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Abstract Systems thinking and complex adaptive systems theories share a number
of components, namely emergence, self-organization, and hierarchies of interacting
systems. We seek to integrate these schools of thought and discuss the similarities
and differences of these two models, to introduce systems dynamics and
agent-based modeling as methods for modeling complex systems, and how
causal-loop diagrams can be used as a means to clarify the complex interactions
among components (agents). We then apply a mixture of these different but similar
techniques to a fly ecosystem modeling problem to demonstrate their effectiveness.

1 Complex Adaptive Systems

Complex adaptive systems (CAS) are all around us. Common examples given are
ecosystems, financial markets, the brain, ant colonies, economies, and many other
examples where large numbers of constituents independently interact on a local
level that yield some unanticipated nonlinear outcome at scale. Despite the ubiquity
of these systems, it is generally conceded that there is no one standard definition of
CAS. For our purpose, we shall define a CAS as:

a system composed of a large number of independent simple components that locally
interact in an independent and nonlinear fashion, exhibit self-organization through inter-
actions that are neither completely random nor completely regular and are not influenced by
some central or global mechanism, and yield emergent behavior at large scales that is not
predictable from observation of the behavior of the components [1, 2].

The smallest component elements of a CAS are commonly referred to as agents
[3]. Agents are the smallest unit of organization in the system capable of producing
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a given response for a specific stimulus. This stimulus/response behavior of an
agent is governed by a few very simple rules. In CAS, we see local interactions of
groups of agents, both homogenous and heterogeneous, in a variety of different
configurations. In small quantities these interactions can be anticipated, as there are
usually a limited set of interactions that each agent can perform. These random local
interactions generally yield outcomes approximate to the sum of the potential of
each interaction; in some cases, however, as we see larger combinations of agents in
varying proportions acting in different ways, we see complex and potentially novel
behaviors from these combinations of agents that yield significantly greater out-
comes than we would expect. When agents combine in such a way as to produce
these emergent behaviors, we refer to this as aggregation and to the specific col-
lection of agents required to produce the effects as aggregate agents [3]. These
aggregate agents group together with other aggregate agents to form increasingly
larger CAS with richer sets of emergent behaviors and interactions.

2 Systems Thinking

Another mechanism used to describe complex systems is systems thinking [4]. In
systems thinking, we look at the combination of interdependent component systems
that make up the whole and study how the state of the global system changes as a
result of the interactions of the component systems [5]. This concept is referred to
as a system of systems [6]. How a system component reacts to information from its
environment, as well as the range of interaction options available to the component,
identifies the type of behavior exhibited by the component. These behaviors are
generally classified as either goal-seeking or purposeful [6]. With goal-seeking
behaviors, a component system is capable of producing a single fixed response
using a range of methods in a single environment; these are sometimes referred to
as responsive [6] or uni-minded [5] systems. Purposeful behaviors, alternately, are
exhibited by a component system that is capable of producing multiple varied
responses to multiple stimuli under many different conditions. Systems that operate
with purposeful behaviors produce a much greater variety of potential outcomes
and, therefore, provide the greatest potential for novel emergent behaviors. These
systems are sometimes referred to as multi-minded systems [5]. Four concepts are
necessary to describe a purposeful system: a hierarchy of systems; processes of
communication among the systems; the stimulus/response combinations that can be
activated to produce change among component systems; and definable emergent
properties that arise from the interdependent systems [4].

Analytical approaches to system modeling work well with goal-seeking systems,
since it is possible to deconstruct these systems into their component parts, study
the function of those parts, and then attempt to explain the behavior of the aggregate
system in terms of those interactions [5]. In many cases, these interactions can be
described using systems of equations and a mathematical model of the system
produced. For purposeful systems, however, it is either impractical to capture all of
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the possible stimulus-response cases to produce an exhaustive system of equations
or the sheer quantity of these equations produces an intractable or unsolvable
system. Because of the vast number and variety of combinations of interactions
among agents in these systems, many times it is either impossible or impractical to
use analytical methods to determine systems of equations capable of exhaustively
describing the dynamics of these systems.

3 Agent-Based Modeling

Returning to our definition in 1.1, a CAS is a system composed of a large number of
agents that interact with each other in a nontrivial manner and yield emergent
behaviors. Each of these agents operate using a set of simple rules as their internal
model of the global system and produce outcomes using simple rules that are part of
this model [3, 7, 8]. Internal model refers to the mechanisms used by an agent to
issue a response to a given stimulus and to “learn” new rules through interaction
with its surroundings. An agent-based model (ABM) is a representation of the
constituent agents that make up a system along with a mechanism to allow agents to
interact through information exchange with the environment as well as other agents.
These agents operate according to rules that attempt to approximately replicate the
properties and behaviors of the actual components in the real world.

ABMs are computational models that enable us to understand how different
combinations of large numbers of agents produce global outcomes through their
discrete local interactions. The outcomes of these models are sensitive to initial
conditions and may produce different outcomes according to the inherent ran-
domness of nature that they attempt to reproduce. Mathematical or statistical
analysis may be used to verify output of ABMs to determine how accurately they
represent the corresponding real-world system; it is very difficult in many cases,
however, generate mathematical models to represent the same varied nonlinear
emergent outcomes possible as these systems are NP-Hard or NP-Complete [9, 10].
Because of this feature of complex systems, ABMs are one of a handful of tools
useful for exploring the emergent behavior of such systems.

4 Systems Dynamics

Just as ABM is a modeling method couched in the language of CAS, systems
dynamics (SD) is a modeling method traditionally applied to problems in the social
sciences and similar disciplines. Similar to ABMs, SD models are solved compu-
tationally through iteration over time. SD models differ from ABMs, however, in
that the interactions among components of the system are defined in terms of state
variables which are controlled through systems of difference equations. This
requires a much more mathematically-rigorous definition of a complex system than
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is required by ABM; however, the resulting model can be directly-analyzed using
mathematical methods, unlike the output of ABMs that requires additional statis-
tical analyses after the fact [8].

Since SD models are described in terms of systems of difference equations, such
descriptions do not always provide an intuitive guide to the interactions of system
components. To remedy this, a mechanism known as causal loop diagramming
(CLD) was developed to provide a visual description of system components and
their interactions. A good discussion of CLDs is found in [11]. A CLD provides a
mechanism to illustrate the interaction among the state variables (i.e., systems)
through the use of positive and negative feedback loops. While this method does
not necessarily capture the relative magnitude of information flows among the
various components, it does make it very easy to understand which relationships are
responsible for system expansion (reinforcing loops) and which relationships help
to keep the system in control (balancing loops). We believe that CLDs can also be a
good mechanism to describe the interactions among agents in an ABM.

5 Application

An example case that we shall use for this study is the interactions among fly
populations, climate, and the environment and how they can lead to large-scale fly
infestations. We shall begin by describing the general problem in terms of fly
biology and environmental interactions. Next, we will present a systems thinking
approach to the problem describing it as a systems of systems. Then we present our
implementation of the ABM used to represent the CAS. Finally, we provide a
discussion of our work.

The biology of common species of flies documents the relationships between
temperature and humidity and fly development and reproduction. Using this
information, we have been able to develop and validate an ABM that generates
outcomes compatible with historical data over a five-year period. We have also
sought to extend the composition of these systems with other systems such as
dumpster placement, sanitation methods and schedules, insect control programs,
and the effects of customer interactions with the environment can be modeled as a
purposeful system of systems.

In Fig. 1, we model the individual systems and their interactions using a CLD. In
our model, we are primarily concerned with the density of our local fly population,
as this is the leading indicator of whether a fly infestation of the adjoining facility
will reach a problematic level. In an unregulated environment, populations are
affected by two means: reproduction and migration [12]. As food availability
increases, population density increases as flies from surrounding communities
immigrate into the local community. As population density increases, the chance of
mating increases accordingly, which leads to increased egg-laying activity. If egg
laying increases and the ambient air temperature is within an acceptable range, egg
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hatching increases proportionally, leading to additional increases in population
density.

This allows us to expose the exchange of information among the individual
systems and the corresponding interdependencies and increased complexity that
emerges from these exchanges. This diagram allows us to explain the known
relationships among system components; however, it does not allow us to identify
novel behaviors that may emerge over time as the system scales along various
dimensions.

In an attempt to model the complex system that represents this ecosystem, we
created an ABM that emulates the interaction of the most common fly species with
their environment to determine conditions under which fly populations will emerge
to a significant enough level to threaten a business establishment and what con-
figurations and barriers are most effective at mitigating this health risk. This model
was constructed using NetLogo, a powerful tool for developing ABMs [13]. We
also included seven years of climate data [14] for the area to drive the behavior of
the agents, and we used data [15] derived from the inspection system of a local pest
control management company to assist in validating the outcomes produced by the
model.

Using information on the biology of common flies [12], we produced a model
agent using a small number of rules. These rules governed the migration and life
cycle behaviors of the individual fly agents as they interacted with their environ-
ment. For each iteration of the model, we began with different random initial
conditions for the number of fly agents at various stages of their life cycle. We also
varied the placement of food to simulate the placement of waste receptacles (e.g.,
trash cans, dumpsters, etc.) as well as incidental food-bearing waste dropped around
the facility, such as next to cars in the parking lot as well as along high-traffic foot
routes.

When running our base model, we learned some interesting behaviors about the
randomness of a fly bloom occurring. With no external controls on the population
(e.g., pest control and sanitization protocols or non-natural food sources), even with
a thorough seeding of random insect populations, it is not likely that a long-lived fly

Fig. 1 Causal loop model of
a fly ecosystem (Abbott, R.
and Bacaksizlar, N.)
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plague will occur, as represented by the top graph in Fig. 2. In most iterations of the
model, the local fly population will leave the area in favor of other more food-rich
environments. With just the right combination of flies at the proper life-cycle stage
and placement of food sources, a continuing generation can be produced by the
population, as shown in the bottom graph in Fig. 2.

A single continuing generation, however, is not enough to indicate that a fly
population will infest adjoining facilities. As seen in the bottom graph of Fig. 2, a
continuing generation has only produced on the order of 700 eggs, total. Problems
encountered at the degree necessary to produce infestations typically are the result
of multiple generations of offspring, which can be produced within two weeks
during warmer seasons [12]. From our model results, once a third generation of
offspring are produced in an area with a continuing food source, the fly population
will continue to grow unless active steps are taken to remove the food or to kill the
population. A successful third-generation fly bloom is shown in Fig. 3.

When comparing the CLD and the output of the ABM, it is easy to recognize the
strengths and limitations of each method. In CLD nomenclature, it is possible to
clearly document the interactions between an agent and its environment, as both
reinforcing and balancing forces [11]. The CLD, however, does not make it easy to
measure the degree of these interactions or to identify emergent behavior such as
explosive nonlinear growth that can occur under certain conditions. ABMs, in
contrast, are able to surface these emergent behaviors as they are run under differing
initial conditions; however, they do not provide a means for directly identifying the

Fig. 2 The top graph
indicates a model run that did
not yield a continuing
generation, while the bottom
graph indicates a continuing
generation
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specific interactions that lead to such emergent behavior. These interactions usually
identified during detailed analysis of model results.

We have described two different schools of thought, systems thinking and
complex adaptive systems, both of which seek to describe the complexity of sys-
tems in terms of interacting components that share information and are capable of
evolving or displaying novel behaviors through interaction. We have also described
two different but similar modeling methods, systems dynamics and agent-based
modeling, both used to simulate complex systems so that we can better understand
and predict outcomes of complex systems. We have also described causal-loop
diagrams, a method of illustrating the interactions among system components and
how those interactions affect the overall organization of the system. We then
applied some of these methods to the description of a biological system to
demonstrate how the different systems can be effectively integrated to explore
complex systems.

Fig. 3 A successful
multi-generation fly colony
achieved during epoch 1911
of our model

Complex Adaptive Systems, Systems Thinking … 7



6 Summary

Systems thinking is an important way of approaching complex phenomena today.
Complex Adaptive Systems and Agent-Based Modeling proved to be a potent
combination of paradigms to address simulation and modeling of practical issues
that challenge the society of today. In this paper we demonstrated the utility of
combining Systems thinking and ABM on the example of pest control and man-
agement. Future work will focus on turning this type of thinking into a
general-purpose tool for simulation and modeling.
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