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Abstract— This paper presents a proof-of concept study for
demonstrating the viability of building collaboration among
multiple agents through standard Q learning algorithm embed-
ded in particle swarm optimisation. Collaboration is formulated
to be achieved among the agents via some sort competition,
where the agents are expected to balance their action in
such a way that none of them drifts away of the team and
none intervene any fellow neighbours territory. Particles are
devised with Q learning algorithm for self training to learn
how to act as members of a swarm and how to produce
collaborative/collective behaviours. The produced results are
supportive to the algorithmic structures suggesting that a
substantive collaboration can be build via proposed learning
algorithm.

I. INTRODUCTION

Cutting-edge technologies facilitates the daily-life of in-
dividuals and societies with more opportunities to overcome
challenging issues continuously introducing new smart gad-
gets day-in day-out. These astonishing technologies intro-
duce changes with use smart sensors in most of the time,
which places a crucial role in our daily life as they are
literally everywhere any more. Internet of Things (IoT) is
one of key technologies to organise smart sensors in order
to facilitate living environments with more and more services
such as Smart homes and cities, highly-efficient engineering
products, crews/swarms of robots etc. A particular example
can be a swarm of unmanned aerial vehicles (UAVs) which
are teamed up to collect information from disaster areas to
predict/discover and help identify the impact of damage and
the level of human suffering. This is due to the fact that
information collection plays a very crucial role in disaster
management, where the decisions are required to be done
timely and based on correct and up-to-date information.
Swarms of UAVs can be devised for this purposes, which
are expected to remain inter-connected all the time to deliver
the duties collaboratively [3]. Obviously, this is a typical
implementation area of IoT, where smart sensors and tiny
devices, which are drones (UAVs) in this case, require
efficient and robust settings and configuration. However, an
efficiently exploring swarm is not easy to design and run
due to various practical issues such as energy limitations.
This paper introduces a novel learning algorithm to train in-
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dividual devices to make smartly behaving and collaborating
entities.

Multi-agent systems (MAS) is an up-to-date artificial
intelligence paradigm , which attracts much attention for
modeling intelligent solutions in rather a distributed form.
It imposes formulating limited capacity items as proactive
and smart entities, which autonomously act and accumulate
experience to exploit ahead in fulfilling duties more and more
efficiently. In this way, a more comprehensive and collective
intelligence can be achieved. This paradigm has proved suc-
cess so many times in a wider problem solving horizon [4],
[19], [6], [24]. This proves that developing IoT models
using MAS paradigm will produce a substantial benefit and
efficiency. However, building a collaboration among multiple
agents remains challenging since MAS studies have not
reached to a sufficient level of maturity due to the difficulty
in the nature of the problem. The remaining parts of this
paper introduce a novel learning algorithm implemented for
multiple agent models, where a collaboration is aimed to be
constructed among the participating agents via the introduced
algorithm. It is a reinforcement learning algorithm, which
best fits real-time learning cases, and dynamically changing
environments. The individual agents are expected to learn
from past experiences for which how to stay interconnected
and remain as a crew to collectively fulfill the duties without
wasting resources. The latter purpose enforces the individual
agents to compete in achieving higher rewards through out of
the entire process, which makes the study further important
since collaboration has to be achieved while competing. Pre-
viously, competition-based collective learning algorithm has
been attempted with learning classifier systems for modelling
social behaviours [17]. Although there are many other studies
conducted for collective learning of multi-agents with Q
learning [14], [28], the proposed algorithm implements a
competition-based collective learning algorithm extending Q
learning with the notion of individuals and their positions in
particle swarm optimisation (PSO) algorithm, which ends up
as Q learning embedded in PSO.

The rest of the paper consists of the following struc-
ture; the background and literature review is presented in
Section II, the proposed reinforcement learning algorithm
is introduced in Section III, the implementation of the
algorithm for scanning fields is elaborated in Section IV,
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experimental results and discussions are detailed in Section V
and finally conclusions in Section VI.

II. BACKGROUND

A. Swarm Intelligence

Swarm intelligence is referred to artificial intelligence (AI)
systems where an intelligent behaviour can emerge as the the
self-organised outcome of a collection of simple entities such
as agents, organisms or individuals. Simple organisms that
live in colonies; such as ants, bees, bird flocks etc. have long
fascinated many people for their collective intelligence and
emergent behaviours that is manifested in many of activities
they do. A population of such simple entities can interact
with each other as well as with their environment without
using any set of instruction(s) to proceed, and compose a
swarm intelligence system [21], .

The swarm intelligence approaches are to reveal the collec-
tive behaviour of social insects in performing specific duties;
it is about modelling the behaviour of those social insects and
use these models as a basis upon which varieties of artificial
entities can be developed. In such a way, the problems
can be solved by models that exploit the problem solving
capabilities of social insects. The motivation is to model the
simple behaviours of individuals and the local interactions
with the environment and neighbouring individuals, in order
to obtain more complex behaviours that can be used to solve
complex problems, mostly optimisation problems [11], [31]).

B. Reinforcement Learning

Reinforcement learning (RL) is a class of learning in
which unsupervised learning rules work alongside with a
reinforcement mechanism to reward an agent based on its
action selection activity to respond the stimulus from its
own environment. It can be also called as semi-supervised
learning since it receives a reinforcement point, either im-
mediate or delayed, fed back from the environment. Let Λ
be an agent works in environment E, which stimulates Λ
with its state s ∈ S, where S is the finite set of states of E.
The agent Λ will evaluate this perceived state and make a
decision to select an action a ∈ A, where A is the finite set of
actions that an agent can take. Meanwhile, the reinforcement
mechanism, may also be called as reward function, assesses
the action, a, taken by Λ in response to state s and produces
reward r to feed back to Λ. Here, the ultimate aim of the
agent Λ is to maximize its accumulated reward by the end of
the learning period/process, as in the following expression:

max R =

∞∑
i=1

ri (1)

where∞ is practically replaced with a finite number such as
I to be the total number of learning iterations. Although an
agent is theoretically expected to function forever, it usually
works for a predefined time period as a matter of practicality.

There are various reinforcement learning methods devel-
oped with various properties. Among these, Q Learning [36],
[33], TD Learning [7],[32], learning classifier systems [8],
[9] etc are well know reinforcement learning approaches.

C. Collaboration in multi agent systems

Multi agent systems (MAS) are well- known and relatively
mature distributed collective intelligence approaches with
which a set of proactive agents act individually for solving
the problems in collaboration [2]. The main theme is
to team up intelligent autonomous entities for solving the
problems in harmony and composing a certain level of
coordination to help individual agents act proactively and
efficiently to contribute and collaborate in problem solving
process demonstrating individual intelligence capacity [4]. It
is useful to note that the main properties of MAS (i.e. auton-
omy, responsiveness, redundancy, and distributed approach)
facilitate success in MAS applications, which result in a
good record in implementations within many research fields
including production planning, scheduling and control [27],
engineering design, and process planning [2].

The concept of metaheuristic agents has recently been
identified to describe a particular implementation of multi
agent systems devised to tackle hard optimisation problems.
The idea is to build up teams of individual agents equipped
with metaheuristic problem solvers aiming to solve hard
and large-scale problems with distributed and collaborative
intelligent search skills. In the literature, few multi agent
systems implementing metaheuristics are introduced and
overviewed with respect to their performances [6], [16]
while it is known that metaheuristic approaches are, by large,
used as standalone applications.

Researchers are conscious on that solving complex and
large problems with distributed approaches remains as a
challenging issue due to the fact that there is not a pro-
ductive method to commonly use for organising distributed
intelligence (agents in this case) for a high efficiency. [23],
[28], [34]. In fact, the performances of multi- agent systems
including metaheuristic teams significantly depends on the
quality of collaboration [6]. Swarm intelligence-based agent
collaboration is suggested in [4], while the persistence of
this challenging issue is reflected in a number of recent
studies including [15] and [12], where [15] introduces
auction-based consensus among the agents while [12] studies
theoretical bases of agent collaboration through mathematical
foundations.

III. MODELLING WITH SWARMS OF LEARNING AGENTS

A. Q learning

Q learning is a reinforcement learning algorithm that
is developed based on temporal-difference handled with
asynchronous dynamic programming. It provides rewards
for agents with the capability of learning to act optimally
in Markovian domains by experiencing the consequences
of actions, without requiring them to build map of the
respective domain [35]. The main idea behind Q learning
is to use a single data structure called the utility function
(Q(x, a)). That is the utility of performing action a in state x
[36]. Throughout the whole learning process, this algorithm
updates the value of Q(x, a) using x, a, r, y tuples per step,
where r represents the reinforcement signal (payoff) of the



environment and y represents the new state which is obtained
as the consequence of executing action a in state x. Both x
and y are elements of the set of states (S) and a is an element
of the set of actions (A). Q(x, a) is defined as:-

Q : S ×A −→ < (2)

and determined as:-

Q(x, a) = E(r + γe(y)|x, a) (3)

where γ is a discounted constant value within the interval of
[0,1] as described according to the domain and e(y) is the
expected value of y defined as:

e(y) = max{Q(y, a)} for ∀a ∈ A (4)

The learning procedure first initialises the Q values to 0
for each action. It then repeats the following procedure. The
action with the maximum Q value is selected and activated.
Corresponding Q value of that action is then updated using
the following equation (updating rule):-

Qt+1(x, a) = Qt(x, a) + β(r + γe(y)−Qt(x, a)) (5)

where Qt(x, a) and Qt+1(x, a) are the old and the new Q
values of action a in state x, respectively. β is the learning
coefficient changing in [0,1] interval. This iterative process
ends when an acceptable level of learning is achieved or
a stopping criterion is satisfied. For more information see
Sutton and Barto [30].

B. Particle swarm optimisation (PSO)

PSO is a population-based optimization technique inspired
of social behaviour of bird flocking and fish schooling. PSO
inventors have implemented such natural processes to solve
the optimization problems in which each single solution,
called a particle, joins the other individuals to make up a
swarm (population) for exploring within the search space.
Each particle has a fitness value calculated by a fitness
function, and a velocity of moving towards the optimum. All
particles search across the problem space following the parti-
cle nearest to the optimum. PSO starts with initial population
of solutions, which is updated iteration-by-iteration. A basic
PSO algorithm builds each particle based on, mainly, two key
vectors; position vector, xi(t) = {xi,1(t), ..., xi,n(t)}, and
velocity vector vi(t) = {vi,1(t), ..., vi,n(t)}, where xi,k(t),
is the position value of the ith particle with respect to the
kth dimension (k = 1, 2, 3, .., n) at iteration t, and vi,k(t) is
the velocity value of the ith particle with respect to the kth

dimension at iteration t. The initial values, xi(0) and vi(0),
are given by

xi,k(0) = xmin + (xmax − xmin)× r1, (6)
vi,k(0) = vmin + (vmax − vmin)× r2, (7)

where xmin, xmax, vmin, vmax are lower and upper limits
of the ranges of position and velocity values, respectively,
and finally, r1 and r2 are uniform random numbers within
[0, 1]. Since both vectors are continuous, the original PSO

algorithm can straightforwardly be used for continuous opti-
mization problems. However, if the problem is combinatorial,
a discrete version of PSO needs to be implemented. Once a
solution is obtained, the quality of that solution is measured
with a cost function denoted with fi, where fi : xi(t) −→ <.

For each particle in the swarm, a personal best, yi(t) =
{yi,1(t), ..., yi,n(t)}, is defined, where yi,k(t) denotes the
position of the ith personal best with respect to the kth

dimension at iteration t. The personal bests are equal to
the corresponding initial position vector at the beginning.
Then, in every generation, they are updated based on the
solution quality. Regarding the objective function, fi, the
fitness values for the personal best of the ith particle, yi(t),
is denoted by fyi (t) and updated whenever fyi (t + 1) ≺
fyi (t), where t stands for iteration and ≺ corresponds to the
logical operator, which becomes < or > for minimization or
maximization problems respectively.

On the other hand, a global best, which is the best
particle within the whole swarm is defined and selected
among the personal bests, y(t), and denoted with g(t) =
{g1(t), ..., gn(t)}. The fitness of the global best, fg(t), can
be obtained using:

fg(t) = opti∈N{f
y
i (t)} (8)

where opt becomes min or max depending on the type
of optimization. Afterwards, the velocity of each particle is
updated based on its personal best, yi(t) and the global best,
g(t) using the following updating rule:

vi(t+ 1) = δwt∆vi(t) (9)
∆vi = c1r1(yi(t)− xi(t)) + c2r2(g(t)− xi(t)) (10)

where w is the inertia weight used to control the impact
of the previous velocities on the current one, which is
decremented by β, decrement factor, via wt+1 = wt×β, δ is
constriction factor which keeps the effects of the randomized
weight within the certain range. In addition, r1 and r2 are
random numbers in [0,1] and c1 and c2 are the learning
factors, which are also called social and cognitive parameters.
The next step is to update the positions with:

xi(t+ 1) = xi(t) + vi(t+ 1) (11)

for continues problem domains. On the other hand, since
discrete problems cannot be solved in the same way of
continuous problems, various discrete PSO algorithms have
been proposed. Among these, Kennedy and Eberhart [13]
have proposed the most used one, which mainly creates
binary position vector based on velocities as follows:

xi(t+ 1) =
1

evi(t+1)
. (12)

After getting position values updated for all particles,
the corresponding solutions with their fitness values are
calculated so as to start a new iteration if the predetermined
stopping criterion is not satisfied. For further information,
[20] and [31] can be seen.



C. Swarms of Learning Agents

PSO is one of very well know swarm intelligence algo-
rithms used to develop collective behaviours and intelligence
inspiring of bird flocks. Although it has a good record of
success, learning capability remains an important aspect to
be developed further for an improved intelligence. There are
few studies investigating the hybridisation of reinforcement
learning algorithms, especially Q Learning algorithm imple-
mented for particular applications [10], [22], [26]. Likewise,
Q Learning algorithm has been implemented by various
studies to develop coordination of multi agent systems [18].
However, PSO has not been integrated with Q Learning
in order to make each particle within the swarm towards
learning for collaboration.

For the purpose of training the particles of the swarm to
behave in harmony within its neighbourhood, we propose
use of Q Learning algorithm in building intelligent search
behaviour of each individual. A Q Learning algorithm is
embedded in PSO in a way that the position vectors, xi,
is updated subject to a well-designed implementation of Q
learning to adaptively control the behaviour of the individuals
towards collective behaviours, where all individual members
of the swarm collectively and intelligently contribute. Hence,
we revised PSO, first, with ignoring the use of velocity
vector, vi, so as to save time and energy relaying on the
fact that the position vector, xi, inherently contains vi, and
does not necessitate its use [29], [5]. Secondly, the update
rule of the position vectors, xi, (Eq: 11) is revised as follows:

xi(t+ 1) = xi(t) + f(Q, xi, a) (13)
f(Q, xi, a) = {x̂i|max[Q(xi, a)] for ∀a ∈ A} (14)

where x̂i is a particular position vector obtained from
f(Q, xi, a) in which action a is taken since it has the
highest utility value, Q, returned. The main aim of each
individual/particle is to learn from the experiences gained
once each receives the reward produced by reinforcement
mechanism with crediting the action rightly taken and pun-
ishing the wrongly taken ones. This learning property to be
incrementally developed by each particle will succeed to a
well-designed collective behaviour.

D. Reinforcement Mechanism

As clearly indicated before, reinforcement mechanism
plays the crucial role in furnishing particles with learn-
ing capabilities. It remains as an independent monitoring
mechanism to assess the actions taken by the particles and
supply them with reinforcing payoff grades. It is usually
implemented in a Reward Function, which is defined as
follows:

R : S ×A −→ R (15)

The reward function is implemented to consider the situation
with a particular state, x, applied with action a, whether it is
or not the correct action taken. A reward, r, will be produced
as the assessment level for the situation. Thus, an efficient
reward function will be developed based on the problem
domain.

Fig. 1: A typical urban landscape

IV. SCANNING DISASTROUS AREA WITH SWARM OF
LEARNING AGENTS

This problem case is adopted to illustrate the implementa-
tion of collective intelligence achieved using the multi agent
learning algorithm proposed in this study, which is built
up through embedding Q learning within particle swarm
optimisation algorithm. Fig 1 illustrates a simple scenario
in which a typical piece of land combining rural and urban
areas to be scanned by a swarm of learning agents. Suppose
that such an area subjected to some disasters is required
to be scanned for information collection purposes. A flock
of artificial birds (swarm of UAVs); each is identified as a
particle and furnished with a list of actions to take while
moving around the area in collaboration with other peer
particles. Each particle is enabled to learn via the Q learning
implemented for this purpose and being trained how to
remain connected with the rest of the swarm. The logic is
implemented to identify if a particle is collaborating or not
as demonstrated in Fig. 2.

Two possible cases are illustrated in Fig. 2. As indicated,
teams of particles (flocks of birds) can remain interconnected
for collaboration if each is sufficiently close to another peer
particle, which is measured with Euclidean distance that is

Fig. 2: Connecting individuals via distance



particularly calculated in a circle-centric way. A particle is
considered connected if remains within a circle with particu-
lar radius, but will be out of connection if remains out of the
circle of that radius. In addition, the particles are expected
not to approach to each other beyond a certain distance, then
they will also be counted not well-collaborating since they
overlap and cause wasting resources. The main idea behind
this algorithm is to train the particles not to fall apart and
not to overlap, either. That is the main objective to achieve.

A. Embedding Q learning within each particle

Since the swarm intelligence framework preferred in this
study is PSO, each individual to form up the swarm will be
identified as a particle as is in particle swarm optimisation.
Let M be the size of the swarm, where M particles are
created to form up the swarm; each has a 2-dimensional
position vector, xi = {x1,i, x2,i| i = 1, ...,M}, because
the defined area is 2-dimensional and each particle will
simply move forward and/or backward, vertically and/or
horizontally. For simplification purposes, each particle is
allowed to move with selecting one of predefined actions,
where each action is defined as a step in which the particle
can chose the size of the step only. Using the same notation
as Q learning, the size of set of actions is A, which includes
forward and backward short, middle and long size steps.
Hence, a particle can move forward and backward with
selecting one of these six actions. Let ∆ = {δj |j = 1, ..., A}
be the set steps including both forward and backward ones,
which a particle is able to take as part of the action it wants
to do. Once an action is decided and taken, the position of
the particle will change as much as:-

f(Q, xi, a) = πδj (16)

where π is a probability calculated based on position and pos-
sible move of neighbouring particles. Substituting equation
(16) within equation (14), the new position of the particle
under consideration is determined. Here, the neighbourhood
is considered as the other peer particles that has connectivity
with the one under consideration, which is determined based
on the distance in between. Let Ni ∈ M be the set of
neighbouring peer particles (agents) of ith particle, which
is defined as:-

Ni = {xk| ε > d(xi,xk)} ∀k ∈M (17)

where d(xi,xk) is calculated as a Euclidean distance and
ε is the maximum distance, (the threshold), between two
peer particles set up to remain connected. Once a particle
moved as a result of the action taken, the reinforcement
mechanism, the reward function in another name, assesses
the decision made for this action considering the previous
state of the particle before transition and the resulted position
of neighbouring peer particles.

r =


100, if

∑Ni

k=1 d(xi,xk) = Niε

Niε−
∑Ni

k=1 d(xi,xk), if Niε >
∑Ni

k=1 d(xi,xk)

−100, if
∑Ni

k=1 d(xi,xk) ≤ 0

(18)

ε is also the maximum sensing distance of each particle
in which the particles allowed to be apart and connected.
The reward is mainly calculated based on the total distance
from the particle to its neighbouring particles. If there is no
neighbouring particle determined, which means the particle
has lost connection, then it will be punished with −100
negative reward. If there is still connection but is less then
Niε, then the negative reward will be as much as calculated
in the second option of equation (18). If the total distance
from its position to all other neighbouring particles equals
to Niε, then that deserves the whole reward, which is 100.

V. EXPERIMENTAL RESULTS

This section presents experimental results to demonstrate
a proof-of-concept Q learning algorithm works to help parti-
cles (agents) self-train towards building a collaboration and
behave as an swarm member. The aim is also to revise and
analyse how the whole study turned out, judging whether
the final implementation adhered to the expectations pre-
set up. The algorithm has been implemented for a number
of swarm sizes using an agent-based simulation tool called
NetLogo [37].

For a successful evaluation, an agile approach has been
adopted to run the study through iterations in which the
study has been incremented bit-by-bit. As per the approach
various elements were considered ranging from the algorithm
itself to the methods, techniques and tools used, analysing
what each component did well and what could be done
better. One way to get an insight into the level of success
of each aspect of the study project is to imagine starting
the same project fresh whilst retaining all current knowledge
and contemplating what elements would be kept and what
would be changed, and whether these changes could lead to
an improved implementation.

A. Approximation and Evaluation

Throughout the project, the initial iteration was to start the
study to find out a way to embed Q learning into PSO, which
has been achieved in the previous sections as explained. The
ultimate aim is to show that both algorithm work hand-
by-hand to achieve a a swarm of learning agents which
collaborate for collective behavior/intelligence. This aim is
not so black and white, but has many grey areas involved.
This is because the algorithm is not just looking at the
speed of convergence for example which could very easily
be answered as to whether improvement has been made.
Rather, the algorithm is subject to in depth observation as to
whether the particles are behaving correctly, which in itself
has intricacies that require close inspection.



(a) Initial positions for M-QL (b) Initial positions for PSO

Fig. 3: Initialised particles’ positions for both algorithms; multi-
agent Q learning and particle swarm optimisation

In increment two, the goal was to get each particle to
essentially be ”reactive” each other in a real world environ-
ment. So if one particle moved, the others which are also
moving simultaneously would need to take their fellow par-
ticles movement as well as their own into consideration and
react accordingly so that they are always within proximity
of their neighbours. This proximity prevents a particle from
invading its neighbours space whilst also not allowing it to
drift too far out of the radius, if it does either of these it will
get punished whereas if it stays the ”perfect” distance away,
it will get the maximum reward.

This approach in theory would allow collaborative learning
to occur as particles gain the knowledge of the correct
expected behaviour. This brings the question as to whether
this was successful or not to which the results suggest it very
much was. Each participating particle was actively reacting
to the movement of its peers, and with the reinforcement
mechanic, they were learning which actions would be best
to take with each iteration. In this iteration, two swarms
are created for which one was working with embedded Q ,
learning (will be presented with the acronym of M-QL here-
forth) and the other was run with a standard PSO.

The experimentation is organised to start with the initial
swarms as seen in Fig. 3 and then the swarms are incre-
mented through iteration as presented in Fig. 4, where the
behaviors of both swarms, learning swarm and PSO swarm,
after 10, 50 and 500 iterations, respectively.

Fig. 3 and Fig. 4 illustrate the stark difference in which
the particles move with a reinforced incentive. Whereas PSO
is essentially solely designed to iteratively move particles
towards their best value, the addition of the Q-learning prox-
imity measure prevents such erratic movement. Of course
over 500 iterations, some movement is going to occur as
particles will rarely be hitting their ”perfect” +100 reward
movements, but as is visible in Fig. 4e, each particle is
connected to at least one other in a feasible proximity. In this
instance, which does not always happen, the clusters have
merged together indirectly causing one large network. This
is fine and can be expected to happen on occasion as through
individual incremental movement through the environment,
particles are going to move into the consideration radius
of other particles subsequently inheriting them into their

(a) After 10 iterations with m-
QL

(b) After 10 iterations with
PSO

(c) After 50 iterations with m-
QL

(d) After 50 iterations with
PSO

(e) After 500 iterations with
m-QL

(f) After 500 iterations with
PSO

Fig. 4: A set of comparative results to demonstrate the
behaviours of the learning algorithm versus PSO

peer particle Q-mechanic. This is something that in a real
world situation might need to be prevented if clusters are
required to remain in that native cluster, however in this
simple environment, with no mechanic to prevent it, it is
acceptable.

As can be observed from Fig. 4, the particles of the
swarm, learning with M-QL, can demonstrate connectivity
among themselves via having a connecting distance from
one another while the swarm running PSO approximates
to a particular value, where all particles nearly come to
overlapping positions. In fact, the behaviours of the particles
in Fig. 4a, 4c, 4e clearly indicates that the individual
particles keeping distance neither much falling apart nor
remaining too close to one another, while the number of
iterations increases the distances become more fitting as
Fig. 4a shows some particles are still too close to each other,



but, Fig. 4e indicates a better positioning. On the other hand,
Fig. 4b, 4d, 4f demonstrate how particles approximate to a
targeted value without considering any having any distance
among one another. More iterations help individual particles
getting closer and taking overlapping positions more and
more.

The results of increment two confirm that particles are at
least capable of learning both in the individual sense and the
subsequent group sense. Although this is a fundamentally
basic example of learning, it acts as a basis which can be
built on in various ways. From running various parameter
configurations in earlier experimentations, it was observed
that the particles choose the correct action to take in relation
to the proximity as this showed they had learned which
action would benefit them the most, which also showed
the components of state and action were working correctly.
However as estimated, the workings of the increment are
not perfect as whilst through the first phase of iterations
the clusters seem to keep a good proximity with particles
clearly getting negative rewards for interfering with their
counterparts.

It is observed that as the episode gets near the last 40% of
iterations on average, particles visibly begin to drift out of the
neighbourhood, and once a particle loses connection, there
is no mechanic to get the particle back into a neighbourhood
radius, only luck can allow this to happen. Of course if this
incident happened in a real world environment, the results
could be extremely costly. Therefore this issue is left to
further research in the future through potential reinforced
path-finding or efficient search algorithms. If a particle could
find its way back into a neighbourhood, the algorithm could
be much more efficient and realistically deployable in a real
world domain.

B. Individuals’ learning behaviour

The performance of learning particles was another aim of
this research. For observing individual learning performance,
three particles are taken under observation over 100 itera-
tions. Due to the limitations of NetLogo, each simulation in
this regard is physically observed from start to end, for each
iteration, particles are individually judged whether each has
made a good decision or a bad decision, good decision means
taking the correct action and getting positive reward while
bad decision indicates taking wrong actions and receiving
negative rewards (penalty).

For quantification, a good decision will be dictated by a
particle moving in such a way it does not get too close to a
fellow particle and does not drift outside of the radius either.
This brings into question the issue of synchronisation. The
synchronisation problem occurs when two particles move at
the same time which can cause two particles to ”choose” to
move closer to each other at the same time or move further
away, thus causing a bad decision.

It also must be noted that when a particle moves out of
a radius, it has no real method of finding its neighbourhood
again and therefore it becomes a flat-line of bad decisions
on the graph.

(a) Particle 0

(b) Particle 1

(c) Particle 2

Fig. 5: Learning behaviours of the three particles.

The results of these graphs show that for the most part, the
correct decision is usually made, which shows the hybridised
algorithm does work. As mentioned before, an issue occurs
when two particles move at the same time because they
simply cannot predict what their fellow particles will do
which causes proximity problems. This could simply be
rectified by having certain particles in the topology moving
in ”turns”. If one particle is not moving on a turn, this
would allow the other particles to successfully move closer
or further away from it without any conflict.

As can be seen in the graph for particle 2 (Fig. 5c), it
started to make bad decisions for around 10 iterations which
also continued after. This was because it drifted out of the
radius of its topology and has no method of getting back into
it. This is another problem that I believe could be simply
rectified, if a technique was implemented to allow this lost
particle to re-find or find another topology. Even a random
search method would give decent results if the landscape was



well populated. I also changed the reward value from 5 to
0.5 but this had little to no difference shown in the graphs,
as the subsequent discount factor and learning rate dont get
enough of a chance to have a real impetus on the results. The
changing of these parameters would be much more effective
over longer iterations such as 500-1000, however the output
configuration of NetLogo makes any further analysis other
than observation hard.

VI. CONCLUSIONS

This paper presents a proof-of concept study for demon-
strating the viability of building collaboration among multi-
ple agents through standard Q learning algorithm embed-
ded in particle swarm optimisation. A number of parti-
cles furnished with Q learning has been subjected to self
training to act as members of a swarm and produce col-
laborative/collective behaviours. Following introducing the
algorithmic foundation and structures, an experimental study
is conducted to demonstrate that the formulated algorithm
produces results supporting the aimed behaviours of the
algorithm. The results are produced with very simplistic
assumptions, where further enhancements require further
extensive theoretical and experimental studies.
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