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Mammalian tissue development is an intricate, spatiotemporal process of self-
organization that emerges from gene regulatory networks of differentiating
stem cells. A major goal in stem cell biology is to gain a sufficient understanding
of gene regulatory networks and cell–cell interactions to enable the reliable and
robust engineering of morphogenesis. Here, we review advances in synthetic
biology, single cell genomics, and multiscale modeling, which, when synthe-
sized, provide a framework to achieve the ambitious goal of programming
morphogenesis in complex tissues and organoids.

Self-Organizing Multicellular Systems
The need for novel human-based cellular systems is vital due to shortages of donor organs,
ineffective drug development pipelines, and a scarcity of predictive individualized human
models. Animal models have thus far been the tools of choice to investigate developmental
processes. However, fundamental differences in the biology between humans and, for exam-
ple, mice [1], limit the translation of lessons learned from animal models to humans. The
discovery of a method to generate a complex tissue akin to the optic cup from pluripotent stem
cells in vitro [2], prompted a surge of studies involving organoids (see Glossary), gastruloids,
and other forms of complex self-organizing tissues [3–5]. Self-organizing systems (reviewed
in [3]) provide a new platform to understand developmental biology by emulating embryological
process ex vivo (also known as ‘building to understand’) [6,7].

Organoids, a prominent example of self-organizing cellular systems, have been grown in 3D from
human adult or pluripotent stem cells. Several examples of human organoids have been devel-
oped that can emulate structures and functions associated with human organs such as gut,
kidney, liver, lung, and brain [8]. Organoids display the exciting potential to model key aspects of
human development and disease processes, as well as advance efforts towards precision
medicine and human disease modeling. However, stem cell-derived organoids often lack subsets
of stromal cells, immune components, or a vascular system, and often fail to differentiate fully into
mature phenotypes [9]. Current in vitro morphogenesis models frequently lack spatiotemporal
control, robustness, and reproducibility that are exhibited in vivo by natural biological systems
such as developing organs [10]. For example, soluble factors added to culture media affect the
entire tissue with minimum spatial control. These limitations impede the development of organo-
ids and negatively impact their utility in biology and medicine. Hence, the rapidly evolving fields of
stem cell engineering and organoid technology face key challenges to systematically understand,
control, and direct local and global morphogenetic events towards desired fates.

The collective properties of multicellular systems including final cellular composition, tissue
identity, and patterning arise from individual cell behavior. Recent technological advances in
single cell analysis provide the chance to examine and link cell state to models of self-
organization, morphogenesis, and tissue-level behaviors. Additionally, using engineering
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approaches can offer unprecedented capacities to exert biological control, probe the underly-
ing design principles of multicellular systems, and generate miniature organs with phenotypes
closer to native tissues. An integrative approach that combines cellular engineering with high-
resolution tissue analyses and in silico models provide an opportunity to rationally program
morphogenesis and advance generation of human-based multicellular systems.

Genetically Guided Morphogenesis by Transcription Factors (TFs)
A substantial portion of macromolecular players in developmental processes in complex
animals are genomically encoded in the form of genetic regulatory codes [11]. These develop-
mental gene regulatory networks (GRNs) control system-wide spatial positioning of specific
cellular functions, progressive pattern formation, and emergence of organ forms and functions
[12]. The ability to map and to manipulate GRNs can be exploited to program and guide
morphogenesis in vitro in a predictable fashion. In fact, several past studies have used TFs to
generate a homogeneous cell population from stem cells or somatic cells [13–17]. More
recently, TF-based engineering has successfully been applied to generate complex human
tissues (Box 1). TF-triggered morphogenesis can elicit spontaneous production of signaling
cues that are required for tissue development and spontaneous morphogenesis. For instance,
engineering heterogeneous levels of GATA6 TF induced self-vascularizing fetal liver tissue from
human-induced pluripotent stem cells (Box 1) [18]. Additionally, cell fates triggered by TFs could
override the effect of medium [18,19]. Therefore, while traditional tissue engineering relies on
engineering extrinsic cellular microenvironment, engineering tissues through manipulating the
intrinsic genetic programs of cells can provide a new complementary approach for advanced
organogenesis in a dish.

Glossary
Aptamer: nucleic acid or peptide
molecule that binds a particular
molecular target with high affinity and
specificity.
Aptazyme: aptamer domain fused
to a ribozyme domain. Upon the
binding of the aptamer, catalytic
action of the ribozyme region is
activated.
Fluorescent in situ hybridization
(FISH): technique used for visualizing
specific sequences of nucleic acids
within cells based on complementary
base pairing of a florescent or
radioactively tagged DNA probe with
a target sequence.
Forward engineering: starting with
high-level model that establishes the
goals and functions of a system
before its physical design or
construction.
Gastruloid: stem cell-based model
that emulates spatiotemporal aspects
organization and differentiation of
gastrulation.
Gene regulatory network (GRN):
network of interacting genes that
collectively controls particular cellular
functions.
Genetic circuit: partly analogous to
electronic circuits, it is used in
synthetic biology to define an
integrated assembly of genetic parts
that produces a genetic function.
Morphogenesis: defined broadly
here as events that collectively
encode tissue pattern and shapes
that are controlled by cell fate
decisions, migration, cell–cell
interaction and physical cues.
Morphogenetic engineering: here
it refers to engineering
morphogenesis using genetic
techniques.
Organogenesis in a dish: in vitro
approaches directed towards
generation of complex tissues and
organ-like structures via emulating
aspects of developmental processes.
Organoid: self-organizing, 3D,
multicellular system grown from stem
cells in vitro that contains several
organ-specific cell types with
associated tissue structures and
functions.
Reverse engineering:
decomposition of a system into its
functional parts in order to guide
understanding of performance
objectives and functions of individual
components.

Box 1. TF-Triggered Complex Tissues

The most straightforward approach towards genetically guided morphogenesis is to activate key TFs that have been
identified as integral for the development of a given tissue. In fact, a few past biological studies have used this simple
form of genetic circuit for engineering complex tissues as outlined below.

Thyroid: endocrine cell types of the thyroid are generated from uniquely double positive NKX2.1+/PAX8+ cells during the
development of the gut tube. Antonica and colleagues directly expressed NKX2.1 and PAX8 using a doxycycline-
inducible switch for the target genes in mouse embryonic stem cells. After growing embryoid bodies for 4 days, the
cultures were induced with 3 days of doxycycline which yielded NKX2.1+/PAX8+ cells capable of developing 3D thyroid
follicle-like structures with the addition of thyroid-stimulating hormone into the medium [77].

Fetal liver: during embryogenesis, tissues are developed through codifferentiation of multiple progenitor cells via
reciprocal cell–cell interactions. Taking advantage of this design principle, human induced pluripotent stem cells
(hiPSCs) have been engineered with different copy number of an inducible GATA6-expressing circuit [18]. By transient
and heterogeneous induction of GATA6 in hiPSCs, formation of all three human germ layers, symmetry breaking and
codifferentiation of endoderm and mesoderm tissues are triggered. The cultures are kept in pluripotency medium for the
first 5 days and subsequently transferred to basal medium without addition of growth factors. After 14 days, cultures
form complex 3D self-vascularized fetal liver-like tissue with different subsets of stromal niches. During the course of
study, GATA6-engineered cells progressively self-organize into intricate patterns and self-produce signaling cues
necessary for tissue morphogenesis. This study proposes genetic heterogeneity and co-development can act as two
design principles for engineering multicellular self-organizing systems.

Thymus: Bredenkamp and colleagues used forced expression of Foxn1 in mouse embryonic fibroblasts to generate
Foxn1-induced thymic epithelial cells (iTECs) and tested their ability to support T cell development. Transplantation of
aggregates formed from iTECs mixed with PDGFR-ab+ mesenchymal cells and CD45+Lin� immature thymocytes into
nude Foxn1�/� mice generated functional thymus tissue capable of supporting generation of CD4+ and CD8+ T cells
[78].

Pancreas: Chen and colleagues demonstrated the potential for renewable sources of pancreatic b cells from conversion
of intestinal crypts by transiently expressing b cell enriched TFs Pdx1, MafA, and Ngn3. This approach resulted in rapid
conversion of intestinal organoids into a tissue with glucose responsive, insulin producing ‘neoislets’ [79].
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Self-organization: loosely defined
as spontaneous formation of ordered
structures via local interactions of
less organized parts with no
centralized ordering or external
template.
Synthetic biology: interdisciplinary
field of study for engineering biology
that entails (re)design and
construction of existing or novel
biological systems using well-
characterized standardized genetic
parts.
Systems biology: interdisciplinary
field of study that aims to develop an
integrated understanding of biological
systems using quantitative measures
of individual components, their
interaction dynamics and
computational modeling.

Genetically Guided Morphogenesis via Integration of Systems and Synthetic
Biology
Design principles of how collective morphogenetic behaviors arise from genetically encoded
GRNs of cells are inherently complex and incompletely understood. Advances in systems
biology such as spatiotemporal single cell analysis and computational modeling provide the
possibility to reverse engineer in vivo developmental processes to delineate the choice of TFs
or other candidate pathways to interrogate in vitro. Subsequently, in vitro morphogenetic
engineering can be carried out by overexpressing target genes or devising more sophisticated
designer gene circuits that are interfaced with the candidate cellular GRNs. For instance,
layered gene circuits and cascades can be exploited for stepwise controlled cellular differenti-
ation. Synthetic biology is an emerging field that offers a compendium of toolsets germane to
engineering of such genetic circuits. The designer gene circuits can provide spatiotemporal
control over cell differentiations, migration, and cell–cell communications, and eventually in vitro
organogenesis. Hence, they provide tools capable of steering in vitro morphogenetic pro-
cesses (refer to Box 2 for explanations). Here, we review advances in single cell genomics,
multiscale modeling, and mammalian synthetic biology. We believe the integration of these

Box 2. Morphogenetic Engineering 101

A simple TF-based switch is an open loop genetic circuit without any feedback control. This simplest form of genetic circuit, is either constitutively active or can be
inducible by a small molecule such as doxycycline. Engineering these simple circuits have already shown exciting biological potentials with generation of tissue
patterns, functions and developmentally-relevant states [18,77–79]. A single TF-induced cellular system made through overexpression of one TF may be thought as
minimal morphogenetic units that, if characterized properly, will advance our biological understanding of morphogenesis and can improve our synthetic potentials.
These units can be assembled in a plug-and-play format for generation of advanced tissues or organoids. For instance, TF-angiogenic or TF-innervating units can be
incorporated in current organoids to achieve additional tissue complexity. While open loop circuits are invaluable, in natural biological systems feedback loops and
sensors provide robustness and maintain dynamic function within a fuzzy cellular context. In this line, Del Vecchio and colleagues have argued that engineering such
feedback control mechanisms can augment cell fate programming (also known as synthetic genetic feedback controller) [80]. Additionally, when building a
multicellular system, engineering feedback loops can control size and improve cellular composition. Additionally, feedback-driven morphogenesis has been
suggested before [81] and enables development of artificial tissue homeostasis [82]. Synthetic biology can provide designer genetic circuits with features such
feedback regulations, temporal controls and cascades. Its contribution to morphogenesis of complex cellular systems can be two folds: First, it can help to decode
molecular algorithms of cells to understand how they cooperate to encode a collective cell behavior (e.g., by using gene circuits to record cellular memory or to rewire
existing GRNs). Second, it utilizes designer synthetic gene circuits to provide ability to spatiotemporally control and program multicellular systems. In both cases,
modern systems biology approaches such as single cell genomics and multiscale modeling can generate working models that can identify set of key GRNs or display
behavior of molecular networks. The model can guide the synthetic biology efforts while the synthetic biology toolbox alters the parameters and connections to
experiment and improve the model’s accuracy. Hence, the integration of both parts remains pivotal to understand and engineer multicellular self-organization and
morphogenetic functions (Figure I).
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Figure I. Integrating Systems and Synthetic Biology for Morphogenetic Engineering. Abbreviations: PSCs, pluripotent stem cells.
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areas can establish a synergistic pipeline for coherent design and engineering of human tissue
morphogenesis in vitro (Box 2).

Single-Cell Analysis: Blueprint for Decoding Genetic Regulatory Codes
Single-cell RNA sequencing (scRNA-seq) has garnered much interest in recent years. Unlike
bulk sequencing, which is prone to masking differences in cells due to averaging, single-cell
approaches can capture the inherent heterogeneity between cells [20]. Data generated from
these methods, when coupled with spatial and temporal information, can serve as a substrate
for a bottom-up understanding of self-organizing processes such as morphogenesis. In this
section, we describe several early examples of how single cell analytics can yield quantitative
information on cell state, cell type, and localization that will be required for understanding self-
organizing morphogenesis. The theoretical utility of the combination of data was explored by
Pettit and colleagues when they developed a clustering method capable of incorporating both
expression and spatial information to identify known and novel cell types. Inspired by image
segmentation techniques, their method, which relies on a hidden Markov random field model,
clustered cells in Platynereis dumerilii brain more in a spatially coherent, and seemingly more
biologically accurate manner as compared to traditional clustering algorithms that do not
consider spatial information [21].

A barrier to the broader application of techniques to integrate spatial and transcriptional data is
that readily accessible methods to isolate and extract RNA from thousands of single cells
requires tissue dissociation and subsequent loss of spatial information. Low-throughput
methods that involve manual isolation, such as laser capture microdissection, can maintain
some spatial information, but these methods do not generate data of sufficient scale for
systems biology studies [22–24]. Likewise, in situ hybridization and in situ sequencing methods
currently do not scale well either in terms of the number of cells, or the number of genes
assayed (Box 3). However, it is possible to computationally infer the localization of single cells by
integrating scRNA-seq with data from in situ methods (Figure 1).

One such approach is Seurat [25], which combines gene expression profiles in the form of
scRNA-seq data and in situ hybridization data from a small set of landmark genes to infer spatial
localization. In this method, the tissue of interest is spatially discretized into domains, or bins,
that hold a binary value for each landmark gene, representing if it is expressed in that domain or
not. Using this binary spatial map, statistical models are built for gene expression in each bin.
Finally, the landmark gene expression of each cell is compared to the statistical models, and
Seurat assigns a probability of the cell originating from each bin. Seurat successfully mapped
851 single cells in a developing zebrafish embryo using a discretized reference map of 47
genes. Additionally, Seurat has been used with unsupervised analysis of scRNA-seq data,
identifying rare subpopulations of cells, such as spatially characterizing prechordal plate
progenitors, endodermal progenitors, and primordial germ cells [25]. In a separate but analo-
gous approach, Achim and colleagues utilized fluorescence in situ hybridization (FISH)
expression atlases and scRNA-seq data to spatially characterize cells in the brain of the annelid
P. dumerilii [26].

Recently, Halpern and colleagues applied an equivalent approach in the mouse liver, com-
bining single-molecule FISH (smFISH) of just six highly expressed landmark genes, diverse in
expression along the lobule axis (‘zonation’), with parallel scRNA-seq. This resulted in the
spatial expression profiles, or zonation profiles, of all liver genes; 50% of which were found to
be significantly zonated, many of which peak at intermediate lobules [27]. Traditionally,
hepatocytes are classified into one of two roles: periportal or pericentral. This study provided
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evidence for a nonbinary spatial heterogeneity in the liver, revealing different roles for
hepatocytes located between the two extremes. A more accurate representation of the
division of labor will give rise to a more biological realistic metabolic network model. This
method has also demonstrated the feasibility of applying such inference techniques in
mammalian organs.

Paramount to understanding the underpinnings of self-organization will be to uncover cell–cell
interactions. Camp and colleagues turned to scRNA-seq and established receptor–ligand pairs
to determine the extent of cell crosstalk during liver bud development. In their screening
method, a potential cell–cell interaction network was created based on an expression cutoff
of receptor–ligand pairings between each cell–cell combination. Predictions from the screening
were validated by knocking down receptor–ligand pairs and determining the effect on differ-
entiation, as well as by utilizing chemical inhibitors to test for inhibition on liver bud development.
These experiments demonstrated the importance of endothelial cell and hepatic endoderm
crosstalk in differentiation and implicating a role for vascular endothelial growth factor (VEGF)
signaling in liver bud development. The cell–cell interactions predicted by this type of receptor–
ligand analysis represent one method of uncovering potential crosstalk between cells during
the self-organization process [28].

Box 3. In Situ Molecular Profiling

The development of FISH was a first step in deriving spatial information of RNA data [83]. Since then, advances in image
detection and the commercialization of fluorescent probes have paved the way for techniques such as smFISH, which
utilizes the hybridization of fluorescent probes to target single mRNA molecules. Variants of this approach have focused
on improvements to sensitivity and taken advantage of high throughput DNA synthesizers to create large numbers of
singly labeled probes to cut down on false positives and negatives from nonspecific binding [84], allowing for a cleaner
and more accurate signal.

Other smFISH variants have focused on methods to multiplex different mRNAs. Lubeck and colleagues developed
seqFISH, in which transcripts are fixed in cells and subjected to rounds of hybridization of the same probe sequences
with different fluorophores. Samples are imaged and probe stripped after each round, creating a sequential barcode of
fluorescent spots that is theoretically capable of identifying F^N unique mRNAs, where F is the number of available
fluorophores and N is the number of rounds of hybridization [85]. SeqFISH has since been used to localize cell types in
the hippocampus [86].

To achieve the resolution required to map RNA to specific cellular compartments, Chen and colleagues developed
expansion FISH (ExFISH). This method relies on expansion microscopy, in which RNA molecules are linked to an
expandable gel. The gel is expanded, and RNAs undergo traditional FISH, allowing for super-resolution imaging [87].

Recently developed sequencing-based approaches that capture spatial information have involved the use of in situ
sequencing without RNA extraction. Ke and colleagues demonstrated the feasibility of sequencing chemistry within
fixed cells and tissues with gap-targeted and barcode-targeted sequencing approaches that utilize padlock probing,
rolling-circle amplification (RCA), and sequencing-by-ligation chemistry to analyze up to four-base-pair fragments in
mRNA. Specificity was demonstrated through the gap-targeted approach by sequencing a different motif of b-actin
transcript in human and mouse fibroblasts that differ by a single nucleotide variation and finding that 208 of 215 reads
mapped to the correct cell type. Using the same approach, sensitivity was demonstrated by studying codon 12 of KRAS
in KRAS mutant A549 and wild-type ONCO-DG1 cell lines and finding that mutations of a single cell could be detected at
a 1: 1000 spike-in ratio. Additionally, the barcode-targeted approach was utilized for multiplexed in situ profiling of 39
transcripts in breast cancer tissue [88].

The in situ sequencing and hybridization techniques described above have since progressed from barcode and gap-
targeted approaches. Fluorescent in situ RNA sequencing (FISSEQ) begins with the reverse transcription of RNA in fixed
cells and the incorporation of aminoallyl dUTP. The amine-modified cDNA amplicons are fixed to the cellular protein
matrix and circularized before undergoing RCA and crosslinking in the presence of aminoallyl-dUTP. The resulting RCPs
are single-stranded DNA nanoballs consisting of tandem copies of the cDNA sequence that is then sequenced via
SOLiD sequencing by ligation. In human primary fibroblasts, FISSEQ was capable of demonstrating differential RNA
expression and localization using 30 base pair reads in a wound healing assay [89,90].
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In addition to yielding quantitative information on cell state, cell type, and localization, single cell
analytics can also be used to reconstruct or map developmental GRNs, which will be necessary
to model and perform dynamic simulations of cell state transitions, and to design synthetic
circuits for improved organoid engineering. Li and Luo and coworkers developed Sinova, a
bioinformatics pipeline utilizing scRNA-seq expression data that were able to spatiotemporally
reconstruct growth plate development, identifying and reconstructing previously unknown
molecular cascades. This included the prediction of previously unknown TFs, such as the
Kruppel-like factor (Klf) and Fos families, and the reconstruction of GRNs across different
developmental stages [29]. Buganim and colleagues utilized single-cell technologies to profile
48 genes at different time points during reprogramming. This work validated key gene–gene
relationships [including a role of Sox2 in activating octamer-binding TF (Oct)4 through preser-
vation of high levels of genes such as nuclear receptor subfamily 5 group A member 2 (Nr5a2)],
demonstrated that pluripotency activation is possible with a combination of factors distinct from
Oct4, Sox2, Nanog, Klf4, and c-Myc (such as Lin28, Sall4, Esrrb, and Dppa2), and thus
revealed novel reprogramming factors [30]. Camp and colleagues utilized scRNA-seq to
compare the cellular compositions of human cerebral organoids with fetal neocortex and
reconstruct the gene regulatory networks and cell lineage underlying the differentiation pro-
cess; ultimately finding that the organoid system represents a fairly accurate model of human
corticogenesis [31]. Similarly, Gouti and colleagues mapped the GRN underpinning in vivo and
in vitro neural–mesodermal differentiation and described how retinoic acid and Wnt signaling
interact with the GRNs to balance neural and mesodermal differentiation [32]. Many other
studies that map developmental GRNs have been reviewed by Kumar and colleagues [33]. As a
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collective, these studies demonstrate the promise and ability of utilizing single-cell profiling to
aide fate engineering.

To date, a spatially aware, cell type composition tool has yet to be developed, and utilizing
spatial and composition information to improve cell fate engineering remains a goal in the field.
Such approaches will be limited by data collection methods. In the landmark gene expression
maps discussed above, for example, biologists are limited to systems in which a subset of
genes can generate a highly resolved map. Ultimately, however, spatial, temporal, and
regulatory information gleaned from these single cell analyses will not only elucidate specific
developmental design elements, but will also be incorporated into multiscale models and
simulations that will unravel suitable design paths for in vitro engineering of organogenesis.

Multiscale Modeling
Multiscale computational approaches provide a method of faithfully describing self-organiza-
tion. Because cell–cell and cell–environment interactions are critical determinants of cell fate
decisions and because the these interactions are highly heterogeneous in nature, multiscale
approaches that model systems from the molecular and cellular level are particularly apt. These
models evolve through time based on a set of biophysically inspired rules, ultimately capturing
interactions between cells and their environment that generate emergent phenomena. For
example, Uzkudun and colleagues have used multiscale models and simulations to map GRNs
that explain proximodistal patterning of the limb bud [34]. In general, there are many diverse
approaches to performing multiscale modeling; below we discuss agent-based modeling and
its application to complex cell population phenomena.

Agent-based models discretize the system being modeled into autonomous entities, each of
which act according to a set of rules at each discrete time step throughout a simulation [35]. In
such a framework, each agent is fully characterized by a set of inputs, outputs, possible states,
and variables stored in its memory. Additionally, an agent must have a set of transition functions
that bring the agent from one state to the next; a set of functions that map an input and memory
variable to an output and updated memory variable; as well as an initial state and initial memory.
At each time step, each agent receives an input signal, and depending on its current memory, it
may change states, releasing an output and updating its memory. In a biological setting, this
could be paralleled to a cell that receives a chemical or spatial cue and transitions phenotypes
based on a set of biological rules producing some form of output. Of course, an agent in biology
is not limited to the cell, and for a complex system, a single model often includes many distinct
types of agents.

Because this family of models is easily adaptable to biological systems, several groups have
implemented them in various settings. Agent-based models have been used to simulate the
initiation frequency and location of sprouting angiogenesis [36], leukocyte trafficking in the
microvasculature [37], and Nanog and Rex1 heterogeneity in mouse embryonic stem cell
(mESC) cultures [38] among others.

In particular, to simulate sprouting initiation, Walpole and co-workers spatially divided each cell
into eight membrane nodes and a single centroid node, which were connected by a series of
links. Adjacent cells were connected by intercellular links. Implementing rules for VEGF and
delta-like protein (DLL)4 signaling, the model was able to accurately predict tip cell location and
sprouting frequency [36]. To simulate differences between fluctuations in Nanog and Rex1
expression levels in mESC cultures due to noise and due to deterministic oscillations, Herberg
and colleagues built a model of self-renewal, considering cell signaling between individual cells

Trends in Biotechnology, April 2018, Vol. 36, No. 4 421



which stored information on TF dynamics. Combining this method with experimentally
observed results showed that the bistability of Nanog levels is due to deterministic regulation
sustained by fibroblast growth factor 4/extracellular signal-regulated kinase (Fgf4/Erk) signal-
ing, and changes between the two stable states are helped by random noise [38].

Cell-based models, exemplified by cellular automata (CA) and cellular Potts (PC) models, can
be considered as a subcategory of agent-based models in which there is only a single agent
type (Box 4). Cell-based models have proven useful to explore complexity in several develop-
mental contexts. For example, Krupinski and colleagues built a cell-based model to describe
early morphogenesis of the mammalian embryo. In their model, blastomeres are elastic
spheres that interact mechanically with each other, with each blastomere containing a specific
genetic network that defines its mechanical properties. Cell division is modeled as a discrete
event that conserves total cell volume during that time step. Cells divide either randomly, with
content split symmetrically, or along the direction of a polarized vector, with content split
asymmetrically. Their multiscale model was subsequently described by equations pertaining to
mechanical motion and to genetic network dynamics [39]. In another application of cell-based
models, Leung and colleagues developed an agent-based CP model simulating the develop-
ment of the genital tubercle. Their model restricted the cells to a 2D lattice with dynamics
governed by signaling networks encompassing sonic hedgehog, FGF10, and androgen [40].

The history of agent-based (and cell-based) models can be traced back to the 1940s when von
Neumann, Ulam, and Conway first introduced CA. Regardless of terminology, all of these
multiscale models represent powerful yet underutilized approaches capable of simulating self-
organizing processes. The goal of simulation will be to gain insight on the effect of manipulation
on system parameters, not only to help elucidate the complexities of self-organization, but also
to generate more information that can be used in further experimental and computational
studies.

In the context of self-organization, agent-based modeling is appealing for several reasons. First,
it is a discrete model, which, unlike a continuous approach, is able to account for the
heterogeneity in a system. Because the system is composed of autonomous agents, individual
agents can serve different functions, follow distinct sets of rules, and have different properties,

Box 4. Cell-Based Models

As agent-based models, cell-based models discretize the system to be modeled into individual cells or subcellular components. These models come in two types –

on-lattice and off-lattice. In the first, cells or cellular components are constrained to the coordinates of a grid. In the second, any cell or cellular component’s position is
represented by any real number.

Two popular on-lattice or lattice-based models are CA and CP models (Figure I). In CA, cells are assigned to a single site on the lattice and each site holds at most one
cell. In CP models, each cell spans several sites on the grid. The simplicity of CA allows for fast simulation of large numbers of cells, whereas the CP model offers a
more realistic representation of cell shape. The lattice structure of these models offer ease in determining which cells are neighboring, which are just any pairs in
adjacent lattice sites. However, the lattice results in a low degree of spatial flexibility, and processes requiring cell movement or cell division require shifting the rest of
the tissue [91]. Unlike agent-based models, in which multiple types of agents can interact with each other and the environment directly, cells in on-lattice cell-based
models are thus typically static and homogeneous, while the environment moves through them.

Off-lattice models can offer more flexibility in cell shape and location, and thus these models are often used in mechanical studies of cell populations. Vertex models
are one specific category of off-lattice cell-based approaches for characterizing aspects of self-organization in the context of cell mechanics. These models represent
the shape of the tissue of interest by a set of vertices that are typically defined as the points of contact between three or more cells. In defining vertices in such a way,
cellular interfaces and volumes can be determined based on the location of the vertices. Models can be 2D or 3D, and either apical or lateral. The motion of each of the
vertices is determined by equations describing internal and external forces acting on the vertex. Vertex models are easily adapted to biological systems influenced by
cellular mechanics. As such, they have been used to study a variety of processes in developmental biology, most notably epithelial morphogenesis [92–94]. Recently,
a modified vertex model was used to study the formation of respiratory appendages in Drosophila oogenesis [94].
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implying that individual agents have unique responses to system inputs. As an example, this
type of model can account for spatial considerations, in which a cell located closer to a cue will
respond differently, and not just to a different degree, than a cell located further away. Second,
the agent-based model is an interaction-based model in that interactions between agents and
the environment drive the simulation at each time step. This allows for the consideration of
lower-level detail, giving a more biologically faithful representation of the system as long as the
set of rules and parameters does not become cumbersome. Finally, multiple agent-based
programming languages exist that can be adapted to model biological systems including
NetLogo [41] and AgentSpeak [42].

Synthetic Biology for Morphogenetic Engineering
Understanding how individual signaling elements assemble into a morphogenetic complex
behavior in time and space remains as a challenge in decoding tissue development. A synthetic
biology approach provides a build to understand methodology to answer such questions. It
additionally provides a toolbox to guide tissue self-organization towards final desired states. In
fact, pattern formation in nonmammalian systems has been engineered using synthetic
biology-based strategies [43].

A simple genetic circuit in synthetic biology is composed of sensors, processors, and actua-
tors. Sensors recognize cellular or environmental cues (inputs). Processors determine the type
of response. Actuators produce a defined response (output). These elements can shape

The benefits of implementing a vertex model include the ability to describe the shape of a tissue based on changes in cell shape and rearrangements. However, as
with any discrete approach, a vertex model could become cumbersome with a large number of parameters. In this case, continuous approaches may offer an easier
solution, despite generalizing the characteristics and behavior of the tissue and losing details of mechanics at the cellular level.

(Vertex model)

(General off- la�ce model)

(Cellular po�s model)

(Cellular automa ta)

Spa�al or 
chem ical cue

Δt Δt…Δt 

Figure I. Examples of How Cell-Based Modeling Can Be Used to Represent Self-Organizing Processes. Phenotypic changes, as well as mechanical
changes, can be modeled by taking discrete steps through time. At each step, changes in spatial or chemical cues drive changes in the system based on a set of pre-
defined rules.
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genetic circuits that can be interfaced with cellular states or microenvironmental contexts and
initiate cell fate programming, cellular communications, and program collective tissue behav-
iors such as morphogenesis. Ultimately, the goal is to define a set of rules and morphogenetic
modules in a plug-and-play format to create defined morphogenetic behaviors. A limited set of
such modules was described before including ones for cell proliferation or death, adhesion,
migration and sorting [44].

An ability to couple molecular inputs relevant to a cell state or an environmental context (state
sensor) to a user-defined output is vital for spatiotemporal control in multicellular systems.
Several sensors have been developed to identify biological (e.g., a protein) or nonbiological (e.
g., light) signals [45–48]. For example, through promoter engineering and signal amplification
using a positive feedback loop, an integrative framework for selective and robust sensing of TFs
were achieved [49]. These synthetic promoters can act as a valuable tool to spatially limit the
function of genetic circuits in cell type of interest. miRNA levels can differentiate between a wide
range of cell types and have been used as classifiers for cell types of interest [50]. By
incorporating miRNA target sites in a transcript of interest, a library of miRNA-responsive
sensors (Figure 2A) has been constructed [51]. For instance, tissue-specific miRNA sensor-
encoding Bim apoptotic proteins were engineered to enrich for cell type of interest such as
cardiomyocytes after stem cell differentiation [52]. To achieve programmable integration of
multiple inputs, Xie and coworkers [53] generated a classifier gene circuit that integrates
information from six endogenous miRNA profiles to differentiate two cell lines with ON:OFF
ratios of 8–10-fold. In fact, during mammalian development cell death plays a key role in
sculpting the organs and select for fittest cell population [54]. Therefore, miRNA-based cell
death circuits can be used to guide in vitro tissue formation or reduce aberrant cell fates within
developing organoids.

Artificial RNA switches such as RNA aptamers and aptazymes, are another class of genetic
sensors that binds molecules of interest and control gene expression in mammalian cells
[48,55]. To this end, Wnt- and nuclear factor (NF)-kB-responsive RNA aptamers were pro-
duced which could link activation of underlying pathways to target gene induction. However,
engineering aptamers with high affinity to a molecule of interest is not always feasible, which
hampers the modularity of this approach. Other seminal studies have developed sensors that
can interface an external environmental cue to the transcriptional program of a cell. A modular
extracellular sensor architecture (MESA) is a customizable example that acts via ligand-induced
receptor dimerization, a protease action, and release of a cognate transcriptional modulator
[45]. Combinatorial usage of MESAs can provide a platform for multiparametric environmental
sensing [56].

Engineering cellular computation and signal processing enables development of synthetic gene
circuits that integrate and convey multiple inputs towards desired cellular outputs. Often,
Boolean logic gates have been used to illustrate multi-input–multi-output network topologies
in cells [57,58]. Saxena and co-workers developed TF-based gene switches and cascades with
differential sensitivity to vanillic acid as an input signal. They could recreate temporal dynamics
of the major TFs pancreatic and duodenal homeobox (Pdx)1, neurgenin (Ngn)3, and MafA for
pancreatic lineage differentiation. Such stepwise genetic activation in progenitor cells could
produce glucose-sensitive insulin-secreting b-like cells [59]. Similar stepwise transcription-
factor-triggered cascades can be exploited to encode co-development of cells and structures
in a complex tissue. Through composing genetic circuits, complex network topology can also
be achieved and may include auto feedback regulatory loops, genetic cascades, bistable
expression networks, time-delay circuits, as well as oscillators (Box 2) [60].
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Figure 2. Synthetic Biology Tools for Programming Cells and Tissue. (A) Complex layered miR classification circuits incorporating GOI can be engineered via
cell-specific, high and/or low miR sensors. The circuit requires high levels of miR-A and low levels of miR-B and C for transcription of the GOI. (B) dCas9 system can be
used to implement multiplexed activation and repression of GOIs by various effector proteins, including transcriptional activators (VP64) and repressors (KRAB), DNA
demethylases (TET1), and chromatin remodelers (p300), either tethered directly to the Cas9 protein, or fused to an RNA-binding domain such as MCP, Com, or PCP. M,
modular effector domain [66]. (C) Bacchus and colleagues engineered sender/receiver and processor cells [71]. The genetic circuit interactions shown were
successfully utilized to generate a two-way communication system that controls the permeability of an endothelial cell layer by VEGF and Ang1 expression. (D)
Morsut and colleagues developed the synNotch system [73], which incorporates modified Notch signaling pathway components into cells to create multilayered self-
organizing ring patterns. Sender cell displays GFP on plasma membrane that interacts with anti-GFP synNotch on receiver cell. SynNotch releases tTA and expresses
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The advent of precision genome targeting tools provides us with additional set of transcriptional
modulators that enable orthogonal gene activation and repression [61,62]. These systems
include zinc finger proteins, transcription-activator-like effectors (TALEs), and the clustered,
regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system [62]. Deactivated
Cas9 (dCas9) that cannot cleave DNA but retains DNA binding function has been engineered
with potent transcriptional modulator domains and chromatin remodelers to achieve effective
epigenetic and transcriptional programming tool [62] (Figure 2B). Layered dCas9 synthetic
circuits can be built to generate a functional cascade [63]. Additionally, guide RNA (gRNA)
engineering using different types of aptamers provided an orthogonal platform for recruitment
of different proteins such as activator or repressor domains at defined genomic loci [64–66]
(Figure 2B). By extending gRNAs to include modified riboswitches that recognize specific
signals in Wnt, NF-kB, and oncogenic p53, CRISPR-Cas9-based signal conductors have been
generated [67]. This circuit enables transcriptional regulation of endogenous genes in response
to inflammatory (NF-kB) or developmental (b-catenin) and oncogenic cues. Programmability of
Cas9 and multiplexing of several orthogonal gRNAs offer possibility for combinatorial activation
and repression of different GRN targets.

Cell–cell communication and migration are key steps to encode ordered patterns during
morphogenesis. Engineering tunable cell–cell communication with short or long range function
can program collective cell behavior and induce coordinated functions in mammalian systems.
Recent studies have created both soluble and insoluble synthetic intercellular communications
and developed strategies to control mammalian cell motility [68,69]. Engineering G protein-
coupled receptor resulted in directing mammalian cell motility to a bio-inert drug-like small
molecule, clozapine-N-oxide (CNO) [70]. A synthetic multicellular two-way communication
system was developed using l-tryptophan and acetaldehyde as communicating soluble signals
(Figure 2C) [71]. The sender–processor–receiver format can be used to emulate several soluble
signaling interactions of interest and enables tissue level computation. Cachat and colleagues
used the differential adhesive strengths between homotypic and heterotypic E-cadherin and P-
cadherin interactions to drive cell sorting when expressed in mammalian cells [72]. Through
cadherin-mediated phase separation they could promote mammalian cells to generate intricate
2- and 3D patterns de novo. In an another study, Notch signaling was exploited as a platform to
link recognition of an arbitrary extrinsic cellular input to intrinsic transcriptional outputs in an
orthogonal manner [73]. Morsut and colleagues designed this platform by replacing extracel-
lular sensor module and intracellular transcriptional module of Notch signaling with diverse
ligand binding or TF domains (Figure 2D). This synthetic Notch system (synNotch) was used to
generate cellular patterns around GFP expressing sender cells. SynNotch is a novel toolset to
engineer user-defined tissue level computing, however it lacks amplification signals typically
observed in intracellular signaling events. This means one ligand molecule (input) can presum-
ably activate one intracellular signaling molecule (output). Additionally, other modes of cell–cell
communication such as exosomes can be engineered to establish exchange of protein or RNA
cargos between sender and receiver cells [74].The diverse exosomal inputs signals (e.g.,
miRNAs) opens myriad of possibilities for transcriptional regulation of morphogenesis or
broadcasting cellular fitness or tissue composition during in vitro tissue development.

both CD19 and red fluorescent reporter proteins. CD19 triggers anti-CD19 synNotch receptor on the adjacent cell and induces BFP. B, C, and D adapted from [66],
[71], and [73], respectively. Abbreviations: ADH, alcohol dehydrogenase; AlcR, acetaldehyde-dependent transactivator; Ang1, angiopoietin 1; BFP, blue fluorescent
protein; Com, phage Com protein; com, Com RNA binding locus; EC, engineered DNA circuit; GFP, green fluorescent protein; GOI, gene of interest; Inh, EC2 inhibiting
gene; M, modular effector domain; MCP, MS2 coat protein; miR, miRNA; PAIR,acetaldehyde-responsive promoter; PCP, PP7 coat protein; PhCMV, human
cytomegalovirus immediate early promoter; PSV40, simian virus 40 promoter; PTRT, L-tryptophan-inducible promoter; TrpB, Escherichia coli tryptophan synthase
b-subunit; TRT, L-tryptophan-dependent transactivator; tTA, tetracycline-controlled transactivator; VEGF, vascular endothelial growth factor.
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Concluding Remarks and Future Perspectives: Reading and Writing of
Human Tissue Complexity
Organoids and other self-organizing tissues have shown promise to replicate fundamental
facets of human tissue development. At least for therapeutic human translation or disease
modeling it is critical to engineer human tissues that can closely mimic their natural counter-
parts. With this biological design objective in mind, different strategies have been proposed to
advance our current approaches relevant to ‘organogenesis in a dish’ [75]. Organ-on-a-chip
engineering approaches have focused on probing cell and tissue microenvironments using
microfluidic devices and tissue scaffolds with smart biomaterials and controlled mechanical
properties [76]. The approach relies on presentation of defined physiochemical and mechanical
cues from outside the cells. Hence, it necessitates knowledge and tools to recapitulate
composition and spatiotemporal dynamics of developmental cues presented to the cells, at
a given time in morphogenesis.

Synthetic biology-based tissue engineering focuses on engineering cells from inside via genetic
circuits with defined functions. It provides a forward engineering approach to generating
tissues and organs via genetically programing cell behavior and subsequently tissue morpho-
genesis. However, with a large space of parameters, finding a best set of candidate genes and
pathways for forward engineering might become a challenge (see Outstanding Questions). Yet,
the developmental program of mammalian tissues already offer an unmatched library of GRNs
that evolved through many years of evolution. If reverse engineered properly, the information
can aid synthetic biology for rational engineering of morphogenesis. Additionally, via assembly
or rewiring of genetic networks in one or multiple cell populations, a synthetic biology practice
can help in multiscale decoding of organizational principles central for the final integrated
cellular behaviors (i.e., self-organization and morphogenesis). By integration of systems and
synthetic biology one can envision new generation of programmable tissues and designer
organoids that can closely recapitulate human development, shed light to our own engineering
design principles, or deliver user-defined organ functions. Combined with other engineering
approaches such as organ-on-a-chip engineering they can shape the future of modern tissue
engineering.
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