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Abstract

Does competition yield efficient spatial allocations? In this paper, we show evidence
to the contrary by proposing a measure of spatial inefficiency and applying it to several
empirical case studies. We then turn to the question of how to build predictive models
of spatial competition. Literature on location theory reveals the complexity in static
models of spatial competition. In one-dimensional spaces, prediction is impeded both
by equilibrium multiplicity and non-existence. In two-dimensional spaces, we lose
tractability. We extend location theory to propose dynamic, agent-based models with
myopic agents. The behavioral assumption of myopia allows for the modeling of a
dynamic game as a series of static optimizations, yielding tractability even in rich,
two-dimensional environments. We present our own experiment results that support
the assumption of myopia in dynamic spatial games.1

1 Introduction

When Uber drivers are waiting for ride requests, they often sign out of the driver app and
into the passenger app. They do this because they want to see where nearby Uber drivers
are, and Uber shows nearby drivers only to passengers, not drivers.2 If in the passenger app
an Uber driver finds that she is surrounded by other drivers in near proximity, she knows
she may have to wait a while for a request or move to a different location—when passengers
request rides on Uber, they are matched with the nearest available driver, and therefore a
driver’s catchment region is small when she is surrounded by others.

An efficient spatial allocation of Uber drivers would minimize the expected wait-time
for passengers, which we assume proportional to the expected distance to nearest driver.
Supposing passengers are uniformly distributed over a unit disk and drivers travel as the
crow flies, Figure 1 shows three possible spatial allocations, each with six Uber drivers. The
points represent drivers, the black borders represent the catchment regions, and the shading
represents the distance from a point to its nearest driver. The allocation on the left yields

1We thank Antonio Penta, Daniel Quint, Kenneth Hendricks, Lones Smith, Justin Sydnor, Kathryn
Carroll, UW-Madison’s BRITE Laboratory, and seminar participants at the University of Wisconsin and
Carleton College for their feedback and support.

2Lyft does essentially the same, but with driver and passenger modes combined in the same app.
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an expected distance of about 0.364, while the center and right allocations yield expected
distances of about 0.285 and 0.282, respectively. In this sense, the allocation on the right is
the most efficient—in fact, it is the optimal allocation of six drivers in this space.

Figure 1: Three different 6-driver spatial allocations of varying efficiency

Why do ride-sharing apps make it difficult for drivers to see the locations of their com-
petitors? Intuition might suggest that competitive markets would yield reasonably efficient
spatial allocations. If there were a group of customers desirous of a product or service and no
firm within the proximity, an entrant should profit from moving in. This intuition has been
both supported and questioned in theoretical literature dating back to Hotelling (1929). In
this paper, we show empirical evidence that contradicts this intuition and discuss how best
to model spatial competition.

To test the intuition, we propose a measure of spatial inefficiency and apply it to data
on allocations of gas stations and supermarkets. Our measure of spatial inefficiency requires
us to compute optimal spatial allocations, and we develop algorithms for this purpose. Our
algorithm for optimizing two-dimensional allocations works on the logic of Lloyd’s algorithm
(or Voronoi relaxation), which is commonly used in computer science and electrical engineer-
ing (Lloyd, 1982). A modified version of our algorithm could allow a ride-sharing service to
reduce wait-times for passengers by giving drivers guidance on where to locate.

In comparing actual allocations to optimized ones, we find significant inefficiencies in the
allocations of gas stations and supermarkets. We also find that spatial inefficiency is signif-
icantly less acute for allocations of hospital and fire stations, which result from mechanisms
that involve more central planning and less competition. We estimate, conservatively, that
spatial inefficiency in the allocation of supermarkets in the Chicago Metropolitan Statistical
Area costs consumers over 100 million dollars annually in additional transportation costs.

To evaluate mechanisms that yield spatial allocations and test related policies such as
exclusive territories and zoning, we need a model of spatial competition that is both tractable
and rich enough to be predictive in applied settings. Static analyses in location theory reveal
many of the challenges in developing such a model: static spatial games may have multiple
Nash equilibria, none at all, or be intractable even in relatively simple environments—we
discuss this in Section 3.1. Therefore, we propose modeling spatial competition as a dynamic
game with agents that optimize myopically. With this assumption, a dynamic game can be
modeled as a sequence of static, individual optimizations, allowing for simulation and agent-
based models even in complex environments. In cases where agents following a myopic best
response dynamic converge to a fixed point, that fixed point is a Nash equilibrium of the
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corresponding static game. Where there is no convergence, the dynamic path itself serves as
a prediction in that we can evaluate measures of inefficiency at different moments in time
and compare averages or dynamics.

In the presence of complexity, agents make choices using heuristics and rules of thumb.
Agent-based models involve identifying these and building them into a model to generate
predictions through simulation and computation. Microeconomic theory is usually deductive
in that results are derived directly from assumptions. Agent-based modeling is inductive in
that one makes assumptions on agents and then watches phenomena emerge through agent
interaction. We discuss this further in Section 3.2.

To support our behavioral assumption that agents optimize myopically, we present results
from an experiment that we designed to test for myopia in a dynamic spatial game. In
the experiment, we provided players with calculator software to compute flow payoffs for
any possible spatial allocation. As players used the calculator to consider choices before
making them, we observe not their choices but also, in the calculator data, indications of
the allocations that they considered in making those choices. Looking at both, we find
very little evidence that contradicts our assumption of agent myopia. Most of the choices
made were myopically optimal in that they maximized the payoff flow at the moment the
choice was made. Of the choices that were not, the calculator data suggests that most are
attributable to error. Furthermore, the number of times a player chose a myopically optimal
move had a statistically significant positive effect on a player’s payment, suggesting that
myopic optimization is a good rule of thumb and that learning may reinforce it.

The spatial game in our experiment was designed to roughly match the ride-sharing
motivation. It is a dynamic game with reversible decisions, no price competition, and fairly
low stakes. Assuming myopia in the location choices of gas stations and supermarkets in
spatial games with irreversible decisions, price competition, and higher stakes is stronger—
businesses do extensive market research in location choices, but this is consistent with myopic
optimization unless reasoning on potential future entry, exit, or competitor relocation induces
choices that do not maximize myopic profits. What the two environments share is complexity.
That complexity makes traditional game-theoretic analysis difficult. But it also induces
agents to make decisions through heuristics or rules of thumbs. Insofar as we can identify
these, we can build distinct agent-based models for differing environments.

Given the complexity of the environment and uncertainty on competitors, we think it is
reasonable to assume that firms generally optimize myopically.

The rest of this paper is organized as follows: Section 2 presents our empirical work.
In Section 3, we turn our attention to modeling by reviewing insights from static spatial
games and introducing agent-based models with myopic agents. In Section 4, we present
experiment results that support the assumption of myopia in dynamic spatial environments.
We conclude in Section 5.

2 Evaluating spatial allocations empirically

In Section 2.1, we define spatial inefficiency formally. In Section 2.2, we evaluate the spatial
inefficiency of allocations of gas stations on segments of Interstate 90. In Section 2.3, we
evaluate it for allocations of supermarkets, fire stations, and hospitals in three cities.
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2.1 Defining spatial inefficiency

To measure spatial inefficiency, we must define it precisely. Let (X, d) denote a normed
vector space with a density function f : X → R+ representing the distribution of customers
across the space and d a distance metric on it. In our Uber example, X ⊂ R2 represents the
city in latitude-longitude space. A spatial allocation, s = (s1, . . . , sn), is a vector of positions
for the n drivers. For each i, si ∈ X is a latitude-longitude position. Let Sn(X) denote
the set of all possible spatial allocations of n drivers in X. Supposing Uber prefers shorter
wait-times for passengers, we’re interested in the average drive time to a passenger’s location
from her nearest driver as defined in (1)—the lower the better.3

d̄(s) =

∫
X
f(x) ·mini (d(x, si)) dx∫

X
f(x) dx

(1)

To compare across different applications, we look not just at the average distance but
also the difference between the average distance and what the average distance would be in
an optimized allocation, holding n fixed. (2) defines an n-optimal spatial allocation, s∗n, as
one which minimizes the average distance.

s∗n ∈ arg minw∈Sn(X)d̄(w) (2)

Finally, (3) defines a measure of spatial inefficiency, ξ(s), as the difference between the
average distance in s and that in s∗|s|, dividing by the latter to get a percentage difference
that abstracts from units.

ξ(s) =
d̄(s)− d̄(s∗|s|)

d̄(s∗|s|)
(3)

Note that our measure of spatial inefficiency does not account for prices. This is by design as
it allows us to apply it to a variety of spatial applications, only some of which will involve price
competition. However, it also means that a social planner may prefer a spatially inefficient
allocation over one that is spatially efficient if the former yields advantageous consequences
in terms of prices.

2.2 Gas stations on Interstate 90 (1D)

The simplest environment to study spatial competition is a bounded line with uniform cus-
tomer density. This is the environment of Hotelling (1929), which we review in Section 3.1.
We believe that the spatial competition of gas stations choosing locations on rural segments
of an interstate highway roughly matches this. If most of the traffic on a rural segment of
an interstate is driving from one end of the segment to the other, and we average over time,
the customer density is effectively uniform across the segment.

2.2.1 Data

We take Interstate 90 (I90) between Seattle, Washington and Madison, Wisconsin as the
focus for this analysis because it has many long, rural segments. There are still significant

3Our methods are easily extended to quadratic transport costs and average squared distances.
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urban centers along this half of I90, and we would expect customer density to be significantly
higher in these centers. Therefore we divide I90 into seven segments, cutting it at each
point at which I90 passes through an urban area.4 The seven segments, between eight
urban centers, are detailed in Table 1. With each segment, we remove portions at each end
that lie in the urban areas. We then optimize allocations and evaluate efficiency on each
segment separately. In doing so, we are assuming uniform customer density only within each
segment—two points on I90 between Missoula and Billings are assumed to have the same
customer density, but a point in one segment is not assumed to have the same density as a
point in another.

Figure 2: Interstate 90 from Seattle to Madison

Table 1: Summary statistics on segments of Interstate 90

Segment Miles Exits Gas Stations

(1) Seattle to Spokane 252 58 46
(2) Coeur d’Alene to Missoula 153 41 22
(3) Missoula to Billings 333 66 47
(4) Billings to Rapid City 354 73 50
(5) Rapid City to Sioux Falls 335 63 50
(6) Sioux Falls to La Crosse 288 61 43
(7) La Crosse to Madison 120 23 41

Our gas station data was compiled in two steps. First, we downloaded all gas stations in
the relevant states from the OpenStreetMap (OSM) project (OpenStreetMap contributors,
2017). We selected gas stations within a 3-minute drive of I90 using Geographic Information

4For urban areas, we use the 2010 Census Urbanized Areas (UA), densely settled cores of census
tracts/blocks with a total of at least 50000 people. We ignore Urban Clusters (UC), which are defined
similarly but with populations between 2500 and 50000.
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System (GIS) software. Unfortunately, because OSM maps are maintained by volunteers,
they tend to be least accurate/complete in rural areas, where there are few contributors.
Therefore, we also manually scrolled Google Maps over the entirety of I90 with “gas stations”
in the search bar. At the appropriate level of zoom, this reveals all features coded as gas
stations in Google’s database (Google, 2017). Where these were missing from the OSM data,
we added them.

Gas stations are, of course, not located along I90 itself, but rather at or near exits from
the highway. In this sense, the game of spatial competition is not played along a line, but
really across a set of discrete points positioned on the line. While we have the geocoded
positions of the gas stations, for the purposes of our analysis a gas station’s location is its
exit number. Where two or more gas stations are closest to the same I90 exit, we treat them
as colocated. Exit numbers on I90 are mile markers, specifying highway mileage from the
westernmost point of I90 in the current state. Since most segments span multiple states,
we convert the state exit numbers to national ones, i.e. I90 distances from Seattle, for the
analysis.5

The 3-minute drive time was used more as a rule of thumb than a strictly applied criterion
for inclusion. In some urban clusters, there are several gas stations located right at the
highway exit and then additional gas stations near the center of the town. In these cases,
we reason that highway traffic is served by the stations placed nearest to the exit and the
stations in the center of the town are primarily serving residents. We exclude the latter
even if they are less than 3 minutes from the exit. In other cases, stations may be slightly
further than 3 minutes from an exit but are likely serving I90 drivers given the lack of nearby
alternatives—we include these.

2.2.2 Computing optimal allocations

In a world with full information and perfectly rational agents that plan their stops, the loca-
tions of gas stations would be unimportant—as long as there are no absurdly long stretches
of highway without a station, a driver could plan her stops to avoid running out of gas. In
a more realistic setting, however, drivers do not plan their stops and gas stations also offer
food, coffee, and restrooms. Insofar as hunger, fatigue, and one’s bladder are less predictable
than a car’s gas consumption, there is a benefit to having gas stations spread out so that a
driver in need of these services is never too far from the next gas station.

Our primary measure of spatial inefficiency, ξ(s), compares the actual allocation of gas
stations with an optimized one with the same number of features. If gas stations could be
placed along I90 itself, rather than at its exits, the optimal allocation on each segment would
evenly divide the segment to minimize the average distance between a driver and her nearest
gas station. But using this as the optimized allocation would mean that the resulting ξ(s)
would conflate the inefficiency resulting from the allocation of the actual gas stations across
the exits with that resulting from the locations of exits. To isolate the former, we compute
the optimal allocation of gas stations constraining them to the actual exits, an exercise in
combinatorial optimization.

Exhaustive search, which would require 58 choose 46 (almost a trillion) computations on

5In our figures, however, we include the actual, state-specific exit numbers.
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just the I90 segment from Seattle to Spokane, is not feasible. Instead, we first distribute the
actual number of gas stations of the segment arbitrarily, but without colocation, across the
exits in the segment. Then, we iterate over the gas stations, checking for each if the average
distance to gas station on the segment could be reduced by moving the gas station to an exit
that does not have a gas station in the current iteration. When we find such a beneficial move,
we implement it and repeat the process on the new allocation. The optimal allocation is a
fixed point in this algorithm and the algorithm must converge to a fixed point. We are unsure
as to the uniqueness of the fixed point—we have not observed multiple fixed points on any of
the segments after some experimentation with differing initializations. If there are multiple
fixed points, they need not be equally efficient, and therefore our “optimal” allocations may
be suboptimal. In this case, our reported inefficiencies would be underestimates.

2.2.3 Results

To analyze the efficiency of the actual allocations on each segment, we report in Table 2
several statistics for each of the seven segments. First, we include the colocation percentage
of gas stations in the actual allocation: CP(sact) = x% implies that x percent of the gas
stations in the actual allocation are located at exits which have two or more gas stations.
Two columns, d̂(sact) and d̂(s∗), report the longest stretch without a gas station for the actual
and optimized allocations respectively.6 We also include three relevant measures of average
distance. The second and third displayed, d̄(sact) and d̄(s∗), are the average distances (in
miles) to the nearest gas station, as defined in (1) and (2) and used in (3), for the actual and
optimal allocations respectively.7 The first, d̄(sran), is an estimate of the average distance
that would result from a random allocation. To calculate these, we randomly assign gas
stations to exits (with replacement of exits, allowing colocation) a thousand times, calculate
the average distance of each, and then average these averages. We think these provide an
additional interesting point of comparison with the actual allocations. Finally, we include
our measure of spatial inefficiency, ξ(sact).

The results are surprising. The last segment, in Wisconsin, is an apparent outlier. Along
this segment, the most populated, there is a gas station at all but one exit. Demand is
sufficiently high such that spatial scarcity is limited and its binding constraint is the number
of exits rather than the number of gas stations—we would expect to see similar results for
segments of I90 east of Madison.

For all other segments, the our measurements of spatial inefficiency are huge. The 4th
segment, from Billings to Rapid City, is both the longest segment and the least efficient. Its
ξ(sact) of 279% implies that the average distance with the actual allocation of gas stations is
almost four times that of the optimal allocation with the same number of gas stations. While
this is the largest, the spatial inefficiency is above 100% for all of the non-outlier segments,
suggesting average distances over twice as long as they would be in the optimal allocations.
The average distances for the actual allocation are even worse than those from an average

6The s∗ here are the allocations optimized as described above, i.e. to minimize average distance. They
do not necessarily minimize the maximum distance, though they usually coincide fairly closely.

7Note that the average distance to nearest gas station ignores directional considerations. For a driver,
the more relevant number would be the expected distance to the next gas station (in the right direction),
for which the number would be roughly double the average distance to nearest gas station.
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Table 2: Evaluating efficiency on stretches of Interstate 90

Colocation Max. dist. Average distance Inefficiency

Segment CP% d̂(sact) d̂(s∗) d̄(sran) d̄(sact) d̄(s∗) ξ(sact)%

(1) 74 41 21 3.6 5.0 1.9 160
(2) 59 28 10 4.0 4.1 1.8 126
(3) 83 39 17 4.3 6.2 2.0 206
(4) 74 66 16 4.2 7.5 2.0 279
(5) 64 31 16 3.8 4.1 1.8 130
(6) 72 33 12 4.0 4.5 1.7 158
(7) 83 14 14 2.5 2.0 2.0 2

sran, sact, s* are the average randomly generated, the actual, and the optimal allocations, respectively.

random allocation in all non-outlier segments.
The first hint at the explanation of these results is in the colocation percentages—in each

segment, a large majority of the gas stations are colocated with other gas stations despite
the fact that there are also many exits without gas stations. But the narrative driving these
results is particularly apparent when one looks at the allocations on a particular segment.
In Figure 3d, we show sact and s∗ for the fourth segment. The segment has been cut into
five horizontal lines. Each tick mark is an exit, with exit numbers resetting to zero in the
middle of the second and fourth rows as I90 crosses state lines from Montana into Wyoming
and then into South Dakota. Red circles above each bar denote actual gas stations at each
exit while the blue circles below represent gas stations in the optimal allocation. Finally,
shading has been included above and below the bar to denote distance from the nearest gas
station for that point on the highway in the actual and optimal allocations respectively. The
analogous figures for other segments, 3a–3g, are included in the appendix.

Figure 3d shows that gas stations along this rural segment are clustered around pop-
ulation masses (urban clusters by census definitions). Exit 495 on the first row, with five
stations, is the small town of Hardin, Montana. Exits 20, 23, and 25 in the second row are
all exits for Sheridan, Wyoming. Exits 124, 126, and 128 on the third are exits for Gillette,
Wyoming. Gas station clusters in the fourth and fifth rows similarly identify other small
towns. Even the longest stretch of highway without a gas station, 66 miles in Wyoming from
Buffalo (exit 58) to Gillette (exits 124-128) coincides with a long stretch of highway without
a population mass. Essentially, the actual allocation of gas stations mirrors the locations of
residents along I90, seemingly in contradiction with our prior that most of the demand for
gas came from uniformly distributed through-drivers.

We see a few possible explanations for this. One possible explanation is that our assump-
tion of uniform customer density is incorrect. We assume uniform customer density because
we believe that most drivers on rural segments of I90 are driving through that segment, not
residents in towns along the segments. The fact that there is significant traffic flow even on
remote sections of I90 would seem to support this. Alternatively, perhaps significant demand
comes from both through-drivers and residents but the residents are better served because of
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Numbers/ticks are highway exits. Red dots (above the line) and blue dots (below) are gas stations in the
actual and optimal allocations, respectively. Shading represents distance from nearest gas station.

Figure 3d: Gas stations on I90 between Billings and Rapid City

an informational story akin to a tourists and natives model (Salop and Stiglitz, 1977). There
could also be complementarities at play if through-drivers prefer to get food or lodging in
the same location as gas. Finally, there could be reasons on the supply side—station owners
could prefer to have their businesses near their home or those of their employees, or perhaps
distribution is cheaper when gas stations are colocated. What we can say without hesitation
is that the spatial allocation of gas stations on I90 is highly inefficient for the purposes of
through-drivers. In the following section, we do a similar exercise in two dimensions, taking
into account customer density rather than assuming it uniform.

2.3 City supermarkets, hospitals, and fire stations (2D)

Most firms engaged in spatial competition face a two-dimensional game with non-uniform
customer distributions. To consider efficiency in these settings, we need data on the actual
allocations of firms and the customer distribution. We also need to be able to compute
optimal allocations to form the reference points for our calculations of spatial inefficiency.

In this section, we evaluate allocations of supermarkets, hospitals, and fire stations in
three major cities. We refer to these generally as features, rather than firms, to accom-
modate the inclusion of fire stations as well as non-profit hospitals, which may or may not
behave as firms. We chose these three classes of features because we suspect that the mech-
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anisms generating their allocations span the spectrum from regulated market competition
(supermarkets) to central planning (fire stations), with hospitals somewhere in between.8 By
comparing ξ(sact) across these classes of features, we can get a rough empirical indication of
how spatially efficient competitive mechanisms are relative to central planning. That is, we
look to identify the spatial inefficiency resulting from the competitive mechanism by look-
ing at a difference in differences—our evidence is not that d̄(sact) is greater than d̄(s∗) for
supermarkets, though this is true and the difference is large, but rather that the percentage
difference ξ(sact) is much larger for supermarkets than for hospitals and fire stations.

Analysis with (1)-(3) in this context requires strong assumptions. First, we are viewing
our customers as static components of the environment, and identical but for location. In
the ride-sharing application, the idea that customers are static is natural. However where we
look at spatial allocations of supermarkets, that assumption is stronger—the customers, in
their choices of residence, are perhaps as mobile as the firms.9 Second, we are assuming that
the firms are identical and can serve arbitrarily many customers, akin to Bertrand (1883).
Third, we are treating the customer as uniquely located, i.e. ignoring the possibility that
a customer could frequent a distant supermarket with little inconvenience due to it being
located on a commute. In using Euclidean distances, we ignore transportation networks. We
also ignore important empirical infeasibilities, both physical and regulatory. These include
infeasibilities of traveling in a straight line between pairs of locations as well as infeasibilities
in feature placement due to lakes, zoning, etc.

We make these strong assumptions because they allow us to compute optimal spatial
allocations, a challenging exercise, and therefore also to meaningfully evaluate ξ(sact). With
all of these assumptions, even if an empirically observed spatial allocation were actually
optimal for our measure given real-world constraints, we would still likely calculate a non-
negligible ξ(sact) for it given that our optimal s∗n is computed without these real-world
constraints. However, to argue that the spatial allocations of supermarkets are inefficient,
we show not just that their inefficiencies are large, but more importantly that they are much
larger than those for allocations of hospitals and fire stations. Unless the assumptions are
substantially more problematic for supermarkets than they are for hospitals and fire stations,
differences in ξ(sact) can still be attributed to the difference in mechanisms generating the
allocations.

2.3.1 Data

Our data on supermarket locations comes from OSM.10 OSM’s definition of a supermarket
is a large store for groceries and other goods. It includes only full-service grocery stores,
meaning most specialty and ethnic grocers are not included. Data for hospitals comes from
two sources. Our primary source is the Hospital General Information dataset in Medicare’s
Hospital Compare data (Medicare, 2017). From this, we select all acute care and critical

8While this vague conjecture is as deep as we go into the mechanisms generating the allocations in this
section, a goal of the broader research agenda is to design or improve mechanisms to yield spatially efficient
outcomes.

9While people may move frequently, housing stocks, and therefore population distributions, change slowly.
10See OpenStreetMap contributors (2017). Fortunately, this dataset appears to be far more accurate and

complete in urban areas than it is for gas stations in rural areas.
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access hospitals that have emergency services. Because the geocoding in that database
is incomplete, we cross-reference each hospital with its entry in the Hospitals database of
the Department of Homeland Security’s Homeland Infrastructure Foundation-Level Data
(HIFLD) to get its location. Our fire station data also comes from HIFLD.11

We conduct our analyses on three cities: Atlanta, Chicago, and Los Angeles. We selected
these cities both for certain desirable characteristics as well as technical reasons. For char-
acteristics, we wanted cities of different sizes and in different regions to argue the external
validity of our results. Substantial racial diversity in the three cities allows us to investigate
the role of race in feature allocations through spatial regressions in another project. As for
technical reasons, we wanted cities with statistical areas that were surrounded by areas of
low population density—this allows us to analyze allocations on the city’s statistical area
and ignore users of the features outside of that area without introducing much error. Ad-
ditionally, our optimization algorithm, described below, may struggle on cities that have
sizable interior areas with zero customers, so we avoided cities with significant interior areas
of water.12 For each city, we conduct our analyses on both that city’s metropolitan statistical
area (MSA) and on a much smaller area roughly corresponding to the city lines.13

Finally, we take our population data from two sources. We account for population and
population density at the level of census tracts with TIGER data from the 2010 US Census
(U.S. Census Bureau, 2016). We then augment that with updated 2015 population estimates
from Esri et al. (2017). TIGER data includes coordinates for each vertex of each census tract.
We cannot use latitude and longitude coordinates directly for Euclidean distances because
the distance of moving a degree North/South does not equate with that of moving a degree
East/West. Instead, for each area, we convert the census tract vertices and feature locations
to a metric stereographic projection centered in that area so that Euclidean distances between
the points can be interpreted as distances in meters with only minimal error resulting from
the earth’s curvature.14

2.3.2 Computing optimal allocations

To compute optimal feature allocations, we use a numerical algorithm related to Lloyd’s
algorithm, which finds evenly spaced sets of points in subsets of Euclidean spaces (Lloyd,
1982). While more commonly used in computer science and electrical engineering, the al-

11See Oak Ridge National Laboratory (2017) for HIFLD hospital data and TechniGraphics, Inc. (2010)
for HIFLD fire station data.

12Having water form a boundary, as is the case with Chicago and Los Angeles, is not an issue. Small
rivers and lakes are also fine. But cities like Boston, New York, and San Francisco would yield additional
challenges.

13The boundaries of American cities are complicated—many cities contain non-city enclaves and include
disconnected exclaves. We take convexifications of the actual cities. Chicago City includes all census tracts
that intersect city boundaries with the exclusion of those around O’Hare airport (a city exclave) and with
the inclusion of tracts in Norridge (a non-city enclave). Atlanta City includes all tracts in Fulton and DeKalb
counties that intersect city boundaries, except one (FIPS: 13089020802) that juts out and includes a non-
city exclave. Los Angeles City includes all tracts that intersect city boundaries, adding in several non-city
enclaves (e.g. Beverly Hills and Santa Monica), and truncating the corridor leading down to the Port of Los
Angeles by excluding all tracts south of Interstate 105.

14With our projection on Chicago, for instance, the calculated distance between two points 200 kilometers
apart will have an error of about 76 meters.
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gorithm’s underlying logic of reaching a global optimum through iterated local optimization
serves our purposes equally well.

Figure 4: Local adjustments in Lloyd’s algorithm

Consider the problem of trying to place features to minimize average squared distances
between customers and their nearest features on a Euclidean plane with uniform customer
density. Start from the arbitrary allocation represented in Figure 4, in which the original
positions of seven features are represented by seven circles. The irregular hexagon with a
solid perimeter is the Voronoi cell of the central feature.15 Lloyd’s algorithm is the iterative
movement of features to the centroids of their Voronoi cells.16 In the figure, the centroid of
the central feature’s Voronoi cell is shown with a diamond.

The argument for why moving the central feature to the centroid of its cell must reduce
the overall average squared distance is simple. First, note that the centroid of a shape is,
by definition, the point that minimizes the average squared distance between a single point
and all others in the shape. So if Voronoi cells were unaffected by a movement, the adjust-
ment would have to yield an overall improvement—we would be reducing average squared
distances within a particular cell, the solid hexagon, without affecting average squared dis-
tances elsewhere.

Of course, any feature movement will shift and contort its Voronoi cell. After moving to
the diamond, the central feature’s new Voronoi cell is the irregular hexagon with a dashed
perimeter. The central feature has lost customers in the red area and gained those in
the green area. In the previous paragraph, we argued that the adjustment yielded a net
improvement in the average squared distance for those customers within the solid hexagon.
In that assessment, we ignored the welfare gains of customers in the green area. Because

15A generator point’s Voronoi cell is the set of points that are closer to that generator point than any of
generator point. In this context, the generator points are the locations of firms.

16The centroid of a shape is the arithmetic mean position of all points in the shape.
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they are in the Voronoi cell of the central feature after the adjustment, they must be closer
to the central feature after the adjustment than they were to their original nearest feature.
As for the red area, because it lies inside of the solid hexagon, their welfare loss from the
adjustment was included in the analysis of the previous paragraph that suggested that the
adjustment was an improvement. However that analysis actually overstates the welfare loss
of those in the red area by not allowing for the fact that these customers would visit other
closer features instead of the central feature following the adjustment. So the previous
paragraph undercounted welfare gains from the adjustment and overcounted welfare losses,
and it still showed that the adjustment was advantageous—it follows that the adjustment is
advantageous.

Since each adjustment of a feature to the centroid of its Voronoi cell reduces the average
squared distance, adjusting all features iteratively (Lloyd’s algorithm) converges to a fixed
point. And the optimal allocation must be a fixed point. Unfortunately, Lloyd’s algorithm
may have multiple fixed points. As an example, the allocation in the center and on the right
of Figure 1 are each fixed points in Lloyd’s algorithm on a disk with six features.

In optimizing feature allocations on cities, we face two challenges that go beyond standard
implementations of Lloyd’s algorithm. First, our goal is to minimize the average customer
distance to nearest feature, not the average squared distance. Second, our customer distri-
bution function, drawn from census data, is non-uniform.

In minimizing average distance, we can still rely on the same Lloyd’s algorithm logic
that we discuss in Figure 4. The difficulty is that instead of adjusting a feature to the
centroid of its Voronoi cell, we instead want to adjust it to the point within its Voronoi cell
that minimizes the average distance to all other points in the cell, i.e the geometric median.
Finding the geometric median for a discrete set of points is well-studied as an important
problem in facility location.17 Of course, ideally we would want to find the geometric median
not of a discrete set of points but that of a region. There are algorithmic solutions for
this continuous Fermat-Weber problem,18 but none that we are able to implement quickly
enough (computationally) to be feasible within our version of Lloyd’s algorithm. Instead, we
approximate the region of the Voronoi cell by a large set of discrete points drawn randomly
from the region, and then compute the geometric median of those points. This can be done
almost instantaneously even with tens of thousands of points.

Our implementation of the geometric median also facilitates our extension to non-uniform
customer density. Figure 5 shows the Voronoi cell of a supermarket in the Chicago MSA.
The figure’s interior lines represent boundaries of census tracts—the cell intersects roughly
30 tracts. The census tracts are shaded red with darker reds representing higher population
densities. The black region to the right of the figure is Lake Michigan. The black circle is the
current location of the supermarket. To calculate the geometric median, the gray circle, we
draw points randomly from each tract-cell intersection, with the number drawn from each
determined by the area of the tract-cell intersection multiplied by the population density of
the tract, all divided by the sum of these products across all tract-cell intersections. This

17A firm wanting to minimize the total distance between itself and its suppliers would locate at the
geometric median of its suppliers. Finding that point is often called the Weber problem after Weber (1929) or
the Fermat-Weber problem, recognizing Fermat for having originally posed the problem with three suppliers.
See Drezner and Hamacher (2001) for a review.

18See Fekete et al. (2005), for example.
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gives us a percentage of our sample size to draw from each tract-cell intersection. We then
construct the sample of discrete points and find the geometric median of the sample.

Figure 5: Voronoi cell of Super Fresh Market in Waukegan, IL

Fixed point multiplicity is a major issue in our algorithm. With the gas station anal-
ysis, we ran that algorithm from several initializations and always converged to the same
fixed point. When we run our algorithm here from different initializations, we converge to
many different fixed points. The reason for this lies in the non-uniformity of the customer
distribution and the fact that our algorithm involves only local adjustments. The algorithm
essentially pulls each feature towards its nearest population mass, as if the model were grav-
itational, and then optimizes the allocation of features over each population mass. What
it does not do as well is distribute features efficiently across the population masses. As an
example, in the Chicago MSA, there may be one fixed point with 4 supermarkets serving
Aurora and 2 serving Joliet, another with the numbers reversed, and another with 3 serving
each. Because the population density is low between the two suburbs, gas stations are not
necessarily pulled across from one suburb to another even if it would be optimal to do so.

Our approach to dealing with fixed point multiplicity is to run the algorithm from fifty
randomly generated initial allocations as well as the actual one for each optimization, se-
lecting the best. For about half of our optimizations, the actual allocation proved a better
initialization than any of the fifty randomly generated initializations. This is not surprising—
we show below, in Figure 6, that actual feature allocations match population densities fairly
well. Insofar as they have the right number of features in each community, the actual allo-
cations serve as good initializations for the algorithm.

Lloyd’s algorithm technically never requires the computation of average (squared) dis-
tances. However, we need to be able to evaluate this for two purposes. First, it’s an obvious
metric over which to define a tolerance and determine convergence of the algorithm. Sec-
ond, we need to evaluate average distance for both the actual and the optimal allocations to
measure ξ(sact). To this end, we compute the average distance over the entire city or MSA
by computing the average distance within each census tract through numerical integration
and then taking a weighted average across the census tracts based on their populations. Im-
portantly, the approximation of a region by drawing points randomly that we describe above
and use in our implementation of the algorithm is not relevant to the final evaluation of
average distances for both the observed and optimal allocations. So while it is true that the
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allocation we call optimal is only approximately so, the precision of our evaluations of the
average distances is only limited by the minor potential imprecision of numerical integration.

2.3.3 Results

In Table 3, we present summary data on the city and MSA of each of our three cities.
We include their areas in square miles, their populations, and the number of supermarkets,
hospitals, and fire stations contained in each.

In Tables 4 and 5, we replicate the efficiency analysis that we did for gas stations in
Table 2. Table 4 shows the average mileages to features for each feature, each region, and
each of three allocations. Just as in the gas station analysis, d̄(sran) is the average mileage
across a thousand randomly generated allocations with feature numbers equal to those in
the corresponding actual/observed allocations. We then show the average distances in the
actual allocations, d̄(sact), and those in the optimal allocations, d̄(s∗), which were generated
by our algorithm. In Table 5, we report the implied spatial inefficiencies for each feature in
each city.

For hospitals and fire stations, the actual allocations are better than the average of the
randomly generated allocations for all six regions. For supermarkets, the actual allocations
are worse than the randomly generated allocations for the cities but better for the MSA’s,
with the exception of Atlanta MSA, for which the two are very close. This is a first indication
of our general point that supermarkets are inefficiently allocated.

The inefficiency of the supermarket allocations is yet more stark in Table 5. In each
of the six regions, the spatial inefficiency associated with the supermarket allocations is
significantly greater than that of hospital and fire station allocations. While the magnitudes
are not as large as those that we found for gas stations,19 they still represent average distances
between 56% and 96% longer than the optimal configurations. The difference between being
1.09 miles and 0.6 miles from a supermarket in the city of Chicago, for instance, is fairly
significant for customers without a car. 20

One might question whether our measure of inefficiency would correlate with the num-
ber of features, and thus a comparison between two allocations of different n would not be
meaningful. In this case, however, there are more supermarkets in each region than there
are hospitals and less supermarkets than fire stations, and both hospital and fire station
allocations are more efficient. Another contention would be that our assumption that super-
markets can serve arbitrarily many customers is influencing the results. But this is also true
of hospitals and fire stations,21 for which we find less inefficiency.

We include figures to directly compare the actual allocation of supermarkets with the
optimal allocation. Figures 6a and 6b show the population densities of census tracts in

19The inefficiency in the supermarket allocations appears to come from their tendency to cluster near areas
of higher population density. In this sense, they are at least clustered where the people are. For the gas
stations, given our uniform customer distribution assumption, the gas stations were clustered in essentially
arbitrary locations. This is the intuition of why the inefficiency magnitudes were much larger in that analysis.

20While we are using supermarkets as an example to illustrate a broader point about spatial allocations
resulting from competition, our analysis overlaps here with literature on food deserts and access. Distances
affect food choice, not just convenience. For a review of this literature, see Walker et al. (2010). Also see
ERS-USDA (2017) for a related spatial atlas.

21Fire stations’ duties may scale more with area than population.
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Table 3: Summary statistics on regions and features therein

Region Sqmi Pop. (mil.) Tracts S H F

(1) Atlanta City (AC) 163 0.47 130 19 4 38
(2) Atlanta MSA (AM) 8835 5.53 951 174 37 502
(3) Chicago City (CC) 227 2.78 803 76 25 96
(4) Chicago MSA (CM) 6304 9.56 2210 259 80 759
(5) LA City (LC) 536 4.44 1109 100 29 137
(6) LA MSA (LM) 4754 13.14 2923 277 86 535

Table 4: Average mileages to features for random, actual, and optimal allocations

Supermarkets Hospitals Fire Stations

Region d̄(sran) d̄(sact) d̄(s∗) d̄(sran) d̄(sact) d̄(s∗) d̄(sran) d̄(sact) d̄(s∗)

(1) AC 1.58 1.90 1.01 3.58 3.47 2.24 1.10 0.86 0.71
(2) AM 3.58 3.59 2.01 7.83 5.13 4.24 2.11 1.47 1.18
(3) CC 0.93 1.09 0.60 1.67 1.49 1.06 0.82 0.61 0.54
(4) CM 2.74 2.40 1.39 5.01 3.06 2.34 1.58 0.90 0.75
(5) LC 1.20 1.43 0.73 2.33 2.06 1.36 1.02 0.75 0.63
(6) LM 2.12 1.77 1.00 3.83 2.30 1.77 1.52 0.82 0.68

Table 5: Spatial inefficiency of actual feature allocations

ξ(sact)%
Region S H F

(1) Atlanta City 87 55 22
(2) Atlanta MSA 79 21 25
(3) Chicago City 82 41 14
(4) Chicago MSA 73 30 21
(5) LA City 96 51 19
(6) LA MSA 78 30 20
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Chicago MSA as well as the actual spatial allocation of supermarkets. The latter shows that
supermarkets do tend to locate in high-density areas, which is efficient, but they also tend
to cluster, which is not efficient by our measure. Figures 6c and 6d show distances of all
points in Chicago MSA for the actual and optimal allocations respectively. It is immediately
apparent that most of the MSA is much closer to their nearest supermarket with the optimal
allocation. Of course, what matters is not how close points in the region are to their nearest
supermarket, but rather how close people are. Therefore, we also provide scarcity plots that
reveal where there is significant population that is distant from a supermarket. To this end,
in Figures 6e and 6f we map over the region a density plot in which the shade of coloring at
a point is determined by the product of the population density of the containing tract and
the distance from that point to its nearest supermarket.22

(a) Census tracts and pop. density (b) Supermarkets and pop. density

Figure 6: Chicago MSA

Figures 6c-6f also show that a consequential difference between the actual and optimal
allocations is that a significant number of supermarkets have been pushed out from the
city center to Chicago’s suburbs and exurbs in the optimal allocation. This is, indeed,
optimal in terms of minimizing average distances. Figure 6a is a little misleading in its
portrayal of population density as it seems to suggest that there is very little population
at the periphery of the MSA. But the almost-white census tracts on the periphery actually
have roughly the same population as census tracts closer into the city—census tracts are

22We subtract one mile from the distance in the figure coloring as otherwise high-density areas suggest
scarcity even quite close to a supermarket.
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(c) Distance to supermarket in sact (d) Distance to supermarket in sopt

(e) Supermarket scarcity in sact (f) Supermarket scarcity in sopt

Figure 6: Chicago MSA (continued)
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defined to have similar populations. There are even some significant towns of concentrated
population density in some of these peripheral census tracts. But the population densities
for these tracts, which determines the shading, is still almost negligible because of their
size. In any case, it should come as little surprise that the optimal allocation attempts to
serve these communities.23 The fact that the actual allocation does not hints at the sort of
principle of minimum differentiation clustering that was posited in Hotelling (1929).24 All
of this notwithstanding, we did the analyses on the city boundaries also to show that not
all of our efficiency gains in the optimal allocations come from movements of features from
the inner city to suburbs and exurbs. Figures for other features in Chicago MSA and for
supermarkets in Chicago city are provided in Appendix B.

We can also estimate the cost of the spatial inefficiency in supermarket allocations in
monetary terms. Our optimal allocation reduces the average distance to nearest supermarket
from 2.4 miles to 1.4 miles. Since we have no evidence as to the feasibility of the optimal
allocation, let us compare the actual with an allocation of supermarkets that has the same
spatial inefficiency of 30% as Chicago hospitals, the less efficient of the other two feature
allocations. Matching that 30% inefficiency means bringing the distance from 2.4 miles down
to about 1.8 miles. For a single round-trip, this represents an average savings of 1.2 miles.
If we multiply this by the roughly 3.4 million households in the Chicago MSA and suppose
that a member of each household visits a supermarket weekly, we get a reduction of about
214 million miles traveled annually. If we multiply this by the IRS standard mileage rates
used to calculate the deductible costs of operating an automobile for business, 53.5 cents per
mile, we would value these miles at about 114 million dollars.25 This estimate includes only
direct transportation costs, not time costs. Even for the transportation costs, we think it is
highly conservative—reducing the Euclidean distance to supermarkets by 0.6 miles usually
reduces the travel distance by more than 0.6 miles, and we suspect per-mile travel costs to
be greater that 53.5 cents per mile for those without cars.26

Further research is required to determine the degree to which inefficiencies we find for gas
station and supermarket allocations can be generalized to other allocations resulting from
competition. We also do not isolate to what degree current regulation may either limit or
exacerbate these inefficiencies. But we believe that the tendency of similar firms to cluster is
fairly general. In retail and dining with limited consumer information, this may be efficient—
consumers enjoy shopping at multiple retail stores at one location and diners can choose a
location and then compare dining options. But when firms are homogeneous, as is the case
with gas stations and supermarkets, we view clustering as an inefficient phenomenon.

Insofar as the clustering of homogeneous firms is inefficient, we are interested in policies
that could limit clustering. But our empirical analysis has no direct policy conclusions. We
do not propose optimizing the spatial allocations of supermarkets or gas stations because this

23We do not consider different rates of car ownership between urban and sub/exurban tracts—if our goal
was to generate truly optimal allocations, considering this would be necessary.

24Remember that our optimal allocation is for the n from the actual allocation. We do not suggest that
this n is optimal, nor that policymakers should seek to implement s∗. Our focus is the inefficiency of sact.

25Analogous calculations for Atlanta MSA and Los Angeles MSA yield 127 million dollars and 114 million
dollars, respectively.

26We grant that some households get groceries from vendors other than full-service supermarkets. While
this may reduce their transportation costs, it has other costs in terms of food choice and public health.
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could yield additional deadweight loss from price competition—we suspect that the clustering
of homogeneous firms has advantageous effects on prices. Our optimized allocations also take
the number of firms as given, and we have not considered the different sizes of our features
and the value of land.27 To consider policy, we need a predictive model of spatial competition,
the development of which we discuss in the next section.

3 Modeling spatial competition

In this section, we build towards agent-based models of spatial competition. In Section 3.1,
we review insights from static games. In Section 3.2, we describe how location theory can
be extended through dynamic, agent-based models with myopic agents.

3.1 Insight from static spatial games

Spatial games are typically modeled as static games despite the fact that mechanisms gen-
erating empirical spatial allocations are likely continuous-time dynamic games.28 Analyses
vary in the number of firms, the space, and the customer distribution.29 Each firm’s profit
is proportional to the mass of customers that is closer to the firm than any other. If two
or more firms are colocated, they split equally their joint mass of customers. Each firm
simultaneously chooses its location, si, to maximize its profits. A Nash equilibrium spatial
allocation, s, is such that no firm could increase its profits by unilaterally deviating to another
location. In discussing equilibrium analysis on static spatial games, we illustrate three key
impediments to using these models for applied prediction: i) multiplicity, ii) non-existence,
and iii) intractability.30

Analysis of spatial competition dates back to Hotelling (1929).31 Hotelling’s canonical

27Our optimized allocation has supermarkets further from the city center, on average, than the actual
allocation, which likely means that the optimized allocation would occupy less valuable land than the actual
one.

28Sequential games with irreversible decisions are commonly modeled as static games. In our setting, there
may be uncertainty about timing in the game, and beliefs on that timing. See Penta and Zuazo-Garin (2017)
for analysis on rationalizability in this context.

29For reviews of this literature, see Graitson (1982) and Gabszewicz and Thisse (1992).
30The challenges of theoretical analysis also motivate the Structure-Conduct-Performance (SCP) paradigm

developed in Mason (1939, 1948), which looks for empirical evidence of relationships between industry
structure and outcomes. See Bain (1951, 1956) for across-industry analyses and Stigler et al. (1983) for a
critique that favored price theory models. In some sense, Von Neumann and Morgenstern (1944) developed
game theory as an alternative to the SCP paradigm.

31Hotelling (1929) was a response to Bertrand (1883) and extensions in Edgeworth (1897). In turn,
Bertrand (1883) was a paradox proposed in critique of Cournot (1838) and Walras (1883). Cournot’s duopoly
with firms choosing quantities yields lower quantities and higher prices than the social optimum. Bertrand’s
model is similar but with firms choosing prices, not quantities. Intuitively this should not matter given that
prices determine quantities and vice versa, yet Bertrand’s model predicts no deadweight loss in the duopoly,
thus the paradox. Hotelling’s critique of Bertrand (1883) focused on what he viewed as the unrealistic
discontinuity in the Bertrand model where one seller goes from serving no customers to serving all of them
as she moves her price from minimally above her rival’s to below: “. . . a discontinuity, like a vacuum, is
abhorred by nature” (Hotelling, 1929, p.44). Ironically, Hotelling’s analysis, which had firms competing
on both price and location, was incorrect because he failed to take account of discontinuities in his firms’
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main-street, or linear-city, model has two firms competing on location. His key result, which
came to be known both as Hotelling’s Law and the principle of minimum differentiation, is
that firms may be incentivized to make their products as similar as possible. In a spatial
model, this manifests as colocation. Spatial competition also relates to monopolistic com-
petition, à la Chamberlin (1933), except that the product differentiation comes from the
location of the sellers. Many real markets involve sellers in different locations selling dif-
ferentiated products at different prices—high dimensionality makes it very difficult to make
theoretical predictions in such a rich model.

Model 1 of Eaton and Lipsey (1975) has a bounded line as its space and uniform customer
density—it is a fairly straight-forward extension of Hotelling (1929), without prices, to cover
n ≥ 2 firms. For n = 3, there is no equilibrium. For n = 4 and n = 5, there exists a
unique equilibrium with two firms colocated near each boundary, and one additional firm in
the middle in the n = 5 case. For n ≥ 6, there is multiplicity—while the two firms nearest
each boundary must be colocated, each interior firm may be colocated or uniquely located.
Flexibility in the equilibrium positioning of the interior, individually-located firms means
that there are infinitely many equilibria for any n ≥ 6. For exposition, assume here that
n is even. Again we take spatial efficiency as the inverse of the expected distance from a
customer to her nearest firm. Then, in the optimal allocation, which is not an equilibrium,
the n firms evenly divide the line. The most efficient equilibrium has all but the boundary
firms uniquely located. The least efficient has all firms colocated in pairs. We show the three
for n = 10 in Figure 7.32

Figure 7: Equilibrium spatial allocations with ten firms

As we abstract from the boundary behavior by increasing n, the expected distance in
the best equilibrium allocation converges to that of the optimal allocation, while that of

best response functions. This error was mentioned in Shubik (1959) and Vickrey (1964) but not corrected
until d’Aspremont et al. (1979), which showed that no equilibrium existed in Hotelling’s original model.
While Hotelling’s predictions were incorrect for his price-location model, they are correct for the same model
without prices, and most now remember Hotelling’s contribution as one of pure spatial competition.

32We thank Liyang Liu for his assistance in extending the Eaton and Lipsey (1975) characterization to
arbitrary n.
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the worst equilibrium converges to twice that of the optimal allocation. The multiplicity
of equilibria means that equilibrium analysis gives no conclusive answer to the question of
spatial efficiency even in this simple setting of uniform customer density of a line.33

Model 3 in Eaton and Lipsey (1975) departs from the assumption of a uniform customer
density and finds a non-trivial necessary condition for the existence of equilibrium: the
number of firms cannot exceed twice the number of modes of the (assumed continuous)
customer density function. In particular, this means that for any n ≥ 3, there exists no
equilibrium on if customer density is single-peaked—imagine a linear city with population
density highest at the center and tapering toward the boundary in each direction. Where
multiplicity impeded prediction with uniform customer density functions, here non-existence
is the challenge.

Spatial competition in applied settings usually takes place in two-dimensional spaces.
Lösch (1954, p.94-97) considers the unbounded Euclidean plane with a uniform customer
distribution and suggests the optimality and stability of an offset grid configuration of firms,
the Voronoi diagram34 of which is a hexagonal covering as shown in Figure 8a—both the
letters and points represent firms and the hexagons are Voronoi cells.35

Lösch’s equilibrium is supported numerically in Eaton and Lipsey (1975) and proven
analytically in Okabe and Aoyagi (1991).36 Its optimality is proven in Bollobas and Stern
(1972). In this setting, equilibrium and optimality coincide.

But Eaton and Lipsey (1972, 1976, 1978) find many flaws in the Löschian model and
argue that competition need not yield that hexagonal covering. Further, even if one were to
accept the prediction of the hexagonal covering in this setting, there is no evidence that this
prediction generalizes beyond an unbounded Euclidean space with uniform customer density.
Boundaries in the linear model implied inefficient colocation near them in equilibrium, while
departing from uniform customer density raised questions of existence. The former issue
extends fairly intuitively to two dimensions—a uniquely-located firm near a boundary is
incentivized to move away from the boundary as it gains customers towards the interior
without losing its essentially captive customers between it and the boundary.37 As for the
latter, little is known.

In fact, beyond the equilibrium characterization, very little is known even about the un-
bounded, uniform case. In equilibrium, each firm is located optimally given the locations of
all other firms. Yet for a particular firm, A, we have no analytical solution for the optimal

33One might favor the worst equilibrium as a prediction given that it is the only strict equilibrium.
34A Voronoi diagram on a space and a set of points divides a space into cells, with each cell representing

the region that is closer to a particular point than to any other point. It is a formalization of what we called
catchment regions in describing Figure 1.

35Lösch (1954) attempts game-theoretic equilibrium analysis before the tools were well understood—his
equilibrium conditions are a mix of behavioral postulates and conditions that purportedly follow from them.
One of the equilibrium conditions, incorporating prices, was a zero-profit condition justified by free entry.
But Eaton and Lipsey (1978) shows that the neoclassical result of free entry yielding zero profits does not
survive an extension to space with scale effects, calling into question many spatial analyses that used that
assumption—Eaton and Lipsey (1978, p.455) offers a list of such analyses in a footnote.

36Okabe and Aoyagi (1991) also proves the existence of a square-covering equilibrium. See Knoblauch
(2002) for a particularly elegant proof.

37This is more nuanced in 2D where Voronoi cell walls pivot with any movement such that only those
customers on the line of the direction of movement and between the firm and boundary are truly captive.
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(a) Hexagonal covering (b) A’s optimal position conditional on C

Figure 8: Löschian equilibrium hexagonal covering and individual incentives

location choice given the locations of all other firms except in a few special cases. This prob-
lem, maximizing a Voronoi region, is an open problem in computational geometry.38 If we
constrain firm A to select within a particular region39 meeting minor technical assumptions,
Dehne et al. (2005) proves that there exists a unique location that maximizes the area of A’s
region. The same paper shows that if the convex hull of A’s neighbors happens to form a
regular polygon with n > 4 sides, then A’s optimal location is at the center of the polygon.
Where the convex hull of opponents is an irregular polygon, we can use area formulas in that
paper to find the optimal location for A numerically. As we show in Figure 8b, which looks
at how A’s optimal position changes as one of its neighbors, C, is moved, a firm’s optimal
location appears to be at the center of the convex hull of its neighbors.40 But it does not
coincide with any of the myriad notions of polygon centrality that we have considered. This
leaves us without an analytical solution to the problem beyond the very specific case in which
the convex hull of A’s neighbors forms a regular polygon.

There is also an obvious heuristic argument against the presumption of equilibrium ex-
istence in two-dimensional spaces. Consider Figure 8a. Firm C has six neighbors, with the
convex hull of their positions forming a regular hexagon, as is the case for Firm A in Figure
8b. Consideration of the latter figure suggest that if we assume that i) C is located optimally
and ii) the locations of C and her other neighbors (B, J,K, L, and D) are given, then we
know A’s position. But the same argument is true for each of A’s neighbors: B along with
her other neighbors (G,H, I, J , and C) pins down A, as does G, F , E, and D, each with

38For examples in that literature, see Cheong et al. (2004, 2007) and Fekete and Meijer (2005).
39A neighborship cell, which is a set of points such that A would have the same set of Voronoi neighbors

locating at any one of those points.
40Uber drivers appear to have worked this out intuitively. There are several how-to videos on YouTube in

which an experienced Uber driver shows the process of switching into the passenger app and then advises
the audience that they will get a ride sooner if they move to the center of an unoccupied region, essentially
mimicking our numerical analysis in Figure 8b.
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their neighbors. And this is true for all firms: if a firm has k Voronoi neighbors, then its
position must, in equilibrium, solve k equations.41 As such, the existence of equilibrium
requires a solution to a significantly overdetermined system. Such systems can have solu-
tions, of course. Lösch’s hexagonal covering on the unbounded Euclidean plane with uniform
customer density is a perfect example—each of the six equations pinning down A yields the
same location. But we suspect that equilibrium existence is non-generic, a pleasant quirk
of unboundedness and uniform customer density.42 Unfortunately, we cannot speak to the
rank of the system without an analytical solution to the problem of maximizing a Voronoi
region.

Finally, we also note a few related models that combine competition on price with that
on location or product characteristic: Capozza and Van Order (1978) offers a generaliza-
tion of some earlier Löschian models. Salop (1979) adds an outside good/industry to the
Hotelling model. Novshek (1980) considers alternatives to Nash equilibrium. Economides
(1984, 1986a,b) experiment with the addition of reservation prices, the adjustment of the
convexity of utility functions, and an expansion to two dimensions. There are also parallels
with models of non-spatial product differentiation: Rosen (1974) offers a perfect competition
model, with a continuum of firms, of hedonic pricing where products are differentiated and
priced based on attributes—note that Rosen’s proof of equilibrium existence is exclusive to
the one-dimensional case. Gabszewicz and Thisse (1979) models quality where customers
have the same tastes but varying incomes.

In summary, there exists a rich theoretical literature on spatial competition, but using
it to generate predictions in an applied setting is impeded by multiplicity of equilibria,
potential equilibrium non-existence, and tractability issues. This motivates our agenda to
pursue agent-based models.

3.2 Agent-based models with myopic best responses

An agent-based model (ABM) is a computational model for simulating the interactions of
autonomous agents to assess their effects on the system. While this inductive approach to
modeling comes largely from computer science, it is becoming increasingly prevalent in the
social sciences. Axtell (2000) describes three distinct uses of ABM in the social sciences.
Tesfatsion (2006) argues that it is a new, constructive approach to theory. Farmer and Foley
(2009) argue for its use in macroeconomics given the complexity of macroeconomic systems,
particularly in light of the most recent financial crisis. Hommes (2008) surveys their use
in finance, particularly asset pricing. More related to our question, Crooks et al. (2008)
and Crooks and Heppenstall (2012) look at the particular challenges of spatial ABM, and
economists are starting to apply these models to Hotelling-like environments.43

41In the linear case, each firm has at most two Voronoi neighbors. And even in this less overdetermined
system, we know that equilibrium existence is not guaranteed, as shown in Eaton and Lipsey (1975).

42We are not the first to make such a conjecture. In Eaton and Lipsey (1975), the authors conjecture
that there exists no equilibrium on a disk with uniform density for n > 2 firms. Shaked (1975) proves that
conjecture for n = 3. Dasgupta and Maskin (1986) connects existence issues in location games to those in
other games with discontinuities in payoff functions.

43See van Leeuwen and Lijesen (2016). NetLogo, software for ABM, even includes a Hotelling model in
its model library (Ottino et al., 2009).
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Agent myopia is a behavioral assumption in dynamic environments under which an agent
views the positions of her opponents as fixed when deciding whether or not she would profit
from changing her own position—that is, she simply maximizes her instantaneous payoff
flow.44 To define agent myopia, consider a dynamic continuous-time45 spatial game with
payoff flows where each agent periodically makes decisions. Assume that at any given mo-
ment at most one agent makes a decision and that each agent can revise her decision in a
future time period. In this setting, if an agent takes the locations of opponents as given, she
is effectively not strategic—she simply maximizes her instantaneous payoff flow given the
current state at the moment of her decision. We say that this agent follows a myopic best
response (MBR) dynamic.

In motivating spatial competition with the ride-sharing application and designing a re-
lated experiment, we focus on a very specific environment without price competition.46 Most
applications of spatial competition, including those in our empirical work, also involve com-
petition on prices. We can include prices in spatial ABM’s with the MBR dynamic in two
ways. The simplest would be to extend the behavioral assumption to also cover prices—when
an agent chooses a location and price, she takes her opponents’ locations and prices as given
and maximizes her instantaneous payoff flow at the moment of the decision. Alternatively,
we could construct hydrid models where agents take their opponents’ locations as fixed but
anticipate prices resulting from a Nash equilibrium in a static price game, given the locations,
immediately following their location choice.47

The MBR dynamic has important connections to Nash equilibrium. One interpretation
of Nash equilibrium as a prediction is that it could result from an evolutive process in an
environment in which agents know little about the structure of the game but best respond
given their limited information and learn from outcomes.48 In this sense, Nash equilibrium
in a static game represents a fixed point under the MBR dynamic in a dynamic game. Brown
(1951) computes equilibria in static games algorithmically by applying the MBR dynamic
iteratively in fictitious dynamic play. Similarly, fixed points in the MBR dynamic on our
dynamic games represent Nash equilibira in their static analogs.49

The consequences of MBR dynamics on a lattice with local interactions are studied in
Blume (1993, 1995). The MBR dynamic is also common in evolutionary game theory,50

although that literature focuses on population games with many players. Agent myopia

44Myopia is a dynamic-game analog of zero conjectural variance (ZCV), which historically has meant
simply that Nash equilibrium is being applied as a solution concept to a static game. In that setting,
when one checks a potential equilibrium by looking for a profitable unilateral deviation, the possibility of
an opponent response is ruled out by the fact that the game is static. The first use of ZCV that we find
is in Eaton and Lipsey (1972). The authors employ the term in critique of Löschian models in which, they
argue, equilibrium is not well defined due to the absence of an explicit assumption on conjectural variance.
While ZCV comes automatically in Nash equilibrium analysis on a static games, Lösch does not appeal to
Nash equilibrium—his work was contemporaneous with that of Nash. Therefore, equilibrium in the Löschian
model is not well defined without an explicit assumption on conjectural variance.

45This argument also applies to discrete-time games so long as at most one agent has a choice at any time.
46Since Uber and Lyft set prices centrally, drivers cannot compete on price.
47We can only do this if pure-strategy price equilibria exist and are computable. Relevant conditions for

existence are given in Caplin and Nalebuff (1991).
48See Binmore (1987, 1988) and Gilboa and Matsui (1991).
49In this sense, our dynamic agent-based models may yield further insight on static games.
50See Sandholm (2010, Chapter 6) for best response dynamics in that setting.
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and the MBR dynamic are tremendously powerful in that they allow us to model complex
continuous-time games as sequences of static individual optimizations. Agent-based models
in the social sciences commonly exploit behavioral assumptions to allow the representation of
individual agents as automata. Because of the assumed relative simplicity of agent behavior,
we can work in much richer environments than those used in game-theoretic analyses without
losing tractability, and this may allow us to better compare mechanisms that generate spatial
allocations and to evaluate relevant policies such as zoning and exclusive territories. Of
course, the accuracy of our predictions is likely to depend on the validity of the behavioral
assumption, which we support with an experiment in Section 4.

4 Experimental support for MBR in spatial games

In this section, we present results from an experiment designed to test the validity of the
behavioral assumption that agents myopically best respond (MBR) in the context of a dy-
namic spatial game. If an agent maximizes her instantaneous flow playoffs at the moment of
her decision, ignoring potential future opponent movements, we say that her choices satisfy
the MBR assumption.

Our experiment involves participants playing a two-dimensional, discrete-time, dynamic
spatial game. Previewing our results, we observe 2178 decisions and find that only 307 of
them are suggestive of higher-order reasoning (SHO) that would violate the MBR behavioral
assumption. Further, regression analysis shows that players that make more SHO choices
earn no more money than those who make fewer, while players who behave most in accor-
dance with the behavioral assumption do earn more money, suggesting that repetition and
learning might work in favor of the assumption’s validity.

There are two experimental literatures that are relevant to our work. One is a small
literature that seeks to offer an experimental answer to the question of whether competition
yields spatially efficient outcomes. Brown-Kruse et al. (1993) tests Hotelling’s linear-city
model in a repeated game with two firms and examines the role of communication between
players. Without communication, the two firms locate near the center of the market. With
communication, locate one-fourth and three-fourths of the way along the linear market and
maximize joint profits. Kruse and Schenk (2000) extends Brown-Kruse et al. (1993) to
consider non-uniform customer distributions. Players generally chose symmetric strategies
with uniform, unimodal, and bimodal distributions, but, even with communication, they
struggled to reach the profit-maximizing allocation with non-uniform customer distributions.
In order to study the role of complexity in location games, Kruse and Schenk (2000) also
considers Hotelling’s linear city model with a simplified decision environment. Collins and
Sherstyuk (2000) considers a similar model to that in Brown-Kruse et al. (1993) but with
three firms and finds that players randomize locations and avoid both the center and edges
of the market, highlighting role of risk aversion as agents choose low-risk locations instead
of the risk-neutral equilibrium predictions.

The second relevant literature is that on depth of reasoning. The MBR assumption is
similar to assuming that all agents are level-1 in that they fail to reason to any extent
about future opponent play. Depth of reasoning is typically studied within a Keynesian
beauty contest, first described in Keynes (1936). Nagel (1995) proposed the level-k model
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of depth of reasoning and experimentally identified heterogeneity in this depth among the
experiment’s participants. Halpern and Pass (2015) develop a framework for reasoning about
strategic agents performing possibly costly computation. Alaoui and Penta (2016, 2017a,b)
offer a model of, as well as experimental support for, endogenous agent depth of reasoning
motivated by an axiomatized cost-benefit analysis. Level-k models are typically applied to
static games, though Rampal (2017) is a recent extension to dynamic games. While assuming
level-1 behavior would be a very strong assumption in a Keynesian beauty contest, our spatial
game on the Euclidean plane is far more complex due to the underlying geometry.

Insofar as there are costs associated with complex strategic reasoning, myopia could be
rational. Abstracting from these costs, we know that behaving in accordance with the MBR
assumption is likely to be suboptimal. Our initial hypothesis was that agents would choose
to myopically best respond—it is a reasonably good strategy and does not require complex
strategic reasoning. Indeed, we find evidence of this.

4.1 Experiment design

In the experiment, five participants (players, henceforth) play a location game on a 21× 21
grid. Players are given the opportunity, one-by-one, to move one square in any cardinal
direction. Colocation is not allowed. We used the same initial allocation of players, shown
in Figure 9, for each session. Players are labeled by number, 1 through 5. There are also
eight computer players, each labeled with C, who do not move and are positioned along
the perimeter of the grid. We include these static computer players because we want to
abstract from issues resulting from the presence of boundaries. Having the static computer
players makes the game played by the actual players theoretically similar to that played in
a particular region of the unbounded Euclidean plane.

Each player has a color assigned to them. The player’s current location is represented
by a single cell in the grid with a dark shade of that color and the player’s number. The
player’s Voronoi region, calculated with the `1 norm (Manhattan distance), is represented
by an area of the grid in a lighter shade of the player’s color. Black cells are equidistant
from two or more player, at least one of which is not a computer. Grey cells are closer to a
computer player than any non-computer player.

We conducted the experiment with two pieces of software that we developed. Our main
console software, shown in Figure 10, shows the players’ locations in the current iteration,
the player whose turn it is to move, and a grid with the players’ Voronoi regions. The grid
also highlights up to five move options, including the four cardinal directions and an option
to remain at the current location. In the experiment, the main console was projected for all
players to view throughout the experimental session.

Our second piece of software, shown in Figure 11, is calculator software that each player
used on her own lab computer throughout the experiment. The calculator allows players to
enter in an allocation of players, calculate the area of the players’ Voronoi regions for that
allocation, and see the grid of the players’ Voronoi regions. We provided the calculator for
two reasons. First, while it is simple arithmetic to work out which Voronoi region a given
square belongs to for a given allocation, it is very time-consuming to calculate the area of a
Voronoi region by hand. We wanted to alleviate that burden. Second, because players were
using the calculator to consider their choices during each turn, and between their turns in
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Figure 9: Initial allocation of players on grid

many cases, we have data on not only the choices they make but also all of the allocations
they considered in making their choices.

The game is played as follows. In each iteration, the player number whose turn it is in
that iteration is announced. This player has up to two minutes to decide where to move.51

The player then communicates her decision to the experiment leader and the experiment
leader updates the main console accordingly. This process repeats for the duration of the
experiment session.

In each turn of the game, a player chooses to move to a square within one unit of her
current location. If there are no opponents within 1 unit of the current player’s position, she
has five squares to choose from. For example, in Figure 10, we see the squares Player 3 can
choose to move to are highlighted in a dark shade of purple. Positioning the current player
in one of these squares within one unit of her current location and keeping the opponents in
place creates up to five potential allocations of players for the next iteration. We define each
of these potential allocations as a move option. We define a move option’s flow playment as
the area of the current player’s Voronoi region after the move is made. In order to classify

51The time limit was only to prevent a potential misanthropic participant from stalling the experiment
indefinitely, not to put any time pressure on play. The limit was reached only a handful of times. In each
of those occasions, the experiment leader then asked the player where she wanted to move and the player
responded immediately.
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Figure 10: Main console software

Figure 11: Calculator software
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all move options, we rank the move options by their flow payments: the FP1 move is the
move option with the highest flow payment, the FP2 move is that with the second-highest
flow payment, etc. An MBR agent would always choose the FP1 move.

We ran the experiment at the Behavioral Research Insights Through Experiments (BRITE)
Lab at the University of Wisconsin-Madison in June, 2017. Players were recruited from a
pool of students maintained by the BRITE Lab. We conducted 18 experimental sessions,
each with 5 players, for a total of 90 players. Players were shown an instructional video at
the beginning of each experimental session to explain how the game is played and how their
payments would be calculated. A transcript of the instructions and a link to the video are
included in Appendix C.

Players’ payments were proportional to the average area of their Voronoi regions over
all iterations in the experimental session, where an iteration is defined by the positioning of
all players on the grid at a given time and a new iteration is entered upon every selected
move. The number of iterations per session varied based on speed of play. Turn order was
determined randomly. Experimental sessions were scheduled to last 90 minutes, including
time for the instructional video. The average time spent playing the game was 68 minutes,
and the average number of iterations per experimental session was 121. The mean player
payment was $20.52

4.2 Experiment results

There were a total of 2178 main console moves across the 18 sessions. Table 6 shows the
distribution of flow payment move rankings for all moves as well as for those made after the
first ten minutes of each session. The percentage of FP1 moves increases with the exclusion
of the first ten minutes, suggesting that there was some noise in the beginning of each session
as players learned how to play the game and how to use the calculator.

Table 6: Distribution of move FP rankings

All moves After 10
FP ranking Freq. % Freq. %

1 1315 60 1103 63
2 439 20 339 20
3 229 11 174 10
4 126 6 74 4
5 69 3 50 3

52Each iteration is scored by calculating the size of each player’s Voronoi region in the Voronoi mesh of
the players over the grid. Let mi,t denote player i’s score for iteration t. It is calculated as the number of
squares in the grid that are closest to player i in iteration t, i.e., the size of player i’s Voronoi region. A
square that is equidistant from multiple players is divided evenly amongst those players for scoring purposes.
Player i’s current session score in iteration τ is Mi,τ = 1

τ ·
1

212 ·
∑τ
t=1mi,t. The session score calculates the

average percentage of the 21 × 21 grid controlled by player i over the τ iterations. After the last iteration
(t = T ), player i was paid $180 ·Mi,T . While $180 was the technical session prize pool, the actual amount
paid out to players was close to $100 given that the computer agents win a significant portion of the pool.
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Result 1. Players chose the FP1 move 60% of the time.

This does not imply that a majority of players behaved in accordance with the MBR
behavioral assumption. Nor does it suggest that a majority of moves were made by players
behaving in accordance with the MBR assumption. Players selecting a FP1 move may be
engaging in sophisticated consideration of anticipated future movements that happens to
motivate them to pick the same choice as an MBR player. Alternatively, an agent might just
select a move randomly and happen to select the FP1 move. Similarly for the moves selected
that were not FP1, the analysis above does not suggest the reasoning that motivated these
choices.53 However, we use data from players’ calculators to learn about reasoning processes.

If players were engaging in higher-order reasoning on their opponents’ subsequent behav-
ior, we would expect them to run calculations that considered potential subsequent move-
ments from opponents. We saw this only rarely. Players tended to keep their opponents in
place relative to the current allocation of players in the main console and tested allocations
with only their own locations adjusted—where their own location in the calculation is within
one unit of their current location, we call this a move option. In fact, our second result of
note is that a majority of calculations made were on move options. Table 7 summarizes the
positions of opponents in calculations.

Result 2. In 82% of calculations, all opponents were positioned as they were in the current
iteration. 76% of calculations were of move options.

Table 7: Positioning of opponents in calculations

Freq. %
Total 24 765

Opponents in place 20 341 82
Move option 18 869 76

We can also consider whether players made forward-looking calculations with respect to
their own locations. As players could only move one square per turn, a calculation with the
player moved more than one square tested a non-feasible move. A player positioning herself
more than one unit away from her position in the current iteration could suggest some level of
higher-order reasoning. Table 8 shows the distances that the player who made the calculation
was from her current position in the iteration. Very few forward-looking calculations were
made. Instead, a majority of the calculations were either updating to the current iteration
or testing a move option of the current iteration. Again, we see that opponents were often
in place relative to the current iteration.

53In some sense the modeler may not care how agents arrive at FP1 moves—if players are systematically
making these choices, they are predictable regardless of how they reached them. On the other hand, such
a coincidence of reasoning and predictable choice is less transportable to other models than a behavioral
assumption that explains the coincidence.
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Table 8: Distribution of player distances from their iteration position in calculations

Distance Freq. % Of which opponents in place

0 12 046 49 9546
1 10 733 43 9323
2 1205 5 957
3 360 2 253
≥4 421 2 262

Result 3. In 92% of calculations, the calculating player was within one square of her position
at the the time of calculation.54

We now turn to an analysis of non-FP1 moves to address the question of how many
of them are suggestive of higher-order reasoning on opponent responses. Here, we define
the relevant calculation interval for a move to be the timespan from the last change in
the allocation up until the move.55 The set of relevant calculations, then, is the set of all
calculations made during a move’s relevant interval. To partition the set of non-FP1 moves,
we first determine whether the FP1 move was calculated during the relevant interval. In a
majority of non-FP1 moves, the FP1 move was not calculated, suggesting to us that theses
choices are likely attributable to a failure to consider or calculate the FP1 move rather than
higher-order reasoning.

To further refine this partitioning, we then determine whether the move that was chosen
was actually calculated. For moves where the FP1 move was not calculated but the move
chosen was calculated, we can ask whether the player chose the highest-scoring calculated
move (HSCM) of all moves calculated in the relevant interval. Although the FP1 move was
not chosen, the moves in this subset suggest MBR-like behavior. See Table 9 for the full
partitioning of non-FP1 moves.56

Within the set of non-FP1 moves, we define a move to be suggestive of higher-order
reasoning (SHO) if the player calculated both the FP1 move and the move she ultimately
chose, but did not choose the FP1 move. For these 307 moves (out of 2178 total moves),
the player was accurately using the calculator and actively deviating from the FP1 move.57

Table 10 shows how many players, and in what quantities, were responsible for the SHO
moves. Approximately 24% of SHO moves were made by less than 7% percent of players.

54The frequency of zero-distance calculations is high partially because players’ calculators do not automat-
ically update to the iteration positions after a move is made—many of these calculations should be attributed
to players updating their calculators to a new iteration.

55This is to account for instances where players before the player in question choose to remain in place.
56We also saw a slight bias for non-FP1 moves towards the center—of the 863 non-FP1 moves, 362 were

towards the center, 249 were towards the perimeter, and 252 remained in place.
56Although we made it clear in each session that the calculators did not automatically update for each

new iteration (by design), we saw quite a few instances where players were doing MBR-like calculations but
with the opponents in the position of a previous (outdated) iteration. This accounts for many of the 120
cases where some calculations were made but neither the choice nor the FP1 move was calculated.

57It is also possible that they simply forgot the results of some of their calculations. They were not given
pen and paper, or any other means to record their calculations.
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Table 9: Partitioning the 863 non-FP1 moves

FP1 not calculated FP1 calculated
535 328

Choice not calculated 325 21
No calculations (205)

Some calculations (120)

Choice calculated 210 307
Chose HSCM (126)

Did not choose HSCM (84)

Table 10: Number of SHO moves by player

# SHO Moves # Players % Players % Total SHO

0 19 21 0
1 15 17 5
2 11 12 7
3 9 10 9
4 11 12 14
5 6 7 10
6 4 4 8
7 4 4 9
8 3 3 8
9 2 2 6

≥10 6 7 24

Another thought is that players may be following the MBR assumption roughly but then
deciding by intuition when flow payments of two or more moves are very close. To get at
this, we look at the flow payment differences between the FP1 move and that of the chosen
moves. The average difference for non-FP1, non-SHO moves, between the move selected
and the FP1 move, was 1.74 grid squares. The average score difference for non-FP1, SHO
moves was only .82 grid squares, suggesting that players are relying on intuition and higher-
order reasoning mostly when the flow payments are close.58 Table 11 compares the score
differences.

Result 4. Differences in flow payments between SHO moves and their FP1 alternatives were
significantly smaller than those between non-SHO, non-FP1 moves and their FP1 alterna-
tives.

Finally, we can examine the determinants of success in the experiment through regression.
Table 12 shows the impact of several behaviors on a player’s session score. Since there is

58SHO moves with very small flow payment differences could also potentially be attributed to errors in
noticing the small differences.
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Table 11: Score differences for non-FP1 moves

SHO % non-SHO %

Score Diff > 1 22 49
Score Diff ≤ 1 78 51

Score Diff < .5 33 14
Score Diff < .25 17 6

expected variation in the session scores between player numbers because of the unequal
areas in the initial allocation, we calculate the mean session score for each player number
and determine the difference from this mean for each player. We use this as our measure
of player performance and the dependent variable in the regression analysis. Moreover,
because turn order was randomly determined and sessions were limited by total amount of
time playing the game, rather than total number of iterations, players had different numbers
of turns. We control for this in the regressions.

Table 12: Difference (in thousandths) from mean score (by player number)

(1) (2) (3) (4) (5) (6) (7)
All All SHO ≥ 3 All All All SHO ≥ 3

# Turns −0.171 0.0218 −0.0375 −0.0288 −0.179 −0.00974 −0.0730
(0.104) (0.0871) (0.137) (0.0851) (0.103) (0.0852) (0.135)

# FP1 0.441∗∗ 0.391∗

(0.158) (0.158)

# SHO −0.221 −0.392 −0.375 −0.381
(0.234) (0.409) (0.234) (0.400)

# Calcs. 0.0137∗ 0.0112 0.0162∗ 0.0147
(0.00605) (0.00596) (0.00619) (0.00864)

N 90 90 45 90 90 90 45
adj. R2 0.062 -0.013 -0.023 0.034 0.088 0.051 0.021

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01

In the first column, we find that players who chose more FP1 moves achieved higher
session scores than those choosing fewer. In the second and third columns, we find no
statistically significant relationship between the number of SHO moves chosen and a player’s
session score. The fourth column shows that players who made more calculations earned
higher session scores. But when we include both the number of calculations made, and the
number of FP1 moves, it is the latter that maintains its significance. In the third and seventh
columns we run similar regressions but restrict our sample to the moves of players who make
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at least three SHO moves.

Result 5. The number of SHO moves a player chose had no statistically significant impact
on her performance. The number of FP1 moves had a significant positive impact.

A potential critique of this experiment involves its external validity: perhaps undergrad-
uate students participating in low-stakes experiments behave in accordance with a simplistic
behavioral assumption, willfully ignoring inevitable opponent responses to their choices. Per-
haps this could also apply to Uber driver given the relatively low stakes. But it may seem
less intuitive that gas station and supermarket owners would behave so simplistically in their
higher-stakes location choices. First, we think the regression results push against this. The
more players behaved in this simplistic MBR manner, the better they did. If players are to
learn from their performance, it would lead them to select FP1 moves more often, not less.

We also think that the MBR assumption may be realistic in an applied setting. For Uber
drivers, given the reversibility of their decisions and the low stakes, sophisticated reasoning
on the movements of other drivers is unlikely to be worthwhile. It is a much stronger
assumption to make in games with irreversible decisions and large stakes. Businesses do
extensive market research before deciding where to place new facilities, but this due diligence
may still be analogous to MBR agents considering move options in our experiment unless
businesses explicitly reason on potential future entry, exit, or firm relocation.

We cannot argue affirmatively that players behave in accordance with the MBR assump-
tion. But we do fail to find significant evidence that they violate it. And our regression
results suggest that learning may push players toward, not away from, MBR behavior. Of
course, this negative result is good news for those seeking to do agent-based modeling with
an MBR assumption. The irony is that the underlying complexity of spatial competition
that makes equilibrium analysis difficult may also make players behave quite predictably,
thereby facilitating agent-based modeling.59

Given the results of our experiment, we think it best to model agents in a spatial agent-
based model as noisy MBR agents.60 These agents would usually choose FP1 moves, but
would randomly choose non-FP1 moves, doing so more often when non-FP1 moves are
closer in flow payments and in these cases usually selecting moves with relatively high flow
payments. This extends easily to agent-based models with spatial and price competition
as we described in Section 3.2. Our finding that agent behavior is quite predictable in a
complex dynamic spatial game might also be relevant to other complex dynamic games.

5 Conclusion

In this paper, we have shown empirical evidence that competition can yield spatially ineffi-
cient outcomes. In doing so, we have defined spatial inefficiency and developed algorithms
to optimize spatial allocations. We have argued for the use of agent-based models with my-
opic best response dynamics for predictions and policy analysis in complex, dynamic spatial

59Incidentally, the average spatial inefficiency across iteration allocations in this experiment was only about
5%—FP1 moves tended to push players towards the optimal allocation in this setting.

60Models in which all agents myopically best respond are also useful both as a benchmark and as a way
of computing Nash equilibria in analogous static games.
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games. We have found justification for the MBR assumption in our experiment. Future
work will involve the implementation and evaluation of the proposed agent-based models as
well as analysis of whether ABM with MBR (or other) dynamics may be appropriate and
useful in other environments relating to industrial organization.
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A Additional figures from 2.2

Figure 3a: Gas stations on I90 between Seattle and Spokane

Figure 3b: Gas stations on I90 between Couer d’Alene and Missoula
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Figure 3c: Gas stations on I90 between Missoula and Billings

Figure 3d: Gas stations on I90 between Billings and Rapid City
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Figure 3e: Gas stations on I90 between Rapid City and Sioux Falls

Figure 3f: Gas stations on I90 between Sioux Falls and La Crosse

Figure 3g: Gas stations on I90 between La Crosse and Madison
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B Additional figures from 2.3

In this appendix, we provide a few extra figures for comparison with those presented in
the body of the paper. First, we continue Figure 6 to show allocations of hospitals and fire
stations in Chicago MSA. Then, in Figure 9, we show the supermarket allocations in Chicago
city as an additional comparison to those in Chicago MSA. Figures for other regions and
features are available upon request.

(g) Hospitals and pop. density

Figure 6: Chicago MSA (continued)
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(h) Distance to hospital in sact (i) Distance to hospital in sopt

(j) Hospital scarcity in sact (k) Hospital scarcity in sopt

Figure 6: Chicago MSA (continued)
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(l) Fire stations and pop. density

Figure 6: Chicago MSA (continued)
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(m) Distance to fire station in sact (n) Distance to fire station in sopt

(o) Fire station scarcity in sact (p) Fire station scarcity in sopt

Figure 6: Chicago MSA (continued)
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(a) Census tracts and pop. density

(b) Supermarkets and pop. density

Figure 12: Chicago city
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(c) Distance to supermarket in sact (d) Distance to supermarket in sopt

(e) Supermarket scarcity in sact (f) Supermarket scarcity in sopt

Figure 12: Chicago city (continued)

50



C Experiment instructions

Players were shown an instructional video at the beginning of each experimental session to
explain how the game is played and how their payments would be calculated. Players were
then given the chance to ask questions before the game began. See the instructional video
at http://youtu.be/7hcN24RFI3M. The following is a transcript of the instructional video:

Welcome to the BRITE Lab and thank you in advance for participating in our
experiment on spatial competition. You are about to play an experimental game
of spatial competition. The duration of the experiment will be about 90 min-
utes. Please do not talk to other participants during the experiment or use the
computers in ways other than those described here. After participating in this
experiment, please do not discuss it with others who may also participate in the
future. After watching these video instructions, you may ask questions.

This is the game board that you will see projected. It may look slightly different,
depending on the computer. At the top left, we see that it is currently player
3’s turn. You have already been assigned player numbers. The turn order is
randomly determinedafter each turn, it is as if the next players turn is decided
by rolling a five-sided die. This can result in you having multiple turns in a row or
going for long stretches of time without having a turn. Below the turn indicator,
you can see a list of the indexed locations of each of the five human players.
These indices will be important for operating the calculator on your computer.
Reading the top line, we see that player 1 is located at grid coordinate F5. F
represents the column and 5 represents the row. Sure enough, we can see player
1 at coordinate F5.

At the bottom-left, you can see the controls that the experiment leader will use
to move you and the other human players around the board. When it is your
turn, you will select to move either up, down, left, or right. You may also stay in
your current location. Once you have made your decision, you will communicate
it to the experiment leader who will then input the choice using these buttons.
Suppose player 3 chooses to move up and communicates this to the leader. Now
the leader hits the U button for up, and we see that the gameboard is redrawn
with player 3 one row higher than before. We also see that player 4 has been
randomly selected for the next turn.

So far, we have not discussed how you should decide where to move. We will
show you precisely how your cash payment is determined in a moment, but lets
first focus on the grid displayed on the game board. The game is played on a
21 by 21 grid. There are actually 13 players in this game, including 1-2-3-4-5
human players and 1-2-3-4-5-6-7-8 computer players surrounding the grid. The
computer players will remain in their current positions throughout the game.

Each human player is given a specific color. Player 4 is blue. Her current location
is marked in dark blue. Then, all squares in the grid that are closer to player
4 than any other player (including the computer players) are marked with light
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blue. For instance, look at grid coordinate J10, shaded light blue. It is 1-2-3-4-5-
6-7 squares from player 4’s current location. This is less than the distance to any
other player. Player 3 is 1-2-3-4-5-6-7-8 squares away. Player 1 is nine squares
away: 1-2-3-4-5-6-7-8-9. All of the light-blue shaded squares are currently in
player 4’s area.

Some squares are equally far from two or more players. For instance, I10 is
1-2-3-4-5-6-7-8 squares from player 4. It is also 1-2-3-4-5-6-7-8 from player 1.
Squares equally far from multiple players (of which at least one of whom is a
human player) are shaded in black. For scoring purposes, such a square is split
evenly among the players who are equidistant from it. So I10 contributes half of
a unit to player 4’s area, and half of a unit to player 1’s area. Sometimes squares
may also be split between 3 or more players. Finally, squares shaded grey are
closer to the computer players than to any human player.

The basic objective of the game is to have as large of an area as possible since
your payment will depend on the average size of your area over the duration of
the experiment. Therefore, to maximize your cash payment, it is in your interests
to move strategically to have as large of an average area over the course of the
experiment as possible.

When it is your turn, you make take up to two minutes to decide your next move.
Note that you are not able to move into a square currently occupied by another
player (including human and computer players). If player 5 was in square I17,
for instance, player 4 would not be allowed to move left. Nor would player 5 be
allowed to move right into J17. Now lets look at the calculator program that is
on your computer screen.

We provide you with a calculator to facilitate your decision-making. The calcu-
lator can be used to calculate (and show) the areas for any possible allocation of
the five human players. Each of you has the calculator in front of you on your
computer.

At the top left of the calculator, you may input player locations. Recall that the
indices of the current locations are provided on the gameboard that’s projected
for all to see. Once you have inputted locations, hit calculate to redraw the
simulated gameboard for that allocation of players. As an example, let’s try
moving player 4 down one position from her current location, from J17 to J18.
If we wanted to, we could move multiple players at once by editing all of the
locations. You must hit calculate after editing the locations to regenerate the
gameboard.

At the bottom left of the calculator, you can see the size of the areas resulting
from the locations that you have inputted. These areas include the appropriate
portions of squares that are equally far from multiple players. On the grid itself,
you can see what the gameboard would look like if players were in the locations
that you inputted.

Please note that the calculator does not update itself to the current locations
when players move. If you want to reset your calculator to the current locations,
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you have to do it manually by inputting the location indices listed for each player
on the game board. You may use the calculator at any point in the experiment,
whether or not it is your turn. You may use it as much or as little as you want.
We do collect data from the calculators. But nothing you do with the calculator
will directly affect your payment. Only the selected moves by all participants
affect payoffs.

Now lets look at how your cash payment is determined.

To calculate payments, call each player’s turn one iteration. The size of your
area is calculated in each iteration. Then, we calculate your average area size,
averaging over all iterations. Finally, we multiply your average by a number, X,
to calculate your cash payment, rounding up to the nearest dollar. X is the same
for all players.

The multiplier, X, has been selected to target total payments to human players
in the game at around $100. This implies an anticipated average participant
payment of $20. Your actual payment depends on the choices of all participants,
so we can make no minimum payment guarantees. Also, your nal payment is
not necessarily a good measure of your performance in the experiment, as some
players start with more favorable positions.

The experiment leader will terminate the game shortly before 90 minutes has
elapsed from the experiment start time. We will have as many turns as time
allows. This is the end of the instructional video. You may now ask questions to
the experiment leader.
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