
ABStractme: Modularized Environment Modeling in
Agent-based Simulations

(Demonstration)
Deividi Moreira1, Fernando Santos1,2, Matheus Barbieri1, Ingrid Nunes1,3, Ana L. C. Bazzan1

1UFRGS, Brazil; 2UDESC, Brazil; 3TU Dortmund, Germany
{dfsmoreira, fsantos, mcbarbieri, ingridnunes, bazzan}@inf.ufrgs.br

ABSTRACT
This paper presents ABStractme, a tool for modeling the
simulated environment in agent-based simulations. Differ-
ently from existing alternatives, ABStractme allows spec-
ification of the environment in terms of concerns, which im-
prove modularization. Moreover, it supports the modeling
of setup aspects of the simulation, in addition to entities
and the spatial abstraction. The tool generates ready-to-
use code for the NetLogo simulation platform. A user study
provided evidence that ABStractme is useful, enjoyable,
and easy to use and learn.
Demonstration video: https://youtu.be/Z4DeVDwdjVw

Keywords
Agent-based Modeling and Simulation, Modeling Tool, En-
vironment, Code Generation, Concern

1. INTRODUCTION
Agent-based simulations (ABSs) have been widely used to

understand complex systems. Building an agent-based simu-
lation is a challenging task that has been investigated in the
area of Agent-based Modeling and Simulation. The simu-
lated environment, on which entities and agents are located,
is a key element that must be specified in ABSs. In addition
to the spatial abstraction, setup aspects must be considered
in order to run a simulation: model parameters and strate-
gies for creating and initializing entities. Despite the partic-
ular characteristics of each application area, these aspects
share recurrent elements. However, they are often specified
from scratch for every new simulation, through setup rou-
tines. Researchers have already argued about the demand
for alternatives that increase the abstraction level and po-
tentially ease the construction of ABSs [10, 11, 21].

Domain-specific languages (DSLs) [16] is a promising ap-
proach to support this demand. DSLs are modeling or pro-
gramming languages specifically tailored to a particular do-
main, being able to express domain-specific high-level ab-
stractions. Previous work has been done to increase the ab-
straction level of ABMS or provide support in other ways.
However, they are limited to DSLs focused on specifying
general purpose multiagent systems [2, 9, 20, 22], abstract

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

approaches that do not provide elements for modeling either
the environment or its setup [5, 6, 7, 8, 12], or simulation
platforms that do not provide a rich set of high-level, recur-
rent abstractions for ABMS [13, 14, 17, 18, 25].

In this paper, we present ABStractme, an Eclipse plu-
gin that supports ABS development. Given that the there
are many aspects associated with ABS, e.g. structure and
dynamic behavior, our tool currently provides support to
model the simulated environment, which is the basis of any
ABS. The tool provides an implementation to the DSL4ABMS
language [1, 23], which addresses the aforementioned as-
pects often left out of the scope of existing tools. Moreover,
it provides the concept of concern, which is a grouping of
model elements according to a particular aspect of the sim-
ulated environment. This supports the specification of the
environment in a modularized way. The DSL4ABMS ele-
ments were identified based on a bottom-up domain anal-
ysis, which considered a set of 18 existing simulations (17
from the CoMSES Net Computational Model Library [19]
and one related to the Haiti Earthquake [3]). The key fea-
tures of ABStractme are: (i) specification of environment
concerns; (ii) modeling of individual concerns; and (iii) code
generation to the NetLogo platform. A user study assessed
the impact of DSL4ABMS in the comprehension of agent-
based simulations. Results indicate that our language can
indeed facilitate understanding of agent-based simulations,
mainly when they include complex entities.

2. THE ABSTRACTME TOOL
ABStractme was built upon Graphiti1, and thus is in-

tegrated with the Eclipse platform. Figure 1 shows the
graphical interface of ABStractme, which is composed of
three main views. The Project Explorer view (A) shows the
projects created by the designer, as usual in the Eclipse plat-
form. In this view, the designer can manage projects and
diagrams. The Diagram Editor (B) is the main view of the
ABStractme, in which the designer models the ABS en-
vironment. The modeling elements of the DSL4ABMS are
provided in the Palette view (C), from which the designer
can drag and drop elements into the diagram.

Following the specification of the DSL4ABMS, ABStractme
organizes the environment model into an overview diagram
and concern diagrams. The goal of the overview diagram
(shown in Figure 1(B)) is to specify the many concerns as-
sociated with the ABS environment. This provides scala-
bility to the environment modeling, as it is split into mod-
ularized parts, and supports the parallel modeling of each

1
https://eclipse.org/graphiti/

1802

https://youtu.be/Z4DeVDwdjVw
https://eclipse.org/graphiti/


Figure 1: ABStractme Interface

concern by different domain experts. This is useful mainly
when modeling simulations composed of a number subsys-
tems [24]. Moreover, the overview diagram captures the title
and purpose of the simulation, with a description. A dia-
mond represents each concern, with its description beside it.
If there is more than one concern, they are shown as a stack
to emphasize that they represent the decomposition of the
simulation into conceptual layers. Except for the bottom
layer, there is no semantics associated with the ordering,
and designers can choose an order using any criteria, such
as abstraction level. The concern in the bottom layer, in
turn, always represents the spatial abstraction of the envi-
ronment in which there are situated entities. The designer
chooses the appropriate abstraction among those available:
grid, cartesian space, or graph. Then, the name of the spa-
tial unit can be set to a meaningful term according to the
vocabulary of the application area of the simulation.

When the designer double-clicks a concern element, AB-
Stractme opens the corresponding concern diagram. Ex-
amples of concern diagrams are shown in Figure 2. In this
type of diagram, it is possible to model elements of the con-
cern, which can include parameters and entities with at-
tributes and relationships. The following relationships be-
tween entities are supported, each with a particular seman-
tics: composition, to represent that the entity is composed
of others; container, to represent that the entity may con-
tain others; and association, to represent relationships with
other semantics between two entities (e.g., friendship be-
tween people). Setup aspects must be specified in order to
run a simulation. For specifying how an entity is created,
a creation strategy must be selected. It can be designer
defined, in which the designer specifies the number of en-
tities that are created and their locations. Alternatively,
CSV, GIS, or shape files can be chosen, in which entities are
created according to the content of the file provided. How
model parameters or entity attributes are initialized must
also be specified. Provided options range from parameter-
or entity-specific initialization (static, manual, expression,
parameter, being the last limited to entity attributes) to the
initialization in batch through files (CSV, GIS, and shape).

ABStractme also provides code generation for the Net-
Logo simulation platform [25]. Statements that define the
spatial abstraction and entities, visual components for man-

Figure 2: Concern Diagrams

ual inputs, and routines that create and initialize entities
from files are automatically generated. The produced code
is ready-to-use, as opposed to existing similar agent-based
tools that usually generate only code skeletons. The designer
just needs to open the generated file using NetLogo and press
the setup button to have all the environment model created.

3. EVALUATION
The usability of ABStractme was evaluated by means of

a user study. Ten volunteers—undergraduate and graduate
students of the Institute of Informatics at UFRGS—were
submitted to a modeling session. Study participants had
to model the environment of the Haiti Earthquake [3] using
ABStractme, based on a given DSL4ABMS model as the
goal was to evaluate the tool usability only, together with the
compliance of ABStractme with the DSL4ABMS specifi-
cation. Before the modeling session, participants were asked
to fill a background form. 60% reported little or no knowl-
edge in ABMS, and 40% reported intermediary knowledge.
After the modeling session, a post-evaluation based on the
Usefulness, Satisfaction, and Ease of use questionnaire [15]
was applied (complete results are available elsewhere [4]).

Overall, 98% of the participants agreed (above the inter-
mediate level) that the tool is useful, enjoyable, and easy
to use and learn. Participants emphasized the intuitive in-
terface of ABStractme and the ability to specify concerns
using distinct diagrams allowing a clear separation of con-
cern in models. The impossibility of resizing elements and
the difficulty to edit text fields, despite being reported as
negative aspects, can be easily fixed in future releases.

4. CONCLUSIONS
This paper presented ABStractme, a novel tool for mod-

eling the simulated environment in ABS. Besides features
for modeling using visual diagrams in terms of concerns,
the tool provides code generation for the NetLogo simu-
lation platform that seamlessly produces ready-to-execute
code. Ongoing work already addresses other ABS aspects
to complement environment specification, such as dynamic
aspects. Our long-term goal is to provide a comprehensive
model-driven approach to ABS.

1803



REFERENCES
[1] DSL4ABMS. http:

//www.inf.ufrgs.br/prosoft/resources/dsl4abms/.
Accessed: 2017-02-22.

[2] R. Červenka, I. Trenčanský, M. Calisti, and
D. Greenwood. AML: Agent modeling language
toward industry-grade agent-based modeling. In
International Workshop on Agent-Oriented Software
Engineering, Lecture Notes in Computer Science,
pages 31–46, New York, USA, July 2005. Springer.

[3] A. T. Crooks and S. Wise. GIS and agent-based
models for humanitarian assistance. Computers,
Environment and Urban Systems, 41:100–111, 2013.

[4] D. F. da Silva Moreira. Ferramenta para a modelagem
de simulações baseadas em agentes usando linguagem
espećıfica de domı́nio. Trabalho de Conclusão de
Curso, UFRGS, 2016.
http://hdl.handle.net/10183/150944.

[5] A. Garro, F. Parisi, and W. Russo. A process based on
the model-driven architecture to enable the definition
of platform-independent simulation models. In
N. Pina, J. Kacprzyk, and J. Filipe, editors,
Simulation and Modeling Methodologies, Technologies
and Applications, volume 197 of Advances in
Intelligent Systems and Computing, pages 113–129.
Springer Berlin Heidelberg, 2013.

[6] A. Garro and W. Russo. easyABMS: A domain-expert
oriented methodology for agent-based modeling and
simulation. Simulation Modelling Practice and Theory,
18(10):1453–1467, 2010.

[7] A. Ghorbani, P. Bots, V. Dignum, and G. Dijkema.
MAIA: a framework for developing agent-based social
simulations. Journal of Artificial Societies and Social
Simulation, 16(2):9, 2013.

[8] J. J. Gómez-Sanz, C. R. Fernández, and J. Arroyo.
Model driven development and simulations with the
INGENIAS agent framework. Simulation Modelling
Practice and Theory, 18(10):1468 – 1482, 2010.
Simulation-based Design and Evaluation of
Multi-Agent Systems.

[9] C. Hahn. A domain specific modeling language for
multiagent systems. In Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems-Volume 1, pages 233–240.
International Foundation for Autonomous Agents and
Multiagent Systems, 2008.

[10] L. Hamill. Agent-based modelling: The next 15 years.
Journal of Artificial Societies and Social Simulation,
13(4):7, 2010.

[11] F. Klügl and A. L. C. Bazzan. Agent-based modeling
and simulation. AI Magazine, 33(3):29–40, 2012.

[12] F. Klügl and P. Davidsson. AMASON: Abstract
meta-model for agent-based simulation. In M. Klusch,
M. Thimm, and M. Paprzycki, editors, Multiagent
System Technologies, volume 8076 of Lecture Notes in
Computer Science, pages 101–114. Springer Berlin
Heidelberg, 2013.

[13] F. Klügl, R. Herrler, and M. Fehler. SeSAm:
Implementation of agent-based simulation using visual
programming. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents

and Multiagent Systems, AAMAS ’06, pages
1439–1440, New York, NY, USA, 2006. ACM.

[14] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. Mason: A multiagent simulation
environment. Simulation, 81(7):517–527, 2005.

[15] A. M. Lund. Measuring usability with the USE
questionnaire. Usability Interface, 8(2):3–6, 2001.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316–344, 2005.

[17] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The swarm simulation system: A toolkit for building
multi-agent simulations. Technical report, Santa Fe
Institute, Santa Fe, 1996.

[18] M. J. North, N. T. Collier, and J. R. Vos. Experiences
creating three implementations of the repast agent
modeling toolkit. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 16(1):1–25, Jan.
2006.

[19] OpenABM Consortium. OpenABM, 2016.

[20] L. Padgham and M. Winikoff. Prometheus: A
methodology for developing intelligent agents. In
F. Giunchiglia, J. Odell, and G. Weiß, editors,
International Workshop on Agent-Oriented Software
Engineering, Lecture Notes in Computer Science,
pages 174–185, Bologna, Italy, July 2002. Springer.

[21] H. V. D. Parunak, R. Savit, and R. L. Riolo.
Agent-based modeling vs. equation-based modeling: A
case study and users’ guide. In J. S. Sichman,
R. Conte, and N. Gilbert, editors, International
Workshop on Multi-Agent Systems and Agent-Based
Simulation, Lecture Notes in Computer Science, pages
10–25, Paris, France, July 1998. Springer.

[22] J. Pavón and J. Gómez-Sanz. Agent oriented software
engineering with INGENIAS. In V. Mař́ık,
M. Pěchouček, and J. Müller, editors, International
Central and Eastern European Conference on
Multi-Agent Systems, Lecture Notes in Computer
Science, pages 394–403, Prague, Czech Republic, June
2003. Springer.

[23] F. Santos, I. Nunes, and A. Bazzan. Model-driven
engineering in agent-based modeling and simulation: a
case study in the traffic signal control domain. In
S. Das, E. Durfee, K. Larson, and M. Winikoff, editors,
Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2017), São Paulo, May 2017. IFAAMAS. Forthcoming.

[24] D. Weyns, F. Michel, H. V. D. Parunak, O. Boissier,
M. Schumacher, A. Ricci, A. Brandao, C. Carrascosa,
O. Dikenelli, S. Galland, A. Pijoan, P. S. Kanmeugne,
J. A. Rodriguez-Aguilar, J. Saunier, V. Urovi, and
F. Zambonelli. Agent environments for multi-agent
systems–a research roadmap. In D. Weyns and
F. Michel, editors, Agent Environments for
Multi-Agent Systems IV, volume 9068 of Lecture Notes
in Computer Science, pages 3–21. Springer, 2015.

[25] U. Wilensky. NetLogo, 1999. Center for Connected
Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

1804

http://www.inf.ufrgs.br/prosoft/resources/dsl4abms/
http://www.inf.ufrgs.br/prosoft/resources/dsl4abms/
http://hdl.handle.net/10183/150944

	Introduction
	The ABStractme tool
	Evaluation
	Conclusions



