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ABSTRACT
Energy conservation in residential buildings has been a topic of
interest in recent years because of their high levels of energy con-
sumption. Weatherization is set of approaches that can be used to
make buildings more energy-e�cient, thereby helping residents
lower their energy bills and improving environmental sustainabil-
ity. However, there are two signi�cant challenges associated with
weatherization adoption: high upfront investment costs with a long
payback period, and minimal awareness of weatherization and its
bene�ts. This paper proposes an agent-based model that will al-
low researchers to explore residents’ socially-motivated energy
conservation decisions by providing a realistic social context via
a multilayer social network and incorporating opinion dynamics
based on the Susceptible-Exposed-Infected-Recovered epidemic
model. Several experimental scenarios are run to demonstrate the
model’s potential to help policymakers determine how to encourage
residential weatherization adoption.

KEYWORDS
Weatherization, Agent-based Model, Building Energy Simulation,
Multilayer Social Network, Theory of Planned Behavior, Epidemic
Model
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1 INTRODUCTION
The promotion of energy-saving innovations in residential build-
ings has been an area of signi�cant interest in recent years [7, 21,
27, 39, 50]. Residential buildings are responsible for nearly 27%
of all energy consumption [2] and 36.5% of electricity use [1] in
the U.S., and are therefore a major contributor to climate change.
Low-income households tend to be more heavily burdened with
energy costs, typically spending 16.3% of their total annual income
on energy, compared with 3.5% for other households [40].

Weatherization is the practice of improving the energy e�ciency
of existing residential buildings through a variety of approaches,
such as installing insulation in walls, upgrading ine�cient refrig-
erators, and reducing air leakage. This yields many bene�ts for
residents, including reduced energy costs and improved health and
safety, as well as bene�ts for society through job creation and a
reduction in greenhouse gas emissions [16]. Despite these bene�ts,
adoption rates remain low, with high upfront investment costs and
long payback periods, as well as a general lack of awareness about
weatherization techniques and bene�ts, serving as barriers [29]. The
government has tried to overcome these barriers through various
campaigns aimed at raising awareness of the energy cost savings
from weatherization, as well as providing �nancial assistance to
low-income residents to help them weatherize their homes [26].
However, these e�orts have had limited success.

Rather than only relying on �nancial incentives to convince res-
idents to weatherize, research suggests that policymakers should
instead leverage the power of social in�uence. Peer interactions
have proved to be an important factor in residents’ decisions to
adopt energy-related behaviors [21, 27, 29, 32, 39, 47], and the in�u-
ence of social networks on energy-e�ciency innovation di�usion
has been demonstrated [33]. In particular, social interaction regard-
ing energy tips and information is a predictor of weatherization
behavior [50].

The importance of social interactions in determining residents’
energy-related decisions suggests that agent-based modeling would
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be an appropriate method for modeling a network of residents.
Agent-based models (ABMs) allow researchers to model individual
decision makers as autonomous agents that are capable of social
behaviors and interactions (e.g., information sharing) with other
agents. Over time, the e�ects of these repeated interactions and
feedbacks on individuals’ decisions (i.e., at the micro level) may
yield system-wide changes that are unexpected and di�cult to
predict without the use of computational modeling [52]. ABM is a
promisingmethodology for capturing consumer behavior in general
and energy technology adoption in particular [14, 19, 31, 36–38, 55].
ABM facilitates the modeling of opinion dynamics in a social sys-
tem, which is useful in representing residents’ socially-motivated
decisions to weatherize their homes [11, 47, 50].

However, when modeling energy-related behaviors, adequate
consideration must be given to the agents’ social network structure
and properties [8]. To this end, some modelers have made e�orts
to incorporate realistic social networks into ABMs [6, 20, 23, 46].
In particular, small-world networks, which have a structure that
is an interpolation between regular and random networks, are of-
ten used to represent social networks to explore social behavior.
Small-world networks have been integrated into ABMs to model
the di�usion of solar photovoltaic adoption [44, 47], the di�usion of
organic farming practices [28], and the di�usion of water-saving in-
novations [49]. The networks in these models are used to represent
interactions that occur in a physical space, such as a neighborhood.
However, in reality, interactions between individuals are often mul-
tidimensional, occurring in both physical and virtual environments
(e.g., via online social networks). Additionally, in these existing
models the agents typically interact in the same way with all of
their neighbors [25, 29], or they randomly select pairs of agents
to interact [34, 47]. By contrast, Azar and Menassa developed an
ABM of energy adoption in which they assumed that only adopters
were capable of spreading information to non-adopters, since only
adopters would have realistic and reliable assessments [11]. The
agents in this model have speci�c attitudes toward information
sharing; for example, some agents may have no interest in the infor-
mation and are therefore immune to it, which means their existing
information will not be a�ected by social interactions. However, we
are unaware of any existing models of socially-motivated energy
conservation decisions that incorporate the agents’ intention to
spread and receive information.

This paper describes a conceptual ABM that is embedded in a
multilayer social network to model weatherization adoption among
residential households, with a speci�c focus on low-income res-
idents. The model is based on the Capitol East Neighborhood in
Des Moines, Iowa, which is a low-income neighborhood that has
a strong neighborhood association and a goal of improving sus-
tainability. The multilayer approach allows the agents to interact
via both a physical social network (i.e., their neighborhood) and a
virtual social network (i.e., online). Small-world networks are used
to describe the physical social networks (PSNs), while scale-free net-
works are used to represent the online social networks (OSNs), since
the primary characteristic of many OSNs (e.g., Flicker, YouTube) is
the scale-free property [3, 12, 35]. To incorporate agents’ intention
to spread information, a Susceptible-Exposed-Infected-Recovered
(SEIR) epidemic model [9, 17, 30] is used. The SEIR model allows

Physical Surface Modeling
Rhino3D 

Urban Energy Modeling 
UMI

ABM
NetLogo

Input

Simulated Energy Consumption Data

Building Energy Simulation

Figure 1: Implementation Details.

Figure 2: A visualization of energy consumptions for resi-
dential buildings in the Capitol East Neighborhood.

agents to be in di�erent states, depending on how informed they
are, and it provides a framework by which rules can be de�ned
to determine which kinds of agents can have interactions and be
in�uenced. The agents’ decisions about adopting weatherization
are characterized by emotional and economic factors and are based
on the theory of planned behavior (TPB) [4], a widely-used theory
in studies on energy-related behaviors [5, 24, 47]. The model is used
to perform several experiments, in which the in�uence of random-
ness in the physical social network, the number of media agents
that can spread weatherization information, and the e�ciency of
the Weatherization Assistance Program are explored. The results
of these experiments demonstrate the potential of this modeling
framework to inform policymakers’ decisions regarding programs
for increasing weatherization.

2 CONCEPTUAL MODEL
Figure 1 provides an overview of the weatherization model, which
consists of two di�erent simulationmodels: a building energymodel
and an ABM. The building energy model is a digital model of the
Capitol East Neighborhood in Des Moines that was built using
Rhinoceros 3D and the Urban Modeling Interface (UMI) plugin
from MIT’s Sustainable Design Lab [48]. This model was used to
create a dataset consisting of the monthly energy consumption
values of residential buildings in the neighborhood under pre- and
post-weatherization conditions [26]. The Rhino-UMI model uses
geographic information system (GIS) data obtained from the City
of Des Moines to model the physical geometry of the Capitol East
Neighborhood. Information available in the Polk County Assessor’s
database [10] is then used to re�ne the Rhino model at the build-
ing scale. This database provides detailed information on the each
building in the neighborhood, including the parcel number, date of
construction, constructionmaterials, number of stories, and number
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of separate residences contained within. Because regional climate
strongly in�uences residential energy consumption patterns, re-
gional weather data was also included in the simulation. We use
typical meteorological year weather data (TMY3) obtained from the
Department of Energy [54] and the future typical meteorological
year weather data (FTMY) [45] weather datasets to incorporate the
climatic impact on energy consumption in residential buildings.
TMY3 provides a reasonably sized annual dataset consisting of
hourly meteorological values that are intended to typify conditions
at a speci�c location over a longer period of time. Aforementioned
data about building footprint, building forms, construction materi-
als and weather conditions served as a basis for the Rhino model.
Additional details about the model are available in [26]). Figure 2
shows a visualization of building energy consumption generated
by the Rhino-UMI model, where di�erent colors indicate di�erent
energy consumption values.

The ABM is used to represent each household in the Capitol
East Neighborhood as an autonomous agent that is capable of com-
municating with other agents via its social networks and making
decisions about weatherizing its home. The ABM is implemented
in NetLogo 5.3.1. The following sections describe the agents and
the sub-models of the ABM in detail. A description of the ABM
using the ODD (Overview, Design concepts, Details) protocol [22]
is included in Appendix.

2.1 Agents
The ABM contains two types of agents: household agents andmedia
agents.

2.1.1 Household Agents. Households agents have the ability to
adopt weatherization and share weatherization information with
other household agents. Each agent represents an entire household,
rather than an individual resident, because weatherization decisions
are assumed to occur at the household level. Only single-family
residential buildings were included since the energy consumption
values for multi-family buildings (e.g., apartments) are di�cult to
capture with the Rhino-UMI model. The model has 1548 household
agents, among which 548 household agents are in the Capitol East
Neighborhood and 1000 household agents are outside the Capitol
East Neighborhood. Each household agent is characterized by seven
key parameters:

• ID: Each household agent is assigned a unique identi�cation
number.

• Income level (L): A household agent’s income level is binary
and determines its eligibility for �nancial assistance. An
agent with an income level of 1 has a total household income
that is at or below 200% of the federal poverty level [41]. This
means that the agent is eligible for the Weatherization Assis-
tance Program (WAP), which is a federal grant program that
provides �nancial assistance to help low-income residents
to weatherize their homes [42]. A household agent with an
annual income level of 0 is not eligible for WAP (i.e., its total
household income is too high).

• Monthly energy consumption (E): In each month m, each
household agent is assigned two values that represent its
monthly energy consumption (in kWh) before and after

weatherization (NWEm and WEm , respectively). These val-
ues are outputs of the Rhino-UMI simulation.

• Estimated payback period (P): Each household agent is capa-
ble of estimating the breakeven point at which the upfront
investment in weatherization pays for itself through subse-
quent energy cost savings. The upfront investment (Ut ) in
year t is initialized as $4,695 (U0) [40] and increases over
time due to in�ation,

Ut = U0(1 + R1)(1 + R2)...(1 + Rt )(1 � Ft ), (1)

where Rt denotes the in�ation rate in year t , and Ft refers to
the federal income tax credits for energy e�ciency, which
is assumed to be 30% [51]. By weatherizing, single-family
homes saved an average of $283, annually on energy costs [40].
Therefore, each agent’s annual household energy cost sav-
ings in the year in which it decides to weatherize (S0) is set
to $283. If an agent weatherizes in year t , its total savings
over n years (TSt+n ) is calculated as:

TSt+n = St + St+1 + ... + St+n
= S0((1 + Rt ) + (1 + Rt )(1 + Rt+1)
+ ... + (1 + Rt )...(1 + Rt+n )).

(2)

An agent’s estimated payback period P is the value of n (in
years) for which Ut = TSt+n .

• Budget: The maximum amount of money (in dollars) that an
agent is able to spend on weatherization. Household agents
with an income level of 0 must pay Ut for weatherization
out of pocket. Their budgets for weatherization are drawn
randomly from a uniform distribution between $500 and
$5,000.

• Distance from others (D): GIS data obtained from City of
Des Moines provides 548 residential buildings’ spatial infor-
mation in the Capitol East Neighborhood, which is used to
calculate geographical distances (in meters) between each
building. Each agent in the Capitol East Neighborhood there-
fore has a vector that stores its distance from all other 547
agents in the Capitol East Neighborhood.

• In�uence coe�cient (ICab): The in�uence coe�cient de�nes
agent a’s in�uence on agent b, which is assumed to be sym-
metrical (i.e., ICab = ICba). Each household agent has a set
of in�uence coe�cients, with a value assigned to each of
its connections. It is assumed that an agent’s in�uence on
another agent is directly proportional to their geographical
proximity, based on the idea that short physical distances
bring people together, increase information sharing, and
stimulate the exchange of knowledge [15]. The in�uence
coe�cient values of the 1000 household agents outside the
Capitol East Neighborhood (for which there are no spatial
data) are drawn from a uniform distribution between 0 and
1. Otherwise, the in�uence coe�cient between two agents a
and b is de�ned as follows:

ICab = ICba =
Dmax � Dab
Dmax � Dmin

, (3)

where Dab denotes the distance from agent a to agent b, and
Dmin,Dmax refer to the minimum and maximum distance
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between all household agents in the Capitol East Neighbor-
hood, respectively.

Each household agent also has 10 state variables and that may be
updated in each monthly time-step:

• Weatherization status (WS): This binary variable represents
the agent’s state of weatherization adoption, where a value
of 1 indicates that the agent has weatherized its home, and a
value of 0 indicates that it has not yet weatherized. An agent
can only transition from a status of 0 to a status of 1, based
on the assumption that weatherization is irreversible.

• WAP status: This binary variable represents the agent’s state
of receiving weatherization assistance, where a value of 1
indicates that it has successfully received assistance, and a
value of 0 indicates that it hasn’t been served by the WAP.
It is assumed that an agent with a WAP status of 1 cannot
return to a status of 0.

• Current energy consumption (C): Based on its weatherization
status and the current time-step (i.e., month), a household
agent’s current monthly energy consumption (in kWh) is
obtained from the outputs of the Rhino-UMI model (i.e., the
agent’s NWEm and WEm ).

• Monthly savings (Mm ): The money that a weatherized house-
hold agent saves in monthm is based on the di�erence be-
tween its energy consumption before and after weather-
ization (NWEm and WEm , respectively). This di�erence is
multiplied by the energy cost per kWh, which includes the
current residential electricity rate E, a rate equalization fac-
tor REF, an energy adjustment clause EAC, a transmission
cost adjustment TCA, and a 1.00% sales tax, according to the
electricity bill calculation provided by MidAmerican Energy
Company [18],

Mm = (NWEm �WEm )(E + REF + EAC + TCA)(1 + TAX). (4)

• Current average saving (AS): This variable, which is calcu-
lated for household agents that have weatherized, is deter-
mined by dividing the agent’s total savings by the number
of months since it weatherized.

• Information status (IS): This variable is de�ned based on the
epidemic SEIR epidemic model [9]. A household agent can
take on one of four di�erent IS values in each time-step,
– S (Susceptible): An agent that has not receivedweatherization-
related information from another agent but is ready to
receive it.

– E (Exposed): An agent that has received information but
is not yet infectious (i.e., cannot transmit information to
others).

– I (Infected): An agent that can spread weatherization-
related information to others.

– R (Recovered): An agent that is immune to weatherization-
related information (i.e., it neither receives nor transmits
information).

An agent’s status towards spreading known information can
potentially be di�erent in it its PSN and OSN; however, its
status with respect to weatherization awareness must be the
same in both networks. In other words, an agent could be

Initialization
(one-time run in initialization)

Information Diffusion 
(run in each time-step)

Intention & Assessment 
Evolution

(run in each time-step)

Ability Judgment
(run in each time-step)

Households Weatherization Adoption
(run in each time-step)

Figure 3: Sub-models.

in status E in its PSN and status I in its OSN, but if it is in
status S in one network and has a non-S status in the other,
its information status will be reconciled to the non-S value
in both PSN and OSN after the current time-step.

• Intention level (IL): This variable, which takes values between
0 and 1, denotes a non-weatherized agent’s intention to adopt
weatherization.

• Intention: This binary variable may change from 0 to 1 with
a probability of IL in each monthly time-step. A value of 1
indicates the agent wants to adopt weatherization.

• Assessment level (AL): This variable takes a value between
0 and 1 and represents is the degree to which a weather-
ized agent is satis�ed with its weatherization adoption. An
agent’s AL value is based on its assessment of the perceived
value of its weatherization decision and will be in�uenced
by social interactions.

• Ability: This binary variable takes on a value of 1 for an
agent if it has the ability to weatherize and a value of 0 if it
does not. Ability can be achieved in two ways:
– The agent has received assistance through WAP.
– The agent’s budget exceeds the upfront investment re-
quired for self-weatherization.

2.1.2 Media Agents. The media is a means by which the govern-
ment can share weatherization-related information to residents. In
this model, media agents seek to spread weatherization information
to household agents. Each media agent has three parameters, which
take on values that remain unchanged throughout the simulation
run:

• Information status (IS): All media agents are assumed to have
an information status of I, since they play the role of infor-
mation providers.

• Assessment level (AL): This value is assumed to be 1 for media
agents, since it is assumed that the media is supportive of
weatherization adoption.

• Impact factor: This variable, which takes values between 0
and 1, de�nes the probability of household agents having
access to a media agent.
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(a) PSN (b) OSN

Figure 4: Multilayer Social Networks.

Figure 5: Overlaps and di�erences in a multilayer social net-
work.

2.2 Sub-models
The ABM contains �ve sub-models: Initialization, Information Dif-
fusion, Intention & Assessment Level Evolution, Ability Judgment,
and Household Weatherization Adoption. First, the multilayer so-
cial network is generated, and the agents’ parameter values are
initialized. Then, in each monthly time-step, agents will have in-
teractions via the multilayer social network, where information
di�usion will take place. Based on these interactions, agents’ in-
tention and assessment values will evolve, which will inform their
judgments regarding their weatherization abilities. Finally, at the
end of each time-step, each non-weatherized household agent will
decide whether to adopt weatherization, based on its intention and
ability values. An overview of the model is shown in Figure 3.

Initialization: Before the �rst time-step, a multilayer social net-
work is created to allow the agents to interact through both a
physical social network (PSN) and an online social network (OSN).
There are 548 single-family household agents in the Capitol East
Neighborhood. Each node in the PSN (Figure 4a) represents one
of these agents, and each edge represents a connection between
the nodes it connects. The PSN is a small-world network that was
built using the Watts-Strogatz algorithm [53]. This algorithm starts
with a regular network and "rewires" the edges of this network
randomly, based on a probability Prewire. In other words, the small-
world network is an interpolation between regular and random
networks, and the greater the value of Prewire, the more random
the network will be.

The Barabási-Albert (BA) algorithm [13] was used to generate a
scale-free network for the agents’ OSN (shown in Figure 4b). The

S E I R
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Figure 6: A schematic diagram for SEIR model.

OSN consists of the 548 household agents in the Capitol East Neigh-
borhood, additional 1000 household agents that exist outside the
Capitol East Neighborhood, and an experimentally-varied number
of media agents. Thus the 548 agents that represent households
in the Capitol East Neighborhood exist both in the PSN and the
OSN, while the 1000 household agents outside the neighborhood
only have virtual connections via the OSN. If no media agents are
included, the number of nodes in the OSN is therefore 1548, and
the total number of nodes in the multilayer social network (MSN)
is 2096. As with individuals in the real world, there are overlaps
and di�erences between the 548 household agents’ connections
in the PSN and the OSN. Figure 5 demonstrates this phenomenon,
with red edges indicating overlapping connections and blue edges
representing di�erences.

The PSN and OSN are initialized as follows: 1) there are 20 house-
hold agents have weatherized among the 548 agents in the Capitol
East Neighborhood, 2) there are 100 weatherized houses outside
this neighborhood. In other words, initially, there are 20 weath-
erized agents in PSN while 120 weatherized agents in OSN. The
information status (IS) for all non-weatherized agents is initialized
to ‘S’ and for weatherized agents it is initialized to ‘I’. The intention
level (IL) of each non-weatherized household agent is initialized
to 0. Based on upfront investment U and estimated payback pe-
riod P , the estimated monthly savings U

12P represents the estimated
savings which can pay o� U over 12P months. The assessment
level (AL) of each weatherized household agent is based on actual
average savings (AS) and estimated monthly savings U

12P due to
weatherization using a sigmoid function:

AL0 =
1

1 + e�(AS�
U
12P )
. (5)

Information Di�usion: In this sub-model, the agents interact and
then update their weatherization-related information status (IS)
values accordingly. At the beginning of each time-step, the IS value
for each agent will have one of four possible values (S/E/I/R). Only
infected agents (IS = I) can be information senders, while only
susceptible, exposed, and infected agents (IS = S, E, or I) can be
information receivers. In each time-step, all infected agents will
expose their neighbors with S/E/I status to weatherization-related
information. Figure 6 shows the transition probabilities associated
with changes in an agent’s IS value. As an example, if an agent with
information status I is exposed to information, it will transition to
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Agent i Agent j Rules

I/W S/N | E/N ALi = ALi
ILj = ILj + ICij(ALi � ILj )

I/W I/N ALi = ALi + ICij(ILj � ALi )
ILj = ILj + ICij(ALi � ILj )

I/W E/W ALi = ALi
ALj = ALj + ICij(ALi � ALj )

I/W I/W ALi = ALi + ICij(ALj � ALi )
ALj = ALj + ICij(ALi � ALj )

I/N S/N | E/N ILi = ILi
ILj = ILj + ICij(ILi � ILj )

I/N I/N ILi = ILi + ICij(ILj � ILi )
ILj = ILj + ICij(ILi � ILj )

I/N E/W ILi = ILi
ALj = ALj + ICij(ILi � ALj )

I/N I/W ILi = ILi + ICij(ALj � ILi )
ALj = ALj + ICij(ILi � ALj )

Table 1: IL & AL Evolution Rules (Agent i ! Agent j).

status R with probability PI!R . As discussed previously, an agent’s
information status value in its PSN and OSN will not always be
synchronized to be the same after each time-step.

Intention & Assessment Level Evolution: A household agent’s in-
tention level (IL) is only activated if the agent is in a non-weatherized
state, while its assessment level (AL) is only activated if it has weath-
erized. The values of both IL and AL evolve with interactions.

In each time-step, all agents with IS = I will interact with their
connected agents that have IS = S/E/I, which will in�uence the
agents’ IL orAL values. Table 1 summarizes the rules and outcomes
when agent i exposes agent j to information. Based on its informa-
tion status and weatherization status, each agent falls into a certain
category (e.g., I/W). The �rst letter refers to the agent’s IS value
, and the second letter represents itsWS value, which can be W
(WS = 1) or N (WS = 0). At the beginning of each time-step, the
values of IL/AL for the 548 household agents in the Capitol East
Neighborhood will be the same in their PSN and OSN. However,
over the course of a time-step, the IL/AL values in their PSN and
OSN may become di�erent, as a result of the di�erent interactions
that may occur in di�erent layers of the social network. The IL/AL
of these 548 agents is reconciled to the arithmetic mean of the
values in the agent’s PSN and OSN at the end of each time-step,
thereby ensuring that their IL/AL will have the same value in both
layers at the beginning of the next time-step. Each non-weatherized
household agent has a probability of IL to change its intention value
from 0 to 1. For weatherized agents, the value ofAL at the beginning
of each time-step t following weatherization will be the arithmetic
mean of its AL value at the end of time-step t � 1 and initialized
value ALt (I ):

ALt =
ALt�1 + ALt (I )

2
. (6)

Since each agent’s actual savings (AS) is updated at the beginning
of each time-step, and agents’ AL will be a�ected byAS , it will have
an initialized value ALt (I ) = 1

1+e�(AS�
U
12P )

.

Parameter name Value Parameter name Value

PS!E 0.20 PS!I 0.70
PS!R 0.10 PE!I 0.80
PE!R 0.10 PI!R 0.10

Table 2: Fixed Experimental Parameters.

Experimental scenario Prewire Pwap # Media

Baseline scenario 0.10 2.5% 0
Scenario 1 0 2.5% 0
Scenario 2 0.50 2.5% 0
Scenario 3 1.00 2.5% 0
Scenario 4 0.10 5.0% 0
Scenario 5 0.10 7.5% 0
Scenario 6 0.10 10% 0
Scenario 7 0.10 50% 0
Scenario 8 0.10 100% 0
Scenario 9 0.10 2.5% 1
Scenario 10 0.10 2.5% 2
Scenario 11 0.10 2.5% 3
Scenario 12 0.10 2.5% 4
Scenario 13 0.10 2.5% 5
Scenario 14 0.10 2.5% 10
Scenario 15 0.10 2.5% 50

Table 3: Experimental Scenarios.

Ability Judgment: As shown in Figure 8, an agent has the ability
to weatherize if its WAP status is equal to 1, or if it has a budget that
is su�cient to pay for weatherization out of pocket. Only house-
hold agents with an income level of 1 qualify for weatherization
assistance. In reality, there are many eligible applicants for WAP;
however, very few of them receive assistance each year because
of limited funding and ine�ciencies. For examole, in Iowa, 80,000
WAP applicants are approved each year, but only approximately
2,000 applicants can be served [43]. Therefore, the probability Pwap
that eligible agents receive assistance from WAP in each time-step
is assumed to be 2.5%.

HouseholdsWeatherization Adoption: The household agents’ weath-
erization behavior is based on the Theory of Planned Behavior
(TPB) [4]. TPB is a static model which states that intention and
perceived behavioral control can result in the actual human be-
havior. However, this theory does not consider the evolution of
these variables with time and interactions [47]. In this model, the
agents’ intention and ability components are used to represent the
intention and perceived behavioral control elements of TPB. Each
agent’s intention component is dynamic and evolves in the Infor-
mation Di�usion and Intention and Assessment Level Evolution
sub-models in each time-step, and its ability component evolves
with the value of the in�ation rate in the payback period calcu-
lation. In the �nal decision-making stage, a household agent will
weatherize its house if and only if its intention and ability levels
are both equal to 1.
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Figure 7: Flowchart describing the logic for updating household agent state variables. Agents that adopt weatherization will
follow the dashed line to update their IS and AL values.
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WAP Approved
If L = 1

If L = 0 & !"#$%&' ≥ )*

+,-. = 2.5%

Ability = 1

Figure 8: Ability Judgment.

Figure 9: NetLogo Interface.

3 EXPERIMENTS AND RESULTS
A user-friendly interface was developed for the weatherization
ABM in NetLogo 5.3.1 (shown in Figure 9), which allows for the
control of multiple experimental variables and provides a visualiza-
tion of the dynamic social network generation process (left: PSN,
right: OSN). To gain a better understanding of how certain factors
might in�uence weatherization adoption, and to provide some po-
tentially useful recommendations to government actors with the
City of Des Moines to encourage residents to weatherize, a set of
16 experimental scenarios was developed and run over 180-month
replications, which allowed long-run system behavior to be ob-
served. For each scenario, twenty 180-month replications were run.

In each replication, the total number of weatherized houses in each
monthly time-step was captured. Table 2 shows the values of six
parameters that are �xed and constant throughout all experiments,
and Table 3 provides the experimental variable values for all 16
scenarios.

First, a baseline scenario was run. Next, the value of Prewire was
experimentally varied to determine how the physical network struc-
ture, especially the randomness of the physical network, would
a�ect household agents’ decisions to adopt weatherization (Sce-
narios 1-3). Then, the probability of an approved applicant being
served by WAP (Pwap) was experimentally varied (Scenarios 4-8).
The current real-life value of Pwap is quite low (2.5%), and it was hy-
pothesized that increased investment by the government could yield
greater weatherization adoption rates. Finally, in order to under-
stand the role of the media in increasing weatherization adoption,
the number of media agents that were included in the model was ex-
perimentally varied (Scenarios 9-15). All media agents are assigned
the same impact factor of 0.1, which means that each household
agent has a 10% chance of being exposed to the weatherization
information provided by each media agent in each time-step.

Figures 10a and 10b indicate that the weatherization adoption
rate is slightly higher in a more random PSN but that it is gener-
ally insensitive to changes in Prewire. By contrast, weatherization
adoption exhibits noticeable increases with the increases in Pwap,
as shown in Figures 11a and 11b. Furthermore, higher values of
Pwap tend to encourage more households to choose to weatherize
in an earlier time-step. While increasing Pwap from 2.5% to 5.0%
yields dramatic increases in adoption, there are diminishing returns
from increasing Pwap from 50% to 100%. Similar adoption trends
are apparent in PSN and MSN.

As Figures 12a and 12b show, addingmoremedia agents to spread
weatherization information can promote greater weatherization
adoption, even when their impact factor (0.1) is quite low. Inter-
estingly, however, increasing the number of media agents does
not increase adoption proportionally. For example, the increase in
adoption that occurs by increasing the number of media agents
from 0 to 50 is only about twice as much as that which is gained by
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(a) @ PSN (b) @ MSN

Figure 10: E�ects of PSN randomness on weatherization adoption.

(a) @ PSN (b) @ MSN

Figure 11: E�ects of increased WAP service probability on weatherization adoption.

increasing the number of media agents from 0 to 1 in the PSN (four
times in the MSN).

Figure 13 shows the average month in which non-weatherized
household agents adopt weatherization in each experimental sce-
nario during the 180-month simulation run. These results suggest
that increasing randomness, Pwap, or the number of media agents
tends to increase the rate of the household agents’ weatherization
adoption. Among them, increasing Pwap has the largest impact.

4 CONCLUSION
The agent-based model described in this paper incorporates a multi-
layer social network to explore the e�ects of information di�usion
through di�erent types of social interactions (i.e., physical and on-
line) on households’ decisions about adopting weatherization. The

Theory of Planned Behavior provides the basis for the household
agents’ decision process, in which the agents’ intention levels are
in�uenced by social interactions with neighbors and media agents,
and their ability to weatherize depends on both their available bud-
get for weatherization and their WAP eligibility. The agents’ social
in�uence is determined by their information statuses, which are
updated using logic that is based on the SEIR epidemical model.
The model was used to explore the e�ects of increased randomness
in the physical social network, increased WAP eligibility, and in-
creased media exposure on households’ weatherization adoption
over time.

Future work will include the development of a dynamic social
network which considers the possibility of population migration
in certain areas. Empirical data must be collected to enable model
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(a) @ PSN (b) @ MSN

Figure 12: E�ects of increased number of media agents on weatherization adoption.

Figure 13: Average weatherization adoption month.

validation, including: 1) the number of houses in the Capitol East
neighborhood that actually weatherize in each month, 2) real-time
cost of electricity, 3) behavioral data to inform the media agents’
impact on households (e.g., how often they read certain newspapers
or listen to certain radio stations), 4) households’ budgets for weath-
erization and their income levels, and 5) households’ evaluations
of the extent to which information from physical and online social
networks in�uence their attitude toward weatherization adoption.
An empirically-validated version of the conceptual model described
in this paper has the potential to serve as a useful decision support
tool for the City of Des Moines to assist them in their e�orts to pro-
mote residential weatherization adoption, thereby reducing energy
consumption.
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Figure 1: Flowchart describing the logic for updating household agent state variables.

1 OVERVIEW
1.1 Purpose
Our model is intended to model residents’ weatherization adoption
at the household level in a more realistic context. It can also be
used to evaluate di�erent interventions that government and other
policy makers could adopt in an e�ort to promote weatherization
adoption in residential buildings.

1.2 Entities, state variables, and scales
Our model consists of two main entities: 1) household agents, 2)
media agents. We focus on household agents’ adoption of weather-
ization. Media is a common information carrier for people to learn
information and news. It also o�ers government an access to spread
more weatherization information to common people. We add media
agents to our model to explore their in�uence on weatherization
adoption. Table. 1 shows the 17 state variables of each household
agent. The �rst seven state variables are key parameters to identify
each agent and remain constant. The remaining 10 state variables
will be updated in each time-step. For P, IC, Mm , mathematical
de�nitions are provided as follows. Table. 2 summaries the three
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state variables of each media agent and we assume they will remain
constant all the time.

• Estimated payback period (P): Each household agent is capa-
ble of estimating the breakeven point at which the upfront
investment in weatherization pays for itself through subse-
quent energy cost savings. The upfront investment (Ut ) in
year t is initialized as $4,695 (U0) [9] and increases over time
due to in�ation,

Ut = U0(1 + R1)(1 + R2)...(1 + Rt )(1 � Ft ), (1)

where Rt denotes the in�ation rate in year t , and Ft refers to
the federal income tax credits for energy e�ciency, which
is assumed to be 30% [13]. By weatherizing, single-family
homes saved an average of $283, annually on energy costs [9].
Therefore, each agent’s annual household energy cost sav-
ings in the year in which it decides to weatherize (S0) is set
to $283. If an agent weatherizes in year t , its total savings
over n years (TSt+n ) is calculated as:

TSt+n = St + St+1 + ... + St+n
= S0((1 + Rt ) + (1 + Rt )(1 + Rt+1)
+ ... + (1 + Rt )...(1 + Rt+n )).

(2)

An agent’s estimated payback period P is the value of n (in
years) for which Ut = TSt+n .

• In�uence coe�cient (ICab): The in�uence coe�cient de�nes
agent a’s in�uence on agent b, which is assumed to be sym-
metrical (i.e., ICab = ICba). Each household agent has a set
of in�uence coe�cients, with a value assigned to each of
its connections. It is assumed that an agent’s in�uence on
another agent is directly proportional to their geographical
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Variable name Brief description Scales

ID A unique identi�cation number for each agent. An integer in range [1, 2096]
Income level (L) A household agent’s income level is binary and

determines its eligibility for �nancial assistance.
1 (If at or below 200% )
0 (Others)

Monthly energy consumption (E) Each agent is assigned 24 energy consumption
values (kWh) that are speci�c to its own house
that were generated by the Rhino-UMI energy use
model. The �rst 12 values refer to the monthly en-
ergy consumption for the agent’s house without
any weatherization. The last 12 values represent
the monthly energy consumption with weather-
ization applied to its home.

A positive number (kWh)

Estimated payback period (P ) An estimation about how long it will take when
the upfront investment (U ) can be paid o� by total
savings (TS).

A positive integer (Year)

Budget The maximum amount of money ($) that an agent
is able to spend on weatherization.

A positive number ($)

Distance from others (D) For agents in the Capitol East Neighborhood, each
one has a vector including spatial distances from
all other 547 agents in the neighborhood.

A positive number (meter)

In�uence coe�cient (ICab) It de�nes the in�uence from an agent a to agent
b.

A number in range [0, 1]

Weatherization status (WS) A binary state for representing adoption and non-
adoption. An agent can only transition from a
status of 0 to a status of 1, based on the assump-
tion that weatherization is irreversible.

1 (Adoption)
0 (Non-adoption)

WAP Status A binary variable representing the agent’s state
of receiving weatherization assistance.

1 (Successful)
0 (Others)

Current energy consumption (C) Based on its weatherization status and the cur-
rent time-step (i.e., month), a household agent’s
current monthly energy consumption (in kWh)
is obtained from the outputs of the Rhino-UMI
model (i.e., the agent’s E values).

A positive number (kWh)

Monthly savings (Mm ) The money that an agent saves in monthm. A positive number ($)
Current average saving (AS) For weatherized household agents, its AS is de-

termined by dividing the agent’s total savings by
the number of months since it weatherized.

A positive number ($)

Information status (IS) Each agent has speci�c attitude toward spreading
and receiving certain information. A household
agent can take on one of four di�erent IS values,
including Susceptible (S), Exposed (E), Infected
(I), Recovered (R), in each time-step.

S: An agent who doesn’t know the information
but is ready to receive it.
E: An agent who know the information but don’t
share it with others.
I: An information sender.
R: Neither receive nor spread information.

Intention Level (IL) Intention to adopt weatherization of agents who
haven’t weatherized their houses.

A number in range [0, 1]

Intention Each non-weatherized agent have the probability
of IL to change its intention from 0 to 1.

1 (Want)
0 (Don’t want)

Assessment Level (AL) An agent will make an assessment for its previous
weatherization decision based on its assessment
of the perceived value of its weatherization deci-
sion and will be in�uenced by social interactions.

A number in range [0, 1]

Ability Whether an agent has the ability to weatherize
or not.

1 (Have the ability)
0 (Others)

Table 1: State Variables for Household Agents.
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Variable name Brief description Scales

Information Status (IS) All media agents are assumed to be in status I since
we assume they always play the role of information
senders.

Infected (I)

Assessment level (AL) We assume each media agent will always spread very
positive information to residents about weatherzation
and have the AL = 1 all the time.

1

Impact Factor An indicator showing the probability that household
agents can have access to the media agent.

A number in range [0, 1]

Table 2: State Variables for Media Agents.

proximity, based on the idea that short physical distances
bring people together, increase information sharing, and
stimulate the exchange of knowledge [4]. The in�uence co-
e�cient values of the 1000 household agents outside the
Capitol East Neighborhood (for which there are no spatial
data) are drawn from a uniform distribution between 0 and
1. Otherwise, the in�uence coe�cient between two agents a
and b is de�ned as follows:

ICab = ICba =
Dmax � Dab
Dmax � Dmin

, (3)

where Dab denotes the distance from agent a to agent b, and
Dmin,Dmax refer to the minimum and maximum distance
between all household agents in the Capitol East Neighbor-
hood, respectively.

• Monthly savings (Mm ): The money that a weatherized house-
hold agent saves in monthm is based on the di�erence be-
tween its energy consumption before and after weather-
ization (NWEm and WEm , respectively). This di�erence is
multiplied by the energy cost per kWh, which includes the
current residential electricity rate E, a rate equalization fac-
tor REF, an energy adjustment clause EAC, a transmission
cost adjustment TCA, and a 1.00% sales tax, according to the
electricity bill calculation provided by MidAmerican Energy
Company [5],

Mm = (NWEm �WEm )(E + REF + EAC + TCA)(1 + TAX). (4)

1.3 Process overview and scheduling
Figure 1 displays the process that how a household agent evolves
with time. We take one month as one time-step in our simulation
since the energy consumption we got is monthly one. First, a mul-
tilayer social network is built and we assume it is a static network.
A household agent is initialized with its seven �xed state variables.
Its WS, WAP status, C,Mm , AS, IL, AL, intention and ability are all
assigned 0, and we set its IS as ‘S’ at �rst. Then, in each time-step,
household agents with IS = I will spread weatherization informa-
tion with their neighbors. During the interactions, agents’ IS will
change based on Information Di�usion Model (it will be explained
in details in Sub-modelss section). Their IL or AL and neighbors’ IL
or AL will also evolve because of the energy conservation. For non-
weatherized household agents, at the end of each time-step, they
will check their ability and intention to decide whether to adopt

weatherization or not. For weatherized household agents, who will
follow the dash line in Figure 1, they will have social interactions
and update AL based on interactions and �nancial calculations in
each time-step.

2 DESIGN CONCEPTS
2.1 Basic principles
In order to build a more realistic and mechanistically richer model,
we take the following basic principles into account. Small-world [15]
network and scale-free [3] network are used to generate amultilayer
social network to reveal the multidimensionality of people’s social
networks in reality. We adopt the Susceptible-Exposed-Infected-
Recovered epidemic model [6, 8, 14] to describe households’ sta-
tuses during information propagation and social interactions. Our
paper also improves Theory of Planned Behavior [1] as our basic
principle of the weatherization behavior through adding dynamic
components.

2.2 Emergence
Household agents’ decisions to adopt weatherization will in�uence
other Household agents’ decisions because of social interactions.
Also, media agents can spread positive weatherization information
to household agents and also impact their adoption decisions.

2.3 Objectives
Each household agent wants to use weatherization to lower energy
bill. Since weatherization also requires upfront investment, house-
holds will consider the estimated saving due to weatherization, the
big upfront investment or applying WAP to pay less on energy
consumption.

2.4 Sensing
Household agents consider their intention and ability when they
make decisions on weatherization.

2.5 Interaction
There are three kinds of interactions: 1) interactions between house-
hold agents and their neighbors in physical social network through
face-to-face talks, 2) interactions between household agents and
their neighbors in online social network via online conservations,
3) interactions between household agents and media agents.
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2.6 Observation
The number of adopters of weatherization in PSN and MSN are
both captured at each time-step.

3 DETAILS
3.1 Initialization
There are 548 household agents in physical social network and 1548
household agents in online social network, among which there are
548 agents exist both in PSN and OSN. All household agents have
seven state variables which will remain constant as Table. 1 shows.
20 household agents in PSN are initialized to be adopters at the
beginning of the simulation run and their WAP are initialized to
be 1. 120 household agents in OSN are initialized to be adopters
at the beginning, and their WAP are based on their income level.
For those adopters, their IL have the value ‘I’. At time t = 0 of a
simulation run, for all other household agents, they are initialized
to be non-adopters and their WAP statuses are assigned 0. The
initial values of their IL, AL, intention and ability are 0 while their
IL are ‘S’.

3.2 Input data
Considering social and economic composition, the Capitol East
Neighborhood in Des Monies was selected as a pilot case for the
study. In order to show the potential energy saving when a building
is weatherized, an energy model of a single residential block in
the Capitol East Neighborhood was proposed [7]. 548 residential
buildings compose this neighborhood. We use Rhinoceros 3D and
the Urban Modelling Interface (UMI) plugin fromMIT’s Sustainable
Design Lab [12] to build a digital model of this neighborhood and
simulate each building’s energy consumption. UMI enable us to
assemble each building’s material and test di�erent in�uence taken
by various weatherization practices. Based on this energy model,
a dataset composed of pre- and post-weatherization conditions
and corresponding energy consumption can be collected. First, the
physical geometry of the neighborhood is modeled by Rhinoceros
3D. We use spatial information, extracted from GIS maps that are
maintained by the City of Des Moines, to model building footprints,
sidewalks, streets and lot boundaries. Rough �oor plans are used to
re�ne the extent of the heights of each building. Then, we extract
building-related data, which is needed by UMI model building, from
the Polk County assessor data [2]. It consists of each building’s
address, parcel number, date of construction, number of building
stories and separate residences. Each building is identi�ed through
the parcel number of lot and the identi�cation approach enables
cross-reference information between the Rhino-UMI model and the
Assessor’s data. The 3D building model prepared in Rhino from GIS
and assessor’s data is fed into UMI. And each house is assigned a
building template which re�ects the construction type and detailed
condition of the house. 548 buildings’ energy consumption under
pre- and post-weatherization conditions can be simulated, which
would serve as the inputs to the agent-based model to show the
energy savings due to weatherization.

Initialization
(one-time run in initialization)

Information Diffusion 
(run in each time-step)

Intention & Assessment 
Evolution

(run in each time-step)

Ability Judgment
(run in each time-step)

Households Weatherization Adoption
(run in each time-step)

Figure 2: Sub-modelss.

(a) PSN (b) OSN

Figure 3: Multilayer Social Networks.

3.3 Sub-modelss
The ABM contains �ve sub-models: Initialization, Information Dif-
fusion, Intention & Assessment Level Evolution, Ability Judgment,
and Household Weatherization Adoption. First, the multilayer so-
cial network is generated, and the agents’ parameter values are
initialized. Then, in each monthly time-step, agents will have in-
teractions via the multilayer social network, where information
di�usion will take place. Based on these interactions, agents’ in-
tention and assessment values will evolve, which will inform their
judgments regarding their weatherization abilities. Finally, at the
end of each time-step, each non-weatherized household agent will
decide whether to adopt weatherization, based on its intention and
ability values. An overview of the model is shown in Figure 2.

Initialization: Before the �rst time-step, a multilayer social net-
work is created to allow the agents to interact through both a
physical social network (PSN) and an online social network (OSN).
There are 548 single-family household agents in the Capitol East
Neighborhood. Each node in the PSN (Figure 3a) represents one
of these agents, and each edge represents a connection between
the nodes it connects. The PSN is a small-world network that was
built using the Watts-Strogatz algorithm [15]. This algorithm starts
with a regular network and "rewires" the edges of this network
randomly, based on a probability Prewire. In other words, the small-
world network is an interpolation between regular and random
networks, and the greater the value of Prewire, the more random
the network will be.
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Figure 4: Overlaps and di�erences in a multilayer social net-
work.

The Barabási-Albert (BA) algorithm [3] was used to generate a
scale-free network for the agents’ OSN (shown in Figure 3b). The
OSN consists of the 548 household agents in the Capitol East Neigh-
borhood, additional 1000 household agents that exist outside the
Capitol East Neighborhood, and an experimentally-varied number
of media agents. Thus the 548 agents that represent households
in the Capitol East Neighborhood exist both in the PSN and the
OSN, while the 1000 household agents outside the neighborhood
only have virtual connections via the OSN. If no media agents are
included, the number of nodes in the OSN is therefore 1548, and
the total number of nodes in the multilayer social network (MSN)
is 2096. As with individuals in the real world, there are overlaps
and di�erences between the 548 household agents’ connections
in the PSN and the OSN. Figure 4 demonstrates this phenomenon,
with red edges indicating overlapping connections and blue edges
representing di�erences.

The PSN and OSN are initialized as follows: 1) there are 20 house-
hold agents have weatherized among the 548 agents in the Capitol
East Neighborhood, 2) there are 100 weatherized houses outside
this neighborhood. In other words, initially, there are 20 weath-
erized agents in PSN while 120 weatherized agents in OSN. The
information status (IS) for all non-weatherized agents is initialized
to ‘S’ and for weatherized agents it is initialized to ‘I’. The intention
level (IL) of each non-weatherized household agent is initialized
to 0. Based on upfront investment U and estimated payback pe-
riod P , the estimated monthly savings U

12P represents the estimated
savings which can pay o� U over 12P months. The assessment
level (AL) of each weatherized household agent is based on actual
average savings (AS) and estimated monthly savings U

12P due to
weatherization using a sigmoid function:

AL0 =
1

1 + e�(AS�
U
12P )
. (5)

Information Di�usion: In this submodel, the agents interact and
then update their weatherization-related information status (IS)
values accordingly. At the beginning of each time-step, the IS value
for each agent will have one of four possible values (S/E/I/R). Only
infected agents (IS = I) can be information senders, while only
susceptible, exposed, and infected agents (IS = S, E, or I) can be
information receivers. In each time-step, all infected agents will
expose their neighbors with S/E/I status to weatherization-related
information. Figure 5 shows the transition probabilities associated

S E I R

!"→$

!"→% !%→$ !$→&

!%→&

!"→&

Figure 5: A schematic diagram for SEIR model.

Agent i Agent j Rules

I/W S/N | E/N ALi = ALi
ILj = ILj + ICij(ALi � ILj )

I/W I/N ALi = ALi + ICij(ILj � ALi )
ILj = ILj + ICij(ALi � ILj )

I/W E/W ALi = ALi
ALj = ALj + ICij(ALi � ALj )

I/W I/W ALi = ALi + ICij(ALj � ALi )
ALj = ALj + ICij(ALi � ALj )

I/N S/N | E/N ILi = ILi
ILj = ILj + ICij(ILi � ILj )

I/N I/N ILi = ILi + ICij(ILj � ILi )
ILj = ILj + ICij(ILi � ILj )

I/N E/W ILi = ILi
ALj = ALj + ICij(ILi � ALj )

I/N I/W ILi = ILi + ICij(ALj � ILi )
ALj = ALj + ICij(ILi � ALj )

Table 3: IL & AL Evolution Rules (Agent i ! Agent j).

with changes in an agent’s IS value. As an example, if an agent with
information status I is exposed to information, it will transition to
status R with probability PI!R . As discussed previously, an agent’s
information status value in its PSN and OSN will not always be
synchronized to be the same after each time-step.

Intention & Assessment Level Evolution: A household agent’s in-
tention level (IL) is only activated if the agent is in a non-weatherized
state, while its assessment level (AL) is only activated if it has weath-
erized. The values of both IL and AL evolve with interactions.

In each time-step, all agents with IS = I will interact with their
connected agents that have IS = S/E/I, which will in�uence the
agents’ IL orAL values. Table 1 summarizes the rules and outcomes
when agent i exposes agent j to information. Based on its informa-
tion status and weatherization status, each agent falls into a certain
category (e.g., I/W). The �rst letter refers to the agent’s IS value
, and the second letter represents itsWS value, which can be W
(WS = 1) or N (WS = 0). At the beginning of each time-step, the
values of IL/AL for the 548 household agents in the Capitol East
Neighborhood will be the same in their PSN and OSN. However,
over the course of a time-step, the IL/AL values in their PSN and
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Figure 6: Ability Judgment.

OSN may become di�erent, as a result of the di�erent interactions
that may occur in di�erent layers of the social network. The IL/AL
of these 548 agents is reconciled to the arithmetic mean of the
values in the agent’s PSN and OSN at the end of each time-step,
thereby ensuring that their IL/AL will have the same value in both
layers at the beginning of the next time-step. Each non-weatherized
household agent has a probability of IL to change its intention value
from 0 to 1. For weatherized agents, the value ofAL at the beginning
of each time-step t following weatherization will be the arithmetic
mean of its AL value at the end of time-step t � 1 and initialized
value ALt (I ):

ALt =
ALt�1 + ALt (I )

2
. (6)

Since each agent’s actual savings (AS) is updated at the beginning
of each time-step, and agents’ AL will be a�ected byAS , it will have
an initialized value ALt (I ) = 1

1+e�(AS�
U
12P )

.

Ability Judgment: As shown in Figure 6, an agent has the ability
to weatherize if its WAP status is equal to 1, or if it has a budget that
is su�cient to pay for weatherization out of pocket. Only house-
hold agents with an income level of 1 qualify for weatherization
assistance. In reality, there are many eligible applicants for WAP;
however, very few of them receive assistance each year because
of limited funding and ine�ciencies. For examole, in Iowa, 80,000
WAP applicants are approved each year, but only approximately
2,000 applicants can be served [10]. Therefore, the probability Pwap
that eligible agents receive assistance from WAP in each time-step
is assumed to be 2.5%.

HouseholdsWeatherization Adoption: The household agents’ weath-
erization behavior is based on the Theory of Planned Behavior
(TPB) [1]. TPB is a static model which states that intention and
perceived behavioral control can result in the actual human be-
havior. However, this theory does not consider the evolution of
these variables with time and interactions [11]. In this model, the
agents’ intention and ability components are used to represent the
intention and perceived behavioral control elements of TPB. Each
agent’s intention component is dynamic and evolves in the Infor-
mation Di�usion and Intention and Assessment Level Evolution
sub-models in each time-step, and its ability component evolves
with the value of the in�ation rate in the payback period calcu-
lation. In the �nal decision-making stage, a household agent will
weatherize its house if and only if its intention and ability levels
are both equal to 1.
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