
inhabitants for their own kind—that even, a wish for 30% of people of the same
trait living in the neighbourhood could result in segregation. This was not obvious
without building a model, and Schelling did not rely on the results of his model
alone but did extensive mathematical analysis to back up its conclusions.

What the model did not do is say anything about what actually caused the
segregation in Chicago—it might well be the result of strong racial prejudice. The
model did not predict anything about the level of segregation nor did it explain it.
All it did was provide a counterexample to the current theories as to the cause of the
segregation, showing that this was not necessarily the case.

4.4.2 Risks

In theoretical exposition, one is not relating simulations to the observed world, so it
is fundamentally an easier and ‘safer’ activity.” Since a near-complete understanding
of the simulation behaviour is desired, this activity is usually concerned with
relatively simple models. However, there are still risks—it is still easy to fool oneself
with one’s own model. Thus, the main risk is that there is a bug in the code, so that
what one thinks one is establishing about a set of mechanisms is really about a
different set of mechanisms (i.e. those including the bug).

A second area of risk lies in a potential lack of generality or ‘brittleness’ of
what is established. If the hypothesis is true but only holds under very special
circumstances, then this reduces the usefulness of the hypothesis in terms of
understanding the simulation behaviour.

Lastly, there is the risk of over-interpreting the results in terms of saying anything
about the observed world. The model might suggest a hypothesis about the observed
world, but it does not provide any level of empirical support for this.

°In the sense of not being vulnerable to being shown to be wrong later

50 B. Edmonds
4.4.3 Mitigating Measures

The measures that should be taken for this purpose are quite general and maybe best
understood by the community of simulators.

* One needs to check ones’ code thoroughly—see Galan et al. (2017) for a review
of techniques.

* One needs to be precise about the code and its documentation—the code should
be made publically available.

* Be clear as to the nature and scope of the hypotheses established.

* A very thorough sensitivity check, trying various versions with extra noise added
etc.

* It is good practice to illustrate the simulation so that the readers understand its
key behaviours but then follow this with a series of attempted refutations of the
hypotheses about its behaviour to show its robustness.

* Be very careful about not claiming that this says anything about the observed
world.

4.5 Description

4.5.1 Motivation

An important, but currently under-appreciated, activity in science is that of descrip-
tion. Charles Darwin spent a long time sketching and describing the finches he
observed on his travels aboard the HMS Beagle. These descriptions and sketches
were not measurements or recordings in any direct sense, since he was already
selecting from what he perceived and only recording an abstraction of what he
thought of as relevant. Later on, these were used to illustrate and establish his
theoretical abstraction—his theory of evolution of species by natural selection.

One can describe things using natural language or pictures, but these are
inadequate for dynamic and complex phenomena, where the essence of what is
being described is how several mechanisms might relate over time. An agent-based
simulation framework allows for a direct representation (one agent for one actor)
without theoretical restrictions. It allows for dynamic situations as well as complex
sets of entities and interactions to be represented (as needed). This can make it an
ideal complement to scenario development because it ensures consistency between
all the elements and the outcomes. It is also a good base for future generalisations
when the author can access a set of such descriptive simulations.

Definition

A description (using a simulation) is an attempt to partially represent what is important of
a specific observed case (or small set of closely related cases).

4 Different Modelling Purposes 51

Unpacking some of this:

* This is not an attempt to produce a one-one representation of what is being
observed but only of the features thought to be relevant for the intended kind
of study. It will leave out some features; in particular, it may leave out some of
the interactions between processes.

» It is not in any sense general, but it seeks to capture a restricted set of cases—it
is specific to these, and no kind of generality beyond these can be assumed.

e The simulation has to relate in an explicit and well-documented way to a set
of evidence, experiences and data. This is the opposite of theoretical exposition
and should have a direct and immediate connection with observation, data or
experience.

Example In Moss (1998), Scott Moss describes a model that captures some of the
interactions in a water pumping station during crises. This came about through
extensive discussions with stakeholders within a UK water company about what
happens in particular situations during such crises. The model sought to directly
reflect this evidence within the dynamic form of a simulation, including cognitive
agents who interact to resolve the crisis. This simulation captured aspects of the
physical situation but also tackled some of the cognitive and communicative aspects.
To do this, he had represented the problem solving and learning of key actors,
so he inevitably had to use some existing theories and structures—namely, Alan
Newell and Herbert Simon’s ‘general problem solving architecture’ (Newell and
Simon 1972) and Cohen’s ‘endorsement mechanism’ (Cohen 1984a, b). However,
this is all made admirably explicit in the paper. The paper is suitably cautious in
terms of any conclusions, saying that the simulation ‘indicate[s] a clear need for an
investigation of appropriate organizational structures and procedures to deal with
full-blown crises’.

4.5.2 Risks

Any system for representation will have its own affordances—it will be able to
capture some kinds of aspect much more easily than others will. This inevitably
biases the representations produced, as those elements that are easy to represent are
more likely to be captured than those which are more difficult. Thus, the medium
will influence what is captured and what is not.

Since agent-based simulation is not theoretically constrained,'” there are a large
number of ways in which any observed phenomena could be expressed in terms
of simulation code. Thus, it is almost inevitable that any modeller will use some

10To be precise, it does assume there are discrete entities or objects and that there are processes
within these that can be represented in terms of computations, but these are not very restrictive
assumptions.

52 B. Edmonds

structures or mechanisms that they are familiar with in order to write the code. Such
a simulation is, in effect, an abduction with respect to these underlying structures
and mechanisms—the phenomena are seen through these and expressed using them.

Finally, a reader of the simulation may not understand the limitations of the
simulation and make false assumptions as to its generality. In particular, the
inference within the simulations may not include all the processes that are in what
is observed—thus, it cannot be relied upon to either predict outcomes or justify any
specific explanation of those outcomes.

4.5.3 Mitigating Measures

As long as the limitations of the description (in terms of its selectivity, inference and
biases) are made clear, there are relatively few risks here, since not much is being
claimed. If it is going to be useful in the future as part of a (slightly abstracted)
evidence base, then its limitations and biases do need to be explicit. The data,
evidence or experience it is based upon also need to be made clear. Thus, good
documentation is the key here—one does not know how any particular description
will be used in the future, so the thoroughness of this is key to its future utility.
Here, it does not matter if the evidence is used to specify the simulation or to check
it afterwards in terms of the outcomes, all that matters is that the way it relates to
evidence is well documented. Standards for documentations (such as the ODD and
its various extensions (Grimm et al. 2006, 2010) help ensure that all aspects are
covered.

4.6 Illustration

4.6.1 Motivation

Sometimes one wants to make an idea clear, and an illustration is a good way of
doing this. It makes a more abstract theory or explanation clear by exhibiting a
concrete example that might be more readily comprehended. Complex systems,
especially complex social phenomena, can be difficult to describe, including
multiple independent and interacting mechanisms and entities. Here a well-crafted
simulation can help people see these complex interactions at work and hence
appreciate these complexities better. As with description, this purpose does not
claim much; it is just a medium for the communication of an idea. If the theory is
already instantiated as a simulation (e.g. for theoretical exposition or explanation),
then the illustrative simulation might well be a simplified version of this.

Playing about with simulations in a creative but informal manner can be very
useful in terms of informing the intuitions of a researcher (Norling et al. 2017).

4 Different Modelling Purposes 53

In a sense, the simulation has illustrated an idea to its creator. One might then exhibit
a version of this simulation to help communicate this idea to others. However, this
does not mean that the simulation achieves any of the other purposes described
above, and it is thus doubtful whether that idea has been established to be of public
value (justifying its communication in a publication) until this happens.

This is not to suggest that illustration is not an important process in science.
Providing new ways of thinking about complex mechanisms or giving us new
examples to consider is a very valuable activity. However, this does not imply its
adequacy for any other purpose.

Definition

An illustration (using a simulation) is to communicate or make clear an idea, theory or
explanation.

Unpacking this:

* Here the simulation does not have to fully express what it is illustrating; it is
sufficient that it gives a simplified example. So it may not do more than partially
capture the idea, theory or explanation that it illustrates, and it cannot be relied
upon for the inference of outcomes from any initial conditions or set-up.

* The clarity of the illustration is of overriding importance here, not its veracity or
completeness.

* An illustration should not make any claims, even of being a description. If it
is going to be claimed that it is useful as a theoretical exposition, explanation or
other purposes, then it should be justified using those criteria—that it seems clear
to the modeller is not enough.

Example 1In his book, Axelrod (1984) describes a formalised computational ‘game’
where different strategies are pitted against each other, playing the iterated pris-
oner’s dilemma. Some different scenarios are described, where it is shown how the
‘tit for tat’ strategy can survive against many other mixes of strategies (static or
evolving). The conclusions are supported by some simple mathematical consider-
ations, but the model and its consequences were not explored in any widespread
manner.'! In the book, the purpose of the model is to illustrate the ideas that the
book proposes. The book claims the idea ‘explains’ many observed phenomena, but
in an analogical manner, no precise relationship with any observed measurements is
described. There is no validation of the model here or in the more academic paper
that described these results (Axelrod and Hamilton 1981). In the academic paper,
there are some mathematical arguments which show the plausibility of the model,
but the paper, like the book, progresses by showing the idea is coherent with some
reported phenomena—but it is the ideas rather than the model that are so related.
Thus, in this case, the simulation model is an analogy to support the idea, which
is related to evidence in a qualitative manner—the relationship of the model to
evidence is indirect (Edmonds 2001). Thus, the role of the simulation model is that

ndeed, the work spawned a whole industry of papers doing just such an exploration.

54 B. Edmonds

of an illustration of the key ideas and does not qualify for either explaining specific
data, predicting anything unknown or exploring a theory.

4.6.2 Risks

The main risk here is that you might deceive people using the illustration into
reading more into the simulation than is intended, as these are often quite persuasive
in terms of their impact. Such simulations can be used as a kind of analogy—a way
of thinking about other phenomena. However, just because you can think about some
phenomena in a particular way does not make it true. The human mind is good at
creating, ‘on the fly’, connections between an analogy and what it is considering—
so good that it does it almost without us being aware of this process. The danger
here is of confusing being able to think of some phenomena using an idea and that
idea having any force in terms of a possible explanation or method of prediction.
The apparent generality of an analogy tends to dissipate when one tries to precisely
specify the relationship of a model to observations, since an analogy has a different
set of relationships for each situation it is applied to—it is a supremely flexible
way of thinking. This flexibility means that it does not work well to support an
explanation or predict well, since both of these necessitate an explicit and fixed
relationship with observed data.

There is also a risk of confusion if it is not clear which aspects are important
to the illustration and which are not. A simulation for illustration will show the
intended behaviour, but (unlike when its theory is being explored) it has been tested
only for a restricted range of possibilities; indeed the claimed results might be quite
brittle to insignificant changes in assumption.

4.6.3 Mitigating Measures

Be very clear in the documentation that the purpose of the simulation is for
illustration only, maybe giving pointers to fuller simulations that might be useful
for other purposes. Also be clear in precisely what idea is being communicated and
so which aspects of the simulation are relevant for this purpose.

4.7 Some Confusions of Purpose

It should be abundantly clear by now that establishing a simulation for one purpose
does not justify it for another and that any assumptions to the contrary risk confusion
and unreliable science. However, the field has many examples of such confusions
and conflations, so this message is obviously needed. It is true that a simulation

4 Different Modelling Purposes 55

model justified for one purpose might be used as part of the development of
a simulation model for another purpose—this can be how science progresses.
However, just because a model for one purpose suggests a model for another does
not mean it is a good model for the new purpose. If it is being suggested that a
model can be used for a new purpose, it has to be justified for this new purpose. To
drive home this point further, we look at some common confusions of purpose to
underline this danger. Each time some code is mistakenly relied upon for a purpose
other than has been established for it.

1. Theoretical exposition — Explanation. Once one has immersed oneself in a
model, there is a danger that the world looks like this model to its author.
This is a strong kind of Kuhn’s ‘theoretical spectacles’'? and results from the
intimate relationship that simulation developers have with their model. Here, the
temptation is to jump from a theoretical exposition, which has no empirical basis,
to an explanation of something in the world. A simulation can provide a way of
looking at some phenomena, but just because one can view some phenomena in
a particular way does not make it a good explanation. Of course, one can form a
hypothesis from anywhere, including from a theoretical exposition, but it remains
only a hypothesis until it is established as a good explanation as discussed above
(which would almost certainly involve changing the model).

2. Description — Explanation. In constructing a simulation for the purpose of
describing a small set of observed cases, one has deliberately made many
connections between aspects of the simulation and evidence of various kinds.
Thus, one can be fairly certain that, at least, some of its aspects are realistic. Some
of this fitting to evidence might be in the form of comparing the outcomes of the
simulation to data, in which case it is tempting to suggest that the simulation
supports an explanation of those outcomes. The trouble with this is twofold: (a)
the work to test which aspects of that simulation are relevant to the aspects being
explained has not been done; and (b) the simulation has not been established
against a range of cases—it is not general enough to make a good explanation. An
explanation that only explains aspects of a small number of cases using a complex
simulation is a bad explanation since there will be many other potentialities in
the simulation that are not used for these few cases.

3. Explanation — Prediction. A simulation that establishes an explanation traces
a (complex) set of causal steps from the simulation set-up to outcomes that
compare well with observed data. It is thus tempting to suggest that one can
use this simulation to predict this observed data. However, the process of using
a simulation to establish and understand an explanation inevitably involves
iteration between the data being explained and the model specification—that is,
the model is fitted to that particular set of data. Model fitting is not a good way
to construct a model useful for prediction, since it does not distinguish between

12Kuhn (1962) pointed out the tendency of scientists to only see the evidence that is coherent
with an existing theory—it is as if they have ‘theoretical spectacles’ that filter out other kinds of
evidence.

56 B. Edmonds

what is essential for the prediction and the ‘noise’ (what cannot be predicted).
Establishing that a simulation is good for prediction requires its testing against
unknown data several times—this goes way beyond what is needed to establish
a candidate explanation for some phenomena. This is especially true for social
systems, where we often cannot predict events, but we can explain them after
they have occurred.

4. Illustration — Theoretical exposition. A neat illustration of an idea suggests a
mechanism. Thus, the temptation is to use a model designed as an illustration or
playful exploration as being sufficient for the purpose of a theoretical exposition.
A theoretical exposition involves the extensive testing of code to check the
behaviour and the assumptions therein; an illustration, however suggestive, is
not that rigorous. For example, it may be that an illustrated process is a very
special case and only appears under very particular circumstances, or it may be
that the outcomes were due to aspects of the simulation that were thought to be
unimportant (such as the nature of a random number generator). The work to
rule out these kinds of possibility is what differentiates using a simulation as an
illustration from a theoretical exposition.

There is a natural progression in terms of purpose attempted as understanding
develops: from illustration to description or theoretical exposition, from description
to explanations and from explanations to prediction. However, each stage requires
its own justification and probably a complete reworking of the simulation code for
this new purpose. It is the lazy assumption that one purpose naturally follows from
another that is the danger.

4.8 Conclusion

In Table 4.1, we summarise the most important points of the above discussion. This
does not include all the risks of each kind of model but simply picks the most
pertinent ones.

As should be clear from the above discussion, being clear about one’s purpose in
modelling is central to how one goes about developing, checking and presenting the
results. Different modelling purposes imply different risks and hence activities to
avoid these. If one is intending the simulation to have a public function (in terms of
application or publication), then one should not model with unspecified or conflated
purposes.'® Confused, conflated or unclear modelling purpose leads to unreliable
models that are hard to check, can create deeply misleading results and is hard for
readers to judge—in short, it is a recipe for bad science.

3This does not include private modelling, whose purpose maybe playful or exploratory; however,
in this case one should not present the results or model as if they have achieved anything more than
illustration (to oneself). If one finds something of value in the exploration, it should then be redone
properly for a particular purpose to be sure it is worth public attention.

4 Different Modelling Purposes 57

Table 4.1 A brief summary of the discussed modelling purposes
Particular risks (apart from that

Modelling purpose Essential features of lacking the essential features)

Prediction Anticipates unknown data Conditions of application unclear

Explanation Uses plausible mechanisms to | Model is brittle, so minor changes
match outcome data in a in the set-up result in bad fit to
well-defined manner explained data

Theoretical exposition Systematically maps out or Bugs in the code; inadequate

establishes the consequences | coverage of possibilities
of some mechanisms

Description Relates directly to evidence Unclear documentation; over
for a small set of cases generalisation from cases
described
Ilustration Shows an idea clearly Over interpretation to make

theoretical or empirical claims

Acknowledgements Many thanks to all those with whom I have discussed these matters,
including Scott Moss, David Hales, Bridget Rosewell and all those who attended the workshop
on validation held in Manchester.

Further Reading

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social
Simulation, 11(4). 12. http://jasss.soc.surrey.ac.uk/11/4/12 html

This gives a brief tour of some of the reasons to simulate other than that of
prediction.

Edmonds, B., Lucas, P., Rouchier, J., & Taylor, R. (2017). Understanding human
societies. doi:https://doi.org/10.1007/978-3-319-66948-9_28.

In this chapter, some modelling purposes that are specific to human social phenom-
ena are examined in more detail giving examples from the literature.

References

Axelrod, R. (1984). The evolution of cooperation. New York, NY: Basic Books.

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 1390-1396.

Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.

Cohen, P. R. (1984a). Heuristic reasoning about uncertainty: an artificial intelligence approach.
International Journal of Approximate Reasoning, 1(2), 243-245.

Cohen, P. R. (1984b). Heuristic reasoning about uncertainty: an artificial intelligence approach.
Marshfield, MA: Pitman Publishing.

Edmonds, B. (2001). The use of models - making MABS actually work. In S. Moss & P.
Davidsson (Eds.), Multi agent based simulation, Lecture notes in artificial intelligence (Vol.
1979, pp. 15-32). Berlin: Springer-Verlag.

http://jasss.soc.surrey.ac.uk/11/4/12.html
http://dx.doi.org/10.1007/978-3-319-66948-9_28

58 B. Edmonds

Edmonds, B. (2010). Bootstrapping knowledge about social phenomena using simulation models.
Journal of Artificial Societies and Social Simulation, 13(1), 8. http://jasss.soc.surrey.ac.uk/13/
1/8.html

Edmonds, B., Lucas, P., Rouchier, J., & Taylor, R. (2017). Understanding human societies.
doi:https://doi.org/10.1007/978-3-319-66948-9_28.

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12.
http://jasss.soc.surrey.ac.uk/11/4/12.html

Galan, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I, del Olmo, R., & Lépez-
Paredes, A. (2017a). Checking simulations: Detecting and avoiding errors and artefacts.
doi:https://doi.org/10.1007/978-3-319-66948-9_7.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard
protocol for describing individual-based and agent-based models. Ecological Modelling, 198,
115-126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The
ODD protocol: A review and first update. Ecological Modelling, 221, 2760-2768.

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago
Press.

Lansing, J. S., & Kramer, J. N. (1993). Emergent properties of balinese water temple networks:
coadaptation on a rugged fitness landscape. American Anthropologist, 1,97-114.

Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies - Do they fit
out of sample? Journal of International Economics, 14, 3-24.

Moss, S. (1998). Critical incident management: An empirically derived computational model.
Journal of Artificial Societies and Social Simulation, 1(4), 1. http://jasss.soc.surrey.ac.uk/1/
4/1.html

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Clifts, NJ: Prentice-Hall.

Norling, E., Meyer, R., & Edmonds, B. (2017). Informal approaches to developing simulations.
doi:https://doi.org/10.1007/978-3-319-66948-9_5.

Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2), 488—493.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
143-186.

Silver, N. (2012). The signal and the noise: the art and science of prediction. London: Penguin.

Thorngate, W., & Edmonds, B. (2013). Measuring simulation-observation fit: An introduction to
ordinal pattern analysis. Journal of Artificial Societies and Social Simulation, 16(2), 14. http://
jasss.soc.surrey.ac.uk/16/2/4.html

Watts, D. J. (2014). Common sense and sociological explanations. American Journal of Sociology,
120(2), 313-351.

http://jasss.soc.surrey.ac.uk/13/1/8.html
http://dx.doi.org/10.1007/978-3-319-66948-9_28
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://dx.doi.org/10.1007/978-3-319-66948-9_7
http://jasss.soc.surrey.ac.uk/1/4/1.html
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://jasss.soc.surrey.ac.uk/16/2/4.html

Part I1
Methodology

Chapter 5
Informal Approaches to Developing Simulation

Models

Emma Norling, Bruce Edmonds, and Ruth Meyer

Abstract This chapter describes an approach commonly taken by most people
in the social sciences when developing simulation models instead of following a
formal approach of specification, design and implementation. What often seems to
happen in practice is that modellers start off in a phase of exploratory modelling,
where they don’t have a precise conception of the model they want but a series of
ideas and/or evidence they want to capture. They then may develop the model in
different directions, backtracking and changing their ideas as they go. This phase
continues until they think they may have a model or results that are worth telling
others about. This then is (or at least should be) followed by a consolidation phase
where the model is more rigorously tested and checked so that reliable and clear
results can be reported. In a sense what happens in this later phase is that the model
is made so that it is as if a more formal and planned approach had been taken.

There is a danger of this approach: that the modeller will be tempted by
apparently significant results to rush to publication before sufficient consolidation
has occurred. There may be times when the exploratory phase may result in useful
and influential personal knowledge, but such knowledge is not reliable enough to
be up to the more exacting standards expected of publicly presented results. Thus,
it is only in combination with a careful consolidation of models that this informal
approach to building simulations should be undertaken.

Why Read This Chapter?

To get to know some of the issues, techniques and tools involved in building
simulation models using a combination of exploration, checking and consolidation.
To understand when a looser, informal style of development might be beneficial and
when one needs a more structured approach.

E. Norling (P<)

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Manchester, UK

e-mail: norling@acm.org

B. Edmonds ¢ R. Meyer
Centre for Policy Modelling, Manchester Metropolitan University, All Saints Campus, Oxford
Road, Manchester, M1 6BH, UK

© Springer International Publishing AG 2017 61
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_5

mailto:norling@acm.org
https://doi.org/10.1007/978-3-319-66948-9_5

62 E. Norling et al.

5.1 Introduction: Exploration and Consolidation Modelling
Phases

Formal approaches to the development of computer programs have emerged through
the collective experience of computer scientists (and other programmers) over the
past half-century. The experience has shown that complex computer programs
are very difficult to understand: once past a certain point, unless they are very
careful, programmers lose control over the programs they build. Beyond a certain
stage of development, although we may understand each part—each micro-step—
completely, we can lose our understanding of the program as a whole; the effects of
the interactions between the parts of a program are unpredictable; they are emergent.
Thus, computer science puts a big emphasis on techniques that aim to ensure that
the program does what it is intended to do as far as possible. However, even with
the most careful methodology, it is recognised that a large chunk of time will have
to be spent debugging the program—we all know that a program cannot be relied on
until it has been tested and fixed repeatedly.

However, it is fair to say that most computational modellers do not follow such
procedures and methodologies all the time (although since people don’t readily
admit to how messy their implementation process actually is, we cannot know
this, just as one does not know how messy people’s homes are when there are no
visitors). There are many reasons for this. Obviously, those who are not computer
scientists may simply not know these techniques (in which case they should at least
read Chap. 6 in this volume). Then there are a large number of modellers who
know of these techniques (to some degree) but judge that they are not necessary
or not worth the effort. Such a judgement may or may not be correct. Certainly it
is the case that people tend to underestimate the complexity of programming and
so think they can get away with not bothering with a more careful specification
and analysis stage. In some of these cases, the modeller may regret not engaging in
more planning, but there may also be other times when there are good reasons not to
follow such techniques. Thirdly, a specification and design approach is simply not
possible if you don’t have a clear idea of your goal. Often, when modelling some
complex phenomena (and especially social phenomena), one simply does not know
beforehand which parts of the system will turn out to be important to the outcomes
and which can be safely omitted. Further, one may not even know what will be
possible to model computationally.

One of the big benefits of modelling phenomena computationally is that one
learns a lot about what is crucial and possible in the process of building a simulation
model. This is very unlike the case where one has a functional goal or specification
for a program that can be analysed into sub-goals and processes, etc. In (social)
simulation, the degree to which formal approaches are useful depends somewhat on
the goal of modelling. If the goal is very specific, for example, understanding the
effect of the recovery rate on the change in the number of infections in an epidemic,
and the basic model structure is known, then what is left is largely an engineering
challenge. However, if the goal is general understanding of a particular process,
then there is no possible way of systematically determining what the model should

http://dx.doi.org/10.1007/978-3-319-66948-9_6

5 Informal Approaches to Developing Simulation Models 63

be. Here the modelling is essentially a creative process, and the development of
the model proceeds in parallel with the development of the understanding of the
process; the model is itself a theory under development.

Thus, what often seems to happen in practice is that modellers start off in a phase
of exploratory modelling, where they don’t have a precise conception of the model
they want but a series of ideas and/or evidence they want to capture. They then may
develop the model in different directions, backtracking and changing their ideas as
they go. This phase continues until they think they may have a model or results that
are worth telling others about. This then is (or at least should be) followed by a
consolidation phase where the model is more rigorously tested and checked so that
reliable and clear results can be reported. In a sense what happens in this later phase
is that the model is made so that it is as if a more formal and planned approach had
been taken.

There is nothing wrong with having an exploratory approach to model devel-
opment. Unfortunately, it is common to see models and results that are publicly
presented without a significant consolidation phase being undertaken. It is very
understandable why a researcher might want to skip the consolidation phase: they
may have discovered a result or effect that they find exciting and not wish to go
through the relatively mundane process of checking their model and results. They
may feel that they have discovered something that is of more general importance;
however, this personal knowledge, which may well inform their understanding,
is not yet of a standard that makes it worthwhile for their peers to spend time
understanding, until it has been more rigorously checked.

One of the problems with the activity of modelling is that it does influence
how the modeller thinks. Paradoxically, this can also be one of the advantages
of this approach. After developing and playing with a model over a period of
time, it is common to “see” the world (or at least the phenomena of study) in
terms of the constructs and processes of that model. This is a strong version of
Kuhn’s “theoretical spectacles” (Kuhn 1969). Thus, it is common for modellers to
be convinced that they have found a real effect or principle during the exploration of
a model, despite not having subjected their own model and conception to sufficient
checking and testing—what can be called modelling spectacles. Building a model
in a computer is almost always in parallel with the development of one’s ideas about
the subject being modelled. This is why it is almost inevitable that we think about
the subject in terms of our models—this is at once a model’s huge advantage but
also disadvantage. As long as one is willing to be aware of the modelling spectacles
and be critical of them, or try many different sets of modelling spectacles, the
disadvantage can be minimised.

Quite apart from anything, presenting papers with no substantial consolidation
is unwise. Such papers are usually painfully obvious when presented at workshops
and easily criticised by referees and other researchers if submitted to a journal. It
is socially acceptable that a workshop paper will not have as much consolidation
as might be required of a journal article, since the criticism and evaluation of ideas
and models at a workshop are part of its purpose, but presenting a model with an
inadequate level of consolidation just wastes the other participants’ time.

64 E. Norling et al.

Fig. 5.1 The exploration and
consolidation approach to
model development \

Consolidation

; Simulation
Documentation
results

What steps then should modellers who follow such an informal approach take to
ensure that their model is sufficiently consolidated to present to a wider audience?
Firstly, the modeller must have a clear purpose for their model, as described below.
Secondly, the modeller must be careful to identify the assumptions that are made
during the construction of the model. Thirdly, the modeller must maintain control of
the model whilst exploring different possibilities. And fourthly—and this is perhaps
the most difficult—the modeller must maintain an understanding of the model. The
following sections of this chapter discuss these points in more detail. Then there
is the all-important consolidation phase (which may proceed in parallel with the
former steps, rather than strictly sequentially), during which the modeller formalises
the model in order to ensure that the results are sound and meaningful. Figure 5.1
illustrates this approach to model building.

/

5
)

Exploration

5.2 Knowing the Purpose of the Model

There are many possible purposes for constructing a model. Although some models
might be adapted for different purposes without too much difficulty, at any one
time, a model will benefit from having a clear purpose. One of the most common
criticisms of modelling papers (after a lack of significant consolidation) is that the
author has made a model but is unclear as to its purpose. This can be for several
reasons, such as:

5 Informal Approaches to Developing Simulation Models 65

e The author may have simply modelled without thinking about why (e.g. having
vague ideas about a phenomenon, the modeller decides to construct a model
without thinking about the questions one might want to answer about that
phenomenon).

* The model might have been developed for one purpose but is being presented as
if it had another purpose.

e The model may not achieve any particular purpose and so the author might be
forced into claiming a number of different purposes to justify the model.

The purpose of a model will affect how it is judged and hence should influence
how it is developed and checked.

The classic reason for modelling is to predict some unknown aspect of observed
phenomena—usually a future aspect. If you can make a model that does this for
unknown data (data not known to the modellers before they published the model),
then there can be no argument that such a model is (potentially) useful. Due to the
fact that predictive success is a very strong test of a model for which the purpose
is prediction, this frees one from an obligation as to the content or structure of the
model.! In particular, the assumptions in the model can be quite severe—the model
can be extremely abstract as long as it actually does predict.

However, predictive power will not always be a measure of a model’s success.
There are many other purposes for modelling other than prediction. Epstein
(2008) lists 16 other purposes for building a model, e.g. explanation, training of
practitioners or education of the general public, and it is important to note that the
measure of success will vary depending on the purpose.

With an explanatory model, if one has demonstrated that a certain set of
assumptions can result in a set of outcomes (e.g. by exhibiting an acceptable fit to
some outcome data), this shows that the modelled process is a possible explanation
for those outcomes. Thus, the model generates an explanation, but only in terms of
the assumptions in the setup of the simulation. If these assumptions are severe ones,
i.e. the model is very far from the target phenomena, the explanation it suggests in
terms of the modelled process will not correspond to a real explanation in terms of
observed processes. The chosen assumptions in an explanatory model are crucial to
its purpose in contrast to the case of a predictive model—this is an example of how
the purpose of a model might greatly influence its construction.

It does sometimes occur that a model made for one purpose can be adapted for
another, but the results are often not of the best quality, and it almost always takes
more effort than one expects. In particular, using someone else’s model is usually
not very easy, especially if you are not able to ask the original programmer questions
about it and/or the code is not very well documented.

1Of course a successfully predictive model raises the further question of why it is successful,
which may motivate the development of further explanatory models, since a complete scientific
understanding requires both prediction and explanation, but not necessarily from the same models
(Cartwright 1983).

66 E. Norling et al.

Chapter 4 in this volume (Edmonds 2017) goes into five common modelling
purposes in more detail, with analyses of the particular risks for each kind of
purpose, and the basic steps to mitigate these risks.

5.3 Modelling Assumptions

Whilst the available evidence will directly inform some parts of a model design,
other parts will not be so well informed. In fact, it is common that a large part of a
complex simulation model is not supported by hard evidence. The second source
for design decisions is the conceptions of the modeller, which may have come
from ideas or structures that are available in the literature. However, this is still
not sufficient to get a model working. In order to get a simulation model to run
and produce results, it will be necessary to add in all sorts of other details: these
might include adding in a random process to “stand in” for an unknown decision
or environmental factor, or even be a straight “kludge” because you don’t know
how else to program something. Even when evidence supports a part of the design,
there will necessarily be some interpretation of this evidence. Thus, any model is
dependent upon a whole raft of assumptions of different kinds.

If a simulation depends on many assumptions that are not relatable to the object
or process it models, it is unlikely to be useful. However, just because a model has
some assumptions in it, this does not mean it should be disregarded. Any modelling
is necessarily a simplification of reality, done within some context or other. Hence,
there will be the assumption that the details left out are not crucial to the aspect of
the results deemed important, as well as those assumptions that are inherent in the
specification of the context. This is true for any kind of modelling, not just social
simulation. It is not sufficient to complain that a model has assumptions or does
simplify, since modelling without this is impossible; one has to argue or show why
the assumptions included will distort the results. Equally, the author of a model
should be able to justify the assumptions that have been made.

However, the use that is made of a simulation will be limited by the strength or
weakness of the assumptions taken as a whole. If, for example, the model is going
to be used in a policy process that will impact on many people’s lives, then a high
level of evidential support and validation will be required. If the model is more
exploratory—for example, to suggest unconsidered risks or new hypotheses—then
more assumptions with weaker evidence might well be acceptable. Chapter 29 in
this volume (Edmonds et al. 2017) looks at the dangers when models are used to
inform issues of policy importance.

What one can do is to try to make the assumptions as transparent, as clear and
as explicit as possible. Thus, future researchers will be better able to judge what
the model depends upon and adapt the model if any of the assumptions turns out to
be considered bad. The most obvious technique is to try to document and display
the assumptions. This not only helps to defend the model against criticism but also
helps one to think more clearly about the model.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_29

5 Informal Approaches to Developing Simulation Models 67

Particularly in the early stages of constructing a model, it is common to make a
number of “assumptions” about various processes that are involved. In a sense, these
are not strictly assumptions—they are just necessary simplifications made in order
to get something running—but nevertheless are included here. The model builder
might, for example, include a random term to substitute for an unknown process, or
a particular value might be chosen for a constant without knowing if it is a suitable
value. The modeller must carefully document such decisions and be prepared to
revisit them and adjust them as necessary. This is particularly true if the model
starts to be used for purposes that go beyond what the model was initially intended
for (Chap. 29 in this volume).

The next type of assumption to consider is that which is “forced” by the
constraints of the programming system. This might be the simplification of a process
due to computational power limitations, restrictions forced upon the modeller due to
the data structures and/or algorithms available, or the desire to reuse another (sub-
)model. Again, such decisions must be documented. Whilst the modeller may feel
that these decisions have been forced, their documentation can serve two purposes.
Firstly, other modellers may have insights into the same programming system that
will allow them to suggest alternate approaches. Secondly, modellers who wish to
replicate the model using an alternate system may be able to better demonstrate the
impact of these assumptions.

The third type of assumption to consider is the choice of relevant objects
and processes. As mentioned previously, any modelling exercise is necessarily an
abstraction, and one must leave out much of the detail of the real world. Of course,
it is impractical to document every detail that has been omitted, but the modeller
should consider carefully which objects and processes may be relevant to the model
and document those that have been included and those that have been omitted. This
documentation will then prove invaluable in the consolidation phase (see Sect. 6),
when the modeller should explicitly test these assumptions.

The most difficult type of assumption to track and document is that which derives
from the modeller’s own personal biases or “common sense”. For example, the
modeller may have an innate “understanding” of some social process that is used
in the model without question. The modeller may also have been trained within a
particular school that embraces a traditional set of assumptions. Such traditional
assumptions may be so deeply ingrained that they are treated as fact rather than
assumption, making them difficult to identify from within.

This final class of assumption may be difficult for the modeller to identify
and document, but all others should be carefully documented. The documentation
can then be used in the exploration and consolidation phases (see below), when
the modeller checks these assumptions as much as possible, refining the model
as necessary. The assumptions should also be clearly stated and justified when
reporting the model and results.

http://dx.doi.org/10.1007/978-3-319-66948-9_29

68 E. Norling et al.
5.4 Maintaining Control of the Model Whilst Exploring

The second biggest problem in following the exploration and consolidation
approach to model building (after that of giving in to the temptation to promote
your results without consolidation) is that one loses control of the model whilst
exploring, resulting in a tangle of bugs. Exploration is an essential step, testing
the impact of the assumptions that have been made but, if not carefully managed,
can result in code that achieves nothing at all. Bugs can creep in, to an extent that
fixing one merely reveals another, or the model can become so brittle that any
further modifications are impossible to integrate, or the model becomes so flaky
that it keeps breaking in unexpected ways. Although interactions between processes
might be interesting and the point of exploration, too much unknown interaction
can just make the model unusable. Thus, it is important to keep as many aspects as
possible under control as you explore, so you are left with something that you can
consolidate! It is generally helpful to be clear (if this possible) about which aspects
one is certain about and which aspects one is exploring. If these are separable, then
one can apply the techniques in Chap. 6 of this volume to the parts one knows and
constrain the area of uncertainty where the exploration is occurring.

The main technique for maintaining control of a model is doing some planning
ahead and consolidation as you explore. This is a very natural way for a modeller
to work—mixing stages of exploration and consolidation as they feel necessary and
as matches their ambitions for the model. Each programmer will have a different
balance between these styles of work. Some will consolidate immediately after each
bit of development or exploration; some will do a lot of exploration, pushing the
model to its limits and then reconstruct a large part of the model in a careful and
planned way. Some will completely separate the two stages, doing some exploration,
and then completely rebuild their ideas in a formal planned way but now having a
better idea (if they are correct) of what they are aiming to achieve: what needs to
go into the model (and what not), what is happening in the model as it runs and
which results they need to collect from it. It is a general rule that more checking and
consolidation will be required than is generally planned for by modellers.>

There is no absolute rule for how careful and planned one should be in developing
a model, but roughly the more complex and ambitious, the more careful one should
be. Whilst a “quick and dirty” implementation may be sufficient for a simple model,
for others it is unlikely to get the desired results: it is too easy to lose understanding
and control of the interactions between various parts, and also the model loses the
flexibility to be adapted as needed later on. At the other end of the spectrum, one
can spend ages planning and checking a model, building in the maximum flexibility
and modularity, only to find that the model does not give any useful results. This
might be a valuable experience for the programmer but does not produce interesting
knowledge about the target phenomenon. This is the fundamental reason why

2Even when you take this principle into account!

http://dx.doi.org/10.1007/978-3-319-66948-9_6

5 Informal Approaches to Developing Simulation Models 69

exploration is so important: because one does not know which model to build
before it is tried. This is particularly so for models that have emergent effects (like
many of the ones discussed in this volume) and also for those where there is no
benchmark (either formal or observed) against which to check them.

One important thing about the activity of modelling is that one has to be willing to
throw a lot of model versions away. Exploratory modelling is an inherently difficult
activity; most of the models built will either be the wrong structure or just not helpful
with regard to the phenomena we seek to understand. Further, the modelling is
constrained in many ways: in the time available for developing and checking them,
in the amount of computational resources they require, in the evidence available to
validate the model, in the necessary compromises that must be made when making
a model and in the need to understand (at least to some extent) the models we make.
Thus, the mark of a good modeller is that he or she throws away a lot of models
and only publishes the results of a small fraction of those he or she builds. There
is a temptation to laziness, to trying to “fix”” a model that is basically not right and
thus save a lot of time, but in reality this often only wastes time. This relates to
the modelling spectacles mentioned above: one becomes wedded to the structure
one is developing, and it takes a mental effort to start afresh. However, if it is to
be effective, a corollary of an exploratory approach is being highly selective about
what one accepts—junking a lot of models is an inevitable consequence of this. If
one is not following a more formal, planning approach, and one is not throwing a
lot of versions away, then you are probably instituting poor modelling decisions into
your code.

Whatever balance you choose between exploration and consolidation, it is
probably useful to always pause before implementing any key algorithm or structure
in your model, thinking a little ahead to what might be the best way. This is an
ingrained habit for experienced programmers but may take more effort for the
beginner. The beginner may not know of different ways of approaching a particular
bit of programming and so may need to do some research. This is why developing
some knowledge of common algorithms and data structures is a good idea. There is
a growing body of work on documenting programming “patterns”—which seek to
describe programming solutions at a slightly general level—which can be helpful,
although none of these pattern catalogues have yet been written specifically with
models of social complexity in mind (but see Grimm et al. 2005 for examples from
ecology). Increasingly too researchers within this field are making their code, or at
least descriptions of the algorithms used, available to wider audiences.

There are dangers of using someone else’s code or algorithm though. There is
the danger of assuming that one understands an algorithm, relying on someone
else’s description of it.® It is almost inconceivable that there will not be some
unforeseen results of applying even a well-known algorithm in some contexts. When
it comes to reusing code, the risk is even higher. Just as there are assumptions and

30f course, this danger is also there for one’s own programming: it is more likely, but far from
certain, that you understand some code you have implemented or played with.

70 E. Norling et al.

simplifications in one’s own code, so there will be in the code of others, and it
is important to understand their implications. Parameters may need adjustment, or
algorithms tweaking, in order for the code to work in a different context. Thus, one
needs to thoroughly understand at the very least the interface to the code and perhaps
also its details. In some cases, the cost of doing this may well outweigh the benefits
of reuse. One of the advantages of an exploratory process is that it tends to educate
the modeller as to the properties of its algorithms in the process.*

It is important to note that even though the approach presented here deviates
from more formal approaches to software development, this does not mean one
should ignore the standard “good practices” of computer programming. Indeed, due
to the complexity of even the simplest models in this field, it is advisable to do some
planning and design before coding. In particular, the following principles should be
applied:

* Conceptualisation: any model will benefit greatly from developing a clear
understanding of the model structure and processes before starting to program.
This is often called a conceptual model and usually involves some diagramming
technique. Whilst computer scientists will tend to use UML for this purpose, any
graphical notation that you are familiar with will do to sketch the main entities
and their relationships on paper, such as mind maps or flow diagrams. Apart
from helping a modeller to better understand what the model is about, this will
form a valuable part of the overall model documentation. See Alam et al. (2010;
appendix) for an example of using UML class and activity diagrams.

* Modularity: it is not always possible to cleanly separate different functions or
parts of a model, but where it is possible, it is hugely advantageous to separate
these into different modules, classes or functions. In this way, the interactions
with the other parts of your model are limited to what is necessary. It makes it
much easier to test the module in isolation, facilitate diagnostics and make the
code much simpler and easier to read.

* C(Clear structures/analogies: it is very difficult to understand what code does and
to keep in mind all the relevant details. A clear idea or analogy for each part
of the simulation can help you keep track of the details as well as being a
guide to programming decisions. Such analogies may already be suggested by
the conceptions that the programmer (or others) have of the phenomena under
study, but it is equally important not to assume that these are always right, even
if this was your intention in programming the model.

* Clear benchmarks: if there is a set of reference data, evidence, theory or other
models to which the simulation is supposed to adhere, this can help in the
development of a model, by allowing one to know when the programming has
gone astray or is not working as intended. The clearest benchmark is a set of
observed social phenomena, since each set of observations provides a new set
of data for benchmarking. Similarly, if a part of the model is supposed to extend

4Sometimes painfully!

5 Informal Approaches to Developing Simulation Models 71

another model, then restricting the new model should produce the same outcomes
as the original.’

* Self-documentation: if one is continuously programming a simulation that is not
very complex, then one might be able to recall what each chunk of code does.
However, when developing this type of simulation, it is common to spend large
chunks of time focusing on one area of a model before returning to another.
After such a lapse, one will not necessarily remember the details of the revisited
code, but making the code clear and self-documenting will facilitate it. This sort
of documentation does not necessarily have to be full documentation but could
include using sensible long variable and module names; adding small comments
for particularly tricky parts of the code; keeping each module, class, function
or method fairly simple with an obvious purpose; and having some system for
structuring your code.

* Building in error checking: errors are inevitable in computer code. Even the best
programmer can inadvertently introduce errors to his or her code. Some of these
will be obvious but some might be subtle, difficult to isolate and time-consuming
to eliminate. Detecting such errors as early as possible is thus very helpful and
can save a lot of time. Including safeguards within your code that automatically
detect as many of these errors as possible might seem an unnecessary overhead,
but in the long run can be a huge benefit. Thus, you might add extra code to
check that all objects that should exist at a certain time do in fact exist or
that a message from one object to another is not empty or that a variable that
should only take values within a certain range does stay within this range. This is
especially important in an exploratory development, where one might develop a
section of code for a particular purpose, which then comes to be used for another
purpose. In other words, the computational context of a method or module has
altered.

These matters are covered in Chap. 6 in this volume in greater depth. There
are also many techniques that computer scientists may exhort you to use that are
not necessarily useful that may be more applicable to the development of software
with more clearly defined goals. Thus, do evaluate any such suggested techniques
critically and with a large dose of common sense.

5.5 Understanding the Model

Understanding a model is so intertwined with controlling a model that it is difficult
to cleanly separate the two. You cannot really control a complex model if you do not
at least partially understand it. Conversely, you cannot deeply understand a model

SWhat the “same outcomes” here means depends on how close one can expect the restricted new
model to adhere to the original, for example, it might be the same but with different pseudorandom
number generators.

http://dx.doi.org/10.1007/978-3-319-66948-9_6

72 E. Norling et al.

until you have experimented with it, which necessitates being able to control it to a
considerable extent. However, since modelling complex social phenomena requires
(at least usually and probably always) complex models, complete understanding
and/or control is often unrealistic. Nevertheless, understanding your model as much
as is practical is key to useful modelling. This is particularly true for exploratory
modelling because it is the feedback between trying model variations and building
an understanding of what these variations entail that makes this approach useful.

Understanding one’s model is a struggle. The temptation is to try shallow
approaches by only doing some quick graphs of a few global measures of output,
hoping that this is sufficient to give a good picture of what is happening in a complex
social simulation. Although information about the relationship of the setup of a
simulation and its global outcomes can be useful, this falls short of a full scientific
understanding, which must explain sow these are connected. If you have an idea
of what the important features of your simulation model are, you might be able to
design a measure that might be suitable for illustrating the nature of the processes
in your model. However, a single number is a very thin indication of what is
happening—this is OK if you know the measure is a good reflection of what is
crucial in the simulation—but can tend to obscure the complexity if you are trying
to understand what is happening.

To gain a deeper understanding, one has to look at the details of the interactions
between the parts of the simulation as well as the broader picture. There are two
main ways of doing this: case studies using detailed traces/records and complex
visualisations.

A case study involves choosing a particular aspect of the simulation, say a
particular individual, object or interaction, and then following and understanding
it, step by step, using a detailed trace of all the relevant events. Many programming
environments provide tracing tools as an inbuilt feature, but not all social simulation
toolkits have such a feature. In this latter case, the modeller needs to embed the
tracing into the model, with statements that will log the relevant data to a file for
later analysis. This “zooming in” into the detail is often very helpful in developing a
good understanding of what is happening and is well worthwhile, even if you don’t
think you have any bugs in your code. However, in practice, many people seek to
avoid this mundane and slightly time-consuming task.

The second way to gain an understanding is to program a good dynamic
visualisation of what is happening in the model. What exactly is “good” in this
context depends heavily on the nature of the model: it should provide a meaningful
view of the key aspects of the model as the simulation progresses. Many social
simulation toolkits provide a range of visualisation tools to assist this programming,
but the key is identifying the relevant processes and choosing the appropriate
visualisation for them—a task that is not amenable to generic approaches. Thus, you
could have a 2D network display where each node is an individual, where the size,
shape, colour and direction of each node all indicate different aspects of its state,
with connections drawn between nodes to indicate interactions, and so on. A good
visualisation can take a while to design and program, but it can crucially enhance the

5 Informal Approaches to Developing Simulation Models 73

understanding of your simulation and in most cases is usable even when you change
the simulation setup. Chapter 10 in this volume (Evans et al. 2017) discusses a range
of visualisation techniques aimed at aiding the understanding of a simulation model.

5.6 The Consolidation Phase

The consolidation phase should occur after one has got a clear idea about what
simulation one wants to run, a good idea of what one wants to show with it and
a hypothesis about what is happening. It is in this stage that one stops exploring
and puts the model design and results on a more reliable footing. It is likely
that even if one has followed a careful and formal approach to model building,
some consolidation will still be needed, but it is particularly crucial if one has
developed the simulation model using an informal, exploratory approach. The
consolidation phase includes processes of simplification, checking, output collection
and documentation. Although the consolidation phase has been isolated here, it is
not unusual to include some of these processes in earlier stages of development,
intermingling exploration and consolidation. In such circumstances, it is essential
that a final consolidation pass is undertaken, to ensure that the model is truly robust.

Simplification is where one decides which features/aspects of the model you
need for the particular paper/demonstration you have in mind. In the most basic
case, this may just be a decision as to which features to ignore and keep fixed as
the other features are varied. However, this is not very helpful to others because
(a) it makes the code and simulation results harder to understand (the essence of
the demonstration is cluttered with excess detail) and (b) it means your model is
more vulnerable to being shown to be brittle (there may be a hidden reliance on
some of the settings for the key results). A better approach is to actually remove
the features that have been explored but turned out to be unimportant so that only
what is important and necessary is left. This not only results in a simpler model for
presentation but is also a stronger test of whether or not the removed features were
irrelevant.

The checking stage is where one ensures that the code does in fact correspond
to the original intention when programming it and that it contains no hidden bug
or artefact. This involves checking that the model produces “reasonable” outputs
for both “standard” inputs and “extreme” inputs (and of course identifying what
“standard” and “extreme” inputs and “reasonable” outputs are). Commonly, this
involves a series of parameter sweeps, stepping the value of each parameter in
turn to cover as wide a combination as possible (limited usually by resources).
When possible, the outputs of these sweeps should be compared against a standard,
whether that is real-world data on the target phenomenon or data from a comparable
(well-validated) model.

The output collection stage is where data from the various runs is collected
and summarised in such a way that (a) the desired results are highlighted and
(b) sufficient “raw” data is still available to understand how these results have

http://dx.doi.org/10.1007/978-3-319-66948-9_10

74 E. Norling et al.

been achieved. It would be impractical to record the details of every variable for
every run of the simulation, but presenting results in summary form alone may
hide essential details. At the very least, it is essential to record the initial parameter
settings (including random seeds, if random numbers are used) so that the summary
results may be regenerated. It may also be informative to record at least a small
number of detailed traces that are illustrative of the simulation process (once one
has determined which parameter configurations produce “interesting” results).

Documentation is the last stage to be mentioned here but is something that should
be developed throughout the exploration and consolidation of a model. Firstly, as
mentioned above, the code should be reasonably self-documenting (through sensible
naming and clear formatting) to facilitate the modeller’s own understanding.
Secondly, the consolidated model should be more formally documented. This should
include any assumptions (with brief justifications), descriptions of the main data
structures and algorithms and, if third-party algorithms or code have been used,
a note to their source. This may seem like unnecessary effort, particularly if the
modeller has no intention of publicly releasing the code, but if questions arise some
months or years down the track, such documentation can be invaluable, even for
the original author’s understanding. Chapter 15 in this volume (Grimm et al. 2017)
looks at documentation and how one might approach this.

Finally, the modeller must present the model and its results to a wider audience.
This is essential to the process of producing a model, since one can only have
some confidence that it has been implemented correctly when it has been replicated,
examined and/or compared to other simulations by the community of modellers. The
distribution of the model should include a description of the model with sufficient
detail that a reader could re-implement it if desired. It should present the typical
dynamics of the system, with example output and summaries of detailed output. The
relevant parameters should be highlighted, contrasting those deemed essential to the
results with those with little or no impact. The benchmark measurements should be
summarised and presented. To maximise a simulation’s use in the community, the
simulation should be appropriately licensed to allow others to analyse, replicate and
experiment with it (Polhill and Edmonds 2007).

5.7 Tools to Aid Model Development

As indicated previously, there is now a variety of systems for aiding the development
of complex simulations. These range from programming language-based tracing
and debugging tools to frameworks designed explicitly for social simulation, which
include libraries of widely used patterns. Learning to use a particular system or
framework is a substantial investment, and because of this, most people do not
swap from system to system readily once they have mastered one (even when an
alternate system may provide a far more elegant solution to a problem). Ideally, a
modeller would evaluate a range of systems when embarking on a new project and
decide upon the most appropriate one for that project. In practice, most modellers

http://dx.doi.org/10.1007/978-3-319-66948-9_15

5 Informal Approaches to Developing Simulation Models 75

simply continue to use the same system as they have used on previous projects,
without considering alternatives. There is no simple answer as to which system
is the “best”. The available options are constantly changing as new systems are
developed and old ones stop being supported. The type of modelling problem will
influence the decision. And indeed it is partly a personal decision, depending on
the modeller’s own personal style and preferences. However, given that such an
investment is involved in learning a new system, it is a good idea to make this
investment in one that will have large payoffs and that will be useful for developing
a wide range of models.

Systems for developing and testing simulations range from the very specific to
those that claim to be fairly generally applicable. At the specific end, there are
simulators that are designed with a restricted target in mind—such as a grid-based
simulation of land use change (e.g. FEARLUS.® Polhill et al. 2001, or SLUDGE,
Parker and Meretsky 2004)—where most of the structures, algorithms and outputs
are already built in. The user has some latitude to adapt the simulation for their
own modelling ends, but the ease with which one can make small changes and
quickly get some results may be at the cost of being stuck with inbuilt modelling
assumptions, which may not be appropriate for the task at hand. The specificity of
the model means that it is not easy to adapt the system beyond a certain point; it
is not a universal system, capable, in principle, of being adapted to any modelling
goal. Thus, such a specific modelling framework allows ease of use at the cost of a
lack of flexibility.

At the other end of the spectrum are systems that aim to be general systems
to support simulation work that can, at least in principle, allow you to build any
simulation that can be conceived. Such systems will usually be close to a computer
programming language and usually include a host of libraries and facilities for
the modeller to use. The difficulty with this type of system is that it can take
considerable effort to learn to use it. The range of features, tools and libraries that
they provide take time to learn and understand, as does learning the best ways to
combine these features. Furthermore, even if a system in principle makes it possible
to implement a modelling goal, different systems have different strengths and
weaknesses, making any particular system better for some types of models and less
good for others. Thus, modellers will sometimes “fight the system”, implementing
workarounds so that their model can be implemented within the system in which
they have invested so much time, when in fact the model could more efficiently be
implemented in an alternative system.

Between these two extremes lie a host of intermediate systems. Because they are
often open source, and indeed more specific modelling frameworks are commonly
built within one of these generic systems, it is usually possible (given enough time
and skill) to “dig down” to the underlying system and change most aspects of these
systems. However, the fundamental trade-offs remain—the more of a simulation
that is “given”, the more difficult it will be to adapt and the more likely it is that
assumptions that are not fully understood will affect results.

Shttp://www.macaulay.ac.uk/fearlus/

http://www.macaulay.ac.uk/fearlus

76

E. Norling et al.

Thus, it is impossible to simply dictate which system is best to use for developing

simulation models of social complexity; indeed, there is no single system that is
best under all circumstances. However, the sorts of questions one should consider
are clearer. They include:

Clear structure: Is the way the system is structured clear and consistent? Are
there clear analogies that help “navigate” your way through various choices you
need to make? Is it clear how its structures can be combined to achieve more
complex goals?

Documentation: Is there a good description of the system? Is there a tutorial
to lead you through learning its features? Are there good reference documents
where you can look up individual features? Are there lots of well-documented
examples you can learn from?

Adaptability: Can the system be adapted to your needs without undue difficulty?
Is the way it is structured helpful to what you want to do? Are the structures
easily adaptable once implemented in your model? Does the system facilitate the
modularisation of your model so that you can change one aspect without having
to change it all?

Speed: How long does it take to run a model? Speed of execution is particularly
important when a variety of scenarios or parameters need to be explored or when
several runs are necessary per parameter configuration due to random processes
in the model.

User community: Do many people in your field use the system? Are there active
mailing lists or discussion boards where you can ask for help? If you publish a
model in that system, is it likely that it will be accessible to others?

Debugging facilities: Does the system provide inbuilt facilities for debugging
and tracing your simulation? If not, are there perhaps generic tools that could be
used for the purpose? Or would you have to debug/trace your model by manually
inserting statements into your code?

Visualisation facilities: Does the system provide tools and libraries to visualise
and organise your results? Are there dynamic visualisation tools (allowing one to
view the dynamics of the system as it evolves)? How quickly can you develop a
module to visualise the key outputs of a simulation?

Batch processing facilities: Is there a means of running the model a number of
times, collecting and perhaps collating the results? Is it possible to automatically
explore a range of parameters whilst doing this?

Data collection facilities: Are the results collected and stored systematically so
that previous runs can easily be retrieved? Is it possible to store them in formats
suitable for input into other packages (e.g. for statistical analysis or network
analysis)?

Portability: Is the system restricted to a particular platform or does it require
special software to run? Even if all your development will be done on one
particular machine, in the interests of reusability, it is desirable to use a system
that will run on multiple platforms and that is not dependent on specialised
commercial software.

5 Informal Approaches to Developing Simulation Models 77

* Programming paradigm: Different programming paradigms are more appropriate
to different types of modelling problems. If, for example, you think of things in
terms of “if-then” statements, a rule-based system might be the most appropriate
for your modelling. If instead you visualise things as series of (perhaps branch-
ing) steps, a procedural one might be more appropriate. In practice, most systems
these days are not purely one paradigm or another, but they still have leanings one
way or another, and this will influence the way you think about your modelling.

e Timing: How will time be handled in the simulation? Will it be continuous or
stepped or perhaps event-driven? Will all agents act “at once” (in practice, unless
each agent is run on a separate processor they will be executed in some sense
sequentially, even if conceptually within the model they are concurrent), or do
they strictly take turns? Will it be necessary to run the simulation in real time or
(many times) faster than real time?

Once one has considered these questions, and decided on the answers for
the particular model in mind, the list of potential systems will be considerably
shortened, and one should then be able to make an informed choice over the
available options. The temptation, particularly when one is beginning to write
models, is to go for the option that will produce the quickest results, but it is
important to remember that sometimes a small initial investment can yield long-
term benefits.

5.8 Conclusion

It is easy to try and rationalise bad practice. Thus, it is tempting to try and prove
that some of the more formal techniques of computer science are not applicable to
building social simulations just because one cannot be bothered to learn and master
them. It is true however that not all the techniques suggested by computer scientists
are useful in an exploratory context, where one does not know in advance precisely
what one wants a simulation to do. In these circumstances, one has to take a looser
and less reliable approach but follow it with consolidation once one has a more
precise idea of what one wants of the simulation. The basic technique is to mix bits
of a more careful approach in with the experimentation in order to keep sufficient
control. This has to be weighed against the time that this may take, given one does
not know which final direction the simulation will take. There is a danger of this
approach: that the modeller will be tempted by apparently significant results to
rush to publication before sufficient consolidation has occurred. There may be times
when the exploratory phase may result in useful and influential personal knowledge,
but such knowledge is not reliable enough to be up to the more exacting standards
expected of publicly presented results. This is particularly true if the model is to
be applied in a critical way that has real impacts upon people or the environment.
Thus, it is only with careful consolidation of models that this informal approach to
building simulations should be undertaken.

78 E. Norling et al.
Further Reading

Outside the social sciences, simulation has been an established methodology for
decades. Thus, there is a host of literature about model building in general. The
biggest simulation conference, the annual “Winter Simulation Conference”, always
includes introductory tutorials, some of which may be of interest to social scientists.
Good examples are Law (2008) and Shannon (1998).

For a comprehensive review of the currently existing general agent-based
simulation toolkits, see Nikolai and Madey (2009); other reviews focus on a smaller
selection of toolkits (e.g. Railsback et al. 2006; Tobias and Hofmann 2004; Gilbert
and Bankes 2002).

The chapters in this volume on checking your simulation model (Chap. 7, Galdn
et al. 2017), documenting your model (Chap. 15, Grimm et al. 2017) and model
validation (Chap. 9, David et al. 2017) should be of particular interest for anyone
intending to follow the exploration and consolidation approach to model develop-
ment. However, if you would rather attempt a more formal approach to building
an agent-based simulation model, Chap. 6 (Siebers and Kliigl 2017) discusses one
such approach in detail. You could also consult textbooks on methodologies for the
design of multi-agent systems, such as Luck et al. (2004) and Bergenti et al. (2004)
or Henderson-Sellers and Giorgini (2005). After all, any agent-based simulation
model can be seen as a special version of a multi-agent system.

References

Alam, S. J., Geller, A., Meyer, R., & Werth, B. (2010). Modelling contextualized reasoning in
complex societies with “Endorsements”. Journal of Artificial Societies and Social Simulation,
13(4), 6. http://jasss.soc.surrey.ac.uk/13/4/6.html

Bergenti, F., Gleizes, M.-P., & Zambonelli, F. (Eds.). (2004). Methodologies and software
engineering for agent systems: The agent-oriented software engineering handbook. Boston:
Kluwer Academic.

Cartwright, N. (1983). How the laws of physics lie. Oxford: Clarendon Press.

David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations.
doi:https://doi.org/10.1007/978-3-319-66948-9_9.

Edmonds, B. (2017). Different modelling purposes. doi:https://doi.org/10.1007/978-3-319-66948-
9. 4.

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12.
http://jasss.soc.surrey.ac.uk/11/4/12.html

Evans, A., Heppenstall, A., & Birkin, M. (2017). Understanding simulation results.
doi:https://doi.org/10.1007/978-3-319-66948-9_10.

Galan, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I, del Olmo, R., & Lépez-
Paredes, A. (2017). Checking simulations: Detecting and avoiding errors and artefacts.
doi:https://doi.org/10.1007/978-3-319-66948-9_7.

Gilbert, N., & Bankes, S. (2002). Platforms and methods for agent-based modelling. PNAS,
99(Suppl. 3), 7197-7198.

http://dx.doi.org/10.1007/978-3-319-66948-9_7
http://dx.doi.org/10.1007/978-3-319-66948-9_15
http://dx.doi.org/10.1007/978-3-319-66948-9_9
http://dx.doi.org/10.1007/978-3-319-66948-9_6
http://jasss.soc.surrey.ac.uk/13/4/6.html
http://dx.doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1007/978-3-319-66948-9_4
https://doi.org/10.1007/978-3-319-66948-9_4
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://dx.doi.org/10.1007/978-3-319-66948-9_10
http://dx.doi.org/10.1007/978-3-319-66948-9_7

5 Informal Approaches to Developing Simulation Models 79

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F,, et al. (2005). Pattern-
oriented modeling of agent-based complex systems: lessons from ecology. Science, 310,
987-991.

Grimm, V., Polhill, G., & Touza, J. (2017). Documenting social simulation models: The ODD
protocol as a standard. doi:https://doi.org/10.1007/978-3-319-66948-9_15.

Henderson-Sellers, B., & Giorgini, P. (Eds.). (2005). Agent-oriented methodologies. Hershey, PA:
Idea Group Publishing.

Kuhn, T. (1969). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.

Law, A.M. (2008). How to build valid and credible simulation models. In S. J. Mason, R. R. Hill, L.
Monch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 winter simulation
conference. http://www.informs-sim.org/wscO8papers/007.pdf

Luck, M., Ashri, R., & d’Inverno, M. (2004). Agent-based software development. London: Artech
House.

Nikolai, C., & Madey, G. (2009). Tools of the trade: A survey of various agent based
modelling platforms. Journal of Artificial Societies and Social Simulation, 12(2). http://
jasss.soc.surrey.ac.uk/12/2/2.html

Parker, D. C., & Meretsky, V. (2004). Measuring pattern outcomes in an agent-based model of
edge-effect externalities using spatial metrics. Agriculture, Ecosystems & Environment, 101(2—
3), 233-250.

Polhill, G., Gotts, N., & Law, A. N. R. (2001). Imitative versus non-imitative strategies in a land-
use simulation. Cybernetics and Systems, 32(1-2), 285-307.

Polhill, J. G., & Edmonds, B. (2007). Open access for social simulation. Journal of Artificial
Societies and Social Simulation, 10(3). http://jasss.soc.surrey.ac.uk/10/3/10.html

Railsback, S. F.,, Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: review
and development recommendations. Simulation, 82, 609-623.

Shannon, R.E. (1998). Introduction to the art and science of simulation. In D.J. Medeiros, E.F.
Watson, J.S. Carson, & M.S. Manivannan (Eds.), Proceedings of the 1998 winter simulation
conference. http://www.informs-sim.org/wsc98papers/001.PDF

Siebers, P-O., & Kliigl, F. (2017). What software engineering has to offer to agent-based social
simulation. doi:https://doi.org/10.1007/978-3-319-66948-9_6.

Tobias, R., & Hofmann, C. (2004). Evaluation of free Java-libraries for social-scientific
agent based simulation. Journal of Artificial Societies and Social Simulation, 7(1). http://
jasss.soc.surrey.ac.uk/7/1/6.html

http://dx.doi.org/10.1007/978-3-319-66948-9_15
http://www.informs-sim.org/wsc08papers/007.pdf
http://jasss.soc.surrey.ac.uk/12/2/2.html
http://jasss.soc.surrey.ac.uk/10/3/10.html
http://www.informs-sim.org/wsc98papers/001.PDF
http://dx.doi.org/10.1007/978-3-319-66948-9_6
http://jasss.soc.surrey.ac.uk/7/1/6.html

Chapter 6
What Software Engineering Has to Offer
to Agent-Based Social Simulation

Peer-Olaf Siebers and Franziska Kliigl

Abstract In simulation projects, it is generally beneficial to have a toolset that
allows following a more formal approach to system analysis, model design and
model implementation. Such formal methods are developed to support a systematic
approach by making different steps explicit as well as providing a precise language
to express the results of those steps, documenting not just the final model but also
intermediate steps. This chapter consists of two parts: the first gives an overview
of which tools developed in software engineering can be and have been adapted
to agent-based social simulation; the second part demonstrates with the help of
an informative example how some of these tools can be combined into an overall
structured approach to model development.

Why Read This Chapter?

To get to know the tools and techniques that software engineering has on offer when
it comes to taking a more structured approach to model building. This is particularly
useful for larger, collaborative and multidisciplinary projects. Resulting models are
easy to maintain and extend and are easy to communicate (and consequently to
reproduce), even if the models themselves are highly complex.

6.1 Introduction

In most, if not all simulation projects, it is beneficial to proceed in a systematic
way, even more for larger, collaborative and multidisciplinary projects. Agent-based
social simulation (ABSS) partially suffers from the fact that despite its increasing

P.-O. Siebers (<)
School of Computer Science, Nottingham University, Nottingham, NG8 1BB, UK
e-mail: pos@cs.nott.ac.uk

F. Kliigl
School of Science and Technology, Orebro University, Orebro, Sweden
e-mail: franziska.klugl@oru.se

© Springer International Publishing AG 2017 81
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_6

mailto:pos@cs.nott.ac.uk
mailto:franziska.klugl@oru.se
https://doi.org/10.1007/978-3-319-66948-9_6

82 P.-O. Siebers and F. Kliigl

popularity, there is no standard way of addressing model development, simulation
handling, etc. Many modellers are basically self-taught when it comes to processes
and tools involved in designing and implementing an ABSS model. Developing
an ABSS model is anything but a trivial endeavour given the conceptual depth,
often unclear level of detail and complexities involved when handing software
that contains more than one thread of control. Computer science — in particular
software engineering — has developed a set of tools that enables following the so-
called “formal” approach to system analysis, model design and implementation.
Such elements of a systematic approach make different steps explicit as well as
provide clear and precise languages to capture the concepts, content or assumptions
of the model, documenting not just the final result but also intermediate steps. Such
an approach is naturally used for model development if elements and processes
of the targeted system are more or less accessible and empirically well embedded
or assumptions to be taken are clear. In the terminology of Boero and Squazzoni
(2005), this refers to a type of model more towards the case-based model side of the
spectrum of models.

Models on the other end — theoretical abstractions — are more associated with
scientific endeavour of hypothesis building and testing. They consequently need a
much more exploratory process. Nevertheless, scientific rigor requires a systematic
procedure to ensure reproducible results, as also Norling et al. (2017) argue. Formal
languages allow to clearly formulate what shall be contained in a model, which not
only supports awareness in the overall development process but also facilitates more
unambiguous communication between all involved partners, especially between
the ones that implement the model and the rest of the group. Thus, exploratory
modelling profits as formal approaches support the thoughtfulness of the modelling
process. It helps to avoid model artefacts and supports sharing, reproducing and
reusing the model. Eventually, the model is transformed into software, and applying
software engineering supports the development of well-structured, understandable
software that is easy to maintain and easy to extend.

This chapter advertises formal tools for model conceptualisation, software
development and project management as offered by software engineering. In the
context of social simulation, these tools can either be used individually either to
help with specific modelling activities or to guide the entire modelling process.
The chapter consists of two parts: In the first part, we provide an overview
of tools and techniques used in software engineering which have been used or
suggested in a social simulation context. In the second part of this book chapter,
we demonstrate with the help of an informative example how some of these tools
can be combined into a structured framework that allows a more formal approach to
model development. The informative example is based on a real-world study where
we aimed to develop a simulation model with a multidisciplinary team to study
different facets of normative comparison.

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 83
6.2 Review of Formal Approaches to Model Development

Already in 2006, Richardini et al. identified a number of methodological problems
supposed to hinder the wider adoption of agent-based modelling and simulation in
the social sciences. In contrast to alternative forms of modelling and simulation,
ABSS is assumed not to be suitable to follow shared, standardised conventions
of how to proceed, how to describe or how to analyse a simulation model due to
its exploratory, bottom-up nature aiming at reproducing emergent processes, etc.
Building software in general had similar problems for a long time as the early (and
ongoing) discussions on the nature of software development (art, engineering or
craftsmanship) show (see, e.g. Pyritz (2003)).

There are no underlying principles of physics or other established basic knowl-
edge that could be used for building software in the same way as, for example,
rules of statics for building bridges. Nevertheless, there was the need to systematise
software development by developing guidelines, conventions and best practices
that make the development process more engineering-like, producing software with
intended quality in a predictable way. A number of process models have been
invented with the waterfall model as the most well-known traditional approach or
extreme programming as a more modern, flexible compilation of best practices.
Characteristics of the former are a number of steps that express more and more
detailed views onto the resulting software product while moving from a clarification
of what needs to be eventually implemented, tested and maintained. In modern
forms of software development approaches, fast prototyping and frequent testing
are in the centre. Iterative development with code refactoring that improves software
design replaces clearly structured, systematic larger process steps by more or less
organised smaller advance.

Although ABSS has particularities that preclude to take simulation models
as just another kind of software, software engineering offers a large repertoire
of languages and tools to support systematic and structured system analysis and
development: formal and structured text-based and diagram-based languages allow
more precise formulations of model elements than natural language would do. By
clarifying what needs to be formulated, those languages guide not only model
specification and documentation but all phases in the development. Specific process
suggestions organise different views and model description elements into a sequence
of steps that correspond to some best practice of how to proceed when designing,
implementing and working with a simulation model. Those methodologies exist
not only for simulation models in general but also for agent-based simulations in
particular. At some stage in those processes, best practices on a more technical level
support the translation of concepts into program code — such support is given by
(software) pattern formalising good solution to recurring problems.

In this section, we will present different contributions of software engineering
to support the development of ABSS models. We identified four areas of such
formal instruments in the widest sense and organised the section according to
these four elements: Methodologies as the first pillar suggest how to manage the

84 P.-O. Siebers and F. Kliigl

overall development process in a structured and aware way, from formulating the
objective behind the ABSS study to validating and deploying the simulation results.
We hereby concentrate more on the elements of the overall process that relate to
the phases from model conceptualisation to software development as we think of
software engineering tools most relevant for those. The second pillar are structured
and formal languages for expressing the concepts that are seen as relevant in the
system under consideration. These languages can be used in the different steps
for describing different views or elements of the model in an as unambiguous
as possible way. In phases towards implementation of the model, pillars 3 and 4
become essential. Architectures and pattern form a way to capture best practices in
model design and implementation, while tools support the implementation process
directly.

6.2.1 First Pillar: Development Processes and Software
Engineering Methodologies

Social scientists seem to associate software engineering-based approaches with
“formal systems” that enforce to apply a prescribed sequence of steps using formal
languages far too rigorous to be appropriate for the mostly exploratory nature
of simulation model building. Software engineering is an engineering discipline
that is concerned with all aspects of software production.! In general, it defines a
systematic process with steps that guide the developer from requirement elicitation
to implementation, validation and sometimes even maintenance of the software.

Nowadays there are a variety of more or less formal approaches in software
engineering together with some understanding which of the methods is suitable
for which kind of problem. As coined in Sommerville (2016), for example,
games are usually developed by producing a sequence of prototypes while safety-
critical software development appears to be highly formal with elaborated and
analysed specifications. In the same way as there are very different applications
of agent-based simulation, one may expect also very different ways of building
agent-based simulation software. A formal process here shall ensure that the
results possess particular qualities: The resulting software shall be reliable and
trustworthy, produced in an economic way. While the latter may mean that the
software is based on reusable components in a well-structured way, the former
qualities for simulation software refer to reproducibility of results and validity of
the implemented simulation model.

'Sommerville (2016) relates software engineering also to computer science. The latter is focusing
more on theory and fundamentals, while software engineering is more practically oriented towards
developing and delivering useful software. He also sees software engineering as a part of systems
engineering which aims at systems integrating hardware, software and process engineering.

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 85

In general, the produced software is usually not used by the programmer.
Sommerville (2016) states that the highest costs in a software project are associated
with changing the software after it has gone into use. This can also be stated
for simulation in general — not just when decisions have been taken supported
by results of a simulation study or publications have been published presenting
hypotheses and making statements based on the results of a simulation study.
Discovering too late that the model contains artefacts or does actually not answer
the question it should do can be embarrassing in the best case, deadly in the worst.

6.2.1.1 Generic Processes

Simulation engineering in general has set up a number of generic processes much
on the abstraction level of general software engineering activities. Some process
models are independent from the actual model paradigm. Basically every simulation
textbook proposes a procedure that basically organises activities such as done in
Law (2007), Shannon (1998) and Robinson (2004) or the stages of simulation-based
research in Gilbert and Troitzsch (2005). Figure 6.1 shows a generic version of
this process. This model development cycle starts with an explicit statement of the
objective that is behind the simulation study undertaken, i. e. a formulation of the
problem actually addressed. In a second step, the system is analysed; that means its
basic components and their relations are determined. Reliable information and data
sources are to be found for informing the different steps in the model development
process. Based on this analysis, a conceptual model is specified elaborating the
structure of the model, as well as the dynamics of all the interacting elements.

The conceptual model is hereby particularly important, as it helps not just to
understand the system under consideration but also to guide the subsequent phases
by documenting the hypotheses taken. In the second part of this chapter, we will
demonstrate an example approach in developing such a conceptual model. It is
quite common — not just in our example — to elaborate the conceptual model
from highly abstract descriptions of model elements and different points of view
onto the model to a more and more concrete specification that can directly inform
implementation.

QOutput Data /

Problem Analysis / Initial Model and
Formulation Data and Result
Knowledge Base Documentation

Fig. 6.1 Generic steps in a simulation study

86 P.-O. Siebers and F. Kliigl

Depending on the tools used for implementation, the production of an executable
and thus “simulate-able” representation of the model is achieved as output of
the next phase. This phase also usually happens in an iterative way, either by
adding more and more details to the model implementation or by fast prototyping
and adapting. In the last phase, the model is deployed and experimented with
to generate the intended results, which are then documented and used. Each
of the model representations produced in the different phases must sufficiently
correspond to the original system (validation); this is ensured by testing the models
individually and by verifying that one representation is sufficiently related to the
other. Figure 6.2 (presented in Sect. 6.3.1) is elaborating this process towards ABSS
model development. The focus of this chapter is on these earlier steps of a full study,
only indicating how implementation can be achieved and largely omitting running
experiments and analysing produced data.

One can also find similar suggestions for structured procedure when developing
a simulation study in ABSS. An example is Drogoul et al. (2003). They give
more specific detail about types of knowledge and roles of different human experts
involved. Activities are more detailed with respect to domain model (real agents),
design model (conceptual agents) and operational model (computational agents).

Using the similarity of tools and languages applied to model the conceptual views
on software systems consisting of multiple agents and system analysis and model
development in ABSS, there are a number of suggestions to extend methodologies
developed for agent-oriented software engineering (AOSE). One can see AOSE
as an extension of object-oriented software engineering addressing the specific
problems that arise when developing multi-agent systems; for an overview of
different methodologies, see Bergenti et al. (2004) and Gomez-Sanz and Fuentes-
Fernandez (2015). Winikoff and Padgham (2013) give a good introduction into the
general principles of AOSE. One of the earliest AOSE methodologies that have been
used to develop agent-based simulations was INGENIAS (Gomez-Sanz et al. 2010).

6.2.1.2 Specific Processes for ABSS

Also detailed, formal methodologies that are specific for developing ABSS models
have been proposed. Two examples proposing approaches similarly structured to
AOSE methodologies are easyABM (Garro and Russo 2010) and MAIA (Ghorbani
et al. 2013).

easyABM assumes different phases from system analysis, conceptual system
development, simulation design and code generation to simulation setup, execution
and results analysis. Particularly elaborated is the conceptual system modelling
phase consisting of the development of different partial models that capture
relevant views onto the model. An overall metamodel is provided for the different
aspects that provides clear high-level language concepts and their relations. The
structural system model contains sub-models for each component, determining its
abstraction level. The main components are society (composed), agents (active) and
artefacts (passive, resource manager). An interaction model describes how intra-

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 87

and interrelationships end in interactions. Hereby, a society model describes a
society based on its composition, type and rules (safety rules and liveness rules).
The central aspect of the agent model is a complex goal model. It also contains
a behaviour model composed of activities for achieving these goals, as well as
interactions with other agents and artefacts. The latter are specified using behaviour
and interactions. UML class and activity diagrams form the main means to express
those partial models. Developing the conceptual model further, simulation design is
given in a language that resembles elements of the Repast Simphony metamodel
and thus enables at least partial code generation. The case study used in Garro
and Russo (2010) to exemplify the use of easyABM is a logistics scenario using
simulation to test different management policies for vehicles stacking and moving
containers. easyABM is already characterised as a model-driven approach and
further developed towards MDA4ABMS (see below).

MAIA also focuses on conceptual modelling activities, yet social and society
aspects play a specifically central role capturing social phenomena. It guides
modelling institutions and social constructs based on a metamodel derived from the
Institutional Analysis and Development framework of Ostrom (2005) already used
in several agent-based simulation studies. The basic assumption is that social rules
and institutions are more easily accessible to modellers than capturing individual
behaviour. The MAIA metamodel is organised in five sub-models resembling
different aspects of the underlying framework (Ghorbani et al. 2013): (1) collective
structure with actors and their attributes; (2) constitutional structure with roles,
their dependencies and actions, institutional statements such as norms, shared
strategies, etc.; (3) physical structure; (4) operational structure focussing on system
dynamics; and (5) evaluation structure containing concepts to evaluate and validate
the outcomes of the system. In Ghorbani et al. (2014), these structures were
extended by formally grounded operational semantics. This makes the specification
given using the MAIA metamodel executable so that a runnable simulation can be
directly generated from it.

A purer methodology focussing on interactions is [IODA (Kubera et al. 2011).
The starting point of this methodology is the identification of interactions that
simulated reactive agents exhibit with other agents as well as their simulated
environment.

6.2.1.3 Model-Driven Development

The basic idea of model-driven development is that software development may
consist of handling models of the intended software starting from a generic level
(Stahl et al. 2006). Specifications then can be (semi) automatically transformed into
more and more platform-specific representations, eventually generating code. Basi-
cally one can see this approach as the currently most formally grounded, controlled
evolution of software. Adapting this idea to ABSS means that based on a precise
formulation of the conceptual model subsequent, more and more concrete models
are elaborated until finally a version that is fully adapted to a particular simulation

88 P.-O. Siebers and F. Kliigl

platform is achieved. The above-described specific methodologies for developing
ABSS models, MAIA and easyABM, can be seen as first steps towards model-
driven development methodologies. Garro et al. (2013) introduce MDA4ABMS
as a complete model-driven approach proposing clearly defined metamodels for
each of the major phases of development. There are ABSS-specific metamodels
on different levels of abstraction starting from a computation-independent model
(CIM) on a conceptual level, platform-independent models (PIM) with more specific
architectural and behavioural details to a platform-specific model (PSM) towards
realisation for a specific software platform. MDA4ABMS gives also guidelines and
rules for the transition between the different phases of development — making
even partially automatic transformation possible. The process is exemplified with
an extended prisoner dilemma model.

Such methodologies clearly define what elements a system analysis needs
to contain — underlying metamodels create a particular awareness behind the
conceptualisation. The assumption is that — if the original system is analysed
sufficiently thoroughly and the results of this analysis written down in a sufficiently
clear way — the simulation model can be communicated and implemented without
uncertainties. The critical activity is developing a conceptual model. The formal
elements of the methodologies shall sharpen the way the modeller looks onto the
system and guide overall model formulation in a reliable way even for models in
which the individual agents exhibit complex behaviour. Model-driven development
works best in combination with domain-specific languages (DSLs) that provide
abstractions specific for a given application domain. Beyond taking an ABSS-
specific language as a DSL, there are not many other specific languages yet. The
metamodels mentioned above actually provide DSLs for ABSS with a particular
perspective in mind. MAIA focuses more on institutions, easyABM more on the
complex goal-directed behaviour of individual agents. Franchi (2012) proposed a
specific language for agent-based social network modelling. Scherer et al. (2015)
describe a model-driven approach for conceptual modelling phases specific for the
public policy domain. Their toolset supports a semiautomated transformation of
conceptual model representations to formal policy models and then to executable
simulations of different scenarios. Their conceptual model is systematically derived
from narrative texts. The conceptual model representation at the centre of their
approach is specific for public policy development process. This adaptation to the
policy domain makes the overall process particularly suitable for involving different
stakeholder groups.

6.2.1.4 Agile Approaches

Such structured methodologies seem to resemble more classical waterfall type of
software engineering approaches. Knublauch (2002) reports experiences with using
extreme programming as a more modern, agile approach to develop agent-based
software. Extreme programming (Beck 2004) is more like a collection of best
practices and principles such as “on-site customer” resulting in daily contacts with

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 89

stakeholders to avoid the system developing into something which is actually not
intended. Another principle is “simple design”; that means producing software that
solves the particular problem and nothing else. With “refactoring”, it is ensured that
the quality of software design is improved after each iteration in the development
cycle. “Short releases” as a principle mean many executable prototypes and software
testing is in the centre of the methodology. These principles are as important as
the rather more prominent “pair programming” way of implementation, in which
two software developers sit in front of the monitor programming together —
one coding, the other supporting. Extreme programming as overall approach may
fit also to developing model specifications and simulation system formalisations
using structured methodologies mentioned above. Short releases and testing would
then correspond to running and analysing prototypic simulation runs in an overall
iterative approach.

Moyo et al. (2015) organise the development of an agent-based simulation
study using SCRUM, an agile approach to manage software development. This
article forms a good introduction to agile software development methodologies
for simulation in general and gives a case study modelling alcohol consumption
dynamics.

6.2.1.5 Formal Methodologies Versus Modelling Principles

None of these more formal methodologies for developing agent-based simulations
actually contradicts the principles or informal strategies that are proposed in
the social simulation community for model development. Examples for those
principles are the KISS principle stating that a model should be as simple as
possible. A contrasting principle is the KIDS strategy (Edmonds and Moss 2004)
arguing that a model should be preferred that is understandable and descriptive.
Simplification should not be exaggerated, especially before fully understanding the
system to be modelled. Another strategy is the so-called pattern-oriented modelling
(Grimm et al. 2005) that focuses on reproducing all pattern or stylised facts
observable in the underlying data. General guidelines from a simulation engineering
point of view can be found in Kasaie and Kelton (2015) but also in Richiardi et
al. (2006). All these informal strategies can be combined with the more formal
methodologies mentioned here. Underlying metamodels are usually very generic
and can be used to capture many different societies, agents, etc.

6.2.2 Second Pillar: Structured and Formal Languages

In contrast to natural language, structured and formal languages offer a mean
to clearly describe a system. Formal languages form important elements of the
methodologies discussed in the last section but have also a value on their own.
Syntax and semantics of language elements and their relations are precisely given.

90 P.-O. Siebers and F. Kliigl

They may be so precise that a model fully described in a formal language may even
be automatically processed — execution or analysis may be done without running
the description. Often formal languages are distinct from programming languages
due to their higher abstraction level enabling more meaningful constructs based
on a clearly defined metamodel. Due to this high-level property, descriptions in
the formal language can be more compact and focussed on the relevant aspects.
Consequently, they are apt for specification and documentation. The clearly defined,
underlying metamodel may at first sight be more restrictive than natural language,
but the advantage of this restriction is that it may result in a more precise and clearer
description.

Some of the languages described below are embedded into frameworks in order
to be executable. That means it may be possible to directly run a simulation specified
in that language without first translating it into a programming language. If this
is not fully possible, there might be a chance to create a code skeleton from the
description that can then be complemented for a full implementation. Even without
any implementation, specification in some formal languages can be processed
directly for deriving properties or for comparing the specified model with likewise
formalised high-level system descriptions.

There is a plethora of formal languages that can be used for capturing ABSS
models or their elements. Different languages have different foci and are useful for
different objectives, or as Edmonds (2004) puts it, “Formal Systems (such as logics)
are not the content of theory but merely a tool for expressing and applying theory
in a symbolic way” (p. 1, italics in the original). So they form an instrument for
expressing a model or elements of a model. The first group of languages that may
come into one’s mind when thinking about formal languages are logic based. Many
different logical languages exist; each of them focuses on particular elements or
uses a different starting point (Fasli 2004).

6.2.2.1 Logic-Based Languages

Languages for logic-based modelling correspond to mathematics as a language for
analytical modelling. The language comes with certain constraints limiting the range
of particular details that can be formulated. If those details are not relevant when
modelling a system, using such a formal language is preferable as it makes tools
available for fast or even automated analysis, for fast simulation, etc. An example
for a useful tool for ABSS based on logics is the LEADSTO language (Bosse et al.
2005). Its statements as extension of predicate logics can be used for expressing time
dependencies between statements. T. Bosse suggests using this logic to describe the
overall dynamics of a simulation model so that the output data can be automatically
tested for whether the statements hold in the actual simulation runs. In AOSE,
logic-based languages play in particular a role in the area of verifiable specification
languages (for a review see Mascardi et al. 2004).

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 91

6.2.2.2 Algebraic Specification Languages

Besides formal logics, there are many languages that can be used for describing
agent-based software as well as ABSS models. d’Inverno and Luck (2001), for
example, used the algebraic specification language Z for formally describing
different multi-agent systems and their features for clarifying and understanding
the core concepts. There are a lot of approaches for formalising particular aspects,
such as architectures, organisations, etc. Examples that are relevant as they not
just cover agents in isolation are Weyns and Holvoet (2004) and Helleboogh et al.
(2007). The language used there are more or less formal algebraic but less structured
than, for example, Z. However, the contents are particularly interesting as they show
how interactions between agents and between agents and their environment can be
captured in a precise and unambiguous way. They also demonstrate on what level
of detail a fully clear specification would need to be given.

6.2.2.3 Petri Nets

Another example of a formal language that has been used for specifying multi-agent
systems on different levels of aggregation are Petri nets. Kohler et al. (2007) show
how social theories can be formalised using this graphical language of “places”
and “transitions” with “tokens” traveling through the network. A place may hold
tokens, while a transition transports tokens from one place to another on a strictly
local basis. In computer science, Petri nets form an established modelling tool for
concurrent, interacting processes and their synchronisation. They are amendable for
theoretical analysis, but their overall state changes — when becoming too complex
for analysis — can also be simulated as places and transitions have a clearly given
semantics. For expressing agent interaction and behaviour, complex token structures
are needed to actually represent a network on their own.

6.2.2.4 Object-Oriented Simulation and DEVS

In the object-oriented simulation community, formal specification languages have
been invented and found wide dissemination. The most prominent example is DEVS
(Discrete EVent system Specification) initially introduced by Zeigler (1990), a
specification language for object-oriented simulation models that is based on notions
from general systems science. Initially restricted to discrete event modelling and
simulation, meanwhile it is seen as a more general approach that can also be used for
continuous systems. An atomic model consists of a description of the input, state and
output variables, a specification of which value combinations of input variables are
fed into the running simulation (“input segment”), transition functions for updating
state and output variables, as well as a time advance function that characterises how
time is updated. Atomic models can be aggregated to composed models. Due to its
generality, DEVS was advertised for use in ABSS by Duboz et al. (2006). Hocaoglu

92 P.-O. Siebers and F. Kliigl

et al. (2002) focus on giving more structure to the state of an atomic model in order
to allow for more complex agent behaviour. Specifications formulated in DEVS can
be executed using specialised environments such as JAMES (Himmelspach et al.
2010).

6.2.2.5 Object-Oriented Software Specification and UML

In AOSE the most prominent language for specifying particular views onto the
overall system is UML. UML was developed for supporting software engineering
processes (from requirement analysis to implementation and documentation) by
providing a language consisting of different specialised diagrams that address
different aspects of an object-oriented software system (Fowler 2003). It is actually a
semiformal diagram language. That means it allows some extent of vagueness when
describing a system. There is an additional formal language — OCL, the object
constraint language — that can be used to add information that cannot be expressed
in the diagrams directly.

The first edition of UML — used for developing object-oriented software —
was defined in the mid-1990s as an integration of different diagram notations from
different object-oriented modelling methods. Especially in AOSE, there have been
a number of suggestions for extensions, e.g. class diagrams containing information
about the particular social organisation, behaviour diagrams containing structures
for particular agent architectures, etc. Those extensions were mostly done for
specific AOSE methodologies. The best-known extension for software agents was
Agent UML (Odell et al. 2000), which mostly pertained to sequence diagrams for
enabling the formulation of more flexible and diverse interactions and reactions to
messages than simple method calls. Some of these extensions became part of the
UML 2 standard, in a graphically different way than originally proposed by Agent
UML. Since alternatives and conditional reactions can now be formulated in UML
2, Agent UML has been declared obsolete (Bauer and Odell 2005).

As ABSS in general are often designed and implemented using object-oriented
languages and tools, Bommel and Miiller (2007) motivate the use of UML diagrams
as a suitable tool for communication between different experts involved in a
simulation project. A good introduction to UML for ABSS can be found in (Bersini
2012) or (Siebers and Onggo 2014).

UML proposes various types of diagrams to capture different aspects of an
overall object-oriented software system. The following diagram types are used
mainly in an agent-based simulation context. In the second part of this chapter, we
will illustrate their use in more detail.

* Use case diagrams show different scenarios of how the user may interact with
the system. They could also be applied — on a coarse level — for interactions
between an agent and its environment.

* Class diagrams show the static structure of the software system by connecting
specialised classes to more general ones or showing which classes are composed

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 93

of others or how classes are otherwise linked to each other. This type of diagram
is not just suitable for depicting an agent’s internal setup but also its embedding
into an organisation structure.

o State and activity diagrams can be used to capture dynamics. They show the
states that an (typical) entity can be in, as well as the transitions between them.
Activity diagrams focus on behaviour as a flow of activities also in relation to
other agents’ activities.

» Sequence diagrams show how entities interact as a sequence of messages that
they exchange.

In addition, other diagram types are proposed to capture details of the package
structure, deployment, etc. In the second part of this chapter, we give more details
on how to use UML diagrams for model development and embed their use into some
form of best-practice process guiding the development of a conceptual model.

6.2.3 Third Pillar: Architectures and Patterns

Methodologies and the use of a formal and precise language to describe different
aspects of the conceptual model as well as to capture model specification, etc.
are particularly important for people just starting with modelling and simulation
as they provide guidelines for managing the development process and support for
conceiving a model. A third pillar of software engineering for ABSS is related
to best practices in designing models that means they provide advice on how to
structure and build the actual software.

In the seminal book on software patterns (Gamma et al. 1994), best practices
in (object-oriented) software design have been formalised and captured in such a
way that they can easily be communicated and even taught. Over the years software
design pattern has been suggested for many problem types, each of them giving
a particular abstract “good” solution. Patterns have been also suggested in AOSE
(see Juziuk et al. 2014 for a general survey). As North and Macal (2011) state,
the standard software patterns are only of limited use for ABSS as the problems
addressed by them are of a completely different nature to the ones needing to
be solved when developing simulations. For simulation, one may distinguish two
different views on design pattern: (1) design pattern that directly relates to particular
phenomena to be modelled or (2) design pattern that solves problems on a more
technical level. Kliigl and Karlsson (2009) give two examples for the first type
of pattern, e.g. they describe what agent behaviour can produce exponential agent
number growth. North and Macal (2011) give a list of pattern for the second case,
e.g. pattern for agent scheduling, how to design spatial environments in an efficient
way or the model-view-controller pattern, which is also the most well-known pattern
in software engineering, describing how to separate visualisation from application-
specific logic.

94 P.-O. Siebers and F. Kliigl

Agent architectures can be seen as specific pattern for agent-based systems.
Depending on whether human decision-making shall be reproduced in ways that
resembles how humans think or whether the agents need to exhibit complex and
flexible behaviour, different architectures can be used. For the former type, the so-
called cognitive architectures such as SOAR (Laird et al. 1987; Wray and Jones
2005) or ACT-R (Anderson et al. 2004; Taatgen et al. 2006) have been suggested
(for a short overview, see (Jones 2005)). Those architectures resemble theories from
cognitive science supported by results from experiments with humans. Especially
SOAR has been used for reproducing human behaviour in military training systems
(Wray et al. 2005).

Although often indicated, the so-called BDI architecture is not a cognitive
agent architecture but a practical reasoning architecture (Wooldridge 2009). Its
underlying motivation consists of a human-inspired means-end analysis separating
the decision about which goal (“desire”) to pursue from the actual planning towards
the goal the agent is committed to achieve (“intention”). The BDI architecture
has turned out to be very useful for software agents in general. It also appears
to be a reasonable choice for organising the internal decision-making of agents
in simulation, especially when more sophisticated agent behaviour needs to be
formulated (see, e.g. Joo (2013), Caillou et al. (2015) or Norling (2003)). Even
in simulations with rather simple agent behaviour, it is advisable to use an agent
architecture to organise the behaviour description, so that the agent program is more
transparent, better readable and thus better analysable and maintainable.

Although not introduced as agent architectures, the general setup of rule-based
systems, state automata or decision trees can provide important ways to structure
agent behaviour descriptions and separate agents’ decision-making from the actual
processing. A rule-based system contains a set of rules as “if . .. then...” constructs
and a mechanism that systematically tests the current perception and agent state
against the if parts of the constructs. If something is true, the second part, the
“then...” part, is activated. Using such a setup instead of cascades of if-then-else
programming language statements supports clarity of design and extensibility of
the decision-making model. Similar are decision trees, which form another way
to avoid ugly, inflexible implementations with hard-wired if-then-else cascades. A
decision tree is a data structure that organises conditions in nodes and different
alternative values for those conditions in the branches out of the node. Another
architecture pattern is a state automaton with an explicit representation of the state
that the agent is in. The state is associated with particular behaviour. State changes
happen based on a trigger relevant in the current state. An older, slightly more
complex agent architecture following those ideas is the EMF frame (Drogoul and
Ferber 1994). All agent architectures presented in AOSE can also be viewed as
local pattern for developing agents. They suggest a structure that supports design
and implementation of agents with non-trivial behaviour programs. Clearly, those
architectures can be useful for ABSS as well.

In addition to software design patterns and agent architectures, there is another
category of (software) pattern relevant for ABSS. These are meta-patterns capturing
best practices in working with a model, not directly related to the model design or to

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 95

a specific methodology. A good example is the ODD protocol (Grimm et al. 2017)
for documenting ABSS models. It describes a framework of elements that make
up a complete and useful documentation. One can also interpret any description
of best practices for model testing, validation, etc. as such a meta-pattern. Rossiter
(2015) describes a reference architecture for a simulation system in general, clearly
structuring the overall software into different layers of functionality. He also uses
this reference architecture to explain the setup of existing platforms and to introduce
a new toolkit.

6.2.4 Fourth Pillar: Tools and Development Environments

There are many useful tools available for all phases of developing and using ABSS
models. For the purpose of this chapter, we want to single out two particular types:
specialised drawing tools and software development platforms.

The diagrams capturing a model in, for example, UML may become quite
large and complex. Thus tools that offer specialised shapes and other convenient
support such as grid-based layout alignment, automated connections, etc. are highly
valuable for making the drawing process more efficient and enable the modeller to
concentrate on the important aspects of the description. Especially for UML, there
are a number of good tools available, such as Visual Paradigm? or Visio.> Some
platforms for implementing ABSS models, as, for example, Repast (Ozik et al.
2015) or AnyLogic (see below), come with tools for drawing some UML diagram
types that are then directly translated into code skeletons.

Professional software development is usually done using an integrated develop-
ment environment (IDE). This is basically a collection of tools facilitating software
development, such as elaborated program editors with built-in syntax checks, code
completion, etc. allowing the programmer to concentrate on the semantics of
the program rather than its syntax. Prominent IDE examples are Visual Studio®
or Eclipse.” Such development environments also support, for example, code
documentation by providing tools that automatically generate UML class diagrams
from source code.

Inspired by those general IDEs and in addition to low-level programming
support, an IDE for ABSS could contain

* Conceptual views on the implemented model with diagrammatic representations
of what happens in the model. Drawing tools can be integrated with automated
code generation from diagrams representing agent and organisational structures
and agent behaviour and interaction dynamics.

2www.visual-paradigm.com. A free for non-commercial use community version exists.

3products.office.com/en/visio/.
4www.visualstudio.com.

Seclipse.org.

http://www.visual-paradigm.com
http://products.office.com/en/visio/
http://www.visualstudio.com
http://eclipse.org

96 P.-O. Siebers and F. Kliigl

e Simulation runtime support — tools for handling simulated time and space
(maps), animation, inspection tools for individual agents and their interactions.

» Appropriate ways to integrate model documentation, e.g. facilities to add com-
ments or specific elements of an ODD model documentation.

* Automated generation of simulation runs including interfaces for conducting
elaborated tests or manipulating model settings during runtime.

* Debugging and validation support.

* Convenient tools for defining experiments and input and output data handling.

Such tools make model handling more convenient and efficient, yet they are
built around a particular simulation platform that manages and executes a particular
model implementation.

Various specialised platforms for ABSS are available that aim at giving specific
support. Over the last decades, hundreds of platforms and tools have been suggested.
A Wikipedia page® lists 89 tools (in April 2016). Wikipedia also provides an
up-to-date list of their attributes. Only a few of them deserve to be called an
IDE for ABSS such as Repast Simphony (repast.github.io/repast_simphony.html),
AnyLogic (www.anylogic.com/) or SeSAm (www.simsesam.org). In addition to
that list, there are a number of partially outdated surveys (Nikolai and Madey
2008; Railsback and Lytinen 2006; Kravari and Bassiliades 2015). The most
prominent platforms are NetLogo (ccl.northwestern.edu/netlogo/) and Repast
(repast.sourceforge.net/), they are covered in of each of the surveys. Other analysed
platforms include AnyLogic, MASON (cs.gmu.edu/~eclab/projects/mason/), Gama
(gama-platform.org) or Swarm (http://www.swarm.org).

Which platform to use depends on a variety of factors ranging from the
modellers’ personal preferences and experience to the properties of the model to
be implemented. Also whether the platform is a commercial one or open source
often plays a role. Providing general advice about the “best” platform is impossible.

6.3 Illustrative Example: Normative Comparison
in an Office Environment

Up to now we have seen that software engineering in general and AOSE in particular
offer a lot of support for developing ABSS models. Most of this support can
be coined “formal”: at the heart are clearly given process models describing the
different steps to go through when doing a simulation study. This is particularly
important for less experienced modellers as these process models help to solve the
problem of translating vague mental representations of models into descriptions that
are more and more refined. These methodologies help to know where one should
start when doing a simulation study.

Shttps://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software, accessed
07/05/2016.

http://www.anylogic.com/
http://www.simsesam.org
http://repast.sourceforge.net/
http://cs.gmu.edu/~eclab/projects/mason/
http://gama-platform.org
http://www.swarm.org
https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 97

In the following we show based on an illustrative example that there is no need
to be afraid of formal approaches but that they can indeed be useful to support
awareness about the actual model content when developing a model.

6.3.1 Our Structured Approach

When developing ABSS models, one faces the question of how to build them and
where to start. This can be challenging not only for novices in the field but also
for multidisciplinary teams where it is often difficult to engage everyone in the
modelling process. Over the years we have developed a quite sophisticated “plan
of attack™ in the form of a framework that guides the model development and can
be used by either individuals or teams.

When used by individuals, they need to consider the perspective of potential team
members (i.e. slip into their roles) during each process step. When used by teams,
co-creation is an important aspect. Team members need to be open-minded about
the use of new tools and methods and about the collaboration with researchers from
other domains and business partners. This is often not easy for researchers trained
in more traditional approaches or for business partners who often expect researchers
to act like consultants, providing them with a report and a list of recommendations
(Mitleton-Kelly 2003).

Our framework, called the “Engineering Agent Based Social Simulation” frame-
work (or EABSS framework for short), supports model reproducibility through
rigorous documentation of the conceptual ideas, underlying assumptions and the
actual model content. The framework provides a step-by-step guide to conceptual-
ising and designing ABSS models with the support of software engineering tools
and techniques. Figure 6.2 provides an overview of the steps that make up the
development process.

Choice of: UML State Machine
Diagrams + Transition Tables; UML
Class Diagrams; UML Activity Diagrams

Choice of: UML State Machine
Diagrams + Transition Tables; UML
Class Diagrams; UML Activity Diagrams

B (Categories; Habits)

Fig. 6.2 Overview of our EABSS framework

“
E
m
3
8
(=]
-]
=
=
7}
=
o
@
]
|
=
>

UML Class Diagram
UML Sequence Diagram

(e.g. Hypothesis)
(Environment and Population)

UML Use Case Diagrams

(Actors; Environment; Theories)

98 P.-O. Siebers and F. Kliigl

While the framework represents a structured modelling approach, there will
always be iterations required by the users to improve definitions from previous
tasks. When stepping through the framework, the users may realise that they did
not consider important elements/details in a previous step or that they considered
too many or that they considered them wrongly. In particular discussions in focus
groups unearth these kinds of issues and are therefore extremely valuable for the
model development process. The framework is a suitable tool for well-organised
discussions and to capture the knowledge and ideas coming out of these discussions
in a formal way. While there is a given sequence of steps that users should follow,
they need to be prepared to go back to a previous task if required and apply changes.
Consequently this means that the users do not have to worry too much if in the
initial rounds they get things wrong or things feel incomplete. They should simply
move on to the next task if they feel that they have some form of contribution.
Our experience is that it is necessary to revisit each task four to five times before
there is a satisfying result that is acceptable to all stakeholders. In that sense, the
approach somewhat resembles “agile” approaches of software engineering with
frequent interactions with stakeholders and frequent iterations and not investing a
lot of time into specifications that are obsolete after the next discussion.

While this framework will not work perfectly for all possible cases, it provides
at least some form of systematic approach. The user should be prepared to adapt
it to fit individual needs. In the following we will explain each step (including the
necessary tools) and exemplify its application.

In order to demonstrate the use of our structured approach, we use an illustrative
example, which is based on work by Zhang et al. (2011), Susanty (2015) and Bed-
well et al. (2014). In this example we focus on the simulation model development
to support studying the impact of normative comparison amongst colleagues with
regards to energy consumption in an office environment. Normative comparison in
this context means giving people clear regular personalised insight into their own
energy consumption (e.g. “you used x% more energy than usual for this month™)
and allowing them to compare it to that of their neighbours (e.g. “you used x%
more than your efficient neighbours”). A simulation study could compare the impact
of “individual apportionment” vs. “group apportionment” of energy consumption
information on the actual energy consumption within the office environment.

6.3.2 Gathering Knowledge

The task of knowledge gathering is one that happens throughout the structured
modelling approach and in many different ways. The main ones we use in our
framework are literature review, focus group discussions, observations and surveys.
The knowledge gathering is either a prerequisite for tasks (e.g. a literature review)
or embedded within the tasks (e.g. focus group discussions). For our study, all
focus groups were led by a computer scientist (the initiator of the study), and the
participants consisted of a mixture of academics and researchers from the fields of
computer science, business management and psychology. In this example study, we

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 99

did not engage with business partners. The team consisted of five core members
who would participate regularly in the focus groups. Over the years we have made
the experience that for our purposes smaller focus groups work best. Whenever
we describe a task, in the following, we also briefly mentioned when and how the
required knowledge was gathered.

6.3.3 Defining the Objectives

The first step within the framework is to define objectives in relation to the aim of
the study. In our case this was done through a combination of a literature review and
focus group discussions. After some iteration we came up with the following:

e Our aim is to study normative comparison in an office environment.
* Our objective is to answer the following questions:

— What are the effects of having the community influence the individual?
— What is the extent of impact (significant or not)?
— Can we optimise it using certain interventions?

e Our hypotheses are:

— Peer pressure leads to greener behaviour.
— Peer pressure has a positive effect on energy saving.

With the objectives defined, we then need to think about how we can test these
objectives. For this we need to consider relevant experimental factors and responses.
Experimental factors are the means by which the modelling objectives are to be
achieved. Responses are the measures used to identify whether the objectives have
been achieved and to identify potential reasons for failure to meet the objectives
(Robinson 2004). In other words, experimental factors are simulation inputs that
need to be set initially to test different scenarios related to the objectives while
responses are simulation outputs that provide insight and show to what level the
objectives have been achieved. In our case the hypotheses are very helpful for
defining an initial set of experimental factors and responses:

» Experimental factors

— Initial population composition (categorised by greenness of behaviour)
— Level of peer pressure (“individual apportionment” vs. “group apportion-
ment”)

* Responses

— Actual population composition (capturing changes in greenness of behaviour)
— Energy consumption (of individuals and at average)

The experimental factors and responses defined at this stage are still very broad
and need to be revisited when more information about the model becomes available.

100 P.-O. Siebers and F. Kliigl
6.3.4 Defining the Scope

At this stage we are interested in specifying the model scope. This requires some
initial knowledge gathering. We did this through a literature review and observation
of the existing system. With the help of the knowledge gathered, we were then
able to define the scope of the model. Decisions were made through focus group
discussions. To guide the discussion and to document the decisions made in
a more formal way, we used an adaptation of the conceptual modelling scope
table proposed by Robinson (2004) specially tailored towards ABSS modelling.
The general categories we consider are “Actor”’, “Physical environment” and
“Social/Psychological aspects”.

In order to make decisions about including or excluding different elements within
these categories, we asked ourselves, amongst others, the following questions:

* What is the appropriate level of abstraction for the objective(s) stated before?
— This would define the level of abstraction acceptable.

* Do the elements have a relevant impact on the overall dynamics of the system?
— Then they should be included.

* Do the elements show similar behaviour to other elements?
— Then they should be grouped.

After some discussions within the focus group, we decided that “transparency”
would be the key driver for our decision-making and that we want to
abstract/simplify as much as possible while still keeping a realistic model (i.e.
we aimed to explicitly follow the KISS principle mentioned in Sect. 6.2.1). In
order to have easy access to data, we decided to use our own offices (University of
Nottingham; School of Computer Science) as the data source. Table 6.1 presents
the resulting scope table in which we state for every element whether we want to
include or exclude it and why we decided either way.

6.3.5 Defining Key Activities

Interaction can take place between actors and between an actor and the physical
environment it is in. Capturing these at a high level can be done with the help
of UML use case diagrams. In software engineering, UML use case diagrams are
used to describe a set of actions (use cases) that some system or systems (subject)
should or can perform in collaboration with one or more external users of the
system (actors). These diagrams do not attempt to represent the order or number
of times that the systems actions and subactions should be executed. The relevant
components of a use case diagram are depicted and described in Table 6.2.

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 101

Table 6.1 Scope table for our illustrative example

Category Element Decision Justification
Actor Staff Include as group Regularly occupy the
Research fellows | (User) office building
PhD students
UG+MSc Exclude Do not have control over
students their work environment
Visitors Exclude Insignificant energy use
Physical Appliance | HVAC Exclude We only need one major
environment (Heating + Venti- energy consumer to test
lation + Aircon) the theory; we decided
system to go for electricity
Lighting Include Interacts with users on a
daily basis; controlled
by user
Computer Include Interacts with users on a
daily basis; controlled
by user
Monitor Exclude Modelled as part of the
computer
Continuously Exclude Constant consumption
running of electricity; not
appliances controllable by
individuals
Personal Exclude No way to measure
appliances consumption
Weather | Temperature Exclude Not necessary for
proof-of-principle
Natural light level | Exclude Not necessary for
proof-of-principle
Room Office Include Location where
electronic appliances are
installed
Lab Exclude Mainly used by
UG+MSc
Kitchen Include as group Common areas
(Other room) frequently used by
“users”
Toilet
Corridor Include Commonly used when

“users” move around

(continued)

102

Table 6.1 (continued)

P.-O. Siebers and F. Kliigl

Category Element Decision Justification
Social/Psychological | Comparative Include Effective strategy to reduce
aspect feedback energy consumption in residential
building
Informative Include Effective strategy to remove
feedback barriers in performing specific
behaviour
Apportionment | Include Potential strategy to reduce
level energy consumption in office
building
Freeriding Include Behaviour that differentiate two
apportionment strategy
Sanction Include Factor to encounter freeriding
behaviour
Anonymity Include Factor to encounter freeriding
behaviour

Table 6.2 Relevant use case diagram components

Component | Symbol Description
Actors Q Entities that interface with the system (this can be people or
1 other systems). Think of actors by considering the roles

they play

Use cases Q Denotes what the actor wants your system to do for them

System I:l Indicates the scope of your system: the use cases inside the

boundary rectangle represent the functionality that you intend to
implement

Relationships _— There are different types of relationships. In a relationship

between use case and actor the associations indicate which
actors initiate which use cases. A relationship between two
use cases specifies common functionality and simplifies use
case flows. We use <<Include>> when multiple use cases
share a piece of same functionality which is placed in a
separate use case rather than documented in every use case
that needs it. We use <<Extend>>when activities might be
performed as part of another activity but are not mandatory
for a use case to run successfully. We are adding more
capability

While in software engineering the actors are outside the system boundaries (they
are usually the users of software, and the software represents the system), when
using use case diagrams in an ABSS context the actors are inside the system
(representing the humans that interact with each other and the environment). The
system boundaries are the boundaries of the relevant locations (which in our case
would be the building boundaries of the office environment). It is important to
understand that the purpose of these diagrams is to promote understanding; as long

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 103

Office Environment

—
d use other room)
L “——I,———-"'
——" F
_— Y,

_—-f- - 4 f
= /
= use corridor /.
O N i ___4(_ oo O
o

T

<<inchude>>

—\< use offu:e - ' i

dncludes>

|ndude <mn|ude >

/-/'

use computer H
\ _/ \\

—.

Gromote gree@

Qbsewe others >

Fig. 6.3 Use case diagram for our illustrative example [drawn with Visio]

as they capture the ideas and help to explain them, they are very useful. The use
case diagram which we developed for our illustrative example through focus group
discussions is depicted in Fig. 6.3.

6.3.6 Defining Stereotypes

In social psychology, a stereotype is a thought (or belief) that can be adopted about
specific types of individuals or certain ways of doing things (McGarty et al. 2002).
In order to be able to represent a specific population in our simulation models,
we define stereotypes that allow us to classify the members of this population.
We derived our stereotype templates (categories, habits to be considered and type
names) through focus group discussions and through considering the knowledge
gathered previously. Getting the stereotype templates right is more an art than a
science. After long debates we decided to have two categories of stereotypes: one
related to “work time” and the other related to “energy-saving awareness”. Once the
categories were identified, we had to come up with the habits that describe these
stereotypes:

» Habits for work time category:

— Aurrival time at office
— Leaving time from office

104 P.-O. Siebers and F. Kliigl

* Habits for energy-saving awareness category:

— Energy-saving awareness
— Likelihood of switching off unused electric appliances
— Likelihood of promoting greenness

To get the information we needed to fully define the stereotypes, we con-
ducted a survey amongst our school’s academics, researchers and PhD students,
anonymously asking them questions about their habits towards work time and
energy-saving awareness. We then analysed the data through cluster analysis to
come up with the stereotype groups, assigned some speaking name and populated
the stereotype tables with the “habit” information. The stereotype definitions we
ended up with can be found in Tables 6.3 and 6.4.

6.3.7 Defining Agent and Object Templates

For each of the relevant actor types we have identified in our scope table, we have
to develop an agent template containing all information for a prototypical agent.
These templates will act as a blueprint when we later create the actor population for
each simulation run. When it comes to modelling the environment, we need similar
templates for everything relevant we have identified in the scope table that lends
itself to be represented as an object (e.g. the appliances). For other things (e.g. the
weather), we need to consider other modelling methods. From a technical point of
view, there is no big difference between agents and objects. Thus we can use the
same types of diagrams to document their design. We will therefore use the term

Table 6.3 User stereotypes defining work time habits

Stereotype Working days Arrival time Leave time
Early bird Mon—Fri 5 am-9 am 4 pm-7 pm
Time table complier Mon—Fri 9 am-10 am 5 pm-6 pm
Flexible worker Mon—Fri 10 am-1 pm 5 pm-11 pm
Hardcore worker Mon-Fri + Sat 8 am-10 am 5 pm-11 pm

Table 6.4 User stereotypes defining energy-saving habits

Probability of Probability of sending
Energy saving switching off emails about energy
Stereotype awareness [0—100] unnecessary appliances | issues to others
Environmental | 95-100 0.95 0.9
champion
Energy saver |70-94 0.7 0.6
Regular user | 30-69 0.4 0.2

Big user 0-29 0.2 0.05

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 105

“entity” when we talk about both. There are three different diagram types that are
relevant for defining entity templates: UML class diagrams (to define structure),
UML state machine diagrams (to define behaviour) and UML activity diagrams
(to define logic). Often only a subset of these is required. When developing the
templates, we create the different diagrams in parallel and in an iterative manner as
often one informs and inspires the development of the other. As with the stereotypes,
getting the entity templates right is not hard science and will therefore require many
iterations.

In software engineering UML class diagrams are used to define the static
structure of the software to be developed by showing classes (which are blueprints
to build specific types of objects) and the relationships between classes. These
relationships define the logical connections between classes (association, aggrega-
tion, composition, generalisation, dependency). UML class diagrams can be very
complex, and for our purposes it is often enough to consider individual classes.
Therefore we focus on how to define individual classes here. In UML classes
are depicted as rectangles with three compartments. The first compartment is
reserved for the class name. This is simply the name of the entity as defined in
the scope table (e.g. “user” for our user agent template). The second compartment
is reserved for attributes (constants and variables). Often we would capture key
state variables (e.g. “energy saving awareness”), key parameters and key output
variables (e.g. “own energy consumption”) here. The third compartment is reserved
for operations that the user may perform. For each operation, we define some
function names that indicate what kind of additional code we have to produce
later (e.g. “moveToNewLocation()”). The brackets indicate that this is a function.
Figure 6.4 shows as an example the user class definition we developed in parallel
with the other template diagrams in several focus group discussion sessions.

In software engineering, UML state machine diagrams (sometimes just called
“state charts”) are used to represent the dependencies between the state of an object
and its reaction to messages or other events. State machine diagrams show the states
of a single object, the events or the messages that cause a transition from one state
to another and the actions that result from a state change. A state machine diagram
has exactly one state machine entry pointer which indicates the initial state of the
agent. A state in a state machine diagram models a situation during which some
invariant condition holds. Usually time is consumed while an object is in a specific
state. A simple state is a state that does not have substates, while a composite state is
a state that has substates (nested states). The relevant components of a state machine
diagram are depicted and described in Table 6.5.

In our case we use state machine diagrams to define the behaviour of our entities.
This type of diagram is particularly useful as it can be automatically translated into
source code by IDEs who support such features. One can use several diagrams
(e.g. one representing physical states and one representing mental states) for the
same entity. A state machine diagram is not always meaningful (e.g. if there are no
relevant states that need to be represented to capture the behaviour) or necessary
(e.g. “energy saving awareness” could be expressed in states “aware” and “not
aware” but also as a state variable that represents the level of awareness). There is

106

Fig. 6.4 User class definition
[drawn with Visual Paradigm]

P.-O. Siebers and F. Kliigl

User

-workTimeStereotype
-workingDays

-arrival Time
-leaveTime

-energySavingAwareness
-likelihood ToSwitchOffAppliances
-likelihood ToPromote Greeness
-ownEnergyConsumption
-ownOffice

-currentOffice

-motivationLevel

-freerideAttitude

-energySavingAwarenessStereotype

+moveToNewLocation()
+compareEnergyConsumption()
+switchOffAppiance()
+promoteGreeness()
+adaptMotivationLevel()
+calculateEnergyConsumption()

Table 6.5 Relevant state machine diagram components

Component Symbol

Entry pointer l[e—
State

Initial states
pointer

Final state

-
-
Transition —_—

Branch
Shallow history

Deep history e

Description
Indicates the initial state after an object is created

Represents a locus of control with a particular set of
reactions to conditions and/or events

Points to the initial state within a composite state

Termination point of a state chart

Movement between states, triggered by a specific
event

Transition branching and/or connection point

The state chart remembers the most recent active sub
state (but not the lower level sub-states)

The state chart remembers the most recent active sub
state (including the lower level sub states)

nothing wrong with having entity templates without state machine diagrams. While
for software engineering the descriptions of how transitions are triggered are usually
embedded within the diagram (in a rather cryptic language), it might be a good idea
to present them in a separate table, to make the diagram easier to understand.
Many people find it difficult to get started with developing the state machine
diagrams for agent templates. In order to come up with potential states that an agent
can be in, it helps to think in terms of locations (e.g. “in office”). The next step
would be to think about key time-consuming activities within these locations (e.g.

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 107

“working with computer”). It is important to consider only key locations and key
activities as otherwise the state chart gets too complex. One should only define as
much detail as is really necessary for investigating the question studied. The above
steps are just suggestions and do not always work. In case they do not work, one has
to use intuition and try to draft something that “feels right”.

Figure 6.5 shows as an example the “User” state machine diagram we developed
in parallel with the other template diagrams in several focus group discussions.
Here we have defined location states based on the relevant rooms we identified
in the scope table and added one location (“outOfOffice”) to represent the outside
world. The ideas for the activity states stem from our use case diagram (Fig. 6.3).
We then added transition arrows to represent the possible transitions between the
defined states. Transitions with a question mark symbol are condition triggered
while transitions with a clock symbol are time triggered. If there is more than one
transition connecting states, we have considered different triggers for state changes.

T statechart

[inCorridor]

(" inOffice I) otherRoomj
Io """""" 'Oﬁ
1
(" dailyActivity o (" monthlyReview b
mﬂmgWﬂ:i'loutCorrputer compareWithOthers
mMgWﬁiCon‘puter compareWithHistory
L. v v
. A

Fig. 6.5 User state machine diagram [drawn with AnyLogic]

108 P.-O. Siebers and F. Kliigl

This becomes clearer when we look at the transition definitions in Table 6.6. Here
we can see that, for example, a state change from “outOfOffice” to “inCorridor”
can happen for all user stereotypes during the working week and only for hardcore
worker user stereotypes during the weekend.

In software engineering UML activity diagrams describe how activities are
co-ordinated (the overall flow of control). They represent workflows of stepwise
activities (while state machine diagrams show the dynamic behaviour of an object)
and actions with support for choice, iteration and concurrency. Often people
describe activity diagrams as just being fancy flow charts. The relevant components
of an activity diagram are listed in Table 6.7.

Amongst others, we can use these activity diagrams as a formal way to describe a
decision-making process (logic flow). In our case we use it to describe the logic flow
of the normative comparison process. In order to define the logic flow, we use the
information we gathered from our literature review on psychological factors in the
scoping phase. Figure 6.6 shows as an example the actions happening when the user
agent is in the state “compareWithHistory” (which in the model is triggered once per
simulated month). It is good practice to provide some evidence from the literature
for the rationale behind the decision-making process. This would come from our
scoping phase literature review but might also require some additional resources.
As an example, let’s take the case “Less than former month?=no / Group?=yes /

Table 6.6 User state machine transition definitions (excerpt)

From state | To state Triggered by | When?

outOfOffice |inCorridor | Condition At typical arrival time during the working week
for all

outOfOffice | inCorridor | Condition At typical arrival time on Saturdays for hard-core
workers only

inCorridor | outOfOffice | Condition At typical leave time

inCorridor | inOffice Timeout At average after 5 min

inOffice inCorridor | Condition At random while at work or when leaving

inCorridor | otherRoom | Condition At random while at work

otherRoom | inCorridor | Timeout At average after 10 min

Table 6.7 Relevant activity diagram components

Component Symbol Description
Activity C) Named box with rounded corners (a state that is left
once the activity is finished)
Activity edge . Arrow (fires when the previous activity completes)
Synchronisation bar) Represent the start (split) or end (join) of
" | concurrent activities
Decision (- Used to show decisions
diamond ~
Start marker ® Indicate entry point of the diagram

Stop marker L Indicate exit point of the diagram

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 109

¢

Gommlle energy consumption with Hmry)

yes no

b £
Less than former month?
yes no
v
Group?
yes no
24
Sanction?
28 no 5 no
Ancnymous? Anonymous?

)) (=) () ())

Fig. 6.6 Activity diagram for user agent state “compareWithHistory” [drawn with Visual
Paradigm]

Sanction?=yes / Not Anonymous?”. In the literature we find that using mechanisms
to identify freerides and implement sanctions (social (e.g. gossip) or institutional
(e.g. fines)) reduces the likelihood of further freeriding (Fehr et al. 2002). This is
our justification for adding the action “decrease freeriding” for this case. In the end
we would evaluate our logic flow by discussing it in the focus group.

6.3.8 Defining Interactions

As we saw in Sect. 6.3.5, capturing interactions on a high level can be done using
UML use case diagrams. Capturing interactions in more detail can be done by using
UML sequence diagrams. These can be used to further specify use cases that involve
direct interactions (usually in the form of message passing) between entities (agents
and objects).

In software engineering UML sequence diagrams are used primarily to show
the interactions between objects in the sequential order in which those interactions
occur. Often they depict the actors and objects involved in a specific use case
realisation and the sequence of messages exchanged between the actors and objects
needed to carry out the functionality of the use case realisation. But sometimes
they also capture wider scenarios that go beyond a specific use case. The relevant
components of a sequence diagram are listed in Table 6.8.

In our case, we discussed the technical way of implementing the “observe others”
use case during one of our focus group discussions. Figure 6.7 shows the sequence
diagram we developed during our discussion for this use case. The entities involved

110 P.-O. Siebers and F. Kliigl

Table 6.8 Relevant sequence diagram components

Component | Symbol Description
Lifeline ,,9: Named element which represents an individual participant
A i in the interaction

Message —" From sender to receiver

Message | Return message

Execution I Represents a period of time in which the participant is
active

Message Il Self message

Loop =] Wrapper for representing loops (has one compartment)

Alternative = Wrapper for representing alternatives (has as many
compartments as alternatives exist)

Interface DataBase
User1 User2 : :
1: Ask for information : :
= P, 1.1: Ask for information |
»
P
1.3: Reply <____1_'2_' f“ip'_y _____ U
é ____________] S

2: Ask for information

v

2.1: Ask for information

»
2.2: Reply
2.3: Reply K- — =

é ____________
|
T
|
|
|
|
|
|
|
|
|
|

t
|
|
|
3: Start communication :
|
|
|
|
|

alt

[random (depending on archetype)]

4: Reply communication

[random (depending on archetype)]

5: Start communication
<

<

! |
! I
! I
! I
! I
! I
6: Reply communication : |
|

! I
I I
! |
T I
| l

Fig. 6.7 Initial sequence diagram for the use case “observe others” [drawn with Visual Paradigm]

are users and units that provide information. Users interact with information units
and with each other. Information units interact with the users and with each other.
Creating this diagram sparked a discussion if we should consider a database that
stores historic information in our model or not. It is currently not represented in the

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 111

Fig. 6.8 Aurtificial lab class
definition [drawn with Visual Artificlal Lab

Paradigm] -schoolEnergyConsumption
-numEnvironmentalChampions
-numEnergySavers
-numGeneralUsers
-numBigUsers
-isDataApportinmentAvailable
-isApportionmentLevelGroup
-isinformativeFeedbackAvailable
-isAnonymityGiven
-isSanctionimplemented
-users|]

-offices[]

-lights[]

-computersf]
+calculateSchoolConsumption()

+writeDataToFile()
+findOffice()

scope table (Table 6.1). In the end we agreed that for our initial model, we will leave
it out but keep a record of it in the scope table as it might be something we want
to consider in the future. We then removed it from the final version of our sequence
diagram.

6.3.9 Defining the Artificial Lab

Finally we need to define an environment in which we can embed all our entities
and define some global functionality. We call this environment our “artificial lab”.
For the development of our artificial lab, we use a class definition as described in
Sect. 6.3.7. Within this class definition, we consider things like global variables
(e.g. to collect statistics), compound variables (e.g. to store a collection of agents
and objects) and global functions (e.g. to read/write to a file). We also need to make
sure that we have all variables in place to set the experimental factors and to collect
the responses we require for testing our hypotheses. We derive our class content
through focus group discussions. To inform these discussions, we need to look at
our list of objectives (see Sect. 6.3.3) and our scope table (see Sect. 6.3.4). The final
class definition should only contain key variables and functions. Figure 6.8 shows
the “Artificial Lab” class definition for our illustrative example. Variable names
including “[]” represent collection variables.

112 P.-O. Siebers and F. Kliigl

Sometimes it can be helpful to create a sequence diagram as described in
Sect. 6.3.8 to visually show the order of execution describing the actions taken on
various elements at each step of the simulation from a high-level approach. The
way and order in which all entities are initialised, as well as the way and order in
which they are updated and how their interactions are handled, is often not trivial
and a major source of artefacts. In such a case, it therefore needs to be clearly
documented and specified. Since we do not have any obvious complex dependencies
in our illustrative example, it was not necessary to create such a high-level sequence
diagram.

At this point, we have all the information for a conceptual model together. Using
the collection of diagrams and tables that we produced, the model to be implemented
should be fully specified and as well understood as it can be without running it.
The next step is to take this specification and either start with the implementation
ourselves or let a professional software developer deal with it.

6.4 Conclusion

There seems to be a fear of non-computer scientists with regard to “formal
approaches”. This might be due to the fact that formal approaches are often
presented in a way that makes modelling a very complex and costly task and that
seems to take away opportunities for exploratory model development. While this
might be true for very large projects, it is usually not the case for smaller ones as
tools and techniques do not have to be applied in a dogmatic fashion. They are
there to aid the modelling process wherever one thinks it would be appropriate or
helpful to use them. Thinking about this as being a more structured approach that
adds transparency to model development rather than a formal approach that makes
modelling a complex task might take away some of the fear. While there will always
be a place for informal modelling (in software engineering often coined as “fast
prototyping” to quickly try out things), we believe that there is also a place for a
more structured approach to modelling.

We have found the framework described in the second part of the chapter very
helpful in terms of communicating in multidisciplinary teams during focus group
meetings and also for documenting the outcomes of these discussions. It (or parts
of it) has been extensively used by the group of PO Siebers (the first author of this
chapter) for many different projects, ranging from “Studying People Management
Practices in Retail” (Siebers and Aickelin 2011), where we worked with colleagues
from Economics and Work Psychology and a leading UK retailer, to “Simulating
Peace Building Activities in Africa” (Siebers et al. 2017), where we worked with
colleagues from the School of Politics and Psychology. We are currently also
applying the framework in several new projects including industrial partners.

So far the feedback from the participating team members has always been very
positive. Using these methods has aided “the fun” of collaborative model devel-
opment. Applying object-oriented principles and tools from software engineering

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 113

also helped us to develop simulation models that are easy to maintain and easy to
extend. Rather than building a model from scratch every time we start a new study,
we can reuse previously developed model components with confidence. Using a
formal approach to modelling is also a big benefit when it comes to publications as
the resulting models are transparent and well documented.

Further Reading

There is a host of literature on the topic of software engineering. A book that
provides a comprehensive yet easy to understand entry to most of the software
engineering topics discussed in this book chapter is Lethbridge and Laganiere
(2005). If you are mainly interested in learning more about UML, then Fowler
(2003) is sufficient. A lot of ideas for ABSS stem from the computer science field
of artificial intelligence and herein particular multi-agent systems. A good overview
on the wide area of topics (including AOSE) is Weiss (2013). Finally, the JASSS
special issue “Engineering ABSS” (Siebers and Davidsson 2015) provides lots of
information and case studies. The approach contrasts with that described in Chap. 5
in this volume.

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An
integrated theory of the mind. Psychological Review, 111(4), 1036—1060.

Bauer, B., & Odell, J. (2005). UML 2.0 and agents: How to build agent-based systems with the new
UML standard. Journal of Engineering Applications of Artificial Intelligence, 18(2), 141-157.

Beck, K. (2004). Extreme programming explained: Embrace change (2nd ed.). Boston, MA:
Addison Wesley.

Bedwell, B., Leygue, C., Goulden, M., McAuley, D., Colley, J., Ferguson, E., et al. (2014).
Apportioning energy consumption in the workplace: A review of issues in using metering data
to motivate staff to save energy. Technology Analysis & Strategic Management, 26(10), 1196—
1211.

Bergenti, F., Gleizes, M.-P., & Zambonelli, F. (Eds.). (2004). Methodologies and software
engineering for agent systems: The agent-oriented software engineering handbook. Boston:
Kluwer.

Bersini, H. (2012). UML for ABM. Journal of Artificial Societies and Social Simulation, 15(1), 9.
http://jasss.soc.surrey.ac.uk/15/1/9.html

Boero, R., & Squazzoni, F. (2005). Does empirical embeddedness matter? Methodological issues
on agent-based models for analytical social science. Journal of Artificial Societies and Social
Simulation, 8(4), 6. http://jasss.soc.surrey.ac.uk/8/4/6.html

Bosse, T., Jonker, C. M., van der Meij, L., & Treur, J. (2005). LEADSTO: A language and
environment for analysis of dynamics by simulation. In T. Eymann, F. Kliigl, W. Lamersdorf,
M. Klusch, & M. N. Huhns (Eds.), Proc. of the 3rd German Conference on Multi-Agent System
Technologies, MATES’05. LNAI 3550 (pp. 165—178). Springer, Berlin, Heidelberg, Germany.

Bommel, P., & Miiller, J. P. (2007). An introduction to UML for modelling in the human and social
sciences. In D. Phan & F. Amblard (Eds.), Multi-agent modelling and simulation in the social

http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://jasss.soc.surrey.ac.uk/15/1/9.html%3e
http://jasss.soc.surrey.ac.uk/8/4/6.html

114 P.-O. Siebers and F. Kliigl

and human sciences, GEMAS studies in social analysis, Chapter 12. Bardwell Press, Oxford,
United Kingdom.

Caillou, P, Gaudou, B., Grignard, A., Truong, C. Q., & Taillandier, P. (2015, Sep 2015). A simple-
to-use BDI architecture for agent-based modeling and simulation. The Eleventh Conference of
the European Social Simulation Association (ESSA 2015), Groningen, Netherlands.

d’Inverno, M., & Luck, M. (2001). Understanding agent systems. Berlin, Heidelberg, Germany:
Springer-Verlag.

Drogoul, A., Vanbergue, A., & Meurisse, T. (2003). Multi-agent Based Simulation: Where are the
agents? Multi-agent Based Simulation II, LNCS 2581 (pp. 1-15). Springer, Berlin, Heidelberg,
Germany.

Drogoul, A., & Ferber, J. (1994). Multi-agent simulation as a tool for modelling societies:
Application to social differentiation in ant colonies. In C. Chastelfranchi & E. Werner (Eds.),
Artificial social systems -4th European workshop on modelling autonomous agents in a multi-
agent world, MAAMAW’92 (pp. 3-23). Heidelberg, Germany: Springer.

Duboz T., Versmisse D., Quesnel G., Muzy A., & Ramat E. (2006, April 2-6). Specification of
dynamic structure discrete event multiagent systems. In Agent-directed simulation (ADS 2006),
Huntsville, AL, USA.

Edmonds, B. (2004). How formal logic can fail to be useful for modelling or designing MAS. In
G. Lindeman et al. (Eds.), RASTA 2002, LNAI 2934 (pp. 1-15). Berlin, Heidelberg, Germany:
Springer-Verlag.

Edmonds, B., & Moss, S. (2004). From KISS to KIDS — an ‘anti-simplistic’ modelling approach.
In P. Davidson et al. (Eds.), Multi-agent based simulation, LNAI 3415 (pp. 130-144). New
York: Springer.

Fasli, M. (2004). Formal systems A agent-based social simulation = 1?2 Journal of Artificial
Societies and Social. Simulation, 7(4), 7.

Fehr, E., Fischbacher, U., & Gichter, S. (2002). Strong reciprocity, human cooperation, and the
enforcement of social norms. Human Nature, 13(1), 1-25.

Fowler, M. (2003). UML distilled: A brief guide to the standard object modeling language (3rd
ed.). Boston, MA: Pearson Education.

Franchi, E. (2012). A domain specific language approach for agent-based social network modeling.
2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012), Istanbul, Turkey.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design pattern: Elements of reusable
object-oriented software. Boston, MA: Addison-Wesley.

Garro, A., Parisi, F., & Russo, W. (2013). A process based on the model-driven architecture to
enable the definition of platform-independent simulation models. In N. Pina, J. Pacpryzk,
& J. Filipe (Eds.), Simulation and modeling methodologies, technologies and applications
SIMULTECH 2011 Noordwijkerhout, The Netherlands, July 2011 revised selected papers (pp.
113-129). Berlin: Springer.

Garro, A., & Russo, W. (2010). easyABMS: A domain-expert oriented methodology for agent-
based modeling and simulation. Simulation Modelling Practice and Theory, 18, 1453-1467.
Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Maidenhead,

UK: Open University Press.

Ghorbani, A., Bots, P., Dignum, V., & Dijkema, G. (2013). MAIA: a framework for developing
agent-based social simulations. Journal of Artificial Societies and Social Simulation, 16(2), 9.

Ghorbani, A., Bots, P., Alderwereld, H., Dignum, V., & Dijkema, G. (2014). Model-driven agent-
based simulation: procedural semantics of a MAIA model. Simulation Modelling Practice and
Theory, 49, 27-40.

Gomez-Sanz, J. J., Fernandez, C. R., & Arroyo, J. (2010). Model driven development and
simulations with the INGENIAS agent framework. Simulation Modelling and Practice, 18(10),
1468-1482.

Gomez-Sanz, J. J., & Fuentes-Fernandez, R. (2015). Understanding agent-oriented software
engineering methodologies. The Knowledge Engineering Review, 30(4), 375-393.

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 115

Grimm, V., Polhill, G., & Touza, J. (2017). Documenting social simulation models: The ODD
protocol as standard. doi:https://doi.org/10.1007/978-3-319-66948-9_15.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F,, et al. (2005). Pattern-
oriented modeling of agent-based complex systems: lessons from ecology. Science, 310(5750),
987-991.

Helleboogh, A., Vizzari, G., Uhrmacher, A. M., & Michel, F. (2007). Modeling dynamic
environments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems, 14(1),
87-116.

Himmelspach, J., Rohl, M., & Uhrmacher, A. M. (2010). Component-based models and simula-
tions for supporting valid multi-agent system simulations. Applied Artificial Intelligence, 24(5),
414-442.

Hocaoglu, M. F,, Firat, C., & Farjoughian, H. S. (2002). DEVS/RAP: Agent-based simulation. Pro-
ceedings of the 2002 Al, Simulation and Planning in Highly Autonomous Systems conference,
Lisbon, Portugal: IEEE.

Jones, R. M. (2005). An introduction to cognitive architectures for modeling and simulation.
Proceedings of the Interservice/Industry Training/Simulation and Education Conference 2005,
Orlando, FL.

Joo, J. (2013). Perception and BDI reasoning based agent model for human behavior simulation
in complex system. In M. Kurosu (Ed.), Human-computer interaction. Towards intelligent and
implicit interaction: 15th Int. Conf., HCI international 2013, Las Vegas, NV, USA, July, 2013,
Proc, Part V (pp. 62-71). Berlin/Heidelberg: Springer.

Juziuk, J., Weyns, D., & Holvoet, T. (2014). Design pattern for multi-agent systems: A systematic
literature review. In O. Shehory & A. Sturm (Eds.), Agent-oriented software engineering:
Reflections on architectures, methodologies, languages and frameworks, chapter 5 (pp. 79—
99). Berlin, Germany: Springer.

Kasaie, P., & Kelton, W. D. (2015). Guidelines for design and analysis in agent-based simulation
studies. In Proc. of the 2015 Winter Simulation Conference (WSC ‘15) (pp. 183-193).
Piscataway, NJ: IEEE Press.

Kravari, K., & Bassiliades, N. (2015). A Survey of Agent Platforms. Journal of Artificial Societies
and Social Simulation, 18(1), 11. http://jasss.soc.surrey.ac.uk/18/1/11.html

Kliigl, F., & Karlsson, L. (2009). Towards pattern-oriented design of agent-based simulation
models. Proceedings of the 7th German conference on multiagent system technologies,
Hamburg, Germany.

Knublauch, H. (2002, July 15-19). Extreme programming of multi-agent systems. Proceedings of
AAMAS 2002, Bologna (pp. 704—711). New York: ACM.

Kohler, M., Langer, R., von Liide, R., Moldt, D., Rolke, H., & Valk, R. (2007). Socionic multi-
agent systems based on reflexive petri nets and theories of social self-organisation. Journal of
Artificial Societies and Social Simulation, 10(1), 3. http://jasss.soc.surrey.ac.uk/10/1/3.html

Kubera, Y., Mathieu, P,, & Picault, S. (2011). IODA: An interaction-oriented approach for
multiagent based simulations. Autonomous Agents and Multi-Agent Systems, 23(3), 303-343.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence.
Artificial Intelligence, 33, 1-64.

Law, A. M. (2007). Simulation modeling & analysis (4th ed.). New York: McGraw-Hill.

Lethbridge, T. C., & Laganiere, R. (2005). Object-oriented software engineering: Practical
software development using UML and Java: Practical software development. New York:
McGraw Hill.

Mascardi, V., Martelli, M., & Sterling, L. (2004). Logic-based specification languages for
intelligent software agents. Theory and Practice of Logic Programming, 4(4), 429-494.

McGarty, G., Yzerbyt, V. Y., & Spears, R. (2002). Social, cultural and cognitive factors in
stereotype formation. In G. McGarty, V. Y. Yzerbyt, & R. Spears (Eds.), Stereotypes as
explanations (pp. 1-15). Port Chester, NY: Cambridge University Press.

Mitleton-Kelly, E. (2003). Complexity research - approaches and methods: The LSE complexity
group integrated methodology. In A. Keskinen, M. Aaltonen, & E. Mitleton-Kelly (Eds.),

http://dx.doi.org/10.1007/978-3-319-66948-9_15
http://jasss.soc.surrey.ac.uk/18/1/11.html
http://jasss.soc.surrey.ac.uk/10/1/3.html

116 P.-O. Siebers and F. Kliigl

Organisational complexity (pp. 56—77). Turku: Tutu Publications. Finland Futures Research
Centre, Turku School of Economics and Business Administration.

Moyo, D., Ally, A. K., Brennan, A., Norman, P., Purshouse, R. C., & Strong, M. (2015). Agile
development of an attitude-behaviour driven simulation of alcohol consumption dynamics.
Journal of Artificial Societies and Social Simulation, 18(3), 10. http://jasss.soc.surrey.ac.uk/
18/3/10.html

Nikolai, C., & Madey, G. (2008). Tools of the trade: A survey of various agent based
modeling platforms. Journal of Artificial Societies and Social Simulation, 12(2), 2. http://
jasss.soc.surrey.ac.uk/12/2/2.html

Norling, E. (2003). Capturing the quake player: Using a BDI agent to model human behaviour.
In J. S. Rosenschein, T. Sandholm, M. Wooldridge, & M. Yokoo, Proceedings of the 2nd
international joint conference on autonomous agents and multiagent systems (AAMAS),
Melbourne (pp. 1080-1081). New York: ACM.

Norling, E., Edmonds, B., & Meyer, R. (2017). Informal approaches to developing simulation
models. doi:https://doi.org/10.1007/978-3-319-66948-9_5.

North, M. J., Macal, C. M. (2011, December 11-14). Product design patterns for agent-based
modeling. In S. Jain, R. Creasey, J. Himmelspach, K. P. White, M. C. Fu, Proc. of the Winter
Simulation Conference (WSC ‘11) (pp. 3087-3098).

Odell, J., Parunak, H. V. D., & Bauer, B. (2000). Extending UML for agents. In Y. Lesperance, E.
Yu, Proc. of the agent-oriented information systems workshop at the 17th NCAI (pp. 3—17).
Ostrom, E. (2005). Understanding institutional diversity. Princeton, NJ: Princeton University

Press.

Ozik, J., Collier, N., Combs, T., Macal, C. M., & North, M. (2015). Repast Simphony Statecharts.
Journal of Artificial Societies and Social Simulation, 18(3), 11. http://jasss.soc.surrey.ac.uk/18/
3/11.html

Pyritz, B. (2003). Craftsmanship versus engineering: Computer programming — An art or a
science? Bell Labs Technical Journal, 8, 101-104.

Railsback, S. F., & Lytinen, S. L. (2006). Agent-based simulation platforms: review and develop-
ment recommendations. SIMULATION, 82, 609-623.

Richiardi, M., Leombruni, R., Saam, N. J., & Sonnessa, M. (2006). A common protocol for agent-
based social simulation. Journal of Artificial Societies and Social Simulation, 9(1), 15. http://
jasss.soc.surrey.ac.uk/9/1/15.html

Robinson, S. (2004). Simulation: The practice of model development and use. Chichester: Wiley.

Rossiter, S. (2015). Simulation design: Trans-paradigm best-practice from software engineering.
Journal of Artificial Societies and Social Simulation, 18(3), 9. http://jasss.soc.surrey.ac.uk/18/
3/9.html

Scherer, S., Wimmer, M., Lotzmann, U., Moss, S., & Pinotti, D. (2015). Evidence based and
conceptual model driven approach for agent-based policy modelling. Journal of Artificial
Societies and Social Simulation, 18(3), 14. http://jasss.soc.surrey.ac.uk/18/3/14.html

Shannon, R. E. (1998). Introduction to the art and science of simulation. D. J. Medeiros, E.
E. Watson, J. S. Carson, M. S. Mannivannan, Proceedings of the 1998 Winter Simulation
Conference (pp. 7-14).

Siebers, P. O., & Davidsson, P. (2015). Engineering agent-based social simulations: An introduc-
tion (Special Issue Editorial). Journal of Artificial Societies and Social Simulation, 18(3), 13.
http://jasss.soc.surrey.ac.uk/18/3/13.html

Siebers, P. O., & Aickelin, U. (2011). A first approach on modelling staff proactiveness in retail
simulation models. Journal of Artificial Societies and Social Simulation, 14(2), 2. http://
jasss.soc.surrey.ac.uk/14/2/2.html

Siebers, P. O., Onggo, B. S. S. (2014). Graphical representation of agent-based models in
operational research and management science using UML. In Proc. Of the operational research
society simulation workshop 2014 (SW14) (pp. 143-155).

Siebers, P. O., Figueredo, G. P., Hirono, M., & Skatova, A. (2017). Developing agent-based simu-
lation models for social systems engineering studies: A novel framework and its application to

http://jasss.soc.surrey.ac.uk/18/3/10.html
http://jasss.soc.surrey.ac.uk/12/2/2.html
http://dx.doi.org/10.1007/978-3-319-66948-9_5
http://jasss.soc.surrey.ac.uk/18/3/11.html
http://jasss.soc.surrey.ac.uk/9/1/15.html
http://jasss.soc.surrey.ac.uk/18/3/9.html
http://jasss.soc.surrey.ac.uk/18/3/14.html
http://jasss.soc.surrey.ac.uk/18/3/13.html
http://jasss.soc.surrey.ac.uk/14/2/2.html

6 What Software Engineering Has to Offer to Agent-Based Social Simulation 117

modelling peacebuilding activities. In C. Garcia-Diaz & C. Olaya Nieto (Eds.), Social systems
engineering: The design of complexity. Hoboken, NJ: Wiley.

Sommerville, I. (2016). Software engineering (10th ed.). Pearson, Boston, MA.

Stahl, T., Voelter, M., & Czarnecki, K. (2006). Model-driven software development: Technology,
engineering, management. Hoboken, NJ: Wiley.

Susanty, M. (2015). Adding psychological factors to the model of electricity consumption in office
buildings. MSc Dissertation, Nottingham University, School of Computer Science.

Taatgen, N. A., Lebiere, C., & Anderson, J. R. (2006). Modeling paradigms in ACT-R. In R. Sun
(Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp.
29-52). Cambridge: Cambridge University Press.

Weiss, G. (Ed.). (2013). Multiagent systems (2nd ed.). Cambridge: MIT Press.

Weyns, D., & Holvoet, T. (2004). A formal model for situated multi-agent systems. Fundamenta
Informaticae, 63(2-3), 125-158.

Winikoff, M., & Padgham, L. (2013). Agent-oriented software engineering. In G. Weiss (Ed.),
Multiagent systems, Chapter 15 (2nd ed., pp. 695-758). Cambridge: MIT Press.

Wooldridge, M. (2009). An introduction to multiagent systems. Hoboken, NJ: Wiley.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot, A. (2005). Synthetic adversaries for
urban combat training. Al Magazine, 26(3), 82-92.

Wray, R. E., & Jones, R. M. (2005). An introduction to Soar as an agent architecture. In R. Sun
(Ed.), Cognition and multi-agent interaction: from cognitive modeling to social simulation (pp.
53-78). Cambridge: Cambridge University Press.

Zeigler, B. P. (1990). Object oriented simulation with hierarchical modular models: Intelligent
agents and endomorphic systems. Boston, MA: Academic Press.

Zhang, T., Siebers, P. O., & Aickelin, U. (2011). Modelling electricity consumption in office
buildings: An agent based approach. Energy and Buildings, 43(10), 2882-2892.

Chapter 7
Checking Simulations: Detecting and Avoiding
Errors and Artefacts

José M. Galan, Luis R. Izquierdo, Segismundo S. Izquierdo, José 1. Santos,
Ricardo del Olmo, and Adolfo Lépez-Paredes

Abstract The aim of this chapter is to simulations. The reader with a set of
concepts and a range of suggested activities that will enhance his or her ability
to understand agent-based simulations. To do this in a structured way, we review
the main concepts of the methodology (e.g. we provide precise definitions for the
terms “error” and ‘“‘artefact”) and establish a general framework that summarises
the process of designing, implementing, and using agent-based models. Within this
framework we identify the various stages where different types of assumptions are
usually made and, consequently, where different types of errors and artefacts may
appear. We then propose several activities that can be conducted to detect each type
of error and artefact.

Why Read This Chapter?

Given the complex and exploratory nature of many agent-based models, checking
that the model performs in the manner intended by its designers is a very challenging
task. This chapter helps the reader to identify some of the possible types of error and
artefact that may appear in the different stages of the modelling process. It will also
suggest some activities that can be conducted to detect, and hence avoid, each type.

J.M. Galén (P<) » L.R. Izquierdo ¢ J.I. Santos * R. del Olmo
Department of Civil Engineering, Universidad de Burgos, E-09001, Burgos, Spain
e-mail: jmgalan@ubu.es; luis@izquierdo.name; jisantos @ubu.es; rdelolmo@ubu.es

S.S. Izquierdo ¢ A. Lopez-Paredes

Departamento de Organizacion de Empresas y C.I.M., Universidad de Valladolid, E-47011,
Valladolid, Spain

e-mail: segis@eis.uva.es; adolfo@insisoc.org

© Springer International Publishing AG 2017 119
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_7

mailto:jmgalan@ubu.es
mailto:luis@izquierdo.name
mailto:jisantos@ubu.es
mailto:rdelolmo@ubu.es
mailto:segis@eis.uva.es
mailto:adolfo@insisoc.org
https://doi.org/10.1007/978-3-319-66948-9_7

120 J.M. Galan et al.
7.1 Introduction

Agent-based modelling is one of multiple techniques that can be used to conceptu-
alise social systems. What distinguishes this methodology from others is the use of
a more direct correspondence between the entities in the system to be modelled and
the agents that represent such entities in the model (Edmonds 2001). This approach
offers the potential to enhance the transparency, soundness, descriptive accuracy,
and rigour of the modelling process, but it can also create difficulties: agent-based
models are generally complex and mathematically intractable, so their exploration
and analysis often require computer simulation.

The problem with computer simulations is that understanding them in reasonable
detail is not as straightforward an exercise as one could think (this also applies
to one’s own simulations). A computer simulation can be seen as the process of
applying a certain function to a set of inputs to obtain some results. This function
is usually so complicated and cumbersome that the computer code itself is often
not that far from being one of the best descriptions of the function that can be
provided. Following this view, understanding a simulation would basically consist
in identifying the parts of the mentioned function that are responsible for generating
particular (sub)sets of results.

Thus, it becomes apparent that a prerequisite to understand a simulation is to
make sure that there is no significant disparity between what we think the computer
code is doing and what is actually doing. One could be tempted to think that, given
that the code has been programmed by someone, surely there is always at least one
person—the programmer—who knows precisely what the code does. Unfortunately,
the truth tends to be quite different, as the leading figures in the field report:

You should assume that, no matter how carefully you have designed and built your
simulation, it will contain bugs (code that does something different to what you wanted
and expected). (Gilbert 2007)

An unreplicated simulation is an untrustworthy simulation—do not rely on their results,
they are almost certainly wrong. (‘Wrong’ in the sense that, at least in some detail or other,
the implementation differs from what was intended or assumed by the modeller). (Edmonds
and Hales 2003)

Achieving internal validity is harder than it might seem. The problem is knowing whether
an unexpected result is a reflection of a mistake in the programming, or a surprising
consequence of the model itself. [...] As is often the case, confirming that the model was
correctly programmed was substantially more work than programming the model in the first
place. (Axelrod 1997a)

In the particular context of agent-based simulation, the problem tends to be
exacerbated. The complex and exploratory nature of most agent-based models
implies that, before running a model, there is almost always some uncertainty about
what the model will produce. Not knowing a priori what to expect makes it difficult
to discern whether an unexpected outcome has been generated as a legitimate result
of the assumptions embedded in the model or, on the contrary, it is due to an error
or an artefact created in its design, in its implementation, or in the running process
(Axtell and Epstein 1994, p. 31; Gilbert and Terna 2000).

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 121

Moreover, the challenge of understanding a computer simulation does not end
when one is confident that the code is free from errors; the complex issue of
identifying what parts of the code are generating a particular set of outputs remains
to be solved. Stated differently, this is the challenge of discovering what assumptions
in the model are causing the results we consider significant. Thus, a substantial
part of this non-trivial task consists in detecting and avoiding artefacts: significant
phenomena caused by accessory assumptions in the model that are (mistakenly)
deemed irrelevant. We explain this in detail in subsequent sections.

The aim of this chapter is to provide the reader with a set of concepts and a range
of suggested activities that will enhance his ability to understand simulations. As
mentioned before, simulation models can be seen as functions operating on their
inputs to produce the outputs. These functions are created by putting together a
range of different assumptions of very diverse nature. Some assumptions are made
because they are considered to be an essential feature of the system to be modelled;
others are included in a somewhat arbitrary fashion to achieve completeness—i.e.
to make the computer model run—and they may not have a clear referent in the
target system. There are also assumptions—e.g. the selection of the compiler and the
particular pseudorandom number generator to be employed—that are often made,
consciously or not, without fully understanding in detail how they work, but trusting
that they operate in the way we think they do. Finally, there may also be some
assumptions in a computer model that not even its own developer is aware of, e.g.
the use of floating-point arithmetic, rather than real arithmetic.

Thus, in broad terms, understanding simulations requires identifying what
assumptions are being made and assessing their impact on the results. To achieve
this, we believe that it is useful to characterise the process by which assumptions
accumulate to end up forming a complete model. We do this in a structured way
by presenting a general framework that summarises the process of creating and
using agent-based models through various stages; then, within this framework, we
characterise the different types of assumptions that are made in each of the stages
of the modelling process, and we identify the sort of errors and artefacts that may
occur; we also propose activities that can be conducted to avoid each type of error
or artefact.

The chapter is structured as follows: the following section is devoted to explain-
ing what we understand by modelling, and to argue that computer simulation is
a useful tool to explore formal models, rather than a distinctively new symbolic
system or a uniquely different reasoning process, as it has been suggested in the
literature. In Sect. 7.3 we explain what the essence of agent-based modelling is in
our view, and we present the general framework that summarises the process of
designing, implementing, and using agent-based models. In Sect. 7.4 we define
the concepts of error and artefact, and we discuss their relevance for validation
and verification. The framework presented in Sect. 7.3 is then used to identify the
various stages of the modelling process where different types of assumptions are
made and, consequently, where different types of errors and artefacts may appear.
We then propose various activities aimed at avoiding the types of errors and artefacts
previously described, and we conclude with a brief summary of the chapter.

122 J.M. Galén et al.
7.2 Three Symbolic Systems Used to Model Social Processes

Modelling is the art of building models. In broad terms, a model can be defined
as an abstraction of an observed system that enables us to establish some kind of
inference process about how the system works or about how certain aspects of the
system operate.

Modelling is an activity inherent to every human being: people constantly
develop mental models, more or less explicit, about various aspects of their daily
life. Within science in particular, models are ubiquitous. Many models in the
“hard” sciences are formulated using mathematics (e.g. differential equation models
and statistical regressions), and they are therefore formal, but it is also perfectly
feasible—and acceptable—to build non-formal models within academia; this is
often the case in disciplines like history or sociology, consider, e.g. a model written
in natural language that tries to explain the expansion of the Spanish Empire in the
sixteenth century or the formation of urban “tribes” in large cities.

We value a model to the extent that it is useful—i.e. in our opinion, what makes a
model good is its fitness for purpose. Thus, the assessment of any model can only be
conducted relative to a predefined purpose. Having said that, there is a basic set of
general features that are widely accepted to be desirable in any model, e.g. accuracy,
precision, generality, and simplicity (see Fig. 7.1). Frequently some of these features
are inversely related; in such cases the modeller is bound to compromise to find a
suitable trade-off, considering the perceived relative importance of each of these
desirable features for the purpose of the model (Edmonds 2005).

Some authors (Gilbert 1999; Holland and Miller 1991; Ostrom 1988) classify
the range of available techniques for modelling phenomena in which the social
dimension is influential according to three symbolic systems.

One possible way of representing and studying social phenomena is through
verbal argumentation in natural language. This is the symbolic system traditionally
used in historical analyses, which, after a process of abstraction and simplification,
describe past events emphasising certain facts, processes, and relations at the
expense of others. The main problem with this type of representation is its intrinsic
lack of precision (due to the ambiguity of natural language) and the associated
difficulty of uncovering the exact implications of the ideas put forward in this way.
In particular, using this symbolic system, it is often very difficult to determine the
whole range of inferences that can be obtained from the assumptions embedded in
the model in reasonable detail; therefore it is often impossible to assess its logical
consistency, its scope, and its potential for generalisation in a formal way.

A second symbolic system that is sometimes used in the social sciences,
particularly in economics, is the set of formal languages (e.g. leading to models
expressed as mathematical equations). The main advantage of this symbolic system
derives from the possibility of using formal deductive reasoning to infer new facts
from a set of clearly specified assumptions; formal deductive reasoning guarantees
that the obtained inferences follow from the axioms with logical consistency. Formal
languages also facilitate the process of assessing the generality of a model and its

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 123

Simplicity

Generality

Specificity (makes
precise predictions)

Lack of error
(accuracy of results)

Fig. 7.1 The trade-off between various desirable features depends on the specific case and model.
There are not general rules that relate, not even in a qualitative fashion, all these features. The
figure shows a particular example from Edmonds (2005) that represents the possible equilibrium
relationships between some features in a particular model

sensitivity to assumptions that are allowed to change within the boundaries of the
model (i.e. parameter values and nonstructural assumptions).

However, the process of reducing social reality to formal models is not exempt
from disadvantages. Social systems can be tremendously complex, so if such
systems are to be abstracted using a formal language (e.g. mathematical equations),
we run the risk of losing too much in descriptiveness. To make things worse, in
those cases where it appears possible to produce a satisfactory formal model of
the social system under investigation, the resulting equations may be so complex
that the formal model becomes mathematically intractable, thus failing to provide
most of the benefits that motivated the process of formalisation in the first place.
This is particularly relevant in the domain of the social sciences, where the systems
under investigation often include non-linear relations (Axtell 2000). The usual
approach then is to keep on adding simplifying hypotheses to the model—thus
making it increasingly restrictive and unrealistic—until we obtain a tractable model
that can be formally analysed with the available tools. We can find many examples
of such assumptions in economics: instrumental rationality, perfect information,
representative agents, etc. Most often these concepts are not included because
economists think that the real world works in this way, but to make the models
tractable (see, for instance, Conlisk 1996; Axelrod 1997a; Hernandez 2004; Moss
2001, 2002). It seems that, in many cases, the use of formal symbolic systems
tends to increase the danger of letting the pursuit for tractability be the driver of
the modelling process.

124 J.M. Galan et al.

But then, knowing that many of the hypotheses that researchers are obliged
to assume may not hold in the real world, and could therefore lead to deceptive
conclusions and theories, does this type of modelling representation preserve its
advantages? Quoting G.F. Shove, it could be the case that sometimes “it is better to
be vaguely right than precisely wrong”.

The third symbolic system, computer modelling, opens up the possibility of
building models that somewhat lie in between the descriptive richness of natural
language and the analytical power of traditional formal approaches. This third type
of representation is characterised by representing a model as a computer program
(Gilbert and Troitzsch 1999). Using computer simulation we have the potential to
build and study models that to some extent combine the intuitive appeal of verbal
theories with the rigour of analytically tractable formal modelling.

In Axelrod’s (1997a) opinion, computational simulation is the third way of
doing science, which complements induction, the search for patterns in data, and
deduction, the proof of theorems from a set of fixed axioms. In his opinion,
simulation, like deduction, starts from an explicit set of hypotheses, but, rather than
generating theorems, it generates data that can be inductively analysed.

While the division of modelling techniques presented above seems to be
reasonably well accepted in the social simulation community—and we certainly
find it useful—we do not fully endorse it. In our view, computer simulation does
not constitute a distinctively new symbolic system or a uniquely different reasoning
process by itself, but rather a (very useful) tool for exploring and analysing formal
systems. We see computers as inference engines that are able to conduct algorithmic
processes at a speed that the human brain cannot achieve. The inference derived
from running a computer model is constructed by example and, in the general
case, reads: the results obtained from running the computer simulation follow (with
logical consistency) from applying the algorithmic rules that define the model on
the input parameters' used.

In this way, simulations allow us to explore the properties of certain formal
models that are intractable using traditional formal analyses (e.g. mathematical
analyses), and they can also provide fundamentally new insights even when such
analyses are possible. Like Gotts et al. (2003), we also believe that mathematical
analysis and simulation studies should not be regarded as alternative and even
opposed approaches to the formal study of social systems, but as complementary.
They are both extremely useful tools to analyse formal models, and they are
complementary in the sense that they can provide fundamentally different insights
on one same model.

'By input parameters in this statement, we mean “everything that may affect the output of the
model”, e.g. the random seed, the pseudorandom number generator employed, and, potentially,
information about the microprocessor and operating system on which the simulation was run, if
these could make a difference.

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 125

To summarise, a computer program is a formal model (which can therefore be
expressed in mathematical language, e.g. as a set of stochastic or deterministic
equations), and computer simulation is a tool that enables us to study it in ways
that go beyond mathematical tractability. Thus, the final result is a potentially more
realistic—and still formal—study of a social system.

7.3 Agent-Based Modelling

7.3.1 Concept

As stated before, modelling is the process of building an abstraction of a system for
a specific purpose—see Chap. 4 in this volume (Edmonds 2017; Epstein 2008) for a
list of potential modelling goals. Thus, in essence, what distinguishes one modelling
paradigm from another is precisely the way we construct that abstraction from the
observed system.

In our view, agent-based modelling is a modelling paradigm with the defining
characteristic that entities within the target system to be modelled—and the
interactions between them—are explicitly and individually represented in the model
(see Fig. 7.2). This is in contrast to other models where some entities are represented
via average properties or via single representative agents. In many other models,
entities are not represented at all, and it is only processes that are studied (e.g. a
model of temperature variation as a function of pressure), and it is worth noting
that such processes may well be already abstractions of the system.> The specific
process of abstraction employed to build one particular model does not necessarily
make it better or worse, only more or less useful for one purpose or another.

The specific way in which the process of abstraction is conducted in agent-based
modelling is attractive for various reasons: it leads to (potentially) formal yet more
natural and transparent descriptions of the target system, provides the possibility
to model heterogeneity almost by definition, facilitates an explicit representation
of the environment and the way other entities interact with it, and allows for the
study of the bidirectional relations between individuals and groups, and it can
also capture emergent behaviour (see Epstein 1999; Axtell 2000; Bonabeau 2002).
Unfortunately, as one would expect, all these benefits often come at a price: most of
the models built in this way are mathematically intractable. A common approach to
study the behaviour of mathematically intractable formal models is to use computer
simulation. It is for this reason that we often find the terms “agent-based modelling”
and “agent-based simulation” used as synonyms in the scientific literature (Hare and
Deadman 2004).

2The reader can see an interesting comparative analysis between agent-based and equation-based
modelling in Parunak et al. (1998).

http://dx.doi.org/10.1007/978-3-319-66948-9_4

126 J.M. Galan et al.

Target System Agent based model

EEEEEEEEEN
et L
nt

-

.
«®
.'
*

-...w&:..-""--...,.
& r% "t ‘.;:r
2‘.?;-.,‘1.::.-"‘ ——

Entities guusasnasunasauneady: AgeEnts

Interactions between
agents

Interaction between
entities

%)

Fig. 7.2 In agent-based modelling, the entities of the system are represented explicitly and
individually in the model. The limits of the entities in the target system correspond to the limits of
the agents in the model, and the interactions between entities correspond to the interactions of the
agents in the model (Edmonds 2001)

Thus, to summarise our thoughts in the context of the classification of modelling
approaches in the social sciences, we understand that the essence of agent-based
modelling is the individual and explicit representation of the entities and their
interactions in the model, whereas computer simulation is a useful tool for studying
the implications of formal models. This tool happens to be particularly well suited to
explore and analyse agent-based models for the reasons explained above. Running
an agent-based model in a computer provides a formal proof that a particular micro-
specification is sufficient to generate the global behaviour that is observed during
the simulation. If a model can be run in a computer, then it is in principle possible
to express it in many different formalisms, e.g. as a set of mathematical equations.
Such equations may be very complex, difficult to interpret, and impossible to solve,
thus making the whole exercise of changing formalism frequently pointless, but
what we find indeed useful is the thought that such an exercise could be undertaken,

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 127

i.e. an agent-based model that can be run in a computer is not that different from the
typical mathematical model. As a matter of fact, it is not difficult to formally charac-
terise most agent-based models in a general way (Leombruni and Richiardi 2005).

7.3.2 Design, Implementation, and Use of an Agent-Based
Model

Drogoul et al. (2003) identify three different roles in the design, implementation, and
use of a typical agent-based model: the thematician (domain expert), the modeller,
and the computer scientist. It is not unusual in the field to observe that one single
person undertakes several or even all of these roles. We find that these three roles fit
particularly well into the framework put forward by Edmonds (2001) to describe the
process of modelling with an intermediate abstraction. Here we marry Drogoul et
al.’s and Edmonds’ views on modelling by dissecting one of Drogoul et al.’s roles
and slightly expanding Edmonds’ framework (Fig. 7.3). We then use our extended
framework to identify the different types of assumptions that are made in each of
the stages of the modelling process, the errors and artefacts that may occur in each
of them, and the activities that can be conducted to avoid such errors and artefacts.
We start by explaining the three different roles proposed by Drogoul et al. (2003).

The role of the thematician is undertaken by experts in the target domain. They
are the ones that better understand the target system and, therefore, the ones who
carry out the abstraction process that is meant to produce the first conceptualisation
of the target system. Their job involves defining the objectives and the purpose of
the modelling exercise, identifying the critical components of the system and the
linkages between them, and also describing the most prominent causal relations.
The output of this first stage of the process is most often a non-formal model
expressed in natural language, and it may also include simple conceptual diagrams,
e.g. block diagrams. The non-formal model produced may describe the system using
potentially ambiguous terms (such as learning or imitation, without fully specifying
how these processes actually take place).

The next stage in the modelling process is carried out by the role of the modeller.
The modeller’s task is to transform the non-formal model that the thematician
aims to explore into the (formal) requirement specifications that the computer
scientist—the third role—needs to formulate the (formal) executable model. This
job involves (at least) three major challenges. The first one consists in acting as
a mediator between two domains that are very frequently fundamentally different
(e.g. sociology and computer science). The second challenge derives from the fact
that in most cases, the thematician’s model is not fully specified, i.e. there are
many formal models that would conform to it.> In other words, the formal model
created by the modeller is most often just one of many possible particularisations

3Note that the thematician faces a similar problem when building his non-formal model. There are
potentially an infinite number of models for one single target system.

128 J.M. Galan et al.

v A
Thematician's Abstraction =

specifications

[potentiai error] | nppllfatlon 5

lintentional design]
!

Modeller's
\specifications !

Formal model

[~

Comp. scientist's Approximation
specifications |

: Executable model
[same model]
| coding
Programmer’s
specifications Results

Comp. Program

Fig. 7.3 Different stages in the process of designing, implementing, and using an agent-based
model

of the thematician’s (more general) model. Lastly, the third challenge appears when
the thematician’s model is not consistent, which may perfectly be the case since
his model is often formulated using natural language. Discovering inconsistencies
in natural language models is in general a non-trivial task. Several authors (e.g.
Christley et al. 2004; Pignotti et al. 2005; and Polhill and Gotts 2006) have identified
ontologies to be particularly useful for this purpose, especially in the domain of
agent-based social simulation. Polhill and Gotts (2006) write:

An ontology is defined by Gruber (1993) as ‘a formal, explicit specification of a shared
conceptualisation’. Fensel (2001) elaborates: ontologies are formal in that they are machine
readable; explicit in that all required concepts are described; shared in that they represent
an agreement among some community that the definitions contained within the ontology
match their own understanding; and conceptualisations in that an ontology is an abstraction
of reality. (Polhill and Gotts 2006, p. 51)

Thus, the modeller has the difficult—potentially unfeasible—task of finding a set of
(formal and consistent) requirement specifications* where each individual require-

4Each individual member of this set can be understood as a different model or, alternatively,
as a different parameterisation of one single—more general—model that would itself define the
whole set.

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 129

ment specification of that set is a legitimate particular case of the thematician’s
model and the set as a whole is representative of the thematician’s specifications
(i.e. the set is sufficient to fully characterise the thematician’s model to a satisfactory
extent).

Drogoul et al.’s third role is the computer scientist. Here we distinguish between
computer scientist and programmer. It is often the case that the modeller comes
up with a formal model that cannot be implemented in a computer. This could be,
for example, because the model uses certain concepts that cannot be operated by
present-day computers (e.g. real numbers, as opposed to floating-point numbers)
or because running the model would demand computational requirements that are
not yet available (e.g. in terms of memory and processing capacity). The job of
the computer scientist consists in finding a suitable (formal) approximation to
the modeller’s formal model that can be executed in a computer (or in several
computers) given the available technology. To achieve this, the computer scientist
may have to approximate and simplify certain aspects of the modeller’s formal
model, and it is his job to make sure that these simplifications are not affecting
the results significantly. As an example, Cioffi-Revilla (2002) warns about the
potentially significant effects of altering system size in agent-based simulations.

The Navier-Stokes equations of fluid dynamics are a paradigmatic case in point.
They are a set of non-linear differential equations that describe the motion of
a fluid. Although these equations are considered a very good (formal and fully
specified) model, their complexity is such that analytical closed-form solutions are
available only for the simplest cases. For more complex situations, solutions of the
Navier-Stokes equations must be estimated using approximations and numerical
computation (Heywood et al. 1990; Salvi 2002). Deriving such approximations
would be the task of the computer scientist’s role, as defined here.

One of the main motivations to distinguish between the modeller’s role and the
computer scientist’s role is that, in the domain of agent-based social simulation, it is
the description of the modeller’s formal model that is usually found in academic
papers, even though the computer scientist’s model was used by the authors to
produce the results in the paper. Most often the modeller’s model (i.e. the one
described in the paper) simply cannot be run in a computer; it is the (potentially
faulty) implementation of the computer scientist’s approximation to such a model
that is really run by the computer. As an example, note that computer models
described in scientific papers are most often expressed using equations in real
arithmetic, whereas the models that actually run in computers almost invariably use
floating-point arithmetic.

Finally, the role of the programmer is to implement the computer scientist’s
executable model. In our framework, by definition of the role computer scientist, the
model he produces must be executable and fully specified, i.e. it must include all the
necessary information so given a certain input the model always produces the same
output. Thus, the executable model will have to specify in its definition everything
that could make a difference, e.g. the operating system and the specific pseudo-
random number generator to be used. This is a subtle but important point, since it
implies that the programmer’s job does not involve any process of abstraction or

130 J.M. Galan et al.

simplification; i.e. the executable model and the programmer’s specifications are
by definition the same (see Fig. 7.3). (We consider two models to be the same
if and only if they produce the same outputs when given the same inputs.) The
programmer’s job consists “only” in writing the executable model in a programming
language.’ If the programmer does not make any mistakes, then the implemented
model (e.g. the code) and the executable model will be the same.

Any mismatch between someone’s specifications and the actual model he passes
to the next stage is considered here an error (see Fig. 7.3). As an example, if the
code implemented by the programmer is not the same model as his specifications,
then there has been an implementation error. Similarly, if the computer scientist’s
specifications are not complete (i.e. they do not define a unique model that produces
a precise set of outputs for each given set of inputs), we say that he has made an
error since the model he is producing is necessarily fully specified (by definition of
the role). This opens up the question of how the executable model is defined: the
executable model is the same model as the code if the programmer does not make
any mistakes. So, to be clear, the distinction between the role of computer scientist
and programmer is made here to distinguish (a) errors in the implementation of a
fully specified model (which are made by the programmer) from (b) errors derived
from an incomplete understanding of how a computer program works (which are
made by the computer scientist). An example of the latter would be one where
the computer scientist’s specifications stipulate the use of real arithmetic, but the
executable model uses floating-point arithmetic.

It is worth noting that in an ideal world, the specifications created by each role
would be written down. Unfortunately the world is far from ideal, and it is often the
case that the mentioned specifications stay in the realm of mental models and never
reach materialisation.

The reason for which the last two roles in the process are called “the computer
scientist” and the “programmer” is because, as mentioned before, most agent-
based models are implemented as computer programs and then explored through
simulation (for tractability reasons). However, one could also think of, e.g. a
mathematician conducting these two roles, especially if the formal model provided
by the modeller can be solved analytically. For the sake of clarity, and without great
loss of generality, we assume here that the model is implemented as a computer
program, and its behaviour is explored through computer simulation.

Once the computer model is implemented, it is run, and the generated results are
analysed. The analysis of the results of the computer model leads to conclusions on
the behaviour of the computer scientist’s model, and, to the extent that the computer
scientist’s model is a valid approximation of the modeller’s formal model, these
conclusions also apply to the modeller’s formal model. Again, to the extent that

SThere are some interesting attempts with INGENIAS (Pavén and Gémez-Sanz 2003) to use
modelling and visual languages as programming languages rather than merely as design languages
(Sansores and Pavén 2005; Sansores et al. 2006). These efforts are aimed at automatically
generating several implementations of one single executable model (in various different simulation
platforms).

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 131

the formal model is a legitimate particularisation of the non-formal model created
by the thematician, the conclusions obtained for the modeller’s formal model can
be interpreted in the terms used by the non-formal model. Furthermore, if the
modeller’s formal model is representative of the thematician’s model, then there is
scope for making general statements on the behaviour of the thematician’s model.
Finally, if the thematician’s model is satisfactorily capturing social reality, then the
knowledge inferred in the whole process can be meaningfully applied to the target
system.

In the following section, we use our extended framework to identify the different
errors and artefacts that may occur in each of the stages of the modelling process
and the activities that can be conducted to avoid such errors and artefacts.

7.4 Errors and Artefacts

7.4.1 Definition of Error and Artefact and Their Relevance for
Validation and Verification

Since the meanings of the terms validation, verification, error, and artefact are not
uncontested in the literature, we start by stating the meaning that we attribute to
each of them. For us, validation is the process of assessing how useful a model is
for a certain purpose. A model is valid to the extent that it provides a satisfactory
range of accuracy consistent with the intended application of the model (Kleijnen
1995; Sargent 2003).° Thus, if the objective is to accurately represent social reality,
then validation is about assessing how well the model is capturing the essence of
its empirical referent. This could be measured in terms of goodness of fit to the
characteristics of the model’s referent (Moss et al. 1997).

Verification—sometimes called “internal validation”, e.g. by Taylor (1983),
Drogoul et al. (2003), Sansores and Pavén (2005), or “internal validity”, e.g. by
Axelrod (1997a)—is the process of ensuring that the model performs in the manner
intended by its designers and implementers (Moss et al. 1997). Let us say that
a model is correct if and only if it would pass a verification exercise. Using our
previous terminology, an expression of a model in a language is correct if and only
if it is the same model as the developer’s specifications. Thus, it could well be the
case that a correct model is not valid (for a certain purpose). Conversely, it is also
possible that a model that is not correct is actually valid for some purposes. Having
said that, one would think that the chances of a model being valid are higher if
it performs in the manner intended by its designer. To be sure, according to our
definition of validation, what we want is a valid model, and we are interested in its
correctness only to the extent that correctness contributes to make the model valid.

6See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).

132 J.M. Galan et al.

We also distinguish between errors and artefacts (Galan et al. 2009). Errors
appear when a model does not comply with the requirement specifications self-
imposed by its own developer. In simple words, an error is a mismatch between
what the developer thinks the model is and what it actually is. It is then clear that
there is an error in the model if and only if the model is not correct. Thus, verification
is the process of looking for errors. An example of an implementation error would
be the situation where the programmer intends to loop through the whole list of
agents in the program, but he mistakenly writes the code so it only runs through a
subset of them. A less trivial example of an error would be the situation where it is
believed that a program is running according to the rules of real arithmetic, while
the program is actually using floating-point arithmetic (Izquierdo and Polhill 2006;
Polhill and Izquierdo 2005; Polhill et al. 2005, 2006).

In contrast to errors, artefacts relate to situations where there is no mismatch
between what the developer thinks a model is and what it actually is. Here the
mismatch is between the set of assumptions in the model that the developer thinks
are producing a certain phenomenon and the assumptions that are the actual cause
of such phenomenon. We explain this in detail. We distinguish between core and
accessory assumptions in a model. Core assumptions are those whose presence
is believed to be important for the purpose of the model. Ideally these would be
the only assumptions present in the model. However, when producing a formal
model, it is often the case that the developer is bound to include some additional
assumptions for the only purpose of making the model complete. We call these
accessory assumptions. Accessory assumptions are not considered a crucial part
of the model; they are included to make the model work. We also distinguish
between significant and non-significant assumptions. A significant assumption is
an assumption that is the cause of some significant result obtained when running
the model. Using this terminology, we define artefacts as significant phenomena
caused by accessory assumptions in the model that are (mistakenly) deemed non-
significant. In other words, an artefact appears when an accessory assumption that
is considered non-significant by the developer is actually significant. An example
of an artefact would be the situation where the topology of the grid in a model
is accessory; it is believed that some significant result obtained when running the
model is independent of the particular topology used (say, e.g. a grid of square
cells), but it turns out that if an alternative topology is chosen (say, e.g. hexagonal
cells), then the significant result is not observed.

The relation between artefacts and validation is not as straightforward as that
between errors and verification. For a start, artefacts are relevant for validation
only to the extent that identifying and understanding causal links in the model’s
referent is part of the purpose of the modelling exercise. We assume that this is
the case, as indeed it usually is in the field of agent-based social simulation. A
clear example is the Schelling-Sakoda model of segregation, which was designed
to investigate the causal link between individual preferences and global patterns
of segregation (Sakoda 1971; Schelling 1971, 1978). The presence of artefacts
in a model implies that the model is not representative of its referent, since one
can change some accessory assumption (thus creating an alternative model which

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 133

still includes all the core assumptions) and obtain significantly different results.
When this occurs, we run the risk of interpreting the results obtained with the
(nonrepresentative) model beyond its scope (Edmonds and Hales 2005). Thus, to
the extent that identifying causal links in the model’s referent is part of the purpose
of the modelling exercise, the presence of artefacts decreases the validity of the
model. In any case, the presence of artefacts denotes a misunderstanding of what
assumptions are generating what results.

7.4.2 Appearance of Errors and Artefacts

The dynamics of agent-based models are generally sufficiently complex that model
developers themselves do not understand in exhaustive detail how the obtained
results have been produced. As a matter of fact, in most cases if the exact results
and the processes that generated them were known and fully understood in advance,
there would not be much point in running the model in the first place. Not knowing
exactly what to expect makes it impossible to tell whether any unanticipated results
derive exclusively from what the researcher believes are the core assumptions in
the model or whether they are due to errors or artefacts. The question is of crucial
importance since, unfortunately, the truth is that there are many things that can go
wrong in modelling.

Errors and artefacts may appear at various stages of the modelling process (Galdn
and Izquierdo 2005). In this section we use the extended framework explained in the
previous section to identify the critical stages of the modelling process where errors
and artefacts are most likely to occur.

According to our definition of artefact—i.e. significant phenomena caused by
accessory assumptions that are not considered relevant—, artefacts cannot appear
in the process of abstraction conducted by the thematician, since this stage consists
precisely in distilling the core features of the target system. Thus, there should not
be accessory assumptions in the thematician’s model. Nevertheless, there could still
be issues with validation if, for instance, the thematician’s model is not capturing
social reality to a satisfactory extent. Errors could appear in this stage because the
thematician’s specifications are usually expressed in natural language, and rather
than being written down, they are often transmitted orally to the modeller. Thus, an
error (i.e. a mismatch between the thematician’s specifications and the non-formal
model received by the modeller) could appear here if the modeller misunderstands
some of the concepts put forward by the thematician.

The modeller is the role that may introduce the first artefacts in the modelling
process. When formalising the thematician’s model, the modeller will often have
to make a number of additional assumptions so the produced formal model is
fully specified. By our definition of the two roles, these additional assumptions
are not crucial features of the target system. If such accessory assumptions have
a significant impact on the behaviour of the model and the modeller is not aware
of it, then an artefact has been created. This would occur if, for instance, (a) the

134 J.M. Galan et al.

thematician did not specify any particular neighbourhood function, (b) different
neighbourhood functions lead to different results, and (c) the modeller is using only
one of them and believes that they all produce essentially the same results.

Errors could also appear at this stage, although it is not very likely. This is so
because the specifications that the modeller produces must be formal, and they are
therefore most often written down in a formal language. When this is the case, there
is little room for misunderstanding between the modeller and the computer scientist,
i.e. the modeller’s specifications and the formal model received by the computer
scientist would be the same, and thus there would be no error at this stage.

The role of the computer scientist could introduce artefacts in the process. This
would be the case if, for instance, his specifications require the use of a particular
pseudorandom number generator; he believes that this choice will not have any
influence in the results obtained, but it turns out that it does. Similar examples could
involve the arbitrary selection of an operating system or a specific floating-point
arithmetic that had a significant effect on the output of the model.

Errors can quite easily appear in between the role of the computer scientist
and the role of the programmer. Note that in our framework, any mismatch
between the computer scientist’s specifications and the executable model received
by the programmer is considered an error. In particular, if the computer scientist’s
specifications are not executable, then there is an error. This could be, for instance,
because the computer scientist’s specifications stipulate requirements that cannot
be executed with present-day computers (e.g. real arithmetic) or because it does not
specify all the necessary information to be run in a computer in an unequivocal way
(e.g. it does not specify a particular pseudorandom number generator). The error
then may affect the validity of the model significantly, or may not.

Note from the previous examples that if the computer scientist does not provide
a fully executable set of requirement specifications, then he is introducing an error,
since in that case, the computer program (which is executable) would be necessarily
different from his specifications. On the other hand, if he does provide an executable
model but in doing so he makes an arbitrary accessory assumption that turns out to
be significant, then he is introducing an artefact.

Finally, the programmer cannot introduce artefacts because his specifications are
the same as the executable model by definition of the role (i.e. the programmer does
not have to make any accessory assumptions). However, he may make mistakes
when creating the computer program from the executable model.

7.4.3 Activities Aimed at Detecting Errors and Artefacts

In this section we identify various activities that the different roles defined in the
previous sections can undertake to detect errors and artefacts. We consider the use
of these techniques as a very recommendable and eventually easy to apply practice.
In spite of this, we should warn that, very often, these activities may require a
considerable human and computational effort.

Checking Simulations: Detecting and Avoiding Errors and Artefacts 135

Modeller’s activities:

Develop and analyse new formal models by implementing alternative accessory
assumptions while keeping the core assumptions identified by the thematician.
This exercise will help to detect artefacts. Only those conclusions which are
not falsified by any of these models will be valid for the thematician’s model.
As an example, see Galan and Izquierdo (2005), who studied different instan-
tiations of one single conceptual model by implementing different evolutionary
selection mechanisms. Takadama et al. (2003) conducted a very similar exercise
implementing three different learning algorithms for their agents. In a collection
of papers, Klemm et al. (2003a, 2003b, 2003c, 2005) investigate the impact
of various accessory assumptions in Axelrod’s model for the dissemination of
culture (Axelrod 1997b). Another example of studying different formal models
that address one single problem is provided by Kluver and Stoica (2003).
Conduct a more exhaustive exploration of the parameter space within the
boundaries of the thematician’s specifications. If we obtain essentially the same
results using the wider parameter range, then we will have broadened the scope of
the model, thus making it more representative of the thematician’s model. If, on
the other hand, results change significantly, then we will have identified artefacts.
This type of exercise has been conducted by, e.g. Castellano et al. (2000) and
Galan and Izquierdo (2005).

Create abstractions of the formal model which are mathematically tractable. An
example of one possible abstraction would be to study the expected motion of
a dynamic system (see the studies conducted by Galdn and Izquierdo (2005),
Edwards et al. (2003), and Castellano et al. (2000) for illustrations of mean-field
approximations). Since these mathematical abstractions do not correspond in a
one-to-one way with the specifications of the formal model, any results obtained
with them will not be conclusive, but they may suggest parts of the model where
there may be errors or artefacts.

Apply the simulation model to relatively well-understood and predictable sit-
uations to check that the obtained results are in agreement with the expected
behaviour (Gilbert and Terna 2000).

Computer scientist’s activities:

Develop mathematically tractable models of certain aspects, or particular cases,
of the modeller’s formal model. The analytical results derived with these models
should match those obtained by simulation; a disparity would be an indication of
the presence of errors.

Develop new executable models from the modeller’s formal model using alter-
native modelling paradigms (e.g. procedural vs. declarative). This activity will
help to identify artefacts. As an example, see Edmonds and Hales’ (2003)
reimplementation of Riolo et al. (2001) model of cooperation among agents using
tags. Edmonds reimplemented the model using SDML (declarative), whereas
Hales reprogrammed the model in Java (procedural).

136 J.M. Galan et al.

* Rerun the same code in different computers, using different operating systems,
with different pseudorandom number generators. These are most often accessory
assumptions of the executable model that are considered non-significant, so any
detected difference will be a sign of an artefact. If no significant differences are
detected, then we can be confident that the code comprises all the assumptions
that could significantly influence the results. This is a valuable finding that can
be exploited by the programmer (see next activity). As an example, Polhill et
al. (2005) explain that using different compilers can result in the application of
different floating-point arithmetic systems to the simulation run.

Programmer’s activities:

* Reimplement the code in different programming languages. Assuming that the
code contains all the assumptions that can influence the results significantly,
this activity is equivalent to creating alternative representations of the same
executable model. Thus, it can help to detect errors in the implementation.
There are several examples of this type of activity in the literature. Bigbee et
al. (2007) reimplemented Sugarscape (Epstein and Axtell 1996) using MASON.
Xu et al. (2003) implemented one single model in Swarm and Repast. The
reimplementation exercise conducted by Edmonds and Hales (2003) applies here
too.

* Analyse particular cases of the executable model that are mathematically
tractable. Any disparity will be an indication of the presence of errors.

e Apply the simulation model to extreme cases that are perfectly understood
(Gilbert and Terna 2000). Examples of this type of activity would be to run
simulations without agents or with very few agents, explore the behaviour of
the model using extreme parameter values, or model very simple environments.
This activity is common practice in the field.

7.5 Summary

The dynamics of agent-based models are usually so complex that their own
developers do not fully understand how they are generated. This makes it difficult, if
not impossible, to discern whether observed significant results are legitimate logical
implications of the assumptions that the model developer is interested in or whether
they are due to errors or artefacts in the design or implementation of the model.

Errors are mismatches between what the developer believes a model is and what
the model actually is. Artefacts are significant phenomena caused by accessory
assumptions in the model that are (mistakenly) considered non-significant. Errors
and artefacts prevent developers from correctly understanding their simulations.
Furthermore, both errors and artefacts can significantly decrease the validity of a
model, so they are best avoided.

In this chapter we have outlined a general framework that summarises the
process of designing, implementing, and using agent-based models. Using this

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 137

framework we have identified the different types of errors and artefacts that may
occur in each of the stages of the modelling process. Finally, we have proposed
several activities that can be conducted to avoid each type of error or artefact.
Some of these activities include repetition of experiments in different platforms,
reimplementation of the code in different programming languages, reformulation
of the conceptual model using different modelling paradigms, and mathematical
analyses of simplified versions or particular cases of the model. Conducting these
activities will surely increase our understanding of a particular simulation model.

Acknowledgements The authors have benefited from the financial support of the Spanish
Ministry of Education and Science (projects CSD2010-00034, DP12004-06590, DPI2005-05676,
and TIN2008-06464-C03-02) and of the Junta de Castilla y Leén (projects BU0O34A08 and
VA006B09). We are also very grateful to Nick Gotts, Gary Polhill, Bruce Edmonds, and Ceséareo
Herndndez for many discussions on the philosophy of modelling.

Further Reading

Gilbert (2007) provides an excellent basic introduction to agent-based modelling.
Chapter 4 summarises the different stages involved in an agent-based modelling
project, including verification and validation. The paper entitled “Some myths and
common errors in simulation experiments” (Schmeiser 2001) discusses briefly some
of the most common errors found in simulation from a probabilistic and statistical
perspective. The approach is not focused specifically on agent-based modelling but
on simulation in general. Yilmaz (2006) presents an analysis of the life cycle of a
simulation study and proposes a process-centric perspective for the validation and
verification of agent-based computational organisation models. An antecedent of
this chapter can be found in Galan et al. (2009). Finally, Chap. 9 in this volume
(David et al. 2017) discusses validation in detail.

References

Axelrod, R. M. (1997a). Advancing the art of simulation in the social sciences. In R. Conte, R.
Hegselmann, & P. Terna (Eds.), Simulating social phenomena. (Lecture Notes in Economics
and Mathematical Systems, 456) (pp. 21-40). Berlin: Springer.

Axelrod, R. M. (1997b). The dissemination of culture: A model with local convergence and global
polarization. Journal of Conflict Resolution, 41(2), 203-226.

Axtell, R. L. (2000). Why agents? On the varied motivations for agent computing in the
social sciences. In C. M. Macal & D. Sallach (Eds.), Proceedings of the workshop on
agent simulation: applications, models, and tools (pp. 3—24). Argonne National Laboratory:
Argonne, IL.

Axtell, R. L., & Epstein, J. M. (1994). Agent based modeling: Understanding our creations. The
Bulletin of the Santa Fe Institute, 1994, 28-32.

http://dx.doi.org/10.1007/978-3-319-66948-9_4
http://dx.doi.org/10.1007/978-3-319-66948-9_9

138 J.M. Galan et al.

Bigbee, T., Cioffi-Revilla, C., & Luke, S. (2007). Replication of sugarscape using MASON. In T.
Terano, H. Kita, H. Deguchi, & K. Kijima (Eds.), Agent-based approaches in economic and
social complex systems 1V: Post-proceedings of the AESCS international workshop 2005 (pp.
183-190). Tokyo: Springer.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences of the United States of America,
99(2), 7280-7287.

Castellano, C., Marsili, M., & Vespignani, A. (2000). Nonequilibrium phase transition in a model
for social influence. Physical Review Letters, 85(16), 3536-3539.

Christley, S., Xiang, X., & Madey, G. (2004). Ontology for agent-based modeling and simulation.
In C. M. Macal, D. Sallach, & M. J. North (Eds.), Proceedings of the agent 2004 conference
on social dynamics: interaction, reflexivity and emergence. Chicago, IL: Argonne National
Laboratory and The University of Chicago. http://www.agent2005.anl.gov/Agent2004.pdf.

Cioffi-Revilla, C. (2002). Invariance and universality in social agent-based simulations. Proceed-
ings of the National Academy of Sciences of the United States of America, 99(3), 7314-7316.

Conlisk, J. (1996). Why bounded rationality? Journal of Economic Literature, 34(2), 669-700.

David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations.
doi:https://doi.org/10.1007/978-3-319-66948-9_9.

Drogoul, A., Vanbergue, D., & Meurisse, T. (2003). Multi-agent based simulation: Where are the
agents? In J. S. Sichman, F. Bousquet, & P. Davidsson (Eds.), Proceedings of MABS 2002
multi-agent-based simulation. (Lecture Notes in Computer Science, 2581) (pp. 1-15). Bologna:
Springer.

Edmonds, B. (2001). The use of models: making MABS actually work. In S. Moss & P. Davidsson
(Eds.), Multi-agent-based simulation. (Lecture notes in artificial intelligence, 1979) (pp. 15—
32). Berlin: Springer.

Edmonds, B. (2005). Simulation and complexity: How they can relate. In V. Feldmann & K.
Miihlfeld (Eds.), Virtual worlds of precision: Computer-based simulations in the sciences and
social sciences (pp. 5-32). Lit-Verlag: Miinster.

Edmonds, B. (2017). Different modelling purposes. doi:https://doi.org/10.1007/978-3-319-66948-
9_4.

Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons
from model alignment. Journal of Artificial Societies and Social Simulation, 6(4). http://
jasss.soc.surrey.ac.uk/6/4/11.html.

Edmonds, B., & Hales, D. (2005). Computational Simulation as Theoretical Experiment. Journal
of Mathematical Sociology, 29, 1-24.

Edwards, M., Huet, S., Goreaud, F., & Deffuant, G. (2003). Comparing an individual-based
model of behaviour diffusion with its mean field aggregate approximation. Journal of Artificial
Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/9.html.

Epstein, J. M. (1999). Agent-based computational models and generative social science. Complex-
ity, 4(5), 41-60.

Epstein, J. M. (2008). Why model?. Journal of Artificial Societies and Social Simulation, 11(4), 12.
http://jasss.soc.surrey.ac.uk/11/4/12.html.

Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the bottom
up. Cambridge, MA: Brookings Institution Press/MIT Press.

Fensel, D. (2001). Ontologies: A silver bullet for knowledge management and electronic commerce.
Berlin: Springer.

Galdn, J. M., et al. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial
Societies and Social Simulation, 12(1). http://jasss.soc.surrey.ac.uk/12/1/1.html.

Galdn, J. M., & Izquierdo, L. R. (2005). Appearances can be deceiving: lessons learned re-
implementing Axelrod’s ‘evolutionary approach to norms’. Journal of Artificial Societies and
Social Simulation, 8(3). http://jasss.soc.surrey.ac.uk/8/3/2.html

Gilbert, N. (1999). Simulation: A new way of doing social science. The American Behavioral
Scientist, 42(10), 1485-1487.

Gilbert, N. (2007). Agent-based models. London: Sage Publications.

http://www.agent2005.anl.gov/Agent2004.pdf
http://dx.doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1007/978-3-319-66948-9_4
https://doi.org/10.1007/978-3-319-66948-9_4
http://jasss.soc.surrey.ac.uk/6/4/11.html
http://jasss.soc.surrey.ac.uk/6/4/9.html
http://jasss.soc.surrey.ac.uk/11/4/12.html
http://jasss.soc.surrey.ac.uk/12/1/1.html
http://jasss.soc.surrey.ac.uk/8/3/2.html

7 Checking Simulations: Detecting and Avoiding Errors and Artefacts 139

Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind
& Society, 1(1), 57-72.

Gilbert, N., & Troitzsch, K. G. (1999). Simulation for the social scientist. Buckingham: Open
University Press.

Gotts, N. M., Polhill, J. G. & Adam, W. J. (2003, 18-21 September). Simulation and analysis
in agent-based modelling of land use change. Online proceedings of the first conference of
the European Social Simulation Association, Groningen, The Netherlands, http://www.uni-
koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 199-220.

Hare, M., & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models
in environmental management. Mathematics and Computers in Simulation, 64(1), 25-40.

Hernandez, C. (2004). Herbert A. Simon, 1916-2001, y el Futuro de la Ciencia Econémica. Revista
Europea De Direccion y Economia De La Empresa, 13(2), 7-23.

Heywood, J. G., Masuda, K., Rautmann, R., & Solonnikov, V. A. (Eds.). (1990). The Navier-Stokes
equations: Theory and numerical methods; Proceedings of a conference held at Oberwolfach,
FRG, Sept. 18-24, 1988. (Lecture Notes in Mathematics, 1431). Berlin: Springer.

Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. American
Economic Review, 81(2), 365-370.

Izquierdo, L. R., & Polhill, J. G. (2006). Is your model susceptible to floating point errors? Journal
of Artificial Societies and Social Simulation, 9(4). http://jasss.soc.surrey.ac.uk/9/4/4.html.

Kleijnen, J. P. C. (1995). Verification and validation of simulation models. European Journal of
Operational Research, 82(1), 145-162.

Kleindorfer, G. B., O’Neill, L., & Ganeshan, R. (1998). Validation in simulation: Various positions
in the philosophy of science. Management Science, 44(8), 1087-1099.

Klemm, K., Eguiluz, V., Toral, R., & San Miguel, M. (2003a). Role of dimensionality in Axelrod’s
model for the dissemination of culture. Physica A, 327, 1-5.

Klemm, K., Eguiluz, V., Toral, R., & San Miguel, M. (2003b). Global culture: A noise-induced
transition in finite systems. Physical Review E, 67(4), 045101.

Klemm, K., Eguiluz, V., Toral, R., & San Miguel, M. (2003c). Nonequilibrium transitions in
complex networks: A model of social interaction. Physical Review E, 67(2), 026120.

Klemm, K., Eguiluz, V., Toral, R., & San Miguel, M. (2005). Globalization, polarization and
cultural drift. Journal of Economic Dynamics & Control, 29(1-2), 321-334.

Kluver, J., & Stoica, C. (2003). Simulations of group dynamics with different models. Journal of
Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/8.html.

Leombruni, R., & Richiardi, M. (2005). Why are economists sceptical about agent-based simula-
tions? Physica A, 355, 103—-109.

Moss, S. (2001). Game theory: Limitations and an alternative. Journal of Artificial Societies and
Social Simulation, 4(2). http://jasss.soc.surrey.ac.uk/4/2/2.html.

Moss, S. (2002). Agent based modelling for integrated assessment. Integrated Assessment, 3(1),
63-717.

Moss, S., Edmonds, B., & Wallis, S. (1997). Validation and verification of computational models
with multiple cognitive agents (Report no. 97-25). Manchester: Centre for Policy Modelling,
http://cfpm.org/cpmrep25.html.

Ostrom, T. (1988). Computer simulation: The third symbol system. Journal of Experimental Social
Psychology, 24(5), 381-392.

Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modeling vs. equation-based
modeling: A case study and users’ guide. In J. S. Sichman, R. Conte, & N. Gilbert (Eds.),
Multi-agent systems and agent-based simulation. (Lecture notes in artificial intelligence 1534)
(pp- 10-25). Berlin: Springer.

http://www.uni-koblenz.de/~essa/ESSA2003/gotts_polhill_adam-rev.pdf
http://jasss.soc.surrey.ac.uk/9/4/4.html
http://jasss.soc.surrey.ac.uk/6/4/8.html
http://jasss.soc.surrey.ac.uk/4/2/2.html
http://cfpm.org/cpmrep25.html

140 J.M. Galan et al.

Pavon, J. & Gomez-Sanz, J. (2003). Agent oriented software engineering with INGENIAS. In
V. Marik, J. Miiller & M. Pechoucek (Eds.), Multi-agent systems and applications III, 3rd
international central and eastern European conference on multi-agent systems, CEEMAS.
(Lecture notes in artificial intelligence, 2691) (pp. 394-403); Berlin, Heidelberg: Springer.

Pignotti, E., Edwards, P., Preece, A., Polhill, J.G. & Gotts, N.M. (2005). Semantic support for
computational land-use modelling. Proceedings of the 5th international symposium on cluster
computing and the grid (CCGRID 2005) (pp. 840-847). Piscataway, NJ: IEEE Press.

Polhill, J. G. & Gotts, N. M. (2006, August 21-25). A new approach to modelling frameworks.
Proceedings of the first world congress on social simulation. (Vol. 1, pp. 215-222), Kyoto,
Japan.

Polhill, J. G., & Izquierdo, L. R. (2005). Lessons learned from converting the artificial stock
market to interval arithmetic. Journal of Artificial Societies and Social Simulation, 8(2). http://
jasss.soc.surrey.ac.uk/8/2/2.html.

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2005). The ghost in the model (and other effects
of floating point arithmetic). Journal of Artificial Societies and Social Simulation, 8(1). http://
jasss.soc.surrey.ac.uk/8/1/5.html.

Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2006). What every agent based modeller should
know about floating point arithmetic. Environmental Modelling & Software, 21(3), 283-309.

Riolo, R. L., Cohen, M. D., & Axelrod, R. M. (2001). Evolution of cooperation without reciprocity.
Nature, 411, 441-443.

Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathematical
Sociology, 1(1), 119-132.

Salvi, R. (2002). The Navier-Stokes equation: Theory and numerical methods. (Lecture notes in
pure and applied mathematics). New York: Marcel Dekker.

Sansores, C., & Pavon, J. (2005, November 14-18). Agent-based simulation replication: A model
driven architecture approach. In A. F. Gelbukh, A. de Albornoz, & H. Terashima-Marin (Eds.),
Proceedings of MICAI 2005: Advances in artificial intelligence, 4th Mexican international
conference on artificial intelligence. (Lecture notes in computer science, 3789) (pp. 244-253),
Monterrey, Mexico. Berlin, Heidelberg: Springer.

Sansores, C., Pavén, J., & Gémez-Sanz, J. (2006, July 25). Visual modeling for complex agent-
based simulation systems. In J. S. Sichman & L. Antunes (Eds.), Multi-agent-based simulation
VI, International workshop, MABS 2005, revised and invited papers. (Lecture notes in computer
science, 3891) (pp. 174-189), Utrecht, The Netherlands. Berlin, Heidelberg: Springer.

Sargent, R. G. (2003). Verification and validation of simulation models. In S. Chick, P. J. Sanchez,
D. Ferrin, & D. J. Morrice (Eds.), Proceedings of the 2003 winter simulation conference (pp.
37-48). Piscataway, NJ: IEEE.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
47-186.

Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton.

Schmeiser, B. W. (2001, December 09-12). Some myths and common errors in simulation
experiments. In B. A. Peters, J. S. Smith, D. J. Medeiros, & M. W. Rohrer (Eds.), Proceedings
of the winter simulation conference (Vol. 1, pp. 39—46), Arlington, VA.

Takadama, K., Suematsu, Y. L., Sugimoto, N., Nawa, N. E., & Shimohara, K. (2003). Cross-
element validation in multiagent-based simulation: Switching learning mechanisms in agents.
Journal of Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/
6.html.

Taylor, A. J. (1983). The verification of dynamic simulation models. Journal of the Operational
Research Society, 34(3), 233-242.

Xu, J., Gao, Y. & Madey, G. (2003, April 13-15). A docking experiment: swarm and repast for
social network modeling. In Seventh annual swarm researchers conference (SwarmFest 2003.
Notre Dame, IN.

Yilmaz, L. (2006). Validation and verification of social processes within agent-based computational
organization models. Computational & Mathematical Organization Theory, 12(4), 283-312.

http://jasss.soc.surrey.ac.uk/8/2/2.html
http://jasss.soc.surrey.ac.uk/8/1/5.html
http://jasss.soc.surrey.ac.uk/6/4/6.html

Chapter 8
The Importance of Ontological Structure:
Why Validation by ‘Fit-to-Data’ Is Insufficient

Gary Polhill and Doug Salt

Abstract This chapter will briefly describe some common methods by which
people make quantitative estimates of how well they expect empirical models to
make predictions. However, the chapter’s main argument is that fit-to-data, the
traditional yardstick for establishing confidence in models, is not quite the solid
ground on which to build such belief some people think it is, especially for the
kind of system agent-based modelling is usually applied to. Further, the chapter
will show that the amount of data required to establish confidence in an arbitrary
model by fit-to-data is often infeasible, unless there is some appropriate ‘big data’
available. This arbitrariness can be reduced by constraining the choice of model.
In agent-based models, these constraints are introduced by their descriptiveness
rather than by removing variables from consideration or making assumptions for the
sake of simplicity. By comparing with neural networks, we show that agent-based
models have a richer ontological structure. For agent-based models, in particular,
this richness means that the ontological structure has a greater significance and yet
is all too commonly taken for granted or assumed to be ‘common sense’. The chapter
therefore also discusses some approaches to validating ontologies.

Why Read This Chapter?

When you have built an agent-based model, you need some way of assessing how
‘good’ it is. We will tell you how this is done traditionally in empirical contexts,
through measures of fit-to-data. You will learn why fitting to data is not enough
in the kind of situation where agent-based models are useful and why you also
need to assess the model’s ontological structure. The chapter will tell you what the
ontological structure is, how to assess it and whether and if so how it can be traded
off against fit-to-data.

G. Polhill (>4) » D. Salt
The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
e-mail: gary.polhill @hutton.ac.uk; doug.salt@hutton.ac.uk

© Springer International Publishing AG 2017 141
B. Edmonds, R. Meyer (eds.), Simulating Social Complexity,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-66948-9_8

mailto:gary.polhill@hutton.ac.uk
mailto:doug.salt@hutton.ac.uk
https://doi.org/10.1007/978-3-319-66948-9_8

142 G. Polhill

8.1 Introduction

The chapter argues for the importance of the ontological structure in social
simulation — that is, what basic entities exist, their attributes and their relationships
with each other. In particular, simply getting a good fit of the outcomes to data
is not enough to establish the adequacy of the model. To make this point vivid,
it considers the opposite extreme, an example of a machine learning algorithm
where the ‘model’ is simply induced from the data — where there is the minimum
predefined ontological structure. The example chosen is that of neural networks,
though almost any black-box machine learning approach would have done as
well.

Neural networks are universal function approximators (Hornik et al. 1989). This
means that given a set of data, they can approximate it to within an arbitrary degree
of accuracy simply by adding more parameters. Though it may seem strange to
compare neural networks with agent-based models for the purposes of validation
and generalization, there are useful lessons from so doing that illustrate where agent-
based models add value to traditional modelling approaches and why validation
is not so straightforward. The main contrast between neural networks and agent-
based models comes down to the ‘ontology’. Essentially, apart from the labels
assigned to the input and output units of a neural network, neural networks don’t
have an ontology at all. What they do have is a mathematical structure that allows
the number of parameters to be arbitrarily varied and, with that, arbitrary degrees
of fit to a set of data to be achieved. By contrast, agent-based models have a rich
and highly descriptive ontology but, like neural networks, potentially have a large
number of parameters that can be varied (especially if we consider each agent
uniquely).

In this chapter, we examine some approaches to validation and generalization in
neural networks and consider what they tell us about agent-based modelling. Our
arguments are that validation needs to look beyond the relatively trivial question
of fit-to-data, especially in non-ergodic complex systems. Rather than being a
weakness of agent-based modelling, the challenges of validation and generalization
point to its strengths, especially in social systems, where the language used to
describe them is influenced by evolving cultural considerations.

The chapter starts with an introduction to neural networks followed by
how these are calibrated and validated. It then discusses the issue at the
heart of the chapter the importance of predetermined model bias — that is the
imposed structure derived from knowledge about what is being modelled. It
uses a particular measure (the VC dimension) to show the amount of data
needed to infer a good model without imposing such a bias is typically
infeasible. It summarizes the various measures one might use for checking
fit-to-data. This paves the way for a discussion on validating ontologies
discussing a number of approaches and the tools that might be useful for
this.

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 143

8.1.1 Introduction to Neural Networks

In this section, we will briefly explain what neural networks are, the mathematical
formulas that underpin them (in Appendix 1) and the way they are structured.
The main points we wish to introduce are that, though neural networks have
tremendous potential to approximate data, there is nothing about their structure
or the mathematics underpinning their functioning that necessarily reflects any
structure or mathematics in whatever system the data were taken from.

Neural networks were originally conceived as simulations of the brains but
are essentially networks of nonlinear functions with parameters that are adjusted
according to a learning rule. There are several different kinds of neural network
mathematically speaking, and for each kind, there can be several different learning
rules and minor adaptations and variations thereof. Biologically, a neuron is a cell
with axons connecting it to other neurons. In an agent-based simulation of a brain,
we would simulate a neuron as an agent and an axon as a link. The behaviour of
the neuron is simply to emit an electrical pulse periodically. The more frequent
the pulse, the more ‘excited’ the neuron. Connections between neurons can be
excitatory or inhibitory. An excitatory connection means that there is a positive
relationship between the excitation of the two connected neurons: all other things
being equal, one neuron’s excitement increases that of the other. An inhibitory
connection means that the relationship is negative — one neuron’s excitement
decreases that of the other. The connection has a strength — the stronger the
connection between one neuron and another, the more significant the relationship
is in comparison with other neurons the neuron is connected to.

When simulating neurons, the pulsation is ignored and the frequency of pulsation
modelled as a variable. Simulated neurons are typically called nodes. The axons
form the links in a directed graph connecting the nodes, and the directedness means
that nodes have input axons and output axons. Simulated axons are typically called
weights, largely because it is the value of the weight (representing the strength
of the connection) that is of primary interest. The weights of a neural network
are its parameters, and the job of the learning algorithm is to determine their
values. The qualitative description of the behaviour of neurons is of course given
a precise mathematical specification in simulated neural networks; this is provided
in Appendix 1 for the benefit of those who are interested.

A further simplification of the structure of the network is to arrange the nodes
into distinct layers. (It can be proved that this does not lead to loss of potential
functionality.) This simplification means that the choice of network structure is
simply a question of determining the number of layers, and for the layers that are
not input or output layers (the so-called hidden layers), the number of nodes to
use in each layer. The number of nodes in the input and output layers is of course
determined by the dimensionalities of the domain and range of the function to be
approximated. It has been proved (Cybenko 1989; Funahashi 1989; Hornik et al.
1989) that one hidden layer is sufficient to approximate any function. Although
having more hidden layers can mean that the contribution of the weights closer to

144 G. Polhill

the input units to the difference between the actual and desired output of the network
is more diluted, it can also be shown that more efficient network topologies (in terms
of number of weights) involving two hidden layers can achieve the same level of
accuracy that can be achieved with one hidden layer (Cheng and Titterington 1994;
Chester 1990).

The algorithms used to determine the weights such that the network as a whole
provides a good fit-to-data are not particularly of interest here. This material is
covered in various introductory textbooks on neural networks (e.g. Bishop 1995;
Gurney 1997; Hertz et al. 1991). What is of interest is that, having seen the structure
of a neural network and what it does, it is immediately clear that there is nothing in
that structure that reflects the real world, except for the assignment of input nodes
and output nodes to specific variables in the data to be fitted. The numbers of hidden
nodes and layers must capture any patterns in how the real-world mechanisms
interact, the choice of which essentially reflects how complex the modeller expects
the function to fit the data to need to be.

Neural networks have the absolute minimum in the way of ontological structure
it is possible to have. Their ‘content’ comes from the data they are trained to fit. We
thus next discuss the principles behind adjusting a model to fit its data, checking a
model’s fit to available evidence and how this is done in neural networks.

8.1.2 Calibration, Validation and Generalization in Neural
Networks

Calibration, validation and generalization are three steps in the development and
application of any model. We discuss them here in relation to neural networks, first
with a view to clarifying what we mean by those terms and second to discussing
some of the ways in which generalization (the application of the model) can go
wrong even for a well-validated model.

Since various terms are used in the modelling literature for the three processes
intended here by the words ‘calibration’, ‘validation’ and ‘generalization’, it is
best to be clear what is meant. The process begins with a set of data, with some
explanatory (input) variables and response (output) variables, and a model with a
predefined structure that has some parameters that can be adjusted. The data are split
into two not necessarily equal parts. The larger part is typically used for calibration:
adjusting the parameters so that the difference between the model’s prediction for
the input variables in the data and the corresponding output variables in the data (the
error) is minimized. In neural networks, this is referred to as training and entails
adjusting the values of all the weights.

There is a caveat to the use of the term ‘minimization’. For reasons such as
measurement error in the data, if a function is capable of providing an exact fit
to the data, this is potentially undesirable and is seen as overfitting. So, when we
say we want to minimize the error, it is usually understood that we wish to do so
without overfitting.

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 145

Bearing this in mind, at the end of the calibration process, you have a param-
eterized neural network with all the weights specified that you now want to be
able to use to make predictions with; except, of course, if you want to have some
degree of confidence in those predictions. Validation is the process of developing
that confidence, and it is achieved by using the data you kept aside and didn’t use
during calibration to estimate how good your future predictions will be. So, having
reached a point where you are happy with the error on the calibration data, you use
the validation data to tell you how confident you should be in the model you have
fitted: the error rate on the validation set is an estimate of the expected error rate for
prediction.

Generalization is the ability of the model to provide output for untrained input.
There are two aspects to this. The first is whether the required input can be
represented using the formalism provided by the model. In the case of neural
networks, the question seems simply to be whether the input can be adequately
expressed using the same set of dimensions and any encoding thereof as the data
used for calibration and validation. It may seem unfair to expect a model to be able
to provide output for cases that cannot be expressed using the ‘language’ the model
was built with. However, sometimes, arguably, that is what happens. Measures of
inflation, for example, are based on a ‘basket of goods’ that changes from time to
time as people’s buying habits change. This change arguably changes the meaning
of inflation. Though something of a straw man, if you have calibrated a model using
a measure of inflation that uses one basket of goods and then naively expect it to
give meaningful output for a measure of inflation that uses another, then perhaps
you are expecting the model to provide output for cases that cannot be expressed
using the language the model was built with.! Similar problems exist with other
social statistics that might be used as variables input to or output from a model,
particularly where there are changes in the way the variables are measured from one
region to another.

A second problem comes from what you left out of the model when you first built
it. Although this too may seem like an unfair criticism, perhaps when you built the
original model, a particular variable was not included as an input variable because
it was not seen as having any significant relationship with the output. Since the
model was calibrated and validated, however, a large change in the ignored variable
might have occurred that has affected the relationships between the variables you
did include. So, although when you come to compute a prediction for a new input
you have all the data you need, and can perform the computation, really, the values
for the variables you have as inputs to your model do not adequately reflect the
scenario any more. This is known as ‘omitted variable bias’ in the econometrics
literature (see, e.g. Clarke 2005).

ILess naively, you would use a calculated inflation figure for the old basket of goods as input to
the model; however, if people are not buying things in the old basket, the model may still not be
providing meaningful output.

146 G. Polhill

A final problem is a consequence of encoding variables that have nominal values.
Assuming an appropriate encoding of nominals in the input variables of the model,
the calibration and validation data may only have provided a subset of the nominals
the variable can have. The generalization may, however, be for a value of the
nominal that was not in the data used to construct the model. For neural networks,
this is less of an issue than with symbolic AI machine learning algorithms: one of
the supposed advantages of neural networks is that they are less ‘brittle’ with respect
to the language of representation of the states of the world, because they do not rely
on the language having a specific vocabulary to represent every possible state that
might ever be of interest (Aha 1992; Hanson and Burr 1990; Holland 1986).

In essence, calibration is the process of finding the parameters of a neural
network (or more generally, any model) that best fit your data. Validation is the
process of establishing the confidence you can expect to have in the predictions of
the model based on the data you have got. Generalization is the capability of a model
to make predictions in new situations. There are various reasons why that capability
may be questioned. Apart from the relevance of the data used for calibration and
validation in the new context, the reasons relate to how the modeller chose to encode,
or represent, the data.

8.1.3 Bias vs. Variance

The representation of the data is not the only choice the modeller makes. This
section covers the dilemma a modeller faces when choosing the structure of the
model. In the case of neural networks, that structure is the number of layers and
hidden units, which collectively determine the number of weights or parameters the
model has. The fewer the number of parameters, the easier the model is to calibrate,
but there is a risk of oversimplification. Since it is so easy to add more parameters to
a neural network, there is a temptation to add more parameters. We introduce some
rather advanced mathematics (Vapnik-Chervonenkis theory) to argue that in terms
of demand for data, adding more parameters can be exponentially costly.

Not all approaches using mathematical functions are ontology-free in the way
neural networks are. If we are modelling oscillatory systems, for example, we
might start with trigonometric functions. In general, the set of functions we are
willing to consider for modelling a system constitutes our ‘bias’ — the smaller the
set of functions, the greater the bias. Even neural networks have a ‘bias’ (not to be
confused with the ‘bias’ node in the network itself), which is inversely related to the
number of parameters (weights) in the network. In the ideal world, we would have a
very high bias that constrained the set of functions we would consider so much that
calibration, the search for ‘the’ function we are going to accept as modelling the
target system, is trivial. The price to pay for this bias is that the data may not fit very
well to the set of functions we are willing to consider; if we were only willing to
expand that set of functions more, we would be able to achieve a much better fit to
the data. The opposite of this meaning of ‘bias’ is ‘variance’; in neural networks, this

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 147

variance is directly related to the number of weights in the network. High-variance
models can be adjusted using the parameters to realize a wide range of input-output
mappings, with the obvious cost of increasing the volume of search space in which
to find the optimum such as mapping.

Introducing bias just to make the modelling process feasible is arguably unsci-
entific: you are allowing your chosen modelling technique to drive your analysis of
a system, rather than allowing your knowledge of that system to determine the way
you describe it in your model. This kind of unscientific bias is one of the practices
that has led some in the agent-based modelling community to be critical of making
assumptions ‘for the sake of simplicity’ (e.g. Moss 2002; Edmonds and Moss 2005).
Although some of these criticisms are focused on the infeasibility of the analysis
itself were a more realistic representation to be used that did not make simplifying
assumptions (e.g. the computation is undecidable), the feasibility of an empirical
modelling process does depend on the availability of data.

Like neural networks, agent-based models potentially have large numbers of
parameters — a multiple of the number of agents and the number of links in the social
network. These parameters determine the heterogeneity and interaction dynamics
of the model. For more traditional modelling paradigms, having large numbers of
parameters is regarded with suspicion. From a practical perspective, there is a good
reason for this heuristic: a high-variance model is more challenging to calibrate.
Each dimension of parameter space adds exponentially to the scale of the search task
and to the requirement for data. Another reason is an interpretation of Ockham’s
razor in a modelling context: if I have two models with the same behaviour, I
prefer the one with fewer parameters. Ockham’s razor is often stated as entia non
sunt multiplicanda praeter necessitatum (literally, entities should not be multiplied
more than necessary, or more naturally, explanations should not use unnecessary
entities) — were it not for the qualifier, this statement would be the antithesis of
agent-based modelling!?

However, the orthogonality of the parameters in agent-based models may be
more questionable than in traditional mathematical models. Essentially, in tra-
ditional mathematical modelling, each parameter is contributing to the potential
‘wiggliness’ (to use a term from the spline literature, e.g. Wood and Augustin 2002)
of the function the model realizes. Though it is possible (e.g. Gotts and Polhill
2010), it is not necessarily the case that having another agent in the system will
mean that the dynamics of the system as a whole are hugely different; adding
another connection in a neural network, by contrast, does increase the ‘power’ of its
function to realize different shapes in the mapping from input to output by adjusting
the weights. The suspicion of traditional mathematical modellers towards agent-
based models because of the apparently large number of parameters may therefore

2The case for agent-based modelling being that it is necessary to represent all the agents if you
want to understand the emergent system-level dynamics.

148 G. Polhill

not be justified.>There may be a way to assess the question of the ‘power’ a system
of interacting agents has to realize different ‘shapes’ from input to output (however,
that is understood in an ABM context) quantitatively. In the early 1970s, Vapnik
and Chervonenkis (1971) published a paper that provided a lower bound on the
probability that the difference between the actual predictive power of a classifier
system and that estimated from calibration is more than a small amount, based
on the amount of data it is given and something called the ‘Vapnik-Chervonenkis
dimension’ of the classifier. The inequality is written thus (Vapnik and Chervonenkis
1971, p. 269):

P(lg—h| > &) < 4m(2n)e=*"/3 8.1)

where g and / are the actual and estimated generalization ability, respectively (the
proportion of instances that are correctly classified), ¢ is the small amount we want
to bound the difference between g and 4 to, n is the amount of data (as number of
instances) and m(x) is a function that tells you the number of different realizations
the classifier can make on x datapoints. The function m() is equal to 2* until x = dyc,
the Vapnik-Chervonenkis (VC) dimension of the classifier, after which it continues
to grow but at a polynomial rate less than 2* and no more than x®¢ 4 1 (Hertz
et al. 1991, p. 154). A rough idea of the shape of the growth function m() can be
seen in Fig. 8.1, particularly the red (top) curve when dyc = 4. In a log-log plot,
m() is convex until a critical point at which it becomes linear; as stated above, this
critical point is the VC dimension of the function dyc, but the red curve in Fig. 8.1
is 4 m(2n), so in fact the critical point on the red curve should be at n = 0.5dyc.
However, since x¥V¢ + 1 > 2* for lower values of x, the polynomial upper bound
on m() isn’t informative; the critical point in Fig. 8.1 at which m() becomes linear is
therefore higher than would otherwise be expected.

To understand (8.1) a bit better, imagine ¢ = 0.01. That means you want the
difference between the actual and estimated abilities to be less than 0.01 ideally. So,
suppose you have a validation ability (k) of 0.95 (5% of the model’s predictions on
the validation data are wrong); then with ¢ = 0.01, you are saying you want your
future predictions to have an ability (g) in the range [0.94, 0.96]. How certain do
you want to be that you have achieved that? Suppose you want to be at least 99.9%
certain, so one in a thousand predictions will have an ability outside the above range.
Then you want the probability on the left-hand side of (8.1), P, to be 0.001. How
can you achieve this? The right-hand side says that the probability can be reduced
by using a function with a smaller VC dimension (so m(2n) is smaller), using more
data (increasing n) or being less fussy about how close your validation ability is to

3Part of this is the confusion between ‘free parameters’, which can be adjusted to make the results
fit data, and parameters with values that are, at least in theory, empirically observable, even if
currently unknown. Agent-based models have a lot of the latter but relatively few of the former.

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 149

Fig. 8.1 Plots showing the 3Q
two expressions in (8.1). 1410
p:

Coloured curves are upper
bounds 4 m(2x) for dyc in {1 1 U?j’
(blue), 2, 3, 4 (red)}. The
black curves show 24
0.001/exp.(—&2x/8) for ¢ in 1110

{0.05, 0.01, 0.001} (left to
right, respectively) 1 UQ‘I

¥

4 01 8 ! | ! 1 ..

-k

11010 '

12
U

|]
0 1-150‘/ 1Aoﬁx1/J03 11010

the ability you expect in future predictions (increasing ¢). To achieve a probability
bound of 0.001, you need exp.(s2n/8) to be at least a thousand times more than
4 m(2n).

Mapping an ABM context to a classifier one would be somewhat awkward,
though we could ask under what conditions (these conditions being the ‘input
space’) the ABM produces a certain outcome — an outcome that either happens or
doesn’t. However, there is the additional problem that any stochasticity in the model
will possibly generate different outcomes given the same conditions. Provided these
issues can be addressed, given a thorough exploration of the ABM’s parameter
space, we may be able to estimate the VC dimension of the model given such an
interpretation of its behaviour. We could then see the difference that adding another
agent had and compare both with adding a parameter to a neural network, where
approaches to estimating the VC dimension or computing it directly have already
been investigated (e.g. Abu-Mostafa 1989; Watkin et al. 1993).

One of the rather depressing consequences of using the VC formula is that the
value of n needed to get P down to an acceptable level turns out to be rather high,
even for models with quite low VC dimension. Figure 8.1 plots expressions in (8.1)
on a log-log scale, using the x-axis for n, the amount of data. The coloured curves
show upper bounds for 4 m(2n), and the black curves show P/exp.(—&>n/8) for &
in each of {0.05, 0.01, 0.001} and P = 0.001. The intersections of the black and

150 G. Polhill

coloured curves show the values of n (on the x-axis) at which P in (8.1) has an
upper bound of 0.001. For example, if dy¢ = 2 (cyan curve), and ¢ = 0.05, then
n needs to be roughly 10° for P to have an upper bound of 0.001. For quantitative
social data, that would be a very simple model for a very expensive questionnaire.

These high estimates are partly a consequence of the fact that the VC formula
and growth function m() are both upper bounds. However, the high estimates are
also a consequence of the function under scrutiny essentially being an arbitrary
choice, without any other information about the system the data have come from
or the way the model describes that system. The VC formula is therefore very
much a ‘worst case’, but one that applies to neural networks insofar as relatively
little information about the system is encoded in the network’s topology. That
information is essentially the modeller’s assumptions about the appropriate level
of ‘wiggliness’ needed to fit the data — which may be as much about the pragmatics
of training the network and the amount of data available as it is a reflection of the
system the data have come from.

Using knowledge to constrain the choice of model is one way to reduce the
VC estimate. Traditionally, this might be achieved effectively by reducing the
VC dimension of the set of models being considered, using the kind of practice
criticized above for being ‘unscientific’. Introducing bias by removing variables
from consideration, reducing the number of parameters on terms using those
variables (e.g. by only considering linear models) or making other oversimplifying
assumptions is, however, not the only way that we can constrain our choice of
model. Though the impact on the VC dimension is less clear, in agent-based
models, we can also constrain our choice of model by making it more ‘descriptive’
(Edmonds and Moss 2005). This essentially amounts to appropriately tuning the
model’s ‘ontology’ or ‘microworld’, but before considering the ontology in more
detail, since agent-based models are typically applied to complex systems, we will
consider some arguments about validation by fit-to-data in such systems.

8.1.4 Complex Systems and Validation by Fit-to-Data

Since agent-based models are applied to complex systems, this section introduces an
important article (Oreskes et al. 1994) posing arguments about the degree to which
we should trust fit-to-data as a measure of our confidence in a model’s predictions in
complex open systems. We move on to criticize Ockham’s razor — a heuristic often
used by modellers to give preference to simpler models with the same fit-to-data and
one that has already been argued against on different grounds by Edmonds (2002).
Naomi Oreskes et al. (1994) have argued eloquently that environmental systems
(and hence socio-environmental systems) are ‘open’, and hence traditional valida-
tion expressed as fit-to-data commits a logical fallacy when used as a basis to judge
the degree of belief we should have that a model is a ‘good’ one. Essentially, the
fallacious argument affirms the consequent by starting with the observations that

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 151

¢ Good models fit the data (G C F).
* My model fits the data (F).

and concluding that
¢ My model is a good model (F-G).

Oreskes et al. (1994) assert that (prejudices such as Ockham’s razor aside)
in closed systems, only good models fit the data (G < F); in open systems, the
observed data could have been affected by external influences outside the system.
When fitting functions to data from complex open systems (such as social and
ecological systems), the ability to exclude or control for external influences is highly
constrained. A model of a subsystem that just fits to data will likely also be fitting
to external influences on that subsystem.

If a model somehow captures the effect of an external influence that it is not
supposed to model, we should be rather suspicious. Further, as Filatova et al. (2016)
point out, disturbances to a complex socioecological system need not only arise
from exogenous influences but can also grow from endogenous gradual change. If
there are multiple ‘attractors’ and the data have followed one path at a bifurcation
but a model follows another, the model will fail to validate. Over multiple runs of the
model, of course, it might take the same path as the data did half the time. Given the
choice between two models, one of which is simpler, and always follows the path
the data did (because it is high bias and doesn’t bifurcate), and another of which is
more complicated, and only follows the path the data did half the time, Ockham’s
razor and fit-to-data heuristics tell us to choose the former. However, it is arguably
the latter model that has more faithfully captured the underlying dynamics of the
system.

The probability of following one trajectory rather than another need not nec-
essarily be 0.5. It could be 1E-6, and it just so happened that this time, the real
world followed the one-in-a-million chance trajectory. The model that captures the
bifurcation may not be run enough times that the path the data took is observed. The
point remains that in complex systems, fit-to-data is not necessarily an indicator that
we have a ‘good’ model. If our model is ontology-free, then it is doubly awful, an
oversimplified bendy sheet that hardly reflects the system it is modelling: ‘It is a tale
told by an idiot, full of sound and fury, signifying nothing’.*

To summarize, validation by fit-to-data is not necessarily (on its own) a helpful
measure in complex systems. No matter what the outcome, there exists an argument
both for and against the model (Table 8.1). Nevertheless, it is still a potentially useful
information about a model, and we show in the box various methods for computing
validation error on a set of data or otherwise comparing models’ expected prediction
ability. As is apparent from reading Brewer et al. (2016), there is controversy
in some of the modelling literatures about which measure of expected prediction
ability is ‘best’. This can lead to reviewers complaining that one measure should

4Macbeth, Act V, Scene V.

152 G. Polhill

Table 8.1 Arguments about validation by fit-to-data and whether the model is ‘good’ or ‘bad’

Validation result Good model Bad model

Acceptable The model has fit the data, and we Although the model has fit-to-data,
estimate it will predict accurately it is oversimplified, relies on
in the future unrealistic assumptions, doesn’t

really explain anything or doesn’t
allow for the possibility that things
could have turned out differently. Its
predictions should not be trusted

Not acceptable The particular course that history The model did not fit the empirical
took was highly contingent on data we have, so it must be rejected
phenomena that it would not be and its predictions ignored

reasonable to include in any model.
There is a ‘possible world’ in
which the model would be right.
Alternatively, the model reproduces
‘patterns’ (as per Grimm et al.
1996) in the data, if not the data
itself. It might still be worth
considering the model’s predictions

have been used rather than another, but since reviewers’ statistical fetishes are
impossible to predict, we cannot provide guidance as to how to satisfy them.
However, we do give a summary of the various measures and their properties in
Appendix 2 for reference.

8.1.5 Validating Ontologies

After summarizing the foregoing arguments, this section elaborates more on the
structure of the model, which may be referred to as its ‘ontology’. After briefly
introducing ontologies, we build an argument for why agent-based models have the
scope to pay more attention to this side of modelling based on the expressivity of
a formal language for writing ontologies. We then consider various ways in which
ontologies could be ‘validated” — in the sense of establishing confidence in them,
finding that this is far from being a settled area.

The foregoing pages had two objectives. One was to summarize all the different
ways people try to estimate how well their model has fit some empirical data, to
give them some kind of (preferably quantitative) idea of how much they should
believe in its predictions. (See also Appendix 2.) The other is to argue that there is
more to evaluating a model than just looking at its fit-to-data, largely by showing
various ways in which fit-to-data may not be as convincing an indicator of a model’s
suitability as some appear to believe it to be. To summarize the reasons, the first two
of which may seem a little ‘unfair’ but should be anticipated in complex social
systems:

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’. . . 153

* Simplifying assumptions that apply during calibration may not apply at
prediction.

* The (formal) language you have used to represent the system during calibration
may not be adequate during prediction.

* You may not have enough data to justify a model with a high VC dimension, but
using a model with a lower VC dimension would be oversimplifying.

* In complex/non-ergodic systems, at a bifurcation point, the empirical data may
have followed a path that had a low probability in comparison with other paths it
could have taken.

The various methods for measuring estimated prediction ability say relatively
little about the structure of the model itself, except, in the case of metrics like the
AIC and BIC, by penalizing models for having too many parameters. In neural
networks, this is the number of weights the network has, but assumptions about
functional form are embedded in the structure of the network itself — how the nodes
are arranged into layers and/or connected to each other. This structure, however,
only reflects the flexibility the network will have to achieve certain combinations of
outputs on all the inputs it might be given (its ‘wiggliness’). This is a rather weak
ontological commitment to make to a set of data.

Neural networks are an extreme — one in which there is the minimum repre-
sentative connection between the empirical world and the nodes and network of
connecting weights that determine the behaviour of the model. They are nevertheless
useful when there is a large amount of data available for training, the modelled
system isn’t complex, and one is not particularly concerned about how the input-
output mapping is achieved, only that whatever mapping obtained has good
prediction ability.

Neural networks are very interesting to contrast with agent-based models, which
also feature networks of behaving entities, but where the network of connections and
the behaving entities are supposed to have a representative link with the empirical
world. In the artificial intelligence community, this representative structure would
be referred to as the microworld (e.g. Chenoweth 1991) of the simulation. A famous
example is Winograd’s (1972) blocks world. However, with advances in formal
languages for expressing such representative structure, we