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New Insights and Perspectives in Chaotic,
Fractional, and Complex Dynamics

Mark Edelman, Elbert E.N. Macau and Miguel A.F. Sanjuán

1 Introduction

Chaotic dynamics is mainly focused on the analysis of the behavior of dynamical
systems that are extremely sensitive to initial conditions. Nowadays it constitutes a
very fruitful interdisciplinary field of research, where beyond the apparent random-
ness of chaotic dynamical systems, many structures and patterns can be observed and
analyzed through the numerous methods and techniques developed in the past few
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years. Fractional dynamics also constitutes an interdisciplinary field of study aiming
at investigating the behavior of dynamical systems that are described by differenti-
ation of fractional orders, using methods of the fractional calculus. Fractional-order
systems are dynamical systems that can be described by fractional differential equa-
tions containing derivatives of non-integer order. They are used to model non-local
systems and systems with power-law memory in sciences and engineering. Com-
plex systems appear in many areas of natural sciences, social sciences, engineering,
and mathematical sciences. They are often composed of large numbers of intercon-
nected and interacting units, whose behavior is typically difficult to predict due to the
relationships and interactions between their components. As a consequence of these
relationships and interactions, these systems possess some properties, such as non-
linearity, emergence, spontaneous order, adaptation, and feedback loops. There are
many examples of applications including transportation, communication and social
networks, ecological and biochemical systems, engineering systems, computational,
mechanical and electrical, social and economic systems, besides many basic exam-
ples from basic sciences. Chaotic, fractional, and complex dynamics are also deeply
connected and, as a whole, they constitute a rich and fruitful field of research in
physics, mathematics, biology, engineering and social sciences.

The current book provides a collection of chapterswith contributions from leading
scientists working in nonlinear dynamics, chaotic dynamics, and complex systems,
including fractional dynamics and networks as well. The main goal is to provide an
overview of cutting-edge research in different topics, including both fundamental
and applied research in this flourishing area of science.

The purpose of this chapter is to review the contributions of the authors to this
book. Among the different chapters we can find contributions of different kinds.
Some contributions are more fundamental and other are more related to applica-
tions. Admitting that a classification always has its risks, we have considered that
we can classify all the chapters in three main groups: nonlinear, chaotic dynamics
and applications; fractional dynamics and applications; and complex dynamics and
applications. The first group of chapters is of amore basic nature and focuses onmore
fundamental aspects of nonlinear dynamics, such as predictability of dynamical sys-
tems by observing their basins of attraction [1], different ideas related to the common
problem of synchronization [2, 3] that affects many disciplines, time-delay effects
on periodic motions of nonlinear oscillators [4], generation of mix-mode oscillations
in an ecological model [5], and the analysis of bifurcations and stability of dynami-
cal systems [6]. Another group is focused on various aspects of fractional dynamics
[7–9], of basic or applied nature, as well. And a final group is more oriented towards
applications in the field of acoustics [10] and nonequilibrium dynamics [11], includ-
ing oscillations in neuron networks [12] and power grids modeled using complex
networks [13].

Needless to say, with this selection of chapters all we can do is give an overview
showing the current progress, and how active and rich the research field is. Further-
more, we believe that the book can provide new ideas and inspiration for further
original results in these active fields of scientific endeavour.
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2 Nonlinear, Chaotic Dynamics and Applications

One fundamental concept in science and dynamical systems in particular, is the
prediction of the final state of a dynamical model. In [1] Daza et al. describe the
concept of basin entropy as a measure of the final state unpredictability and they
apply it to the chaotic scattering of cold atoms. The concept of basin of attraction
plays an important role in nonlinear dynamics. It represents the set of initial conditions
leading to an attractor or, in general, to a final state. Actually, we can have basins of
attraction when there are attractors and escape basins when there are no attractors,
as in the case of open Hamiltonian systems. Furthermore, in multistable systems
where there are several attractors, the boundaries separating different basins may
be of a fractal or a smooth nature. The predictability of a given dynamical system
strongly depends on the structure of these basins. The authors introduce the concept
of basin entropy to quantify the final state unpredictability associated with the basins.
Several paradigmatic examples of nonlinear dynamics, such as theDuffingOscillator,
the Hénon-Heiles Hamiltonian and the map that computes the complex roots of the
unity using the Newtonmethod have been used to explain it. Besides the fundamental
and basic nature of the problem, the authors apply these ideas to experiments with
cold atoms, where they use the basin entropy to detect directly from experimental
measurements the appearance of fractal structures in phase space.

Synchronization continues to be a topic of interest in nonlinear dynamics, and pre-
cisely in [2] the authors study synchronous flashing in fireflies as one of the observed
natural phenomena displaying synchronization of a large ensemble. Definitely, the
fireflies constitute an example of synchronous collective behavior and nowadays it is
considered as a paradigmatic example of synchronization. They explain biological
aspects related to fireflies flashing and their functionality. By using a model based
on electronic fireflies, they illustrate the response to synchronization observed in
some firefly species. Other interesting aspects are explored as the consequences of
the firefly courtship as a whole process, including the males synchronization and
the corresponding females response. They also point other interesting aspects, such
as models inspired by fireflies for communication networks, and the use of firefly
synchronization concept in mobile networks and other devices. Finally, they explore
the actual applications inspired in fireflies synchronicity and also the perspectives
both in biomedical issues and in technological systems including robotics.

The synchronization behavior of discrete and continuous cyclic systems is dis-
cussed in [3], where the authors show the emergence of the mixed synchronization
states. In these states both the synchronized and the anti-synchronized behaviors
can coexist. The mixed synchronized states are shown to depend only on the initial
conditions and the basin of attraction is numerically estimated.

Time-delay effects on periodic motions in a time-delayed, hardening Duffing
oscillator are analyzed by Luo and Xing in [4]. One of the results that they show is
bifurcation trees of periodic motions to chaos varying with time-delay. Furthermore,
they simulate numerically the time-delayed oscillator and show that the time-delay
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effects on period-1 motions to chaos in nonlinear dynamical systems are strongly
related to the distributions and quantity levels of harmonic amplitudes.

In [5] Freire et al. discuss the recently detected chaos-mediated mixed-mode
oscillations as a kind of complex oscillations supported by a prey-predator model
including dormancy, a strategy to avoid extinction. They show that as the carrying
capacity grows, surprisingly wide phases of nonchaos-mediated mixed-mode oscil-
lations appear before the onset of chaos in the system. Furthermore, they show that
nonchaos-mediated cascades display spike-adding sequences while chaos-mediated
cascades show spike-doubling. In addition, they find a host of exotic periodic phases
embedded in a region of control parameters dominated by chaotic oscillations of
the prey-predator populations. They describe these complicated phases and show
how they are interconnected and how their complexity unfolds as control parameters
change. The new nonchaos-mediated phases are stable and large even at low values
of the carrying capacity.

The problem of the bifurcations and stability regions of nonlinear dynamical sys-
tems is analyzed in the chapter by Alberto et al. [6]. Stability regions of nonlinear
dynamical systems may suffer drastic changes as a consequence of parameter varia-
tion. These changes are triggered by local or global bifurcations of the vector field.
In particular, they analyze these changes for two types of local bifurcations on the
stability boundary: saddle-node bifurcations and Hopf bifurcations on the stability
boundary. They also characterize the local and the global characterizations of the sta-
bility boundary at the bifurcation points and the changes of the stability boundaries
and stability regions at these bifurcations.

3 Fractional Dynamics and Applications

Among the group of contributions devoted to fractional dynamics, the chapter by
Edelman [7] analyzes the universality in systems with power-law memory and frac-
tional dynamics. The main goal of the chapter is to introduce the new features of
universality, including cascades of bifurcations on single trajectories, which appear
in fractional nonlinear dynamical systems. Regular nonlinear dynamical systems can
be extended by introducing power-law memory or considering fractional differential
equations in the case of continuous systems or difference equations in the case of
discrete systems, instead of integer ones. This extension allows the introduction of
families of nonlinear dynamical systems converging to regular systems in the case of
an integer power-law memory or an integer order of derivatives or differences. The
author considers, by using various examples, the phenomenon of transition to chaos
through a period-doubling cascade extending it to fractional maps, which are maps
with power-law memory.

After this interesting and fundamental chapter on fractional dynamics, Tarasova
and Tarasov [8] describe an application of the fractional calculus to factor analysis of
dynamical systems in economy. They suggest some basic concepts and methods for
a better understanding of the effects of memory and nonlocality in the deterministic
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factor analysis. Thesemethods give a quantitative description of the influence of indi-
vidual factors on the change of the effective economic indicator. They also suggest
two methods of fractional integro-differentiation of non-integer order for the deter-
ministic factor analysis of economic processes, where apparently they can give more
exact results than the standard methods of factor analysis based on differentiation
and integration of integer orders.

Finally, in [9] Lopes et al. provide an interesting chapter on the application of frac-
tional calculus, to a fractional-ordermodel ofwine. They use the electrical impedance
spectroscopy to characterize several types ofwine and they compare the experimental
results with those of chemical analysis. The electrical impedance of wine is mea-
sured and modeled by means of fractional transfer functions. They compare the
model with standard chemical analysis, showing strong correlation between the two
distinct descriptions. In order to analyze and visualize the relationships embedded
in the data, they adopt hierarchical clustering. As an interesting result, they demon-
strate that fractional models describe wine adequately with a reduced number of
parameters.

4 Complex Dynamics and Applications

A final block of chapters is more related to applications. Among them, we have the
chapter by Ostrovsky and Stepanyants [10], where the authors analyze the complex
dynamics of microparticles and gaseous bubbles in an acoustic field caused by the
period-averaged radiation force. They also discuss some recent results concerning
the effects of particles concentration and mixing in plane and cylindrical resonators,
and furthermore they compare the theory with the available experimental data. Their
results could be also applied to other scientific fields, in particular they briefly outline
among others, some modern biomedical applications.

In the chapter by Santos and Torres-Herrera [11], the authors review some results
for the nonequilibrium quantum dynamics of isolated many-body quantum sys-
tems described by one-dimensional spin-1/2 models. The evolution of these sys-
tems depends on the initial state and the strength of perturbation that takes them out
of equilibrium; on the Hamiltonian, whether it is integrable or chaotic; and at the
onset of multifractal eigenstates that takes place in the vicinity of the transition to a
many-body localized phase. Furthermore, they unveil different behaviors at different
time scales, and also discuss how information about the spectrum of a many-body
quantum system can be extracted by the sole analysis of its time evolution. This
approach is useful for experiments that routinely study dynamics, but have limited
or no direct access to spectroscopy, such as experiments with cold atoms, trapped
ions, and nuclear magnetic resonance.

The multi-jittering instability in oscillatory systems with pulse coupling and other
recent results are reviewed by Klinshov et al. [12], where they also discuss its main
features and applications. The multi-jitter instability may provoke a destabilization
of the regular spiking regimes of oscillatory systems with pulse coupling. At the
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bifurcation point numerous so-called jittering regimes with distinct interspike inter-
vals emerge simultaneously. Such regimes were first discovered in a single oscillator
with delayed pulse feedback and later were found in networks of coupled oscillators.

Finally, in [13] Grzybowski et al. study the stability and robustness of the power
grids as complex networks. Power grids are well-known in engineering and are
composed of many interconnected subsystems. A recent line of research in complex
systems has considered these systems as complex networks. Several attempts have
beenmade to approach the key problem of the stability and robustness of power grids,
in spite of decades of intensive research on power grids to uncover these problems.
The authors review a number of recent results on the topic of robustness and stability
in power grids, that have been developed within the framework of the theory of
complex networks, especially those where a second-order Kuramoto model has been
used.

5 Conclusions

In this section we summarize the topics that have been covered in this book. On
the one hand a group of chapters deals more directly with fundamental problems
in nonlinear, chaotic dynamics and applications: the new tool of basin entropy for
the predictability of dynamical systems associated with their basins; synchroniza-
tion phenomena, including the fireflies as a paradigm and the emergence of mixed
synchronization states; time-delay effects on periodicmotions in a time-delayed non-
linear oscillator; the recently detected chaos-mediated mixed-mode oscillations as
a kind of complex oscillations supported by a prey-predator model including dor-
mancy and the analysis of bifurcations and stability regions of nonlinear dynamical
systems.

The second group of chapters dealswith fractional dynamics and applications. The
universality in systems with power-law memory and fractional dynamics; an appli-
cation of the fractional calculus to factor analysis of dynamic systems in economy;
and an application of fractional calculus to a fractional-order model of wine.

Finally, a third group is devoted to complex dynamics and applications. The
dynamics of microparticles in an acoustic field; the nonequilibrium quantum dynam-
ics of isolated many-body quantum systems; the multi-jittering instability in oscilla-
tory systems with pulse coupling; and the stability and robustness of the power-grids
as complex networks.

All this offers us a rich perspective of the current state of the research fields dealt
with in this book. We also hope that this will contribute to a new vision and stimulus
to attack future scientific problems. They can be analyzed and investigated under the
research techniques and tools that are shared by the fields of chaotic, fractional, and
complex dynamics providing new insights and perspectives.
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Basin Entropy, a Measure of Final State
Unpredictability and Its Application
to the Chaotic Scattering of Cold Atoms

Alvar Daza, Alexandre Wagemakers, Bertrand Georgeot,
David Guéry-Odelin and Miguel A.F. Sanjuán

1 Introduction to Basin Entropy

Dynamical systems describe quantities evolving in time according to deterministic
rules, and towards some asymptotic behavior depending on the initial conditions and
on the specific choice of parameters. Basins of attraction link a given set of initial
conditions to its corresponding final states. This notion appears in a broad range of
applications where several outcomes are possible, which is a common situation in
neuroscience, economy, astronomy, ecology and many other disciplines. Depending
on the nature of the basins, prediction can be difficult even in systems that evolve
under deterministic rules. From this respect, a proper classification of this unpre-
dictability is clearly required. To address this issue, we introduce the basin entropy,
a measure to quantify this uncertainty.
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1.1 Final State Unpredictability in Dynamical Systems

Imagine a rainy day. A droplet falls in the ground and runs until it eventually reaches
a river. Another droplet falls nearby, but in its run towards the lowest point, it ends
in a different mass of water, a lake for example. If we were to determine the fate
of each falling droplet, we should study the regions leading to each mass of water,
that is, we should study their different basins. This picture explains perfectly the
origin of the term basin in nonlinear dynamics: a basin is the set of initial conditions
leading to a particular region of phase space [1]. Dynamical systems specify the
evolution of some magnitudes in time according to deterministic rules, in a similar
way as the profile of the ground determines the path of streams ofwater. In dissipative
systems, the final destination is typically an attractor, in open Hamiltonian systems,
the particular region of phase space usually refers to an exit.

If a given dynamical systemhas only one attractor or exit, then the fate of any initial
condition is clearly determined. However, dynamical systems often present several
possible final outcomes and, in these cases of multistability, elucidating which orbits
tend to which attractor becomes a fundamental question. For instance, if a system
has two attractors, then two basins exist separated by a basin boundary. This basin
boundary can be a smooth curve or can be instead a fractal curve. The study of these
basins can provide much information about the system since their topology is deeply
related to the dynamical nature of the system. For example, systems with chaotic
dynamics usually display basins of attraction with fractal structures [2].

In order to give an intuitive picture of our problem we may look at Fig. 1a and b.
The figures show the escape basins of theHénon-HeilesHamiltonian for two different
values of the energy E above the critical energy that separates boundedmotions from
unbounded motions. Most initial conditions leave the region through one of the three
different exits to infinity for any E above this critical energy. The colors represent
points that taken as initial conditions leave the region through a specific exit. With
this in mind, we may intuitively understand that it is harder to predict in advance
which will be the final destination of an orbit in Fig. 1a than in Fig. 1b.

The problem is that even though, we can have an intuitive notion that Fig. 1a is
more uncertain than Fig. 1b, there is no quantitativemeasure to affirm this.Moreover,
this is not easy to assess when we compare two figures of basins corresponding to
close values of the energy.

This is precisely the idea of uncertainty or unpredictability whichwe are consider-
ing here. This remark is important since we are aware that these terms are polysemic
and consequently its use in the literature might be confusing. Here we refer to unpre-
dictability or uncertainty as the difficulty in the determination of the final state of
a system, that is, to which attractor the initial conditions will tend to. Note that
we speak about attractors for simplicity, though the discussion is identical for open
Hamiltonian systems, where there are no attractors. This notion of unpredictability
strongly differs from others used in nonlinear dynamics, like the Kolmogorov-Sinai
entropy [3, 4], the topological entropy [5], or the expansion entropy [6], which refer
to the difficulty of predicting the evolution of the trajectories. All these quantities
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Fig. 1 Comparison between basins. Escape basins for the Hénon-Heiles system but different
energies. They represent which exit will take each initial condition. It is clear that determining the
final destination of the trajectories in the case (a) is harder than in the case (b)

Fig. 2 Uncertainty in the basin boundaries. Given some uncertainty in the initial conditions ε, the
final state of a dynamical system depends on the structure of its basins. In the left panel, two basins
separated by a smooth boundary. In the right panel, two basins separated by fractal boundaries. The
black-dashed boxes are for uncertain initial conditions (boxes intersecting the basin boundary)

are related to the topology of the trajectories, whereas our aim here is to develop an
entropy depending on the topology of the basins.

A first approach to study the final state uncertainty in dynamical systems was
investigated by Grebogi et al. [7]. Given two attractors, they studied how the pre-
dictability of the system depends on the fractal or smooth nature of the basin bound-
aries. Let us describe their methodology by looking at Fig. 2. In the picture, we can
see two different basins (red and green) leading to two different final destinations.
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Now consider that the initial conditions have some error or that they suffer a small
perturbation of size ε, a situation which is always unavoidable in practice. Therefore,
instead of considering initial conditions as points, we rather consider them as boxes
of linear size ε. If we study the evolution of many of these boxes of initial conditions,
we can find out the ratio f of boxes whose future is uncertain, in the sense that not
all the initial conditions within the box will end in the same attractor. These boxes
are represented by a black dashed line in Fig. 2, and we would have f = 3/10 for
the left panel and f = 5/10 for the right one. Coming back to our analogy, we are
counting howmany droplets fall in the boundary between basins in this rain of initial
conditions. If we vary the size of the boxes ε, we can find that for smooth bound-
aries the ratio of uncertain initial conditions f grows linearly with ε. However, for
fractal boundaries, the ratio of uncertain initial conditions is f ∼ εα , where α is the
dimension of the phase space D minus the capacity dimension d of the boundary
that separates both basins

α = D − d. (1)

This quantity α is called the uncertainty exponent, and we have α = 1 for smooth
boundaries whilst α < 1 for basins with fractal boundaries. The closer α gets to zero
the more difficult it becomes to predict the system as we zoom in. In cases where
smooth and fractal basins are mixed, the uncertainty exponent can still be calculated
for each boundary. However, the procedure in these cases is cumbersome [8].

A different approach to measure the unpredictability by means of its basins con-
sists of evaluating the volume of each basin in a certain region of phase space. The
ratio of the volume occupied by a single basin to the total volume defines the basin
stability [9]. It aims at classifying the different basins according to their relative
sizes: larger basins are considered more stable (in our picture, the larger the basin the
more droplets will fall into it). Although the basin stability may shed some light into
problems related to networks of coupled oscillators, it does not take into account the
morphology of the basins, but only their volume. For different sets of parameters, two
basins can show smooth or fractal boundaries while the volume of each basin remains
constant. The basin stability would be the same in both cases but obviously fractal
boundaries have a more complex structure and thus, the final state predictability is
not the same.

Figure3 reveals the limitations of both basin stability and the uncertainty expo-
nent α. The four basins have the same basin stability (the proportion of red and green
is the same in the four pictures) although they are clearly different. The uncertainty
exponent also fails to capture the uncertainty associated to these basins: it cannot
distinguish among different smooth boundaries or among different riddled bound-
aries [10–12]. However, the basin entropy [13] takes increasing values for each basin,
matching our intuition. In the following we introduce the mathematical definition of
the basin entropy and a method for its computation.
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Fig. 3 Comparison of basins and the methods to characterize them. The figure shows different
basins obtained from well-known dynamical systems with two attractors. In the two upper panels,
the uncertainty exponent is α = 1 since both boundaries are smooth, while for the two lower panels
α = 0 since both of them are riddled basins. The basin stability is equal to 1/2 for the four basins.
However, the basin entropy is able to distinguish the four cases and provides a method to measure
quantitatively the unpredictability in increasing order from (a) to (d)

1.2 Definition and Computation of the Basin Entropy

Suppose we have a dynamical system with NA possible final outcomes for a choice
of parameters in a certain region Ω of the phase space. We can discretize Ω via a
finite number of boxes covering it, or sample Ω randomly using a sufficient number
of boxes. Here we study two-dimensional phase spaces, so that we cover Ω with
boxes of linear size ε. Now we build an application relating each initial condition to
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its final destination, so that we will refer to that application as the color. Each box
contains in principle infinitely many trajectories, each one leading to a color labeled
from 1 to NA. In practice we can use only a finite number of trajectories per box.
We will discuss this point later in relation with an experimental setup used in the
scattering of cold atoms.

Although ε is our limiting resolution, the information provided by the trajectories
inside a box can be used to make hypotheses on the uncertainty associated to the
box. We consider the colors into the box distributed at random according to some
proportions. We can associate a probability to each color j inside a box i as pi, j
which will be evaluated by computing statistics over the trajectories inside the box.

Taking into account that the trajectories inside a box are independent in a statistical
sense, the Gibbs entropy of every box i is given by

Si = −
mi∑

j=1

pi, j log
(
pi, j

)
, (2)

where mi ∈ [1, NA] is the number of colors inside the box i , and the probability pi, j
of each color j is determined simply by the number of trajectories leading to that
color divided by the total number of trajectories in the box. Finally, using a sufficient
number of boxes N we can define the basin entropy as the mean value of the entropy
for those boxes:

Sb =
N∑

i=1

Si
N

. (3)

An interpretation of this quantity is associated to the degree of uncertainty of the
basin, ranging from 0 (a sole attractor) to log NA (completely randomized basins with
NA equiprobable attractors). This latter upper value is in practice seldom realized
even for extremely chaotic systems. It is important to remark that the basin entropy
depends on the scaling box size ε, i.e., the basin entropy is an extensive property.
Therefore, to make quantitative comparisons of different basins we must fix ε.

The procedure for the calculation of the basin entropy is quite similar to the
procedure used for the determination of the uncertainty exponent. However, there
are important differences. The first one is that whenwe compute the basin entropywe
use the information contained in the boxes. We do not just label the boxes as certain
or uncertain like for the uncertainty exponent, but we study the probabilities of the
different outcomes through the proportions of different colors inside each box. The
second important difference is that, as we will show later, we do not need different
scales ε to compare the uncertainty of different basins. Even more, we can detect
fractal structures using only one scale. This is fundamental to study the final state
unpredictability in experimental systems with finite resolution, like the beam splitter
for cold atoms described later.
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1.3 What Does the Basin Entropy Measure?

At this point,we can delve deeper into the consequences of this definition by consider-
ing a simple hypothesis, which is to assume that the colors inside a box are equiprob-
able, thus pi, j = 1/mi ,∀ j . If we add the entropy of all the trajectories in a box, then
we recover the Boltzmann expression for the entropy Si = log(mi ), wheremi are the
different colors inside a box (the accessible microstates of the Boltzmann entropy).
Then the equiprobable total entropy becomes S = ∑N

i=1 Si = ∑N
i=1 log(mi ). Fur-

thermore, if we have a grid on a given region of phase space, many boxes will have
an equal number of colors. That is, many boxes will be in the interior or lie near
the boundary between two or more basins. Then we can say that there are Nk equal
boxes (in the sense that they have the same number of colors), where k ∈ [1, kmax ]
is the label for the different boundaries. Boxes lying outside the basin boundaries
do not contribute to the entropy as they only have one color. In other words, what
matters is what happens at the basin boundaries. Then, the basin entropy reads

Sb =
kmax∑

k=1

Nk

N
log(mk). (4)

By following the method of the box-counting dimension Dk [14], by which we
compute fractal dimensions of basin boundaries, the number of boxes that contains
a boundary grows like Nk = nkε−Dk where nk is a positive constant. In the case of
smooth boundaries, the equation Dk = D − 1 holds, D being the dimension of the
phase space. For fractal boundaries Dk can be larger, but obviously we always have
Dk ≤ D. On the other hand, the number of boxes in the whole region of phase space,
grows as N = ñε−D, where ñ is a positive constant. Substituting these expressions
for Nk and N in Eq.4, and recalling that αk = D − Dk is the uncertainty exponent
[7] for each boundary, we get

Sb =
kmax∑

k=1

nk
ñ

εαk log(mk). (5)

This last expression reveals important information. The basin entropy has three com-
ponents: the term nk/ñ is a normalization constant that accounts for the boundary
size which is independent of ε; the term of the uncertainty exponent αk , is related
with the fractality of the boundaries and contains the variation of the basin entropy
with the box size; finally there is a term that depends on the number of different
colors mk . All these terms depend on the dynamics of the system, while the scaling
box size ε depends only on the geometry of the grid.

Equation5 sheds light into some interesting questions. First, we can compare
smooth boundaries (αk = 1) and fractal boundaries (αk < 1). For both of them,
smooth and fractal basins, we get Sb → 0 when ε → 0, but it converges faster in the
smooth case. That is, it is more difficult for the basin entropy to decrease its value in
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a system with fractal boundaries. Despite other important factors, fractal boundaries
introduce a larger uncertainty than the smooth ones. Furthermore, if αk = 0 then
Sb > 0 no matter the scaling box size (this might happen in riddled basins [10–12]).

These ideas can be successfully applied for Wada basins. Basins exhibiting the
Wada property have only one boundary that separates all the basins [15, 16]. We can
argue that increasing the number of colors in the boundary boxes increases the basin
entropy and therefore its uncertainty. In particular, having all possible colors in every
boundary box is a unique situation found only in Wada basins. Nevertheless, Eq.5
also reveals that some non-Wada basins can show larger basin entropy than others
exhibiting the Wada property. This can be the case when a system has the Wada
property but there is one basin which occupies most of the phase space. Other factors
like the number of attractors and the boundary size also play a role in the uncertainty
according to the basin entropy formulation. Therefore the Wada property increases
the uncertainty under the basin entropy perspective, but each case must be carefully
studied.

1.4 Numerical Examples to Help Understand the Basin
Entropy

Herewe illustrate themain features of basin entropywith several examples of dynam-
ical systems, showing how its dependence on the boundary size nk/ñ, the uncertainty
exponent αk and the number of attractors NA.

The term nk/ñ corresponds to an estimate of the size of the boundary, since
it normalizes the number of boxes containing the boundaries divided by the total
number of boxes covering Ω:

Nk

N
= nk

ñ
εαk . (6)

To study the contribution of this term, we consider the damped Duffing oscillator
given by

ẍ + δ ẋ − x + x3 = 0. (7)

This equation describes themotion of a unitmass particle in a doublewell potential
with dissipation. This system presents two attractive fixed points in (±1, 0) of the
(x, ẋ) phase space, which correspond to the minima of the double well potential
function. The higher the damping coefficient δ the faster the orbits tend to the fixed
points and, as a consequence, the basin of attraction appears more deformed for
smaller values of δ (Fig. 4a–c). The damped Duffing oscillator is bistable, NA = 2,
and has a smooth boundary with uncertainty exponent α = 1.

Observing the basins of attraction corresponding to the three different values of δ,
it is noticeable that the basin of Fig. 4c has a much simpler structure than the basin in
Fig. 4a. The outcome of an initial condition within an ε-box would be more difficult
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Fig. 4 Basin entropy dependence on the boundary size. a–c Basins of attraction of the damped
Duffing oscillator (Eq.7) for different values of the damping coefficient δ. As the damping increases
the boundary occupies a smaller region of the phase space. Although the boundary is always smooth
(α = 1), the uncertainty in basin (a) is larger than in basin (c) no matter the scaling box size ε. d A
log-log plot of the basin entropy versus the scaling box size for values of the damping coefficient
δ = 0.1 (triangles), δ = 0.2 (circles) and δ = 0.3 (crosses). The three fits have the same slope α = 1
within statistical error. However, the basin entropy is different for each value of the parameter δ,
reflecting the different uncertainty associated to each basin

to predict in the second case. Nevertheless, both basins have the same uncertainty
exponent α = 1 since in both cases the boundary is smooth. The differences in the
values of the basin entropy originates from the differences in the region of discretized
phase space occupied by the boundary, that is, the boundary size, which is reflected
by the term n/ñ (indices have been dropped since now there is only one boundary).
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In order to highlight this effect, we have computed the basin entropy Sb versus the
scaling box size1 ε for three different values of the damping coefficient δ. The results
are shown in the log-log plot of Fig. 4d, where each fit corresponds to a different
value of δ. In order to interpret these results, we can take logarithms on both sides
of Eq.5 yielding to

log(Sb) = α log(ε) + log
(
log(NA)

n

ñ

)
. (8)

Since in this case, we have α = 1 and NA = 2 for all our simulations, it is clear
that the variation of the basin entropy with δ is entirely due to the term n/ñ. Most
importantly, we have obtained values of the slopeα = 1within the statistical error for
all the fits. Therefore, although all these basins have the same uncertainty exponent,
they have a different basin entropy for a given value of ε. The basin entropy is sensitive
to their different structure and is able to quantify their associated unpredictability.

The fractal dimension of the boundaries also plays a crucial role in the formulation
of the basin entropy. This is reflected in the uncertainty exponent αk [7] of Eq.5. In
order to highlight the effects of the variations in the uncertainty exponent, we have
chosen a model that can display the Wada property [17]. This means that there is
only one fractal boundary separating all the basins. The model is the Hénon-Heiles
Hamiltonian [18],

H = 1

2
(ẋ2 + ẏ2) + 1

2
(x2 + y2) + x2y − 1

3
y3, (9)

which describes the motion of a particle in an axisymmetrical potential well that for
energy values above a critical one, the trajectories may escape from the bounded
region inside the well and go on to infinity through three different exits. For this
Hamiltonian system, we define escape basins in a similar way to the basins of attrac-
tion in dissipative systems, i.e., an escape basin is the set of initial conditions that lead
to a certain exit. If we vary the energy from E = 0.2 to E = 0.22, the fractal dimen-
sion of the boundaries is modified with E , though the Wada property is preserved
[19] (see Fig. 5a–c). The proportion of red, blue and green remains as a constant
for these three basins, leading to constant values of the basin stability. However, the
basin entropy accounts for their different structures.

As we compute the basin entropy for different scaling box sizes, we observe that
the main effect of varying the parameter E is a change of the slope in the log-log plot
of Fig. 5d. Equation8 relates these changes in the slope to the uncertainty exponent
α of the boundary. Smaller energies lead to smaller uncertainty exponents, since
the boundaries have a more complex structure and consequently the slopes in the
log-log plot also decrease. Obviously the offset also varies for the different values
of the energy. This is related to changes in the boundary size n/ñ which in this case
cannot be completely separated from the changes in α. This example shows that the

1In this work we have normalized the region of the phase space, so that the values of the scaling
box size ε in the plots are the inverse of the number of pixels used as a grid.
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Fig. 5 Basin entropy dependence on the uncertainty exponent. a–c Escape basins of the Hénon-
Heiles Hamiltonian (Eq.9) for different values of the energy E . Inside the circles the proportion of
red, blue and green boxes is always equal to 1/3. However, as E increases the boundary becomes
less uncertain, so that we can intuitively see that basin (a) is more unpredictable than basin (c). This
intuition is confirmed quantitatively by the computation of the basin entropy in the log-log plot of
panel (d). The most remarkable effect observed in the fits is that the slopes change because of the
different dimensions of the boundaries, as expected. This effect cannot be isolated since the offsets
also vary. Finally, for coarse-grained basins the basin entropy is almost equivalent

scaling of the basin entropy with box size directly reflects the fractal dimension of
the basin boundaries. For small box sizes this effect dominates and the largest fractal
dimensions of the basins gives the largest basin entropies, even though the offsets
are different (see Fig. 5).

The last factor that contributes to the basin entropy, according to Eq.5, is the num-
ber of attractors NA. In general, as the number of attractors increases, the uncertainty
increases too, and so does the basin entropy. Furthermore, it is impossible to isolate
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the effect of the number of attractors from the contribution of the boundary size,
since they are not independent: if a new attractor emerges while tuning a parameter,
a new boundary is also created. We illustrate these effects using a simple map where
the number of attractors can be tuned. This map comes from the Newton method to
find the complex roots of unity zr = 1 [20], and can be written as

zn+1 = zn − zr − 1

r zr−1
. (10)

FromEq.8we can predict that increasing the number of attractors increases the offset
in the log-log plot of the basin entropy versus the box size. This can be observed in
Fig. 6, where an increasing number of attractors leads to an increasing value of the
basin entropy for all the ε considered.

1.5 Basin Entropy Parameter Set

One of the most interesting applications of the basin entropy is to use it as a quanti-
tative measure to compare different basins of attraction. We propose an analogy with
the concept of chaotic parameter set [21], which is a plot that visually illustrates in a
parameter plane when a dynamical system is chaotic or periodic by simply plotting
the Lyapunov exponents for different pairs of parameters. Here, first we choose a
given scaling box size ε, and then we evaluate the basin entropy associated to the
corresponding basins of attraction for different parameter settings. We call the plot
of the basin entropy in a two-dimensional parameter space basin entropy parameter
set. To illustrate the possibilities of this technique, we study the periodically driven
Duffing oscillator

ẍ + δ ẋ − x + x3 = F sinωt, (11)

whose dynamics can be very different depending on the parameters. We vary the
forcing amplitude F and the frequency ω of the driving, and for each basin we
compute its corresponding basin entropy. We have used a resolution of 200 × 200
boxes (ε = 0.005) with 25 trajectories per box (a million trajectories per basin)
to compute the basins of attraction and the same region of the phase space Ω =
[−2.5, 2.5] × [−2.5, 2.5] for all the pairs (F, ω).

The result is presented in Fig. 7a, which is a color-code representation of the basin
entropy in the parameter plane (F, ω) for different values of the forcing amplitude
and frequency. The hot colors indicate higher values of the basin entropy, while
the white pixels are for zero basin entropy. The set of parameters with zero basin
entropy indicates that the basin of attraction has only one attractor. Although there is
no uncertainty about the final attractor of any initial condition, trajectories may still
be very complicated if the attractor is chaotic. This is actually the case for Fig. 7b,
where there is only one chaotic attractor.
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Fig. 6 Basin entropy dependence on the number of attractors. a–c The basins of attraction
indicate the initial conditions that lead to the complex roots of unity using the Newton method
described by zn+1 = zn − zr−1

r zr−1 . Here we plot the cases r = 4, 5, 6. The log-log plot of panel (d)
shows that the basin entropy increases when the number of attractors increases, leading to larger
values in the intercepts of the fits as predicted. Nevertheless, the effect of the increasing number
of attractors is impossible to separate from the other contributions to the basin entropy, since the
boundaries change with the number of attractors

The hottest point of the basin entropy parameter set corresponds to the basin of
attraction shown in Fig. 7c with eight different attractors whose basins are highly
mixed. The reason for having this high value of the basin entropy lies at a combi-
nation of a high number of attractors and the uncertainty exponent associated to the
boundaries that makes basins of attraction more unpredictable. In Fig. 7d, we can see
a basin of attraction with extremely mixed basins, but it has only three attractors so
its basin entropy is lower than for Fig. 7c. The converse situation arises in Fig. 7e,
where there are sixteen different attractors but the boundaries are not very intricate.
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(a)
(c)

(d)

(b)

(e)

Fig. 7 Basin entropy parameter set. a Basin entropy parameter set for the periodically driven
Duffing oscillator (Eq.11). It is a color-code map of the basin entropy for different values (F, ω)

of the forcing amplitude and frequency, where we have fixed the scaling box size ε = 0.005 and
the damping coefficient δ = 0.15. We have used a color code where the hot colors represent larger
values of the basin entropy. b Example of a basin of attraction with zero basin entropy because there
is only one attractor, actually a chaotic attractor (whose Poincaré section is plotted in black), for the
parameters F = 0.2575 and ω = 1.075. c Basins of attraction corresponding to the highest value of
the basin entropy in this parameter plane, for F = 0.2495 and ω = 1.2687. d Basins of attraction
with three attractors and a very low uncertainty exponent corresponding to F = 0.2455 and ω =
1.1758. e Basins of attraction with sixteen different attractors for the parameters F = 0.3384 and
ω = 0.2929

2 Application of Basin Entropy to Experiments with Cold
Atoms

In this section, we show how the basin entropy can be used to characterize the chaotic
dynamics of the system and to demonstrate the presence of fractal structures in phase
space. All the results presented here are numerical experiments, but we also describe
how to perform such experiments in real settings.

2.1 Cold Atoms and the Crossed Beam Configuration

In the past few years, beam splitters for guided propagating matter waves were thor-
oughly investigated in the thermal regime [22–26]. More recently, the Bose-Einstein
condensate regime was explored using optical waveguides [27, 28]. Despite the
quantum nature of these systems, some results could be understood using classi-
cal mechanics. For instance, a classical approximation was employed to unveil the
chaotic dynamics underlying the experimental results in Ref. [28]. Positive Lyapunov
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Fig. 8 The crossed beam configuration. On the left, two classical trajectories of the Hamiltonian
defined by Eq.12 with parameters α1 = α2 = β1 = β2 = 1, θ = 45◦. The dashed circle represents
the scattering region

√
x2 + y2 < 3σ , with σ =

√
2
βi
. On the right, an experimental absorption

image of the crossed beam configuration in the splitter regime (α2/α1 ≈ 1). Hot colors indicate
atoms escaping through the four different exits

exponents, a hallmark of chaos, were also estimated from experiments with ultra-
cold atoms [27]. Here we exploit the concept of basin entropy to characterize this
kind of systems and, more importantly, we explain how to use basin entropy in real
experiments with cold atoms.

For concreteness, we focus in the configuration experimentally investigated in
Refs. [25–28]. In these experiments, atoms are moving into two crossed waveguides
(see Fig. 8). For the sake of simplicity, we shall use a two-dimensional model that
captures the main features of the experimental system [28, 29]. Using some general
assumptions [30], the motion of the particles in the Gaussian potential of the laser
beams can be described by the following Hamiltonian,

H = 1

2

(
ẋ2 + ẏ2

) − α1e
−β1 y2 − α2e

−β2(x sin θ+y cos θ)2 . (12)

The features of each laser beam are condensed into two characteristic parameters:
α, related to the depth of the potential and β, related to the laser waist. Along this
work, we will use αi = βi = 1.

Figure8a shows two examples of a classical trajectory of this Hamiltonian. In
Fig. 8b we can see an absorption image where a cloud of atoms is scattered, and we
canmeasure the population of atoms in each branch. The coupling of the longitudinal
and the transverse degrees of freedom that occurs at the crossing region is responsible
for the complexdynamics. Surprisingly, as shown in [28], the classical description can
account for the experimental results. The physical reasons are twofold: (1) the typical
scale of variation of the potential is large compared to the de Broglie wavelength
associated with the incoming velocity, and (2) interference effects were marginal
because of the relatively short time that the wave packet spends in the scattering
region, and the 3D dynamics limiting the overlap of the packet with itself. In the
following, we shall investigate the fractal properties of this system using a tiling
of the classical phase space. The results presented here remain pertinent for the
experiments once the phase space cells considered for the statistical analysis are
significantly larger than �.
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If we fix the shooting distance x0, and consider vx0 and θ as parameters we can
analyze the dynamics in terms of (y0, vy0). The set of initial conditions (y0, vy0) that
yields an escape through a given exit is referred to as an escape basin [17]. Given the
Gaussian profile of the potentials, we define unbounded trajectories as those going

further than 3σi of each laser beam i = 1, 2, with σi =
√

2
βi
. An example of such a

scattering region is delimited in Fig. 8a by dashed lines. Graphical representations of
escape basins are provided in Fig. 9b–d, where each color represents an exit accord-
ing to the color code of Fig. 9a. White pixels are for trajectories associated to atom
losses (because of the finite depth of the potential) and also forwhat we call sticky tra-
jectories, i.e., that spend more than 2 × 106 time steps without escaping. These two
kinds of trajectories will not be considered for the calculations of the basin entropy
due to their negligible influence. Their corresponding basin is however interwoven
with the other basins but it is only important for extremely low values of vy0 and
large initial transverse positions y0. In the following, we will restrict our study to the
parameter ranges vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5].

(b)

(d)(c)

(a)

Fig. 9 Escape basins for the crossed beam configuration. The parameters for these basins are
θ = 45◦, x0 = −50, α1 = α2 = β1 = β2 = 1 in Eq.12. a Color code for the escape basins. b–d
Escape basin for a shooting speeds vx0 = 0.2, 0.5, 0.8 respectively. Basins are less fractalized (they
have smaller basin entropy) as the shooting speed vx0 increases



Basin Entropy, a Measure of Final State Unpredictability … 25

The presence of fractal structures is noticeable for low speed basins (see Fig. 9b),
but harder to appreciate in the case of high speed, e.g., Fig. 9d. Quantifying the
different degrees of fractality can be done with the help of the basin entropy.

2.2 How to Compute Basin Entropy from Experimental Cold
Atom Data

The scattering experiments with cold atoms and the procedure to calculate the basin
entropy share significant similarities. In both cases we consider ensembles of trajec-
tories instead of individual trajectories. In the experiments we have clouds of atoms
with different values of position and velocity, and for the basin entropy calculation
wemust compute many trajectories with different initial conditions inside every box.
Scattering experiments essentially study the output of the trajectories in order to gain
knowledge about the system, just as the basin entropy does. We propose to use as the
equivalent of boxes in the basin entropy scheme, wave packets of atoms which are
fired towards the scattering region. Indeed, these wave packets correspond to a group
of atoms distributed around a mean value of the velocity and the position following
a Gaussian distribution. The experimental measurement through absorption pictures
(see Fig. 8b) provides access to the population of different branches, and thus to the
probabilities inside every box.

As described in Ref. [30], we must pay attention to some technical details con-
cerning the basin entropy computation in scattering problems. Nonetheless, in the
experiments we have described these issues can be easily tackled. First, the distrib-
utions of the clouds of atoms must be in a stationary regime before arriving to the
scattering region. This can be achieved varying the launching distance x0 appropri-
ately. Second, the basin entropy is a statistical measure, so that we need a sufficient
number of initial conditions per box to get accurate values for the probabilities of
the different colors. But the number of trajectories in each box is directly related to
the number of atoms in a wave packet, which in real experiments is in the thousands
providing excellent statistics. In fact, it could be further increased by repeating the
experiment for a wave packet with same initial mean values.

Remarkably, theMonteCarlo sampling of phase space can be done experimentally
by selecting different sets of initial conditions with different mean velocity vy0 and
mean position y0. In practice, small clouds of atoms will be successively delivered
from a trap that accommodates a reservoir of atoms such as a Bose-Einstein conden-
sate placed upstream. The transverse position for outcoupling the atoms can be tuned
by modifying with optical means the reservoir trap geometry, while the mean trans-
verse velocity can be transferred to the packet of atoms by applying a well-calibrated
transverse magnetic gradient pulse. The successive repetition of such outcoupling
procedures until the reservoir is empty permits to reduce drastically the number of
experimental runs.We have checked numerically that for a realistic number of exper-
imental runs (N ∼ 50) the relative error in the basin entropy computation is below
10% [30].
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Another important point is the size of the boxes used in the basin entropy com-
putation, that is, the minimal resolution that can be reached in this experimental
procedure. This corresponds to the size of the wave packet relative to the size of the
range of phase space that we want to explore. Using experimental settings available
at present time, a linear resolution of several tens can be obtained up to a maximum
of one hundred [30]. This means that the experimental escape basins would have a
resolution between 10 × 10 and 100 × 100 in practice.

In short, to compute the basin entropy Sb in the crossed beam configuration,
one should perform a sufficient number of experiments. Each of these experiments
consists in sending a wave packet with some mean transversal velocity and position.
The experiments must be carried out for sufficiently long launching distances to
assure the stationarity of the distributions. Then, the population escaping through
each channel should be measured by absorption images. Each experimental run
provides a value of the basin entropy in a box Si . With an appropriate sampling of
the region of phase space considered, the total basin entropy can be computed by
averaging the basin entropy associated to each run.

2.3 Detecting Fractal Structures in Experiments with Cold
Atoms

In this section, we investigate transient chaos and fractal structures appearing for low
values of the horizontal velocity vx0 . A low speed implies that particles spend more
time in the scattering region, i.e., the crossing region of the two beams. Therefore, the
exponential divergence of trajectories induced by the intricate shape of the potential
at the crossing makes the system difficult to predict. The basin entropy captures
this strong unpredictability due to the highly fractalized phase space. We have used
a numerical Monte Carlo procedure to sample the basin entropy Sb for different
shooting speeds vx0 (see Fig. 10a). We can see that the basin entropy is lower for
higher speeds, providing us a quantitative basis to our intuition: it is easier to predict
the final destination of particles with high speed vx0 . Indeed, the basin entropy seems
to approach zero for very high launching speeds, where almost all the particles escape
through the same exit.

In order to study the fractal nature of the basin boundaries, it is convenient to
introduce the idea of boundary basin entropy, which can be defined as

Sbb =
∑Nb

i=1 Si
Nb

, (13)

where Nb < N is the number of boxes containing more than one color, that is, the
number of boxes falling in the boundaries.

Using the boundary basin entropy Sbb we can derive a useful criterion to detect
fractal boundaries in experiments. For the demonstration of this criterion we will
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(a) (b)

Fig. 10 Basin entropy computation using different values of the launching speed. The volume
of the phase space investigated is vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5], x0 ∈ [−760,−750]. For each
mean value of

〈
vx0

〉
we consider that vx0 ∈ [〈vx0

〉 − 〈
vx0

〉
/10,

〈
vx0

〉 + 〈
vx0

〉
/10]. The basin entropy

Sb is computed using 100 boxes (experimental runs) for each represented point, and this procedure
is repeated three times so that we get the error bars displayed in the figures. a As we increase the
horizontal speed vx0 the basin entropy decreases. b The boundary basin entropy Sbb is above the
log 2 threshold (dashed line) for low speeds vx0 , and is below for high speeds

proceed by denying the premise, so that first we assume that our basins are separated
by smooth basins. In this case, we have α = 1, which means that the number of
boxes lying in the boundary that separates two basins (boxes with two colors) grows
as N2 = n2ε−(D−1), where D is the dimension of the phase space. For D = 2, the
boundary between two basins is a smooth line, for D = 3, the boundary separating
two basins is a smooth surfaces and so forth.

However, if we have more than two basins, there might be some boxes Nk lying
in the boundaries of k > 2 different basins. These boxes are in the intersection of
at least two subspaces of dimension D − 1, that is, they are the intersection of two
smooth boundaries. For instance, when D = 2, two or more smooth curves intersect
in a point or collection of points, and when D = 3, two or more smooth surfaces
intersect forming smooth curves. Thus, the dimension of the subspace separating
more than two basins must be D − 2, and the boxes Nk belonging to this subspace
must grow as Nk = nkε−(D−2).

Taking into account that the total number of boxes needed to cover the phase
space grows as N = ñε−D , we can express N2 in terms of N as

N2 = n2

(
N

ñ

) D−1
D

, (14)

and for the boundary boxes separating more than two basins Nk , we have
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Nk = nk

(
N

ñ

) D−2
D

. (15)

At this point, we recall that the maximum possible value of the entropy in a box
Si withmi different colors is Si = logmi , which is the Boltzmann expression for the
entropy of mi equiprobable microstates. Then, we can find that all the boxes in the
boundary of two basins have Si ≤ log 2, while for boxes in the boundary of k basins,
k > 2, we have that Si ≤ log k. Notice that the equality of the previous equations is
only possible in pathological cases where all the boxes in the boundaries have equal
proportions of the different colors.

Then, the boundary basin entropy Sbb for our hypothetical system with smooth
boundaries is

Sbb ≤ N2 log 2 + Nk log k

N2 + Nk
. (16)

After substituting N2 and Nk using Eqs. 14 and 15 we get the following expression

Sbb ≤ n2N log 2 + nkñ log k

n2N + nkñ
, (17)

where ñ, n2, nk are constants. Finally, we can take the limit of the previous inequality
for a large number of boxes, that is when N → ∞, leading to

lim
N→∞ Sbb ≤ log 2. (18)

Therefore, we have proven that if the boundaries have uncertainty exponent α = 1
(smooth boundaries), then Sbb ≤ log 2. This is equivalent to say that if Sbb > log 2,
then α < 1, i.e., the boundaries are fractal. This is known as the log 2 criterion.

This criterion is especially useful for experimental situations where the resolution
cannot be arbitrarily chosen. In these caseswe have a fixed value ε > 0.Nevertheless,
if we take a sufficient large number of boxes N , then the log 2 criterion holds.
Moreover, the equality of Eq.18 never takes place, so that there is some room for
the possible deviations caused by the impossibility of making an infinite number of
simulations or experiments.

The log 2 criterion is a sufficient but not necessary condition for fractality: some
fractal basins do not pass this criterion, for instance those having only two outcomes.
In the case of the double beam configuration for the scattering of cold atoms, the
system presents four possible exits, and for low speeds the values of Sbb largely
exceed the log 2 threshold, as shown in Fig. 10b. Furthermore, we can see that for
very small values of the launching speed the Sbb approaches its maximum value for
this systemwhich is log 4. This can be seen as an asymptotic value similar to systems
where exits get smaller [31], since for the limiting value vx0 = 0 the particle would
never escape. We have also checked in numerical experiments that the log 2 criterion
can be fulfilled for all the angles θ (except the limit cases θ = 0◦, 90◦) as shown in
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Fig. 11 Log 2 criterion and the angle of the beams. The boundary basin entropy Sbb is
computed for different angles θ . The region of initial conditions sampled is vx ∈ [0.09, 0.11],
x ∈ [−250,−200], vy ∈ [−1.5, 1.5], y ∈ [−1.5, 1.5]. The black line is for a computation made
with 100 boxes composed of 54 trajectories each one, and the shaded region is the absolute error
with respect to an asymptotic value taken at 800 boxes. We can see that the log 2 criterion is fulfilled
for all the angles except the limit cases θ = 0◦, 90◦

Fig. 11. If such values were obtained in real experiments, it could be considered an
experimental demonstration that the phase space is fractal.

Nevertheless, it is important to recall that the log 2 criterion detects fractals at a
given resolution. Indeed, given a finite resolution it is impossible to distinguish a real
fractal from something which is not a fractal, but that looks like it at that resolution.
The log 2 criterion presents a major advantage compared to other techniques like
implementing directly the box-counting algorithm: it avoids the use of different
scales of velocity and position, which, in the context of experiments and in particular
with cold atoms, is fundamental. The log 2 criterion is a strong argument to test fractal
structures using minimal requirements. Of course, we will detect fractal structures
at the resolution that can be achieved in the experiments, which depends on the size
of the wave packet compared to the size of the region of phase space considered.

Finally, it is remarkable that some escape basins are not only fractal, but also may
posses the stronger property of Wada [15, 16]. This means, that all the basins have a
common boundary separating them. The experimental evidence of theWada property
would be that in this regime every time that more than one branch is populated, all
the branches are populated. If the experiment is in the Wada regime, we will never
detect atoms escaping through only two or three different branches.
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3 Other Tools from Nonlinear Dynamics Applied
to the Chaotic Scattering of Cold Atoms

In previous sections we have shown how the basin entropy can be very useful to
characterize the unpredictability in experiments with cold atoms. Now we discuss
how other methods like the basin stability allow to predict the efficiency of the switch
and splitter regimes in a cross beam configuration. The escape time distribution can
also be obtained and gives access to the dynamical evolution of the system. All these
proposals can be implemented with current experimental techniques.

3.1 Splitter and Switch Regimes

Incident particles with high initial horizontal speed spend less time in the scattering
region and most of them tend to escape through exits in the positive x direction. As
a consequence, their asymptotic behavior is easier to predict, implying a decrease of
the basin entropy for high vx (t = 0) (see Fig. 10a). Despite the fact that the phase
space is still fractal, the log 2 criterion is no longer fulfilled, as shown in Fig. 10b.
This happens because there are dominant basins occupying most of the phase space,
and the number of boxes lying in the boundaries decreases (see Fig. 10c).

Nevertheless, the appearance of a dominant basin is crucial for the efficiency of
the switch regime, an experimental regime where we try to get as much atoms as
possible escaping through the second beam. The basin entropy can give us a clue
to find the parameters for this switch regime: if most particles escape through an
exit, then the basin entropy must be low. Then, we can also apply the basin stability
[9] to fully characterize the efficiency of the switch. The basin stability is simply
the portion of phase space occupied by each basin, so BSi ∈ [0, 1] for i = 1, . . . , 4
and

∑4
i=1 BSi = 1. Therefore, computing the basin stability for the exit basin 2 is

equivalent to calculate its efficiency. In cold atom experiments the basin stability
can be computed using the same Monte Carlo sampling method used for the basin
entropy computation.

Some angles like θ = 33◦ display a large switch efficiency for high speeds, as
shown in Fig. 12a. This prediction could be checked in real experiments. We have
also tested the robustness of these results against small perturbations of the laser
parameters (α1, α2, β1, β2). Sometimes in chaotic dynamics small perturbations of
the system parameters may lead to different dynamical behaviors [21]. However this
is not the case here, and the switch regime turns out to be robust against perturbations
of the wave guide parameters.

In the splitter regime, we try to get approximately half of the atoms escaping
through the first beam and the other half through the second beam. Using the basin
stability, we can define the efficiency of the switch regime as the correlation between
basin stability of exits 1 and 2, which can be calculated as their normalized product
c = 4BS1BS2, where the factor 4 is to normalize at the maximum correlation value
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Fig. 12 Efficiency of the switch and splitter regimes. a Color map representing the fraction of
trajectories escaping through exit 2, that is, the efficiency of the switch regime. For these computa-
tionswe have used initial conditions in the region vy ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5] and x0 = −250.
b Color map for the correlation of the basin stability of exits 1 and 2, defined as the normalized
product of their basin stability c = 4BS1BS2. For values close to 1 the system is close to a perfect
50-50 splitter regime. This takes place for larger angles as the speed increases

of BS1 = BS2 = 0.5. This efficiency of the splitter c is calculated for different vx
and θ and represented in Fig. 12b. We can see that as the horizontal speed vx is
increased, the splitter regime happens for larger angles. The splitter is more sensitive
to perturbations of the parameters than the switch regime, as can be inferred from
the non-trivial structure of Fig. 12b.

3.2 Survival Probability

The experimental setup described in Ref. [28] allows to measure not only the atom
population of the branches, but also the population that lies in the crossing region
for some time. Therefore, we can define the escape time as the time spent by atoms
in a region of radius 3σ centered in (0, 0), which we call the scattering region. We
also define the survival probability as the probability P of finding an atom at a time
t in the scattering region, which exactly corresponds with the measurements made
in experiments.

Depending on the hyperbolic or non-hyperbolic nature of the system, the survival
probability is expected to present exponential or algebraic decay for long times. In
numerical simulations, we normalize time dividing by t0 = x/vx0 , which is the time
that a particle would take to cross the scattering region if there were only one laser,
and we find curves of probability versus time like the ones depicted in Fig. 13. The
first plateau of this curve reflects that all the particles take at least t = t0 to escape the
scattering region. After the plateau, we can see an exponential decay for short times
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Fig. 13 Survival probability as a function of time. The survival probability P of the atoms in
the scattering region as a function of time. After the initial plateau (in blue), there is an exponential
decay (see inset) and for very long times an algebraic decay (in red). a vx = 0.3. b vx = 0.9. The
rest of parameters are θ = 45◦, vy ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5] and x0 = −250

(see insets of Fig. 13). For very long times the decay is algebraic, a typical behavior
of non-hyperbolic systems [32]. However, in real experiments we expect to see only
the exponential decay for two reasons. The first one is that non-hyperbolic systems
are structurally unstable [33, 34]. This means that the slightest perturbation provokes
the change from algebraic to exponential decay for long times. The second reason
is that in real experiments, the long time behavior is hard to follow because small
atom populations are difficult to detect. Moreover, when a non-hyperbolic system
is weakly perturbed the curve of probability versus time behaves as the first part of
the non-perturbed system, that is, it shows an exponential decay characterized by the
same mean-life τ [35].

4 Conclusions

In nonlinear dynamics, different tools are commonly used to gain knowledge of a
system. For instance, Lyapunov exponents are used to characterize its dynamics.
On its behalf, basins of attraction contain much information about the asymptotic
behavior of the system. Some efforts had already beenmade in the past to characterize
the complex structure of basins of attraction, such as the uncertainty exponent [7]
and the notion of basin stability [9]. The uncertainty exponent takes into account the
nature of the boundary between two basins, and the basin stability informs about the
percentage of phase space occupied by each basin. However, in many situations these
concepts are insufficient to describe the complex structure of the basins of attraction
[19].
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The basin entropy integrates these concepts from the theoretical perspective of
information entropy. It provides a quantitative measure of the uncertainty associated
to the basins of attraction for a given scaling box size. This should become a very
useful tool with a wide range of applications, as exemplified by the different systems
that we have used to illustrate this concept.

In particular, here we have shown how the basin entropy can be applied to investi-
gate the dynamics of propagating matter waves. We have focused on a double guide
configuration, where the atoms can escape through four different exits. So far, non-
linear dynamics had only been used as an approximation to explain a posteriori
some results concerning the chaotic dynamics of the atoms. But here we propose to
go far beyond. In real experiments, we can measure the atom population escaping
through each branch, that is, we can measure the probabilities of the atoms of escap-
ing through the different exits. Gathering this information through an appropriate
Monte Carlo sampling, we can measure the basin entropy for a given set of parame-
ters. This enables the characterization of the final state unpredictability associated
to different experimental parameters. Using the same data, we have shown how the
presence of fractal structures in phase space could be detected for a certain ranges
of parameters. An interesting modification of the experimental setting would be the
inclusion of more guides. Indeed, with more exits, the log 2 criterion would be more
easily fulfilled, facilitating the detection of fractality.

In terms of applicability, the tools developed here can be usedmore systematically
to investigate the efficiency and robustness of the different experimental regimes
of the crossed beam configuration in order to use it reliably as part of a matter
wave circuit [36]. The protocols that we propose have been designed for a direct
implementation with state of the art experimental techniques.
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Fireflies: A Paradigm in Synchronization

G.M. Ramírez-Ávila, J. Kurths and J.L. Deneubourg

1 Introduction

All living beings exhibit oscillatory behavior manifested internally in metabolic,
cellular, and molecular processes. Among those, glycolytic oscillations observed
in muscles and yeast, oscillations of cyclic AMP found in Dictyostelium amoebae,
mitotic oscillations leading to cell division cycle in eukaryotes, the pulsatile hormone
signaling, the calcium oscillation observed at the level of internal part of cells, and
circadian rhythms [37]. Nevertheless, the animated matter is also able to manifest
oscillatory features that can be perceived by the senses of other living beings and
especially by humans. Among the temporal patterns that humans can recognize in
other species, we can mention the locust mass migration, and several synchronous
behaviors such as in chewing, chirping, breeding, and flashing [15]. Synchronization
is a widespread phenomenon both in nature and in artificial systems; it consists in
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the adjustment of the time scales among oscillators due to a weak coupling [73]
implying the emergence of structural order analogous to phase transitions [63]. Syn-
chronization has deserved a lot of interest in the last two decades in which, thousands
of papers, extensive reviews, and books treated this phenomenon related to chaotic
aspects [5], and its applications to living [69], communication [47], networks [61],
and mechanical systems [70]. There is also an excellent popularization book deal-
ing with the most important features of synchronization and surely with fireflies
[91]. Perhaps, the human light perception is the primary and most important connec-
tion with the environment. The sunlight, the moonlight, the brightness of different
objects in the sky, the fire, and the light of certain animals, have undoubtedly trig-
gered an intense curiosity in the human beings. The above-mentioned phenomena
were not only observed by humans, but they intended to explain how and why those
events occur, and they also tried to manage them finding numerous applications
leading to a better lifestyle, establishing in this way, a qualitative difference with
other species. Among the light emitting animals, fireflies possibly constitute the
most charismatic and typical behavior because of their proximity, accessibility, and
innocuity for humans. Several works have been carried out to describe, classify and
study fireflies originating publications about taxonomy [50, 60], geographical dis-
tribution of certain species [32], diverse issues on the light organ [11], and recently
genetic analyses associated to phylogenetics and systematics of some species [3] or
in evolutionary problems linked to the flashing [64]. Throughout this chapter, we
explain many biological, chemical, physical and mathematical aspects to unravel
the firefly flashing synchronization, its consequences and potentials. In Sect. 2, we
cover the bioluminescent features such as flashes colors and spectra of the fireflies
[32], describing them under different perspectives going from their chemical aspects
related to enzymes [66] or oxidation mechanisms [8] to their physical ones in con-
nection with the influence of static magnetic fields [43]. In Sect. 3, we give the basis
to understand why the evolution drives the fireflies to synchronize and the functional
interpretation of this behavior [59] mainly implying communication aspects [16]
in flash pattern recognition [14] as a fireflies’ “language” related to courtship [13].
The heart of this chapter constitutes the physical-mathematical approach attempt-
ing to explain how and why diverse species of fireflies synchronize, the latter is
considered with certain detail in Sect. 4 where we start with a toy model called the
“solitary flash” [90]; then, we consider multi-agent systems (MASs) based models
using well-known platforms and dealing with features related to firefly-inspired syn-
chronization [7]. Thereafter, the details of phase and relaxation oscillators as the first
approach for understanding fireflies synchronization [1, 23, 99] are given. Before to
end Sect. 4, synchronization of pulse-coupled oscillators (PCOs) are described [62,
67, 76] mainly from a biological application perspective emphasizing the family of
integrate-and-fire oscillators (IFOs) [42]. In Sect. 5, a consistent explanation of the
phenomenon of response to synchronization [31] as a complete process of courtship
is done supported by experimental results using artificial flashes [14, 68] and by a
formal model [75, 78]. Finally, in Sect. 6, we explore the firefly-inspired synchro-
nization and its applications including evolvable systems [92], wireless and other
technological networks [7, 34, 54, 95], electronic and robotic devices [7, 21, 28, 76,
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85] or even in improving light extraction efficiency [4]. All the aspects mentioned
above give us a large bundle of concepts, models, and applications related to fireflies’
collective behavior which constitutes a paradigmatic example of synchronization.

2 The Light of Fireflies

The first question that arises concerning the glowing insects is how and why fire-
flies emit light flashes. First of all, it is important to grasp the mechanisms leading
to fireflies bioluminescence. We can approach this phenomenon considering three
viewpoints: (i) Phenomenologically, in which, macroscopic aspects of the light are
important such as the functionality of the emission comprising defense, offense,
communication and propagation [98]. (ii) Chemically, as firstly stated by Dubois
in 1887 [25], the processes involved in the production of light might be seen as a
complex machinery, where two key substances luciferin (LH2) and luciferase (Luc)
allow the phenomenon to takes place in the presence of oxygen (O2). This mecha-
nism is common to several species exhibiting bioluminescence. (iii) Physically, the
reactions in which single-electron-transfer seems to be essential for the mechanism
leading to the production of the photon involved in bioluminescence [8].

The curiosity for the lightning innards of some living beings, in particular for fire-
flies that are the most accessible to the sense of sight triggered scientific work with
the aim of deciphering the involved processes leading to firefly flashing. Detailed
and systematic observations of flashing fireflies started perhaps with the experi-
ences of Leconte in 1881, who described in detail the American Lampirydae [50].
Almost at the same time, in France, Dubois studied the bioluminescent beetles called
Pyrophorus [24] and also the Pholadidae, a family of bivalve mollusks [25] trying to
understand the “light production” in these animals through observing the mores, the
morphological features, and the structure of the luminous organ.As abovementioned,
Dubois identified the essential substances for the chemical reactions conducting to
the light emission, and also generalized the idea that these chemical substancesmight
be similar in different phosphorescent animals [26]. Several qualitative observations
have been made in diverse fireflies species. Firstly, studying mating behaviors [65],
then focusing on the control of flashing in fireflies [41], or on the effects of chemical
compounds [36] and physical variables on the flashing features, such as temperature
[27], light [20], static magnetic fields [44] or pulsed ones [43].

From a chemical point of view, the term bioluminescence introduced by Harvey
in 1916 [40] is a fundamental concept to explain the cold light emission by living
organisms, in particular by fireflies. The chemical aspects related to fireflies light
emission had started to be developed since the origin of the identification of LH2 and
Luc. There were some works where these types of substances were extracted to show
their phosphorescence properties [38]. After the discovery of these compounds in
fireflies [39], scientists realized their importance and significant role in the production
of light. The mechanisms of bioluminescence were unraveled both generically in all
the living beings exhibiting this feature [88, 98], and particularly in fireflies [66]. It
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is possible to summarize the bioluminescent processes by simple chemical reactions
as those shown below:

LH2 + O2
Luc−→Oxyluciferin + CO2 + hν (1)

Photoprotein + Ca2+ −→ Protein-coelenteramide + CO2 + hν, (2)

where the first reaction depicts the oxidation of luciferin giving place to the protein-
bound Oxyluciferin and a photon with frequency ν. On the other hand, in the second
reaction, a conventional Photoprotein activated by calcium ions results into protein-
bound coelenteramide. Specifically for fireflies, the reactions are

LH2 + ATP + Luc −→ Luc · LH2 − AMP + PPi (3)

E · LH2 − AMP + O2 −→ Luc + AMP + CO2 + Oxyluciferin + hν, (4)

with a wavelength photon λmax = 560nm (yellow-green).
Finally, from a physical viewpoint, apart from some variables susceptible to affect

the firefly flashing (temperature, light, static and pulsed magnetic fields, etc.); there
are microscopic aspects especially in relationship with the process of oxidation.
More specifically, the oxygen supply mechanism [94] or the single-electron-transfer
pathway for the critical oxidative process [8]. These microscopic studies are car-
ried out using modern experimental techniques such as synchrotron phase-contrast
microtomography and transmission x-ray microscopy.

Certainly, chemiluminescence and bioluminescence are closely related and
although, in a first stage, the efforts were devoted to the explanation of the chemi-
cal processes giving rise to luminescence in some living beings. Nowadays, several
works are contributing not only to unravel the mechanisms of bioluminescence but
also to find applications in several fields including clinics, imagery, drug discovery,
genetics, forensics, environmental monitoring, and conservation of cultural heritage
among others. A detailed description of the above-mentioned applications is done
in [81]. Recently, the relationship of firefly light-extraction efficiency [4], inspired
similar mechanism for light-emitting diodes. The Nobel prize 2008 in chemistry
awarded to Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien for the discov-
ery and development of the green fluorescent protein, GFP constitutes a milestone
in bioluminescence and also a reward for the efforts performed in advance of the
knowledge of the phenomenon firstly observed in fireflies.

3 Why Fireflies Synchronize?

The succession of observations made to conclude that the primary function of syn-
chronization in fireflies is that of courtship has meant a long and tortuous road that
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has often led to incorrect interpretations. Fortunately, the scientific approach was
imposed, and it is now possible to state that fireflies collective flashing is perhaps the
most cited phenomenon as an example of synchronization.

3.1 First Encounters with Synchronous Fireflies

As stated by Roda [82], the oldest known written document describing qualitative
and nonsystematic observations on flashing fireflies and glow-worms were made in
China, dating roughly from 1500 to 1000 BCE. The knowledge and observation of
fireflies were common in several cultures such as the Mayas where they played a
role in religious practices and also in mythology associated with the cigar smoking.
However, there is no doubt that the most interesting phenomenon when sighting
ensembles of fireflies, is the ability that certain species exhibit to attain collective
synchronous flashing. The first reported observation on firefly-synchronization is due
toEngelbertKaempfer aDutch physician, naturalist, and explorer born inWestphalia,
in the present German territory. As a result of his observations during his voyage to
Japan and Siam (1690–1692) he wrote (quoted in [10]):

The Glowworms (Cicindelae) represent another shew, which settle on some Trees, like a
fiery cloud, with this surprising circumstance, that a whole swarm of these Insects, having
taken possession of one Tree, and spread themselves over its branches, sometimes hide their
Light all at once, and a moment after make it appear again with the utmost regularity and
exactness, as if they were in perpetual Systole and Diastole.

The latter constitutes the first description of synchronization in a large population of
coupled oscillators. After that, several observations of firefly synchronization were
reported among the most interesting; we only mention the citation due to Theobald
[93] who based in a comment about the unison light of fireflies, wrote:

In Pegu, however, I have witnessed the exhibition in question; myriads of fireflies emitting
their light, and again relapsing into darkness, in the most perfect unison …. The bushes
overhanging the water were one mass of fireflies …. The light of this great body of insects
was given out …in rhythmic flashes, and for a second or two lighted up the bushes in a
beautiful manner; heightened, no doubt, by the sudden relapse into darkness which followed
each flash. There are the facts of the case (and I may add that it was towards the end of
the year) and the only suggestion I would throw out, to account for the unusual method of
luminous emanation, is that the close congregation of large numbers of insects, from the
small space afforded them by the bushes in question, may have given rise to the synchronous
emission of the flash by the force of imitation or sympathy.

Buck in 1938 cited more than 30 reports on synchronous fireflies [10] with observa-
tions carried out in different locations of the planet (e.g. Siam, Burma, Singapore,
Borneo, Malaya, Philippines, New Guinea, Jamaica, Mexico, United States, and
Brazil). In this historic article, he also pointed out some explanations for firefly syn-
chronization, including the insubstantial ones (the wind and other environmental
influences, twitching eyelids [49], the effect of the sap of the trees, accident, illusion,
sense of rhythmor “sympathy”, and leader or pacemaker).None of these explanations
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were adequate to resolve the phenomenon of synchronous flashing. It is important
to call attention to the fact that the statements mentioned above do not consider any
functionality in the achievement of firefly synchronization. From an energetic point
of view, the lack of functionality of synchronization could be regarded as an inef-
ficient, useless and unjustified process. Evidently, a more detailed study of firefly
synchronization showed that this phenomenon is significant for the survival of many
of these species since, as it will be seen later, synchronization allows the identification
of particular species as well as an intersexual communication language.

3.2 Synchronization for Courtship and Mating

During the first two decades of the twentieth century, several observations done
principally by Mc Dermott had shown that the light emission in some American
Lampyridae species, evinced the flashing (photogenic function) importance as a
mating adaptation [65]. However, there is not any mentioning to the synchronous
flashing already reported by numerous scientists as stated above. The discovery of
the synchronization functionality in fireflies is due to Buck in 1935 who established
that firefly synchronous flashing is related to the mating and it is persistent until
copulation is produced or when there are no more unfertilized females capable of
responding to synchronized males [9]. After that, the idea that synchronization is
associated with processes of conspecific recognition and mating evolved until it
was strongly accepted in the phenomenology of fireflies. A considerable number of
studies and publications testified to the acceptance that the synchronization phenom-
enon is closely related to courtship and mating in fireflies. Concerning the topics
discussed considering the aforementioned association, we highlight those related to
mating protocols of synchronously flashing fireflies [14, 57], and to different aspects
of flash communication [18, 59]. The well established and cumulated knowledge on
firefly synchronization allowed a deeper qualitative understanding of this phenom-
enon and the popularization of these facts in excellent books such as those written
by Lewis [51], and Ortler [71]. The formulation of mathematical models to explain
firefly synchronization also played a significant role in improving the insight of the
phenomenon; details of the most well-known ones are presented in Sect. 4.

4 Models to Explain the Fireflies’ Synchronous Behavior

Several models intend to reproduce and explain the fireflies synchronous behavior.
The basis of each model has different motivations that can go from simple guidelines
of a game [90], via simple interaction rules [97] andmathematical considerations [67,
99] to more sophisticated analysis, where phase response curves (PRC) and Arnold’s
tongues are useful tools for describing dynamical features and synchronization.
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4.1 A Toy Model

The so-called “solitary flash” game is a friendly and straightforward model leading
to an explanation of firefly synchronous flashing behavior. Originally, the game has
been proposed by Stewart and Strogatz [90] and its simple rules as they were raised:

1. The game board consists of a polygon of n sides, each of them containing r boxes,
i.e. N = n × r boxes on the board.

2. The first box plays the role of the flashing box, i.e. when a player (firefly) arrives
at this box, it flashes.

3. Each firefly starts the game in any box (initial condition) except the flash one.
4. Each firefly advances clockwise one position per time step.
5. When a firefly flashes, it remains in the flash box one-time step, while the other

fireflies go forward according to the place in the board in which they are. For
instance, if the firefly is on a box of the first side, it continues to advance one
position; on the other hand, if the firefly is on a box of the second side, it advances
two spaces, and three if it is on a box of the third side and so on.

6. The goal of the game is that all fireflies flash synchronously in the shortest possible
time.

The above-mentioned rules might allow or not the occurrence of synchronization.
The dynamics of the game strongly depends on the initial conditions and also in
rule 5 because it determines what happens to a firefly when it approaches, arrives or
passes through the flash box. We consider the following four variants of rule 5:

(a) When a firefly is in a box located on the far side of the polygon, it could happen
that it might overtake the flash box and consequentlywithout flashing in its cycle.
This fact imposes a difficulty in attaining of synchronization.

(b) When a firefly restarts a new cycle, it is mandatory that it arrives at the flash box
and as a result, it flashes in each cycle. This rule facilitates the achievement of
synchronization.

(c) When two or more fireflies are nearby the flash box, they wait until all of them
are effective in this box; at this moment, all the fireflies advance one position.
This modification respect to (b) makes it easier to attain synchronization.

(d) Finally, if we consider a similar situation than in (c) but with the modification
that when the fireflies are forced to be in the flash box, the other fireflies advance
according to rule 4 and not only one position as in the precedent case.

Some frames of the game evolution reflecting the rules (a)–(d), and some other
possibilities for the cardboard are shown in Fig. 1.

Time series for all cases (a)–(d) are shown in Fig. 2, where we considered three
fireflies and a specified set of initial conditions (n01, n02, n03) = (5, 10, 15). The
basins of attraction for these cases are depicted in Fig. 2e–h where the condition is
related to the lasted time to achieve synchronization with collective simultaneous
flashing. It is interesting to observe in Fig. 2a that the fireflies do not reach the syn-
chronization condition of simultaneous flashing of all the individuals of the system.
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Fig. 1 a Frames of the game evolution for the rules (a)–(d) considering for all the four cases the
same initial conditions (n01, n02, n03) = (5, 10, 15). Some other possibilities for the cardboard: b
pentagon, and c hexagon

Fig. 2 First row: a–d Time series for the evolution of three fireflies following the rules (a)–(d)
abovementioned. Second row: e–hBasins of attraction (n02 vs. n01) for the rules (a)–(d) considering
that the initial condition for the first firefly is the box 5. White boxes represent situations in which
simultaneous, collective, and persistent flashing (in every cycle) are not achieved
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Fig. 3 Box plot of the statistical parameters (median and quartiles) related to Fig. 2 for the syn-
chronization time associated with each of the rules. The percentage of the synchronous events are
shown in the upper part, above the whisker. With all these information, it is possible to estimate
which rule leads more often and quickly to synchronization

Nevertheless, considering the formal definition of synchronization, the phase differ-
ence among the fireflies remains constant from the 228th turn; as a consequence,
exhibiting synchronization but fireflies 1 and 2 do not flash in every cycle. On the
contrary, Fig. 2b–d show that simultaneous flashing is achieved respectively in 70,
50, and 29 turns (time steps). So that, in principle it indicates that in successive order
the rules that facilitate synchronization are respectively (d), (c), (b), and (a). With a
view to sustaining the recent affirmation, we compute statistical parameters related
to the synchronization time when all fireflies flash simultaneously, as well as the per-
centage of this situation in each basin of attraction for the indicated cardboard related
to Fig. 2 (four sides and five effective boxes per side). The results are shown through a
box plot in Fig. 3 where its information supports our assumption related to facilitated
synchronization. This simple game with its four basic rules (algorithms) allows to
explain synchronization in some species of fireflies, and it has an intrinsic richness
since these simple rules can be translated to a more technical language belonging
to synchronization theory. Thus, it is possible to find a relation between the number
of sides and boxes per side with the type of coupling: in the case explained above,
we have an excitatory coupling between the fireflies (players). In some cases, as it is
described in Sect. 4.5, for Light-controlled oscillators (LCOs) and for some species
of fireflies, inhibitory coupling is also possible; this type of coupling might be incor-
porated in the game considering that for some boxes on the game board, the player
must go back certain number of boxes according to its position. The high number of
game choices (shape of the polygon, number of squares for each side of the polygon,
the number of players, basic rules of the game, etc.) allow to extend the study of this
model and analyze its isochronous dynamics as in [53].
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4.2 Multi-agent Based Models

Conceptually, a MAS reflects one of the complex systems basis, namely the coop-
erativity due to the interactions among the components of the system giving rise
to the accomplishment of a task or the emergence of a new property or functional-
ity of the system. As stated in Sect. 1, several platforms are allowing to work with
MASs. To explain the potentialities of MASs, we focus on the platform NetLogo
[97] whose library contains a nice firefly model. This model is mainly based on the
flashing behavior of some species: Pteroptyx cribellata, Luciola pupilla, and Pterop-
tyx malaccae described in [12], it has been built with simple interaction rules taking
into account two main synchronization strategies: phase delay and phase advance
(first and second columns of Fig. 4 respectively) [96]. The agents of the model are
fireflies having as a main feature that they have their own period, and a cyclic behav-
ior, i.e. each firefly has an initial period and position as well as its position in the
cycle; in most cases, the fireflies period are initially considered as identical for the
whole population. The interaction of fireflies is done by means of the flashes that
they can emit (influencing the rest of the individuals) or perceive (being affected in
their dynamics). Synchronization might be achieved according to the rules and the
parameter values. SpikingLab is another interesting application done in NetLogo and
related in someway to fireflies; actually to the integrate-and-fire oscillators, a popular
model describing synchronization in fireflies (explained in more detail in Sect. 4.4).
This NetLogo project introduces a Spiking Neural Network (SNN) phenomenolog-
ical model mimicking the neural dynamics regardless of the biophysical processes
[46]. As a consequence, all the neural features such as membrane and resting poten-
tial, spike threshold, inhibitory and excitatory postsynaptic response, exponential
decay rate and refractory and absolute periods are embedded in two possible states:
open and absolute refractory. The model is used for simulating a virtual insect able
to process three types of information: visual and sensations related to pleasure and
pain.

One of the most important applications of firefly synchronization is that related to
communication networks and algorithms allowing a synchronous behavior on cer-
tain devices. In general, the above-mentioned applications use MAS concepts and
programming. For instance, another way to solve the firefly synchronization task
was carried out by Teuscher and Capcarrere, using two-dimensional (2-D) cellular
automata (CA) and random boolean networks [92], programming in such a way;
the performing computations are locally and based on co-evolution. They have also
implemented employing an FPGA-Evolware. In other words, software and hardware
implementation have been designed for solving the firefly synchronization task suc-
cessfully. Other works dealing with synchronization in a framework of MAS have
beenmostly developedwith PCOs. There are some other applications based on firefly
synchronization and MAS that are pointed out in Sect. 6.
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Fig. 4 Screenshots of NetLogo fireflies model interface using the strategy of phase delay (first
column), and phase advance (second column). The general parameters are: number of fireflies =
1000, flash length = 2, flashes to reset= 2, and cycle-length= 35. a, b represent the arena showing
the initial situation with few number of fireflies flashing simultaneously; c, d the final one where
almost all fireflies are flashing in synchrony; and e, f the time series showing the number of fireflies
versus the time steps. In both cases, the program runs until synchronization is fully established. For
the delay strategy, the synchronization time is around 6200-time steps, and for the advance one, it
is around 31000-time steps
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Fig. 5 a Scheme for the
sawtooth oscillator, being the
neon tube N the heart of the
oscillator. b Current-voltage
characteristic of N

(a) (b)

4.3 Phase and Relaxation Oscillators

After a systematic study of the biological and chemical properties of flashing fireflies
and their synchronous behavior, Winfree attempted to build a mathematical model
capable of describing synchronization in large populations of phase oscillators and
considering that each firefly is represented by an oscillator of this type [99]. Let us
start by understanding the features of these oscillators. A phase oscillator might be
considered as an oscillator whose periodic solution travels around a circular limit
cycle with angular velocity Ω(r∗). Winfree proposed a model of coupled phase
oscillators characterized by a sensitivity and an influence function, depending only
on the phase. Mathematically, the Winfree’s model might be written as:

θ̇i = ωi +
⎛
⎝

N∑
j=1

X (θ j )

⎞
⎠ Z(θi ), i = 1, . . . , N , (5)

where the phase and natural frequency of oscillator i are represented respectively by
θi and ωi . All the oscillators i are influenced by oscillator j through the phase by
X (θ j ); as a result, oscillator i responds through the phase-dependent function Z(θi )

called the sensitivity. Using this model applied to a population of oscillators,Winfree
found that there is a sort of phase transition towards the synchronization. Some other
works dealing with Winfree’s model have been developed and in particular that
of Ariaratnam and Strogatz [2] is very interesting because they obtain the phase
diagrams showing the different regions of the dynamical behavior of this model:
total and partial locking, total and partial oscillation death, and incoherence.

After theWinfree formulation, other phase oscillator basedmodelswere proposed,
one consisting of 25 sawtooth coupled oscillators with an experimental realization.
Each one of these oscillators consists of a neon tube N connected to a battery E
through a resistance R and shunted by a capacitanceC as shown in Fig. 5a. The func-
tioning of the oscillator is determined by the current-voltage characteristic (Fig. 5b).
The oscillation is produced as follows: the condenser charges until it reaches the
voltage V0 and the oscillator fires generating a current I1 during the discharge of C
until Vd and then restarting the charging process; so that, giving rise to oscillation.
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Following the intuitive model of Winfree, Kuramoto developed a more formal
model carefully described in [48], where he used perturbation methods, weak cou-
pling K ≥ 0, almost identical oscillators, and the concept of mean field coupling to
obtain its famous equation:

θ̇i = ωi + K

N

N∑
j=1

sin
(
θ j − θi

)
, i = 1, . . . , N . (6)

The Kuramoto model with its purely sinusoidal coupling constitutes the simplest
possible case of equally weighted, all-to-all coupled oscillators. The model can also
be described in terms of the order parameters r and ψ , resulting:

reiψ = 1

N

N∑
j=1

eθ j , (7)

where r(t) is a normalized function that is a measure of the oscillators population
coherence, and ψ is the average phase. Using Eq. (7), the original model states:

θ̇i = ωi + Kr sin(ψ − θi ), i = 1, . . . , N , (8)

indicating that each oscillator is coupled to the common average phase with coupling
strength given by Kr [1]. Under the consideration of certain assumptions, it is pos-
sible to find a critical value for the intensity of coupling Kc denoting a bifurcation
point and also that for K > Kc, there is a dramatic increase in the coherence of the
oscillators population when the bifurcation is supercritical. There are several reviews
of the importance of Kuramoto model for synchronization and networks [1, 83] and
also some recent extensions including adaptive frequencies [72].

Another firefly-inspired model is due to Ermentrout [29] who proposed a mech-
anism that allows the fireflies to synchronize at a nearly zero phase difference. The
model has a PRC that it is the same as the determined for Pteroptyx malaccae, but the
behavior under a train of periodic stimuli is different due to the adaptive character
of the model. Firstly, he considered a single periodically forced oscillator stated by:

θ̇ = ω + P(t/τ)Δ(θ) mod (1), (9)

where ω is the oscillator’s natural frequency, P(φ) is the periodic forcing stimu-
lus, and Δ(θ) is the oscillator PRC. All functions are one-periodic. Under certain
assumptions, it is possible to average Eq. (9) and obtain:

θ̇ = ω + H(t/τ − θ), (10)

where H depends on the PRC as
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H(φ) =
∫ 1

0
P(s)Δ(s − φ)ds. (11)

The 1:1 phase-locked solutions of Eq. (9) are:

θn → θ̃ , Δ(θ̃ + ωτ) = 1 − ωτ. (12)

The latter can be solved considering that 1 − ωτ does not exceed the maximum of
Δ or fall below the minimum of Δ, giving:

θ̃ = 1 − ωτ + Δ−1(1 − ωτ). (13)

If Δ(0) = 0, then ωτ ≡ 1, means that the intrinsic frequency is the same than the
forcing one. This model for N coupled oscillators might be written as:

θ̇i = ωi +
N∑
j=1

Hi j (θ j − θi ). (14)

The main result of the analysis of Eq. (14) states that there can be phase-locking but
with phase differences not necessarily close to zero.

Relaxation oscillators are one of the most suitable models to study systems sus-
ceptible to synchronize: neurons, cardiac cells, and fireflies. An important feature
of these oscillators is that within each cycle, there are two time scales: a slow one
where an integration process takes place, and a fast one where a firing process occurs.
Contrarily to the common phase oscillators, the relaxation oscillators waveform is
very different from a sinusoidal wave; rather it looks like a sequence of pulses. There
is no universal model for relaxation oscillators, having each of one their proper
characteristics [73].

Numerous examples of relaxation oscillators may be found in literature, ranging
from electronic devices generating relaxation oscillations [74] to those applied to
biology, especially in neurons [45]. One of the most classical examples of a self-
oscillating system is the van de Pol equation described by the equation of motion

ẍ − μ(1 − x2)ẋ + x = 0, (15)

where for large μ behaves as a relaxation oscillator (Fig. 6a). Equation (15) may be
cast into a set of first-order differential equations:

ẋ = μ [y − F(x)] (16a)

ẏ = −
(
1

μ

)
x, (16b)

that allows us to observe the following: the x-nullcline given by the relation y =
F(x), has a cubic form and the y-nullcline, provided by the expression x = 0 is a
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vertical line. Both nullclines, as well as the corresponding limit cycle, are illustrated
in Fig. 6c. This system has one fixed point, located at the origin, where the two
nullclines cross one another. The motion along the limit cycle trajectory involves
two time scales, a fast horizontal movement, and a slow vertical motion. When y
is near the x-nullcline, both dx/dt and dy/dt vary gradually, and the movement is
slow. When the trajectory departs from the cubic nullcline dy/dt is large, and the
horizontal movement is fast. Another well-known relaxation oscillator is the IFO
that deserves our attention in Sect. 4.4 because it is one of the most used models to
describe synchronization in fireflies.

4.4 Integrate and Fire Oscillators

These oscillators were extensively used to model a great variety of phenomena such
as synchronization in fireflies [67] and several aspects of neuronal systems [30]
among others. IFO models were also used to describe firing patterns [35] and critical
phenomena [22] such as avalanches.

(a)

(c)

(b)

Fig. 6 van der Pol oscillator acting as a relaxation one when μ = 10. Time series for the variable
a x that shows a relaxation regime, and b y that shows a rotator regime. c Limit cycle trajectory
and the accompanying fast and slow time scales
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IFOs are principally used to describe collective behavior. To model self-
synchronization of the cardiac pacemaker, Peskin considered a network of N IFOs,
each characterized by a voltage-like state variable Vi , whose dynamics is:

dVi

dt
= I − ηVi , 0 ≤ Vi ≤ 1, i = 1, . . . , N . (17)

When the oscillator i reaches the threshold (Vi = 1), the oscillator “fires” and Vi

is reset instantaneously to zero (Fig. 7a). The oscillators interact by a simple form
of pulse coupling: when a given oscillator fires, all the other variables Vj , j �= i
are increased by an amount β/N (the quotient by N is introduced in order to get
reasonable behavior in the thermodynamic limit N → ∞). That is,

If Vi (t) = 1 =⇒ Vj (t
+) = min(1, Vj (t) + β/N ), ∀ j �= i. (18)

Moreover, the oscillator at the state V = 0 (i.e. just after firing) cannot be affected
by the others, so that the state V = 0 is absorbing. The latter ensures the possibility
of perfect synchronization. To illustrate how this model works, we have numerically
solved (18) for two mutually coupled IFOs and 500 globally coupled oscillators (see
Fig. 7b), where we observe that at the beginning, each oscillator has its own natural
frequency and as time goes by, groups of synchronous oscillators are formed, and
finally, the entire population is synchronized, i.e. all the IFOs emitting their pulses
simultaneously. Here, we have considered several phase oscillator models all of them
related to the explanation of firefly synchronization in its simplest form. All these
models could be applied to other oscillatory systems, but their original goal was to
understand how and why fireflies synchronize.

4.5 Light-Controlled Oscillators: Electronic Fireflies

As it has been stated above, most of the analytical models of fireflies synchronization
were based on mathematical equations driven the system of coupled oscillators to
synchronize. Nevertheless, some experimental devices allow the study of synchro-
nization by carrying out careful experiments. One of these devices is the LCO that
also receives the appellation of electronic firefly. From a technical viewpoint, each
LCO consists of an LM555 chip wired to function in its astable oscillating mode
(Fig. 8a). The alternations of it are determined by a dual RC circuit in parallel with
four photo-sensors that allow the LCO to interact with others by means of light
pulses (Fig. 8b). Basically, an LCO is a relaxation oscillator in the sense that it has
two time scales characterized by the binary variable ε(t): within each cycle there are
intervals of slow (charging stage, ε(t) = 1) and fast (discharging stage, ε(t) = 0)
motion. The period is determined by the two external RC circuits and the output
waveform takes the form of a pulse signal with minimum and maximum values set at
VM
3 and 2VM

3 respectively, VM being the value of the supply voltage. These threshold
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(a) (b)

Fig. 7 a Synchronization mechanism in two coupled IFOs. b Points correspond to firing times to
represent the dynamics of a population of 500 coupled IFOs showing the tendency towards complete
synchronization. The parameter values used in both cases are I = 2.5, η = 1 and β = 0.25

Fig. 8 a Block diagram of an LCO with the LM555 in its astable functioning mode. b Simplified
diagram of the LCO and schematic view of the coupling between LCOs

voltages determine the value of ε(t). If we consider a system composed of N LCOs,
the equation we use to model the voltage evolution for the i th LCO is:

dVi (t)

dt
= λi (VMi − Vi (t))εi (t)︸ ︷︷ ︸

charging term

− γi Vi (t)[1 − εi (t)]︸ ︷︷ ︸
discharging term

+
N∑
j=1

βi jδi j [1 − ε j (t)]
︸ ︷︷ ︸

coupling term

, (19)

where

δi j =
{
1, if i �= j and they may interact
0, otherwise
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indicates whether or not LCOs i and j interact. Note that the interaction term is active
only when at least one of the other LCOs is discharging. In this model, we consider
symmetric coupling, such that βi j = β j i . Another important experimental fact is
the coupling distance-dependent, i.e. the coupling strength β is almost quadratically
inverse with the distance, being the measured dependence: βi j ∝ 1

rα
i j
, being the power

α = 2.11.
Several experiments have been carried out with LCOs such as measurements of

phase-locking and phase differences in various sets of locally coupled LCOs [76],
transients [85] and determination of synchronous regions [84, 86]; in all of them,
the model described by Eq. (19) has been validated. On the other hand, locally and
globally coupled LCOs were studied comparing their dynamical features, finding
astonishing changes in their dynamics, despite very small differences between the
oscillators [80]. Studies dealing with the influence of noise on LCOs have also been
doneusing uniform [77] andGaussian [79] distributions, resulting in some impressive
results. Such as those showing that white noise can enhance synchronization on a set
of two LCOs under the condition that the noise acting on each of one has different
variances, i.e. various noise intensities acting on each LCO.

From a biological point of view, the use of LCOs as a fireflies model, allows to
describe realistic situations in which, there is a population of 10 fireflies distributed
randomly both spatially and in what concerns their initial condition Vi0 and consid-
ering a distance-dependent coupling (Fig. 9a for identical, and (b) for nonidentical
fireflies). It is possible to describe synchronization employing polar plots where the
radial and angular coordinate are related to period and to phase difference measured
with respect to a reference firefly (in this case, firefly 2). The frames corresponding
to Fig. 9a1–a4, and b1–b4 display the dynamical situations after 2, 250, 500, and
1000 flashing events respectively. Thus, for identical fireflies and after 250 flashing
events, there are two synchronous clusters, one constituted by fireflies 7, 9, and 10,
and the other by the rest of fireflies; these two clusters are maintained over time until
1000 flashing events. According to the fireflies positions into the arena, it does not
surprise the emergence of the cluster formed by fireflies 7, 9, and 10, although it
could also be expected that firefly 3 be part of it; but undoubtedly, the initial condi-
tions made it possible to arrive at the situation shown in Fig. 9a4. On the other hand,
for the configuration of nonidentical fireflies of Fig. 9b, it is observed that after 250
firing events, there are four groups of fireflies with the following distribution: (i) 1
and 8, (ii) 5 and 9, (iii) 10 and (iv) 2, 3, 4, 6 and 7 (Fig. 9b2). Synchronous cluster
formation is interesting because it reflects in some way the position of the fireflies in
the arena. As time lasts, groups (i) and (ii) are “absorbed” by (iv) (Fig. 9b3), situation
that persists up to 1000 firing events (Fig. 9b4). Even tough, Firefly 10 has a very
similar period to that of the large synchronous bunch, its phase difference is different.
Again, the position of the fireflies seems to play an important role in the emergence
of the synchronization.

Throughout this section, we have considered all the models are attempting to
explain synchronization in fireflies as a self-organization process but without specific
details on the features of each firefly species (except for the Ermentrout model). In
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Fig. 9 Ensembles of 10 a identical and b nonidentical globally coupled fireflies with a distance-
dependent coupling and randomly distributed in an arena consisting of 50×50 cells. Polar repre-
sentation where the radial and angular coordinates are respectively related to the fireflies’ period and
phase difference. a1–a4 Identical and b1–b4 nonidentical LCOs. Frames showing the dynamical
polar distribution after (a1) and (b1) 2, (a2) and (b2) 250, (a3) and (b3) 500, and (a4) and (b4)
1000 flashing events

general, most of the models consider only the oscillators ability to synchronize and
that all of them have similar features (associated with the oscillators identity, e.g.
males). Nevertheless, if we desire to understand the firefly courtship as a whole, it
is necessary to take into account not only the emergence of males’ synchronization
but also the females’ response, considering that the oscillators associated to each of
the sexes are dissimilar to the other sex. Precisely in the next section we address this
problem.
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5 Response to Synchronization

Already in the beginnings of the century, the courting behavior ofPhotinus pyralis has
been described and even some simple experiments to reinforce the males’ behavior
have been carried out. After that, the female response was observed and described in
detail for Photinus fireflies [56], introducing the mechanism “flash-answer” that is
part of a sexual function of bioluminescence and allows the conspecific identification,
avoiding the interspecific one. Some exceptions must be pointed out that are related
to the aggressive mimicry where females of the genus Photuris attract and devour
males of the genus Photinus by mimicking the flash responses of Photinus females
[55, 58]. The observation on Photinus flash-patterns describing their importance
in fireflies communication, as well as their importance in courtship, deserved the
attention and numerous publications came to light allowing a better understanding
of the mating process as a whole [17, 19, 52, 59, 89].

In 2010, Moiseff and Copeland reported a surprising finding issued from exper-
iments carried out with virtual males and a real Photinus carolinus female; they
showed that males’ synchronization is associated with the female’s response [68].
The latter improved the knowledge concerning the synchronous behavior of fireflies,
enhancing the fact that both males and females participate actively in the courtship.
In other words, when referring to fireflies courtship, we must consider the females’
response to males’ synchronization. A first attempt to explain the response to syn-
chronization [75] has been made using a modified LCOs model, in which, males and
females exhibit dissimilar features when they are interacting. The model described
in [75] not only reproduces the experimental results shown in [68], but it is also capa-
ble of predicting more complex and realistic situations; in particular, the behavior of
other species of the genus Photinus. As stated in [52], there are species differences
in the courtship flash signals of Photinus fireflies; this special feature permits even to
identify Photinus species just by recognizing their courtship flashing patterns. Some
examples for these flashing patterns in the case of males are [52]: two flashes per
phrase for Photinus consanguineus and Photinus greeni, six flashes per phrase for
Photinus carolinus (the species considered in [68, 75], eight flashes per phrase for
Photinus consimilis.

In order to model the response to synchronization, it is considered the dissimilar-
ity in their oscillatory features between males and females. In Fig. 10 is explained the
terminology used in the description of a male and a female. The first type (Fig. 10a)
fires a burst of n f spikes (flashes) during the active phase, followed by a quies-
cent or silent time Ts , a parameter that remains constant even when the oscillators
are coupled. The female has one flash in its fast discharging process Td which is
preceded by a long-lasting charging process Tc and followed by a silent time Ts
(Fig. 10b). We define the interburst period or the duration of a phrase Tp as the com-
plete cycle comprising the active phase and the silent time. Consequently, the active
phase takes n f (Tc + Td) = T p − T s.Males and females are individually considered
as relaxation oscillators because they have two different time scales, i.e. within each
cycle, there is a slow process followed by a firing process. Each process ends at its
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Fig. 10 Signals of the dynamic V and the binary ε variables for the two types of relaxation
oscillators used in this work. They are characterized by the quiescent period Ts , the active phase
with n f spikes per burst, the interburst period or silent time Ts , the charging and the discharging
times Tc and Td respectively, the intraburst or interspike period Tc + Td , the interburst period or
duration of a phrase Tp , and the phase delay Δφ that plays the role of initial condition. a Male
oscillator that in this case has the following parameter values: Ts = 10.000 s, n f = 6 (Photinus
carolinus), Tc = 0.500 s, Td = 0.200 s, Ts = 5.800 s and Δφ = 0.603 rad ≡ 0.960 s. b Female
oscillator having in this particular case the parameter values: Ts = 10.000 s, n f = 1, Tc = 6.000
s, Td = 0.100 s, Ts = 3.900 s and Δφ = 1.750 rad ≡ 2.785 s

own threshold, being the lower and the upper thresholds at V lower = VM/3 = 3 and
V upper = 2VM/3 = 6 respectively.We take these threshold values in connection with
the experimental aspects related to the LCO, namely, the oscillator serving as the
basis of the model stated in Eq. (20a) and (20b). Note that we take VM = 9 which
is the considered value from an experimental point of view and related to the value
of a voltage source. It is also important to note that in Fig. 10a, the parameter values
and n f = 6 which corresponds in biological terms to the Photinus carolinus flashing
pattern. It is clear that the model could be adapted to other species just in changing
the relevant parameters.

The equations describing the dynamical variable Vi of each oscillator i are given
by:

dVi (t)

dt
= ln 2

Tci
(VMi − Vi (t)) εi (t) − ln 2

Tdi
Vi (t) (1 − εi (t)) , (20a)

Vi (t) = (
Vi (t) − V lower

i

)
εi (t) + V lower

i . (20b)

As stated above, VM is a constant that determines the lower and upper thresholds and
εi (t) is a binary variable describing the state of the i th oscillator by:
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εi (t) = 1 : extinguished oscillator (charging and silent stage)
εi (t) = 0 : fired oscillator (discharging stage).

The transition between the states determined by ε is described by the following
relation:

If Vi (t) = V lower
i and εi (t) = 0 then εi (t+) = 1; (21a)

If Vi (t) = V upper
i and εi (t) = 1 then εi (t+) = 0; (21b)

If Vi (t) = V lower
i and εi (t) = 1 then εi (t+) = 1, (21c)

where t+ in the condition given by Eq. (21c) is defined in the interval

t = [t+ (k − 1)(Tp + n f (Tc + Td)) + Δφ]

for every k interburst period or phrase, i.e. for every complete cycle comprising the
active phase and the silent time.

The main feature of the considered oscillators dwells on its firing process which
allows a pulsatile coupling with other oscillators that can receive these pulses or
spikes leading to a modification in their oscillatory dynamics. The dynamical equa-
tions describing a generic group of N coupled oscillators are:

dVi (t)

dt
= ln 2

Tc0i
(VMi − Vi (t)) εi (t) − ln 2

Td0i
Vi (t) (1 − εi (t)) + θi

N∑
i, j=1

βi j (1 − ε j (t)),

(22)
where i, j = 1, . . . , N . Conditions that are given by Eqs. (20b) and (21), which
take into account the existence of a silent time, must also be followed by Eq. (22).
The quantities Tc0i and Td0i are, respectively, the lasting time of the charge and the
dischargewhen there is no action on the oscillator i by other oscillators. Furthermore,
we consider that oscillators are mutually coupled with a coupling strength βi j that
represents the pulsatile action of the oscillator j spike during its discharge upon the
oscillator i . Concurrently, βi j are the elements of the weighted adjacency matrix of
the set. A simple inspection of Eq. (22) shows that both charging and discharging
stages might be modified by the effect of the coupling with other oscillator(s). The
charging and the discharging times might be shortened or lengthened respectively
when the pulsatile action due to the firing of other oscillator(s) takes place. The latter
is determined by the value of θ that takes the values:

θ =
{
1, Males
−1, Females

This factor is significant because it determines the behavior of the oscillators when
stimuli are applied to them.

Several studies have been carried out in [75] considering Photinus carolinus flash
patterns. Here, we show in Fig. 11 the interaction between a set of eight males and
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four females that according to their flash patterns correspond to Photinus consan-
guineus. Figure11a shows how the males’ flashes evolve until all the population is
completely synchronized and how females trigger their responses, firstly sporadi-
cally and then permanently as shown in Fig. 11b. This phenomenon that appears in
Photinus fireflies might be extended to other types of oscillators under the condi-
tion that they are dissimilar as stated in [78] where the mechanisms of response to
synchronization were unraveled. The response to synchronization phenomenon is
illustrated in Fig. 12, where in (a) it is shown a set of males that can synchronize
and, in (b) a set of females that their interactions do not lead to synchronization.
Finally, when both populations are mingled as in Fig. 12c, the males still synchro-
nize, and as a result of this, females respond following different patterns being the
most interesting the simultaneous and permanent responses, as they have acquired
the property to synchronize. When extending the results to other types of oscillators
and considering the role of network topologies, it is possible to deeply study the
collective behavior of these interacting dissimilar oscillators both from a theoretical
and experimental point of view, especially when the sets are composed of a consid-
erable number of oscillators. The latter could contribute to a better understanding of
systems that exhibit the phenomenon of response to synchronization, viz. fireflies,
neurons, and possibly other animals and other types of cells.

Fig. 11 Evolution of the flashes in a population of 12 slightly different males and four slightly
different females considering similar parameters and features as in Fig. 10. a Sequence from 100 to
200 s in which, the males are not synchronized until around 180 s, and consequently, the females
do not respond, or they do it sporadically as it appears for around 170 s. b Sequence from 300 to
400 s in which, the males are completely synchronized, resulting in permanent and simultaneous
females’ responses
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Fig. 12 Illustration of the response to synchronization event in Photinus fireflies. a A set of inter-
acting males that can easily synchronize. b A set of interacting females that cannot synchronize.
cMingled set ofmales and females, where themales still synchronize and as a consequence, females
respond exhibiting different response patterns according to the parameter values and initial condi-
tions being one of the possible responses, the simultaneous and permanent females flashing in each
cycle as shown in Fig. 11b

6 What Have We Learnt from Fireflies?

Sometimes talking about fireflies seems to be very romantic and without any rela-
tionship to science and living well. Thus, it is not surprising to find some opinions
published in newspapers such as that cited by Strogatz [91] and Bojic et al. [6]: On
May 18, 1993, an article entitled “Govt. Blows Your Tax $$ to Study Fireflies in
Borneo-Not a Bright Idea! published in the tabloid National Enquirer recorded the
opinion of the Representative Tom Petri who said:

Spending taxpayers money studying fireflies doesn’t sound like a very bright idea to me.

Certainly, is not a fortunate opinion and denotes a plain ignorance concerning how
much the basic research can offer. As we have already mentioned, the knowledge
acquired from fireflies is enormous and only referring to the most recent ones, we
can mention the use of the firefly synchronization in the wireless network’s world.
Under the inspiration of the fireflies synchronous behavior, it is possible to argue that
in communication processes, it is better to consider cooperation concepts rather than
think in a system driven by a master. Hence, if all nodes cooperate, synchrony can be
reachedwithin fewperiods.Once nodes have agreed on a common time scale, they are
then able to communicate in a synchronous manner using a slotted medium access
protocol, benefiting from fewer collisions and higher throughput. When working
withWireless Sensor Networks (WSN), firefly synchronization is also exploited, and



Fireflies: A Paradigm in Synchronization 59

algorithms based on this concept are tested with the aim of giving greater robustness
to the WSN. Other concepts such as the Meshed Emergent Firefly Synchronization
(MEMFIS) that mitigates the acquisition phase by integrating synchronization into
the communication phase have also been developed to enhance the robustness of
the network [95]. Nowadays, the formulation of universal algorithms for WSNs is
one of the main tasks. Other networks such as the cognitive radio ad hoc networks
(CRAHNs) can also use a synchronization protocol based on fireflies and as a result,
the convergence time to synchronization is shorter than convergence time using other
protocols [54]. Theuse of fireflies as rolemodels seems to have the best characteristics
for synchronization mechanism related to Machine-to-Machine (M2M) systems (in
general composed of networked computational devices) [6]. From the recent review
of applications in networks, it is clear that firefly synchronization concept plays an
important role and further development is also based on this fact.

Mobile networks or devices have also found significant developments with ideas
issued from firefly synchronization. Thus, applications to the optimization of mobile
networks have also been developed using firefly-synchronized agents [7]. On the
other hand, the so-called firefly algorithm [100] is a swarm intelligence (collective
behavior and decentralized systems) is a kind of stochastic, nature-inspired, meta-
heuristic algorithm that can be applied to solving the hardest optimization prob-
lems. It solves problems of continuous optimization, combinatorial optimization,
constraint optimization, multi-objective optimization, as well as dynamic and noisy
environments, and even classification. It is widely applied in engineering problems
[33]. Algorithms based on firefly synchronization have also been used for swarms
of robots as a first approach for understanding real task-execution scenarios [21].
In the same line, possible interactions between real and electronic fireflies (mixed
populations) were proposed and even with the possibility of considering males and
females differently (mingled populations) that could help to a deeper understanding
of the underlying behavior of fireflies and also find potential applications based on the
response to synchronization. A picturesque view of this kind of mixed and mingled
sets of electronic and real fireflies is shown in Fig. 13. Finally, we could mention
some new impact applications such as those leading to improve the efficiency of
LEDs [4], or those to conduct a new method of medical diagnostics based on the
way in which fireflies produce cold light [87]. In summary, fireflies not only delight
us with their beautiful, hypnotic flashes but also they allow us to better understand
nature in their many facets from basic phenomena such as self-organization to all the
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Fig. 13 A picturesque view of the interaction between LCOs (electronic fireflies) and real fireflies.
Electronic fireflies would be designed either to simulate the behavior of males or females, and real
males and females would be part of the system as well (Use of fireflies images with permission of
Terry Priest)

applications in a wide variety of fields. The emergence of functional synchronization
due to the collective behavior without any leader, the response to synchronization,
the biochemical mechanism of luminescence, are only a few of the issues that fireflies
“illuminated” us.
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Mixed Synchronization in the Presence
of Cyclic Chaos

Gokul PM, Tomasz Kapitaniak and Anandamohan Ghosh

1 Introduction

Low-dimensional dynamical systems exhibit a variety of complex behaviors includ-
ing chaos and the study of the collective dynamics of many such coupled systems
has drawn attention over the past few decades [1, 2]. It has been experimentally
observed and theoretically explored that the collective behavior is often manifested
in a synchronized response [3–5]. Examples can be drawn from a wide variety of
systems ranging from the neural dynamics to the population models [6–8]. In many
of these systems one can observe different types of synchronization like complete
synchronization, anti synchronization, lag synchronization, mixed synchronization,
etc. [9–22]. Recent studies have demonstrated the importance of mixed synchroniza-
tion in devising effective control strategies and in secure communication [23]. The
above study also experimentally demonstrates mixed synchronization in electronic
circuits, where the in-phase or the anti synchronized states can be obtained by an
appropriate tuning of the control parameters [23]. Studies of synchronization in a
system of coupled networks have also drawn much attention in recent time [24, 25].
One can not only observe “inner synchronization” but also “outer synchronization”
of two coupled networks which can also exhibit mixed synchronization states [26,
27]. In this work we demonstrate that in symmetrically coupled dynamical units it
is possible to observe mixed synchronization and it is solely dictated by the initial
conditions. An important finding of our work is that mixed synchronized states can
occur intermittently owing to symmetry properties of the coupling.

The symmetries in dynamical systems play a crucial role in the collective behavior
of coupled systems. The coupled system can be such that it visits a sequence of
equilibrium states in a cyclic manner leading to a trajectory called the heteroclinic
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cycle [28–30]. The symmetry of the global coupling ensures that the trajectories
are stable with respect to the perturbations resulting in a stable heteroclinic cycle
(SHC from henceforth) and have been analyzed in detail in the past [31, 32]. Stable
heteroclinic cycles also exist in discrete dynamical systems,where the local dynamics
is governed by a nonlinear map and three such units are globally coupled by wreath
product coupling [33, 34].

Moreover, depending on the strength of the nonlinearity, the dynamics can be such
that it cycles between chaotic states as in cycling chaos [34–36]. There exists a large
volume of work on SHC in continuous systems and their synchronization properties
when subjected to time-dependent drives [37, 38]. In this paper we are interested
in studying master-slave synchronization of discrete dynamical units. We consider
discretemodels, with cubic nonlinearity and exhibiting SHC aswell as cycling chaos,
as a simple prototype system to demonstrate the synchronization properties. First we
report our results for coupling scheme based on contraction mapping, where the
system can either synchronize or anti synchronize depending on suitable choice of
coupling. Next we consider the response system with wreath product coupling and
demonstrate that there exists mixed synchronization. Importantly, the emergence of
mixed synchronized states does not require any parametric tuning. We also study
the mixed synchronization in coupled phase oscillators with SHC and conclude by
discussing the importance of the mixed synchronized states in the context of neural
dynamics.

2 SHC in Discrete Systems

We study the coupled dynamics of discrete maps, where the ith component of the
variable X evolves as

Xi
n+1 = f (Xi

n) + γg(Xi
n,X

j
n). (1)

The local dynamics is given by the function f (Xi
n) while the global dynamics

g(Xi
n,X

j
n) couples the ith and the jth componentswith coupling strengthγ. Thismodel

was introduced earlier [34] as a generalization of a system of differential equations
exhibiting heteroclinic cycles cycling between chaotic attractors [35]. More specifi-
cally, for the local dynamics we also consider a cubic nonlinear function

f (Xn) = λXn − X3
n (2)

where λ > 0 is the parameter of the map. As λ is increased from unity the system
exhibits a series of period doubling bifurcation to chaos. It is easy to check that if
μ ∈ L is an element in the group of local symmetries L

f (μXi) = μf (Xi). (3)
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The coupling function is chosen such that it follows the global symmetry. If σ ∈ G
is an element in the group of global symmetries G

g(σX) = σg(X). (4)

The specific form of the coupling chosen is called wreath product coupling

g(xi, xj) = |xj|mxi (5)

where 0 < m < 1 and determines the rate at which the global dynamics cycles
between different states. The local symmetries also satisfy global symmetries [33]

g(Xi,μXj) = μg(Xi,Xj) (6)

g(μXi,Xj) = g(Xi,Xj) (7)

For example, if we consider μ as an element in the group of cyclic permutations, the
above equalities are satisfied. Thus combining the local dynamics, Eq. (2), and the
global coupling, Eq. (5), in Eq. (1), the three-dimensional discrete dynamical system
assumes the form

xn+1 = λxn − x3n − γ|yn|mxn
yn+1 = λyn − y3n − γ|zn|myn
zn+1 = λzn − z3n − γ|xn|mzn. (8)

This is our Master system. In our simulation we take γ = 3.0 and m = 1/2, and we
consider the positive values of the coupling term. Typical trajectories are shown in
Fig. 1. It is clearly seen that when any one of the variables is active other two variables
are silent and the dynamics is cycling in the sense that the variables become active in a
certain order, x → y → z → x. The cycling behavior corresponds to the heteroclinic
cycles forweak coupling, and their existence has been rigorously establishedby linear
stability analysis [39]. It has been numerically established that the system undergoes
a sequence of period-doubling bifurcation leading to a pair of chaotic attractors [39].
In this work we will consider strong coupling, γ = 3.0, resulting in cycling behavior
which is again weakly or strongly chaotic depending on the parameter, λ = 1.4 and
λ = 2.5, respectively. For the lower value of λ(= 1.4) the dynamics of a cubic map
in Eq. (2) is periodic. However, when the cubic maps are coupled as in Eq. (8)
the nonlinearity in the global dynamics renders the coupled system weakly chaotic
: any active variable can be in the neighborhood of either of its two fixed points
(positive/negative) and this switch is irregular and unpredictable. Typical Lyapunov
exponents are (0.001, 0.0005,−0.8)where theMaximal LyapunovExponent (MLE)
is small but positive. While for the choice of λ = 2.5 the local dynamics is chaotic
and the dynamics of Eq. (8) is strongly chaotic as confirmed by the values of the
Lyapunov exponents (0.25, 0.23,−0.09). In fact, two positive Lyapunov exponents
indicate that the dynamics is hyperchaotic [40–43].



68 Gokul PM et al.

4000 5000 6000 7000 8000
−1

−0.5

0

0.5

1

X n

4000 4200 4400 4600 4800 5000
−2

−1

0

1

2

iteration (n)

X n

(a)

(b)

Fig. 1 Time series data for the three variables, Xn = {xn, yn, zn} in Eq. (8), are shown in red, green,
blue respectively. We have set γ = 3.0, m = 0.5 and initial conditions X0 = {0.11, 0.3, 0.6}. The
value of the nonlinearity λ determines (a) weakly chaotic dynamics, λ = 1.4; (b) chaotic dynamics,
λ = 2.5

3 Synchronization in Discrete Cycling Systems

Synchronization of a chaotic system can be of different kinds and depends on the cou-
pling function. In many physical systems, it is commonly observed that two coupled
systems are either synchronized or anti synchronized. We would now demonstrate
that it is possible to design a coupling strategy that shows mixed synchronization in
a system that has cycling chaotic behavior.

The driving (master) system is given by Eq. (8) as before while the driven (slave)
system is now the following:

pn+1 = λpn − p3n − γ|yn|mpn
qn+1 = λqn − q3n − γ|zn|mqn
rn+1 = λrn − r3n − γ|xn|mrn. (9)

Thus the driving variables enter the driven system through the wreath product cou-
pling term. A representative dynamics is given in Fig. 2. In this example, the driving
variable, xn, and the driven variable, pn, show in-phase synchronization while the
other pairs of variables {yn, qn} and {zn, rn} show anti synchronization. This is a
clear indication of the existence of mixed synchronization. The interesting feature



Mixed Synchronization in the Presence of Cyclic Chaos 69

−1

−0.5

0

0.5

1
x n, p

n

−1

−0.5

0

0.5

1

y n,q
n

9000 10000 12000 14000 16000 18000
−1

−0.5

0

0.5

1

iteration (n)

z n,r
n

−1 0 1
−1

−0.5

0

0.5

1

xn

p n

−1 0 1
−1

−0.5

0

0.5

1

yn

q n

(b)

(a)

(c)

(d)

(e)

Fig. 2 Time series data for the driving and the driven system variables: (a) xn, pn (b) yn, qn (c)
zn, rn. The coupling is set on at iteration number, n = 10000. The pair of variables {xn, pn} is
synchronized (d) and the pair of variables {yn, qn} is anti-synchronized (e). The pair {zn, rn} has
also anti-synchronized but not shown here. The parameters are γ = 3.0, m = 0.5, λ = 1.4

of the dynamics is that the choice of different sets of initial conditions are sufficient
to get different synchronized/anti synchronized states. Since each pair can either
synchronize or anti synchronize all such 23 = 8 possibilities coexist.

Let us now introduce the following variablesU = x − p, Ũ = x + p, V = y − q,
Ṽ = y + q,W = z − r, W̃ = z + r and the Eqs. (8) and (9) can now be expressed as

Un+1 = λUn − U 3
n

4
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∣
∣
∣
∣
∣

Un + Ũn

2

∣
∣
∣
∣
∣

m
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W̃n+1 = λW̃n − W̃ 3
n

4
− 3W 2

n W̃n

4
− γW̃n

∣
∣
∣
∣
∣

Un + Ũn

2

∣
∣
∣
∣
∣

m

(10)

As shown in the example of Fig. 2 the synchronization of {xn, pn} implies Un =
0, while anti synchronizations of {yn, qn} and {zn, rn} imply Ṽn = 0 and W̃n = 0,
respectively. Plugging Un = 0, Ṽn = 0 and W̃n = 0 in the above set of equations we
obtain a simplified three-dimensional system

Ũn+1 = λŨn − Ũ 3
n

4
− γŨn

∣
∣
∣
∣

Vn

2

∣
∣
∣
∣

m

Vn+1 = λVn − V 3
n

4
− γVn

∣
∣
∣
∣

Wn

2

∣
∣
∣
∣

m

Wn+1 = λWn − W 3
n

4
− γWn

∣
∣
∣
∣
∣

Ũn

2

∣
∣
∣
∣
∣

m

. (11)

It turns out that {Ũ , V,W } form a dynamical system satisfying all the symmetry
conditions in the local and the global dynamics. This can be easily seen if we divide
both sides of Eq. (11) by 2 and identify {Ũ/2, V/2,W/2} ≡ {x, y, z} we recover
Eq. (8). Stability of the cycling behavior governed by Eq. (8) has been rigorously
established in Theorem 3.1 in [39] and is also true for our reduced system Eq.
(11). The important finding is that this is true for any three variables chosen from
the set of six variables {U, Ũ , V, Ṽ ,W, W̃ }. Thus eight possible types of mixed
synchronization can be observed. The system can settle for any one of the eight
cycling states depending only on the initial conditions. It is trivial to show that if we
assume only two variables, from the set of six elements, vanish the resultant four-
dimensional system of difference equations do not satisfy the symmetry conditions,
hence, can not form a stable cycle. The stability of the synchronized dynamics with
respect to transverse perturbations can be quantified by computing the transverse
Lyapunov exponents for a trajectory running in the synchronized subspace along a
cycling trajectory [5]. The largest transverse Lyapunov exponent (�T ) stays negative
for varying coupling strength γ, as seen in Fig. 3, establishing the stability of the
mixed synchronized states. It is to be noted that the heteroclinic cycle crucially
depends on γ and m and the cycle is destroyed if γ � 3.

The dynamics of the complete system exhibits cycling chaos, typically, when
any of the variables is locally active all other variables are ≈ 0. Thus to qualita-
tively understand the basin of attraction dynamics can be approximated by the local
dynamics of the coupled system Eq. (11), i.e.,

Un+1 = λUn − U 3
n

4
− 3UnŨ 2

n

4

Ũn+1 = λŨn − Ũ 3
n

4
− 3U 2

n Ũn

4
(12)
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(a)

(b)

Fig. 3 Three Transverse Lyapunov exponent (�T1,2,3 ) is shown as a function of coupling strength
γ.m = 0.5 for a λ = 1.4 and b λ = 2.5. aWe see a region of stability (γ = (0, 1.1)) followed by a
region of instability (till γ = (1.1, 2.7) followed again by another region of stability (γ = (2.7, 3))
after which the system is then unstable (γ > 3.0). b We see an unstable region in the beginning
(γ = (0, 0.9)) after which there is a small region of stability (γ = (0.9, 1.2)), which is followed by
another unstable region (γ = (1.1, 1.98)) followed again by a small stable region (γ = (1.98, 2))
after which another unstable region exists (γ = (2, 2.7))) which is then followed by a region of
stability (γ = (2.7, 3)) beyond which the system is unstable (γ > 3)
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Fig. 4 The basin of attraction is shown as color map on theU0-Ũ0 plane for the local dynamics as in
Eq. (12). The different regions correspond to stable states: (±2

√
λ − 1, 0) in red (anti synchronized),

(0,±2
√

λ − 1) in blue (synchronized), (0, 0) in white. The parameter λ = 1.3

The above two-dimensional map has the stable equilibria

(U ∗, Ũ ∗) = {(0, 0), (±2
√

λ − 1, 0), (0,±2
√

λ − 1)}. (13)

If we consider weakly chaotic dynamics i.e. λ = 1.3 < 2, depending on the initial
conditions (Un=0, Ũn=0) the dynamics asymptotically converges to one of the equi-
librium states. The basin of attraction is shown in Fig. 4. which can be interpreted
as the basins of attraction for the synchronized and the anti synchronized state. (It is
obvious that for (V, Ṽ ), (W, W̃ ) the basins of attraction will be identical.) For exam-
ple, if the coupled system is iterated with xn=0 = pn=0 = β (say), the corresponding
U = 0 and Ũ = 2β, then from Fig. 4, the asymptotic state is the synchronized state
[region blue]. Similarly, knowing the initial states of all the driving and the driven
variables it is possible to predict the emergent mixed synchronized states.

Now we study the coupled system when the local dynamics is chaotic. If we
consider the local dynamics of Eq. (11), we have three identical maps of the form
Vn+1 = λVn − V 3

n /4. The fixed points of the maps (±2
√

λ − 1) are stable for 1 <

λ < 2. We chose λ = 2.5, and the resultant chaotic dynamics is shown in Fig. 5. It is
observed that the cycles in the driving and the driven system i.e., the global dynamics
can synchronize or anti synchronize but the local dynamics do not synchronize. In
the globally synchronized part the difference variable Un shows fluctuations due to
mismatch in local dynamics and the fluctuation is greater during anti synchronization
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Fig. 5 a Time series data for xn (blue) and pn (red) for γ = 3.0, m = 0.5, λ = 2.5 b Un c Un is
shown for large number of iterations

Fig. 5b. The transverse Lyapunov exponents for λ = 2.5 are still negative, Fig. 3,
though complete synchronization is not achieved.This only indicates that the negative
transverse Lyapunov exponents is a necessary condition and not a sufficent condition
for synchronization. In the non-chaotic regime different initial conditions lead to
different mixed synchronized states while in the chaotic regime starting with any
initial condition it is possible to obtain both the synchronized and anti synchronized
states intermittently. Since the intrinsic dynamics is strongly chaotic the transition
from synchronized to anti synchronized states remains unpredictable. This is an
interesting feature, the transverse error dynamics is intermittently synchronized or
anti synchronized, in terms of the global heteroclinic cycles but the local dynamics
clearly is not. However, this hyperchaotic parameter regime is not fully understood
and rigorous studies needs to be undertaken.

4 Discussion

Our study indicates that symmetrically coupled oscillating units on master-slave
coupling can exhibitmixed synchronization. Themixed synchronization is a property
of systems exhibiting cycling chaos and their dependence on the initial conditions
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is quite interesting. Our observation is reminiscent of multivalued synchronization
observed in forced systemswheremultistability leads to interesting dynamical basins
of attraction [44]. Our study is also relevant in the context of neural dynamics. As
we have shown in our model systems, the neuronal response can be such that the
neurons form synchronous and asynchronous clusters. In a typical neural network,
the number of neurons being large, the number of initial states is also large resulting
in many possibilities of such mixed cluster states. A particular initial state will lead
to one of the many possible mixed synchronized states. The existence of manymixed
states results in a greater variability in the dynamics of neural networks, a subject of
great interest [45, 46]. It will be interesting to explore the role of noise on the extent
of synchronization. The noise can be introduced as an additive term or by making the
intrinsic parameters randomly distributed. Sensitivity to noise strength can destroy
or even stabilise a cycle leading to interesting synchronization behavior. Moreover, if
the dynamics isweakly chaotic, from the output state it is possible to read out the input
state, which is evident from the computed basin of attraction. However, the read-out
will not be possible if the local dynamics is chaotic, but an important finding is that the
the global dynamics exhibit intermittent mixed synchronization. The global coupling
maintains the synchrony in the global cycling pattern reminiscent of central pattern
generators. A detailed study, with more realistic model of neurons with synaptic
coupling is required to understand the implications of mixed synchronization in
neural systems and studies in that direction are in progress.
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Time-Delay Effects on Periodic Motions
in a Duffing Oscillator

Albert C.J. Luo and Siyuan Xing

In this chapter, time-delay effects on periodic motions in a periodically forced, time-
delayed, hardeningDuffing oscillator are reviewed and further discussed. Bifurcation
trees of periodic motions to chaos varying with time-delay are presented for such a
time-delayed, Duffing oscillator. From the analytical prediction, periodic motions in
the time-delayed, hardening Duffing oscillator are simulated numerically. Through
numerical illustrations, time-delay effects on period-1 motions to chaos in nonlinear
dynamical systems are strongly related to the distributions and quantity levels of
harmonic amplitudes.

1 Introduction

To study time-delay systems, one can approximate the time-delay term through

xτ = x(t − τ) ≈ x(t) − ẋ(t)τ (1)

For a very small time-delay, such an approximation in dime-delay systems may be
acceptable. If the time-delay becomes large, such an approximation cannot be used
to study the time-delay systems.

Recently, periodicmotions in time-delayed dynamical systemswere of great inter-
est. The perturbation method has been adopted for approximate solutions of periodic
motions in the time-delayed nonlinear oscillators (e.g., Hu et al. [1], Wang and Hu
[2]). The traditional harmonic balance method was also employed for approximate
solutions of periodic motions in time-delayed nonlinear oscillators (e.g., MacDonald
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[3], Liu andKalmar-Nagy [4], Lueng andGuo [5]). However, such approximate solu-
tions of periodic motions in the time-delayed oscillators were based on one or two
harmonic terms without enough accuracy. To improve accuracy of approximate solu-
tions of periodic motions, in 2013, Luo [6] presented the generalized harmonic bal-
ancemethod for periodicmotions in time-delayed, nonlinear dynamical systems. Luo
and Jin [7] applied such a generalized harmonic balancemethod for the time-delayed,
quadratic nonlinear oscillator, and the analytical bifurcation trees of period-1motions
to chaos were obtained. Luo and Jin [8] determined complex period-1 motions in
the periodically forced Duffing oscillator with a time-delayed displacement. Further,
Luo and Jin [9] analytically determined the bifurcation trees of the period-1 motions
to chaos in the time-delayed Duffing oscillator, and complex period-mmotions were
studied in such a time-delayed Duffing oscillator. The generalized harmonic balance
method cannot be used the nonlinear dynamical systems with non-polynomial non-
linear systems. In 2015, Luo [10] developed a semi-analytical method to determine
periodic motions in nonlinear dynamical systems through discrete implicit maps.
From a specific mapping structure, periodic motions in the nonlinear dynamical
systems can be determined. From such solutions of discrete nodes on the periodic
motions, the corresponding frequency-amplitudes can be determined. Luo and Guo
[11] applied such a semi-analytical method for bifurcation trees of periodic motions
to chaos in the Duffing oscillator. The semi-analytical method in Luo [10] was also
developed for time-delay nonlinear systems. Luo and Xing [12] used such a method
for complicated period-1 motions and the corresponding bifurcation trees to chaos
in the time-delayed Duffing oscillator. Luo and Xing [13] analytically predicted the
bifurcation trees of period-1 motions to chaos. For such studies, the time-delay is
specifically chosen. In 2017, Luo and Xing [14] discussed the time-delay effects on
periodic motions in the time-delayed Duffing oscillator. In this chapter, the time-
delay effects on periodic motions in the time-delayed dynamical systems will be
reviewed and further discussed.

2 A Semi-analytical Method

From Luo [10], a period-m flow in a time-delayed, nonlinear dynamical system can
be described through discrete nodes for period-mT . To determine period-m motion
in time-delay dynamical systems, the following theorem is presented herein.

Theorem 1 Consider a time-delay nonlinear dynamical system

ẋ = f(x, xτ , t,p) ∈ Rn,

with x(t0) = x0, x(t) = �(x0, t − t0,p) for t ∈ [t0 − τ,∞). (2)

If such a time-delay dynamical system has a period-m flow x(m)(t) with finite
norm ||x(m)|| and period mT (T = 2π/�), there is a set of discrete time tk(k =
0, 1, . . . ,mN ) with (N → ∞) during m-periods (mT ), and the corresponding solu-
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tion x(m)(tk) and vector field f(x(m)(tk), xτ(m)(tk), tk,p) are exact. Suppose discrete
nodes x(m)

k and xτ(m)
k are on the approximate solution of the periodic flow under

||x(m)(tk) − x(m)
k || ≤ εk and ||xτ(m)(tk) − xτ(m)

k || ≤ ετ
k with small εk, ετ

k ≥ 0 and

||f(x(m)(tk), xτ(m)(tk), tk,p) − f(x(m)
k , xτ(m)

k tk,p)|| ≤ δk (3)

with a small δk ≥ 0. During a time interval t ∈ [tk−1, tk], there is a mapping
Pk : (x(m)

k−1, x
τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )(k = 1, 2, . . . ,mN) as

(x(m)
k , xτ(m)

k ) = Pk(x
(m)
k−1, x

τ(m)
k−1 ) with gk(x

(m)
k−1, x

(m)
k ; xτ(m)

k−1 , xτ(m)
k ,p) = 0,

xτ(m)
j = h j (x

(m)
r j−1, x

(m)
r j , θr j ), j = k, k − 1; r j = j − l j , k = 1, 2, . . . ,mN ;

(e.g., xτ(m)
r = x(m)

sr + θr (x
(m)
rr−1 − x(m)

rr ), θr = 1

hr j
[τ −

lr j∑

i=1

hr j+i ]). (4)

where gk is an implicit vector function and h j is an interpolation vector function.
Consider a mapping structure as

P = PmN ◦ PmN−1 ◦ . . . ◦ P2 ◦ P1 : x(m)
0 → x(m)

mN ;
with Pk : (x(m)

k−1, x
τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )(k = 1, 2, . . . ,mN ). (5)

Forx(m)
mN = P(x(m)

0 , xτ(m)
0 ), if there is a set of points (x(m)∗

k , xτ(m)∗
k )(k = 0, 1, . . . ,mN)

computed by

gk(x
(m)∗
k−1 , x(m)∗

k ; xτ(m)∗
k−1 , xτ(m)∗

k ,p) = 0,
xτ(m)∗
j = h j (x

(m)∗
r j−1, x

(m)∗
r j , θr j ), j = k, k − 1

}
(k = 1, 2, . . . ,mN )

x(m)∗
r j−1 = x(m)∗

mod (r j−1+mN ,mN ), x
(m)∗
r j = x(m)∗

mod (r j+mN ,mN ); (6)

x(m)∗
0 = x(m)∗

mN and xτ(m)∗
0 = xτ(m)∗

mN

Then the points x(m)∗
k and xτ(m)∗

k (k = 0, 1, . . . ,mN) are the approximation of points
x(m)(tk) and xτ(m)(tk) of periodic solutions. In the neighborhoods of x

(m)∗
k and xτ(m)∗

k ,
x(m)
k = x(m)∗

k + 	x(m)
k and xτ(m)

k = xτ(m)∗
k + 	xτ(m)

k , the linearized equation is given
by

k∑

j=k−1

∂gk
∂x(m)

j

	x(m)
j + ∂gk

∂xτ(m)
j

(
∂xτ(m)

j

∂x(m)
r j

	x(m)
r j + ∂xτ(m)

j

∂x(m)
r j−1

	x(m)
r j−1) = 0 (7)

with r j = j − l j , j = k − 1, k; (k = 1, 2, . . . ,mN ).

The resultant Jacobian matrices of the periodic flow are
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DPk(k−1)...1 =
[
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and

A(m)
k =

[
B(m)
k (a(m)

k(rk−1−1))n×n

I(m)
k 0(m)

k

]

n(s+1)×n(s+1)

, s = 1 + lk−1

B(m)
k = [(a(m)

k(k−1))n×n, 0n×n, . . . , (a
(m)

k(rk−1))n×n], (10)

I(m)
k = diag(In×n, In×n, . . . , In×n)ns×ns,

0(m)
k = (0n×n, 0n×n . . . , 0n×n︸ ︷︷ ︸

s

)T;

y(m)
k = (x(m)

k , x(m)
k−1, . . . , x

(m)
rk−1

)T,

y(m)
k−1 = (x(m)

k−1, x
(m)
k−2, . . . , x

(m)
rk−1−1)

T,

	y(m)
k = (	x(m)

k ,	x(m)
k−1, . . . , 	x(m)

rk−1
)T, (11)

	y(m)
k−1 = (	x(m)

k−1,	x(m)
k−2, . . . ,	x(m)

rk−1−1)
T;

a(m)
k j = [ ∂gk

∂x(m)
k

]−1 ∂gk
∂x(m)

j

,

a(m)
kr j

= [ ∂gk
∂x(m)

k

]−1
j+1∑

α= j

∂gk
∂xτ(m)

α

∂xτ(m)
α

∂xr j
,

a(m)

k(r j−1) = [ ∂gk
∂x(m)

k

]−1
j∑

α= j−1

∂gk
∂xτ(m)

α

∂xτ(m)
α

∂xr j−1
(12)

with r j = j − l j , j = k − 1, k.

The properties of discrete points x(m)
k (k = 1, 2, . . . ,mN) can be estimated by the

eigenvalues of DPk(k−1)...1 as

|DPk(k−1)...1 − λ̄In(s+1)×n(s+1)| = 0 (k = 1, 2, . . . ,mN ). (13)
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The eigenvalues of DP for such a periodic flow are determined by

|DP − λIn(s+1)×n(s+1)| = 0, (14)

and the stability and bifurcation of the periodic flow can be classified by the eigen-
values of DP(y∗

0) with

([nm1 , no1] : [nm2 , no2] : [n3, κ3] : [n4, κ4]|n5 : n6 : [n7, l, κ7]). (15)

(i) If the magnitudes of all eigenvalues of DP are less than one (i.e., |λi | < 1, i =
1, 2, . . . , n(s + 1)), the approximate periodic solution is stable.

(ii) If at least themagnitude of one eigenvalue of DP is greater than one (i.e., |λi | >

1, i ∈ {1, 2, . . . , n(s + 1)}), the approximate periodic solution is unstable.
(iii) The boundaries between stable and unstable periodic flow with higher order

singularity give bifurcation and stability conditions with higher order singu-
larity.

Proof See Luo [10]. �

3 Discretization of Dynamical Systems

In Luo and Xing [12, 13], consider a time-delayed Duffing oscillator as

ẍ + δ ẋ + α1x − α2x
τ + βx3 = Q0 cos�t (16)

where x = x(t) and xτ = x(t − τ). The parameters (δ, α1, α2 and β) are damping
coefficient, linear stiffness, linear displacement time-delay term coefficient, and non-
linear term coefficient, respectively. � and Q0 are excitation frequency and ampli-
tude, respectively. Let x = (x, y)T and xτ = (xτ , yτ )T. For discrete time tk = kh
(k = 0, 1, 2, . . .), xk = (xk, yk)T and xτ

k = (xτ
k , y

τ
k )

T. Using a midpoint scheme for
the time interval t ∈ [tk−1, tk] (k = 1, 2, . . .), the differential equation is discretized
as

Pk : (xk−1, xτ
k−1) → (xk, xτ

k )

⇒ (xk, xτ
k ) = Pk(xk−1, xτ

k−1). (17)

The implicit map can be expressed as

xk = xk−1 + 1

2
h(yk + yk−1),

yk = yk−1 + h[Q0 cos�(tk−1 + h

2
) − 1

2
δ(yk + yk−1) (18)

− 1

2
α1(xk + xk−1) + 1

2
α2(x

τ
k + xτ

k−1) − 1

8
β(xk + xk−1)

3].
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The time-delay node xτ
k ≈ x(tk−τ ) of xk ≈ x(tk) lies between xk−lk and xk−lk−1

(lk =int(τ/h)). The time-delay node is determined by an interpolation of two points
xk−lk and xk−lk−1. For a time-delay node xτ

j ( j = k − 1, k),

xτ
j = h j (xr j−1, xr j , θr j ) for r j = j − l j . (19)

The simple Lagrange interpolation gives xτ
j = h j (xr j−1, xr j , θr j ) ( j = k, k − 1) as

xτ
j = x j−l j−1 + (1 − τ

h
+ l j )(x j−l j − x j−l j−1),

yτ
j = y j−l j−1 + (1 − τ

h
+ l j )(y j−l j − y j−l j−1). (20)

Thus, the time-delay nodes are expressed by non-time-delay nodes. The discretiza-
tion of differential equation for the time-delayed, hardening Duffing oscillator is
completed.

4 Period-m Motions

A period-m motion in the time-delayed, hardening Duffing oscillator is described by
a discrete mapping structure:

P = PmN ◦ PmN−1 ◦ . . . ◦ P2 ◦ P1︸ ︷︷ ︸
mN−actions

: (x(m)
0 , xτ(m)

0 ) → (x(m)
mN , xτ(m)

mN )

(x(m)
mN , xτ(m)

mN ) = P(x(m)
0 , xτ(m)

0 ) (21)

with

Pk : (x(m)
k−1, x

τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )

(k = 1, 2, . . . ,mN ). (22)

The points x(m)∗
k (k = 1, 2, . . . ,mN ) on the period-m motion for the time-delayed

Duffing oscillator are determined by

gk(x
(m)∗
k−1 , x(m)∗

k ; xτ(m)∗
k−1 , xτ(m)∗

k ,p) = 0
xτ(m)∗
j = h j (x

(m)∗
r j−1, x

(m)∗
r j , θr j ), j = k, k − 1

}
(k = 1, 2, . . . ,mN )

x(m)∗
0 = x(m)∗

mN and xτ(m)∗
0 = xτ(m)∗

mN . (23)

In Eq. (23), with gk = (gk1, gk2)T, the algebraic equations for period-m motion are
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gk1 = x (m)
k − [x (m)

k−1 + 1

2
h(y(m)

k + y(m)
k−1)] = 0,

gk2 = y(m)
k − {y(m)

k−1 + h[Q0 cos�(tk−1 + 1

2
h) − 1

2
δ(y(m)

k + y(m)
k−1)

− 1

2
α1(x

(m)
k + x (m)

k−1) + 1

2
α2(x

τ(m)
k + xτ(m)

k−1 ) − 1

8
β(x (m)

k + x (m)
k−1)

3]} (24)

= 0

(k = 1, 2, . . . ,mN )

In Eq. (23), time-delay node xτ(m)
j ( j = k, k − 1) are from Eq. (20)

xτ(m)
j = x (m)

k−l j−1 + (1 − τ

h
+ l j )(x

(m)
k−l j

− x (m)
k−l j−1),

yτ(m)
j = y(m)

k−l j−1 + (1 − τ

h
+ l j )(y

(m)
k−l j

− y(m)
k−l j−1). (25)

From Eqs. (23)–(25), discrete nodes of periodic motions in the time-delayed Duffing
nonlinear oscillator are obtained by the 2(mN + 1) equations. If the discrete nodes
x(m)∗
k (k = 1, 2, . . . ,mN ) of the period-m motion is determined, the corresponding
stability of the period-m motion can be discussed by the eigenvalue analysis of the
Jacobian matrix of the mapping structure based on the discrete nodes. For x(m)∗

k and
xτ(m)∗
k , x(m)

k = x(m)∗
k + 	x(m)

k and xτ(m)
k = xτ(m)∗

k + 	xτ(m)
k . The linearized equation

of implicit mapping is

k∑

j=k−1

∂gk
∂x(m)

j

	x(m)
j + ∂gk

∂xτ(m)
j

(
∂xτ(m)

j

∂x(m)
r j

	xτ(m)
r j + ∂xτ(m)

j

∂x(m)
r j−1

	x(m)
r j−1) = 0 (26)

with r j = j − l j , j = k − 1, k; (k = 1, 2, . . . ,mN ).

Define

y(m)
k = (x(m)

k , x(m)
k−1, . . . , x

(m)
rk−1

)T,

y(m)
k−1 = (x(m)

k−1, x
(m)
k−2, . . . , x

(m)
rk−1−1)

T,

	y(m)
k = (	x(m)

k ,	x(m)
k−1, . . . ,	x(m)

rk−1
)T, (27)

	y(m)
k−1 = (	x(m)

k−1,	x(m)
k−2, . . . ,	x(m)

rk−1−1)
T.

The resultant Jacobian matrix of the period-m motion is

DP = DPmN (mN−1)...1 =
[

∂y(m)
mN

∂y(m)
0

]

(y(m)∗
0 ,y(m)∗

1 , ...,y(m)∗
N )

(28)

= A(m)
mNA

(m)
mN−1 . . .A(m)

1 = A(m)
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where

	y(m)
k = A(m)

k 	y(m)
k−1,A

(m)
k ≡

[
∂y(m)

k

∂y(m)
k−1

]

(y(m)∗
k−1 ,y(m)∗

k )

(29)

and

a(m)
k j = [ ∂gk

∂x(m)
k

]−1 ∂gk
∂x(m)

j

,

a(m)
kr j

= [ ∂gk
∂x(m)

k

]−1
j+1∑

α= j

∂gk
∂xτ(m)

α

∂xτ(m)
α

∂x(m)
r j

,

a(m)

k(r j−1) = [ ∂gk
∂x(m)

k

]−1
j∑

α= j−1

∂gk
∂xτ(m)

α

∂xτ(m)
α

∂x(m)
r j−1

with r j = j − l j , j = k − 1, k; (30)

A(m)
k =

[
B(m)
k (a(m)

k(rk−1−1))2×2

I(m)
k 0(m)

k

]

2(s+1)×2(s+1)

, s = 1 + lk−1

B(m)
k = [(a(m)

k(k−1))2×2, 02×2, . . . , (a
(m)

k(rk−1))2×2],
I(m)
k = diag(I2×2, I2×2, . . . , I2×2)2s×2s,

0(m)
k = (02×2, 02×2, . . . , 02×2︸ ︷︷ ︸

s

)T

where

∂gk
∂x(m)

k−1

=
[−1 − 1

2h
	 1

2hδ − 1

]
,

∂gk
∂x(m)

k

=
[
1 − 1

2h
	 1

2hδ + 1

]
,

∂xτ(m)
j

∂x(m)
r j−1

=
[
0 0
( τ
h − l j ) 0

]
,
∂xτ(m)

j

∂x(m)
r j

=
[
0 0
(1 − τ

h + l j ) 0

]
, (31)

∂gk
∂x(m)

j

=
[
0 0
0 − 1

2hα2

]
,

	 = 1

8
h[4α1 + 3β(xk + xk−1)

2].

The eigenvalues of DP for the period-m motion in the time-delayed Duffing
oscillator are computed by

|DP − λI2(s+1)×2(s+1)| = 0, (32)



Time-Delay Effects on Periodic Motions in a Duffing Oscillator 85

(i) If the magnitudes of all eigenvalues of DP are less than one (i.e., |λi | < 1,
i = 1, 2, . . . , 2(s + 1)), the approximate periodic solution is stable.

(ii) If at least the magnitude of one eigenvalue of DP is greater than one (i.e., |λi | >
1, i ∈ {1, 2, . . . , n(s + 1)}), the approximate periodic solution is unstable.

(iii) The boundaries between stable and unstable periodic flow with higher order
singularity give bifurcation and stability conditions with higher order
singularity.

The bifurcation conditions are given as follows.

(iv) If λi = 1 with |λ j | < 1(i, j ∈ {1, 2, . . . , 2(s + 1)} and i �= j), the saddle-node
bifurcation (SN) occurs.

(v) If λi = −1 with |λ j | < 1(i, j ∈ {1, 2, . . . , 2(s + 1)} and i �= j), the period-
doubling bifurcation (PD) occurs.

(vi) If |λi, j | = 1 with |λl | < 1(i, j, l ∈ {1, 2, . . . , 2(s + 1)} and λi = λ̄ j l �= i, j),
Neimark bifurcation (NB) occurs.

5 Bifurcation Trees Varying with Time-Delay

The bifurcation trees of period-1 motion to chaos in the time-delayed Duffing oscil-
lator will be presented through the analytical predictions of period-1 to period-4
motions. Illustration of periodic motions for such time-delayed system will be illus-
trated. As in Luo and Xing [14], consider a set of system parameters as

δ = 0.5, α1 = 10.0, α2 = 5.0, β = 10,� = 1.8, Q0 = 200.0 (33)

with T = 2π/�.

The bifurcation trees of period-1 to period-4 motions varying with time-delay in
the time-delayed Duffing oscillator are predicted analytically, and the discrete nodes
are analytically determined by the implicit mapping. The bifurcation trees varying
with time-delay are illustrated by displacement and velocity of the periodic nodes
with mod(k, N ) = 0, as shown in Fig. 1. The solid and dashed curves represent the
stable and unstable motions, respectively. The acronyms ‘SN’, ‘PD’ and ‘NB’ repre-
sent the saddle-node, period-doubling, and Neimark bifurcations, respectively. The
period-1, period-2, and period-4 motions are labeled by P-1, P-2, and P-4, respec-
tively. The period-2motions appear from the PDbifurcations of the period-1motions,
and the period-4 motions appear from the PD bifurcations of the period-2 motions.
The global view of the bifurcation trees is presented in Fig. 1 for τ/T ∈ [0, 1] and the
zoomed views of the bifurcation trees are presented for a specific frequency ranges
in Fig. 1c–f. The ranges of time-delay for the stable and unstable periodic motions
are listed in Table1, and the bifurcation points are tabulated in Table2.

In Fig. 1a and b, a global view of the bifurcation trees of period-1 to period-4
motion is presented for τ/T ∈ [0, 1]. For τ = 0, the time-delay Duffing oscillator
becomes the non-time-delayed Duffing oscillator. For τ = T, the time-delay is the
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(a)

(b)

(c)

Fig. 1 Bifurcation trees of period-1 motions to chaos varying with time-delay: a periodic node
displacement, b periodic node velocity. The first zoomed view: c periodic node displacement, d
periodic node velocity, the second zoomed view: e periodic node displacement, f periodic node
velocity (α1 = 10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 = 200, � = 1.8), mod(R, N ) = 0
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(d)

(e)

(f)

Fig. 1 (continued)



88 A.C.J. Luo and S. Xing

Table 1 Bifurcations for symmetric period-1 motions (α1 = 10.0, α2 = 5.0, β = 10.0, δ =
0.5, Q0 = 200, � = 1.8)

τ/T (stable) τ/T (unstable) Motion type

Over all range (0.0074, 0.0645) (0.0, 0.0074) P-1

(0.1418, 0.2278) (0.0645, 0.1418)

(0.2765, 0.6284) (0.2278, 0.2765)

(0.7334, 0.8213) (0.6824, 0.7334)

(0.8853, 0.9869) (0.8213, 0.8853)

(0.9869, 1.0)

1st branch (0.0, 0.0074) – P-2

2nd branch (0.0645, 0.0762) (0.0762, 0.1298) P-2

(0.1298, 0.1418)

(0.0762, 0.0794) (0.0794, 0.1266) P-4

(0.1266, 0.1298)

3rd branch (0.2278, 0.2765) – P-2

4th branch (0.6824, 0.7334) – P-2

5th branch (0.8213, 0.8331) (0.8331, 0.8738) P-2

(0.8738, 0.8853)

(0.8331, 0.8368) (0.8368, 0.8706) P-4

(0.8706, 0.8738)

6th branch (0.9869, 1.0) – Quasiperiodic

Table 2 Bifurcations for periodic motions (α1 = 10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 =
200, � = 1.8)

τ/T Bifurcations Motion type

1st branch (0.0,
0.0074)

0.0074 PD For P-2

2nd branch (0.0645,
0.1418)

0.0645, 0.1418 PD For P-2

0.0762, 0.1298 PD For P-4

0.0794, 0.1266 PD For P-8

3rd branch (0.2278,
0.2765)

0.2278, 0.2765 PD For P-2

4th branch (0.6824,
0.7334)

0.6824, 0.7334 PD For P-2

5th branch (0.8213,
0.8853)

0.8213, 0.8853 PD For P-2

0.8331, 0.8738 PD For P-4

0.8368, 0.8706 PD For P-8

6th branch (0.9869,
1.0)

0.9869 NB Quasiperiodic

Note NB-Neimark Bifurcation, PD-period-doubling bifurcation between stable and unstable sym-
metric periodic motions
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same as the excitation period. There is an unstable period-1motion for the entire range
of τ/T ∈ [0, 1]. For τ/T ∈ [0, 0.0074), there is a period-2 motion in the first bifur-
cation tree. At τ/T ≈ 0.0074, the saddle-node bifurcation of the period-2 motion
exists, and the period-2motion vanishes,where the period-1motion also appears. The
period-doubling bifurcation for the period-1 motion occurs at τ/T ≈ 0.0074. The
period-1 motion is stable for τ/T ∈ (0.0074, 0.0645). For τ/T ∈ (0.0645, 0.1418),
there exists the second bifurcation tree from period-1 to period-4 motions, as shown
in Fig. 1c and d. The period-doubling bifurcation of period-1 motions is at τ/T ≈
0.0645, 0.1418. The period-2 motion exists in τ/T ∈ (0.0645, 0.1418). At τ/T ≈
0.0762, 0.1298, the period-doubling bifurcation of period-2 motions occurs, and
the onset of period-4 motions takes place. For τ/T ∈ (0.0762, 0.1298), the period-
4 motion exists. The period-doubling bifurcations occur at τ/T ≈ 0.0794, 0.1266.
The unstable period-4 motion lies in τ/T ∈ (0.0794, 0.1266) where the period-8
motion exists. For the third branch, the period-doubling bifurcations of the period-
1 motion are at τ/T ≈ 0.2278, 0.2765. Only the stable period-2 motion exists at
τ/T ∈ (0.2278, 0.2765). Similarly, for the fourth branch, the period-doubling bifur-
cations of the period-1 motion are at τ/T ≈ 0.6824, 0.7334. Only the stable period-
2 motion exists at τ/T ∈ (0.6824, 0.7334). For τ/T ∈ (0.8213, 0.8853), the fifth
bifurcation tree from period-1 to period-4 motions is shown in Fig. 1e and f. The
period-doubling bifurcations of period-1 motions are at τ/T ≈ 0.8213, 0.8853. The
period-2 motion exists in τ/T ∈ (0.8213, 0.8853). At τ/T ≈ 0.8331, 0.8738, the
period-doubling bifurcations of period-2 motions occur for onsets of the period-4
motion. For τ/T ∈ (0.8331, 0.8738), the period-4 motion exists, and the period-
doubling bifurcations occur at τ/T ≈ 0.8368, 0.8706. The unstable period-4 motion
lies in τ/T ∈ (0.8368, 0.8706) where the period-8 motion also exists.

6 Discrete Fourier Series

As in Luo [12], consider the predicted nodes of period-m motions as x(m)
k =

(x (m)
k , y(m)

k )T for k = 0, 1, 2, . . . ,mN in the time-delayed Duffing oscillator. The
period-m motion is determined by the finite Fourier series as

x(m)(t) ≈ a(m)
0 +

M∑

j=1

b j/m cos(
j

m
�t) + c j/m sin(

j

m
�t). (34)

There are (2M + 1)unknownvector coefficients ofa(m)
0 ,b j/m, c j/m ( j = 1, 2, . . . , M).

From the given nodes x(m)
k (k = 0, 1, 2, . . . ,mN ), such vector unknown coefficients

(2M + 1 ≤ mN + 1) can be determined. The predicted nodes x(m)
k on the period-m

motion is expressed by the finite Fourier series as for tk ∈ [0,mT ]
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x(m)(tk) ≡ x(m)
k = a(m)

0 +
mN/2∑

j=1

b j/m cos(
j

m
�tk) + c j/m sin(

j

m
�tk)

= a(m)
0 +

mN/2∑

j=1

b j/m cos(
j

m

2kπ

N
) + c j/m sin(

j

m

2kπ

N
) (35)

(k = 0, 1, . . . ,mN − 1)

where

T = 2π

�
= N	t;�tk = �k	t = 2kπ

N
,

a(m)
0 = (a(m)

01 , a(m)
02 )T,b j/m = (b j/m1, b j/m2)

T, c j/m = (c j/m1, c j/m2)
T. (36)

From discrete nodes on the period-m motion, Eq. (35) gives

a(m)
0 = 1

mN

mN−1∑

k=0

x(m)
k ,

b j/m = 2
mN

∑mN−1
k=1 x(m)

k cos(k 2 jπ
mN ),

c j/m = 2
mN

∑mN−1
k=1 x(m)

k sin(k 2 jπ
mN )

}
( j = 1, 2, . . . ,mN/2) (37)

Thus, the approximate solution for period-m motion in Eq. (16) is

x(m)(t) ≈ a(m)
0 +

mN/2∑

j=1

b j/m cos(
j

m
�t) + c j/m sin(

j

m
�t). (38)

The foregoing equation can be rewritten as

{
x (m)(t)
y(m)(t)

}
≡

{
x (m)
1 (t)
x (m)
2 (t)

}
≈

{
a(m)
01

a(m)
02

}
+

mN/2∑

j=1

{
A j/m1 cos(

j
m�t − φ j/m1)

A j/m1 cos(
j
m�t − φ j/m2)

}
(39)

where the harmonic amplitudes and harmonic phases for period-m motion are

A j/m1 =
√
b2j/m1 + c2j/m1, φ j/m1 = arctan

c j/m1

b j/m1
,

A j/m2 =
√
b2j/m2 + c2j/m2, φ j/m2 = arctan

c j/m2

b j/m2
. (40)

For simplicity, harmonic amplitudes of displacement x (m)(t) for period-m motions
will be presented only. Thus the displacement is expressed as
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x (m)(t) ≈ a(m)
0 +

mN/2∑

j=1

b j/m cos(
j

m
�t) + c j/m sin(

j

m
�t) (41)

and

x (m)(t) ≈ a(m)
0 +

mN/2∑

j=1

A j/m cos(
j

m
�t − φ j/m) (42)

where
A j/m =

√
b2j/m + c2j/m, φ j/m = arctan

c j/m
b j/m

. (43)

7 Illustrations

To illustrate complexity of periodic motions in the time-delayed Duffing oscillator,
initial conditions for numerical simulations are taken from the analytical prediction
in the bifurcation trees of period-1 to period-4 motions, and the corresponding har-
monic amplitudes of periodic motions are presented to show harmonic terms effects
on periodic motions. The system parameters in Eq. (33) are used. Numerical and
analytical results are presented by solid curves and symbols, respectively. The initial
time-delay are presented through blue circular symbols. The delay-initial-starting
and delay-initial finishing points are “D.I.S.” and “D.I.F.”, respectively.

From the fifth circular bifurcation tree of period-1 motion to chaos, consider
an asymmetric period-1 motion with τ = 2.70, and initial conditions for a pair of
the two asymmetric period-1 motions are from the analytical prediction (i.e., x0 =
3.531702, y0 = −3.246012 (left); x0 = 2.734844, y0 = −4.877491 (right)).
τ/T ≈ 0.7735 implies that the time-delay takes about 77%excitation period. The ini-
tial time-delay is presented by green symbols. The numerical solution of the period-1
motion is presented by solid curves and the analytical prediction is depicted by circu-
lar symbols. Displacements for the two asymmetric period-1 motion are presented in
Fig. 2(i) and (ii). The two trajectories with time-delay for the two period-1 motions
are shown in Fig. 2 (iii) and (iv). The trajectories have two small cycles on both sides
plus a big circle. The corresponding harmonic amplitudes and phases are presented
in Fig. 2(v) and (vi), respectively. A0 = aR

0 = −aL
0 ≈ 0.2268, A1 ≈ 2.8346, A2 ≈

0.2516, A3 ≈ 0.4459, A4 ≈ 0.3166, A5 ≈ 0.1482, A6 ≈ 0.3558, A7 ≈ 0.5709,
A8 ≈ 0.2826, A9 ≈ 0.1807, A10 ≈ 0.0199, A11 ≈ 0.0244, A12 ≈ 0.0142, A13 ≈
0.0180, A14 ≈ 0.0316, A15 ≈ 0.0274, A16 ≈ 0.0189. Other harmonic amplitudes lie
in Ak ∈ (10−15, 10−3) (k = 17, 19, . . . , 100) and A100 ≈ 1.3004e-14. With increas-
ing harmonic orders, the harmonic amplitudes decrease. Thus, one can use 100
harmonic terms to approximate the two asymmetric period-1 motions. The har-
monic phases changes with harmonic orders from 0 to 2π with ϕL

k = mod(ϕR
k +

(k + 1)π, 2π).
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Fig. 2 Period-1 motion with large time-delay (τ = 2.7): (i) displacement (left), (ii) displace-
ment (right); (iii) trajectory (left), (iv) trajectory (right), (v) harmonic amplitudes, (vi) harmonic
phases. (I.C.: x0 = 3.531702, y0 = −3.246012 (left); x0 = 2.734844, y0 = −4.877491 (right))
(α1 = 10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 = 200, � = 1.8)
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Fig. 2 (continued)
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For a pair of asymmetric period-2 motions with τ = 2.90, initial conditions
are x0 = 3.626654, y0 = 4.551817 (left); and x0 = 2.590282, y0 = −2.033225
(right). τ/T ≈ 0.8308 and the time-delay is also very large. The initial time-delay
is still presented by green symbols. Displacements for the two asymmetric period-2
motion are presented in Fig. 3(i) and (ii). The time for period-2 motion is doubled
from the period-1 motion, and the period-2 motion is almost repeated the period-1
motion responses two times. The two trajectories with time-delay for the two period-
2 motions are shown in Fig. 3(iii) and (iv). The trajectories have four small cycles on
both sides plus two big circles to connect small cycles on the both sides. The harmonic
amplitudes andphases for period-2motions are presented inFig. 3(v) and (vi), respec-
tively. The magnitudes are A0 = a(2)R

0 = −a(2)L
0 ≈ 0.2201, A1/2 ≈ 0.0628, A1 ≈

2.8550, A3/2 ≈ 0.0141, A2 ≈ 0.2201, A5/2 ≈ 0.0734, A3 ≈ 0.4541, A7/2 ≈ 0.0270,
A4 ≈ 0.2661, A9/2 ≈ 0.1229, A5 ≈ 0.0706, A11/2 ≈ 0.0385, A6 ≈ 0.3328,
A13/2 ≈ 0.2107, A7 ≈ 0.5403, A15/2 ≈ 0.0191, A8 ≈ 0.2805, A17/2 ≈ 0.1255,
A9 ≈ 0.1849, A19/2 ≈ 8.2525e-3, A10 ≈ 0.0178, A21/2 ≈ 5.7368e-3, A11 ≈
0.0180, A23/2 ≈ 9.2916e-3, A12 ≈ 6.5333e-3, A25/2 ≈ 3.5730e-3, A13 ≈ 0.0170,
A27/2 ≈ 0.0108, A14 ≈ 0.0280, A29/2 ≈ 0.0177, A15 ≈ 0.0272, A31/2 ≈
0.0111, A16 ≈ 0.0157, A33/2 ≈ 7.1351e-3, and A17 ≈ 6.6818e-3. Other
harmonic amplitudes lie in Ak/2 ∈ (10−15, 10−3) (k = 35, 36, . . . , 200) and A100 ≈
2.0283e-14.With increasingharmonic orders, the harmonic amplitudes alsodecrease.
Harmonic terms Ak/2 (mod(k, 2) �= 0) for period-2 motion only is much smaller
than Ak/2 (mod(k, 2) = 0). Thus, one can use 200 harmonic terms to approximate
the two asymmetric period-2 motions. The harmonic phases from 0 to 2π are with
ϕL
k/2 = mod(ϕR

k/2 + ((k + 2r)/2 + 1)π, 2π) (k = 1, 2, . . .; r = 0) for t0 = rT .
For a pair of asymmetric period-4 motions with τ = 2.92, initial conditions are

x0 = 3.668104, y0 = 1.737186 (left); x0 = 2.577874, y0 = −1.676010 (right).
τ/T ≈ 0.8365.Displacements for the two asymmetric period-4motion are presented
in Fig. 4(i) and (ii). The time for period-4motion is doubled from the period-2motion,
and the period-4 motion almost repeats the period-1 motion responses four times.
The two trajectories with time-delay for the two period-4 motions are shown in Fig.
4(iii) and (iv). The trajectories have eight small cycles on both sides plus four big cir-
cles to connect small cycles on the both sides. The harmonic amplitudes and phases
for the period-4 motions are determined, in Fig. 4(v) and (vi), respectively. The har-
monic magnitudes are A0 = a(4)R

0 = −a(4)L
0 ≈ 0.2075, A1/4 ≈ 0.0285, A1/2 ≈

0.0676, A3/4 ≈ 1.3334e-3, A1 ≈ 2.8606, A5/4 ≈ 1.8314e-3, A3/2 ≈ 0.0121,
A7/4 ≈ 0.0113, A2 ≈ 0.2092, A9/4 ≈ 0.0202, A5/2 ≈ 0.0755, A11/4 ≈
5.0156e-3, A3 ≈ 0.4548, A13/4 ≈ 4.0509e-3, A7/2 ≈ 0.0220, A15/4 ≈ 0.0125,
A4 ≈ 0.2509, A17/4 ≈ 0.0262, A9/2 ≈ 0.1328, A19/4 ≈ 0.0100, A5 ≈ 0.0720,
A21/4 ≈ 9.0113e-3, A11/2 ≈ 0.0339, A23/4 ≈ 0.0137, A6 ≈ 0.3141, A25/4 ≈
0.0378, A13/2 ≈ 0.2079, A27/4 ≈ 0.0120, A7 ≈ 0.5464, A29/4 ≈ 0.0109,
A15/2 ≈ 0.0124, A31/4 ≈ 0.0112, A8 ≈ 0.2633, A33/2 ≈ 0.0263, A17/2 ≈ 0.1267,
A35/4 ≈ 9.0150e-3, A9 ≈ 0.1907, A37/4 ≈ 5.5408e-3, A19/2 ≈ 8.0743e-3,
A39/4 ≈ 1.0027e-3, A10 ≈ 0.0163, A41/4 ≈ 1.3272e-3, A21/2 ≈ 5.1506e-3,
A43/4 ≈ 7.1315e-4, A11 ≈ 0.0170, A45/4 ≈ 9.1745e-4, A23/2 ≈ 8.4709e-3,
A47/4 ≈ 8.8042e-4, A12 ≈ 5.9744e-3, A49/4 ≈ 1.3697e-3, A25/2 ≈ 3.5724e-3,
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Fig. 3 Period-2 motion with large time-delay (τ = 2.9): (i) displacement (left), (ii) displace-
ment (right); (iii) trajectory (left), (iv) trajectory (right), (v) harmonic amplitudes, (vi) harmonic
phases. (I.C.: x0 = 3.655843, y0 = 1.633443 (left); x0 = 2.571812, y0 = −1.932056 (right))
(α1 = 10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 = 200, � = 1.8)
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Fig. 3 (continued)
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Fig. 4 Period-4 motion with
large time-delay (τ = 2.92):
(i) displacement (left), (ii)
displacement (right); (iii)
trajectory (left), (iv)
trajectory (right), (v)
harmonic amplitudes,
(vi) harmonic phases. (I.C.:
x0 = 3.668104, y0 =
1.737186 (left);
x0 = 2.577874,
y0 = −1.676010 (right))
(α1 = 10.0, α2 = 5.0, β =
10.0, δ = 0.5, Q0 =
200, � = 1.8)
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Fig. 4 (continued)
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A51/4 ≈ 1.1010e-3, A13 ≈ 0.0164, A53/4 ≈ 1.3546e-3, A27/2 ≈ 9.4996e-3,
A55/4 ≈ 2.1266e-3, A14 ≈ 0.0266, A57/4 ≈ 2.8443e-3, A29/2 ≈ 0.0175,
A59/4 ≈ 1.4433e-3, A15 ≈ 0.0271, A61/4 ≈ 1.0085e-3, A31/2 ≈ 9.8767e-3,
A63/4 ≈ 1.3299e-3, A16 ≈ 0.0150, A65/4 ≈ 1.6896e-3, A32/2 ≈ 7.3809e-3,
A67/4 ≈ 7.2258e-4, and A17 ≈ 6.8573e-3. Other harmonic amplitudes lie in
Ak/4 ∈ (10−15, 10−3) (k = 69, 70, . . . , 400) and A100 ≈ 2.4579e-14. With
increasing harmonic orders, the harmonic amplitudes also decrease. Harmonic terms
Ak/4 (mod(k, 4) �= 0 and mod(k, 2) �= 0) for period-4 motion only is much smaller
than Ak/4 (mod(k, 2) = 0 or mod(k, 4) = 0). Thus, one can use 400 harmonic
terms to approximate the two asymmetric period-4 motions. The relations of
harmonic phases between the two asymmetric period-4 motions from 0 to 2π
are with ϕL

k/4 = mod(ϕR
k/4 + ((k + 4r)/4 + 1)π, 2π) (k = 1, 2, . . .; r = 0) for t0 =

rT .

8 Concluding Remarks

The time-delay effects of periodic motions in a periodically forced, time-delayed,
hardening Duffing oscillator were presented in this chapter. The bifurcation trees
varying with time-delay for period-1 motions to chaos were presented, and the cor-
responding stability and bifurcation were also presented to show time-delay effects
on periodic motions. From the analytical predictions of periodic motions, numerical
results of period-1 to period-4 motions were illustrated to verify the analytical pre-
dictions. Period-1 motions of the time-delayed Duffing oscillator did not vary too
much with τ/T ∈ [0, 1]. With period-doubling bifurcation, period-2 and period-4
motions in the time-delayed Duffing oscillator were in the vicinity of the period-1
motions in τ/T ∈ [0, 1].
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Nonchaos-Mediated Mixed-Mode
Oscillations in a Prey-Predator Model
with Predator Dormancy

Joana G. Freire, Marcia R. Gallas and Jason A.C. Gallas

1 Introduction

A well-known property of ecosystems is that the equilibrium of the classical prey-
predator system is destabilized when the carrying capacity, i.e., the environment
maximal load, of the preys increases [1]. Under this circumstance, a Hopf bifurca-
tion occurs. Its effect is to destabilize the coexistence of prey and predator in favor of
a stable periodic cycle. Then, as the carrying capacity further increases, the ampli-
tude of the periodic orbits also increase, with the minimum value of the population
density decreasing. This dynamical interplay acts so that population extinction due
to stochastic environmental perturbations becomes more likely. This is known as
the paradox of enrichment [2]. However, this does not need to be the only scenario.
As discussed by Kuwamura et al. [3], the extinction of populations is not always
observed in natural enriched environments. In other words, the destabilization effect
induced by eutrophication, namely the enrichment of the environment with nutrients,
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is somehow canceled in natural ecosystems. Many studies have attempted to clarify
mechanisms for stabilizing the population dynamics in enriched environments. See,
e.g., Refs. [3, 4] and several references therein.

This paper is motivated by a study of Kuwamura and Chiba [5] who proposed a
mathematical framework to describe a stabilizing mechanism in enriched environ-
ment. The key idea of the approach is to consider the differentiation of the predator
into active and dormant states. As indicated by a number of studies, dormancy of
populations plays an important role in various biological studies [6–9]. According
to Gyllström and Hansson [7], in comfortable environments zooplankton produces
mainly subitaneous eggs. However, fertilized eggs (resting eggs, dormancy state)
may be produced in order to escape periods of harsh environmental conditions.
Experiments show [10] that the amplitude of prey-predator cycles of Daphnia and its
algal prey in microcosms increases when a portion of ephippia-producing females
is replaced by asexually-reproducing gravid females. This suggests that dormancy
of predators may stabilize the population dynamics of Daphnia and its algal prey at
high nutrient levels.

Kuwamura and Chiba [5] have shown that, under certain conditions, the dormancy
of predators induces mixed-mode oscillations and chaos in the population dynamics
of their prey-predator model. Using the theory of fast-slow systems, they argued
mixed-mode oscillations and chaos to bifurcate from a coexisting equilibrium. These
results are of interest because they may help to find experimental conditions under
which one can demonstrate chaotic population dynamics in a simple phytoplankton-
zooplankton (-resting eggs) community in a microcosm with a short duration.

The main finding reported here is the discovery of nonchaos-mediated cascades of
mixed-mode oscillations observed in the prey-predator model with dormancy. Mixed-
mode oscillations exist in two distinct flavors with easy to distinguish signatures
[11]: Nonchaos-mediated cascades display spike-adding sequences while the more
familiar chaos-mediated cascades involve spikes-doubling sequences. In contrast
to the standard chaos-mediated cascades, the elusive nonchaos-mediated cascades
were discovered quite recently and at present are known only for a handfull of cases,
namely, for an enzyme reaction [11, 12], for familiar models of oscillators [13,
14], and for a centrifugal flywheel governor system [15]. Thus, the observation of
nonchaos-mediated cascades in the rather different context of a biological model
adds one more example to the list above.

The present prey-predator model shares a sigmoidal function and other similar-
ities with situations known to lead to very rich dynamics [16, 17]. However, its
equations of motion also contain contributions from different terms, which are of
interest for our on-going quest of classifying complexity phases in continuous-time
dynamical systems [12, 18], so that a closer investigation seems warranted. This
fact is another motivation for the present investigation. Before starting, recall that
there are no theoretical methods capable of locating stability phases for motions of
arbitrary periodicity, going beyond time-honored fixed-point analysis. Therefore, all
such studies are necessarily of a numerical nature.
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2 Prey-Predator Model with Predator Dormancy

The model of dormancy effects in the prey-predator population dynamics studied
here is defined by a set of three coupled ordinary differential equations [3, 5]:

dp

dt
= r

(
1 − p

k

)
p − f (p)z, (1)

dz

dt
= k1μ(p) f (p)z + αw − d1z, (2)

dw

dt
= ε [k2 (1 − μ(p)) f (p)z − αw − d2w] . (3)

Here, p and z denote population densities of prey and predators, respectively, and w

is the population density of predators with a dormancy state (resting eggs). Parame-
ters r and k correspond to the intrinsic growth rate and the carrying capacity of prey,
respectively. The function f (p), represents a positive strictly monotone increas-
ing bounded function, taken to be a Holling type II functional response, namely
f (p) = bp/(c + p), where b and c represent the maximum foraging rate and the
half saturation constant, respectively. Here, ε is a small time-scale separation parame-
ter used to control the speed in the system [5]. Parameters k1 and k2 denote the growth
rates of predators in the active and dormant states. The function μ(p) is a switching
function which controls the induction of dormancy. It is given the sigmoidal function
[16]

μ(p) = 1

2

[
tanh

(
p − η

σ

)
+ 1

]
, (4)

where η and σ denote the switching level and the sharpness of the switching effect.
This function implies that predators produce more resting eggs than subitaneous eggs
when the prey density decreases below a certain level η. Parameters d1 and d2 denote
the mortality rates of the active and dormant predators, respectively, while η is the
hatching rate, i.e., resting eggs have a dormancy period with 1/α on average. The
model above is an extension of a prey-predator interaction-diffusion system based on
the Bazykin model, known as the MacArthur-Rosenzweig model with intraspecific
interaction (density-dependent inhibition) among predators, to which the effect of
predator dormancy is incorporated. For details see Ref. [19].

Basically, Kuwamura and Chiba [5] considered two different situations of the
model, ε = 1 and ε = 0.2, and studied how the bifurcation structure changes as a
function k, the carrying capacity, and with variations of b and d1. Table 1 collects the
default parameter values used here, unless stated otherwise.

Stability diagrams were constructed by integrating numerically Eqs. (1)–(3) using
a standard fourth-order Runge-Kutta with fixed time-step h = 0.01. Such integra-
tions were performed horizontally, from left to right, starting from an arbitrarily
chosen initial condition, (p, z, w) = (0.6, 0.15, 1.5), and proceeding by ’following
the attractor’ [17], namely by using the values stored in the computer buffers as
initial conditions when incrementing parameters infinitesimally. The first 0.6 × 106
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Table 1 Parameters values used here, taken from Ref. [5], in the same units

r = 0.5 α = 0.02 c = 2 σ = 0.1 b = 2

η = 1.0 d1 = 0.2 d2 = 0.0001 k1 = 0.6 k2 = 0.12

integration steps were disregarded as a transient time needed to come close to the
attractor, with an additional of 12 × 106 steps used to compute the Lyapunov spec-
trum (not presented in this paper). To find the number of peaks per a period, subse-
quently to the computation of Lyapunov exponents, integrations were continued for
12 × 106 additional time-steps, recording up to 800 extrema (maxima and minima)
of the three variables and, from the recorded extrema, determining whether or not
pulses repeated.

3 Nonchaos-Mediated Cascades of Mixed-Mode
Oscillations

Figure 1 shows typical stability diagrams computed for the prey-predator system with
dormancy, Eqs. (1)–(3). Such diagrams, called isospike diagrams, use a palette of 17
colors, as indicated by the colorbars, to display the number of spikes per period of the
stable oscillations. Patterns with more than 17 peaks are plotted by recycling the 17
basic colors modulo 17. Black represents “chaos” (i.e., lack of numerically detectable
periodicity), and white marks non-zero amplitude fixed-points (non-oscillatory solu-
tions). The three diagrams on the top row in Fig. 1 display from left to right the
number of spikes as observed by following the temporal evolution of the three vari-
ables, p, z, w, respectively. The next row shows magnifications of the regions inside
the yellow boxes seen on the top panels.

Figure 1 shows a number of interesting facts. The three panels show the precise
location where the number of spikes change for every variable. Oscillations in p and z
display a much larger variation of their number of spikes then oscillations of w which
display one spike over extended intervals when b increases. The vertical white stripes
seen on the left of the panels show that, independently of b, the maximum foraging
rate, the fixed-point is not affected by the carrying capacity k. There is a dynamical
threshold for the effects of k to start to be noticed in the system. Furthermore, the
onset of chaotic oscillations occurs only for specific ranges of b and k. In particular,
the onset occurs for considerably larger values of k when b decreases.

Figure 2 shows a companion of two cascades of mixed-mode oscillations found in
Eqs. (1)–(3), recorded the parallel lines seen in Fig. 1d and defined by the equations

b = −0.483k + 20.483 and b = −0.483k + 26.035. (5)
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Nonchaos-mediated cascades of mixed-mode oscillations, illustrated by sequences of
domains not separated by chaos (shown in black), as a function of the maximum foraging rate
b and the carrying capacity k. Panels (a)–(c) represent the number of spikes per period as measured
for p, z, and w, respectively. The boxes in panels (a)–(c) are shown magnified in panels (d)–(f).
The points marked in panels (a) and (d) are the same shown with more detail in Fig. 3, which is a
magnification of panel (d). Bifurcations diagrams along the pair of lines in (d) are shown in Fig. 2.
Here ε = 0.2 and other parameters as given in Table 1. Each individual panel displays the analysis
of a mesh formed by 600 × 600 equally spaced parameter points

(a) (b)

Fig. 2 Comparison of the rather distinct bifurcation diagrams underlying (a) nonchaos-mediated
mixed-mode oscillations, and (b) the familiar chaos-mediated cascade. Panel (a) was recorded
along the black line in Fig. 1d while (b) was recorded along the white line in the same figure.
Nonchaos-mediated cascades display spike-adding sequences while chaos-mediated cascades show
spike-doubling
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The diagrams were obtained by starting from (p, z, w) = (0.6, 0.15, 1.5) at the low-
est value of k and proceeding by following the attractor until the highest k value.
Figure 2a illustrates the new cascade of nonchaos-mediated mixed mode oscillations
reported in this paper, while Fig. 2b shows an example of the chaos-mediated cascade
found by Kuwamura and Chiba [5]. Both cascades look very different and reflect
the distinct self-organization of oscillations seen in Fig. 1. Both cascades exist over
relatively wide range of control parameters and, over limited intervals, may be even
observed while varying just a single parameter, b, while keeping k fixed. Compar-
ing Figs. 1d and 2b its is possible to recognize the existence of multistability: For
instance, at the smallest values of k along the white line seen in Fig. 1d one sees the
existence of period-3 solutions while the leftmost end of Fig. 2b displays chaos and
no trace of period-3.

From Fig. 1d it is possible to recognize that the number of spikes increases by
one as k grows along the black line. So, a natural question to ask is what exactly
happens to the waveforms as they get more and more spikes continuously added
to them. Figure 3 provides an answer. On the top panel of this figure one sees two
sequences of points. The leftmost sequence, labeled by unprimed letters, corresponds
to stability regions characterized by “primitive” number of spikes while points on the
rightmost sequence, labeled with primed letters, lie inside domains where the number
of spikes (not the period!) has doubled. The corresponding waveforms for every point
in both sequences are shown under the stability diagram, while their coordinates,
period, and number of spikes of their waveforms are collected in Table 2. In this
Table, note that although the number of spikes doubles, the corresponding periods
vary continuously, being not necessarily doubled. This lack of “period doubling” is
a generic characteristic of continuous-time dynamical systems because the period
varies continuously with parameters.

Figure 4 shows a remarkably complex “braided” self-organization of mixed-mode
oscillations discovered for higher values of the carrying capacity k. In this region
of the control parameter space one finds that the relatively regular sequences of
nonchaos-mediated mixed-mode oscillations (seen in upper and lower portions of
Fig. 4), are interrupted by a pair of stripes of chaos, represented in black in the
diagrams. Between the stripes of chaos we find a braided sequence of domains
arising from oscillations with a relatively high number of spikes per period.

The organization of oscillations between the stripes of chaos in Fig. 4 is magnified
and illustrated in more detail in Fig. 5. In this figure, the phase diagram on the top
contains points labeled by letters. It also contains numbers inside the upper and lower
cascades of stability islands. Such numbers correspond to the number of spikes of the
oscillations characteristic of each island. At about the center of the phase diagram
there one sees four points labeled a, b, c, d, all of them lying inside the same
oscillatory phase. As shown in the four panels in the lower part of Fig. 5, such points
are all characterized by trains of periodic oscillations containing 38 spikes per period
and, because 38 mod 17 = 4, are represented with the color corresponding to 4 in
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Fig. 3 Characteristic pwaveforms along the nonchaos-mediated mixed-mode oscillation sequences
indicated by the dots. Both sequences show cascades of spike additions and spike doublings. Here
ε = 0.2. Evolutions start from the arbitrary initial condition (p, z, w) = (0.6, 0.15, 1.5)
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Table 2 Characteristics of the oscillations for twelve time evolutions for ε = 0.2, shown in Fig. 3.
Coordinates (k, b), oscillation period, and number of peaks per period of the p oscillations

k b Period Peaks k b Period Peaks

a 5.9 22.0 253.02 3 a’ 8.4 24.3 555.07 6

b 8 17.6 264.54 4 b’ 11 18.9 570.85 8

c 10 15.3 280.71 5 c’ 13.2 15.9 592.3 10

d 12 13.5 294.14 6 d’ 15.9 14.0 619.96 12

e 14.3 12.4 311.59 7 e’ 18.3 12.72 649.71 14

f 16.4 11.5 327.54 8 f’ 21 11.77 681.35 16

(a) (b) (c)

Fig. 4 Braided organization of mixed-mode oscillations, embedded between two stripes of chaos (in
black), observed at higher values of the carrying capacity k. Panels (a)–(c) correspond to diagrams
obtained by counting the number of spikes of p, z, and w, respectively. Details of these oscillations
are given in Figs. 5 and 6. Here, ε = 0.2

the colorbar. From the four panels in Fig. 5 it is also possible to see that the period T
of the oscillations increases clockwise, from point a to point d, inside the stability
islands. The coordinates and characteristics for all points considered in Figs. 5 and
6 are given in Table 3.

Figures 5 and 6 show the time-evolution of the p variable. The other two variables
show similar characteristics and, therefore, where not presented. The information
recorded in Table 3 allow the time-evolution of the waveforms for all three variables
to be easily recovered, if needed. An interesting point, however, is to clarify the
nature of the reinjection loop responsible for starting every train of pulses shown in
Figs. 5 and 6. As it is known, an important class of reinjection loops is associated
with homoclinic bifurcations of a saddle-focus equilibrium state. In this case, the
oscillatory part of the time-evolution corresponds to spiralling occurring essentially
on a plane, with the reinjection happening perpendicular to it (see, e.g., Fig. 4 of
Ref. [20]). Here, however, the spiralling occurs not on a plane but along a conical
surface, as illustrated in Fig. 7. Furthermore, a close inspection of Fig. 7 reveals
that the pair of spikes which appears between the pulse trains visible in Fig. 6 are
responsible for a small loop that exists on the top of the cone in Fig. 7. We conjecture



Nonchaos-Mediated Mixed-Mode Oscillations … 109

Fig. 5 Exceedingly complicated arrangement of periodic oscillations. Top panel: Magnification of
Fig. 4a showing details of the braided organization found at higher values of the carrying capacity.
Numbers indicate the number of spikes per period of the self-similar phases. The four bottom panels
show how the waveform and period T of p pulses change when moving clockwise from points a →
b,→ c,→ d, defined in Table 3. Here, ε = 0.2. Evolutions start from (p, z, w) = (0.6, 0.15, 1.5)

that for other operation regimes of the model it should be possible to observe more
complicated configurations in this region. We have not attempted to locate them since
this requires investing considerable additional computer time.

So far, we discussed properties of nonchaos-mediated mixed-mode oscillations
observed on the k × b control plane of the model. Is it possible to observe such
oscillations in other control planes? Fig. 8 shows that it is not only possible to find
them in other control planes but, in addition, that they exist over relatively wider
parameter windows. In contrast to what was found in Fig. 1, note that the control-
plane mosaic obtained by counting spikes of the w variable, Fig. 8c, is much different
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Fig. 6 Sequences of spike additions observed along the upper and lower parts of the braided
structures in Fig. 5. Individual panels show the waveform of p for points labeled e, f, a, g, h and
e′, f ′, a′, g′, h′ in Fig. 5. Note variations of the period T . All temporal evolutions start from the
initial condition (p, z, w) = (0.6, 0.15, 1.5)
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Fig. 7 Representation of the attractor corresponding to the point labeled a in Fig. 5, containing
38 spikes per period. The spiralling proceeds along a cone-like “witch hat” surface. All patterns in
Figs. 5 and 6 produce similar hats

(a) (b) (c)

Fig. 8 Wide mosaics of nonchaos-mediated mixed-mode oscillations exist also o n the k × ε control
plane. Panels (a)–(c) were obtained by counting spikes per period of p, z, w, respectively. Here,
b = 7. Each panel displays the analysis of 600 × 600 parameter points

from the analogous mosaics obtained for variables p and z. We see no reason for
nonchaos-mediated cascades of oscillations not to also exist for other combinations
of parameters. However, a full exploration of all possible combinations is also a task
demanding considerable additional computations.

4 Conclusions

This paper reported the discovery of abundant nonchaos-mediated sequences of
oscillations, a novel and elusive type of mixed-mode oscillations, in an interest-
ing prey-predator system including effects of predator dormancy, a strategy adopted
in Nature to avoid extinction. As the carrying capacity increases, nonchaos-mediated
sequences are found to appear well before the onset of chaos in the system, i.e., before
the emergence of the more familiar chaos-mediated sequences. The observation of
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nonchaos-mediated sequences in the system is of interest from a dynamical point
of view because such sequences have been reported only recently and, at present
time, are known to exist only for a small number of systems. As seen in Fig. 8 when
ε → 0, nonchaos-mediated display intricate accumulation limits, which remain to
be investigated, particularly to understand the interplay between the fast and slow
time-scales governing the system. In addition, as seen in Figs. 4, 5, and 8, stability
phases emerge in control parameter space self-organized regularly but arranged in
exceedingly complicated ways which are best described by graphical means than by
words. It would be nice if the intricate variations predicted here could be observed
in real-life measurements.
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Bifurcations and Stability Regions
of Nonlinear Dynamical Systems

Luis F.C. Alberto, Fabiolo M. Amaral and Josaphat R.R. Gouveia Jr.

1 Stability Regions of Nonlinear Dynamical Systems

Attractors of nonlinear dynamical systems are rarely globally stable. Actually, there
exists a subset of the state space, called stability region, composed of all the initial
conditions that have trajectories approaching the attractor as time tends to infin-
ity. Region of attraction, area of attraction and basin of attraction are other names
commonly employed in the literature for stability region.

In this chapter, we will study stability regions of the following class of nonlinear
dynamical systems:

ẋ = f (x), (1)

where f : Rn → R
n is aC1-function.Wewill assume that solutions of (1) are defined

for all t ∈ R and the solution of (1) passing through xo at time t = 0 is denoted by
ϕ(t, xo).

Definition 1 (Invarinat Set) An invariant set γ is an attracting set of system (1) if
there exists a neighborhood (open set) N of γ such that ϕ(t, x) → γ as t → ∞ for
all x ∈ N .

Definition 2 (Stability Region) The stability region A(γ ) of an attracting set γ of
system (1) is the set:

A(γ ) = {x ∈ R
n : ϕ(t, x) → γ as t → ∞}
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Fig. 1 Stability region of an
attracting set γ

Asymptotically stable equilibrium points and asymptotically stable limit cycles are
examples of attracting sets. Figure1 illustrates the concept of stability region. The
stability region A(γ ) is an open and invariant set. Its topological boundary will be
called stability boundary and will be denoted ∂A(γ ). The stability boundary is a
closed and invariant set [8].

Determining stability regions is relevant in many areas of sciences. For instance,
stability regions plays an important role in the assessment of transient stability in
electrical power systems [8] and in the problem of immunization in biological sys-
tems [13]. In the process of determining or estimating stability regions, the deter-
mination or estimation of the stability boundary is relevant. In the next subsections,
the existing theory of characterization of stability regions and stability boundaries is
reviewed. Invariant sets on the stability boundary play an important role in the theory
of stability boundary characterization. In Sect. 1.1, the characterization of hyperbolic
equilibrium points on the stability boundary is studied while Sect. 1.2 studies closed
orbits on the stability boundary.

1.1 Hyperbolic Equilibrium Points on the Stability Boundary

In this section, a characterization of the stability boundary of a fairly large class of
dynamical systems is developed. This class is composed of the dynamical systems
that admit hyperbolic equilibrium points as the only type of critical element (minimal
invariant set) on the stability boundary.

A key point to derive a characterization of the stability boundary is to under-
stand the relationship between the critical elements and the stability region and its
boundary. Theorem 1, proven in [6], establishes this relationship offering necessary
and sufficient conditions for a hyperbolic equilibrium point lying on the stability
boundary.
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Theorem 1 (Equilibrium Points on the Stability Boundary) [6] Let xs be a hyper-
bolic asymptotically stable equilibrium point of (1) and A(xs) be its stability region.
If assumptions:

(A1) All the equilibrium points on ∂A(xs) are hyperbolic,
(A2) The stable and unstable manifolds of equilibrium points on ∂A(xs) satisfy the
transversality condition,
(A3) Every trajectory on ∂A(xs) approaches one of the equilibrium points as
t → +∞,

are satisfied and x∗ (x∗ �= xs) is a hyperbolic equilibrium point of (1). Then the
following statements are equivalent:

(i) x∗ ∈ ∂A(xs)
(ii) Wu(x∗) ∩ A(xs) �= ∅
(iii) W s(x∗) ⊆ ∂A(xs).

Figure2 illustrates the conclusions of Theorem 1. Next theorem, proven in [6],
extends the characterization given in Theorem 1 by asserting the stability boundary
∂A(xs) is the union of the stable manifolds of the equilibrium points on ∂A(xs).

Theorem 2 (Stability Boundary Characterization) Let xs be a hyperbolic asymptot-
ically stable equilibrium point of (1) and A(xs) be its stability region. If assumptions
(A1) and (A3) are satisfied, then:

∂A(xs) ⊆
⋃

i

W s(xi ),

where xi , i = 1, 2, ... are the equilibrium points on ∂A(xs). If, additionally, (A2) is
satisfied, then:

∂A(xs) =
⋃

i

W s(xi ).

Fig. 2 The equilibrium x∗ is
on the stability boundary. Its
stable manifold Ws(x∗) lies
on the stability boundary and
the unstable manifold
Wu(x∗) has a non empty
intersection with the stability
region A(xs)
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Fig. 3 Phase portrait of
system (2). The stability
boundary of xs = (−1, 0) is
formed by the stable
manifold Ws(x1) of the
type-1 hyperbolic
equilibrium point x1 = (2, 3)

The following example illustrate the characterization of the stability boundary of
Theorem 2.

Example Consider the following system of differential equations:

ẋ = x2 − y − 1 (2)

ẏ = x − y + 1

where (x, y) ∈ R
2. System (2) possesses two equilibrium points, an asymptotically

stable equilibrium point, xs = (−1, 0), and a type-1 hyperbolic equilibrium point
x1 = (2, 3) on the stability boundary ∂A(xs). Since all equilibrium points are hyper-
bolic, then assumption (A1) is satisfied. In agreement with Theorem 1, the unstable
manifoldWu(x1) of the hyperbolic equilibriumpoint x1 = (2, 3) intersects the stabil-
ity region A(xs) and its stablemanifoldWs(x1) is contained on the stability boundary
∂A(xs). The stability boundary ∂A(xs) is the stable manifold Ws(x1) of the type-1
hyperbolic equilibrium point x1 = (2, 3), in agreement with the results of Theorem
2. See Fig. 3.

1.2 Closed Orbits on the Stability Boundary

In this section, the stability boundary characterization of Sect. 1.1 is extended to
accommodate periodic orbits on the boundary of stability regions.

Definition 3 (Critical Element) A critical element φ of the autonomous dynamic
system (1) is either a closed orbit or an equilibrium point.

The next theorem, proven in [6], establishes necessary and sufficient conditions
for a critical element point lying on the stability boundary.

Theorem 3 (Critical Element on the Stability Boundary) [6] Let xs be an asymptot-
ically stable equilibrium point of (1) and A(xs) be its corresponding stability region.
Let φ be a critical element. If assumptions:
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(B1) All the critical elements of (1) on ∂A(xs) are hyperbolic,
(B2) The stable and unstable manifolds of critical elements of (1) on ∂A(xs) satisfy

the transversality condition,
(B3) Trajectories on ∂A(xs) approach one of the critical elements of system (1) as

t → +∞,

are held, then the follwoing statements are equivalent:

(i) φ ⊂ ∂A(xs)
(ii) Wu(φ) ∩ A(xs) �= ∅
(iii) W s(φ) ⊂ ∂A(xs).

Theorem 3 is an extension of Theorem 1 and offers a local characterization of
the boundary of the stability region in the neighborhood of critical elements. The
following theorem, proven in [6], develops a global characterization of the stability
boundary. Under assumptions (B1)–(B3), it asserts the stability boundary is the union
of the stable manifolds of the hyperbolic critical elements on the boundary of the
stability region.

Theorem 4 (Stability Boundary Characterization) [6] Let xs be an asymptotically
stable equilibrium point of (1) and A(xs) its stability region. If assumptions (B1)
and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(xi )
⋃

j

W s(φ j )

where xi , i = 1, 2, . . . are the equilibrium points and φ j , j = 1, 2, . . . are the
closed orbits in ∂A(xs). If, additionally, assumption (B2) is satisfied, then

∂A(xs) =
⋃

i

W s(xi )
⋃

j

W s(φ j ).

1.3 Energy Functions and Stability Boundary
Characterization

The characterizations of stability boundary given in Sects. 1.1 and 1.2 are given in
terms of stable manifolds of critical sets. These manifolds are difficult to compute,
specially in high dimensional systems. Despite that, level sets of energy functions
provide concrete estimates of stability regions and stability boundaries, moreover,
energy functions have important implications on the stability boundary characteri-
zation.

Consider the nonlinear dynamical system (1) and let E := {x ∈ R
n : f (x) = 0}

be the set of all equilibrium points of (1). The following definition of energy function
was firstly proposed in [7].
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Definition 4 (Energy Function) A C1-function V : Rn → R is an energy function
of system (1) if the following conditions are satisfied:

(i) V̇ (x) ≤ 0 for all x ∈ R
n .

(ii) if x0 /∈ E , then the set {t ∈ R+ : V̇ (ϕ(t, x)) = 0} has zero measure in R.
(iii) if V (ϕ(t, x0)) is bounded for t ∈ R+, then the trajectory ϕ(t, x0) is bounded

for t ∈ R+.

The existence of an energy function guarantees that every bounded trajectorymust
approach an equilibrium point as t → +∞. As a consequence, complex behavior
such as closed orbits and chaos cannot exist for systems that admit energy functions.
Moreover, the existence of an energy function ensures that every trajectory on the
stability boundary is bounded, although the stability boundary can be unbounded,
and converges to an equilibrium point on the stability boundary as t → +∞ [6]. In
other words, the existence of an energy function is a sufficient condition to guarantee
assumption (A3).

Next theorem, proven in [7], provides a complete characterization of the stability
boundary for systems that admit energy functions.

Theorem 5 (Stability BoundaryCharacterization) [7]Let xs be a hyperbolic asymp-
totically stable equilibriumpoint of (1) and A(xs) be its stability region. If assumption
(A1) is satisfied and system (1) admits an energy function, then:

∂A(xs) ⊆
⋃

i

W s(xi )

where xi , i = 1, 2, ... are the hyperbolic equilibrium points on the stability boundary
∂A(xs).

2 Persistence of Stability Regions to Parameter Variation

Complete characterizations of stability regions and stability boundaries were proven
in the literature [6, 8] and the main results of this theory were presented in Sect. 1.
These characterizations are given in terms of the union of the stable manifolds of
the critical elements on the stability boundary. However, systems are subjected to
uncertainties and parameter changes and a natural question that pops up is how these
characterizations are robust with respect to parameter variation. The answer to this
question is crucial to ensure that estimates of the stability region obtained by means
of these characterizations are robust to parameter changes.

In this chapter, we will study stability regions of the following class of nonlinear
dynamical systems:

ẋ = f (x, λ) = fλ(x), (3)
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where f : Rn × R → R
n is a C 1-function and λ is a real parameter. The trajectory

of system ẋ = fλ(x) passing through xo at time t = 0 will be denoted ϕλ(t, xo).
Suppose xsλo

is a hyperbolic asymptotically stable equilibrium point of (3) for
λ = λo and let Aλo(x

s
λo

) be its stability region. Hyperbolic equilibrium points persist
to parameter changes. Consequently, it does make sense to study the stability region
Aλ(xsλ) of the perturbed equilibrium xsλ. Suppose assumptions (A1)–(A3) hold for
λ = λo and xiλo

, i = 1, . . . ,m are the unstable equilibrium points on the stability
boundary. Then, according to Theorem 2, the stability boundary is given by:

∂Aλo(x
s
λo

) =
⋃

i

W s
λo

(xiλo
)

If assumptions (A1)–(A3) hold for all λ in a neighborhood of λ0 and the number
of equilibrium points on the boundary is finite, it can be proven, under reasonable
conditions, that the stability region and the stability boundary do not suffer drastic
changes. More precisely, if an unstable equilibrium point xuλo

belongs to the stability
boundary ∂Aλo(x

s
λo

) of the unperturbed system, then the perturbed unstable equilib-
rium point xuλ will persist on the stability boundary, i.e., xuλ ∈ ∂Aλ(xsλ) for every λ

sufficiently close to λo. Consequently,

∂Aλ(x
s
λ) ⊂

⋃

i

W s
λ(xiλ),

indicating that the stability boundary does not suffer drastic changes for λ sufficient
close to λo. However, with changes in the parameter λ, assumptions (A1) and (A2)
may be violated. In these cases, drastic changes in the stability regions and stability
boundaries may occur. In this chapter, we will study these changes when assumption
(A1) is violated due to the appearance of two types of nonhyperbolic equilibrium
points on the stability boundary: the saddle-node equilibrium point and the Hopf
equilibrium point. We first develop characterizations of the stability boundary in
the presence of these nonhyperbolic equilibrium points in Sect. 3 and then the sta-
bility region and stability boundary behavior due to changes in parameters in the
neighborhood of saddle-node and Hopf bifurcations are studied in Sect. 4.

3 Non-hyperbolic Equilibrium Points on the Stability
Boundary

Hyperbolicity of equilibrium points on the stability boundary is a fundamental prop-
erty for the characterizations of the stability boundary developed in Sect. 1. Although
the hyperbolicity of equilibrium points of a dynamical system is a generic property,
i.e., it is satisfied for almost all dynamical systems, the violation of hyperbolicity
condition of the equilibrium points on the stability boundary is very common when
the system is subject to variation of parameters. In the analysis of voltage stability
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in electric power systems, for instance, the occurrence of saddle-node bifurcations
on the stability boundary were reported, violating the hyperbolicity condition of the
equilibrium points on the stability boundary [12].

In this section, we discuss the stability boundary characterization in the presence
of two types of non-hyperbolic equilibrium points: the saddle-node and the Hopf
equilibrium points. Exploring these characterizations, we also discuss on how to
obtain estimates of the stability region for dynamical systems that admit energy
functions.

3.1 Saddle-Node Equilibrium Points on the Stability
Boundary

In Sect. 1.1, the properties of hyperbolic equilibriums on the stability boundary were
studied. In this section, we develop necessary and sufficient conditions for a saddle-
node, which is the simplest of the non-hyperbolic equilibrium points, belonging to
the boundary of the stability region. In addition, we also develop a characterization of
the stability boundary in the presence of saddle-node equilibrium points. The results
developed in this section are a generalization of the ones proven in [3, 4]. They are
also a generalization of the results presented in Sect. 1.1.

Definition 5 (Saddle-Node Equilibrium Point) [17] A non-hyperbolic equilibrium
point p ∈ R

n of (1) is a saddle-node equilibrium point if the following conditions
are satisfied:

(i) Dx f (p) has a unique simple null eigenvalue and none of the other eigenvalues
have real part equal to zero,

(ii) w(D2
x f (p)(v, v)) �= 0,

with v as the right eigenvector and w as the left eigenvector associated with the null
eigenvalue.

Saddle-node equilibrium points can be classified in types according to the number
of eigenvalues of Dx f (p) with positive real part.

Definition 6 (Saddle-Node Equilibrium Type) A saddle-node equilibrium point p
of (1) is called a type-k saddle-node equilibrium point if Dx f (p) has k eigenvalues
with positive real part and n − k − 1 with negative real part.

If p is a saddle-node equilibrium point of (1), then there exist invariant local
manifolds Ws

loc(p), W
cs
loc(p), W

c
loc(p), W

u
loc(p) and Wcu

loc(p) of class Cr , tangent
to the eigenspaces Es , Ec ⊕ Es , Ec, Eu and Ec ⊕ Eu at p, respectively [14, 18].
These manifolds are respectively called stable, stable center, center, unstable and
unstable center manifolds. The stable and unstable manifolds are unique, but the
stable center, center and unstable center manifolds may not be. Dynamic properties
of these manifolds can be found in [17, 18].
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3.1.1 Stability Boundary Characterization

In the presence of non-hyperbolic equilibrium points on the stability boundary,
assumption (A1) is violated and the stability boundary characterization given in
Theorem 2 is not valid. In this section, a characterization of the stability boundary
in the presence of hyperbolic and saddle-node equilibrium points is developed. This
characterization is developed in two steps. In the first step, a local characterization
of equilibrium points on the stability boundary is developed and then a global char-
acterization of the stability boundary in terms of manifolds of equilibrium points is
developed.

Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. Consider the following assumptions:
(A1

′
)All the equilibriumpoints on ∂A(xs) are hyperbolic or saddle-node equilibrium

points.
(A2

′
) The following transversality conditions are satisfied:

(i) The stable and unstable manifolds of equilibrium points on ∂A(xs) satisfy the
transversality condition.

(ii) The unstable manifolds of equilibrium points and the stable component of
the stable center manifolds of the type-k saddle-node equilibrium points, with
1 ≤ k ≤ n − 2, on ∂A(xs) satisfy the transversality condition.

(iii) The unstable manifolds of equilibrium points and the stable component of the
center manifolds of the type-(n − 1) saddle-node equilibrium points on ∂A(xs)
satisfy the transversality condition.

(iv) The stable manifolds of equilibrium points and the unstable component of the
centermanifolds of the type-0 saddle-node equilibriumpoints on ∂A(xs) satisfy
the transversality condition.

(v) The stable component of the stable center manifolds of the type-k saddle-node
equilibrium points, with 1 ≤ k ≤ n − 2, and the unstable component of the
centermanifolds of the type-0 saddle-node equilibriumpoints on ∂A(xs) satisfy
the transversality condition.

(vi) The stable component of the center manifolds of the type-(n − 1) saddle-node
equilibrium points and the unstable component of the center manifolds of the
type-0 saddle-node equilibrium points on ∂A(xs) satisfy the transversality con-
dition.

Assumptions (A1
′
) and (A2

′
) are generic properties of dynamical systems [16].

Under assumptions (A1
′
), (A2

′
) − (iv), (v), (vi) and (A3), next theorem, proven in

[1], offers necessary and sufficient conditions to guarantee that a type-0 saddle-node
equilibrium point lies on the stability boundary of a nonlinear autonomous dynamical
system.
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Theorem 6 (Type-0 Saddle-Node Equilibrium Points on the Stability Boundary)
[1] Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. Suppose that assumptions (A1

′
), (A2

′
)-(iv), (v), (vi) and (A3) are

satisfied. If p is a type-0 saddle-node equilibrium point, then the following statements
are equivalent:

(a) p ∈ ∂A(xs)
(b) Wc+

(p) ∩ A(xs) �= ∅
(c) Ws(p) ⊆ ∂A(xs)

Theorem 6 offers necessary and sufficient conditions to guarantee that a type-0
saddle-node equilibrium point p belongs to the stability boundary. More precisely,
it shows that the non empty intersection of the unstable component Wc+

(p) of the
center manifold with the stability region guarantees that the saddle-node equilibrium
point p lies on the stability boundary.

In this sense, we observe thatWc+
(p) plays in Theorem 6 the same role ofWu(p)

in Theorem 1. Consequently, one can check if an equilibrium point p lies on the
stability boundary by checking if the unstable manifold intersects the stability region
in the case of a hyperbolic equilibrium point and if the unstable component of the
center manifold intersects the stability region in the case of a type-0 saddle-node
equilibrium point. Figure4 illustrates the results of Theorem 6.

Next theorem, proven in [1], offers necessary and sufficient conditions to guaran-
tee that a hyperbolic or a type-r saddle-node equilibrium point, with r ≥ 1, lies on
the stability boundary of a nonlinear autonomous dynamical system.

Theorem 7 (Hyperbolic and Type-r Saddle-Node Equilibrium Points, with r ≥ 1
on the Stability Boundary) [1] Let xs be an asymptotically stable equilibrium point
of (1) and let A(xs) be its stability region. Suppose that assumptions (A1

′
), (A2

′
)

and (A3) are satisfied. Then:

Fig. 4 The type-0
saddle-node equilibrium
point p is on the stability
boundary. Its stable manifold
Ws(p) lies on the stability
boundary ∂A(xs) and the
unstable component of the
center manifold Wc+

(p) has
a non empty intersection
with the stability region
A(xs)
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(i) If p∗ is a hyperbolic equilibrium point or a type-r saddle-node equilibrium
point, with r ≥ 1, of (1) and (Wu(p∗)-{p∗}) ∩ A(xs) �= ∅, then the following
statements are equivalent:

(a) p∗ ∈ ∂A(xs)
(b) Wu(p∗) ∩ A(xs) �= ∅
(c)

⎧
⎨

⎩

Ws(p∗) ⊆ ∂A(xs) if p∗ is a hyperbolic equilibrium point
Wcs− (p∗) ⊆ ∂A(xs) if p∗ is a type- r saddle-node equilibrium point, r ≤ n − 2
Wc−

(p∗) ⊆ ∂A(xs) if p∗ is a type- (n-1) saddle-node equilibrium point.

(ii) If p is a type-r saddle-node equilibrium point, with r ≥ 1, of (1) and (Wu(p) −
{p}) ∩ A(xs) = ∅ then the following statements are equivalent:

(a) p ∈ ∂A(xs)
(b) Wc+

(p) ∩ A(xs) �= ∅ for some unstable component Wc+
(p) of the center

manifold.
(c) Ws(p) ⊆ ∂A(xs).

Admitting the existence of non hyperbolic saddle-node equilibrium points on the
stability boundary, generalizing the transversality condition and exploring assump-
tion (A3), Theorem 7 extends the results of Theorem 1. Observe that the same
equivalences proven in Theorem 1 are still valid for hyperbolic equilibrium points
even in the presence of saddle-node equilibrium points on the stability boundary.

Theorem 7 offers necessary and sufficient conditions for a type-r saddle-node
equilibrium point, with r ≥ 1, lying on the stability boundary ∂A(xs). For saddle-
node equilibrium points, two different situations can occur. Therefore, two cases are
separately treated in Theorem 7, the case (i), in which (Wu(p) − {p}) ∩ A(xs) �= ∅,
and the case (ii), in which (Wu(p) − {p}) ∩ A(xs) = ∅.

Next theorem, proven in [1], combines the results of Theorems 6 and 7 to offer
a complete characterization of the stability boundary of a nonlinear autonomous
dynamical system in the presence of saddle-node equilibrium points on the stability
boundary ∂A(xs).

Theorem 8 (Stability Boundary Characterization) [1] Let xs be an asymptotically
stable equilibrium point of (1) and A(xs) be its stability region. Suppose that assump-
tions (A1

′
), (A2

′
) and (A3) are satisfied. Then:

∂A(xs) =
⋃

i

W s(xi )
⋃

j

W s(p j )
⋃

l

W cs−
(zl)

⋃

t

W s(zt )
⋃

m

Wc−
(qm)

where xi are the hyperbolic equilibrium points on ∂A(xs), p j the type-0 saddle-
node equilibrium points on ∂A(xs), zl the type-k saddle-node equilibrium points on
∂A(xs), with 1 ≤ k ≤ n − 2, and (Wu(zl) − {zl}) ∩ A(xs) �= ∅, zt the type-d saddle-
node equilibrium points on ∂A(xs), with d ≥ 1 and (Wu(zt ) − {zt }) ∩ A(xs) = ∅
and qm the type-(n − 1) saddle-node equilibrium points on ∂A(xs), with (Wu(qm) −
{qm}) ∩ A(xs) �= ∅, i, j, l, t,m = 1, 2, . . ..
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Figure5 which was presented in [1], shows an example of a dynamical system
in R

3, where a type-1 saddle-node equilibrium point p lies on the stability bound-
ary ∂A(xs) of an asymptotically stable equilibrium point xs , but (Wu(p) − {p}) ∩
A(xs) = ∅. The stability boundary ∂A(xs) is formed, according to Theorem 8, as
the union of the stable manifold Ws(p) and the stable manifolds Ws(x1), Ws(x2)
of the unstable hyperbolic equilibrium points x1 and x2 that belong to the stability
boundary ∂A(xs).

Figure6 which was presented in [1], shows an example of a dynamic system in
R

3, where (Wu(p) − {p}) ∩ A(xs) �= ∅. The stability boundary ∂A(xs) is formed,
according to Theorem 8, as the union of the stable component Wcs−

(p) of the stable
center manifold and the stable manifold Ws(x1) of the unstable hyperbolic equilib-
rium point x1 that belongs to the stability boundary ∂A(xs).

Fig. 5 Example of a
dynamical system on R

3

where the unstable
component of the unstable
center manifold Wcu+

(p) of
the type-1 saddle-node
equilibrium point p lying on
the stability boundary
∂A(xs) intersects the closure
of the stability region A(xs)
and (Wu(p) − {p}) ∩
A(xs) = ∅. Reprinted from
[1]

Fig. 6 Example of a
dynamical system on R

3

where the unstable
component of the unstable
center manifold Wcu+

(p) of
the type-1 saddle-node
equilibrium point p lying on
the stability boundary
∂A(xs) intersects the closure
of the stability region A(xs)
and (Wu(p) − {p}) ∩
A(xs) �= ∅. Reprinted from
[1]
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3.1.2 Stability Region Estimation

In this section, we derive a scheme to obtain optimal estimates of stability regions via
level sets of a given energy function even in the presence of saddle-node equilibrium
points on the stability boundary.

The first theorem of this section was proven in [7]. It guarantees that every local
minimumof the energy function on the stability boundary is attained at an equilibrium
point.

Theorem 9 (Energy Functions and Equilibrium Points I) [7] Let xs be an asymp-
totically stable equilibrium point of the nonlinear dynamical system (1) and A(xs)
be its stability region. If system (1) admits an energy function, then, the point on the
stability boundary ∂A(xs) at which the energy function attains the minimum value
must be an equilibrium point.

The point of minimum energy on the stability boundary may not be unique.
However, since the property that all equilibrium points of system (1) have distinct
energy function values is generic, we can affirm that the point of minimum energy
on the stability boundary is generically unique. In other words, the uniqueness of the
point with minimum energy is almost always guaranteed.

Theorem 10, proven in [5], gives a characterization for the equilibrium points at
which the global minimum of energy is attained over the stability boundary.

Theorem 10 (Energy Functions and Equilibrium Points II) [5] Let xs be an asymp-
totically stable equilibrium point of the nonlinear dynamical system (1) and A(xs)
be its stability region. Suppose that system (1) admits an energy function. If x∗ is the
equilibrium point with the minimum value of the energy function over the stability
boundary ∂A(xs), then

(i) if x∗ is a hyperbolic equilibrium point, then x∗ is of the type-one;
(ii) if x∗ is a saddle-node equilibrium point, then x∗ is of the type-zero.

Theorem 11, proven in [5], gives a dynamical characterization of this equilib-
rium in terms of its invariant manifolds. Note that this theorem holds without the
transversality condition.

Theorem 11 (Dynamical Characterization) [5] Let xs be an asymptotically stable
equilibrium point of the nonlinear dynamical system (1) and A(xs) be its stability
region. Suppose that system (1) admits an energy function. If x∗ is the equilibrium
point with the minimum value of the energy function over the stability boundary
∂A(xs), then

(i) if x∗ is hyperbolic, then Wu(x∗) ∩ A(xs) �= ∅;
(ii) if x∗ is a type-zero saddle-node equilibrium point, then Wc+

(x∗) ∩ A(xs) �= ∅
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Next theorem provides a scheme to obtain the best estimate of the stability region,
via level sets of a particular given energy function, even in the presence of a saddle-
node equilibrium point on the stability boundary. Its proof can be found in [5].

Theorem 12 (Stability Region Estimation) [5] Let A(xs) be the stability region of
the asymptotically stable equilibrium point xs of (1). Suppose also that system (1)
admits an energy function V . If L = minx∈E∩∂A(xs ) V (x), then:

(i) the connected component D(L) of the level set {x ∈ R
n : V (x) < L} containing

the equilibrium xs is inside the stability region A(xs).
(ii) the connected component D(B) of the level set {x ∈ R

n : V (x) < B} containing
the equilibrium xs has a nonempty intersection with the complement of the
stability region Ac(xs) for any number B > L.

Theorem12 ensures that, calculating all type-one hyperbolic and type-zero saddle-
node equilibrium points on the stability boundary, we can obtain the best estimate
of the stability region, in the form of a level set of the energy function V , by picking
the level set with a level value that equals the value of the energy of the equilibrium
point on the stability boundary which has the lowest value of energy. The choice L
is optimal in the sense that any level set with an energy level greater than L is not
contained in A(xs).

Theorem 12 generalizes the results in [7] by allowing the existence of saddle-node
equilibrium points on the stability boundary. It suggests the following conceptual
algorithm, which is also a generalization of the one proposed in [7], to obtain the
optimal estimate of the stability region in the form of level sets of a given energy
function V :

Conceptual Algorithm for Stability Region Estimation

Step 1 Compute all the equilibrium points on ∂A(xs).
Step 2 Identify the equilibrium point xmin that possesses the lowest energy among

them. Let L = V (xmin).
Step 3 The connected component D(L) of the level set {x ∈ R

n : V (x) < L} con-
taining xs is the largest estimate of the stability region A(xs) in the form of
a level set of V .

Example This example, proposed in [5], illustrates the application of the concep-
tual algorithm for stability region estimation. Consider the nonlinear autonomous
dynamical system

ẋ = −y

ẏ = −x4 + x2 − y (4)

where (x, y) ∈ R
2. Function V (x, y, λ) = − x5

5 + x3

3 + y2

2 is an energy function for
system (4). System (4) possesses three equilibrium points; they are xs = (−1, 0), a
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Fig. 7 The phase portrait of
system (4). The type-zero
saddle-node equilibrium
point (0, 0) is on the stability
boundary ∂A(−1, 0). The
region in light gray is the
stability region of (−1, 0)
and the dark gray region is
the largest estimate obtained
via level set of the energy
function V (x, y, λ) =
− x5

5 + x3
3 + y2

2 . Reprinted
from [5]

x

y

hyperbolic asymptotically stable equilibrium point, p = (0, 0), a type-zero saddle-
node equilibrium point and x∗ = (1, 0), a type-one hyperbolic equilibrium point.
The stability boundary ∂A(−1, 0) is depicted in Fig. 7. It is formed of the stable
manifold of the type-zero saddle-node equilibrium point (0, 0). The minimum of the
energy function V on the stability boundary ∂A(−1, 0) is attained at the type-zero
saddle-node equilibrium point p, the unique equilibrium on ∂A(−1, 0). The energy
function value at p is L = V (0, 0) = 0. The connected component D(0) of the level
set {x ∈ R

2 : V (x, y) < 0} containing the asymptotically stable equilibrium point
xs = (−1, 0) is completely contained in A(−1, 0), see Fig. 7, and it is the largest
estimate that can be obtained in the form of a level set of V .

3.2 Hopf Equilibrium Points on the Stability Boundary

In this section, we study the properties of another type of non-hyperbolic equilibrium
point on the stability boundary, the so called Hopf equilibrium point. In particular, we
develop necessary and sufficient conditions for a Hopf equilibrium point belonging
to the stability boundary. Moreover, we develop a complete characterization of the
stability boundary in the presence of Hopf equilibrium points. The results of this
section generalize the characterization of stability boundary given in Sect. 1 and are
a compilation of the results presented in [9–11].

Consider the nonlinear dynamical system (1). We can always perform a change
of coordinates in system (1), shifting the equilibrium point to origin. Thus, without
loosing generality, system (1) can be rewritten as

ẋ = Ax + F(x), x ∈ R
n, (5)
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where F , F(x) = O(‖x‖2), is a smooth function that has Taylor expansion in x
starting with at least quadratic terms. We can also write function F(x), following the
notation of [15], as

F(x) = 1

2
B(x, x) + 1

6
C(x, x, x) + O(‖x‖4)

where B(x, y) andC(x, y, z) are symmetricmultilinear vector functions of x, y, z ∈
R

n such that

Bi (x, y) =
n∑

j, k=1

∂2Fi (ξ)

∂ξ j∂ξk

∣∣∣∣
ξ=0

x j yk, i = 1, . . . , n

and

Ci (x, y, z) =
n∑

j, k, l=1

∂3Fi (ξ)

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x j ykzl, i = 1, . . . , n.

Definition 7 (Hopf Equilibrium Point) A non-hyperbolic equilibrium point p ∈ R
n

of (1) is called a Hopf equilibrium point if the following conditions are satisfied:

(i) A = Dx f (p) has a simple pair of purely imaginary eigenvalues, ±iω, and no
other eigenvalue with null real part;

(ii) l1 �= 0 where l1 is the first Lyapunov coefficient, which can be computed by the
formula:

l1= 1

2ω
�

[
〈u,C(v, v, v)〉 − 2〈u, B(v, A−1B(v, v))〉 +〈u, B(v, (2iωI − A)−1B(v, v))〉

]

where v is the complex eigenvector associated with the imaginary eigenvalue iω,
u is the complex adjoint eigenvector of the transposed matrix A associated with its
eigenvalue −iω and satisfying the normalization condition:

〈u, v〉 = 1,

where 〈x, y〉 = ∑n
i=1 xi yi represents the inner product in C

n , and � is the real part
of a complex number.

Hopf equilibrium points can be classified according to the sign of the first Lya-
punov coefficient.

Definition 8 (Supercritical and Subcritical Hopf Equilibrium Point) A Hopf equi-
librium point p ∈ R

n of (1) is called a supercritical Hopf equilibrium point if the
first Lyapunov coefficient l1 < 0. A Hopf equilibrium point p ∈ R

n of (1) is called
a subcritical Hopf equilibrium point if the first Lyapunov coefficient l1 > 0.
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Lyapunov coefficients are related to the asymptotic behavior of the system on
the central manifold. Supercritical Hopf equilibrium points attract orbits on the cen-
tral manifold while subcritical Hopf equilibrium points repel them. Furthermore,
Hopf equilibrium points can be also classified in types according to the number of
eigenvalues of Dx f (p) with positive real part.

Definition 9 (Type-k Hopf Equilibrium Point) A Hopf equilibrium point p of (1)
is called a type-k Hopf equilibrium point if Dx f (p) has k (k ≤ n − 2) eigenvalues
with positive real part and n − k − 2 with negative real part.

Figure8 illustrates the invariant manifolds for a type-0 supercritical Hopf equi-
librium point inR3 and Fig. 9 illustrates these invariant manifolds for a type-1 super-
critical Hopf equilibrium point in R3.

Figure10 illustrates the invariant manifolds for a type-1 subcritical Hopf equi-
librium point in R

3 and Fig. 11 illustrates these invariant manifolds for a type-0
subcritical Hopf equilibrium point in R3.

Fig. 8 Manifolds Wc
loc(p)

and Ws
loc(p) for a type-0

supercritical Hopf
equilibrium point p of
system (1) in R

3. Wc
loc(p) is

not unique. Three choices of
Wc

loc(p) are displayed in this
figure. Reprinted from [9]

Fig. 9 Manifolds Wc
loc(p)

and Wu
loc(p) for a type-1

supercritical Hopf
equilibrium point p of
system (1) in R

3. In this
case, Wc

loc(p) is unique.
Reprinted from [9]
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Fig. 10 Manifolds Wc(p)
and Ws(p) for a type-1
subcritical Hopf equilibrium
point p of system (1) in R

3.
Wc(p) is not unique. Three
choices of Wc(p) are
displayed in this figure.
Reprinted from [10]

Fig. 11 Manifolds Wc(p)
and Wu(p) for a type-0
subcritical Hopf equilibrium
point p of system (1) in R

3.
In this case, Wc(p) is
unique. Reprinted from [10]

3.2.1 Stability Boundary Characterization

In this section, a complete characterization of the stability boundary in the presence of
aHopf equilibriumpoint on the stability boundary is developed. This characterization
is developed in two steps. First we study a local characterization of the stability
boundary by studying and characterizing the equilibrium points and closed orbits
that belong to the stability boundary, then a global characterization is developed.

Initially, a characterization of the stability boundary considering supercritical
Hopf equilibrium points is developed and then the result is extended to consider
subcritical Hopf equilibrium points.

The next theorem, proven in [9, 11], provides necessary and sufficient conditions
to guarantee that a supercritical Hopf equilibrium point or a hyperbolic critical ele-
ment lies on the boundary of the stability region. It extends the results of Theorems
1 and 3 to accommodate closed orbits and supercritical Hopf equilibrium points on
the stability boundary. These conditions are expressed in terms of the properties of
their stable, unstable and center-stable manifolds.
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Theorem 13 (Critical Elements on the Stability Boundary) [9, 11] Let A(xs) be
the stability region of an asymptotically stable equilibrium point xs of (1). Let p be
a type-k supercritical Hopf equilibrium point, with 1 ≤ k ≤ n − 2, and let φ be a
type-k ′ hyperbolic critical element, with k ′ ≤ n, of (1). If the assumptions:

(B1’) All the critical elements on ∂A(xs) are hyperbolic critical elements or super-
critical Hopf equilibrium points;

(B2’) The stable, center-stable and/or center and unstable manifolds of the critical
elements on ∂A(xs) satisfy the transversality condition;

(B3) Trajectories on ∂A(xs) approach one of the critical elements as t → ∞ are
held, then:

(i) If φ is a type-k ′ critical element, with 1 ≤ k ′ ≤ n, then

φ ⊂ ∂A(xs) ⇐⇒ Wu(φ) ∩ A(xs) �= ∅
φ ⊂ ∂A(xs) ⇐⇒ Ws(φ) ⊂ ∂A(xs)

(ii) If p is a type-k supercritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, then

p ∈ ∂A(xs) ⇐⇒ Wu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Wcs(p) ⊂ ∂A(xs)

(iii) If p is a type-(n − 2) supercritical Hopf equilibrium point, then

p ∈ ∂A(xs) ⇐⇒ Wu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Wc(p) ⊂ ∂A(xs)

The next theorem offers a complete characterization of the stability boundary
when a supercritical Hopf equilibrium points lies on ∂A(xs). It is a generalization of
Theorems 2 and 4 that allows the existence of closed orbits and supercritical Hopf
equilibrium points on the stability boundary.

Theorem 14 (Characterization of the Stability Boundary for Critical Elements) [9,
11] Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. If assumptions (B1’) and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(φi )
⋃

j

W cs(p j )
⋃

l

W c(ql)

where φi are the hyperbolic critical elements, p j the type-k supercritical Hopf equi-
librium points, with 1 ≤ k ≤ n − 3, and ql the type-(n − 2) supercritical Hopf equi-
librium points on ∂A(xs), i, j, l = 1, 2, . . .. If assumption (B2’) is additionally
satisfied, then

∂A(xs) =
⋃

i

W s(φi )
⋃

j

W cs(p j )
⋃

l

W c(ql).
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Theorem 14 states that the stability boundary is composed of the stable manifolds
of the critical elements on the stability boundaryunionwith the center-stablemanifold
of the supercritical Hopf equilibrium points on the stability boundary.

Now, we will construct the same characterization of the stability boundary when
the non-hyperbolic equilibrium point on the stability boundary is a subcritical Hopf
equilibrium point.

The next theorem provide necessary and sufficient conditions to guarantee that
a subcritical Hopf equilibrium point or a hyperbolic critical element lies on the
boundary of the stability region. These conditions are expressed in terms of the
properties of its stable, center-unstable and center manifolds.

Theorem 15 (Critical Elements on the Stability Boundary) [11] Let A(xs) be the
stability region of an asymptotically stable equilibrium point xs of (1). Let p be a
type-k subcritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, and let φ be a type-k ′
hyperbolic critical element, with k ′ ≤ n, of (1). If the assumptions:

(B1”) All the critical elements on ∂A(xs) are hyperbolics critical elements or sub-
critical Hopf equilibrium points;

(B2”) The stable and unstable, center-unstable and/or center manifolds of the crit-
ical elements on ∂A(xs) satisfy the transversality condition;

(B3) Trajectories on ∂A(xs) approach one of the critical elements as t → ∞ are
held, then:

(i) If φ is a type-k ′ critical element, with 1 ≤ k ′ ≤ n, then
φ ∈ ∂A(xs) ⇐⇒ Wu(φ) ∩ A(xs) �= ∅
φ ∈ ∂A(xs) ⇐⇒ Ws(φ) ⊂ ∂A(xs)

(ii) If p is a type-0 subcritical Hopf equilibrium point, then
p ∈ ∂A(xs) ⇐⇒ Wc(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Ws(p) ⊂ ∂A(xs)

(iii) If p is a type-k subcritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, then
p ∈ ∂A(xs) ⇐⇒ Wcu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Ws(p) ⊂ ∂A(xs)

(iv) If p is a type-(n − 2) subcritical Hopf equilibrium point, then
p ∈ ∂A(xs) ⇐⇒ Wcu(p) ∩ A(xs) �= ∅

The next theorem provides a complete characterization of the boundary of the
stability region when there are subcritical Hopf equilibrium points in ∂A(xs). It is
a generalization of Theorems 2 and 4 that allows the presence of closed orbits and
subcritical Hopf equilibrium points on the stability boundary.

Theorem 16 (Characterization of the Stability Boundary for Critical Elements) Let
xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its stability
region. If assumptions (B1”) and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(φi )
⋃

j

W cs(p j )
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where φi are the hyperbolic critical elements and p j the subcritical Hopf equilibrium
points, with 1 ≤ k ≤ n − 2, on ∂A(xs), i = 1, 2, . . .. If, additionally, assumption
(B2’) is satisfied, then

∂A(xs) =
⋃

i

W s(φi )
⋃

j

W cs(p j ).

Next example illustrates the results and characterizations developed in this section.

Example Consider the autonomous nonlinear dynamical system proposed in [9]:

⎧
⎨

⎩

ẋ = −xz2 − y − x(x2 + y2);
ẏ = −yz2 + x − y(x2 + y2);
ż = −z(z − 3)(8 − z);

(6)

where (x, y, z) ∈ R
3.

System (6) has three equilibrium points, they are an asymptotically stable equilib-
rium point xs = (0, 0, 3), a type-1 hyperbolic equilibrium point x = (0, 0, 8) and
a type-1 supercritical Hopf equilibrium point p = (0, 0, 0). Consequently, assump-
tions (B1

′
) and (B2

′
) are satisfied.

Function V (x, y, z) = x2

2
+ y2

2
− z4

4
+ 11

3
z3 − −12z2 is an energy function for

system (6). For instance, V̇ = −(x2 + y2)z2 − (x2 + y2)2 − z2(z − 3)2(8 − z)2 ≤
0 and assumption (E1) holds. The derivative of V equals zero only at equilibrium
points, consequently assumption (E2) holds. And finally, if a solution ϕ(t, x0) is
unbounded for t ≥ 0, then V (ϕ(t, x0)) is also unbounded for t ≥ 0. As a conse-
quence, assumption (E3) is satisfied and V is an energy function for system (6).

The existence of an energy function implies that assumption (B3) is held. Con-
sequently the assumptions of Theorems 13 and 14 are satisfied and the complete
characterization of stability boundary developed in Theorem 14 also holds. The
unstable manifold of the type-1 supercritical Hopf equilibrium point p = (0, 0, 0)
intersects the stability region of xs = (0, 0, 3), consequently, according to Theo-
rem 13, p lies on the stability boundary ∂A(xs) and the center manifold is contained
in the boundary of the stability region of xs = (0, 0, 3), see Fig. 12. The unstable
manifold of the type-1 hyperbolic equilibrium point x = (0, 0, 8) also intersects
the stability region of xs = (0, 0, 3) and therefore x lies on the stability boundary
of xs and the stable manifold is contained in the boundary of the stability region of
xs = (0, 0, 3), according to the Theorem 13, see Fig. 12.

Figure12 illustrates the boundary of the stability region of the asymptotically
stable equilibrium point xs = (0, 0, 3). The boundary is formed, according to The-
orem 14, of the union of the stable manifold of the type-1 hyperbolic equilibrium
point x = (0, 0, 8), the highest shaded surface passing by x at Fig. 12, with the
center manifold of the type-1 supercritical Hopf equilibrium point p = (0, 0, 0),
the lowest shaded surface passing by p at Fig. 12.
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Fig. 12 The stability
boundary of the
asymptotically stable
equilibrium point
xs = (0, 0, 3) of system (6)
is composed of two surfaces,
the stable manifold of the
type-1 hyperbolic
equilibrium point
x = (0, 0, 8) and the center
manifold of the type-1
supercritical Hopf
equilibrium point
p = (0, 0, 8). Reprinted
from [9]

4 Stability Region Bifurcations

The characterization of stability boundaries derived in Sect. 1 were developed under
assumptions (A1) − (A3). Under parameter variation, bifurcations may occur on
the stability boundary and assumptions (A1) or (A2) may be violated at bifurca-
tion points. Studying the characterization of the stability boundary at these bifurca-
tion points is of fundamental importance to understanding how the stability region
behaves under parameter variation. In this section, we study bifurcations of the sta-
bility boundary that are induced by local bifurcations of critical elements on the
stability boundary and, in particular, by local bifurcation of equilibrium points. It
will be shown that drastic changes in the size of the stability region might occur.

4.1 Sadde-Node Bifurcation

Consider the nonlinear dynamical system (3) and let f : Rn × R → R
n be a vector

field of class Cr , with r ≥ 2.

Definition 10 (Saddle-Node Bifurcation Point) The point (pλ0 , λ0) ∈ R
n × R is

called a saddle-node bifurcation point of system (3) if pλ0 ∈ R
n is a non-hyperbolic

equilibrium point of (3) for the fixed parameter λ = λ0 and the following conditions
are satisfied:

(SN1) Dx fλ0(pλ0)has a unique simple eigenvalue equal to 0with v as an eigenvector
to the right and w to the left.
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(SN2) w(D2
x fλ0(pλ0)(v, v)) �= 0.

(SN3) w((∂ fλ/∂λ)(pλ0 , λ0)) �= 0.

In other words, (pλ0 , λ0) ∈ R
n × R is a saddle-node bifurcation point of system

(3) if pλ0 ∈ R
n is a saddle-node equilibrium point of (3) for a fixed parameter λ = λ0

and the transversality condition (SN2) is satisfied. A saddle-node bifurcation point
(pλ0 , λ0) will be of type k if the non-hyperbolic equilibrium point pλ0 is a type-k
saddle-node equilibrium point. The parameter λ0 will also be called a type-k saddle-
node bifurcation value.

Next theorem, proven in [17], studies the dynamical behavior of system (3) in the
neighborhood of a saddle-node bifurcation point.

Theorem 17 (Saddle-Node Bifurcation) [17] Let (pλ0 , λ0) be a saddle-node bifur-
cation point of (3). Then there exist a neighborhood N of pλ0 and δ > 0 such that,
depending on the signs of the expressions in (SN2) and (SN3), there is no equi-
librium point on N when λ ∈ (λ0 − δ, λ0)[λ ∈ (λ0, λ0 + δ)] and two equilibrium
points pkλ and pk+1

λ in N for each λ ∈ (λ0, λ0 + δ)[λ ∈ (λ0 − δ, λ0)]. The two equi-
librium points on N are hyperbolic, more specifically pkλ is of type-k and pk+1

λ is
of type-k + 1, k ∈ N. Moreover, the stable manifold of the type-k equilibrium point
and the unstable manifold of the type-k + 1 equilibrium point intersect along an
one-dimensional manifold.

4.2 Saddle-Node Bifurcation on the Stability Boundary

In this section, we develop results that describe the behavior of the stability region
and stability boundary in the neighborhood of a saddle-node bifurcation value. These
results generalize the results of [4], which explore the behavior of the stability region
and stability boundary in the neighborhood of only a type-zero saddle-node bifurca-
tion value.

Next theorem, proven in [2], describes the local behavior of the stability boundary
in the neighborhood of a type-k saddle-node equilibrium point.

Theorem 18 (Stability Boundary Behavior Near a Saddle-Node) [2] Let pλ0 be
a type-k saddle-node equilibrium point lying on the stability boundary ∂Aλ0(x

s
λ0

)

of the hyperbolic asymptotically stable equilibrium point xsλ0
of (3) for λ = λ0. If

assumptions (A1) − (A3) are satisfied in an open interval containing λ0, except
at the type-k saddle-node bifurcation value, with k ≥ 0, where assumptions (A1

′
),

(A2
′
) and (A3) are satisfied, and the number of equilibrium points on ∂Aλ0(x

s
λ0

) is
finite, then:

(i) If (pλ0 , λ0) is a type-zero saddle-node bifurcation point, with pλ0 lying on
the stability boundary ∂Aλ0(x

s
λ0

), then there is β > 0 such that, for all λ ∈
(λ0 − β, λ0), we have that

pλ0 /∈ ∂Aλ(x
s
λ) and pλ1 ∈ ∂Aλ(x

s
λ)
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where pλ0 and pλ1 are the hyperbolic equilibrium points originated from the
type-zero saddle-node bifurcation.

(ii) If (xλ0 , λ0) is a type-r saddle-node bifurcation point, with r ≥ 1, with xλ0 lying
on the stability boundary ∂Aλ0(x

s
λ0

), then there is β > 0 such that, for all λ ∈
(λ0 − β, λ0), we have that

yλr ∈ ∂Aλ(x
s
λ) and yλr+1 ∈ ∂Aλ(x

s
λ)

where pλr and pλr+1 are the unstable hyperbolic equilibrium points originated
from the type-r saddle-node bifurcation, with r ≥ 1.

Theorem18 shows that, in the occurrence of a type-r saddle-node bifurcation,with
r ≥ 1, on the stability boundary, necessarily the two hyperbolic equilibrium points
that coalesce and disappear at the bifurcation saddle-node belong to the stability
boundary. Otherwise, the generic assumption of transversality would be violated.

The following corollary offers a complete characterization of the stability bound-
ary in the neighborhood of a type-k saddle-node bifurcation value, with k ≥ 0.

Corollary 1 (Characterization of the Stability Boundary in the Neighborhood of
a Type-k Saddle-Node Bifurcation Value, with k ≥ 0) Let pλ0 be a type-k saddle-
node equilibrium point lying on the stability boundary ∂Aλ0(x

s
λ0

) of the hyperbolic
asymptotically stable equilibrium point xsλ0

of (3) for λ = λ0. If assumptions (A1) −
(A3) are satisfied in an open interval containing λ0, except at the type-k saddle-
node bifrucation value, with k ≥ 0, where assumptions (A1

′
), (A2

′
) and (A3) are

satisfied, and the number of equilibrium points on ∂Aλ0(pλ0) is finite, then:
(i) For λ = λ0 we have that

∂Aλ0(x
s
λ0

) =
⋃

i

W s
λ0

(wi
λ0

)
⋃

j

W s
λ0

(p j
λ0

)
⋃

l

W cs−
λ0

(zlλ0
)
⋃

m

Wc−
λ0

(qm
λ0

)

where wi
λ0
are the hyperbolic equilibrium points in ∂Aλ0(x

s
λ0

), p j
λ0
are the type-zero

saddle-node equilibrium points, zlλ0
the type-k saddle-node equilibrium points, with

1 ≤ k ≤ n − 2 and qm
λ0
the type-(n − 1) saddle-node equilibriumpoints in ∂Aλ0(x

s
λ0

),
i, j, l,m = 1, 2, ....
(i i) There is ε > 0 such that, for all λ ∈ (λ0 − ε, λ0),

∂Aλ(x
s
λ) =

⋃

i

W s
λ(wi

λ)
⋃

j

W s
λ(y j

λk )
⋃

j

W s
λ(y j

λk+1)

where wi
λ are the perturbed hyperbolic equilibrium points in ∂Aλ(xsλ), y

j
λk and y j

λk+1

are the unstable hyperbolic equilibrium points originated from the type-k saddle-
node bifurcation, with k ≥ 0, that also belong to ∂Aλ(xsλ), i, j,= 1, 2, ....
(i i i) There is ε > 0 such that, for all λ ∈ (λ0, λ0 + ε),
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∂Aλ(x
s
λ) =

⋃

i

W s
λ(wi

λ)

where wi
λ are the perturbed hyperbolic equilibrium points in ∂Aλ(xsλ), i = 1, 2, ....

Example Consider the following system of differential equations from [2]:

ẋ = 1 − λsen(x) − 2sen(x − y)
ẏ = 1 − 3sen(y) − 2sen(y − x)
ż = −z

(7)

where (x; y; z) ∈ R
3 and λ ∈ R.

System (7) possesses for λ0 = 2, 84, a hyperbolic asymptotically stable equi-
librium point xsλ0

= (0, 35; 0, 34; 0) and a type-1 saddle-node equilibrium point
xλ0 = (1, 42; 3, 39; 0). The type-1 saddle-node equilibrium point belongs to the
stability boundary ∂λ0(0, 35; 0, 34; 0). For λ = 2, 87, system (7) possesses a hyper-
bolic asymptotically stable equilibriumpoint xsλ = (0, 33; 32; 0), a type-1 hyperbolic
equilibrium point pλ1 = (1, 14; 3, 34; 0) and a type-2 hyperbolic equilibrium point
pλ2 = (1, 48; 3, 43; 0). The equilibrium points pλ1 and pλ2 are originated from the
type-1 saddle-node equilibrium point in a type-1 saddle-node bifurcation. Moreover,
pλ1 ∈ ∂Aλ(0, 33; 32; 0) and pλ2 ∈ ∂Aλ(0, 33; 32; 0), according to Theorem 18, see
Fig. 13.

Fig. 13 The surface in this
figure is the stability
boundary of the stability
region of the asymptotically
stable equilibrium point
xsλ = (0, 33; 32; 0) of system
(7) for λ = 2, 87. The
unstable equilibrium points
pλ1 = (1, 14; 3, 34; 0) and
pλ2 = (1, 48; 3, 43; 0),
originated from the type-1
saddle-node bifurcation,
belong to the stability
boundary ∂λ(0, 33; 32; 0).
Reprinted from [2]
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4.3 Hopf Bifurcation on the Stability Boundary

In this section, a characterization of the stability boundary in a small neighborhood
of the parameter μ0 of a Hopf bifurcation of type-k, with k ≥ 1, is developed. We
begin the section establishing some concepts of the Hopf bifurcation theory.

Consider the autonomous dynamic system dependent on a parameter

ẋ = f (x, μ), x ∈ R
n, μ ∈ R (8)

where f : Rn × R → R
n is a C 1-vector field .

Definition 11 (Hopf Bifurcation Point) A non-hyperbolic equilibrium point xμ0 ∈
R

n of (8), for a fixed parameter μ = μ0, is called a Hopf equilibrium point and
(xμ0 , μ0) a Hopf bifurcation point if the following conditions are satisfied:

(i) Dx f (xμ0) has a simple pair of purely imaginary eigenvalues,±iω, and no other
eigenvalue with null real part; and

(ii) l1 �= 0, where l1 is the first coefficient of Lyapunov, see [9].

Hopf bifurcation points can also be classified according to the sign of the first
Lyapunov coefficient. A Hopf bifurcation point (xμ0 , μ0) of (8) is called a super-
critical Hopf bifurcation point if the first Lyapunov coefficient l1 < 0 and is called a
subcritical Hopf bifurcation point if the first Lyapunov coefficient l1 > 0.

Hopf bifurcation points can also be classified in types according to the number of
eigenvalues of Dx f (xμ0)with positive real part. TheHopf bifurcation point xμ0 of (8)
is called a type-k Hopf bifurcation point if Dx f (xμ0) has k (k ≤ n − 2) eigenvalues
with positive real part and n − k − 2 with negative real part.

Let xsμ0
be an asymptotically stable equilibrium point of (8) and let Aμ0(x

s
μ0

) be its
stability region for the fixed parameterμ = μ0. Consider the following assumptions:
(B1’) All the critical elements on ∂Aμ0(x

s
μ0

) are hyperbolic critical elements or
supercritical Hopf equilibrium points.
(B2’) The stable, the center-stable and/or the center manifolds and the unstable
manifolds of the critical elements on ∂Aμ0(x

s
μ0

) satisfy the transversality condition.
In the following theorems, we will explore the behavior of the boundary of the

stability region of the asymptotically stable equilibrium in a small neighborhood
of the parameter μ0 of a type-k supercritical Hopf bifurcation, with k ≥ 1. We will
assume, for the value of the supercriticalHopf bifurcation parameterμ0, the existence
of only hyperbolic critical elements of system (8) at μ = μ0, with the exception
of the type-k supercritical Hopf nonhyperbolic equilibrium point, with k ≥ 1, xμ0 .
Furthermore, in a small neighborhood of the parameter μ0, we will assume the
existence of only critical elements that are the perturbed critical elements of the
original system (8) atμ = μ0. Initially, wewill establish the behavior of the boundary
of the stability region in the neighborhood of a type-k supercritical Hopf equilibrium
point with k ≥ 1 and, then we will present a global characterization of the boundary
in that neighborhood.
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Theorem 19 (Boundary of the Stability Region in the Neighborhood of a Type-k
Supercritical Hopf Bifurcation Point with k ≥ 1) [11] Let (μ0, xμ0) be a type-k
supercritical Hopf bifurcation point, with k ≥ 1, of (8) for μ = μ0. Suppose that
the type-k supercritical Hopf bifurcation point xμ0 belongs to the boundary of the
stability region ∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium point
xsμ0

of (8) for μ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied
for all μ belonging to an open interval I containing μ = μ0, except in μ0 where
assumptions (B1’) and (B2’) are satisfied. Furthermore, assume that xμ0 is the only
nonhyperbolic equilibrium point in μ = μ0. Suppose also that for all μ ∈ I , all
the critical elements of the perturbed system ẋ = f (x, μ) are perturbed critical
elements originated from the system ẋ = f (x, μ0). Then there is a neighborhood U
of xμ0 and ε1 ≥ ε > 0 such that:

(i) There is a hyperbolic equilibrium point x H
μ of type-k, with 1 ≤ k ≤ n − 2, in U

for all μ ∈ (μ0 − ε1, μ0) and there are a hyperbolic closed orbit ΩH
μ of type-

k, with 1 ≤ k ≤ n − 2, and a hyperbolic equilibrium point x H
μ of type-k + 2,

with 1 ≤ k ≤ n − 2, in U for all μ ∈ (μ0, μ0 + ε1).
(ii) For μ ∈ (μ0, μ0 + ε) we have that ΩH

μ ∈ ∂Aμ(xsμ) and xH
μ ∈ ∂Aμ(xsμ).

(iii) For μ ∈ (μ0 − ε, μ0) we have that x H
μ ∈ ∂Aμ(xsμ).

Theorem 19 ensures, for μ ∈ (μ0 − ε, μ0), the hyperbolic equilibrium point xH
μ

of type-k, with 1 ≤ k ≤ n − 2, in the neighborhoodU , belongs to the stability bound-
ary of xsμ. At μ = μ0, the equilibrium point loses hyperbolicity, leading to the emer-
gence of a type-k supercritical Hopf equilibrium point, with k ≥ 1. The supercritical
Hopf equilibrium point is on the stability boundary of xsμ. For values of μ > μ0, the
hyperbolic equilibrium point xH

μ of type-k + 2, with 1 ≤ k ≤ n − 2 in U loses sta-
bility and a hyperbolic closed orbit ΩH

μ of type-(k + 1) arises, with 1 ≤ k ≤ n − 2,
on the stability boundary of xsμ. Theorem 19 states that both the stability region as
the stability boundary undergo changes when the parameter changes in the interval
(μ0 − ε, μ0 + ε). The next result establishes the characterization of the boundary
of the stability region in a small neighborhood of the type-k supercritical Hopf bifur-
cation parameter value, with k ≥ 1.

Theorem 20 (Characterization of the Stability Boundary in the Neighborhood of a
Type-k Supercritical Hopf Equilibrium Point with k ≥ 1) [11] Let (μ0, xμ0) be a
type-k supercritical Hopf bifurcation point, with k ≥ 1, of (8) for μ = μ0. Suppose
that the type-k supercritical Hopf bifurcation point xμ0 belongs to the boundary
of the stability region ∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium
point xsμ0

of (8) forμ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied
for all μ in an open interval I containing μ = μ0, except at μ0, where assumptions
(B1’) and (B2’) are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic
equilibrium point inμ = μ0. Suppose also that for allμ ∈ I , all the critical elements
of the perturbed system ẋ = f (x, μ) are perturbed critical elements originated from
the system ẋ = f (x, μ0). If r iμ0

are the critical elements in ∂Aμ0(x
s
μ0

), i = 1, . . . , k,
then:
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(i) For μ = μ0 we have ∂Aμ0(x
s
μ0

) = ⋃
i W

s
μ0

(r iμ0
)
⋃

Wc
μ0

(xμ0).
(ii) There is ε > 0 such that, for all μ ∈ (μ0 − ε, μ0), ∂Aμ(xsμ) = ⋃

i W
s
μ(r iμ)⋃

Ws
μ(xH

μ ) where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical
elements in ∂Aμ(xsμ) and xH

μ is the type-k hyperbolic equilibrium point, with
1 ≤ k ≤ n − 2, originated from the type-k supercritical Hopf bifurcation, k ≥
1.

(iii) There is ε > 0 such that, for all μ ∈ (μ0, μ0 + ε), ∂Aμ(xsμ) = ⋃
i W

s
μ(r iμ)⋃

Ws
μ(xH

μ )
⋃

Ws
μ(ΩH

μ ) where r iμ, i = 1, 2, . . . , k are the perturbed hyper-
bolic critical elements in ∂Aμ(xsμ) and xH

μ and ΩH
μ are the type-(k + 2) hyper-

bolic equilibrium point, with 1 ≤ k ≤ n − 2, and the type-k periodic orbit,
with 1 ≤ k ≤ n − 2, respectively, originated from the type-k supercritical Hopf
bifurcation, k ≥ 1.

In the next two theorems, we will present the behavior of the stability boundary of
an asymptotically stable equilibrium point in a small neighborhood of the parameter
μ0 of a type-k subcritical Hopf bifurcation, with k ≥ 1.Wewill assume, for the value
of the subcritical Hopf bifurcation parameter μ0, the existence of only hyperbolic
critical elements of the system (8), with the exception of the type-k subcritical Hopf
non-hyperbolic equilibrium point, with k ≥ 1, xμ0 . Furthermore, in a small neighbor-
hood of the parameter μ0, we will assume the existence of only critical elements that
are the disturbed critical elements of the original system (8) in μ = μ0. Proceeding
in the same way we did in the occurrence of a supercritical Hopf bifurcation, we will
establish the behavior of the boundary of the stability region in the neighborhood of
a type-k subcritical Hopf equilibrium point with k ≥ 1 and, then we will present a
global characterization of the boundary in that neighborhood.

Theorem 21 (Stability Boundary in the Neighborhood of a Type-k Subcritical Hopf
Bifurcation Point with k ≥ 1) [11] Let (μ0, xμ0) be a type-k subcritical Hopf bifur-
cation point, with k ≥ 1, of (8) for μ = μ0. Suppose that the type-k subcritical Hopf
bifurcation point xμ0 belongs to the boundary of the stability region ∂Aμ0(x

s
μ0

) of
an asymptotically stable hyperbolic equilibrium point xsμ0

of (8) for μ = μ0. Admit
that assumptions (B1), (B2) and (B3) are satisfied for all μ belonging to an open
interval I containing μ = μ0, except in μ0 where assumptions (B1”) and (B2”)
are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic equilibrium
point in μ = μ0. Suppose also that for all μ ∈ I , all the critical elements of the
perturbed system ẋ = f (x, μ) are perturbed critical elements originated from the
system ẋ = f (x, μ0). Then there is a neighborhood of xμ0 and ε1 ≥ ε > 0 such
that:

(i) There is a hyperbolic closed orbit ΩH
μ of type-(k + 1), with 1 ≤ k ≤ n − 2,

and a hyperbolic equilibrium point x H
μ of type-k, with 1 ≤ k ≤ n − 2, in U for

all μ ∈ (μ0 − ε1, μ0) and a hyperbolic equilibrium point x H
μ of type-(k + 2),

with 1 ≤ k ≤ n − 2, in U for all μ ∈ (μ0, μ0 + ε1).
(ii) For μ ∈ (μ0 − ε, μ0) we have that

ΩH
μ ∈ ∂Aμ(xsμ) and xH

μ ∈ ∂Aμ(xsμ).
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(iii) For μ ∈ (μ0, μ0 + ε) we have that

x H
μ ∈ ∂Aμ(xsμ).

Theorem 21 ensures, for μ ∈ (μ0 − ε, μ0), the hyperbolic periodic orbit ΩH
μ of

type-(k + 1), with 1 ≤ k ≤ n − 2, and the hyperbolic equilibriumpoint xH
μ of type-k,

with 1 ≤ k ≤ n − 2, in the neighborhoodU , belongs to the stability boundary of xsμ.
As the parameterμ grows, the amplitude of the closed orbit decreases and approaches
the type-k hyperbolic equilibrium point, with 1 ≤ k ≤ n − 2 in U . At μ = μ0, the
periodic orbit coalesces with the hyperbolic equilibrium point in U , resulting in the
emergence of a type-k subcritical Hopf equilibrium point, with k ≥ 1. The subcritical
Hopf equilibrium point is on the stability boundary of xsμ. For values of μ > μ0, we
have a hyperbolic equilibrium point xH

μ inU , which belongs to the stability boundary.
Theorem 21 states that both the stability region as the stability boundary undergo
changes when the parameter changes in the interval (μ0 − ε, μ0 + ε).

The next result establishes the characterization of the stability boundary in a small
neighborhood of the parameter value of a type-k subcritical Hopf bifurcation, with
k ≥ 1.

Theorem 22 (Characterization of the Stability Boundary in the Neighborhood of
a Type-k Subcritical Hopf Equilibrium Point with k ≥ 1) [11] Let (μ0, xμ0) be a
type-k subcritical Hopf bifurcation point, with k ≥ 1, of (8) forμ = μ0. Suppose that
the type-k subcritical Hopf bifurcation point xμ0 belongs to the stability boundary
∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium point xsμ0
of (8) for

μ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied for allμ belonging
to an open interval I containing μ = μ0, except in μ0 where assumptions (B1”)
and (B2”) are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic
equilibrium point inμ = μ0. Suppose also that for allμ ∈ I , all the critical elements
of the perturbed system ẋ = f (x, μ) are perturbed critical elements originated from
the system ẋ = f (x, μ0). If r iμ0

are the critical elements in ∂Aμ0(x
s
μ0

), i = 1, . . . , k,
then:

(i) For μ = μ0 we have

∂Aμ0(x
s
μ0

) =
⋃

i

W s
μ0

(r iμ0
)
⋃

Ws
μ0

(xμ0)

(ii) There is ε > 0 such that, for all μ ∈ (μ0 − ε, μ0),

∂Aμ(xsμ) =
⋃

i

W s
μ(r iμ)

⋃
Ws

μ(xH
μ )

⋃
Ws

μ(ΩH
μ )

where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical elements in
∂Aμ(xsμ) and xH

μ and ΩH
μ are the type-k hyperbolic equilibrium point, with

1 ≤ k ≤ n − 2, and a type-(k + 1) periodic orbit, with 1 ≤ k ≤ n − 2, respec-
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tively, originated from the type-k subcritical Hopf bifurcation, with k ≥ 1.

(iii) There is ε > 0 such that, for all μ ∈ (μ0, μ0 + ε),

∂Aμ(xsμ) =
⋃

i

W s
μ(r iμ)

⋃
Ws

μ(xH
μ )

where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical elements in
∂Aμ(xsμ) and xH

μ is the type-(k + 2) hyperbolic equilibrium point, with 1 ≤
k ≤ n − 2, originated from the type-k subcritical Hopf bifurcation, k ≥ 1.

Example Consider the nonlinear dynamical system from [9]:

⎧
⎨

⎩

ẋ = (−z + μ)x − y − x(x2 + y2);
ẏ = (−z + μ)y + x − y(x2 + y2);
ż = −0.1(z + 0.5(x2 + y2))(z − 3)(8 − z);

(9)

where (x, y, z) ∈ R
3 and μ ∈ R. For μ0 = 0, system (9) has three equilibrium

points, they are: a type-1 hyperbolic equilibrium point, x1 = (0, 0, 8), a type-1
supercritical Hopf equilibrium point, xH

μ0
= (0, 0, 0), and an asymptotically sta-

ble equilibrium point, xsμ = (0, 0, 3). The boundary of the stability region of
xsμ0

= (0, 0, 3) is formed by the union of the stablemanifold of the type-1 hyperbolic
equilibrium point x1 = (0, 0, 8)with the center manifold of the type-1 supercritical

Fig. 14 a The boundary of the stability region of xsμ = (0, 0, 3) is formed by the union of the

stable manifold Ws
μ(x1) with the stable manifold Ws

μ(xHμ ). b The boundary of the stability region
of xsμ0

= (0, 0, 3) is formed by the union of the stable manifoldWs
μ0

(x1) with the center manifold
Wc

μ0
(xμ0 ). c The boundary of the stability region of xsμ = (0, 0, 3) is formed by the union of the

stable manifold Ws
μ(x1) with the stable manifold Ws

μ(φH
μ ). Reprinted from [9]
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Hopf equilibrium point, xH
μ0

= (0, 0, 0), see Fig. 14b. For μ = −0.5, the system
has three equilibrium points, they are: two type-1 hyperbolic equilibrium points,
xH

μ = (0, 0, 0) and x1 = (0, 0, 8), and an asymptotically stable equilibrium point,
xsμ = (0, 0, 3). The equilibrium point xH

μ is originated from the type-1 supercritical
Hopf equilibrium point in a type-1 supercritical Hopf bifurcation. The hyperbolic
equilibrium points xH

μ = (0, 0, 0) and x1 = (0, 0, 8) belong to the boundary of the
stability region ∂Aμ(xsμ), according to Theorem 19, see Fig. 14a. For μ = 0.5, the
system has four critical elements, they are: a type-3 hyperbolic equilibrium point,
xH

μ = (0, 0, 0), a type-1 hyperbolic equilibrium point, x1 = (0, 0, 8), an asymptot-
ically stable equilibrium poin, xsμ = (0, 0, 3), and a type-1 hyperbolic periodic orbit
φH

μ . The critical elements xH
μ andφH

μ were originated from the type-zero supercritical
Hopf equilibrium point in a type-zero supercritical Hopf bifurcation. The hyperbolic
equilibrium points x1 and φH

μ belong to the boundary of the stability region ∂Aμ(xsμ),
according to Theorem 19, see Fig. 14c.

5 Concluding Remarks

In this chapter, the body of the existing theory regarding the study of changes in the
stability region due to parameter variation has been presented. These changes might
be very complex and we have studied in this chapter only the ones triggered by two
types of local bifurcation on the stability boundary: the saddle-node bifurcation and
the Hopf bifurcation. It has been shown that these bifurcations may induce drastic
changes in the “size” of the stability region, impacting on the stability of practical
systems. There aremany open issues to investigate to understand how stability region
of general nonlinear systems behave as a consequence of parameter variation. Other
types of local bifurcations on the stability boundary and global bifurcations are
examples of potential themes for future research.
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Universality in Systems with Power-Law
Memory and Fractional Dynamics

Mark Edelman

1 Introduction

Sir Robert M. May’s paper “Simple mathematical models with very complicated
dynamics” published 41years ago in “Nature” [35] is one of the most cited papers—
3057 citations are registered by the Web of Science at the moment I am writing this
sentence. In this review the author, using the logistic map as an example, described
the universal behavior typical for all nonlinear systems: transition to chaos through
the period-doubling cascade of bifurcations. The main applications considered by
the author are the biological (even the variable used in the text was treated as “the
population”), economic, and social sciences. The major steps in the development of
the notion of universality in non-linear dynamics are gathered in the reprinted selec-
tion of papers compiled by Predrag Cvitanovic [10], and applications of universality
encompass all areas of science.

The logistic map is a very simple discrete non-linear model of dynamical evo-
lution. More realistic models of biological, economic, and social systems are more
complicated. One of the features, not reflected in this equation but which is present
in all the abovementioned systems, is memory. Evolution of any social or biological
system depends not only on the current state of a system but on the whole history
of its development. In majority of cases this memory obeys the power law. There
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are many reviews on power-law distributions and memory in various social systems
(see, e.g., [33]). In papers [21, 29, 52, 53, 56, 62] the power-law adaptation has been
used to describe the dynamics of biological systems. The impotence and origin of the
memory in biological systems can be related to the presence of memory at the level
of individual cells: it has been shown recently that processing of external stimuli by
individual neurons can be described by fractional differentiation [31, 32, 43]. The
orders of fractional derivatives α derived for different types of neurons fall within
the interval [0, 1], which implies power-law memory ∼ tβ with power β = α − 1,
β ∈ [−1, 0]. For neocortical pyramidal neurons the order of the fractional derivative
is quite small: α ≈ 0.15. At the level of a human individual as a whole the power
law appears in the study of human memory: forgetting—the accuracy on memory
tasks decays as a power law with β ∈ [−1, 0] [25, 45, 54–56]; learning—the reduc-
tion in reaction times that comes with practice is a power function of the number
of training trials [2]. Power-law memory appears in the study of the human organ
tissues due to their viscoelastic properties (see, e.g., references in [18]). This leads to
their description by fractional differential equations with time fractional derivatives
which implies the power-law memory. In most of the biological systems with the
power-law behavior the power β is between −1 and 1 (0 < α < 2).

It is much easier to investigate general properties of discrete systems with power-
law memory than properties of integro-differential equations with power-law kernel.
In Sect. 2 we review different ways to introduce or derive maps with power-law
memory and their relation to fractional differential/difference equations. Periodic
sinks and their stability (the stability of fixed points and asymptotic period two
(T = 2) sinks) in fractional systems are discussed in Sect. 3. In Sect. 4 we consider
various forms (non-linearity parameter, two-dimensional, and memory parameter)
of bifurcation diagrams and transition to chaos in discrete fractional systems. In the
conclusionwe discuss perspectives and application of the research on the universality
in fractional systems.

2 Maps with Power-Law Memory and Fractional Maps

In this section we consider various ways to introduce maps with power-law memory
and fractional maps following [11–20, 48–51, 57, 58].

In the following we will use two definitions of fractional derivatives. They are
based on the fractional integral introduced by Liouville, which is a generalization of
the Cauchy formula for the n-fold integral

a I
p
t x(t) = 1

Γ (p)

∫ t

a

x(τ )dτ

(t − τ)1−p
, (1)

where p is a real number, Γ () is the gamma function and we will assume a = 0.
The first one is the left-sided Riemann-Liouville fractional derivative 0Dα

t x(t)
defined for t > 0 [28, 42, 46] as
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0D
α
t x(t) = Dn

t 0 I
n−α
t x(t) = 1

Γ (n − α)

dn

dtn

∫ t

0

x(τ )dτ

(t − τ)α−n+1
, (2)

where n − 1 ≤ α < n, n ∈ Z, Dn
t = dn/dtn .

The secondone is the left-sidedCaputo derivative, inwhich the order of integration
and differentiation in Eq. (2) is switched [28]

C
0 D

α
t x(t) =0 I n−α

t Dn
t x(t) = 1

Γ (n − α)

∫ t

0

Dn
τ x(τ )dτ

(t − τ)α−n+1
(n − 1 < α ≤ n). (3)

2.1 Direct Introduction of Maps with Power-Law Memory

The direct way to introduce maps with power-law memory is to define them as
convolutions according to the formula (see [18, 47])

xn =
n−1∑
k=0

(n − k)α−1GK (xk, h), (4)

where K is a parameter and h is a constant time step between time instants tn and
tn+1. For a physical interpretation of this formula we consider a systemwhich state is
defined by the variable x and evolution by the function GK (x). The value of the state
variable at the time tn is a weighted total of the functions GK (xk) from the values of
this variable at past time instants tk , 0 < k < n, tk = kh. The weights are the times
between time instants tn and tk to the fractional power α − 1.

The more general form of this map considered in [18, 47] (see, e.g., Eq. (73) from
[18]) is

xn =
�α�−1∑
k=1

ck
Γ (α − k + 1)

(nh)α−k +
n−1∑
k=0

(n − k)α−1GK (xk, h), (5)

where α ∈ R. If we assume

GK (x, h) = 1

Γ (α)
hαGK (x), (6)

where GK (x) is continuous, and

x = x(t), xk = x(tk), tk = a + kh, nh = t − a (7)

for 0 ≤ k ≤ n, then this equation can be written as
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xn =
�α�−1∑
k=1

ck
Γ (α − k + 1)

(nh)α−k + hα

Γ (α)

n−1∑
k=0

(n − k)α−1GK (xk). (8)

Eq. (8) in the limit h → 0+ will yield the Volterra integral equation of the second
kind

x(t) =
�α�−1∑
k=1

ck
Γ (α − k + 1)

(t − a)α−k + 1

Γ (α)

∫ t

a

GK (τ, x(τ ))dτ

(t − τ)1−α
, (t > a).

(9)
This equation is equivalent to the fractional differential equation with the Riemann-
Liouville or Grünvald-Letnikov fractional derivative [18, 26, 27]

RL/GL
a Dα

t x(t) = Gk(t, x(t)), 0 < α (10)

with the initial conditions

(RL/GL
a Dα−k

t x)(a+) = ck, k = 1, 2, ..., �α�. (11)

For α /∈ N we assume c�α� = 0, which corresponds to a finite value of x(a).

2.2 Universal Map with Power-Law Memory From fractional
Differential Equations of Systems with Periodic
Delta-Function Kicks

The universal map and its particular form, the standard map, play an important role
in the study of regular dynamical systems. Their fractional generalizations can be
obtained in a way similar to the way in which the regular universal map is derived
from the differential equation of a periodically (with the period h) kicked system
in regular dynamics (see, e.g., [60]). The two-dimensional fractional universal map
obtained from the differential equation of the order 1 < α ≤ 2 was introduced in
[51], extended to any real α > 1 in [48–50], and then to any α ≥ 0 in [12, 13, 15].

To derive the equations of the fractional universal map, which we’ll call the
universal α-family of maps (α-FM) for α ≥ 0, we start with the differential equation

dαx

dtα
+ GK (x(t − Δh))

∞∑
k=−∞

δ
( t

h
− (k + ε)

)
= 0, (12)

where ε > Δ > 0, α ∈ R, α > 0, and consider it as ε → 0. The initial conditions
should correspond to the type of fractional derivative used in Eq. (12). The case
α = 2, Δ = 0, and GK (x) = KG(x) corresponds to the equation whose integration
yields the regular universal map.
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Integration of Eq. (12) with the Riemann-Liouville fractional derivative 0Dα
t x(t)

and the initial conditions
(0D

α−k
t x)(0+) = ck, (13)

where k = 1, ..., N and N = �α�, yields the Riemann-Liouville universal α-FM

xn+1 =
N∑

k=1

ck
Γ (α − k + 1)

hα−k(n + 1)α−k − hα

Γ (α)

n∑
k=0

GK (xk)(n − k + 1)α−1.

(14)

As in the Sect. 2.1, for α /∈ N boundedness of x(t) at t = 0 requires cN = 0 and
x(0) = 0 (see [28, 42, 46]). Obtained in Sect. 2.1 Eq. (8) is identical to Eq. (14).

Integration of Eq. (12) with the Caputo fractional derivative C
0 D

α
t x(t) and the

initial conditions (Dk
t x)(0+) = bk , k = 0, ..., N − 1, yields the Caputo universal

α-FM

xn+1 =
N−1∑
k=0

bk
k! h

k(n + 1)k − hα

Γ (α)

n∑
k=0

GK (xk)(n − k + 1)α−1. (15)

Later in this paperwe’ll refer to themapsEqs. (8) and (14), theRLuniversalα-FM,
as the Riemann-Liouville universal map with power-law memory or the Riemann-
Liouville universal fractional map; we’ll call the Caputo universal α-FM, Eq. (15),
the Caputo universal map with power-lawmemory or the Caputo universal fractional
map.

In the case of integer α the universal map converges to

xn = 0 for α = 0 and xn+1 = xn − hGK (xn) for α = 1, (16)

and for α = N = 2 with pn+1 = (xn+1 − xn)/h

{
pn+1 = pn − hGK (xn), n ≥ 0,
xn+1 = xn + hpn+1, n ≥ 0.

(17)

N-dimensional, with N ≥ 2, universal maps are investigated in [13], where it is
shown that they are volume preserving.

2.3 Universal Fractional Difference Map

The fractional sum (α > 0)/difference (α < 0) operator introduced by Miller and
Ross in [36]

aΔ
−α
t f (t) = 1

Γ (α)

t−α∑
s=a

(t − s − 1)(α−1) f (s) (18)
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can be considered as a fractional generalization of the n-fold summation formula
[17, 24]

aΔ
−n
t f (t) = 1

(n − 1)!
t−n∑
s=a

(t − s − 1)(n−1) f (s) =
t−n∑
s0=a

s0∑
s1=a

...

sn−2∑
sn−1=a

f (sn−1), (19)

where n ∈ N and si , i = 0, 1, ...n − 1, are the summation variables. In Eq. (18) f
is defined on Na and aΔ

−α
t on Na+α , where Nt = {t, t + 1, t + 2, . . .}. The falling

factorial t (α) is defined as

t (α) = Γ (t + 1)

Γ (t + 1 − α)
, t �= −1,−2,−3, ... (20)

and is asymptotically a power function:

lim
t→∞

Γ (t + 1)

Γ (t + 1 − α)tα
= 1, α ∈ R. (21)

For α > 0 andm − 1 < α < m the fractional (left) Riemann-Liouville difference
operator is defined (see [4, 5]) as

aΔ
α
t x(t) = Δm

a Δ
−(m−α)
t x(t) = 1

Γ (m − α)
Δm

t−(m−α)∑
s=a

(t − s − 1)(m−α−1)x(s)

(22)
and the fractional (left) Caputo-like difference operator (see [3]) as

C
a Δα

t x(t) =a Δ
−(m−α)
t Δmx(t) = 1

Γ (m − α)

t−(m−α)∑
s=a

(t − s − 1)(m−α−1)Δmx(s),

(23)
where Δm is the m-th power of the forward difference operator defined as Δx(t) =
x(t + 1) − x(t). Due to the fact that aΔλ

t in the limit λ → 0 approaches the identity
operator (see [17, 36]), the definition Eq. (23) can be extended to all real α ≥ 0 with
C
a Δm

t x(t) = Δmx(t) for m ∈ N0.
Fractional h-difference operators, which are generalizations of the fractional dif-

ference operators, were introduced and investigated in [7, 8, 22, 37–40]. The h-sum
operator is defined as

(aΔ
−α
h f )(t) = h

Γ (α)

t
h −α∑
s= a

h

(t − (s + 1)h)
(α−1)
h f (sh), (24)

where α ≥ 0, (aΔ
0
h f )(t) = f (t), f is defined on (hN)a , and aΔ

−α
h on (hN)a+αh .

(hN)t = {t, t + h, t + 2h, . . .}. The h-factorial t (α)
h is defined as
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t (α)
h = hα

Γ ( t
h + 1)

Γ ( t
h + 1 − α)

= hα
( t

h

)(α)

,
t

h
�= −1,−2,−3, ... (25)

With m = �α� the Riemann-Liouville (left) h-difference is defined as

(aΔ
α
h x)(t) = (Δm

h (aΔ
−(m−α)
h x))(t)

= h

Γ (m − α)
Δm

h

t
h −(m−α)∑

s= a
h

(t − (s + 1)h)
(m−α−1)
h x(sh) (26)

and the Caputo (left) h-difference is defined as

(aΔ
α
h,∗x)(t) = (aΔ

−(m−α)
h (Δm

h x))(t)

= h

Γ (m − α)

t
h −(m−α)∑

s= a
h

(t − (s + 1)h)
(m−α−1)
h (Δm

h x)(sh), (27)

where (Δm
h x))(t) is the mth power of the forward h-difference operator

(Δhx)(t) = x(t + h) − x(t)

h
. (28)

As it has been noted in [7, 22, 23], due to the convergence of solutions of frac-
tional Riemann-Liouville h-difference equations when h → 0 to solutions of the
corresponding differential equations, they can be used to solve fractional Riemann-
Liouville differential equations numerically. A proof of the convergence (as h → 0)
of fractional Caputo h-difference operators to the corresponding fractional Caputo
differential operators for 0 < α ≤ 1 can be found in [38] (Proposition 17).

In what follows, we will consider fractional Caputo difference maps—the only
fractional difference maps which behavior has been investigated. The following the-
orem [9, 16, 17, 58] is essential to derive the universal fractional difference map.

Theorem 1 For α ∈ R, α ≥ 0 the Caputo-like difference equation

C
0 Δα

t x(t) = −GK (x(t + α − 1)), (29)

where t ∈ Nm, with the initial conditions

Δk x(0) = ck, k = 0, 1, . . . ,m − 1, m = �α� (30)

is equivalent to the map with falling factorial-law memory
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xn+1 =
m−1∑
k=0

Δk x(0)

k! (n + 1)(k)

− 1

Γ (α)

n+1−m∑
s=0

(n − s − m + α)(α−1)GK (xs+m−1), (31)

where xk = x(k), which is called the fractional difference Caputo universal α-family
of maps.

To consider h-differences, we will extend this theorem using the property (see
[22])

(0Δ
α
h,∗x)(t) = h−αC

0 Δα
t x̄

( t

h

)
, (32)

where x is defined on (hN)a , aΔ
α
h,∗ on (hN)a+αh , and x̄(s) = x(sh). It is easy to

show that the following theorem is a generalization of Theorem 1.

Theorem 2 For α ∈ R, α ≥ 0 the Caputo-like h-difference equation

(0Δ
α
h,∗x)(t) = −GK (x(t + (α − 1)h)), (33)

where t ∈ (hN)m, with the initial conditions

(0Δ
k
hx)(0) = ck, k = 0, 1, . . . ,m − 1, m = �α� (34)

is equivalent to the map with h-factorial-law memory

xn+1 =
m−1∑
k=0

ck
k! ((n + 1)h)

(k)
h

− hα

Γ (α)

n+1−m∑
s=0

(n − s − m + α)(α−1)GK (xs+m−1), (35)

where xk = x(kh), which is called the h-difference Caputo universal α-family of
maps.

In the case of integer α the fractional difference universal map converges to

xn+1 = −GK (xn) for α = 0, to xn+1 = xn − hGK (xn) for α = 1, (36)

and for α = N = 2, with pn+1 = (xn+1 − xn)/h, to

{
pn+1 = pn − hGK (xn), n ≥ 1, p1 = p0,
xn+1 = xn + hpn+1, n ≥ 0.

(37)
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N-dimensional, with N ≥ 2, difference universal maps are investigated in [16]. They
are volume preserving (as well as the N-dimensional universal maps of Sect. 2.2).

All the above considered universal maps in the case α = 2 yield the standard
map if GK (x) = K sin(x) (harmonic nonlinearity) and we’ll call them the standard
α-families of maps. When GK (x) = x − Kx(1 − x) (quadratic nonlinearity) in the
one-dimensional case all maps yield the regular logistic map and we’ll call them the
logistic α-families of maps.

3 Periodic Sinks and Their Stability

As in regular dynamics, the notion of universality and transition to chaos in fractional
dynamics is related to the dependence of the phase space structure of fixed and
periodic points (sinks) on systems’ parameters. Presence of power-lawmemory leads
to some new features that appear in fractional dynamics.

• In addition to the dependence on nonlinearity parameters, the phase space structure
of fractional systems depends on a memory (an order of a fractional derivative)
parameter.

• Periodic points in fractional dynamics exist in the asymptotic sense. As it has been
shown in [61], effects ofmemory on the phase space structure of fractional systems
of the order α ∈ (1, 2) are similar to the effects of dissipation. But in fractional
systems periodic sinks have their basins of attraction to which they themselves
may not belong [11, 19, 20]. In the latter case a trajectory that starts from a sink
jumps out of the sink and may end up in a different sink.

• Evolution of systems with memory, in general, follows cascade of bifurcations
type trajectories (CBTT). Two examples of CBTT are presented in Fig. 1. As time
(number of iterations n) increases, the trajectory bifurcates and may end as a
periodic sink (Fig. 1a) or as a chaotic trajectory (Fig. 1b).

• Not only the time of convergence of trajectories to the periodic sinks but also the
way inwhich convergence occurs depends on the initial conditions. As n → ∞, all
trajectories in Fig. 2 converge to the same period two (T = 2) sink (as in Fig. 2c),
but for small values of initial conditions x0 all trajectories first converge to a T = 1
trajectory which then bifurcates and turns into the T = 2 sink converging to its
limiting value. As x0 increases, the bifurcation point nbi f gradually evolves from
the right to the left (Fig. 2a). Ignoring this feature may result (as, e.g., in [57, 58])
in very messy bifurcation diagrams.

3.1 T = 2 Sinks and Stability of Fixed Points

Stability of fixed points in fractional dynamical systems was investigated in multiple
publications, see, e.g., articles [1, 30, 34], Chap. 4 in book [41], and review [44]; for
stability in discrete fractional systems see, e.g., [6, 19, 59]. There are various ways
to define stability and various methods and criteria to analyze it. In this paper we
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Fig. 1 Two examples of cascade of bifurcations type trajectories in the Caputo logistic α-family
of maps (Eq. (15) with T = 1 and GK (x) = x − Kx(1 − x) ) with α = 0.1 and x0 = 0.001: a for
the nonlinearity parameter K = 22.39 the last bifurcation from period T = 16 to period T = 32
occurs after approximately 7 × 105 iterations; b when K = 22.416 the trajectory becomes chaotic
after approximately 6 × 105 iterations
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Fig. 2 Asymptotically period two trajectories for theCaputo logisticα-family ofmapswithα = 0.1
and K = 15.5: a nine trajectories with initial conditions x0 from 0.29 (the rightmost bifurcation)
to 0.37 (the leftmost bifurcation) with the step 0.01; b x0 = 0.74; c x0 = 0.94

consider an asymptotic stability of periodic points. A periodic point is asymptotically
stable if there exists an open set such that all trajectories with initial conditions from
this set converge to this point as t → ∞. It is known from the study of the ordinary
nonlinear dynamical systems that as a nonliniearity parameter increases the system
bifurcates. This means that at the point (value of the parameter) of birth of the
T = 2n+1 sink, the T = 2n sink becomes unstable. In this section we will investigate
theT = 2 sinks of discrete fractional systems and applyour results to analyze stability
of the systems’ fixed points. As all published results on the existence and stability
of the T = 2 point were obtained for h = 1, in this section we assume h = 1.

All published results on the asymptotic stability of the stable fixed point and
T = 2 sink were obtained for the fractional and fractional difference standard and
logistic α-families of maps.
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3.1.1 Fractional Standard Map (1 < α < 2)

First results on the first bifurcation and stability of the fixed point in discrete fractional
systems were obtained in [11, 19, 20] for the Riemann-Liouville standard α-family
of maps (GK (x) = K sin(x)) for 1 < α < 2. In this case the map Eq. (14) can be
written as a two-dimensional map considered on a cylinder

pn+1 = pn − K sin xn, (38)

xn+1 = 1

Γ (α)

n∑
i=0

pi+1V
1
α (n − i + 1), (mod 2π), (39)

where
V k

α (m) = mα−k − (m − 1)α−k (40)

and the momentum p(t) is defined as

p(t) = 0D
α−1
t x(t). (41)

The Caputo standard α-family of maps from Eq. (15) can be considered on a torus
and written as

pn+1 = pn − K

Γ (α − 1)

[n−1∑
i=0

V 2
α (n − i + 1) sin xi + sin xn

]
, (mod 2π), (42)

xn+1 = xn + p0 − K

Γ (α)

n∑
i=0

V 1
α (n − i + 1) sin xi , (mod 2π). (43)

Both maps have the fixed point in the origin (0, 0). Numerical simulations show that
both maps also have two T = 2 sinks: the antisymmetric sink, with

pn+1 = −pn, xn+1 = −xn, (44)

and the π -shift sink, with

pn+1 = −pn, xn+1 = xn − π. (45)

For the Riemann-Liouville family of maps there are two types of convergence of the
trajectories to the fixed point and the T = 2 sinks: fast (from the basins of attraction)
with

δxn ∼ n−1−α, δpn ∼ n−α (46)

and slow with
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δxn ∼ n−α, δpn ∼ n1−α. (47)

For the Caputo family of maps

δxn ∼ n1−α, δpn ∼ n1−α. (48)

The antisymmetric T = 2 sink (xl , pl) and (−xl ,−pl), Eq. (44), can be found
considering the n → ∞ limit in Eqs. (38) and (39):

pl = K

2
sin(xl), (49)

xl = K

2Γ (α)
Vαl sin(xl), (50)

where

Vαl =
∞∑
k=1

(−1)k+1V 1
α (k). (51)

A high accuracy algorithm for calculating the slow converging series in Eq. (51) can
be found in the Appendix section of [13]. Equation (50) has a solution and the T = 2
sink exists when

K ≥ Ks1(α) = 2Γ (α)

Vαl
. (52)

The opposite condition, as found in [19], is the condition of the stability of the (0, 0)
fixed point. The same condition can be shown for the Caputo standard α-family of
maps. It is used to plot the part 1 < α ≤ 2 of the bottom thin line in Fig. 5a, which
is a two-dimensional (α − K ) bifurcation diagram. The fixed point (0, 0) is stable
below this line.

π -shift T = 2 sink

pn = (−1)n pl, xn = xl − π

2
[1 − (−1)n] (53)

can be found plugging the asymptotic expression for xn from Eq. (53) and

pn = (−1)n pl + An1−α (54)

into Eqs. (38) and (39) and considering n → ∞ limit. This gives

pl = K/2 sin(xl), A = 2xl − π

2Γ (2 − α)
, (55)
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sin(xl) = πΓ (α)

KVαl
, (56)

which has solutions for

K > Ks2 = πΓ (α)

Vαl
= π

2
Ks1. (57)

Ks2(α) is used to plot the part 1 < α ≤ 2 of the middle thin line in Fig. 5a.

3.1.2 Fractional Logistic Map (1 < α ≤ 2)

A fractional generalization of the logistic map became possible after a small time
delay was introduced into the differential equation describing a periodically kicked
system Eq. (12) (see [13]). The logistic Riemann-Liouville α-family of maps
(GK (x) = x − Kx(1 − x)) can be written as

pn+1 = pn + Kxn(1 − xn) − xn, (58)

xn+1 = 1

Γ (α)

n∑
i=0

pi+1V
1
α (n − i + 1). (59)

Numerical simulations show that for 0 < K ≤ 1 all converging trajectories con-
verge to the fixed point (0, 0) as x ∼ n−α−1, p ∼ n−α . For 1 < K < Kl1 the only
stable periodic sink is the fixed point ((K − 1)/K , 0). The rate of convergence to
this fixed point is δx ∼ n−α , p ∼ n−α+1. At K = Kl1 the fixed point becomes unsta-
ble and the stable antisymmetric in p period two sink appears. From the results of
numerical simulations [13], the asymptotic behavior of converging to the T = 2 sink
trajectories follows the power law

pn = pl(−1)n + A

nα−1
. (60)

Substituting this expression for pn into Eq. (59) and considering even values of n,
we obtain

xlo = lim
n→∞ x2n+1 = pl

Γ (α)
lim
n→∞

2n+1∑
k=1

(−1)kV 1
α (k)

+ A

Γ (α)
lim
n→∞

2n−1∑
k=1

α − 1

kα−1(2n − k)2−α
= − pl

Γ (α)
Vαl (61)

+ (α − 1)A

Γ (α)

∫ 1

0

x1−αdx

(1 − x)2−α
= − pl

Γ (α)
Vαl + AΓ (2 − α).
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Here we took into account that the sum on the second line of the last equation is
the Riemann sum for the integral on the third line, which is equal to the Beta-function
B(2 − α, α − 1) = Γ (2 − α)Γ (α − 1). Similarly,

xle = lim
n→∞ x2n = pl

Γ (α)
Vαl + AΓ (2 − α). (62)

Then, in the limit n → ∞, Eq. (58) gives

−2pl = Kxle(1 − xle) − xle, (63)

2pl = Kxlo(1 − xlo) − xlo. (64)

Two fixed points, xlo = xle = pl = A = 0 and xlo = xle = xl = (K − 1)/K ,
pl = 0, A = xl/Γ (2 − α), are the two expected solutions of the system of four
equations Eqs. (61)–(64). For the two remaining solutions with xlo �= xle

A = K − 1 + 2Γ (α)

Vαl

2KΓ (2 − α)
(65)

and the quadratic equation defining xle and xlo can be written as

x2lo,le −
(2Γ (α)

Vαl K
+ K − 1

K

)
xlo,le + 2Γ 2(α)

(Vαl K )2
+ (K − 1)Γ (α)

Vαl K 2
= 0. (66)

The solutions of this equation

xlo,le =
Ks1 + K − 1 ±

√
(K − 1)2 − K 2

s1

2K
(67)

are defined when

K ≥ 1 + 2Γ (α)

Vαl
= 1 + Ks1 or K ≤ 1 − 2Γ (α)

Vαl
= 1 − Ks1. (68)

From Vαl < 1 and Γ (α) > 0.885 for α > 0 follows that 2Γ (α)/Vαl > 1 and, con-
sidering only K > 0, we may ignore the second of the inequalities in Eq. (68). We
may also note that the fixed point x = (K − 1)/K is stable when

1 ≤ K < Kl1 = 1 + 2Γ (α)

Vαl
= 1 + Ks1. (69)

Kl1(α) is used to plot the part 1 < α ≤ 2 of the bottom thin line in Fig. 5b.
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3.1.3 Fractional and Fractional Difference Standard α-families
of Maps for 0 < α < 1

In this and the next sectionswewill follow the results obtained in [16]. For 0 < α < 1
fractional and fractional difference maps, Eq. (15) and Eq. (35), can be written (with
h = 1 and GK (x) = K sin(x)) in the universal form

xn = x0 − K

Γ (α)

n−1∑
k=0

Wα(n − k) sin (xk), (70)

where Wα(s) = sα−1 for the fractional map and Wα(s) = Γ (s + α − 1)/Γ (s) for
the fractional difference map.

For α = 0 the Caputo fractional standard map is identically zero and fractional
difference is the sine map

xn+1 = −K sin(xn), (mod 2π). (71)

For α = 1 both maps converge to the circle map with zero driven phase

xn+1 = xn + K sin(xn), (mod 2π). (72)

In the sine map and in the circle map with zero driven phase, when the x = 0 sink
becomes unstable, it bifurcates into the symmetric T = 2 sink in which xn+1 = −xn .
Following the results of [16], let’s assume that this property persists (asymptotically)
for α ∈ (0, 1). Equation (70) can be written as

xn+1 = xn − K

Γ (α)

{
Wα(1) sin (xn)

+
n−1∑
k=0

sin (xk)[Wα(n − k + 1) − Wα(n − k)]
}
. (73)

Because Wα(n − k + 1) − Wα(n − k) → 0 when n → ∞, substituting
j = n − k, asymptotically for large n Eq. (73) can be written as

xn = K

2Γ (α)

{
Wα(1) +

∞∑
j=1

(−1) j [Wα( j + 1) − Wα( j)]
}
sin (xn), (74)

where the alternating series on the right side converges because its terms converge
to 0 monotonically. This equation has real non-trivial solutions when

K > Ks1 = 2Γ (α)

Wα(1) + ∑∞
j=1(−1) j [Wα( j + 1) − Wα( j)] . (75)
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This expression for Ks1 is used to plot the parts 0 < α ≤ 1 of the bottom thin and
bold lines in Fig. 5a.

When the symmetric T = 2 sink becomes unstable it gives birth to the π -shift
T = 2 sink in which |xn+1 − xn| = π . The asymptotic analysis similar to the above
performed for the symmetric T = 2 sink yields the following equation to define the
asymptotic values for this sink

±π = K

Γ (α)

{
Wα(1) +

∞∑
j=1

(−1) j [Wα( j + 1) − Wα( j)]
}
sin (xn), (76)

which has solutions when
K > Ks2 = πKs1/2. (77)

This expression for Ks2 is used to plot the part 0 < α ≤ 1 of the middle thin line in
Fig. 5a. It also could be used to calculate the middle bold line, but in this paper we use
the results of the direct numerical calculations [16] instead. The difference between
the results of the direct numerical simulations and the calculations using Eq. (77) is
evident when α < 0.15. This difference is due to the slow, as n−α , convergence of
trajectories.

3.1.4 Fractional Difference Standard α-families of Maps for 1 < α < 2

When 1 < α < 2 the fractional difference Caputo standard α-FM Eq. (35) can be
written as a two-dimensional map [16]

pn = p1 − K

Γ (α − 1)
×

n∑
s=2

Γ (n − s + α − 1)

Γ (n − s + 1)
sin(xs−1), (mod 2π), (78)

xn = xn−1 + pn, (mod 2π), n ≥ 1, (79)

where pn = Δxn−1 = xn − xn−1.
As in the fractional standard map, in the fractional difference standard map, when

the (0, 0) fixed point becomes unstable, it bifurcates into the T = 2 antisymmetric
sink xn+1 = −xn , pn+1 = −pn , which later, at K for which xn = π/2, turns into two
π -shift T = 2 sinks [16]. For the anti-symmetric sink, in the limit n → ∞ Eq. (79)
yields pn = 2xn and Eq. (78)

pn = K

2Γ (α − 1)

{
Wα−1(1) +

∞∑
j=1

(−1) j [Wα−1( j + 1) − Wα−1( j)]
}
sin (xn),

(80)

where, as in Eq. (70), Wα(s) = Γ (s + α − 1)/Γ (s). The equations for the antisym-
metric T = 2 sink (xn, pn) are
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xn = K

4Γ (α − 1)

{
Wα−1(1) +

∞∑
j=1

(−1) j [Wα−1( j + 1) − Wα−1( j)]
}
sin (xn),

(81)

pn = 2xn . (82)

They have solutions for

K > Ks1(α) = 2Ks1(α − 1), (83)

where Kc1d(α − 1) is defined by Eq. (75). This result is used to plot the part 1 <

α ≤ 2 of the bottom bold line in Fig. 5a.
Equations defining the π -shift T = 2 sink can be written as

±π = K

2Γ (α − 1)

{
Wα−1(1) +

∞∑
j=1

(−1) j [Wα−1( j + 1) − Wα−1( j)]
}
sin (xn), (84)

pn = ±π. (85)

π -shift sink exists when

K > Ks2(α) = π

2
Ks1(α). (86)

This result is used to plot the part 1 < α ≤ 2 of the middle bold line in Fig. 5a.
The fixed point in the origin is stable for K < Ks1 and the convergence of trajec-

tories to the fixed point follows the power law xn ∼ n1−α and pn ∼ n−α .

3.2 T = 2n Sinks

Investigation of the T = 2n-sinks’ stability with n > 2 by analytic methods is com-
plicated. In papers [11–20] this is done by numerical simulations on individual tra-
jectories with various values of parameters (K and α) and initial conditions. As in the
case of the fixed point and T = 2-sink, stability of the high order sinks is asymptotic.
Trajectories, which converge to T = 2n-sinks (nth order sinks) stable in the limit
n → ∞, may first converge to low order sinks and then, through cascades of period
doubling bifurcations, converge to the sinks of the nth order. Cascade of bifurca-
tions type trajectories are the fundamental features of the discrete fractional systems.
Their presence makes drawing of various kinds of fractional bifurcation diagrams
(the subject of the next section) difficult. Fractional bifurcation diagrams strongly
depend on the number of iterations and initial conditions of individual trajectories
used in the analysis. The larger the number of iterations used in the calculations, the
closer the calculated values of the sinks to their limiting values.
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4 Fractional Bifurcation Diagrams

Fractional maps demonstrate the universal scenario of transition to chaos through
the period doubling cascade of bifurcations with the change in a nonlinearity para-
meter, similar to the one described in [35]. This is illustrated in Fig. 3, in which
the bifurcation diagrams (x vs. K ) for various considered families of maps with
α = 0.8 are presented. Compared to the integer case α = 1, bifurcation diagrams
for the fractional maps are stretched along the K axis while bifurcation diagrams for
the fractional difference maps are contracted. The existence of self-similarity, cor-
responding constants (analogs of the Feigenbaum constants), and their dependence
on α in fractional maps are not investigated. The dependence of the bifurcation dia-
grams on the number of iterations is demonstrated in Fig. 4. Bifurcation diagrams
obtained after five thousand iteration look much nicer than those obtained after two
hundred. But, as it follows from Figs. 1 and 2, even 5000 iterations are not enough
for computation of the asymptotic bifurcation diagrams.
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Fig. 3 The bifurcation diagrams for fractional Caputo standard (a) and logistic (b) maps and for
fractional difference Caputo standard (c) and logistic (d) maps with α = 0.8
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Fig. 4 Two bifurcation diagrams for the fractional difference Caputo Standard αFM with α = 0.1
and x0 = 0.1 calculated after 200 iterations (regular points) and 5000 iterations (bold points). This
figure is reprinted from [16], with the permission of AIP Publishing
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Fig. 5 2D bifurcation diagrams for fractional (thing lines) and fractional difference (bold lines)
Caputo standard (a) and logistic (b) maps. First bifurcation, transition from the stable fixed point
to the stable period two (T = 2) sink, occurs on the bottom curves. T = 2 sink (in the case of
the standard α-families of maps, antisymmetric T = 2 sink with xn+1 = −xn) is stable between
the bottom and the middle curves. Transition to chaos occurs on the top curves. Period doubling
bifurcations leading to chaos occur in the narrow band between the middle and the top curves. The
bottom curves in (a) are obtained using Eqs. (52), (75), and (83). The thin middle curve in (a) is
obtained using Eqs. (57) and (77). The 1 < α ≤ 2 part of themiddle bold line in (a) is obtained using
Eq. (86). The 1 < α ≤ 2 part of the bottom thin line in (b) is obtained using Eq. (69). The remaining
curves, except the bold dashed curves in (b), are results of the direct numerical simulations. The
bold dashed curves in (b) are obtained by interpolation

The two-dimensional bifurcation diagrams Fig. 5 are obtained by combining the
results of the computations of the bifurcation (x vs. K ) diagrams after 5000 iterations
for fixed values of α. Because for small α convergence of trajectories to their asymp-
totic values is very slow, the results in the diagrams for α < 0.15 do not represent
well the asymptotic values and can be improved in future.

Looking at the 2D bifurcation diagrams one may note that systems with power-
lawmemory should demonstrate bifurcations with changes in the memory parameter
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Fig. 6 Thememory α-bifurcation diagrams for fractional Caputo standard (a) and logistic (b) maps
and for fractional difference Caputo standard (c) and (e) and logistic (d) and (f) maps obtained after
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α when the nonlinearity parameter K stays constant. This property of systems with
power-lawmemory is demonstrated in Fig. 6 and it may explain how changes/failures
in live biological species can be caused by changes in their memory and nervous
system. This also may explain how some diseases may be treated by treating the
nervous system.

5 Conclusion

The following citation fromWikipedia, “universality is the observation that there are
properties for a large class of systems that are independent of the dynamical details
of the system”, defines the notion of the universality in dynamical systems. The
universality in systems with power-law memory goes beyond the period doubling
with changes in nonlinearity and memory parameters and the universal scenario of
transition to chaos. Individual trajectories of such systems also demonstrate cascade
of bifurcations type behavior. In regular dynamics the universality has a mathe-
matical expression in the form of the Feigenbaum function and constants. This is
only the beginning of the research on fractional universality and most of the results
are obtained by numerical simulations. Those results introduce more questions than
answers. Some of those questions are:

• What is the nature and the corresponding analytic description of the bifurcations
on a single trajectory of a fractional system?

• What kind of self-similarity can be found in CBTT?
• How to describe a self-similar behavior corresponding to the bifurcation diagrams
of fractional systems? Can constants, similar to the Feigenbaum constants be
found?

• Can cascade of bifurcations type trajectories be found in continuous systems?

Behavior of fractional systems at low values of α (0 < α < 0.15) is very impor-
tant in biological applications but is not well established and requires an additional
investigation.

As mentioned in the introduction, there is a possibility for multiple applications
of the fractional universality in biology. The human body is a system with power-
law memory, which implies the possibility of medical applications. Figure2a sug-
gests that, assuming some distribution (e.g., uniform) of the initial conditions of an
asymptotically T = 2 system with power-law memory, it is possible to calculate the
probability distribution of times before the stable fixed point behavior of the system
bifurcates. Comparison of probability distributions for various values of K and α to
the statistics of the times before sudden changes (e.g., deaths) after serious surgeries
(e.g., heart transplants) may help to understand the state of a human body after the
surgery and suggest some remedies.

The intermittent cascade of bifurcations type behavior is typical for systems
with power-law memory (see Fig. 7). May this intermittency explain the intermit-
tent behavior, transitions from stability to chaos and back to stability, in various
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Fig. 7 Intermittent cascade of bifurcations type trajectories for the Caputo (a) and fractional differ-
ence Caputo (b) Standard αFMs. In (a) α = 1.65, K = 4.5, x0 = 0., and p0 = 0.3. In (b) α = 1.5,
K = 4.82, x0 = 0., and p0 = 0.01. This figure is reprinted from [17], with the permission of L&H
Scientific Publishing

socio-economic systems, which are systems with power-law memory? May the his-
tory of human society, with repeating periods of dictatorship, democracy, and chaos,
be modeled by the equations with power-law memory? There are many questions
related to the topic of this reviewwhichmotivate research on systemswith power-law
memory.
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1 Introduction

The economic analysis actively uses methods of the deterministic factor analysis,
which gives exact characteristics of influence of factors on change of the effective
indicator. The main methods of the deterministic factor analysis are the method of
differential calculus and the integral method. These methods are based on the mathe-
matical theory of derivatives and integrals of integer orders. In modern mathematics,
derivatives and integrals of non-integer (fractional) orders are well known [3, 8, 13,
14]. This mathematical tool allows us to describe various types of processes, which
are characterized by memory and non-locality. This tool is actively used in the nat-
ural sciences [10, 17, 40]. In this paper we propose generalizations of the method of
differential calculus and the integral method of factor analysis. We analyze a possi-
bility to apply this mathematical tool to quantitative description of the influence of
individual factors on the change in the resultant economic indicator.

Let us briefly describe the standard method of factor analysis, which is based on
the differential calculus. The mathematical basis of this method is the derivatives
(differentiation) of non-integer orders and the Taylor series. Let z= f(x, y) be a
function of two independent real variables x and y. We will use the notation
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f(1)x (x, y) := ∂f(x, y)

∂x
, f(1)y (x, y) := ∂f(x, y)

∂y
(1)

to denote the first-order partial derivatives with respect to x and y. The Taylor formula
for the function z = f(x, y) can be written in the form

f (x, y) = f
(
x0, y0

) + f(1)x

(
x0, y0

) · �x+

f(1)y

(
x0, y0

) · �y + R2 (x, y) , (2)

where f(1)x

(
x0, y0

)
and f(1)y

(
x0, y0

)
are the values of the partial derivatives of the first

order with respect to x and y at the point
(
x0, y0

)
; �x and �y are factor increments

of the corresponding variables (�x := x − x0, �y := y − y0); R2 (x, y) is the re-
mainder term, which is of an infinitesimal value in the neighborhood of the point(
x0, y0

)
.

Neglecting the remainder termR2 (x, y), the total increment of the function�z :=
f
(
x1, y1

) − f
(
x0, y0

)
can be written by the increment of the factors �x and �y in

the form
�z ≈ f(1)x

(
x0, y0

) · �x + f(1)y

(
x0, y0

) · �y. (3)

The influence of the factor x on the generalizing indicator z is calculated by the
equation

�zx = f(1)x

(
x0, y0

) · �x, (4)

and the influence of the factor y is described by the equation

�zy = f(1)y

(
x0, y0

) · �y, (5)

where x0, y0 are the basic (planned) values of the factors x and y that have influence
on effective indicator; x1, y1 are the actual values of these factors; �x := x1 − x0
and �y := y1 − y0 are the absolute changes (deviations) of the factors x and y.

In the differential calculus method, it is assumed that the total increment of the
functions �z is decomposed into the terms �zx and �zy. The value of each of
these terms is calculated as the product of the corresponding partial derivative and
the increment of the variable (factor). In this method, an indecomposable remainder
(the remainder term R2 (x, y)), which is neglected, is interpreted as a logical error
of the differential calculus method. The neglecting of an indecomposable residue is
one of the disadvantages of this method, since for economic calculations the exact
balance of the change of the effective indicator and the algebraic sum of the influence
of all factors are often required.

In the standard approach to factor analysis, the differential calculus method uses
the derivatives of integer orders. It is known that the derivatives of integer orders are
determined by the properties of the differentiable function only in an infinitesimal
neighborhood of the considered point. As a result, the differential equations with
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derivatives of integer orders with respect to time cannot describe processes with
dynamic memory. In fact, these equations describe only such economic processes, in
which agents actually have a total amnesia. In other words, economic models, which
use derivatives of integer orders, can be applied, when economic agents forget the
history of changes of economic indicators and factors during an infinitesimal period
of time. Obviously, the assumption of lack of the memory in economic agents is a
strong restriction.

The standard differential method of the factor analysis uses the derivatives of
integer (first) orders. In modern mathematics, there are concepts of the derivatives
of non-integer (fractional, arbitrary) orders [3, 8, 13, 14]. Derivatives and inte-
grals of non-integer orders are actively used to describe various physical processes
characterized by memory and non-locality [10, 17, 40]. Derivatives and integrals of
non-integer order have recently been used to describe various financial and economic
processes in articles [6, 9, 11, 15, 37–39] and our papers [22–29, 31–36].

There are different types of fractional derivatives, which have been proposed by
Riemann, Liouville, Sonin, Letnikov, Marsho, Riesz, Weil, Hadamard, and Caputo
[8, 13, 14]. To construct factor analysis methods, which are based on the fractional
integro-differentiation of arbitrary (non-integer) orders, it is convenient to use the
Caputo fractional derivatives [[8], pp. 90–99]. The main distinctive feature of these
derivatives is that their effect on the constant function gives zero. This leads us to
the zero effect of a constant factor on the indicator. Let us give the definitions of the
Caputo derivative [[8], p. 92].

Definition The left-sided and right-sided Caputo derivatives of order α ≥ 0 on the
interval [a, b] are defined by the equations

(Dα
a+f) (x) := 1

� (n − α)

x∫
a

f(n) (χ) dχ

(x − χ)α−n+1 , (6)

(Dα
b−f) (x) := (−1)n

� (n − α)

b∫
x

f(n) (χ) dχ

(χ − x)α−n+1 , (7)

where � (α) is the gamma function, a< x <b, and f(n)(χ) is the derivative of the
integer order n= [α]+1 of the function f(χ) with respect to the variable χ. It is
assumed that the function f(x) has integer derivatives up to (n-1)th order, which are
absolutely continuous functions on the interval [a, b].

From Eqs. (6) and (7), we can see that the Caputo derivative of non-integer order
is actually an integro-differential operator with a power-law kernel with non-integer
α > 0. For positive integer values α=n, the Caputo derivatives coincide [[8], p. 92]
with the standard derivative of the integer order n:

(
Dn

a+f
)
(x) = f(n) (x) ,

(
Dn

b−f
)
(x) = (−1)n f(n) (x) . (8)
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Using property (8), the Caputo derivatives are considered as generalizations of stan-
dard derivatives of positive integer orders. Moreover, the standard derivatives are
special cases of derivatives of fractional (arbitrary) order.

In general, the indicator of processes with memory cannot be represented as a
single-valued function of factors [30]. One can only consider indicators and factors
as single-valued functions of time. If the parametric dependence of indicator z(t) on
factors x(t) and y(t) cannot be represented by a single-valued function, thenwe should
use the parametric derivatives and integrals. An important role in factor analysis
of processes with power-law memory can be played by the parametric fractional
derivatives and integrals. The Riemann-Liouville parametric fractional derivative
has been considered in Sect. 18.2 of [[14], pp. 325–329] and Sect. 2.5 of [8]. The
Caputo parametric fractional derivatives and its properties have been described in
[1].

Definition The Caputo parametric fractional derivatives of order α >0 are defined
by the equations

(
Dα,x

a+ f
)
(t) := 1

� (n − α)

t∫
a
d τ

x(1) (τ)

(x(t) − x(τ))α+1−n
·

(
1

x(1)(τ)
· d

d τ

)n

f(τ), (9)

(
Dα,x

b− f
)
(t) := 1

� (n − α)

b∫
t
d τ

x(1) (τ)

(x(τ) − x(t))α+1−n
·

(
− 1

x(1)(τ)
· d

d τ

)n

f(τ), (10)

where a< t <b, n − 1 ≤ α ≤ n, and x(τ) is amonotone function having a continuous
derivative x(1) (τ) = dx(τ)/d τ. The derivatives (9) and (10) are also called theCaputo
fractional derivatives of function f(t) by a function x(t) of the order α > 0.

An application of fractional derivatives of non-integer orders in the natural sci-
ences allows us to describe processes and systems with nonlocality and memory
[10, 17, 40]. It allows us to expect that this mathematical tool can be expanded to
analyzing the financial and economic processes. The nonlocal economic processes
in the state space are considered in [38, 39]. The concept of dynamic memory for
economics is considered in [22, 25]. In recent works [23, 24, 26–29, 31–36] the
Caputo derivatives were applied to describe the economic processes with power-law
memory.

In this paper we propose methods of deterministic factor analysis that can be used
in the analysis of economic indicators (endogenous variables), which are represented
by power functions of factors (exogenous variables) of processes with nonlocality
and memory. The power functions are widely used in economic analysis, including
the well-known Cobb-Douglas functions [2] and other functions of the power laws
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described in the reviews [4, 5]. To describe the non-locality and fading memory
of power-law types, we use equations with integrals and derivatives of non-integer
orders [3, 8, 13].

2 Method of Differential Calculus of Arbitrary
(non-Integer) Order

The standard differential method of factor analysis is based on the Taylor formula.
Therefore we need a generalization of the Taylor formula for the Caputo fractional
derivative to generalize this method by using the derivatives of non-integer orders.
Let us consider the generalization of the Taylor series, which was proposed in [1,
12].

The function f(x) with x≥a (x ∈ [a, b]) can be expanded [[12], p. 289] by using
the generalized Taylor series with the left-sided Caputo derivatives of order 0< α ≤1
in the form

f (x) =
N−1∑

k=0

((
Dα

a+
)k
f
)

(a)

� (k α+1)
· (x − a)k α + RN α (x, a+) , (11)

where RN α (x, a+) is the remainder term, which can be represented in the form

RN α (x, a+) =
((
Dα

a+
)N

f
)

(χ+)

� (N α+1)
· (x − a)N α, (12)

where a≤ χ+ ≤x. The generalized Taylor series (11), is applicable to the func-

tions f(x) that satisfy the condition
((
Dα

a+
)k
f
)

(x) ∈ C [a, b] , for k=0,1,…,N [[12],

p.289].
For x≤a, formula (11) cannot be applied if the parameter α is not an integer. This

problem can be solved by using the right-sided Caputo derivative of the order α >0.
The function f(x), which is defined on the domain x≤a (x ∈ [c, a]) can be represented
[[8], p. 95] as the generalized Taylor series of order 0 < α ≤ 1 with the right-sided
Caputo derivatives

f (x) =
N−1∑

k=0

((
Dα

a−
)k
f
)

(a)

� (k α+1)
· (a − x)k α + RN α (x, a−) , (13)

where RN α (x, a−) is the remainder term, which can be represented in the form

RN α (x, a−) =
((
Dα

a−
)N

f
)

(χ−)

� (N α+1)
· (a − x)N α, (14)
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and x≤ χ− ≤a.
For example, series (11) and (13) with N=2 have the form

f (x) = f (a) +
(
Dα

a+f
)
(a)

� (α + 1)
· (x − a)α + R2α (x, a+) , (15)

f (x) = f (a) +
(
Dα

a−f
)
(a)

� (α + 1)
· (a − x)α + R2α (x, a−) , (16)

where x ∈ [a, b] for (15) and x ∈ [c, a] for (16).
The factor analysis of processes with memory [22, 24, 25, 27] should take into

account that the generalizing indicators cannot be represented as single-valued func-
tions of factors in general [30]. These indicators and factors can be described by
single-valued functions of time. If the parametric dependence of indicator z(t) on
factors x(t) and y(t) cannot be represented by a single-valued function, then we
should use the fractional Taylor formula with the parametric fractional derivatives.
Using Theorem 18 of [[1], p. 474], we can write the fractional Taylor formula with
the Caputo parametric fractional derivative as

f (x(t)) =
N−1∑

k=0

((
Dα,x

a+
)k
f
)

(a)

� (k α+1)
· (x(t) − x(a))k α + RN α (x(t), a+) , (17)

f (x(t)) =
N−1∑

k=0

((
Dα,x

b−
)k
f
)

(b)

� (k α+1)
· (x(b) − x(t))k α + RN α (x (t) , b−) , (18)

where RN α (x(t), a+) and RN α (x (t) , b−) are the remainder terms, which can be
represented in the form

RN α (x(t), a+) =
((
Dα,x

a+
)N

f
)

(χ+)

� (N α +1)
· (x(t) − x(a))N α, (19)

RN α (x (t) , b−) =
((
Dα,x

b−
)N

f
)

(χ−)

� (N α+1)
· (x(b) − x(t))N α, (20)

where we can consider b=a.
For Eqs. (11), (13), (15)–(18) there is an additional problem, which is caused

by the coincidence of the initial and final values in the derivatives
(
Dα

a+f
)
(a) and(

Dα
a−f

)
(a). It is important to have the generalized Taylor series at an arbitrary point

x0, which does not coincide with the initial point of fractional derivative Dα
a+, i.e.,

x0 �= a. In this case we can avoid some restrictions on a possible application of Eqs.
(11), (13), (15)–(18) to calculating the influence of factors on the change in the
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effective indicator. To solve this problem, we propose a generalization of the Taylor
formulas (11) to the case when the Caputo derivative is considered at an arbitrary
point x0 ≥ a. Consideration of the Taylor series (15) for the function f(x) and for the
Caputo derivatives

(
Dα

a+f
)
(x) at the point x = x0 allows us to obtain the equation

f (x) = f (x0) +
(
Dα

a+f
)
(x0)

� (α + 1)
· �αx + R2α (x, x0, a+) , (21)

where x0 ≥ a, x ≥ a, and the remainder termR2α (x, x0, a+) is equal to the difference
between R2α (x, a−) and R2α (x0, a−). In Eq. (21) we use the notations

�αx := (x − a)α − (x0 − a)α . (22)

For the Eqs. (17)–(20) with the parametric fractional derivatives, we should use

�αx := (x(t) − x(a))α − (x(t0) − x(a))α . (23)

Analogous formulas can also be obtained for the generalized Taylor series for the
right-sided Caputo fractional derivative. For simplicity, we consider only the case of
the left-sided derivative with initial point a=0, since many factors can be described
by positive real numbers. In this case, equation (21) can be written in the form

f (x) = f (x0) +
(
Dα

0+f
)
(x0)

� (α + 1)
· �αx + R2α (x, x0, 0+) , (24)

where x0 ≥ 0, x ≥ 0, and �αx := xα − xα
0.

For a function of two variables z= f(x, y), the generalized Taylor formula has the
form

f (x, y) = f
(
x0, y0

) +
(
Dα

0+;xf
) (
x0, y0

)

� (α + 1)
· �αx+

(
Dβ

0+;yf
) (

x0, y0
)

� (β + 1)
· �βy + R2α,2β (x, y, 0+) , (25)

where R2α,2β (x, y, 0+) is the remainder term. For α = β = 1, the Taylor formula (25)
gives the standard formula (2).

As a result, neglecting the remainder term R2α,2β (x, y), the total increment of the
function �z := f

(
x1, y1

) − f
(
x0, y0

)
is written in terms of the increments �αx and

�βy of the factors x and y in the form

�z ≈
(
Dα

0+;xf
) (
x0, y0

)

� (α + 1)
· �αx +

(
Dβ

0+;yf
) (

x0, y0
)

� (β + 1)
· �βy, (26)
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where x0, y0 are the basic (planned) values of the factors x and y that have influence
on effective indicator z; the values x1, y1 describe the actual values of these factors,
�αx = xα

1 − xα
0 and�βy = yα

1 − yβ

0 are the generalized absolute changes (deviations)
of the factors x and y.

As a result, the influence of the factor x on the indicator z will be calculated by
the formula

�zx,α =
(
Dα

0+;xf
) (
x0, y0

)

� (α + 1)
· �αx, (27)

and the influence of the factor y can be calculated by the equation

�zy,β =
(
Dβ

0+;yf
) (

x0, y0
)

� (β + 1)
· �βy. (28)

For α = β = 1, Eqs. (27) and (28), which describe the influence of the factors x and
y, take standard form (4) and (5), respectively. It is known that the Caputo derivative
of order α >0 (and β >0) of a constant function is equal to zero. As a result, for the
case z= f(x, y) = const, we get a zero effect of both factors �zx,α = �zy,β = 0. In
addition, for the indicator, which does not depend on one of the factors, the effect of
this factor will be zero.

3 Comparison with the Standard Method of Differential
Calculus

The standard Taylor’s formulas (2) without remainder term cannot give exact re-
sults for power functions with non-integer exponents. The Taylor formula (25) with
derivatives of non-integer order even without remainder term is a more accurate tool
for approximating the power functions. In the beginning, to illustrate this statement,
we consider the nonlinear power function f (x) = cαxα + c0, where α is non-integer
positive number. If we use the standard Taylor formula for the expansion of this
function in a neighborhood of the point x0 > 0, then we get an infinite power series.
For this function, the expression of the generalized Taylor formula (24) with the
Caputo derivatives can be obtained using the formulas [[8], p. 95] for the left-sided
Caputo derivative of the power function

Dα
a+(x − a)β = �(β + 1)

�(β − α + 1)
(x − a)β−α, (29)

where n − 1 < α < n, β > n − 1, and

Dα
a+(x − a)k = 0, (k = 0, 1, ..., n − 1). (30)



Fractional Deterministic Factor Analysis of Economic Processes… 181

In particular, we have Dα
a+1 = 0 and Dα

a+(x − a)α = �(α + 1). Using these equa-
tions, we get

(
Dα

0+f
)
(x0) = cα�(α + 1). In this case, the higher-order Caputo

derivatives will be zero, that is,
((
Dα

0+
)k
f
)

(x) = 0 for k=1, 2, …. Substituting
(
Dα

0+f
)
(x0) = cα�(α + 1) and f (x0) = cαxα

0 + c0 into equation (24), we get

f (x) = cαx
α
0 + c0 + cα · �αx = cαx

α + c0. (31)

As a result, the Taylor series (24) gives the function f (x) = cαxα + c0 exactly. Con-
sequently, the generalized Taylor formula of such a power function gives an exact
result (the function itself), and not an approximate expression. Therefore it can be
concluded that the use of fractional derivatives in the deterministic factor analysis
can yield more accurate results than standard methods.

If the indicators are given as parametric function of factors, then we can use the
parametric left-sided Caputo derivative. For example, we can use the equation [[1],
p. 464] in the form

Dα,x
a+ (x(t) − x(a))β = �(β + 1)

�(β − α + 1)
(x(t) − x(a))β−α, (32)

where α > 0 and β > −1,
An example of a power function of two real variables is the Cobb-Douglas pro-

duction function P=P(L, C). This function describes the dependence of the volume
of production P on the labor costs L and capital costs C. In this case the produc-
tion is the indicator (z=P) and the variables L and C are the factors (x=L, y=C).
The Cobb-Douglas function has the form P (L,C) := A · La · Cb, where A is the
aggregate productivity of the factors, and a and b are interpreted as capital and la-
bor elasticities, respectively. The values of the constant 0 ≤ a < 1 and 0 ≤b<1
are determined by the available technologies. The Cobb-Douglas function was first
proposed in [[2], p. 151] for the US industry for the period 1899–1922 in the form
P (L,C) := 1.01 · L3/4 · C1/4, that is, A 1.01, a = 0.75 and b = 0.25. Using equation
(29) for the Cobb-Douglas function P(L,C) := A · La · Cb, we obtain

(
Dα

0+;LP
)
(L,C) := A · �(a + 1)

�(a − α + 1)
· La−α · Cb, (33)

(
Dβ

0+;CP
)

(L,C) := A · �(b + 1)

� (b − β + 1)
· La · Cb−β. (34)

If the orders of the Caputo derivatives are taken equal to the exponents of the
Cobb-Douglas function (α = a, β = b), then Eqs. (33) and (34) give the expressions
(
Dα

0+;LP
)
(L,C) := A · � (α + 1) · Cβ and

(
Dβ

0+;CP
)

(L,C) := A · Lα · � (β + 1). If

the orders of the Caputo derivatives are equal to one (α = β = 1), then Eqs. (33) and
(34) give the standard expressions.



182 V.V. Tarasova and V.E. Tarasov

As a result of the influence of the factors L and C on the indicator P, which is
calculated by formulas (27) and (28), have the form

�PL,α =
(
Dα

0+;LP
)
(L0,C0)

� (α + 1)
· �αL =

A · �(a + 1)

�(a − α + 1) · � (α + 1)
· La−α

0 · Cb
0 · �αL, (35)

�PC,β =
(
Dβ

0+;CP
)

(L0,C0)

� (β + 1)
· �βC =

A · �(b + 1)

� (b − β + 1) · � (β + 1)
· La

0 · Cb−β

0 · �βC, (36)

where �αL = Lα
1 − Lα

0 and �βC = Cα
1 − Cβ

0.
If we consider the orders of the derivatives α = a and β = b, then formulas (35) and

(36) can be written in the form�PL,a = A · Cb
0 · �aL, and�PC,b = A · La

0 · �bC. As
a numerical example, we consider the production function in the form P (L,C) :=
1.01 · L3

4 · C1
4 , that is, A = 1.01, a = 0.75 and b = 0.25. For simplicity, the basis

(planned) and actual values of the factors are chosen in the formof quaternary powers:
L0 = 6.14, L1 = 6.24, and C0 = 0.24, C1 = 0.54. In this case, formulas (35) and (36)
lead to the following values

�PL,α=a = A · Cb
0 · �aL = 2.2920940 ≈ 2.29, (37)

�PC,β=b = A · La
0 · �bC = 68.775243 ≈ 68.8. (38)

The total influence of the factors L and C is

�PL,α + �PC,β = 71.067337 ≈ 71.1. (39)

In this case, the increment �P = P (L1,C1) − P(L0,C0) of the effective indicator P,
which is given by the production function P (L,C) := A · La · Cb, has the form

�P = A · La
1 · Cb

1 − A · La
0 · Cb

0 = 74.505478 ≈ 74.5. (40)

The total influence of factors, calculated by themethod of differentiation of fractional
order, differs from the actual change in the effective index�Papproximately by4.6%.
The additional increase of the effective indicator from the interaction of factors is
determined by the expression

δα,β := �P − (
�PL,α + �PC,β

) = 3.438141 ≈ 3.44. (41)
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Let us now compare the results with the standard differential method. If the orders
of the Caputo derivatives in Eqs. (35) and (36) are equal to one (α = β = 1), then
we obtain standard expressions of the standard differential method given by Eqs.
(4) and (5). For the standard approach with the Cobb-Douglas production function
P (L,C) := 1.01 · L3

4 · C1
4 , the influence of the factors L and C is defined by the

values
�PL,1 = A · a · La−1

0 · Cb
0 · �L = 2.310983484 ≈ 2.31, (42)

�PC,1 = A · b · La
0 · Cb−1

0 · �C = 436.2929478 ≈ 436. (43)

The corresponding total influence of the factors L and C is

�PL,1 + �PC,1 = 438.6039313 ≈ 439. (44)

The total influence of factors calculated by the standard differential method differs
from the real change in the effective index �P approximately by 4.9 times, i.e., by
390%. We emphasize that for the proposed method the difference is 4.6%. The stan-
dard expression of the additional change in the effective index from the interaction
of factors is given by

δ = δ1,1 := �P − (
�PL,1 + �PC,1

) = 364.0984533 ≈ −364. (45)

Note that all the first numerical values of Eqs. (37)–(45) are absolutely exact values
like 54 = 625. Approximate values of these numbers are given for simplification.

From a comparison of the values of δ1,1, and the expressions δα,β, it can be seen
that the error of the standard method is greater than the error of the new methods by
more than 100 times (|δ1,1/δα,β| ≈ 106).

4 Integral Method of Arbitrary (non-Integer) Order

The mathematical basis of the standard integral method is the first-order integration,
the fundamental theorem ofmathematical analysis, and the classical Newton-Leibniz
formula

b∫
a
f(1)x (x) dx = f (b) − f(a). (46)

The integral method is one of the most commonmethods of factor analysis, which al-
lows us to decompose the overall increase in the effective index by factor increments.
We give an example of standard formulas that describe the relationship between the
increment of a function and the increment of factor characteristics. For simplicity,
we consider the function of two real variables Z= f(x, y). The formula of the integral
method, which makes it possible to calculate the influence of the factor x on the
resultant indicator, has the form



184 V.V. Tarasova and V.E. Tarasov

�Zx = x1∫
x0
f(1)x (x, y)dx. (47)

The influence of factor y is calculated by the formula

�Zy =
y1∫
y0
f(1)y (x, y)dx. (48)

It is obvious that as integration variables we can consider x = χ and y = η. The
integral method allows us to obtain accurate estimations of factor influences and
does not imply the separation of factors into quantitative and qualitative ones.

In this section, we investigate the possibility of applying the calculus of integrals
of non-integer orders in the economic factor analysis. As was shown in [18] and
[[17], p. 241–264], the inverse operation for the Caputo derivative is the Riemann-
Liouville integration of the same order. Let us give the definition of this integration
[[8], pp. 69–70].

Definition The left-sided and right-sided Riemann-Liouville integrals of order α ≥0
on the interval [a, b] are defined by the equations

(Iαa+f) (x) := 1

� (α)

x∫
a

f (χ) dχ

(x − χ)1−α
, (49)

(Iαb−f) (x) := 1

� (α)

b∫
x

f (χ) dχ

(χ − x)1−α
, (50)

where �(α) is the gamma function, a<x<b, and the function f(χ) is assumed mea-

surable on the interval (a,b) and satisfies the condition
b∫
a
|I (χ)| dχ < ∞.

The Riemann-Liouville integrations (49) and (50) are generalizations of the stan-
dard n-fold integration [8, 13, 14].We note that the Riemann-Liouville integrals (49)
and (50) for the order equal to one (α=1) are equal to the standard integral of the first
order

(
I1a+f

)
(x) = x∫

a
f (χ) dχ,

(
I1b−f

)
(x) = b∫

x
f (χ) dχ . (51)

Thus, the integration, which is used in the basic formulas of the standard integral
method of factor analysis, can be considered as a special case of the integration of
fractional order.

If the parametric dependence of indicator z(t) on factors x(t) and y(t) cannot be
represented by a single-valued function, thenwe should use the parametric derivatives
and integrals. The parametric fractional integrals are defines [[8], pp. 99–100] be the
following expression.

Definition The Riemann-Liouville parametric fractional integrals of a function f
with respect to another function x of the order α > 0 on [a, b] are defined by the
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equations

(Iα,x
a+ f) (t) := 1

�(α)

t∫
a
d τ

x(1)(τ)

(x(t) − x(τ))1−α
f(τ), (52)

(Iα,x
b− f) (t) := 1

�(α)

b∫
t
d τ

x(1)(τ)

(x(t) − x(τ))1−α
f(τ), (53)

where a < t < b, α > 0, and x(τ) is a monotone function that has a continuous
derivative x(1) (τ) = dx(τ)/d τ.

Since the integral method is based on the Newton-Leibniz formula and the funda-
mental theorem of mathematical analysis, we need to generalize this theorem and the
Newton-Leibniz formula to the case of fractional (non-integer) operators. The funda-
mental theorem of the theory of integro-differentiation of a fractional (non-integer)
order was formulated in [18] and book [[17], pp. 247–248]. Some additional aspects
of this theorem are discussed in [7]. We give a generalization of the Newton-Leibniz
formula to the case of integrals and derivatives of non-integer order. For the left-sided
operators, the following generalized Newton-Leibniz formula holds

(Iαa+D
α
a+f) (b) = f(b) − f(a) −

n−1∑

k=1

f(k) (a)

k! (b − a)k, (54)

where n-1 ≤ α < n, and for the right-sided operators the formula has the form

(
Iαb−D

α
b−f

)
(a) = f (a) − f (b) −

n−1∑

k=1

(−1)k f(k) (b)

k! (b − a)k . (55)

Using the expressions
(
I1b−D

1
b−f

)
(a) = − b∫

a
f(1)x (x) dx,

(
I1a+D

1
a+f

)
(b) = b∫

a
f(1)x (x) dx, (56)

we find that Eqs. (54) and (55) for α = 1 give the standard Newton-Leibniz formula
(46).

To apply the method of fractional integration of non-integer order in a factor
analysis, we need formulas for the left-sided and right-sided Riemann-Liouville
integral of order α ≥ 0 for the power function [[8], p. 71] that has the form

Iαa+(x − a)β = �(β + 1)

�(β + α + 1)
(x − a)β+α, (β > 0), (57)
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Iαb−(b − x)β = �(β + 1)

�(β + α + 1)
(b − x)β+α, (β > 0) . (58)

The use of the fractional integro-differentiation methods makes it possible to obtain
more accurate results for the influence of factors in comparison with the method of
differential calculus of fractional order. This is due to the fact that the additional
increase in the resultant indicator, which arises from the interaction of factors, is
distributed among them in equal proportions. As an example, we give formulas
for a power function of two variables, which is analogous to the Cobb-Douglas
function considered above. For the function f (x, y) = A · xα · yβ with α >0 and
β > 0, similarly to the standard deterministic factor analysis [16], we have

δα,β := �Z − �zx,α − �zy,β = A · �αx · �βy, (59)

where �Z = f
(
x1, y1

) − f
(
x0, y0

)
, and �zx,α, �zy,β are defined by Eqs. (27) and

(28). Then using �Z = �Zx,α + �Zy,β and

�Zx,α =
(
Dα

0+;xf
) (
x0, y0

)

� (α + 1)
· �αx + 1

2
δα,β, (60)

�Zy,β =
(
Dβ

0+;yf
) (

x0, y0
)

� (β + 1)
· �βy + 1

2
δα,β, (61)

we obtain the expressions

�Zx,α = A · yβ

0 · �αx + A

2
· �αx · �βy = A

2
· (yβ

1 + yβ

0) · �αx, (62)

�Zy,β = A · xα
0 · �βy + A

2
· �αx · �βy = A

2
· (xα

1 + xα
0 ) · �βy. (63)

For α = β = 1, Eqs. (59)–(63) give the standard equations for the integral calculus
method for a multiplicative model with the function f (x, y) = A · x · y [[16], p. 67,
323].

For the production function P (L,C) := 1.01 · L3
4 · C1

4 , the planned and actual
values of the factors L0 = 6.14, L1 = 6.24, C0 = 0.24, C1 = 0.54, and Eqs. (62)–
(63) lead to the values

�PL,α=a = A · Cb
0 · �aL + A

2
· �αL · �βC = 4.0111645 ≈ 4.0, (64)

�PC,β=b = A · La
0 · �bC + A

2
· �αL · �βC = 70.4943135 ≈ 70. (65)

As a result, we get �PL,a + �PC,b = �P = 74.5054780 ≈ 74.
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In addition to (57) and (58), there is a set of integration formulas of a non-integer
order that are given in Tables9.1–9.2 of book [[14], pp. 173–174]. To apply the
proposed generalization of the integral method, it is required to use these tables of
formulas that allow us to develop final working formulas for the most common types
of factor dependencies and make this method more accessible.

5 Conclusion

The proposed methods of integro-differentiation of a non-integer order expand the
possibilities of deterministic factor economic analysis. The method of differential
calculus of non-integer order can give more accurate results in comparison with the
standardmethod (themethod of differential calculus used the derivatives of an integer
order) for a wide class of functions including the power functions. In addition, the
methods of integro-differentiation of a non-integer order make it possible to take into
account the effects of memory and nonlocality in economic processes.

The proposed fractional differential and integral methods of the deterministic
factor analysis can be used in the analysis of economic or financial processes, in
which indicators (endogenous variables) are power functions of factors (exogenous
variables). These methods can be used to study the processes described by power
law, including the processes described by the Cobb-Douglas production function.
The suggested methods allow us to more accurately describe the total influence of
factors compared with the standard methods.

The proposed methods give significant advantages over the standard methods
for the processes with dynamic memory and nonlocality in the factor space. The
advantage of the proposed methods is especially clear for processes described by
power functions and functions, which are representable by series with non-integer
powers.

In application of suggested methods of the deterministic factor analysis, it should
be taken into account that derivatives of non-integer order have a number of non-
standard properties, including violation of the standard product differentiation rule
(for example, see [[14], pp. 280–284], [[3], p. 59], [19, 20]) and the violation of the
standard rule for differentiating a composite function (for example, see [[13], pp.
91–92], [[3], pp. 59–60], [21]). For the purpose of practical application of integro-
differentiation methods of non-integer order for the economic factor analysis, it is
necessary to develop final working formulas on the basis of the table of integrals
[[14], pp. 173–174] for various kinds of factor dependencies, so that these methods
become available to a wide range of analysts.



188 V.V. Tarasova and V.E. Tarasov

References

1. Almeida, R.A.: Caputo fractional derivative of a function with respect to another function.
Commun. Nonlin. Sci. Numer. Simul. 44 460–481. https://doi.org/10.1016/j.cnsns.2016.09.
006. (arXiv:1609.04775) (2017)

2. Cobb, C.W., Douglas, P.H.: A theory of production. Am. Econom. Rev. 18(Supplement), 139–
165 (1928)

3. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented
Exposition Using Differential Operators of Caputo Type. Berlin: Springer. p. 247. https://doi.
org/10.1007/978-3-642-14574-2 (2010)

4. Gabaix, X.: Power laws in economics and finance. Ann. Rev. Econom. 1(1), 255–293 (2009).
1941-1383/09/0904-0255

5. Gabaix, X.: Power laws in economics: an introduction. J. Econom. Perspect. 30(1), 185–206
(2016). https://doi.org/10.1257/jep.30.1.185

6. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time
finance III: the diffusion limit. In: Kohlmann,M., Tang, S. (Eds.)Mathematical Finance. Trends
in Mathematics. Basel: Birkhauser. pp. 171–180 (2001). https://doi.org/10.1007/978-3-0348-
8291-0_17

7. Grigoletto, E.C., De Oliveira, E.C.: Fractional versions of the fundamental theorem of calculus.
Appl. Math. 4, 23–33 (2013). https://doi.org/10.4236/am.2013.47A006

8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory andApplications of Fractional Differential
Equations, p. 540. Elsevier, Amsterdam (2006)

9. Laskin, N.: Fractional market dynamics. Physica A. 287(3), 482–492 (2000). https://doi.org/
10.1016/S0378-4371(00)00387-3

10. Mainardi, F.: Fractional Calculus andWaves Linear Viscoelasticity: An Introduction to Mathe-
matical Models. London: Imperial College Press. p. 368 (2010). https://doi.org/10.1142/P614

11. Mainardi F., RabertoM.,GorenfloR., Scalas E. Fractional calculus and continuous-timefinance
II: the waiting-time distribution. Physica A. 287 3–4. 468–481 (2000). https://doi.org/10.1016/
S0378-4371(00)00386-1

12. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1),
286–293 (2007). https://doi.org/10.1016/j.amc.2006.07.102

13. Podlubny, I.: Fractional Differential Equations, p. 340. Academic Press, San Diego (1998)
14. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and

Applications, p. 1006. Gordon and Breach, New York (1993)
15. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica

A. 284(1–4), 376–384 (2000). https://doi.org/10.1016/S0378-4371(00)00255-7
16. Sheremet, A.D.: Theory of Economic Analysis, 2nd edn, p. 366. Infra-M, Moscow (2005)
17. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Par-

ticles, Fields and Media. New York: Springer p. 505 (2010). https://doi.org/10.1007/978-3-
642-14003-7

18. Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys.
323(11), 2756–2778 (2008). https://doi.org/10.1016/j.aop.2008.04.005

19. Tarasov, V.E.: Leibniz rule and fractional derivatives of power functions. J. Comput. Nonlin.
Dynam. 11(3), 031014 (2016). https://doi.org/10.1115/1.4031364

20. Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlin. Sci.
Numeric. Simul. 18(11), 2945–2948 (2013). https://doi.org/10.1016/j.cnsns.2013.04.001

21. Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlin. Sci. Numeric. Simul.
30(1–3), 1–4 (2016). https://doi.org/10.1016/j.cnsns.2015.06.007

22. Tarasov,V.E., Tarasova,V.V.: Long and shortmemory in economics: fractional-order difference
and differentiation. IRA-Int. J. Manag. Soc. Sci. 5(2), 327–334 (2016). https://doi.org/10.
21013/jmss.v5.n2.p10

23. Tarasov, V.E., Tarasova, V.V.: Time-dependent fractional dynamics with memory in quantum
and economic physics. Annal. Phys. (2017). https://doi.org/10.1016/j.aop.2017.05.017

https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.1016/j.cnsns.2016.09.006
http://arxiv.org/abs/1609.04775
https://doi.org/10.1007/978-3-642-14574-2
https://doi.org/10.1007/978-3-642-14574-2
https://doi.org/10.1257/jep.30.1.185
https://doi.org/10.1007/978-3-0348-8291-0_17
https://doi.org/10.1007/978-3-0348-8291-0_17
https://doi.org/10.4236/am.2013.47A006
https://doi.org/10.1016/S0378-4371(00)00387-3
https://doi.org/10.1016/S0378-4371(00)00387-3
https://doi.org/10.1142/P614
https://doi.org/10.1016/S0378-4371(00)00386-1
https://doi.org/10.1016/S0378-4371(00)00386-1
https://doi.org/10.1016/j.amc.2006.07.102
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1007/978-3-642-14003-7
https://doi.org/10.1007/978-3-642-14003-7
https://doi.org/10.1016/j.aop.2008.04.005
https://doi.org/10.1115/1.4031364
https://doi.org/10.1016/j.cnsns.2013.04.001
https://doi.org/10.1016/j.cnsns.2015.06.007
https://doi.org/10.21013/jmss.v5.n2.p10
https://doi.org/10.21013/jmss.v5.n2.p10
https://doi.org/10.1016/j.aop.2017.05.017


Fractional Deterministic Factor Analysis of Economic Processes… 189

24. Tarasova, V.V., Tarasov, V.E.: A generalization of concepts of accelerator and multiplier to
take into account memory effects in macroeconomics. J. Econom. Entrepreneur. [Ekonomika
i Predprinimatelstvo]. 10–3 (75–3). 1121–1129 [in Russian] (2016)

25. Tarasova, V.V., Tarasov, V.E.: Concept of dynamic memory in economics. Commun. Nonlin.
Sci. Numer. Simul. https://doi.org/10.1016/j.cnsns.2017.06.032 Accepted for publication

26. Tarasova, V.V., Tarasov, V.E.: Dynamic intersectoral models with power-law memory // Com-
mun. Nonlin. Sci. Numer. Simul. 54, 100–117 (2018). https://doi.org/10.1016/j.cnsns.2017.
05.015

27. Tarasova, V.V., Tarasov, V.E.: Economic accelerator with memory: discrete time approach.
Prob. Modern Sci. Educat. [Problemy Sovremennoj Nauki i Obrazovaniya]. 36 (78). 37–42
(2016). https://doi.org/10.20861/2304-2338-2016-78-002

28. Tarasova, V.V., Tarasov, V.E.: Economic growth model with constant pace and dynamic mem-
ory. Prob. Modern Sci. Educat. 2(84), 40–45 (2017). https://doi.org/10.20861/2304-2338-
2017-84-001

29. Tarasova, V.V., Tarasov, V.E. Economic indicator that generalizes average and marginal values.
J. Econom. Entrepreneur. [Ekonomika i Predprinimatelstvo]. 11–1 (76-1) 817–823 (2016) [in
Russian]

30. Tarasova, V.V., Tarasov, V.E.: Economic interpretation of fractional derivatives. Prog. Fraction.
Differ. Appl. 3(1), 1–7 (2017). https://doi.org/10.18576/pfda/030101

31. Tarasova, V.V., Tarasov, V.E.: Elasticity for economic processes withmemory: fractional differ-
ential calculus approach. Fract. Differ Calcul. 6(2), 219–232 (2016). https://doi.org/10.7153/
fdc-06-14

32. Tarasova, V.V., Tarasov, V.E.: Fractional dynamics of natural growth and memory effect in
economics. Eur. Res. 12(23), 30–37 (2016). https://doi.org/10.20861/2410-2873-2016-23-
004

33. Tarasova, V.V., Tarasov, V.E.: Logistic map with memory from economic model. Chaos, Soli-
tons Fract. 95, 84–91 (2017). https://doi.org/10.1016/j.chaos.2016.12.012

34. Tarasova, V.V., Tarasov, V.E.: Macroeconomic models with dynamic memory. J. Econom.
Entrepreneur. [Ekonomika i Predprinimatelstvo] 3–2(80–2) 26–35 [in Russian] (2017)

35. Tarasova, V.V., Tarasov V.E.: Marginal utility for economic processes with memory. Almanac
of Modern Science and Education [Almanah Sovremennoj Nauki i Obrazovaniya] 7 (109)
108–113 [in Russian] (2016)

36. Tarasova, V.V., Tarasov, V.E.: Marginal values of non-integer order in economic analysis //
Azimuth Scientific Research: Economics and Management [Azimut Nauchnih Issledovanii:
Ekonomika i Upravlenie] 3(16) 197–201 [in Russian] (2016)

37. Tenreiro Machado, J.A., Duarte, F.B., Duarte, G.M.: Fractional dynamics in financial indeces.
Int. J. Bifur. Chaos. 22(10). ar1250249 (2012) https://doi.org/10.1142/S0218127412502495

38. Tenreiro Machado, J.A., Mata, M.E.: Pseudo phase plane and fractional calculus modeling
of western global economic downturn. Communications in Nonlinear Science and Numerical
Simulation. 22(1–3), 396–406 (2015). https://doi.org/10.1016/j.cnsns.2014.08.032

39. Tenreiro Machado, J.A., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic
systems. Entropy. 17(8), 5402–5421 (2015). https://doi.org/10.3390/e17085402

40. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Vol. II. Applications.
Berlin: Springer, p. 466 (2013)

https://doi.org/10.1016/j.cnsns.2017.06.032
https://doi.org/10.1016/j.cnsns.2017.05.015
https://doi.org/10.1016/j.cnsns.2017.05.015
https://doi.org/10.20861/2304-2338-2016-78-002
https://doi.org/10.20861/2304-2338-2017-84-001
https://doi.org/10.20861/2304-2338-2017-84-001
https://doi.org/10.18576/pfda/030101
https://doi.org/10.7153/fdc-06-14
https://doi.org/10.7153/fdc-06-14
https://doi.org/10.20861/2410-2873-2016-23-004
https://doi.org/10.20861/2410-2873-2016-23-004
https://doi.org/10.1016/j.chaos.2016.12.012
https://doi.org/10.1142/S0218127412502495
https://doi.org/10.1016/j.cnsns.2014.08.032
https://doi.org/10.3390/e17085402


Fractional-Order Model of Wine

António M. Lopes, J.A. Tenreiro Machado and Elisa Ramalho

1 Introduction

Electrical Impedance Spectroscopy (EIS) measures the electrical impedance of a
specimen within a given bandwidth [27, 38, 39]. This technique has the advantages
of being non-destructive and avoiding time consuming experiments. EIS has been
used for studying vegetable [3, 10, 33, 58, 61] and animal [1, 16, 21, 32, 63] tissues,
materials [19, 26, 62], and devices [2, 20, 31].

This chapter uses EIS to characterize wine. Wine is a beverage produced by
fermented grapes, and its most important characteristics are the sweetness, acidity,
tannins, balance, and body. However, the mathematical description of wine poses a
challenging problem.

Zheng et al. [65] used EIS for studying the dielectric properties of ethanol and
organic acids of grape musts. They found correlations between the concentrations
of the pure solutions and the dielectric parameters. Riul et al. [51] proposed a taste
sensor based onEIS. They processed the EIS data using principal component analysis
and artificial neural networks, concluding that the system could distinguish between
certain types of red wines.
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The EIS requires exciting a specimen with frequency-variable electric sinusoidal
signals and registering the response. The voltage v(t) and current i(t) across the
specimen at steady-state are sinusoidal functions of time given by:

{
v(t) = V cos(ωt + θV )

i(t) = I cos(ωt + θI )
, (1)

where {V, I } are the amplitudes of the voltage and current, {θV , θI } denote their
phase shifts, and ω represents the angular frequency.

The variables v(t) and i(t) can be represented in the frequency-domain:

{
V( jω) = V · e jθV

I( jω) = I · e jθI
, (2)

where j = √−1. The complex impedance Z( jω) is defined as the ratio of phasors:

Z( jω) = V( jω)

I( jω)
= V

I
· e j(θV −θI ) = |Z( jω)| · e j arg [Z( jω)]. (3)

For characterizing wine, we start by measuring its electrical impedance, and then
we apply fractional calculus (FC) [4, 41, 42, 45] to design an appropriate heuristic
model. We adopt hierarchical clustering (HC) to visualize the relationships between
the measurements. The methodology is illustrated with a set of red and white wines.
The impedance parameters are correlated with chemical data, showing that the tech-
nique is able to characterize wine samples.

Having these ideas in mind, this chapter is organized as follows. Section2 intro-
duces the empirical FC models. Section3 models the electrical impedance by means
of FC tools and correlates the impedance parameters with chemical data. Section4
uses HC for visualizing the results. Finally, Sect. 5 draws the main conclusions.

2 Empirical Fractional-Order Models

Given an experimental impedance spectrum, we need to find a description, or
“model”, that fits the data, and has a limited number of parameters [35, 46, 47].
Different empirical models in the scope of the dielectric relaxation phenomenon
were proposed [15].

Many materials are characterized by dynamic processes that occur at different
scales in space-time. The Debye (D)model [8] is insufficient to describe the behavior
of such materials, since it does not consider the interactions among distinct relaxing
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effects and long-memory phenomena [13]. Fractional-order (FO) formulations of the
Dmodel are capable of dealingwith the phenomena taking place within amaterial [7,
17, 59, 64]. Non-Debye relaxation in condensed matter and dielectrics are described
in [28, 29, 29, 30].

The Cole-Cole (CC), Cole-Davidson (CD) and Havriliak-Negami (HN) expres-
sions generalize the D model, describing anomalous relaxation processes [5, 6, 11,
23, 36, 54, 59]. These models are empirical and do not use fractional derivatives
or integrals, explicitly, but they represent pioneer approaches to the application of
FC [4, 9, 34, 44], as discussed by several researchers [18, 24, 48–50, 52, 53]. FO
formulations of the non-Debye relaxation and models dealing with phenomena tak-
ing place within condensed matter are studied in [55–57]. Nevertheless, just a few
studies discuss the fractional dynamics and complex properties of wine [12, 40, 60].

In the Laplace domain, the D, CC, CD and HN models are [52]:

ε̃D(s) = ε∗(s) − ε∞
ε0 − ε∞

= 1

1 + sτ
, (4)

ε̃CC(s) = 1

1 + (sτ )α
, (5)

ε̃CD(s) = 1

(1 + sτ )β
, (6)

ε̃HN (s) = 1

[1 + (sτ )α]β , (7)

where 0 < α ≤ 1, 0 < β ≤ 1, ε̃ denotes the complex susceptibility, {ε0, ε∞} repre-
sent the low and high-frequency limits of the complex dielectric permittivity, ε∗, τ
is the relaxation time and f = ω/2π is the frequency.

3 EIS Analysis of Wine

The impedance spectra for N = 16 Portuguese wines are determined by means of
EIS. The set includes samples from distinct wine regions [14, 40], involving a mixed
of ripe and green, both red and white, styles (Table1). Given the characteristics of
Z( jω), FO models are considered for fitting the experimental data with a minimum
of parameters.

The experimental set-up used for EIS is depicted in Fig. 1 [38, 39]. An l × w ×
h = 120 × 100 × 55 mm parallelepipedic container is filled with 200 ml of wine, at
room temperature (23 ◦C). Two 0.5mm diameter, 15mm length, copper electrodes
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Table 1 The set of wine samples analysed

i Tag Wine region Wine style

1 W1 Alentejo White

2 W2 Alentejo White

3 W3 Alentejo White

4 W4 Península de Setúbal White

5 W5 Tejo white

6 W6 Douro White

7 W7 Vinhos Verdes Green white

8 W8 Vinhos Verdes Green white

9 R1 Alentejo Red

10 R2 Alentejo Red

11 R3 Península de Setúbal Red

12 R4 Península de Setúbal Red

13 R5 Bairrada Red

14 R6 Douro Red

15 R7 Vinhos Verdes Green red

16 R8 Vinhos Verdes Green red

Fig. 1 Experimental set-up for measuring impedance

are used to connect the samples to the excitation and measurement equipment. The
electrodes are immersed at 5mm distance from the bottom of the container, and
are placed diametrically opposed to each other. Electrodes with different sizes and
shapes were tested, but their influence on the results was found to be negligible.
An adaptation resistance, Rs = 15 k�, is used in series with the specimen under
analysis, and Z( jω) is measured in the bandwidth BW1 : 3 ≤ f ≤ 106 Hz, at L =
33 logarithmically spaced points.
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The FO models are adjusted to the data minimizing the Canberra-like distance,
J , between the experimental, Ze, and model, Zm , impedances:

J = 1

L

L∑
k=1

|Re[Ze( jωk)] − Re[Zm( jωk)]|
|Re[Ze( jωk)]| + |Re[Zm( jωk)]| + |Im[Ze( jωk)] − Im[Zm( jωk)]|

|Im[Ze( jωk)]| + |Im[Zm( jωk)]| ,
(8)

where Re(·) and Im(·) represent the real and imaginary parts.
Expression (8) captures the relative error of the adjustment and avoids “saturation”

effects caused by the simultaneous presence of large and small values.
A good fit between approximation and real data in the bandwidth BW1 is found

for the 6-parameter model:

Zm( jω) = K ·
(
1 + jω

z1

)α1 ·
(
1 + jω

z2

)α2

( jω)β
, (9)

with {K ,α1, z1,α2, z2,β} > 0. This heuristic expression represents a good compro-
mise between complexity and fitting quality.

Table2 summarizes the optimal impedance, or electrical, parameters obtained for
the N = 16 samples analyzed (to be denoted in the follow-up by the N × S = 16 × 6
matrix E = [e1, . . . , e6]).

The polar diagrams of the experimental data and model (9) for sampleW2 and R2

are depicted in Fig. 2 for BW1, where the detail figures correspond to a zoom within
the bandwidth BW2 : 3 ≤ f ≤ 500 Hz. For the remaining wine samples the results
are similar.

Table2 also comprises chemical data for all samples. The values were obtained by
standard measurement procedures and correspond to: reducing substances
(sug)—ref: OIV-MA-AS311-01A, alcoholic strength by volume (alc)—ref: OIV-
MA-AS312-01A, total acidity (aci)—ref: OIV-MA-AS313-01, density (dens) at
20 ◦C (by pycnometry)—ref: OIV-MA-AS2-01A [25], and tannins (tan): ref: AWRI
(Australian Wine Research Institute) with methyl cellulose precipitable tannin assay
(to be denoted in the follow-up by the N × T = 16 × 5 matrixQ = [q1, . . . ,q5]).

To unveil the correlations between the descriptors, that is, the electrical para-
meters and the chemical results, we define the 16 × (6 + 5) dimensional matrix
P = [E |Q] = [p1, . . . ,p11] and we calculate the Pearson correlation, ri j , i, j =
1, . . . , 11, j > i , between the vectors:

ri j = (pi − p̄i )T · (p j − p̄ j )

||pi − p̄i || · ||p j − p̄ j || , (10)

where p̄i and p̄ j denote the average values of columns i and j of matrix P .
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Fig. 2 Polar diagrams of
Z( jω) for the wine sample
W2 and R2 and bandwidth
BW1. The detail figures
correspond to a zoom within
the bandwidth BW2

Figure3depicts the correlations,where all pairs of descriptorswith |ri j | ≥ 0.79are
connected by a double arrow.We observe in Fig. 3 intra- and inter-model correlations,
particularly between sugars and {α1, z1,α2}.

In conclusion, the results demonstrate that model (9) yields a convincing descrip-
tion and reliable characterization of wine. Given the correlations between electrical
and chemical results, EIS represents a straightforward procedure to implement in the
winery industry.
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Fig. 3 Pearson correlation
between the descriptors that
characterize wine. Arcs
connect pairs of descriptors
with |ri j | ≥ 0.79, and colors
represents the magnitude of
the correlation

4 HC and Visualizing

HC is a technique for analyzing and visualizing relationships embedded in data. The
algorithm generates groups of objects that are similar to each other in some sense,
and the results are usually depicted in a dendrogram or a tree diagram [22].

We adopt the HC for visualizing the relationships between 16 wine samples. The
HC processes matrix M = [ci j ], based on the distance:

ci j = 1

L

L∑
k=1

∣∣Re[Zi ( jωk)] − Re[Z j ( jωk)]
∣∣

|Re[Zi ( jωk)]| + ∣∣Re[Z j ( jωk)]
∣∣ +

∣∣Im[Zi ( jωk)] − Im[Z j ( jωk)]
∣∣

|Im[Zi ( jωk)]| + ∣∣Im[Z j ( jωk)]
∣∣ ,

(11)

where the indices i, j = 1, . . . , 16, denote 2 wine samples, and Z represents the
impedances measured by means of EIS.

Figure4 depicts the tree generated by applying the successive (agglomerative)
and average-linkage methods [22, 37, 43] for experimental data in the bandwidth
BW1. Threemain clusters emerge:C1 = {W2,W3},C2 = {W1,W4,W5,W6,W7} and
C3 = {R1, R2, R3, R4, R5, R6, R7, R8,W8}. That is, clusters {C1,C2} include white
styles, whileC3 comprises all redwines plus the greenwhiteW8. Therefore, we verify
that the information in M together with the HC technique is able to distinguish the
types of wine.

Figure5 represents the tree generated by the HC andMwhen focusing on the low
frequency bandwidth BW2 : 3 ≤ f ≤ 500 Hz, of Z. We verify the emergence of
clusters D1 = {W1,W4,W5,W6}, D2 = {W2,W3,W8, R3} and D3 = {R1, R2, R4,

R5, R6, R7, R8,W7}. Therefore, the ability to distinguish between white and red



Fractional-Order Model of Wine 199

Fig. 4 The hierarchical tree for the N = 16 wine samples and matrixM (experimental data in the
bandwidth BW1)

styles has some similarities to the one obtained considering the full bandwidth BW1,
and we conclude that a considerable part of the EIS characteristics of wine emerges
at low frequencies.

In conclusion, the EIS proved to be a valuable technique leading to results compa-
rable with standard chemical analysis, while allowing an easier industrial implemen-
tation. Future developments using EIS in winery processes show that the adoption
of more sensitive equipment seems important to have a better description of distinct
wine samples.
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Fig. 5 The hierarchical tree for the N = 16 wine samples, matrix M (experimental data in the
bandwidth BW2)

5 Conclusions

EIS was used to determine the electrical impedance spectra of 16 wines. FO transfer
functions requiring 6 parameters describe adequately the data. Based on the corre-
lations between electrical and chemical measurements, we conclude that impedance
obtained from EIS leads to an assertive wine characterization. Due to its easy imple-
mentation and short time needed to obtain results, the EIS has high potential in the
winery industry, both to replace, or to complement, traditional chemical analysis.
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Dynamics of Particles and Bubbles Under
the Action of Acoustic Radiation Force

Lev A. Ostrovsky and Yury A. Stepanyants

1 Introduction

The acoustic radiation force (ARF) is the period-average force created by a sound
wave. The studies of ARF have a rich history associated with such names as Lord
Rayleigh, Carl and Vilhelm Bjerkneses, Leon Brillouin, Paul Langevin, and others.
The story commenced from the concept of radiation pressure which was known
for electromagnetic waves and was extended in early 1900s by Rayleigh to any
vibrations, including acoustic waves. Later Langevin suggested a somewhat differ-
ent expression for the radiation pressure; both formulae derived by Rayleigh and
Langevin are being used now for the corresponding conditions (see, e.g., [7]). A
historical outline of this early development is given by Beyer [6].

In 1920s Wood and Loomis experimentally demonstrated that the acoustic force
is capable to support glass objects in an oil bath [47, 48]. They were also apparently
the first to predict possible biological and chemical effects of ultrasonics (see, e.g.,
[28] and references therein).

Another line of research refers to the interaction of bubbles with acoustic field.
As shown by Carl Bjerknes in the end of XIX century, sound wave exerts a force on
a small bubble, and two pulsating bubbles can attract or repel each other, depending
on the phases of their oscillations [32].

The progress in the study of particle dynamics under the action of ARF is related
with the seminal works of the frontier of 50s–60s by Yosioka and Kavasima [50] and
Gor’kov [17] who derived an expression for the ARF exerting on a small particle of
an arbitrary density based on the summing up of the incident and scattered acoustic
fields.

Another line of research refers to the interaction of bubbles with an acoustic
field. As shown by Carl Bjerknes in the end of XIX century, a sound wave exerts a
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force on a small bubble, and two pulsating bubbles can attract or repel each other,
depending on the phases of their oscillations [32]. In 1970s–1980s a more complex
dynamics of bubble ensembles interacting with acoustic field was considered [20]. A
self-consistent system including the kinetic equation for the bubble distribution and
the acoustic field affected by the bubbles was derived (a similar but different kinetic
equation is well-known for plasma in the electromagnetic field). New acoustic effects
such as the self-focusing [5] and “self-transparency” [21] of sound waves in the fluid
with gaseous bubbles were found and then, were confirmed experimentally. A math-
ematical model for the many-bubbles interaction (without their coalescence) based
on the Lagrangian approach was developed in Ref. [14]. Various optical-acoustical
analogies such as stimulated scattering and wave front reversal were discussed in
1980s (see, e.g., [11]); we do not consider these effects in details, because they
are not directly related to the ARF action. For an outline of nonlinear acoustical
phenomena associated with the bubbles we refer to the book [26].

In the subsequent decades, the ARF-related effects have found many important
applications in medical diagnostics (see [22, 37, 45] and references therein), and
recently also in food quality control as briefly described below.

Here we outline a class of effects related to the ARF action on particles and
gaseous bubbles in liquids. This is one of the most promising areas of applications in
biology and chemistry (such as concentration, separation, and stirring of small solid
particles and gaseous bubbles in ultrasonic resonators). Also, in the context of this
book, complex motion of particles and bubbles in acoustic fields is a challenging
problem of nonlinear dynamics.

In what follows we consider some recent theoretical and experimental results in
this area. Note that some important theoretical problems remained unresolved until
very recently. In particular, the theory of these processes is mainly limited to the
motion of a single particle due to the ARF. However, to evaluate the result of the
action of ARF on an ensemble of many particles, their collective behavior should be
analyzed as well, including the last stages of concentration when the particles begin
effectively interact. It is also of interest to extend the range of particle parameters
to include inorganic micro- and nanoparticles which can be used in modern tech-
nology, e.g., such as ultrasonic cleaning and delivery of drugs to specific organs in
vivo.

Finally, in some cases, a commonly used model describing a balance between the
ARF and viscous Stokes drag force can be insufficient. In such cases, the equation
of particle motion should be supplemented by the inertial force with the added mass
effect, as well as the history integral drag (HID) force reducible to the Boussinesq–
Basset drag (BBD) force for solid particles.

The aim of this Chapter is threefold. First, to overview the studies of particle and
bubble motions under the action of ARF. Second, to describe recent experiments in
acoustic resonators of a plane and cylindrical configurations. Third, to present some
new models and ideas of potential ARF applications in technology.
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2 Dynamics of Particles in an Acoustic Field

According to Gor’kov (1962), the force acting in a fluid on a small spherical particle
of a radius a in an acoustic field can be represented as

F = −∇U, where U = 2πρ f a
3

( 〈
p2

〉
3ρ2

f c
2
f

f1 −
〈
u2

〉
2

f2

)
. (1)

Here and further the angular brackets 〈. . .〉 denote a period averaged quantities, in
particular, the incident sound wave pressure p and velocity u, and

f1 = 1 − 1

qs2
, f2 = 2

q − 1

2q + 1
, (2)

where q = ρp/ρ f , s = cp/c f , and subscripts f and p pertain to the density ρ and
sound speed c in the ambient fluid and particle material respectively.

Equation (1) is based on the dipole scattering of a sound wave on a spherical
particle. If the particle is non-spherical, only the factor in front of brackets in Eq. (1)
for the potential, U would change.

The particle velocity u in the quiescent fluid can be found from the equation of
motion: (

ρp + mρ f
)
V
du
dt

= −6πρ f νa u − I − F, (3)

where V is the particle volume,m is the geometric factor of a particle which accounts
for the added mass effect (e.g., for a spherical particle m = 1), ν is the kinematic
viscosity of an ambient fluid, and I is the integral Boussinesq–Basset drag (BBD)
force (it will be specified below).

For small particles the inertial and BBD forces in Eq. (3) can be neglected in most
cases (see, however, some special cases below when these forces can be important),
so that the velocity can be found from the balance between the radiation force and
Stokes drag force:

u = − F
6πνρ f a

. (4)

Since in most cases Eq. (4) works well enough for small particles, we begin with the
consideration of this simplified case.

2.1 A Particle in a Standing Wave

In many experiments, particles are operated in acoustic resonators where a standing
wave produces minimums and maximums of average force potential. In a plane
standing wave defined by the potential
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ϕ (x, t) = −u0

k
cos ωt cos kx (5)

the radiation force has the form

F(x) = VkP2
0

2ρ f c2
f

� sin 2kx, � = q + (2/3)(q − 1)

2q + 1
− 1

2qs2
, (6)

where P0 = ρ f c f u0 is the maximal pressure amplitude in a standing wave.
Using Eq. (6), we obtain from Eq. (4) for the particle velocity

u(x) = − F

6πρ f νa
= −2πa2 f P2

0 �

9νρ2
f c

3
f

sin
4π f x

c f
, (7)

where f is the sound frequency.
Hence, depending on the sign of parameter σ, the particle is at rest in the nodes

or antinodes of the acoustic field. Considering (7) as a differential equation for the
coordinate x (i.e., substituting x = du/dt), it is easy to obtain a solution for a particle
motion:

x = k−1 arctan
[
tan kx0 exp (−2k�t)

]
, (8)

where x0 is the initial position of a particle at t = 0. Figure 1 illustrates return of a hard
particle coordinate from the initial distance x0 = 0.15λ, where λ is the wavelength
of a sound, to the closest equilibrium position in a standing wave.

The trend of the particles towards the equilibrium can be used for concentration
of them in certain areas of a resonator. Moreover, as mentioned above, the particles
with a small and large densities can gather in different regions of a resonator (nodes
and antinodes of ultrasonic pressure amplitude). Such effects were considered in the

x/x0

t, ms

f = 3 MHz

f = 9 MHz

Fig. 1 Variation of particle coordinate from a distance x0 = 0.15λ to the equilibrium at the acoustic
wave frequencies of 3 and 9 MHz (from [36]). Particle radius a = 10µm, pressure amplitude
P0 = 200 kPa
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Fig. 2 Schematic illustration of particles gathering in the nodes of a standing acoustic wave in a
plane resonator with initially randomly distributed particles (from panel a to panel b). Lines show
a standing acoustic wave in two instances of time when the wave phase differs on π

review papers by Wiklund and Hertz [45] and Kuznetsova and Coackley [22]. One
illustration is shown in Fig. 2.

2.2 Particle Control by Means of Switching Modes

As mentioned, a particle under the influence of acoustic radiative force moves to a
stable equilibrium state which can be a node or antinode of a standing wave of pressure
depending on the particle property. If the frequency of the acoustic wave in a resonator
is changed, then the configuration of the standing field changes according to the mode
structure and therefore, the particle position can be switched to a new equilibrium.
Sarvazyan and Ostrovsky [36] considered switching between two different modes
(3rd and 4th) of a resonator by changing the excitation frequency as a way of stirring
and mixing of fluids in small volumes. In this particular case, the dimensionless
radiation force has the form

Fa =
[

sin (n3K ξ) e−2bγτ + sin

(
n4

f4
f3
K ξ

) (
1 − e−bγτ

)2
]

�H, (9)

where ξ = 2πx/K L , τ = t/γ, γ = a2/9ν, K 2π2a4P2
0 f

81ρ2
f ν

2c3
f L

�(q, s), n3 = 3 and n4 = 4

are the mode numbers, f3 and f4 are the mode frequencies, b is the damping rate of
the mode which is caused by the dissipation of acoustic field in the fluid and energy
losses through the resonator walls (for simplicity it is assumed that b does not depend
on frequency), �H = H(π) − H(π − πs), H(π) is the Heaviside unit function, and
πs is the time interval during which the third mode decays and the fourth mode
increases. In the next time interval πs we assume that due to the mode switching
the fourth mode decays, and the third mode increases. Then the switching repeats
periodically with the same time interval πs . As the initial condition, we assume that
at t = 0 a particle starts moving from the rest being at the initial position x = x0.
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When the parameter b �= 0, then Eq. (3) with Fa from Eq. (9) is non-integrable
even in the quasi-static approximation. Only the approximate analytical solutions
can be obtained in this case separately for the decaying mode 3 and increasing mode
4 (or vice versa) [18, 36]:

ξd = 2

Kn3
atan

[
tan

(
Kn3

2
ξ0

)
exp

(
Kn3

2bγ
e−2bγτ

)]
, (10)

ξi = 2 f3
K f4n4

atan

{
tan
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K f4n4

2 f3
ξ0

)
exp

[
K f4n4

f3

(
τ + 4e−bγτ − 3 − e−2bγτ

2bγ

)]}
.

(11)
According to solution (10), a particle being initially at the position ξ = ξ0 moves
under the action of the acoustic field towards the equilibrium state at ξ = 0. If
the switching between the modes occurs at τ = τs , then the particle starts mov-
ing to another equilibrium state ξeq = π f3/(K f 4n4). The latter is illustrated by
Fig. 3, where the switching time in the dimensional variables was chosen at ts =
180 ms (tans = 1.62 × 104).

In the frame (a) one can see a behaviour of a relatively heavy gold particle with
σ = 2.375, and in the frame (b)—relatively light ice particle with σ = 0.823. Odd
lines 1, 3, etc., pertain to particle motion under the action of the third acoustic mode
and even lines 2, 4, etc.—to particle motion under the action of the fourth acoustic
mode. Dashed horizontal lines in Fig. 3 show the equilibrium position ξeq which a
particle would attain if only the fourth mode acts on it.

2.3 Acoustic Levitation and Tweezers

A balance of different forces acting on a particle can be used for a sophisticated
manipulation of particle position and motion. One of the interesting particular effects
known for a relatively long time is the possibility of a particle or a liquid droplet to
levitate in the gravity field (see, e.g., [29] and references therein). The last-mentioned
can happen when the action of gravity is balanced by the ARF. By placing a reflector
some distance away from a transducer, one can create a standing acoustic field in the
vertical direction. Depending on the particle position, the acoustic wave can exert
a constant downward or upward pressure. At some places below the standing field
nodes where the pressure directed upward and the pressure gradient is strong enough
to balance the pull of gravity, the particle or droplet can levitate as shown in the photo
of Fig. 4.

Note that there are other, non-acoustic mechanisms which can also cause particle
levitation. In particular, in Ref. [2] the authors have theoretically shown that parti-
cles can be dynamically levitated and lifted by interacting vortices even when their
densities are of few orders of magnitude greater than the fluid density.



Dynamics of Particles and Bubbles Under the Action of Acoustic Radiation Force 211

Fig. 3 Time dependences of a particle position when the acoustic field periodically switches from
mode 3 to mode 4 and back. Panel a—for a gold particle, panel b—for an ice particle. From [18]

In other studies, particles were manipulated in a precise way by controlling the
balance between ARF and friction as considered above. This technique is used in
the so-called acoustic tweezers (see [1] and numerous references therein). Recently
a similar process was realized by Ding et al. [12, 13] for surface waves in a lithium
niobate piezoelectric over a fluid layer. Upon switching between excitation frequen-
cies, the particles (10 µm fluorescent polystyrene beads) moved at the velocity ∼1.6
mm/s which corresponds to ARF of 150 pN. They also experimented with two-
dimensional standing waves which allowed to manipulate particles and placing them
in the prescribed positions. Figure 5 illustrates this possibility.

In the simplest implementation, the theoretical basis for tweezers’ operation can
be constructed as the two-dimensional generalisation of the model described above
in this section. Creating two-dimensional standing acoustic wave by means of two
sets of transmitter and reflector operating in the perpendicular directions, one can
undertake the particle control on a plane by periodic switching between two modes in
each direction. Then, the particle can drift in each direction and eventually oscillate,
around the equilibrium position as shown in Fig. 3 for one-dimensional case. Obvi-
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Fig. 4 Levitation of a small droplet in the standing acoustic field. The transducer below the droplet
generates the acoustic wave which forms a standing acoustic field reflecting from the metallic
cylinder shown on the top. From [46] (see also [35])

Fig. 5 a Stacked images demonstrating the particle motion control in x and y directions using 7µm
fluorescent polystyrene beads to write the word “NATURE”. b Stacked images showing dynamic
control of a bovine red blood cells to trace the letters “PSU” (Penn-State University). From [12]
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ously, this arrangement can be further generalised for the three-dimensional case.
The examples of numerous applications of acoustic tweezers can be found in [1].

In the two-dimensional case, a standing acoustic wave creates a cellular field, so
that in Eq. (5) the force becomes a function of two variables:

F(x, y) = V P2
0

2ρ f c2
f

�kxky sin (2kx x) sin
(
2ky y

)
. (12)

As was shown in [15, 16] for hydrodynamic flows, the particle motion in a such 2D
field can be fairly complex and even chaotic, especially if an initial particle position
is close to the boundaries of cells. The particle can move within one cell, and at a
certain condition after a while, it can jump to another cell and spend some time on it,
then jump to another, and so on. To undertake an effective control of particle motion,
it is necessary to study the conditions for the onset of regular and chaotic particle
motions in such arrangement.

3 Cylindrical Resonators

In a certain number of cases, cylindrical resonators have a practical advantage as
compared to plane resonators, due to the axial energy concentration [31, 33, 34].

In the case of a symmetric, circular geometry acoustic potential in the lowest mode
of such a system has the form ϕ = AJ0(kr)e−iωt , where J0, as well as J1 below, are
the Bessel functions of the first kind, r is the cylindrical coordinate, and k is the
radial wave number. Then the radial velocity and pressure are

u = −ϕr = AkJ1(kr)e
−iωt , p = ρ f ωφ = iρ f ωAJ0(kr)e

−iωt . (13)

Substituting this into Eq. (1), we obtain the radiation force:

F = 8

3

π2a3P2
0 f

ρ f c2
f

J1 (kr)

[
�J0 (ka) − 3

q − 1

2q + 1
J2 (ka)

]
. (14)

Here P0 = iρ f ωA is the pressure amplitude at the axis (r = 0) of the resonator.
In the quasi-static approximation, the velocity field can be found from Eq. (3) in

terms of hypergeometric function, but Eq. (3) can be easily integrated numerically.
Figure 6 shows the radial distribution of potential energy U and particle velocity u
for the excitation frequency f = 1.5 MHz.

The solution in the cylindrical case is not periodic in space. Therefore the trajectory
and the final position of a particle depend on the initial coordinate ξ0 more complexly
than in the plane standing wave field. The equilibrium states can be found from Eq.
(3) by equating to zero the function in the right-hand side of this equation. Figure 7
illustrates typical dependences of particle positions on time for a very heavy (q � 1)
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Fig. 6 Upper frame—radial distribution of ARF potential; lower frame—particle velocity distrib-
ution in a cylindrical resonator of radius 15 mm at f = 1.5 MHz. From [30]

and hard (s � 1) particle with σ = 5/2 in the field of the third radial mode of a
cylindrical resonator.

Within the limits of this figure, the stable equilibrium states correspond to ξ =
0 and 2.36 × 104 (dashed line 2), and the unstable equilibrium states correspond to
ξ = 1.24 × 104 (dashed line 1) and 3.31 × 104 (dashed line 3). If the initial particle
displacement is less than ξ1 = 1.24 × 104, then the particle moves to the center
ξ = 0 (see three lines below the dashed line 1). If the initial particle displacement is
between ξ1 = 1.24 × 104 and ξ3 = 3.31 × 104, then the particle moves to the next
stable equilibrium state ξ2 = 2.36 × 104 (see three lines between the dashed lines
1 and 3), and so on.

One can easily show that the stable/unstable equilibrium states occur at the nodes
of the acoustic force Fa(r) as per Eq. (14) with the positive/negative gradient with
respect to r . Thus, one can conclude that if there is an ensemble of particles randomly
distributed in the cylindrical acoustic resonator, then under the action of a standing
acoustic field they will be separated and bunched at certain nodes of the acoustic
field. Similar results were obtained for other particles (gold, aluminium, silica, ice)
with the finite values of q and s [18].

In the general case the acoustic pressure in a resonator can have a more complex
structure in all three directions, radial, longitudinal, and angular:

p = PJ0(krr) cos(kx x)e
i(ωt ± mφ), k = ωres

c0
, m = 0, 1, 2, . . . (15)
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Fig. 7 Dependences of particle positions ξ = x/x0 on time for different initial conditions in a
cylindrical resonator. From [18]. See comments in the text

Fig. 8 Schematic of a standing wave beam in a cylindrical resonator. From [33]

To illustrate this, we show a few experimental pictures from [31, 33, 34]. The cylin-
drical resonators used there were fluid-filled tubes, typically of 5–10 mm long, which
were excited at resonant frequencies of radial oscillations (sometimes by a focused
transducer) (Fig. 8). One experimental result is shown in Fig. 9. The submicron par-
ticles (bacteria) were concentrated at the axis under the action of ARF, in agreement
with the theory.

Figure 10 shows another result that refers to milk in a glass capillary excited at the
first mode. Light fat is pushed to the walls whereas heavier somatic (protein) cells
are gathered at the axis. This is presumably an efficient way to test liquid foods.
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Axis of  
the resonator

Fig. 9 Concentration of Salmonella bacteria in a cylindrical pipe resonator. Pipe radius is 9.85
mm, frequency f = 2 MHz. Scale bar is 2 microns. From [31]

Fig. 10 Concentration of milk particles in a glass capillary of 0.4 mm diameter in which the first
longitudinal mode is excited at frequency f = 2 MHz. Light fat is pushed to the wall whereas
heavier somatic (protein) cells are concentrated on the axis. From [31]

4 Concentration Dynamics of Microparticles

In cases when the ARF is used to manipulate ensembles of particles, collective
dynamics of particles is of a significant interest. Ostrovsky [30] considered the evo-
lution of particle concentration in the plane and cylindrical standing waves. This
allows one, in particular, to estimate the time necessary for a significant compression
of the initially scattered particles. The basic equation for particle number density
(concentration) C is

∂C

∂t
+ ∇ · (uC) = D�C, (16)

where u is the particle velocity vector as per Eq. (4) and D is the diffusion coefficient.
Assuming that the distance between the particles is much larger than the particle
radius a, one can use the expressions (1) and (4) obtained for a single particle.

One of the examples regarded a population of quasi-spherical particles (cells)
which are initially almost uniformly distributed over the length of about 1.6 cm in a
plane standing wave. The initial condition is prescribed in the form

ζ (x, 0) = 1

2
[tanh (8x + 6) − tanh (8x − 6)] , (17)
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where ζ = C/Cmax , where Cmax is the peak value of the initial distribution.
To further specify the problem, consider particles (such as the biological cells)

with the radius a = 10µm, density ρs = 1.1 g/cm3 and sound velocity cs = 1.575 ×
105 cm/s. In this case the factor � in Eq. (6) is equal to 0.29. We assume also that the
ultrasonic standing wave in a resonator has the frequency f = 150 kHz and pressure
amplitude P0 = 200 kPa. Then, from Eq. (6) we obtain u = −0.0018sin(4πx) cm/s.
The diffusion coefficient is in this case D = 2.2 × 10−10 cm2/s. With these para-
meters Eq. (16) can be readily solved numerically. Figure 11 shows the distribution
of concentration at three instants of time.

In this case, the amplitude of the particle velocity u(x) defined by Eq. (7) and
used for solving Eq. (1) is of the order of 10 µm/s; the time for strong concentration
is of the order of tens of seconds which agrees with the available experimental data.
For f = 1.5 MHz this time decreases to a few seconds.

For a cylindrical resonator Eq. (16) for the particle concentration in the axially
symmetric case has the form

∂C

∂t
+ 1

r

∂

∂r
(ruC) = D

1

r

∂

∂r

(
r
∂C

∂r

)
. (18)

Defining the average velocity from Eqs. (4) and (14) and substituting into Eq. (18),
we obtain a closed equation for the particle concentration C . One example in the
form of the 3D plot of ζ(x, y) is shown in Fig. 12.

In Ref. [30] the distributions of a particle concentration were also calculated for
the radial-spatial modes and for acoustic beams considered above. In all cases, the
results are in a good agreement with the experimental data outlined above.

A more complex question concerns the maximal particle concentration achievable
in the process. In particular, the Brownian diffusion coefficient D in Eq. (18) should
establish a limit for this compression. However, in the considered cases the diffusion
is significant only for the particles with a radius a less than one micron. Thus, in

1  

2

3

x, cm

Fig. 11 Spatial distribution of particles defined by Eq. (14) at t = 0 (line 1), t = 20 s (line 2), and
t = 40 s (line 3), for f = 150 kHz. From [30]
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Fig. 12 The 3D representation of the particle density distribution C(x, y) as per solution of Eq.
(16) s for f = 3 MHz and P0 = 200 kPa, at t = 20 ms

practice, the compression can be limited by just touching the particles or, at least,
when particles approach each other at distances comparable with their diameters.
The latter case was considered, e.g., in [40]. The authors have studied the acoustic
interaction of two compressible spherical particles in an ideal fluid exposed to an
external acoustic wave.

In most of the relevant experiments, the particles were eventually collected into
a dense group as illustrated by the micro-photographs in Fig. 13. This figure shows
the concentration of bacteria (submicron sizes) attached to latex beads (typical of
immunoassays) by ultrasound.

5 Dynamics of Bubbles

The dynamics of microbubbles in the acoustic field is even more complex. There
are two main reasons for that. Firstly, the bubble response to the oscillating field is
strongly frequency-dependent and includes resonances. Secondly, whereas a solid
particle in an acoustic field oscillates translationally, as a dipole, a small (compared
to the wavelength) bubble most intensely pulsates radially, i.e., as a monopole. The
average motion of a bubble under the action of radiation force is determined by the
interaction between its monopole and dipole movements.

The classical Rayleigh–Plesset equation describes the monopole pulsations of a
gas-filled bubble of a radius a(t) (see, e.g., [10, 26]):
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Fig. 13 Electron micrographs of USW-accelerated latex immunoassays of Salmonella (left) and E.
coli (right). Ultrasound frequency f = 2 MHz, pressure P = 100 kPa, concentration time is 30–40
s (black horizontal stripes on both figures correspond to 1 µm length). See, e.g., [33]

aä + 3

2
ȧ2 = 1

ρ f

[
p0

(
a

a0

)3γ

− pa

]
. (19)

Here γ is the polytropic ratio of a gas inside the bubble, p0 is static (e.g., atmospheric)
pressure, a0 is the equilibrium radius, and pa is the external acoustic pressure in the
absence of the bubble; dots on the top of the variable a stand for the time derivative.

Linearization of this equation yields that in the absence of an external field the

bubble pulsates as a monopole, at the resonance frequency ω0 =
√

3γ p0/ρa2
0 (the

Minnaert formula [25], see also [26]). The bubble can also be involved in the trans-
lational (dipole-type) motion.

Interaction of these two types of motion, monopole and dipole, causes a significant
specifics of the bubble case as regards the acoustic radiation force. In an acoustic
field having a potential ψ = φ(r)e−iωt the radiation force occurring as a result of this
interaction [20] is

〈
ρ f dV /dt · ∇φ

〉
, where V is the variable bubble volume. In the

case of a small bubble it is again balanced by the viscous drag force:

〈
dV

dt
∇ϕ

〉
= 4πνu, (20)

Note that the viscous force used here (the Hadamard–Rubzynski drag force—see,
e.g., [24]) slightly differs from the Stokes drag force in Eq. (3) acting on a solid
particle. This difference is caused by the different boundary conditions at the bubble
surface in comparison with the solid surface; in the result, the coefficient 4 appears
in Eq. (20) instead of 6 in Eq. (3).

From Eqs. (19) and (20) one can find the average bubble velocity under the action
of the acoustic field:
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Fig. 14 The dependence of bubble velocity on the resonance frequency f0 = ω0/2π. Here Q = 10,
excitation frequency is f = 1 MHz and ultrasound pressure amplitude P0 = 200 kPa. From [30]

u = 1 − ξ2(
1 − ξ2

)2 + Q−2

∇ |φ|2
4ν

, (21)

where ξ = ω0/ω,ω0 is the bubble resonance frequency defined above, and Q is the
quality factor of the bubble oscillating as a monopole. For example, in an acoustic
beam, the bubble velocity is [20]:

u = 1

4ν
[(

1 − ξ2
)2 + Q−2

] [(
k A2

Q

)
nx − 1 − ξ2

2

∂A2

∂r
n⊥

]
, A = P0

kρc f
. (22)

Here nx and n⊥ are the unit vectors directed along and across the beam axis respec-
tively, and r is the radial distance from the beam axis. From here it follows that
bubbles are pushed along the beam (x-axis). Simultaneously, bubbles smaller than
the resonant ones (with ω0 > ω) are drawn into the beam from the side, and vice
versa.

In a 1D plane standing wave the period-averaged bubble velocity (21) is (cf. Eq. (7)
for particles)

u = − P2
0

4νω0ρ
2
f c f

ξ
(
1 − ξ2

)
(
1 − ξ2

)2 + Q−2
sin 2kx . (23)

Here the buoyant vertical motion is neglected. Evidently, the direction of the drift
depends on both the bubble radius and the excitation frequency ω. Figure 14 shows
that the bubble drift velocity can reach several m/s which by orders exceeds those
of solid particles. Note that in this approximation, the exactly resonant bubbles with
f0 = f do not drift at all.

Figure 15 illustrates a bubble motion towards the equilibrium from an initial non-
equilibrium position. A comparison with Fig. 1 shows that even at a lower frequency
(1 MHz vs. 3 MHz) a bubble returns to the equilibrium by at least two orders faster
than a solid particle.
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f = 0.9 Mhz

f = 1.1 Mhz
t, ms

x/x0

Fig. 15 The bubble coordinate variation in a standing wave from the initial deflection of x0 = 0.15λ
from the nearest equilibrium for two ultrasonic frequencies, 0.9 and 1.1. MHz. The ultrasonic
pressure amplitude is P0 = 100 kPa, the bubble quality factor Q = 10. From [36]

Thus, if initially the bubble ensemble is randomly distributed in radii (as, for
example, in the upper ocean layer), they will eventually be separated to the “small”
and “large” groups under the action of an acoustic field.

5.1 Interacting Bubbles

At the final stage of concentration, when bubbles are close to each other (at distances
of the order of their sizes) their motion radically changes since the oscillating bub-
bles begin to interact with each other via the secondary radiation force known as
the Bjerknes force [8] (see also [23]), albeit the similar expressions were obtained
independently in approximately the same time by Hicks and Pearson (see, e.g., [32]
and references therein). For two pulsating bubbles (or other spherical particles) with
volumes V1(t) and V2(t) this force is

F = ρ f

4πr2
12

〈
dV1

dt

dV2

dt

〉
. (24)

Here r12(t) is the distance between the bubbles. The positive sign corresponds to the
attractive force, and negative—to the repulsive.

As the result of such interaction, the bubbles can form clusters or even coalesce
if they oscillate in phase. This effect was considered in [30] under a simplifying
assumption that the bubbles are identical in radius, have almost isotropic distribution
near the concentration point, and they are still well separated. At this stage, the bubble
concentration varies as
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C(t) = C(t0)

1 − 3κC(t0)t
, κ = 2R0

3ν

|φ|2(
1 − ξ2

)2 + Q−2
. (25)

Here t0 is the time when the Bjerknes force becomes dominating over the acoustically
induced drift defined by Eq. (21). It should also be noted that, unlike the “rarefied”
stage considered above, the interaction is the strongest for the resonant bubbles.

As one can see from Eq. (25), the bubble concentration becomes singular in a finite
time, tcr = [3κC(t0)]−1. In reality, this is the time at which the bubbles either coalesce
or, if the surface tension prevents it, form clusters of contacting bubbles. Both these
possibilities were observed experimentally (see [21] and references therein).

As follows from (24), the bubbles can attract and repulse each other, depending on
the relative phase shift between their pulsations. In particular, they can in principle
interact being located in different half-waves of a standing wave. The expression
(24) is valid in the quasi-static (near-field) approximation when a fluid disturbance
produced by one oscillating particle impacts another particle without any time delay.
This is correct if the distance between the particles is much less than the wavelength
λ of acoustic wave in the surrounding fluid at the oscillation frequency f , i.e., r1,2 	
λ = c f / f .

If r1,2 > λ the Bjerknes formula (24) requires modification, because the time
delay occurs for the pressure perturbation produced by one particle to reach another
one. Such modification has been done by Nemtsov [27] who derived the formula
for the modified Bjerknes force. In the particular case of two bubbles of equal radii
oscillating with the same amplitude ε 	 a the formula is:

F1,2 = 2πρ f ε
2a4ω2

r2
1,2

[
cos

(
�φ − kr1,2

) − kr1,2 sin
(
�φ − kr1,2

)]
, (26)

where k = 2π/λ,�φ is the relative phase of bubble oscillations.
The expression (26) reduces to the conventional formula for the Bjerknes force

in the limit of kr1,2 → 0. The modified formula (26) describes some new effects.
Firstly, the interaction force between the bubbles decays slower with the distance:
at large kr12 it is now proportional to r−1 rather than r−2 as in the quasi-static
approximation. Secondly, the forces acting on two spheres are different, in general.
Thirdly, the bubbles centre of mass may travel in the direction opposite to the radiation
of a sound wave.

The interaction of two freely oscillating bubbles under the action of modified
Bjerknes force has been studied in [41]. In that paper it was shown, in particular,
that when the viscosity is neglected, two air bubbles in a water can (i) attract each
other until they coalesce into one bubble, (ii) approach each other only up to a certain
minimal distance and then go away from each other, or (iii) periodically approach
to certain distance and move away. In the meantime, when the radiative effect is
neglected, bubbles either monotonically draw together or move away from each
other. This is illustrated by Fig. 16 where the phase planes are presented (the rate of
change of a distance �x between two bubbles as a function of �x) for two bubbles
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oscillating in-phase and in antiphase with the conventional Bjerknes force (panels
(a) and (b) respectively), and with the modified Bjerknes force, (panels (c) and (d)).
As one can see, the portions of panels (c) and (d) are similar to (a) and (b) for small
distances between the spheres �x < 100.

In [20] a more general problem of mutual action of acoustic field and a bubble
ensemble was considered. This is, however, beyond the scope of this review.

In conclusion to this section, we mention an interesting visual analogy between
the modified Bjerknes force in fluids and in granular media that was observed by
Shimada et al. [39]. The authors studied a model of periodic contraction and extension
of two disks linked by a spring in a granular bed. They found optimal conditions
that provide fluidization of sand beds and permit translational motion of the disks
with a minimal resistance. Figure 17 schematically illustrates the disk motion and
resembles the translational motion of pulsating spheres in a fluid under the action of
modified Bjerknes force when a sound wave radiates in the opposite direction with
respect to the translational motion. The authors hypothesize that this mechanism of
“swimming” in a sand, is used by certain classes of reptiles.
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Fig. 16 A comparison of the phase planes for two bubbles oscillating in-phase (a) and (c) and in
antiphase (b) and (d) with the conventional Bjerknes force (25) between them (a) and (b) and with
radiation modified Bjerknes force (26) between them (c) and (d). From [41]
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t = 0           t = T t = 2T t = 3T t = 4T

Fig. 17 The shapes of two disks at the end of each cycle of the motion tact. Movies are available
on the web http://bopper.t.u-tokyo.ac.jp/~shimada/sandswim/movies.htm. The figure is taken from
[39] and 90◦ rotated to save a space

6 The Effects of Memory and Inertia

As regards micro-particles, the above theory based on the balance between the ARF
and viscous drag force is in most cases sufficient for the adequate quantitative descrip-
tion of the motion of particles and bubbles. However, in some special situations,
additional dynamic factors can be important. This refers to the particle inertia and
especially to the memory effect depending on viscosity, but also on the temporal rate
of the process. The latter is the so-called Boussinesq–Basset drag (BBD) force. It
was first considered by Boussinesq in 1885 [9] and Basset in 1888 [4] for small solid
particles in a non-stationary flow with a small Reynolds number (the creeping flow
regime). Here we take these effects into account.

The equation for a particle motion generalizing Eq. (3) and including the inertia
(mass) and BBD integral term is

(
ρp + ρ f

2

)
Vp

d2r
dt2

= −6πρ f νa

(
dr
dt

+ a√
πν

∫ t

−∞
d2r
dθ2

dθ√
t − θ

)
+ Fa . (27)

Substituting here the expression for the average acoustic force (6), produced by a
plane standing wave, we obtain in the dimensionless variables:

(2r + 1)
d2ξ

dτ 2
= − dξ

dτ
− 3√

π

∫ τ

−∞
d2ξ

dϑ2

dϑ√
τ − ϑ

− sin (K ξ) , (28)

where ξ = 4πx f /c f , τ = t/γ, γ = a2/9ν, and K = 4π2a4P2
0 f 2

81ρ2
f ν

2c4
f

�(r, s) .

The examples of particle motion calculated on the basis of this equation are shown
in Fig. 18 for different particles of the same radius a = 10µm in a resonator of
the length L = 2 mm submerged in a water (ρ f = 103 kg/m3, c f = 1500 m/s, ν =
10−6 m2/s); the amplitude of acoustic pressure, P0 = 200 KPa. The initial conditions

http://bopper.t.u-tokyo.ac.jp/~shimada/sandswim/movies.htm
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were chosen the same as in Fig. 1 and as follows from Eq. (7), i.e., x0 = 0.15λ (ξ0 =
2.2 × 103 in dimensionless variables) and u0 ∼ 1 cm/s (dξ0/dτ = −0.1).

It is seen that the quasi-static approximation is sufficient almost everywhere except
for the final asymptotic, when ξ changes its sign because of the influence of the BBD
force, i.e., the particle slightly passes the equilibrium position ξ = 0 and then returns
to it. The qualitative difference in the effect of BBD force compared to the Stokes drag
force, albeit it occurring only in a very small vicinity of equilibrium, is in the character
of particle approach the equilibrium state. Under the action of Stokes drag force, only
the particle approaches the equilibrium monotonically and exponentially quickly in
time, whereas under the influence of BBD force it approaches the equilibrium non-
monotonically and much slower, as t−1/2 [42, 44].

Another difference occurs at the initial period of motion; this is depicted in Fig. 19.
As one can see from this figure, the dependence of particle speed on the distance is
well described in average by the approximate quasi-static formula (7). However, at
the very beginning, when ξ = ξ0, there is a significant difference in the character of
particle motion (see panel b).

In general, as follows from the dimensionless equation (28), the first term in the
left-hand side responsible for the Stokes drag force leads to the relatively quick
relaxation of a motion to the “intermediate asymptotic” regime within the timescale
of τ ∼ 1(or t ∼ γ = a2/9ν). After that, the particle motion slowly relaxes to the
final asymptotic state under the action of BBD force. This is underpinned by the
exact analytical solution derived in Ref. [42] for the equation similar to (28), but
with the gravity force instead of the acoustic radiative force in the right-hand side.
Figure 20 from that paper illustrates the speed relaxation of a spherical aluminium
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Fig. 18 The dependence of normalized particle position on the dimensional time as per approximate
solution (7) (solid lines) for different particles. Line 1 pertains to the reference case of σ = 5/2
(very dense incompressible particle), line 2—to an aluminum particle (σ = 1.777), line 3—to an ice
particle (σ = 0.823). Dots show the numerical data when all factors including the BBD and inertia
forces were taken into account. The inset demonstrates the difference between the approximate (line
1) and numerical solutions (dots) for the reference case (σ = 5/2) when the particle approaches the
equilibrium state. From [18]
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Fig. 19 The particle speed against the normalized distance as per quasi-static solution (7) (solid
line 1). Symbols represent the numerical data as per Eq. (28) for different particles: dots—the
reference case of a hard incompressible particle with � = 5/2; squares pertain to the aluminium
particle (� = 1.777), and rhombuses relate to the ice particle (� = 0.823). Panel b represents the
magnified fragment of the panel (a) corresponding to the initial stage of particle motion. From [18]

particle of a radius a = 44µm and density ρp = 2.7 g/cm3 falling down in a water of
temperature T = 45 ◦C and kinematic viscosity of νw = 6.05 × 10−3 cm2/s (such
situation is typical to the pool vessel of a research nuclear reactor).

Lines 1–4 illustrate the dimensionless particle velocity versus dimensionless time
for different initial conditions when both the Stokes and BBD forces were taken into
account. Line 5 pertains to the case of exponential relaxation under the influence of
Stokes drag force only. The dashed line 6 represents the “intermediate asymptotic” of
particle motion υ(τ ) ∼ υt [1 − 3/(πτ )1/2], where υt is the terminal speed of particle
motion in a water under the gravity force.

As one can see from this figure, in relatively short time a particle either attain
the terminal speed, if the BBD force is neglected, or relaxes to the “intermediate
asymptotic” (line 6), if the BBD force is taken into consideration. After that, the
particle slowly approaches the terminal state and falls down in a viscous fluid (water)
with the constant speed υt .
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Fig. 20 Velocity versus time in dimensionless variables for a small aluminium particle. Line 1:
υ0 = 0; line 2: υ0 = υt = −9.6 × 10−2; line 3: υ0 = −0.15; line 4: υ0 = 0.15. Horizontal dotted
line shows the terminal velocity. Lines 5 and 6 are explained in the text. From [42]

In conclusion to this section, we mention about works where the influence of
intense sound waves on particle motion was studied (see, e.g., [3] and references
therein). In particular, in Ref. [3] the authors investigated the effect of nonlinear
steepening of an acoustic wave in a resonator on the dynamic of particles including the
Boussinesq–Basset drag effect. It was also confirmed through the series of numerical
calculations that the BBD force becomes important after a while when the relaxation
to intermediate asymptotic regime occurs because of Stokes drag force. Apparently,
further study of nonlinear effects on particle and bubble motion is required.

7 Conclusions

In this brief review, we intended to show that the period-average force exerted by
acoustic waves on microparticles and bubbles can cause a complex dynamics result-
ing in a variety of non-trivial effects which have been harnessed to be used in biology,
medicine, chemistry, food control, and others. It is believed that the number of appli-
cations of ARF in the aforementioned and new areas can increase in the future. As
one more example of possible applications of ARF in medicine we can mention a
promising perspective of transport of nanogels containing drugs to the specific organ.
Recent invention of multi-shell hollow nanogels with a responsive shell permeability
[38] makes them a convenient object for manipulation by ultrasound. This idea was
mentioned in our paper [18] on the basis of modelling particle motion in an acoustic
standing wave with mode switching (see Sect. 2.2). The extension of these results for
the three-dimensional case can provide a version of acoustic tweezer for the delivery
of micro-capsules containing a drug to the required position with the subsequent
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dissolution of a drug in the process of oscillation in the vicinity of that position (see
Fig. 3). For other potential applications of ultrasound in medicine for drug and gene
delivery (however, not related directly with the ARF), one can refer to the papers
[19, 43].

In spite of a significant progress achieved in the last decades, there remain chal-
lenging problems, especially in what concerns collective dynamics of micro objects
in the regime of high concentration when they strongly interact in the presence of
external acoustic field. The acoustic levitation technique used to lift or drop a sepa-
rate particle (see Fig. 4) can, apparently, be applied to lift up an ensemble of micro-
particles up to creating a fluidised medium when the suspended micro-particles form
a fluid-like state. The fluidised granular media have a wide spectrum of applications
[49], and their micro-level analogue can supposedly find various applications too
(for example, for the material transportation, polishing surfaces, intensification of
combustion). A similar technique can be used for an ensemble of microbubbles pre-
venting their floating up in a liquid. This can be used for clearing an upper layer of
a fluid from gases or saturate lower layers by oxygen.

A theoretical description of clustering of particle and bubble ensembles needs, in
general, the use of a kinetic approach, as it is common, for example, in plasma physics.
In particular, for bubbles, the kinetic equation derived in [20] can be exploited. At
the same time, the up-to-day computer algorithms allowing to follow trajectories
of individual particles in the process of their interaction can be enormously helpful
for understanding the behaviour of particle ensembles, including their stochastic
motions. Nonetheless, all these results must be based on individual dynamics of
particles and bubbles under the ARF action considered above, and we hope that
these basic studies will stimulate further development.
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Nonequilibrium Quantum Dynamics
of Many-Body Systems

Lea F. Santos and E. Jonathan Torres-Herrera

1 Introduction

Understanding the properties of interactingmany-body quantum systems out of equi-
librium is essential to various fields, from atomic, molecular, and condensed matter
physics to quantum information and cosmology. Every step forward has the poten-
tial to enable new scientific and technological applications. Some examples are listed
below.

(i) Nonequilibrium quantum dynamics may reveal new phases of matter that typi-
cally do not occur near equilibrium. New phases of matter are tightly connected
with the development of new materials, which may revolutionize how we use
and produce energy, may lead to new electronic devices, and may give rise to
unforeseen innovations.

(ii) Efficient methods to store and transfer many-body quantum coherences are nec-
essary for building analog and digital quantum simulators, developing quantum
sensors, and realizing protocols for secure quantum communication.

(iii) One of the most challenging aspects for the development of new electronic
devices, such as microchips and hard disks, is the mitigation of local heating.
One needs to identify the conditions under which a quantum system can transfer
heat rapidly.

(iv) Further progress in spintronic devices, where information can be transferred
without any transport of charge, being therefore better protected against dis-
sipation, requires improved techniques for the control and transport of spin
excitations.
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Since the detection of spin echoes in 1950 [1], the goal of studying nonequilibrium
quantum dynamics in controllable scenarios became tangible [2, 3]. A great leap
forward came with the Penning and Paul traps, by Hans Dehmelt andWolfgang Paul,
that eventually made possible the study of quantum dynamics of trapped ions [4–
6]. Another revolution had as starting point the development and combination of
several cooling techniques that culminated in highly controllable experiments with
cold atoms, where the evolution of many-body quantum systems is observed for long
times [7–9].

The questions that we have been interested in are motivated by those experiments
and may also inspire new ones. We have been considering quantum systems with
many interacting particles that are well isolated from any sort of environment. By this
we mean that the couplings with the surroundings are very weak and can therefore
be neglected. Interactions with an environment are unavoidable and do eventually
kick in, but we assume that this happens at times much longer than the ones we deal
with.

We focus on one-dimensional (1D) many-body quantum systems described by
spin-1/2 models. These systems have only two-body interactions and are commonly
studied by the experiments mentioned above. The models can also be mapped onto
models of spinless fermions and hardcore bosons. In addition, by adjusting the para-
meters of the Hamiltonian we can cover different regimes (integrable, chaotic, or
intermediate between the two), phases (metal vs. insulator, ferromagnetic vs. anti-
ferromagnetic), symmetries, and strength of the interactions, which allows for the
investigation of various different interesting scenarios.

We take the system far from equilibrium by perturbing it faster than any of its
characteristic times, so that the perturbation can be seen as instantaneous, what is
often referred to as “quench”. In simple terms, the system is prepared in a nonsta-
tionary state. We consider pure states, but the analyses could certainly be extended
to mixed states.

Our main goal has been to describe the dynamics of finite lattice many-body
quantum systems at different time scales [10–37]. Because these systems are finite,
their evolution eventually saturates to an equilibrium point. We were able to obtain
a detailed description of the so-called survival probability (probability of finding the
system still in its initial state later in time) from the moment the system is taken out
of equilibrium all the way to the saturation of its evolution [24–36]. We have not
only numerical results, but analytical expressions as well. The survival probability is
a simple and insightful quantity. It is part of the equations that compute the temporal
evolution of generic physical observables, so having a complete understanding of its
evolution provides a better understanding of the dynamics of several observables.
This is why we decided to restrict this chapter to this particular quantity and briefly
mention others.

Our main findings for the survival probability, presented in this chapter, are enu-
merated below.

1. The decay of the survival probability depends on the strength of the perturbation.
For very strong perturbations, when the energy distribution of the initial state is
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unimodal, the decay is Gaussian and therefore faster than the usually expected
exponential behavior. The Gaussian decay is related to the Gaussian density of
states found in many-body systems with two-body interactions [26–29].

2. Exponential and Gaussian decays are not exclusive to chaotic models and occur
also in integrable models perturbed far from equilibrium [26–28].

3. The speed of the decay depends on the energy of the initial state. The decay is
faster for initial states with energy close to the middle of the spectrum, where
there is a large concentration of eigenstates, than for states with energies near the
border of the spectrum [26–28].

4. Decays faster than Gaussian occur when the energy distribution of the initial state
is bimodal [28], in which case the quantum speed limit can be reached. Moving
away from realistic systems, fast decays can be obtained by increasing the number
of particles that interact simultaneously [26–28].

5. After the initial fast (often Gaussian) decay, the dynamics slows down and
becomes power-law. The power-law exponent depends on how the spectrum
approaches its energy bounds [24, 25] and on the level of delocalization of the
eigenstates [31–33].

6. In interacting systems with onsite disorder, the value of the power-law decay
exponent detects the transition from chaos to many-body localization. This expo-
nent coincides with the fractal dimension of the system [31–33] and with the
slope of the logarithmic growth of the Shannon and entanglement entropies [33].

7. At long times, after the power-law behavior and before saturation, the survival
probability shows a dip below its infinite time average [35, 36]. This is known as
correlation hole and appears only in systems with level repulsion (that is, not in
integrable models). The correlation hole provides a way to detect level repulsion
from the dynamics, instead of having to resort to the eigenvalues. This is useful
for the experiments mentioned above, which have limited access to the spectra of
their systems. Since the correlation hole is a general indicator of the integrable-
chaos transition, it serves also as a detector of the metal-insulator transition in
interacting systems [33, 35].

Additional highlights of our research, which are not described in this chapter, but
may be found in our references, include the following topics.

1. The dynamical behavior of the Shannon entropy and entanglement entropy is
equivalent [33, 34]. The first is easier to compute numerically and is potentially
accessible experimentally, although it is the second that has been mostly studied
theoretically.

2. Effects associated with the correlation hole are observed also in entropies [35]
and in experimental observables, such as the spin density imbalance [36].

3. Analytical expressions for the entire evolution of the survival probability, Shannon
entropy, and spin density imbalance can be found using full randommatrices [34,
36]. Full random matrices are not realistic, but they provide bounds and serve as
references to the studies of many-body quantum systems.
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4. The behavior of the survival probabilitymay signal the presence of an excited state
quantum phase transition. It slows down as one approaches the critical point [20–
22].

5. Long-range interactions do not always imply fast dynamics. Depending on the
initial state the effects of the long-range couplings may get shielded, resulting in
exceedingly slow evolutions [23].

6. Despite isolation, one can still talk about equilibration in isolated finite many-
body quantum systems, but in a probabilistic sense. By this we mean that after a
transient time, few-body observables simply oscillate around their infinite-time
average, being very close to it for most time. To speak of equilibration, these
temporal fluctuations need to be small and decrease with system size. In Ref. [37],
we show that the size of these fluctuations decrease exponentially with system
size in chaotic systems and also in interacting integrable models.

7. When the infinite-time averages of few-body observables are very close to micro-
canonical averages and the difference between the two decreases with system
size, we say that the many-body quantum system has thermalized. We have sev-
eral studies about how the onset of thermalization depends on the initial state and
strength of the interactions [10, 30, 38–42].

The text below is divided in two sections. In Sect. 2 we provide a pedagogi-
cal introduction to the 1D spin-1/2 systems that we study and how to distinguish
integrable from chaotic models. In Sect. 3, we present our results for the survival
probability for short and long times, from perturbation to saturation.

2 Spin-1/2 Models

We investigate a 1D spin-1/2 system. To describe this chain, one uses spin operators
Sx,y,z = σ x,y,z/2, where

σ x ≡
(
0 1
1 0

)
, σ y ≡

(
0 −i
i 0

)
, σ z ≡

(
1 0
0 −1

)

are the Pauli matrices and � is set to 1. The quantum state of the spin is represented
by a two-component vector (spinor). This state is usually written in terms of the
two eigenstates of Sz, which then form the basis. One eigenstate represents the spin
pointing up in the z-direction and the other, the spin pointing down. They can be
denoted as

| ↑〉 =
(
1
0

)
, | ↓〉 =

(
0
1

)
.

Since the eigenvalue associated with | ↑〉 is +1/2 and that of | ↓〉 is −1/2, we refer
to the first as the excitation. The operators Sx and Sy flip the spin up and spin down,
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Sx| ↑〉 = 1

2
| ↓〉 Sx| ↓〉 = 1

2
| ↑〉

Sy| ↑〉 = i

2
| ↓〉 Sy| ↓〉 = − i

2
| ↑〉.

Basis
In a chain with several sites, a commonly used basis in which to write the spin-1/2
Hamiltonian matrix corresponds to arrays where on each site the spin either points
up or down in the z-direction, as for example | ↓↑↓↑↓↑↓↑ . . .〉z. This basis is often
referred to as natural-basis, computational-basis or site-basis. We use the latter term.

Hamiltonian Terms

One of the terms that we find in spin-1/2 Hamiltonians is

HZ =
∑
k

hkJS
z
k, (1)

which appears when each site k is subjected to a different local magnetic field. The
fields cause the Zeeman splittings of amplitude hkJ on each site. The parameter J
sets the energy scale and we choose J = 1. If all sites have hk = h, that indicates
a clean system, where a single magnetic field is applied to the entire chain. If only
one site has a Zeeman splitting different from the others, we call it the defect site
or the impurity of the system. If all sites have different Zeeman splittings, randomly
distributed, then the system is disordered.

When more than one spin is present, they may interact. This may happen through
the Ising interaction. If the interaction is active between nearest-neighbors (NN) only,
that is sites k and k + 1, it is given by

HZZ =
∑
k

JΔSzkS
z
k+1, (2)

where JΔ is the strength of the interaction. This terms causes a pair of adjacent
parallel spins to have different energy from a pair of anti-parallel spins, because

JΔSzkS
z
k+1| ↑k↑k+1〉 = +JΔ

4
| ↑k↑k+1〉, (3)

while

JΔSzkS
z
k+1| ↑k↓k+1〉 = −JΔ

4
| ↑k↓k+1〉. (4)

The ground state of aHamiltonian that has only the Ising interaction is ferromagnetic,
with all spins aligned in the same direction,when JΔ < 0, and it is antiferromagnetic,
with antiparallel neighboring spins, when JΔ > 0. We choose the latter.

Another term that appears in our Hamiltonians is the flip-flop term. It interchanges
the position of neighboring up- and down-spins according to
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J(SxkS
x
k+1 + SykS

y
k+1)| ↑k↓k+1〉 = J

2
| ↓k↑k+1〉.

The NN flip-flop term couples site-basis vectors that differ only by the orientation
of the spins in two neighboring sites. When the Hamiltonian matrix is written in the
site-basis, the flip-flop term constitutes the off-diagonal elements.

Spin-1/2 Hamiltonian

The Hamiltonian that we consider is a combination of the terms described above. It
is given by

H = dJSzL/2 +
L∑

k=1

hkJS
z
k (5)

+ J
∑
k

(
SxkS

x
k+1 + SykS

y
k+1 + ΔSzkS

z
k+1

) + λJ
∑
k

(
SxkS

x
k+2 + SykS

y
k+2 + ΔSzkS

z
k+2

)
.

The chain has L sites and we denote by Nup the number of up-spins. The amplitude
dJ indicates the Zeeman splitting of the defect site. The Zeeman splittings hkJ cor-
respond to onsite disorder caused by random static magnetic fields; hk are random
numbers from a uniform distribution in [−h, h] and h is the strength of the disorder.
Δ is the anisotropy parameter; when the Ising interaction and the flip-flop term have
the same strength (Δ = 1), the system is isotropic. λ is the ratio between the NN and
next-nearest-neighbor (NNN) couplings.

Depending on the boundary conditions, we refer to the chain as open or closed.
Open boundary conditions imply that a spin on site 1 can only couple with a spin on
site 2 and a spin on site L can only couple with a spin on site L − 1. In closed (or
periodic) boundary conditions the chain is a ring, where a spin on site 1 can couple
with a spin on site 2 and also with a spin on site L. The index in the second and third
sums of Eq. (5) runs according to the boundaries.

2.1 Symmetries

Any symmetry of the system is associated with an operatorO that commutes with the
Hamiltonian. According to Noether’s theorem, this operator represents a constant of

motion, as seen from
dO

dt
= i[H,O]. For the Hamiltonian in Eq. (5), we identify the

following symmetries.

1. H commutes with the total spin in the z-direction, S z = ∑L
k=1 S

z
k . The system

conservesS z; it is invariant by a rotation around the z-axis. This means that the
eigenstates of H are also eigenstates ofS z, so they have a fixed number of spins
pointing up. Each eigenstate |ψ〉 is a superposition that involves only site-basis
vectors with the same number of up-spins. For example, for L = 4 and S z = 0
we have,
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|ψ〉 = C1|1100〉 + C2|1010〉 + C3|1001〉 + C4|0110〉 + C5|0101〉 + C6|0011〉,

where Cn’s are the probability amplitudes, n = 1, . . .D , and D is the dimension
of the subspace. The Hamiltonian matrix of a system with L sites written in
the site-basis is composed of L + 1 independent blocks (or subspaces), each
with a fixed number of up-spins, N ∈ [0,L]. The dimension of each block is
D = L!/[(L − N)!N !].

2. When d, h = 0, Hamiltonian (5) is invariant under reflection, which leads to
conservation of parity, that is, H commutes with the parity operator

Π =
{

P1,LP2,L−1 . . .P L
2 , L+2

2
for L = even

P1,LP2,L−1 . . .P L−1
2 , L+3

2
for L = odd

wherePk,l = (σ x
k σ x

l + σ
y
k σ

y
l + σ z

kσ
z
l + 1/2 is the permutation operator and 1 is

the identity operator. Pk,l swaps the states of the kth and lth sites. For example,
for L = 4 and a single excitation, Nup = 1, the probability amplitudes in |ψ〉 =
a1| ↑↓↓↓〉 + a2| ↓↑↓↓〉 + a3| ↓↓↑↓〉 + a4| ↓↓↓↑〉 are either a1 = a4 and a2 =
a3 for even parity or a1 = −a4 and a2 = −a3 for odd parity.

3. When d, h = 0, L is even, and Nup = L/2, Hamiltonian (5) is invariant under a
global π rotation around the x-axis. The operator that represents the rotation is

Rx
π = σ x

1 σ x
2 . . . σ x

L

As an example, take L = 4 and Nup = 2. The eigenstate

|ψ〉 = a1| ↑↑↓↓〉 + a2| ↑↓↑↓〉 + a3| ↑↓↓↑〉 + a4| ↓↑↑↓〉 + a5| ↓↑↓↑〉 + a6| ↓↓↑↑〉

has either a1 = a6, a2 = a5, and a3 = a4 or a1 = −a6, a2 = −a5, and a3 = −a4.
4. When d, h = 0 and Δ = 1, the total spinST = ∑

n Sn is conserved.

We can break the symmetries listed above, except for the total spin in the z-direction,
as follows. Conservation of total spin can be avoided by choosing Δ �= 1. Parity and
spin reversal can be broken if we deal with an open chain and add an impurity on a
site in the border of the chain.

2.2 Integrable Versus Chaotic Models

In classical mechanics, if a system with n degrees of freedom has n independent
integrals of motion that are Poisson-commuting, then the system is integrable. In
this case, the differential equations describing the time evolution can be explicitly
integrated using action-angle variables. The solutions display periodic motion on tori
in phase space, and ergodicity is nonexistent. In contrast to the classical case, the
notion of integrability at the quantum level has been a source of debates [43, 44].
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In the case of Hamiltonian (5), we use the term integrability when referring to
choices of parameters that allows the Hamiltonian to be solved with the Jordan-
Wigner transformation or the Bethe Ansatz [45]. We select the following two cases,
respectively.

1. The XX model is a noninteracting integrable model, where d, h,Δ, λ = 0.
2. The XXZmodel is an integrable interactingmodel, whereΔ �= 0 and d, h, λ = 0.

The notion of quantumchaos is another delicate subject. Classical chaos goes back
to the studies of Poincaré. It is related to the extreme sensitivity of the dynamics of a
system to its initial conditions. The main features of classical chaos can be illustrated
with a dynamical billiard. It corresponds to an idealized billiard table that has no
friction and where a particle reflects elastically from the boundaries. The motion
of the particle is represented in phase space by a trajectory restricted to a surface
of constant energy. The shape of the boundaries determines whether the system is
chaotic or regular. In the first case, two trajectories with very close initial conditions
diverge exponentially in time. The rate of this separation is the Lyapunov exponent.
The trajectories may become ergodic, in which case, after a long time, the particle
will have visited the entire surface of constant energy and will be equally likely to
be found in any point of the accessible phase space.

For quantum systems the notion of phase-space trajectories loses its meaning,
since as stated by the Heisenberg uncertainty principle, we can no longer precise
the particle’s position and momentum at the same time. However, since classical
physics is a limit of quantum physics, we could still search for quantum signatures
of classical chaos.

The term quantum chaos refers to properties of eigenvalues and eigenstates that
are found in the quantum level and indicate whether the system in the classical level
is chaotic. It has been conjectured that the spectral fluctuations in the quantum limit
of classical system that is chaotic are always the same [46, 47]. This conjecture has
been proved in the semiclassical limit. The term has also been extended to include
quantum systems without a classical limit, as our spin-1/2 models.

The distribution of the spacings between neighboring energy levels of a quantum
system is the most commonly employed tool to distinguish integrable from nonin-
tegrable models, but others exist, such as the level number variance and the spectral
rigidity [48], as well as the distribution of the ratio of consecutive level spacings [49].
If the system is chaotic, the energy levels are highly correlated and repel each other;
if it is regular (integrable), the energy levels are uncorrelated, randomly distributed,
and can cross. The chaotic spin models associated with Hamiltonian (5) include:

1. The defect model with no random disorder (h = 0), 0 < Δ < 1, 0 < d < 1, and
λ = 0. The interplay between the defect and the impurity drives the system into
the chaotic domain [29, 50].

2. The NNN model with no random disorder (h = 0) and 0 < λ < 1 [15, 51–53].
The system remains chaotic whether Δ �= 0 or Δ = 0 [16].

3. The disordered model with 0 < h < 1, Δ = 1, d, λ = 0 [31, 33, 50, 54].
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2.2.1 Unfolding Procedure

When studying the level spacing distribution, to be able to compare different systems
of different sizes, and also the different parts of the spectrum of the same system,
we need to unfold the spectrum. This means that each system’s specific mean level
density must be removed from the data. It does not make sense to compare local
fluctuations from systems with very different average densities. For example, it does
not make sense to say that a spectral region with high average density has less
repulsion than a spectral region with low average density. We need to separate the
local fluctuations from a systematic global energy dependence of the average density.
For this, we rescale the energies, so that the mean level spacing is 1. Since the density
of states is the number of states in an interval of energy, that is, the reciprocal of the
mean level spacing, this renormalization procedure ensures also that the mean local
density of states becomes unit.

There are different ways to unfold the spectrum. A simple and good enough recipe
is the following [53].

(i) Order the spectrum in increasing values of energy.
(ii) Discard some eigenvalues from the edges of the spectrum, where the fluctua-

tions are large. This is arbitrary, we can discard for example 10% of the eigenvalues.
(ii) Separate the remaining eigenvalues into small sets of eigenvalues.
(iii) For each set, divide the eigenvalues by themean level spacing of that particular

set. The mean level spacing of the new set of renormalized energies is now 1.
Notice that contrary to the level spacing distribution, the distribution of the ratio

of consecutive level spacings does not require the unfolding of the spectrum [49].

2.2.2 Level Spacing Distribution of Integrable Models

In integrable models, the eigenvalues are uncorrelated, they are not prohibited from
crossing and usually follow Poisson statistics. The distribution P(s) of the neighbor-
ing spacings s is given by

PP(s) = e−s. (6)

However, deviations from this shape are seen for the XX model due to its the
high number of degeneracies. As Δ increases from zero, the excessive degenera-
cies rapidly fade away and the Poisson distribution is recovered [compare Fig. 1a, b
with Fig. 1c, d]. At the root of unitΔ = 1/2, the distribution departs again from Pois-
son (see Fig. 1e). By changing Δ slightly, for example, by using = 0.48, the Poisson
distribution reappears [37].

2.2.3 Level Spacing Distribution of Chaotic Models

The level spacing distribution P(s) of chaotic models is given by the Wigner-Dyson
(WD) distribution [48, 55–57]. The specific form of the Wigner-Dyson distribution
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Fig. 1 Level spacing distribution for a single subspace and eigenstates with even parity; L = 18,
Nup = 6, d, h, λ = 0, open boundary conditions. The Poisson and Wigner-Dyson distributions are
shown with dashed lines. From a to e: Δ = 0.0, 10−3, 10−2, 0.1, 0.5

depends on the symmetries of the Hamiltonian. In time-reversal invariant systems
with rotational symmetry, the Hamiltonian is represented by real and symmetric
matrices, Hij = Hji, and the level spacing distribution has the following shape,

PWD(s) = π

2
s exp

(
−π

4
s2

)
, (7)

which makes evident the level repulsion. This expression was derived exactly for
2 × 2 matrices and it works extremely well for large matrices [55, 56].

To obtain the level spacing distribution, we need to separate the eigenvalues
according to their symmetry sectors. If we mix eigenvalues from different sym-
metry sectors, we may not achieve aWigner-Dyson distribution even if the system is
chaotic, because eigenvalues from different subspaces are independent, uncorrelated,
and have no reason to repel each other [15, 53]. To illustrate this issue, in Fig. 2 we
consider two chaotic Hamiltonians with open boundary conditions. They represent
clean systems, where d, h = 0. The Hamiltonians are chaotic and given by:

(a) H = ∑L−1
k=1

[(
SxkS

x
k+1 + SykS

y
k+1

) + SzkS
z
k+1

]
+ 0.5

∑L−2
k=1

[(
SxkS

x
k+2 + SykS

y
k+2

) + SzkS
z
k+2

]
.

(b) H = ∑L−1
k=1

[(
SxkS

x
k+1 + SykS

y
k+1

) + 0.5SzkS
z
k+1

]
+0.5

∑L−2
k=1

[(
SxkS

x
k+2 + SykS

y
k+2

) + 0.5SzkS
z
k+2

]
.
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Fig. 2 Level spacing distribution for the chaotic Hamiltonians written in the text. Panel a: L =
14, Nup = 7, S z = 0. Panel b: L = 15, Nup = 5 and the eigenvalues are separated by the parity;
P(s) is the average of the distributions of the two parity sectors. The Poisson and Wigner-Dyson
distributions are shown with dashed lines

In both panels of Fig. 2 we have eigenvalues of a single selected S z-sector. In
panel (b), we avoid the S z = 0 subspace, where spin reversal symmetry exists, by
choosingL odd.Wealso chooseΔ �= 1 to avoid conservation of total spin. In doing so,
the only remaining symmetry is parity, which we do take into account. The expected
Wigner-Dyson distribution is found. Contrary to Fig. 2b, a mixes eigenvalues from
the three symmetries mentioned above—spin reversal, total spin, and parity—which
explains why P(s) becomes so close to a misleading Poisson distribution.

2.2.4 Level Spacing Indicator

To study the crossover from integrability to chaos as a certain parameter is varied,
better than plotting the level spacing for each value of the parameter, we can use a
quantity that tells us how close we are to a Poisson or to aWigner-Dyson distribution.
An example is the indicator β used to fit P(s) with the Brody distribution [58],

PB(s) = (β + 1)bsβ exp
(−bsβ+1

)
, b =

[
Γ

(
β + 2

β + 1

)]β+1

, (8)

where Γ is Euler’s gamma function. If β = 0 the distribution is Poisson and β = 1
indicates a Wigner-Dyson distribution.

Based on heuristic arguments, Izrailev introduced an Ansatz for the level spacing
distribution that captures very well the intermediate regime between Poisson and
Wigner-Dyson [59, 60],

PI(s) = Asν exp

[
−π2

16
νs2 − (C − ν

2
)
π

2
s

]
, (9)
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where A and C are constants with values obtained through normalization conditions.
The parameter ν in Eq. (9) is related to the degree of localization of the eigenstates.
For ν = 0, we can recover the Poisson distribution. For ν = 1, we have the GOE
level repulsion, that is P(s → 0) → s.

Another way to quantify the proximity to the Wigner-Dyson distribution is with
the chaos indicator [61]

η =
∫ s0
0 [P(s) − PWD(s)]ds∫ s0
0 [PP(s) − PWD(s)]ds , (10)

where s0 is the first intersection point ofPP(s) andPWD(s). For a Poisson distribution,
η → 1, and for the Wigner-Dyson, η → 0.

Disordered Spin Model

In Fig. 3, we show η as a function of h for the disordered model with λ = 0, Δ = 1,
and closed boundary conditions. η is averaged over several disorder realizations.
As the disorder strength h increases from zero (where we have the clean integrable
XXZ model), the level spacing distribution first transitions abruptly from Poisson
(η ∼ 1) to Wigner-Dyson (small η). For the system sizes considered, it remains
Wigner-Dyson for h in the range [0.1, 1], where η plateaus to a small value. As
h further increases, the level spacing distribution transitions from Wigner-Dyson
back to Poisson. In this second integrable region, the system becomes localized in
space [50, 54, 62].

The logarithmic scale of the x-axis in Fig. 3a emphasizes the first transition from
the spatially delocalized integrable point to chaos and the linear plot in Fig. 3b stresses
the transition to localization in space. The different curves represent different system
sizes; they increase from top to bottom. The range of disorder strengths for which
η is small increases as L increases. This indicates that in the thermodynamic limit,

0.1 1
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0.5

1

1.5

η

0 1 2 3 4 5
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0
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1

1.5
(a) (b)

Fig. 3 Chaos indicator η versus disorder strength; semilogarithmic scale (a) and linear scale (b).
The system sizes are L = 12 (circles), L = 14 (diamonds), and L = 16 (triangles);Δ = 1, d, λ = 0,
Nup = L/2. Average performed over 1082, 291, 77 disorder realizations for L = 12, 14, 16, respec-
tively
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the two transition regions may disappear, although this is still an open question. An
infinitesimally small h may suffice to take the system into the chaotic regime [29,
38]. As for h > 1, the transition region may disappear in the thermodynamic limit
or persist, in this latter case, maybe as a critical point as one finds in Anderson
localization in higher dimensions.

2.3 Density of States and Delocalization Measures

The Wigner-Dyson distribution was first studied in the context of full random matri-
ces. Wigner [63] employed these matrices to describe the spectrum of heavy nuclei.
His idea was to ignore the details of the interactions of such complex systems and
treat them statistically. Full randommatrices are filledwith randomnumbers and their
only constraint is to satisfy the symmetries of the system one is trying to describe.
In the case of Gaussian orthogonal ensembles (GOE), the full random matrices are
invariant with respect to an orthogonal conjugation OTHO, where O is any orthog-
onal matrix (that is a matrix whose inverse is equal to its transpose). GOE random
matrices are real and symmetric, as the Hamiltonian matrices for the spin systems
that we study.

The level spacing distribution of GOE random matrices is also given by Eq. (7)
and agrees extremely well with the distributions obtained with data from actual
nuclei spectra. However, full random matrices are unrealistic, since they assume
simultaneous and infinite-range interactions among all the particles of the system that
they try to represent. In contrast, our spin models describe realistic systems studied
experimentally. They have only two-body and short-range interactions.What are then
the properties that clearly distinguish realistic models with two-body interactions
from full random matrices?

A distinctive feature between full random matrices and realistic models is the
density of states,

R(E) =
∑

α

δ(E − Eα), (11)

where Eα are the eigenvalues of the Hamiltonian. The density of states of full random
matrices follows the standard semicircle distribution [64],

R(E) = 2

πE

√
1 −

(
E

E

)2

, (12)

where 2E is the length of the spectrum, that is −E ≤ E ≤ E . The density of states
of Hamiltonians with two-body interactions is Gaussian, independent of the regime
(integrable or chaotic) of the system. These two cases are illustrated in Fig. 4a, b for
full random matrices and the defect model, respectively.
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Fig. 4 Left:GOE full randommatrixwithD = 12870.Right:Defectmodelwithh, λ = 0,Δ = 0.5,
d = 0.9, L = 16, Nup = 8,D = 12870, open boundary conditions. The random numbers of the full
random matrix are rescaled so that E = 4. Top: Density of states. Bottom: Shannon entropy for all
eigenstates. In (d): site-basis (black) and mean-field basis (red)

The Gaussian shape of the density of states of realistic models is reflected into the
structure of the eigenstates. The majority of the eigenstates are close to the middle
of the spectrum, where strong mixing can then take place and the eigenstates reach
their highest level of delocalization. In contrast, the eigenstates closer to the edges
of the spectrum are more localized.

There are various ways to quantify howmuch a state spreads out in a certain basis.
One of them is the participation ratio PR. Given an eigenstate |ψα〉 = ∑

n C
α
n |φn〉

written in a basis |φn〉,
PR(α) = 1∑

n |Cα
n |4 . (13)

A comparable quantity is the Shannon information entropy, defined as

S(α)

Sh = −
∑
n

|Cα
n |2 ln |Cα

n |2. (14)

The values of PR(α) and S(α)

Sh depend on the chosen basis. In the case of full random
matrices, the notion of basis is not well defined. All eigenstates of full random
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matrices are (pseudo)-random vectors. In the case of GOEs, the coefficients are real
randomnumbers from aGaussian distribution satisfying the normalization condition.
All eigenstates are therefore equivalent and lead to approximately the same values
of the participation ratio and of the Shannon entropy [34],

PRGOE ∼ D/3, SGOE
Sh ∼ ln(0.48D). (15)

The results above can be obtained by substituting the sum in PR and SSh by an
integral, ∑

n

F(Cn) → D

∫ ∞

−∞
F(C)P(C)dC.

The distribution of the probability amplitudes Cα
n is given by the Gaussian [65],

P(C) =
√

D

2π
exp

(
−D

2
C2

)
,

so C = 0 and C2 = 1/D . The latter is obtained by substituting x = C
√
D/2,

C2 =
√

D

2π

∫ ∞

−∞
dCC2 exp

(
−D

2
C2

)
=

√
D

2π

∫ ∞

−∞
2

D
dxx2e−x2

√
2

D
= 1

D
.

Thus, for the inverse of the participation ratio, we have

∑
n

|Cn|4 → D

√
D

2π

∫ ∞

−∞
dCC4 exp

(
−D

2
C2

)
= D

√
D

2π

∫ ∞

−∞
dx

4

D2
x4e−x2

√
2

D

= 4

D
√

π

3
√

π

4
= 3

D

and for the Shannon information entropy,

SGOE
Sh ∼ −D

√
D

2π

∫ ∞

−∞
exp

(
−DC2

2

)
C2 lnC2dC

= −2 + ln 2 + γe + lnD ∼ ln(0.48D),

where γe is Euler’s constant.
In Figs. 4c, d, we show the Shannon entropy for full random matrices and the

defect model, respectively. For the first, apart from small fluctuations, SSh = SGOE
Sh .

For the realistic model, we show SSh for the eigenstates written in two different basis
representation. The choice of basis depends on the problem we are interested in.
For studies of localization in real space, the site-basis is a natural choice. Another
alternative, often used to distinguish the regular from the chaotic region, is the
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mean-field basis, which corresponds to the integrable (regular) part of the Hamil-
tonian. In the case of the defect model, a reasonable choice for the mean-field basis
corresponds to the eigenstates of the XXZ model [18, 19]. Both cases are shown in
Fig. 4d.

The energy dependence of the structure of the eigenstates of a realistic system
has consequence for its dynamics [18, 19, 24–28, 30, 32, 34, 66] and viability of
thermalization [10, 12, 38, 39, 42]. The dynamics is slower for an initial state with
energy close to the edge of the spectrum than for an initial state close to the middle
of the spectrum. Thermalization is expected for chaotic systems, but it may not occur
for initial states with energies very close to the border of the spectrum.

3 Dynamics: Survival Probability

Now that we have a general idea about the spectrum and the structure of the eigen-
states of systems with two-body interactions, as those described by spin-1/2 models
[Eq. (5)], we proceed with the analysis of their dynamics. We assume that the system
is prepared in an initial state |Ψ (0)〉 that is an eigenstate of a certain initial Hamil-
tonian H0. The dynamics starts with the sudden change (quench) of a parameter of
the Hamiltonian that brings it to a new final Hamiltonian H,

H0
quench−−−→ H = H0 + gV, (16)

where g is the strength of the perturbation.
There are various quantities that we can use to analyze the evolution of the system.

We look here at the simplest one: the probability of finding the system at time t still
in state |Ψ (0)〉, which is known as the survival probability and is given by

Wn0(t) = |〈Ψ (0)|Ψ (t)〉|2 = |〈Ψ (0)|e−iHt|Ψ (0)〉|2. (17)

Wn0(t) is also known as nondecay probability, return probability, or fidelity, but it is
incorrect to call it Loschmidt echo, since we have only evolution forward, there is
no time reversal (“echo”) involved.

By writing the initial state in the eigenstates |ψα〉 of H, Eq. (17) becomes

Wn0(t) =
∣∣∣∣∣
∑

α

|Cα
n0 |2e−iEα t

∣∣∣∣∣
2

=
∣∣∣∣
∫

dE e−iEtρ0(E)

∣∣∣∣
2

, (18)

where Cα
n0 = 〈ψα|Ψ (0)〉 are the overlaps and

ρ0(E) ≡
∑

α

|Cα
n0 |2δ(E − Eα) (19)
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is the energy distribution of the initial state, referred to as local density of states
(LDOS). The survival probability is the absolute square of the Fourier transform of
the LDOS. If we have detailed information about ρ0(E) we can predict the behavior
of Wn0(t). The mean and variance of the LDOS are respectively the energy of the
initial state,

E0 = 〈Ψ (0)|H|Ψ (0)〉 =
∑

α

|Cα
n0 |2Eα, (20)

and
σ 2
0 =

∑
α

|Cα
n0 |2(Eα − E0)

2. (21)

3.1 Short Times

The decay ofWn0(t) shows different behaviors at different time scales. At extremely
short times, t � σ−1

0 , the decay is quadratic. This is a universal behavior that does
not depend on H0 or H, but simply on σ0. It is obtained by Taylor expanding the
phase factor in Eq. (18),

Wn0 (t) ≈
∣∣∣∣∣e−iE0t

[∑
α

|Cα
n0 |2 − i

∑
α

|Cα
n0 |2(Eα − E0)t − 1

2

∑
α

|Cα
n0 |2(Eα − E0)

2t2
]∣∣∣∣∣

2

≈ 1 − σ 2
0 t

2. (22)

But we are actually interested in what happens after the quadratic decay.

3.1.1 Exponential and Gaussian Decay

After the universal quadratic behavior, the decay depends on the strength of the
perturbation, which determines the shape of the LDOS. The LDOS is close to a
delta function for g → 0 and its Fourier transform leads to a very slow decay of
Wn0(t). The two left top panels of Fig. 5 show LDOS for g → 0 and the two right top
panels present the correspondingWn0(t). The first and third columns of the figure are
obtained for the integrable XXZmodel and the initial state is an eigenstate of the XX
model with E0 far from the edges of the spectrum. The second and fourth columns
of the figure show the results for the chaotic NNN model and the initial state is an
eigenstate of the XXZ model with E0 away from the borders of the spectrum.

The LDOS broadens as the strength of the perturbation increases. When the per-
turbation gV is larger than the mean level spacing (Fermi golden rule regime), the
LDOS becomes Lorentzian [27, 29],

ρ0(E) = 1

2π

Γ0

(E0 − E)2 + Γ 2
0 /4

, (23)
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Fig. 5 Local density of states (two left columns) and survival probability (two right columns).
First and third columns: XXZ model. Second and fourth columns: NNN model with Δ = 0.5. The
values of Δ for the XXZ model and of λ for the NNN model are indicated in the figure. The initial
state has energy far from the edge of the spectrum; third column: |Ψ (0)〉 is an eigenstate of the XX
model; fourth column: |Ψ (0)〉 is an eigenstate of the XXZ model. Blue squares: Lorentzian fit and
exponential decay. Black solid line: Gaussian LDOS and Gaussian decay with σ0 from Eq. (21).
Red shaded area and circles: numerical results. L = 18, Nup = 6, h, d = 0, open chain. Horizontal
dot-dashed lines indicate the saturation point [Eq. (32)]

where Γ0 is the width of the distribution. The Fourier transform of the Lorentzian
gives the exponential decay

Wn0(t) = exp(−Γ0t). (24)

Lorentzian LDOS and exponential decays are shown in the middle panels of Fig. 5.
As the perturbation further increases, the LDOSwidens even more and eventually

becomes Gaussian [26–28, 67, 68],

ρ0(E) = 1√
2πσ 2

0

exp

[
− (E − E0)

2

2σ 2
0

]
, (25)

This shape reflects the Gaussian density of states. In this case, the decay of the
survival probability is Gaussian,

Wn0(t) = exp(−σ 2
0 t

2). (26)

It is important to stress that these very fast decays of the survival probability,
exponential and even Gaussian, are not exclusive to chaotic systems. As we show in
Fig. 5 for the XXZ model (first and third columns), fast evolutions can also happen
for integrable models. The speed of the dynamics depends on the strength of the
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perturbation, not on the regime, integrable or chaotic, of the Hamiltonian [18, 19,
24–28, 30, 32, 34, 66].

Similarities in the time evolution of integrable and chaotic models perturbed far
from equilibrium can be captured also with other dynamical quantities, such as the
Shannon information entropy and the von Neumann entanglement entropy. In fact,
as shown in Refs. [33, 34], there is a clear parallel between the behaviors of both
entropies.

We take this opportunity to mention that the equation for the evolution of observ-
ables contain the survival probability explicitly. For an observable O, we have

O(t) = Wn0(t)O(0)

+
∑
n �=n0

〈Ψ (0)|eiHt|Ψ (0)〉On0,n〈φn|e−iHt|Ψ (0)〉

+
∑
n �=n0

〈Ψ (0)|eiHt|φn〉On,n0〈Ψ (0)|e−iHt|Ψ (0)〉

+
∑

n,m �=n0

〈Ψ (0)|eiHt|φn〉On,m〈φm|e−iHt|Ψ (0)〉, (27)

where On,m = 〈n|O|m〉 and |φn〉 are the eigenstates of the initial Hamiltonian that
defines the initial state. The analysis of the evolution of observables is more demand-
ing than the study of the survival probability, since they depend on the overlaps
between |Ψ (t)〉 and the other basis vectors of the initial Hamiltonian and on the
details of the observables.

3.1.2 Faster Than Gaussian and Quantum Speed Limit

There are scenarios where the decay ofWn0(t) can be even faster than Gaussian. This
happens, for example, when the LDOS is bimodal (or multimodal), in which case the
speed of the evolution becomes controlled by the distance between the peaks [28].
This can be achieved by preparing the system in an eigenstate of the XXZmodel and
evolving it with the defect model for d � 1. When the amplitude of the magnetic
field on the defect site is very large, the density of states and consequently also the
LDOS splits in two separated Gaussian peaks, as shown in Fig. 6a. If both peaks have
the same width σG , the Fourier transform of ρ0(E) gives

Wn0(t) � cos2(σ0t) exp(−σ 2
Gt

2), (28)

where σ0 is now approximately d/2. One sees that for t < π/(2σ0), the survival prob-
ability approaches the bound associated with the energy-time uncertainty relation,
Wn0(t) � cos2(σ0t) [69–71]. For t > π/(2σ0) there are revivals. The envelope of
the decay of these oscillations is Gaussian and controlled by σG . The expression in
Eq. (28) matches very well the decay of the survival probability shown in Fig. 6b.
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Fig. 6 Local density of states (left) and survival probability (right). In a and b: defect model,
d = 8.0, Δ = 0.48, h, λ = 0, L = 16, Nup = 8. Initial state in b is an eigenstate of the XXZ model
with E0 in the middle of the spectrum. In c and d: Full random matrix from GOE, D = 12870,
rescaled energies so that E ∼ 2. Initial state in d is an eigenstate of another GOE full random
matrix. Red shaded areas and circles: numerical results. Black solid lines on the right: analytical
expressions (28) and (29). Horizontal dot-dashed lines indicate the saturation point [Eq. (32)]

Another example of a decay faster than Gaussian occurs for systems with random
and simultaneous interactions among many particles. The extreme case is that of full
random matrices. In Fig. 6c, we show the LDOS for an initial state corresponding
to an eigenstate of a GOE full random matrix that is evolved with another GOE full
random matrix. The LDOS has a semicircle shape [26–28, 64], as the density of
states for full random matrices [Eq. (12)],

ρ0(E) = 1

πσ0

√
1 −

(
E

2σ0

)2

, (29)

where σ 2
0 = ∫ E

−E ρ0(E)E2dE = E /2. The Fourier transform of the semicircle gives
the following analytical expression for the survival probability [26, 27, 34]

Wn0(t) = [J1(2σ0t)]2
σ 2
0 t

2
, (30)

where J1 is the Bessel function of the first kind. This expression agrees with the
numerical results in Fig. 6d. The decay up to t ∼ E is faster than Gaussian. Later, it
shows oscillations that decay as a power-law ∝ t−3. Indeed, for t � σ−1

0 , Eq. (30)
leads to
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Wn0(t � σ−1
0 ) → 1 − sin(4σ0t)

2πσ 3
0 t

3
. (31)

The onset of the power-law decay for longer times, as depicted in Fig. 6d, prompts
the question of what happens to the survival probability for the spin models at times
longer than those shown in Fig. 5. If we wait long enough, since the studied systems
are finite, the dynamics eventually saturates to the infinite-time average,

Wn0 = lim
t→∞

1

t

∫ t

0
dτ F(τ ) =

∑
α

|Cα
n0 |4 = IPRn0 , (32)

where IPRn0 is the inverse of the participation ratio of the initial state written in the
energy eigenbasis. Our question is whether there is some other well defined behavior
between the initial exponential or Gaussian decays and the saturation to Wn0 . This
is the subject of the next subsection.

3.2 From Short to Long Times: Strong Perturbation

Since our systems are finite and relatively small, the analysis of long-time dynamics
is subjected to finite size effects. To circumvent this problem, we focus now on the
disordered Hamiltonian (5) with d, λ = 0, random uniform numbers hk ∈ [−h, h],
Δ = 1, and closed boundary conditions, that is,

H =
L∑

k=1

hkS
z
k +

L∑
k=1

(
SxkS

x
k+1 + SykS

y
k+1 + SzkS

z
k+1

)
. (33)

Hamiltonian (33) is paradigmatic in the studies of many-body localization (MBL)
[50, 54, 62, 72, 73].MBL refers to localization in face of the interplay between inter-
action and disorder. It is an extension to the Anderson localization, where interaction
is absent. Without the Ising interaction, the eigenstates of the disordered noninter-
acting 1D system are exponentially localized in configuration space for any value of
h. The question that has been discussed more intensely since the beginning of the
millennium is whether localization may still take place when interaction is added.
Although not precise, the value hc ≈ 3.5 for the disorder strength in (33) is supposed
to determine the critical point for the transition from the ergodic (chaotic) to the
MBL phase.

By varying the disorder strength, we can study the survival probability at long
times close to the clean integrable point (h = 0), in the chaotic regime, in the inter-
mediate region between ergodicity and localization, and in the MBL phase, which
is another integrable point [see Fig. 3]. In the chaotic regime, the eigenstates away
from the border of the spectrum are highly delocalized and similar to random vec-
tors [as in Fig. 4d]. We refer to these states as chaotic or ergodic states, although it
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is important to keep in mind that ergodicity in the sense of full random matrices,
where the eigenstates are random vectors, does not exist in realistic systems. As the
disorder strength increases and we move from the chaotic to theMBL phase, passing
through the intermediate region, the eigenstates become less spread out in space.
As we discussed in [33], they remain extended in this intermediate region, but are
no longer ergodic. This reduction in the level of delocalization of the eigenstates
naturally slows down the dynamics.

We take as initial states, single site-basis vectors. This is equivalent to a quench,
where the initial Hamiltonian is only the Ising part of Hamiltonian (33) and the final
Hamiltonian that dictates the evolution is the complete H (33). In view of Eq. (16),
this case corresponds to a strong perturbation.

We perform averages over initial states and disorder realizations. This reduces
finite-size effects and unveils features of the dynamics that could otherwise be hidden
by sample to sample fluctuations. The average is done over 0.1D initial states with
energies close to the middle of the spectrum and over enough disorder realizations
to have a total of ∼105 statistical data. The average is represented with the symbol
< . >. We choose initial states with energy close to the middle of the spectrum
(E0 ≈ 0), because there localization is more difficult, due to the large concentration
of energy levels. If localization occurs at E0 ≈ 0, then it is certain to have taken place
at other regions of the spectrum.

Figure7 depicts the time evolution of the averaged survival probability, 〈Wn0(t)〉,
from very short to very long times. The disorder strength h ranges from h = 0.2
(chaotic regime) to h = 4.0 where the system is likely already in the MBL phase.

According to Eq. (22), the dynamics at very short times (t � σ−1
0 ) depends only

on σ0. If we write the Hamiltonian matrix in the site-basis (denoted by |φn〉), we can
show that

σ0 =
∑

α

|Cα
n0 |2(Eα − E0)

2 =
√∑

n �=n0

|〈φn|H|φn0〉|2 , (34)

where |φn0〉 = |Ψ (0)〉. In the site-basis, the disorder appears only in the diagonal
elements of the Hamiltonian matrix. Thus, the dynamics at very short times is com-
pletely independent of the presence of disorder.

The subsequent evolution is purely Gaussian, as expected from the Gaussian
envelope of the LDOS [see Fig. 8]. The evolution in this time scale agrees very well
with the analytical expression 〈Wn0(t)〉 = exp(−σ 2

0 t
2) discussed in Eq. (26). This

is illustrated with circles in Fig. 7. When h becomes large, the time interval of the
Gaussian decay shortens, and possibly only the quadratic part of the decay persists.

3.2.1 Power-Law Decays

After the fast Gaussian evolution, oscillations emerge. These are not fluctuations that
could be reduced with a large number realizations, as those after equilibrium. These
oscillations may in fact belong to the power-law decays that become evident in Fig. 7
for t > 2.
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Fig. 7 Survival probability. From bottom to top, h = 0.2, 0.3, . . . 0.9, h = 0.95, 1, 1.25, . . . 3, h =
3.5, 4. Circles: analytical Gaussian decay 〈Wn0 (t)〉 = exp(−σ 2
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to top, γ = 2, γ = 1, and γ = 0.5 for h = 0.2, h = 1.0 and h = 1.75, respectively. Averages over
105 data of disorder realizations and initial states with E0 ∼ 0; L = 16, Nup = 8

The power-law exponent γ in 〈Wn0(t)〉 ∝ t−γ depends on the disorder strength h.
The two different colors in Fig. 7 (red and blue curves) indicate two different causes
of the power-law decay, as we discuss next.

Chaotic eigenstates

The red curves in the bottom of Fig. 7 are associated with the results for the system in
the chaotic domain. According to Fig. 3, this occurs for 0.1 < h < 1. In this region,
the LDOS iswell filled as seen in Fig. 8a for h = 0.5. The analysis of the participation
ratio of the initial state confirms ergodicity, 〈PRn0〉 ∝ D . In this region, we expect γ
to be close to 2, as is indeed obtained with the curve for h = 0.2 that is shown in the
bottom of Fig. 7 together with the dashed line that represents 〈Wn0(t)〉 ∝ t−2. The
exponent γ = 2 is caused by the so-called Khalfin effect. It refers to the emergence
of the power-law decay of the survival probability due to the unavoidable presence
of bounds in the spectrum [74–77]. The phenomenon has been extensively studied
for continuous systems. We have argued that similar analyses can be extended to
the discrete spectra of finite lattice many-body quantum systems when the LDOS is
ergodically filled [24, 25].

Notice, however, that as h increases above 0.2 up to 1, γ decreases from 2 and
approaches 1, as seen in Fig. 7. These intermediate values, 1 ≤ γ < 2, are probably
caused by a competition between the effects of energy bounds andminor correlations
between the eigenstates.

Multifractal eigenstates

The black curve in Fig. 7 marks the borderline between the chaotic region (red)
and the intermediate region (blue). In the latter, the eigenstates become multifractal.
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Multifractality implies that the sums of the moments M of the components |Cα
n |2

of the eigenstates |ψα〉 = ∑
n C

α
n |φn〉 written in the site-basis |φn〉 show multifractal

scaling with the dimension of the Hilbert space D , that is

〈Mq〉 =
∑
n

|Cα
n |2q ∼ D−(q−1)Dq , (35)

where Dq is the fractal dimension. Multifractality occurs when Dq depends nonlin-
early on q, instead of being a constant, as in the metallic (Dq = 1) or in the insulating
(Dq = 0) phase. Most of our studies have concentrated on the second momentM2 for
the eigenstates written in the site-basis and for the initial states (which are site-basis
vectors) written in the energy eigenbasis. Our focus has therefore been on D2. The
second moment is nothing but the participation ratio, PR(α) for the eigenstates and
PRn0 for the initial states. We calculated D1 in [33] and other q’s have been recently
studied as well [78].

Our scaling analyses for PR(α) and PRn0 suggest that both lead to the same value
of D2. This value is ∼1 in the chaotic region and < 1 in the intermediate region.
The intermediate region is therefore characterized by eigenstates that are not yet
localized, but are not chaotic either. In this region, D2 decreases as h increases. The
fractality of the states also leads to the sparsity of the LDOS, as seen in Fig. 8c, d.

We got excited when we realized that in the intermediate region, the value of
D2 coincides with exponent of the power-law decay γ , that is 〈Wn0(t)〉 ∝ t−D2 . This
agreement is better understood if one writes the survival probability in terms of the
correlation function C (E) = ∑

α1,α2
|C(α1)

n0 |2|C(α2)
n0 |2δ(E − Eα1 + Eα2) as follows

Wn0(t) =
∫ ∞

−∞
dEe−iEtC (E). (36)

The long-time behavior ofWn0(t) is determined by small E. A power-law decay with
exponent D2 emerges for long t when [79–85]

C (E → 0) ∝ ED2−1. (37)
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This is analogous to what has been found in noninteracting disordered systems at
least as early as in the studies by Chalker [79, 80].

During the time interval where the power-law decays with γ = D2 < 1 are seen
for the survival probability, we observe also a logarithmic growth of the Shannon
entropy and entanglement entropy controlled by the same fractal dimension as S ∼
A + D2 ln t (A is a constant).

3.2.2 Correlation Hole

After the power-law decay, there is still one more interesting feature in the decay of
the survival probability before it finally saturates toWn0 . The survival probabilitymay
fall below the saturation value and then raise toWn0 . This dip is known as correlation
hole [86–89]. It is an explicit dynamical manifestation of level repulsion; it only
appears in nonintegrable finite systems [33, 35]. Thus, by studying the evolution of
the survival probability at long times, we gain information about level statistics. The
correlation hole is visible in Fig. 7, being clearly deeper in the chaotic region. As
the disorder strength increases and the system approaches the MBL phase, the hole
fades away and eventually disappears.

We can use the depth of the correlation hole to quantify how close or far the
system is to the chaotic region. To measure the depth, we compute

κ = Wn0 − 〈Wmin
n0 〉

Wn0

. (38)

In full random matrices from GOE, Wmin
n0 ∼ 2/D [88] and Wn0 ∼ 3/D , so the max-

imum value that κ can have is 1/3.
In Fig. 9, we show κ as a function of the disorder strength. It approaches the

maximum value 1/3 in the chaotic region. It decreases for small h, since the system
gets closer to the integrable clean point, and for large h, as the system approaches
localization. Similarly to D2, κ is another alternative to detect the transition from
chaos to spatial localization. But notice that κ can in fact detect and integrable-chaos
transition.

The correlation hole is seen also in observables, such as the spin density imbalance.
Using full random matrices we were able to find exact analytical expressions for the
survival probability and for the density imbalance from t = 0 to saturation [36].
These expressions helped us to propose functions that matched very well the entire
evolution of the survival probability of spin systems deep in the chaotic region,
including the correlation hole, and that captured very well different behaviors of the
imbalance at different time scales [36].
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Fig. 9 Depth κ of the
correlation hole versus
disorder strength h. Dashed
line corresponds to the result
for full random matrices,
κFRM = 1/3. L = 16,
Nup = 8
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4 Conclusions

We close this chapter with a very brief discussion about future plans. In addition
to the immediate goal of extending the level of details that we have obtained for
the survival probability to other physical observables, we intend to explore how
our studies are affected by couplings with an environment. As we have shown, the
dynamics of isolated many-body quantum systems depends on several factors, such
as the energy of the initial state, the strength of the perturbation that takes the system
out of equilibrium, the regime of the Hamiltonian (whether integrable or chaotic),
the presence of disorder, the strength of the interactions, and the number of particles
that interact simultaneously. Despite these many factors and the different behaviors
at different time scales, we have been able to extract general features. What should
happen to our picture when external interactions are also included?What will follow
from the interplay between internal and external interactions? Which will be the
dominant elements controlling the dynamics and can they have different roles at
different time scales?
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Multi-jittering Instability in Oscillatory
Systems with Pulse Coupling

Vladimir Klinshov, Leonhard Lücken, Serhiy Yanchuk
and Vladimir Nekorkin

Abstract In oscillatory systems with pulse coupling regular spiking regimes may
destabilize via a peculiar scenario called “multi-jitter instability”. At the bifurca-
tion point numerous so-called “jittering” regimes with distinct inter-spike intervals
emerge simultaneously. Such regimes were first discovered in a single oscillator with
delayed pulse feedback and later were found in networks of coupled oscillators. The
present chapter reviews recent results on multi-jitter instability and discussed its
features.

1 Introduction

Time delays naturally arise in physical systems of various nature [1–4]. The most
common origin of time delays is the inertness of systems and finite speed of sig-
nal propagation in media. As a consequence, the current state of the system may
influence not only its present, but future dynamics as well. A prototypical example
of a system with time delays is a neural network [2]. When a neuron exceeds the
excitation threshold it emits a spike which does not immediately effect the peer neu-
rons. It takes some time for the spike to propagate along the axon, and extra time to
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activate the synapse. The combination of these two processes leads to the emergence
of nonzero time delay between the spike emission and the resultant perturbation
of the target neuron. Typically, time delays in neural networks do not exceed sev-
eral milliseconds, whereas the timescales of the neuronal dynamics range from tens
to hundreds of milliseconds. However, in other systems delays may be compara-
ble and ever larger than the characteristic time scales. Such situations are typical
in laser physics where the impact of delays is significant (e.g. see [4, 5] and refer-
ences within). Particularly, the time-delay feedback or coupling is known to be an
effective tool for dynamics control, and very long delay lines are sometimes used
[4, 6]. Moreover, in some cases the delays may be non-constant but depend on time
or system state. For example, in metal cutting the cutting force depends dynamical
displacements of the structure at the present and the previous cut, which leads to the
emergence of time-varying delays [7].

Numerous theoretical research demonstrate that introduction of delays causes sig-
nificant change in dynamics. Delay-induced synchronization and desynchronization
were reported, emergence of multistable synchronous solutions was often observed,
and the properties of existing synchronous regimes were shown to be altered after the
delay introduction (see the reviews [8]). The influence of delays may result in new
dynamical phenomena, such as multistability [9–12], oscillations death [13], tran-
sition to chaos [14, 15], and other complicated regimes [3, 4, 16–18]. Theoretical
results inspired experimental study of synchronization of oscillators with delayed
coupling. Various configurations of interacting lasers were studied with coupling
delays arising from the finite speed of light propagation along fibers [19–22]. Elec-
tronic [14, 23, 24] and chemicals [25] oscillators have also been considered with
delayed coupling realized with the help of digital delay lines.

From the mathematical point of view, systems with time delays correspond to
delay-differential equations. The simplest form of such an equation is the following:

dx(t)

dt
= f (x(t), x(t − τ)), (1)

Here, x ∈ R
n is the system state vector and τ is the delay. The r.h.s of (1) depends

not only on the current state of the system, but also on its state in the past. The
consequence is that the phase space of (1) is the space of functions [−τ, 0] �→ R

n

that has infinite dimension [26, 27]. The infinite dimension of the phase space makes
DDEs much more complicated objects than ODEs for both analytic and numerical
study. However, in certain special cases systems with time delays may be reduced
to finite dimension which simplifies their analysis and allows to apply well devel-
oped techniques developed for the finite-dimensional systems. The present chapter
is devoted to one of such cases, namely the case of pulse-mediated interactions.

In the present chapter we consider the dynamics of periodic oscillators with
delayed pulse interactions. Periodic behavior is typical for a variety of physical,
chemical, biological, and other systems. Independently of its nature, the state of a
periodic oscillator can be naturally determined by its phase [28], that is, the single
variable indicating the position of the system within its cycle. The concept of the
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phase proved to be exceptionally useful for the study of driven and coupled oscil-
lators [28–30]. In the absence of external stimulation, the phase ϕ of the oscillator
grows uniformly with dϕ/dt = ω, where ω = T−1 is the natural frequency of the
oscillator, T its natural period. The phase changes on the circle [0,1] with ϕ = 0 and
ϕ = 1 identified.

Interaction via pulse-like signals is important in neuron populations [31–35],
biological [28, 36, 37], optical and opto-electronic systems [38–41]. To define pulse-
coupled systems, let us first consider a dynamical system under external forcing.

In order to describe the response of phase oscillators to pulse stimulation the
so-called phase response curve (PRC) is widely used [28, 35, 42–45]. The PRC
defines the oscillator’s response to a single short stimulus (pulse). It determines the
resulting phase shift caused by a pulse given that the latter arrived at the phase ϕ.
The PRC can be calculated numerically or measured experimentally for oscillatory
systems of different origin. These properties make it a useful tool for the study of
forced or coupled oscillators [35, 37, 43, 46–49], and it is especially appropriate in
neuroscience where the interactions are mediated by pulses.

In this chapter we study phase-reduced models and describe each oscillator of the
network by its phase ϕ j . The dynamics of a network of phase oscillators with pulse
delayed coupling is governed by

dϕi

dt
= ωi + a ji Z ji (ϕi )

∑

t sj

δ(t − t sj − τi j ), (2)

where a ji is the adjacency matrix of the network, Z ji (ϕ) is the PRC for the i-th
oscillator under the pulse arriving from the j-th one, and t sj are the moments when
the j-th oscillator produces spikes. Themoments t sj of spike emission are determined
from the intrinsic dynamics of the j-th oscillator. Namely, we say that the oscillator
emits a spike when it phase reaches one and resets to zero after that.

Note that the delayed terms in (2) arise only as the arguments of the delta-functions,
i.e. the delayed terms differ from zero only at discrete moments of the pulses arrival.
The dynamics of the network therefore only depends on the values of the phases
at those very time moments, while the history of the phase evolution between those
moments is of no importance. This observation is the keypoint,which allows a dimen-
sional reduction of the network dynamics. In [50] it was shown that the network (2)
of oscillators with delayed pulsatile coupling can be reduced to a finite-dimensional
discrete map under quite general conditions. Below in Sects. 2 and 5 we will derive
such maps for certain particular cases and use them for the analysis.

The dynamics of (2) depends on many aspects–the shape and the magnitude
of the PRCs, the network topology and the value of the delays. In the following,
we will present the results on an interesting type of dynamics described recently
for networks with pulse delayed coupling: the so-called “jittering regimes”. These
regimes occur when regular spiking activity, where all oscillators generate spikes
with equal interspike intervals (ISIs), destabilizes, and spikes are emittedwith distinct
inter-spike intervals. It turns out that for the emergence of such the regimes all the
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aspects of the network are important: the PRC shape, the delays, and the network
structure. However, although the role of the first two, the PRC shape and the delay,
have been studied in detail, the role of the network structure is much less clear.
The jittering regimes have been studied in detail for a single oscillator with delayed
feedback and a feed-forward ring of oscillators [51–53]. As for more complex setups,
similar regimes have been discovered in some of them, but the detailed study is still
lacking.

The rest of the chapter is organized as follows. Sections2–3 are devoted to the
simplest system in which the jittering instability is observed, namely a single oscilla-
tor with delayed feedback. The results reviewed in these sections were first reported
in [51, 52]. In Sect. 2 we derive the discrete map that describes the dynamics of the
oscillator. In Sect. 3 we use this map to study the jittering regimes describe their
features. Sections 5–6 are devoted to feed-forward rings and summarize the results
from [53]. In Sect. 5 we study regular rotating waves in feed-forward rings of oscilla-
tors, and in Sect. 6 we show how they destabilize and give birth to jittering waves. In
the last Sect. 7 we discuss the general features of the multi-jitter instability and give
preliminary results which demonstrate its presence in networks with more complex
structure.

2 Dynamics of One Oscillator with Pulse Delayed Feedback

The simplest possible case for (2) is when only one oscillator with a self-feedback
is included. In this case the system is described by

dϕ

dt
= 1 + Z(ϕ)

∑

ts

δ(t − ts − τ), (3)

where ts are the instants when the pulses are emitted.
First, let us calculate the inter-spike interval (ISI) of the oscillator subject to the

pulse input. Suppose the oscillator produced a spike at t = ts and let us calculate the
moment of the next spike emission ts+1. The derivation is illustrated in Fig. 1. After
the spike at t = ts , the the phase grows uniformly from ϕ(ts) = 0 until it reaches

Fig. 1 Derivation of the map (5): the new ISI Ts+1 depends on the pulse emitted at t = ts−P . ψ is
the phase at which the pulse arrives to the oscillator, and Δϕ is the phase shift it causes
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unity, except for the moments when pulses arrive, which were generated previously.
Assuming that only one pulse arrives per ISI we can determine the arrival time
t∗s ∈ (ts, ts+1) of a pulse emitted at some prior spike time ts−P as

t∗s = ts−P + τ = ts + τ −
s∑

k=s−P+1

Tk .

Here, Tk = tk − tk−1, and P is the number of spikes emitted by the oscillator between
the time ts−P when the spike is emitted and t∗s when it arrives at the oscillator. The
phase value ψ > 0 at the moment of the pulse arrival equals

ψ = t∗s − ts = τ −
s∑

k=s−P+1

Tk . (4)

Hence the oscillator’s phase immediately after the pulse arrival is ϕ(t∗s + 0) = ψ +
Δϕ, where the phase shift Δϕ = Z(ψ). Further the phase grows uniformly until it
reaches unity, and the ISITs+1 = ts+1 − ts is determined from the conditionϕ(ts+1) =
1:

1 = ϕ(ts+1) = ψ + Z(ψ) + ts+1 − t∗s

= Ts+1 + Z

(
τ −

s∑

k=s−P+1

Tk

)
.

Hence, we obtain

Ts+1 = 1 − Z

(
τ −

s∑

k=s−P+1

Tk

)
. (5)

Equation (5) determines the next inter-spike interval in dependence of the P previous
ones. In fact, it is a discrete map describing the dynamics of the oscillator. The
dimensionality of the map equals P , since it is defined on the space of vectors
Ts = (Ts−P+1, . . . , Ts) ∈ R

P . The number P equals the number of spikes stored in
the memory of the delay line, and is proportional to the value of the delay.

Let us first study the fixed points of the map (5). They correspond to dynamical
regimes when all the inter-spikes intervals are equal, i.e. the oscillator emits spikes
periodically with Ts = T . This implies, that there is exactly one spike within each
inter-spike interval and the map (5) is valid. We call such the regime regular spiking,
and its period T is given as

T = 1 − Z (τ − PT ) , (6)
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0 1 2 3 4
0.9
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T

Fig. 2 One-dimensional bifurcation diagram for the period T of regular spiking solutions versus
delay τ according to (7). Red solid lines correspond to stable, blue dashed lines to unstable regular
spiking regimes. The squares indicate fold bifurcations

Fig. 3 The phase response
curve (12) for q = 5 (dashed
line) and q = 28 (solid line)

where P = [τ/T ] is the number of periods within the delay. Here [τ/T ] denotes
the integer part of the expression τ/T , i.e. the number of ISIs contained in τ . Thus,
τ = PT + ψ withψ := τ mod T , and we can write Eq. (6) in the parametric form:

T = 1 − Z(ψ),

τ = P (1 − Z(ψ)) + ψ.
(7)

This form allows an explicit representation of all regular spiking regimes as a function
of τ by substituting P = 0, 1, 2, . . . in (7) and varying ψ within the interval [0,1].
In Fig. 2 the period of these regimes is plotted versus the delay for the PRC Z(ϕ) =
κ sinq (πϕ) and κ = 0.1, q = 5 [see Fig. 3]. As one may see, at least one regular
spiking solution exists for each delay. For large delays folding takes place leading to
an emergence of several solution branches.

The stability of the regular spiking can be also analyzed with the help of the map
(5). For this sake small perturbations δs are introduced to the initial conditions so
that Ts = T + δs . The regime is stable if the perturbations are damped with time.
Small perturbations do not violate the property that only one spike occurs within each
inter-spike interval, so the map (5) can be used to study their evolution. Substitute
Ts = T + δs into (5) and its linearization leads to the map for the perturbations

δs+1 = Z ′(ψ)

s∑

k=s−P+1

δk, (8)

where ψ = τ − PT . The stability of the linear map (8) may be determined by the
roots of the characteristic polynomial
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χP,α (λ) = λP − α

P−1∑

k=0

λk (9)

whereα := Z ′(ψ). These roots are the characteristicmultipliers of the regular spiking
regime and describe how small perturbations are either damped (if all roots fulfill
|λ| < 1) or amplified (|λ| > 1 for at least one root). Thus, a changeof stability induced
by a change of the parameter α must be accompanied by at least one multiplier λ

having an absolute value equal to one. Note that the parameters of the original system,
which determine the value of α are the PRC and the delay time τ .

To study the roots of (9) it is convenient to multiply χP,α (λ) by (λ − 1) and study
the extended characteristic equation

χ̃P,α (λ) = (λ − 1) χP,α (λ) = λP+1 − (1 + α)λP + α = 0. (10)

The set Λ̃ of roots of χ̃P,α (λ) contains all roots Λ = {λ1, . . . , λP} of χP,α (λ) and
the root λP+1 = 1, i.e. Λ = Λ̃\{1} if not 1 ∈ Λ. The case 1 ∈ Λ can only occur for
α = 1/P as we show below.

Critical roots of χ̃P,α (λ) are characterized by |λ| = 1 and can therefore be written
as λ = eiϕ ∈ C with ϕ ∈ R. Substituting λ = eiϕ into (10) we obtain

ei(P+1)ϕ + α = (1 + α)ei Pϕ. (11)

Taking the absolute value on both sides of (11) yields

∣∣ei(P+1)ϕ + α
∣∣ = |1 + α| ,

which, for α �= 0, implies ei(P+1)ϕ = 1. This means ϕ = 2πk/(P + 1) for some
k ∈ Z. Substituting this into (11) gives

1 + α = (1 + α)ei2πkP/(P+1).

For α �= −1, this requires k ∈ (P + 1)Z. Thus, for α /∈ {−1, 0}, λ = 1 is the only
solution of (10) with |λ| = 1. It corresponds to a critical multiplier of (9) only for
α = 1/P , where it is a double root of (10). Indeed, substituting λ = 1 into (9) one
obtains 1 − Pα = 0. For α = −1, (10) reduces to

λP+1 = 1.

Hence, P critical multipliers λk = ei2πk/(P+1), k = 1, . . . , P , appear simultaneously
at α = −1. For α = 0, (9) reduces to λP = 0, which obviously exhibits no critical
multipliers.

Finally,we can formulate theproperties of the spectrumof (9) as follows.The spec-
trum is stable for −1 < α < 1/P . A critical multiplier λ = 1 emerges at α = 1/P
and remains unstable for α > 1/P . This scenario corresponds to the fold bifurcation,
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as illustrated in Fig. 2. A much more peculiar scenario takes place at α = −1 when
P critical multipliers λk = ei2πk/(P+1), k = 1, . . . , P , emerge simultaneously. For
α < −1, these P multipliers remain unstable. Note that the condition for this bifur-
cation depends only on the slope α of the PRC function and does not depend on
the number P . Increasing the delay one may make P arbitrary large, so that the
bifurcation seems to become very degenerate. However, it occurs generically in our
setup if only the PRC contains intervals with slope < −1. In the following we will
study corresponding bifurcation scenario in more detail.

3 Jittering Regimes in a Single Oscillator

For numerical illustrations we consider the PRC

Z(ϕ) = κ × (sin (πϕ))q , (12)

which is shown in Fig. 3. Here κ = 0.1 is the feedback strength, and q > 1 is a
parameter that controls the steepness of the PRC, which appears to be an important
quantity for the studied dynamical phenomenon. However, our analysis is valid for
an arbitrary shape of the PRC.

When q the steepness of Z(ϕ) is moderate. In particular it fulfills Z ′(ψ) > −1
everywhere. Thus, the only possible regime of (3) is regular spiking. Increasing q
until it exceeds a critical value q∗, leads to the appearance of two pointsψA,B ∈ (0, 1)
for which Z ′(ψA,B) = −1. This means that for appropriate values of the delay time
τ , such that

ψ = τ mod T ∈ {ψA, ψB},

there are P = [τ/T ] multipliers located on the unit circle simultaneously. From (7)
the corresponding delay times are determined as

τ P
A,B = P(1 − Z(ψA,B)) + ψA,B . (13)

At the points τ = τ P
A,B we can observe an interesting bifurcation structure for increas-

ing values of P . Figure4a shows a bifurcation diagram obtained from numerical
simulations of the system (3) for a range of values τ ∈ [0,4] and with Z(ϕ) given by
(12) with q = 28 > q∗. For P = 1, only one multiplier λ = −1 of (9) crosses the
unit circle at τ 1

A, resp. τ 1
B . This gives rise to a pair of supercritical period doubling

bifurcations enclosing the region [τ 1
A, τ

1
B] where the regular spiking is unstable and

a stable spiking regime exists, which exhibits two different ISI lengths denoted by
Θ1 and Θ2, see Fig. 4b and d. From the perspective of the discrete mapping (5) this
corresponds to a stable period-2 solution In the following we will denote such a
solution as (Θ1,Θ2), where the periodicity of the ISI sequence is indicated by an
overline. Note that map (5) is one-dimensional for P = 1, and Θ1,2 must satisfy
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Θ1,2 = 1 − Z
(
τ − Θ2,1

) = 1 − Z
(
τ − 1 − Z(τ − Θ1,2)

)
. (14)

For P ≥ 2, P multipliers become critical simultaneously at τ = τ P
A,B and the regular

spiking changes its stability at τ ∈ {τ P
A , τ P

B }. Numerical studies show that various
irregular spiking regimes appear in this interval. The observed solutions are consti-
tuted by distinct inter-spike intervals and have high periods. For moderate supercriti-
cal steepness Z ′(ψ) � −1 their period typically equals P + 1, and the ISIs are close
to the period of regular spiking The property that the ISIs are not constant anymore
but “jitter” with time around an average value led us to adopt the term “jittering”
regimes.

Figure4e shows an example of a “jittering” solution (T1, T1, T2, T2) involving two
different ISIs. Interestingly, despite of the high period, most of the emergent jittering
solutions consist of only two distinct inter-spike intervals. The typical (P + 1)-
periodicity is a consequence of the irregular ordering of these two ISIs. As a result,
each solution corresponds to only two, and not P + 1, points in the bifurcation
diagram. In the following we call such solutions “bipartite”. For larger P , a variety
of different bipartite solutions with (P + 1)-periodic ISI sequences can be observed
in a neighborhood of the interval (τ P

A , τ P
B ) where the regular spiking is unstable.

The stability regions of solutions alternate and may overlap leading to regions of
multistability.

The origin of the bipartite solutions is combinatorial and intrinsically related to
the period-2 solution that emerges at P = 1. Namely, it is possible to construct all

Fig. 4 a One-dimensional,
numerical bifurcation
diagram of (3), resp. (5), for
the ISIs Tj versus the delay τ

with q = 28. Red dots
correspond to attractors, blue
dashed lines corresponds to
unstable regular spiking as
obtained from (5). Fold
bifurcations are indicated by
blue hollow circles, while
solid blue circles indicate the
multi-jitter bifurcations
arising at Z ′(ψ) = −1, see
main text. b and c are zooms
of (a). d A stable period-2
solution for τ = 1.5. f A
stable period-4 solution
(T1, T1, T2, T2) for τ = 3.38

A
1

B
1

A
3

B
3

(a)

(b) (c)

(d) (e)
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bipartite solutions from the period-2 solution(Θ1,Θ2). Indeed, consider an arbitrary
(P + 1)-periodic sequence of ISIs (T1, T2, . . . , TP+1), where each Tj equals one of
the solutions Θ1,2 of (14) for some delay τ = τ0 ∈ [

τ 1
A, τ

1
B

]
. Let n1 ≥ 1 and n2 ≥ 1

be the number of ISIs equal to Θ1 and to Θ2 respectively. Then it is readily checked
that the constructed sequence is a solution of (5) at the feedback delay time

τn1,n2 = τ0 + (n1 − 1) Θ1 + (n2 − 1) Θ2. (15)

Indeed, let us calculate the next ISI consulting (5) and (15). Note that,

Ts+1 = 1 − Z (τ − (n1Θ1 + n2Θ2) + Ts−P)

= 1 − Z (τ0 − Θ1 − Θ2 + Ts−P) .

Due to (14) this yields Ts+1 = Ts−P . Therefore, the sequence is in fact a (P + 1)-
periodic point of (5).

Although bipartite solutions are the most common jittering solutions, others can
also be observed. Interestingly, some of them may also be obtained analytically. To
do this let us consider an equation

1 − T = Z(T − θ), (16)

where θ > 0 is a constant and T ∈ [θ, θ + 1]. As will be shown below, this equation
can be used as a basis for construction of solutions of the map (5). Indeed, whenever
(16) has a solution Θ it implies immediately the existence of RS with period Θ for
the delay values τ = Θ − θ + PΘ , P ∈ N. This observation is not surprising since
it corresponds to the well known mechanism of periodic solution reappearance in
delay differential equations [9]. However, more intricate is the case when for some
value of θ Eq. (16) has two or more solutions Θk . In this case one can construct
an arbitrary (P + 1)-periodic sequence (T1, T2, . . . , TP+1), Tj ∈ {Θk} for arbitrary
large P , and each such sequence will be a solution of the map (5) for

τ =
(

P+1∑

k=1

Tk

)
− θ. (17)

This statement is readily confirmed by a direct check. Indeed, for each item Tj+1 of
the sequence (T1, T2, . . . , TP+1) we have

Ts+1 = 1 − Z

(
τ −

s∑

k=s−P+1

Tk

)
,= Ts−P = 1 − Z(Ts−P − θ)

which coincides with (5).
Figure5 illustrates possible solutions to Eq. (16) in the for a PRC Z as defined in

(12). If the slope of the right hand side of (12), that is of Z , is not less than −1 for
all values of T , only one intersection and only one root Θ1 of (16) exists (Fig. 5a).
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Fig. 5 Solutions of Eq. (16)
for a the slope > −1 and
b < −1 The red line
corresponds to the right hand
side, the blue line to the left
hand side of (16)

(a)

(b)

But if the PRC is steep enough, namely has the slope < −1, three different solutions
Θ1, Θ2 and Θ3 of (16) exist within a certain interval of θ (Fig. 5b). In this case, the
values of θ corresponding to the emergence of the new roots can be found from the
condition that the left and the right parts of (16) contact. These values equal

θA,B = 1 − ψA,B − Z(ψA,B),

where ψA,B are the points where the slope of the PRC equals Z ′ (ψA,B
) = −1.

Equation (16) has three different solutions inside the interval θ ∈ [θA; θB] and only
one solution outside of this interval. It can not havemore than three different solutions
for the PRC (24).

This explains the emergence of bipartite solutions, and also tripartite solutions
which consist of three dfferent ISIs. These solutions exist for the supercritical
steepness, i.e. when Eq. (16) can have different roots Θk . Each periodic sequence
(T1, . . . , TP+1) of these roots, which has a period that divides P + 1, corresponds to
a periodic solution of the map (5) with τ given by Eq. (17). To construct all solutions
for a given P one should compose all possible periodic sequences of period≤ P + 1
for all values of θ ∈ [θA; θB].

A series of the bipartite and tripartite solution branches obtained from (16) is
shown in Fig. 6 for q = 28 and various P . The obtained solutions coincide with the
attractors from the bifurcation diagrams in Fig. 4 and complement the diagrams by
parts which are difficult to obtain by direct simulation like unstable and tripartite
solutions. Each observed bipartite solution corresponds to a pair of points (τ, T1)
and (τ, T2) on the diagram; each tripartite solution corresponds to three such points.
Note that solution branches which contain the same quantities of each contained ISI
coincide. For instance, in the case P = 3 the branches corresponding to bipartite
solutions of the form (T1, T2) ≡ (T1, T2, T1, T2) and (T1, T1, T2, T2) lie on top of
each other in Fig. 6c.
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Fig. 6 a–d Branches of regular spiking (green), bipartite (red) and tripartite (blue) solutions for
P = 1, . . . , 4, in system (1) with PRC (12) and q = 28. Stable parts of the branches are shown by
solid, and unstable by dashed lines

q

Fig. 7 Numerically obtained two-dimensional bifurcation diagram for system (1) with PRC (12).
Free parameters are the delay time τ and the steepness parameter q. The maximal observed attractor
period is coded in color. White corresponds to period-1 (regular spiking), shades of gray correspond
to finite numbers larger than one (bipartite and multipartite spiking), black corresponds to quasi-
periodic or chaotic spiking, or a period larger than 100. Red solid curves consist of multi-jitter
bifurcation points (corresponding to curves τ P

A,B(q)), and dashed red line indicates the critical
steepness with slope= −1

Equation (16) allows to obtain bipartite and tripartite solutions analytically but
it does not guarantee that the obtained solutions are the only ones, which can exist
in the system. Indeed, when the criticality, i.e. the maximal value of −Z ′(ϕ) > 1,
grows, the bi- and tripartite (P + 1)-periodic solutions may bifurcate again and give
birth to more complex behavior. This is illustrated in Fig. 7 where a two-dimensional,
numerical bifurcation diagram in the parameters τ and q is shown. The diagram was
obtained by simulating (1) with N = 20 different random initial values for each of
grid point, and the maximal observed period after a transient time is plotted. If the
period exceeded 100, the observed regime was considered aperiodic (black points).
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The large white area in the figure corresponds to regular spiking, i.e. period one. For
supercritical steepness, “islands” of irregularity appear, each corresponding to one
value of P = 1, 2, 3 . . .. The internal structure of these islands is quite complicated
and includes areas with solutions of different periods, often connected via period
doubling bifurcations, aswell as areaswith quasiperiodic and chaotic solutions.Close
to the border of each island there are bipartite period-(P + 1) solutions. Deeper in
the interior, solutions of higher periods emerge, as well as quasiperiodic and chaotic
solutions. However, we also observe windows of regularity inside the irregularity
islands.

4 High Multistability of Jittering Regimes

Let us estimate a number of different bipartite solutions for given P . For each pos-
sibility to write P + 1 = n1 + n2 with positive integers n1 and n2, we obtain

(P+1
n1

)

different sequences of length P + 1 consisting of n1 entries equal to T1 and n2 entries
equal to T2. Not all of these sequences correspond to different solutions of (5), since
some of them might be transformable to others by a periodical shift. Both sequences
correspond to the same periodic solution if and only if this is possible. Therefore
we can estimate that the total number of different solutions containing exactly n1
ISIs T1 in their sequential representation is bounded from below by

(P+1
n1

)
/(P + 1).

In general this number does not equal the number of different solutions because the
quotient (P + 1) disregards possible shift duplicates. Summing up over n1 gives an
estimate for the total number NP of solutions for a given value of P as

NP ≥ 1

(P + 1)

P∑

k=1

(
P + 1

k

)
= 2P+1 − 2

(P + 1)
.

Notice that all these bipartite solutions exist for the same value of P but possibly
for different ranges of the delay τ . However, easy to show that all of them form a
continuous branch emerging and vanishing in the bifurcation points τ P

A and τ P
B . To

this end consider the period-2 solutions when τ0 approaches the border of the interval[
τ 1
A; τ 1

B

]
, say τ0 → τ 1

A = 1 − κZ (ψA) + ψA. In this case the roots Θ1and Θ2 tend
to the same value T0 = 1 − κZ (ψA) which is the period of the RS at the bifurcation
point. Then if we construct a bipartite solution for some P as it is described above, the
value of the delay for which it exists tends to the value τ → τ0 + (n1 + n2 − 2)T0 =
P(1 − κZ(ψA)) + ψA = τ P

A,B . Easy to notice that this limit is exactly the delay in
the points of bifurcation. This finding is confirmed by the diagrams in Fig. 6 in which
all branches of bipartite solutions start from the bifurcation points on the RS branch.

Thus, we have proved that in jitter bifurcation points a large number of bipartite
solutions branch off the regular spiking. The number of different solutions emerging
in the dimension explosion points grows exponentially with the delay. This feature
results in quite sophisticated structure of the neighborhood of the bifurcation points.
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Many of the emergent jittering regimes are stable which implies high multistability.
Particularly, although we lack a proof, it seems that all the bipartite solutions with
same values of n1and n2 are stable simultaneously, see also [52]. High multistability
of the emergent jittering regimes leads us to call the corresponding scenario a “multi-
jitter” bifurcation.

High multistability is a well-known property of systems with delays. As already
mentioned, an important mechanism in this context is the so-called reappearance
of periodic solution in delay differential equations [9]. However, though similar in
certain aspects, the phenomenon reported here is different and the induced degree
of multistability is exponentiated. To clearly draw the distinction we first briefly
describe the phenomenonof the commonperiodical reappearance.Consider a general
equation

dx

dt
(t) = f (x (t) , x (t − τ)) , (18)

and suppose it has a T -periodic solution x (t) = x (t + T ) for one value τ = τ0 of
the delay. Then it is clear from the periodicity of the solution x (t) that it also solves
the equation (18) for the delay value τP = τ + PT , where P ∈ N. It means that the
same periodic solution reappears at infinitely many delay values. It is noteworthy
that the intervals of existence of reappearent solutions grow linearly with P . This
results in overlapping of these intervals for large delays and may cause multistability
with a number of coexisting solutions proportional to the delay.

In the system (1) multistability develops much faster, namely, the number of coex-
isting solutions grows exponentially with the delay. This shows that the involved
mechanism is quite different from the reappearance of periodical solutions. How-
ever, a certain type of reappearance still takes place. Although the new solutions
constructed with the help of period-2 solution (14) are not the same as the initial
solution, they still consist of the same ISIs. In this sense we observe a “reappearance
of ISIs” in the bipartite solutions.

5 Ring of Oscillators with Pulse Delayed Coupling

We have studied the multi-jitter bifurcation and jittering regimes in a single oscilla-
tor with delayed feedback. However, it turns out that multi-jitter instability can be
observed in network systems also. In the current section we study it in a ring of N
oscillators with pulse delayed coupling. The system is governed by

dϕ j

dt
= ω j + Z(ϕ j )

∑

t j−1
s

δ(t − t j−1
s − τ j ). (19)

where j = 1, N is the oscillator id, and each oscillator is described by its phase ϕ j ∈
[0, 1]. Each j-th oscillator receives input from its previous neighbour, the ( j − 1)-st
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j

j+1

Fig. 8 Dynamics of the ring demonstrating a rotating wave with a period T and lag Δ. Points
denote the time instants when the oscillators produce spikes. A spike emitted at a certain moment
of time by an oscillator arrives to the next oscillator after the delay τ

oscillator (the first one receives input from the last one, so we identify 0 and N ).
This means that each spike produced by the ( j − 1)-st oscillator at t j−1

s results in a
pulse arriving to the j-th one after the delay τ j . We will further consider identical
oscillators with ω j = 1 and set all the delays equal τ j = τ (which can be easily
generalized, see [49]).

The basic dynamical regimes observed in the ring are rotatingwaves characterised
by the same period of all the oscillators and equal time lag between the neighbors.
Suppose that (19) demonstrates such a regime with the period T and the lag Δ,
as depicted in Fig. 8b. Then, each oscillator receives one pulse per period at phase
ψ = (τ − Δ) mod T , which allows to determine the period as T = 1 − Z(ψ). The
total time lag over the whole ring must be a multiple of the period, i.e. Δ = RT/N ,
where R = 0, . . . , N − 1. Taking this all into account, the equations for rotating
waves can be written in parametric form as

T = 1 − Z(ψ), Δ = RT/N , τ = PT + Δ + ψ. (20)

Here,ψ ∈ [0; 1] is the phase at which oscillators receive input. R is the wavenum-
berwhich characterizes the type of the rotationwave and changes from zero to N − 1.
For example, R = 0 corresponds to complete synchronization of the ring, R = 1 to
the splay state, and so on. P is the integer number controlling the value of the delay. Its
maximal value is unbounded, and its minimal value is determined by non-negativity
of the resultant delay τ .

Further we study the local stability of a rotation wave. For this sake we introduce
a small perturbation and study its dynamics. We consider a perturbed solution in the
form t js = sT + jΔ + δ

j
s , where δ

j
s � T are deviations from the periodical regime.

Then, the inter-spike interval T j
s = t js+1 − t js can be determined as T j

s = 1 − Z(ψ
j
s ),

where ψ
j
s is the phase at which the pulse arrives. It is influenced by the timing of

a spike emitted by the ( j − 1)-st oscillator P periods earlier: ψ
j
s = t j−1

s−P + τ − t js .

Thus, we come to an equation

δ
j
s+1 = δ j

s + 1 − T − Z
(
ψ + δ

j−1
s−P − δ j

s

)
. (21)

This equation is in fact a map that governs the deviations dynamics. Note that
the deviations on the next period (s + 1) depend on the deviations on the current
period s and also on the deviations P periods ago. Thus, the map has dimension
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N (P + 1). For small deviations, (21) can be linearized and its solutions found in the
form δ

j
s ∼ exp(iωs + ik j), where ω is the frequency and k the wavenumber (not to

be confused with R). This leads to the characteristic equation

ei(P+1)ω − (1 + α)ei Pω + αe−ik = 0, (22)

where α = Z ′(ψ). Note that the periodical boundary conditions on the ring allow
only a limited set of wavenumbers k = 2πn/N , where n = 0, . . . , N − 1.

In the phase space of (19), the rotation wave is a limit cycle with period T and
multipliers λ = exp(iω). Thus, perturbations growth or damping depends on the
imaginary part of ω. Let us study the critical case corresponding to Imω = 0. For
this sake it is convenient to fix k and consider the points x = ei(P+1)ω + αe−ik on a
complex plane. These points lie on a circle C1 with the radius one and the center at
the distance |α| from the origin. Easy to show from (22) that

|x | = |ei(P+1)ω + αe−ik | = |(1 + α)ei Pω| = |1 + α|.

For α �= −1, the points with |x | = |1 + α| form a circle C2 with the radius |1 + α|
and the center in the origin. For α �= 0, the two circles C1 and C2 contact at the only
point x = (1 + α)e−ik corresponding to ei(P+1)ω = e−ik . Thus, only such ω satisfy
(22). Plugging this into (22) one obtains

(1 + α)ei(P+1)ω = (1 + α)ei Pω.

For α �= −1 this implies exp(iω) = 1. Plugging this into (22) results in
α = α exp(−ik), which for α �= 0 implies k = 0. Thus, for α /∈ {0,−1} the only
critical multiplier λ = 1 exists corresponding to the wavenumber k = 0. This multi-
plier λ = 1 is always present in the spectrum and corresponds to the neutral stability
along the limit cycle. To check if λ = 1 may be a multiple root for k = 0 we divide
(22) by (λ − 1) and obtain

λP − α

P−1∑

j=0

λ j = 0. (23)

Easy to see that λ = 1 is a root of (23) only for α = 1/P . Thus, for k = 0 the root
λ = 1 is simple for α �= 1/P and has multiplicity 2 for α = 1/P .

Other critical Lyapunov exponents may emerge only in the two cases, α = 0 or
α = −1. For α = 0, (22) implies exp(iω) = 1, or λ = 1. For α = −1, (22) implies
exp(i(P + 1)ω) = exp(−ik) or ω = −ik + i2πm/(P + 1), where m = 0, . . . , P .

Let us summarize the results for the characteristic equation (22). Its spectrum has
the formΛ ∪ {λ0}, where λ0 = 1 is the trivial multiplier corresponding to the neutral
stability along the limit cycle. Stability of the limit cycle is defined by the set Λ

which includes critical multipliers only in the following cases:
α = 1/P: one critical multiplier λ = 1 for k = 0.
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α = 0: (N − 1) critical multipliers λ = 1 for k �= 0, i.e. k = 2πn/N , where n =
1, . . . , N − 1.

α = −1: N (P + 1) − 1criticalmultiplersλ = exp(−ik + i2πm/(P + 1)),where
m = 0, . . . , P for k �= 0 and m = 1, . . . , P for k = 0.

Thus, only at the points α ∈ −1, 0, 1/P the limit cycle may change its stability.
To determine at which intervals of α the limit cycle is stable consider the case

α = 0. For such α, (22) has the form λP(λ − 1) = 0, and the set Λ consists of PN
zero multipliers and (N − 1) critical multipliers λk = 1 corresponding to k �= 0. Let
us study how these critical multipliers change at small variation of α. For |α| � 1,
the multipliers remain close to unity, i.e. λk = 1 + βk , where |βk | � 1. Plugging the
multiplier in this form into (22) andkeepingonly thefirst order termsoneobtainsβk =
α (1 − exp(−ik)) + o(α). This implies |λk |2 = 1 + 2α(1 − cos k) + o(α). Thus, for
k �= 0, the multipliers |λk | < 1 for α < 0. This means that the limit cycle is stable in
the parameter interval −1 < α < 0 and loses its stability on the boundaries of this
interval.

At α = 0, the emergence of N − 1 critical multipliers λk = 1 marks occurrence
of pitch-fork bifurcations in the manifolds corresponding to each k �= 0. As a result,
asymmetrical spiking regimes are bornwhich are not in the focus of the current study.

6 Jittering Waves and Their Relation to Jittering Regimes
of a Single oscillator

A much more remarkable scenario is observed at α = −1 where all the multipliers
become critical at once. Thus, it is the same multi-jitter bifurcation as in the case of
single oscillator. In the bifurcation point, the wave loses its stability, and the jittering
waves with distinct inter-spike intervals emerge. Below we carry out the detailed
numerical study of the bifurcation and the emergent jittering waves.

For this sake we consider the PRC in the form

Z(ϕ) = κ

2

(
1 − cos(2πϕ2)

)
(24)

Here, κ is the coupling strength which controls the magnitude and the slope of the
PRC.We used κ = 0.185 for which the PRC is depicted in Fig. 9. For this values two
points ϕ exist with Z ′(ϕ) = −1, and an interval with Z ′(ϕ) < 1 is between them.
This interval is marked red on the plot. According to our theory, the multi-jitter
bifurcations should be observed on the borders of this interval, and jittering regimes
inside.

We varied the delay and simulated system (19) directly starting from 20 different
random initial conditions for each value of τ . The obtained numerical results for
N = 6 are depicted in Fig. 10a by dots. The color of each dot corresponds to the
wavenumber of the established regime (see the legend). Gray dots correspond to
asymmetric regimes. By thin dashed lines are plotted the branches obtained theoret-
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Fig. 9 The phase response
curve (24) for κ = 0.185

Fig. 10 Numerical
bifurcation diagram for the
ring of N = 6 oscillators, the
observed inter-spike intervals
versus the delay. Dots of
different colors correspond
to different wavenumbers,
see the legend. Thin dashed
lines correspond to
theoretical branches, circles
to the pitch-fork
bifurcations, stars to the
multi-jitter bifurcations

1 2 3 4 5 0 1
2

3

T

ically according to (20). The points of multi-jitter bifurcations are marked by stars.
One can see that the numerically obtained dots lie precisely on the stable parts of the
theoretical branches. Other observed regimes are the asymmetric ones which are not
considered herein, and the jittering ones which are described in more details below.

Jittering regimes are characterized by distinct inter-spike intervals. On the bifur-
cation diagram, such the regimes correspond to several points of the same color for
the same value of τ . Such regimes are observed in the intervals where the rotat-
ing wave is destabilized through the multi-jitter bifurcation. Moreover, the jittering
regimes may be observed in even wider intervals which suggests that the bifurcation
may be subcritical. Each wave is close to the rotation wave from which it is born.
However, the intervals between the consecutive spikes of each oscillator are not
constant anymore, but constitute a periodical sequence of short and long intervals.
Noteworthy is that all the short and all the long intervals are equal, and their sequences
are identical for all the oscillators. Thus, we see bipartite regimes, as in the case of
a single oscillator.
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The prominent similarity between the properties of the multi-jittering instability
in a single oscillator and a ring of oscillators calls for explanation. To provide it, let
us first consider a general oscillator with delayed feedback

dx

dt
= f (x(t), x(t − τ)) . (25)

Suggest it has a periodical solution h(t) with the period T0 at τ = τ0 so that
h(t) = h(t + T0). Now consider a ring of N oscillators with delayed unidirectional
coupling

dxn
dt

= f (xn(t), xn−1(t − τ)). (26)

Let us look for solutions of (26) in the form of a rotating wave xn(t) = h(t + nθ ).
Plugging this solution into (26) one obtains

dh(t + nθ)

dt
= f (h(t + nθ), h (t + nθ − θ − τ)) . (27)

Since h(t) is a T0-periodic solution of at τ = τ0, it satisfies (27) for τ = τ0 − θ .
The boundary conditions on the ring imply xn(t) ≡ xn+N (t) or h(t) ≡ h(t + Nθ ),
which is fulfilled for θ = MT0/N , M ∈ Z . Thus, the existence of the solution x =
h(t) of (25) with period T0 at τ = τ0 implies the existence of the solution xn(t) =
h(t + nθ ) of (26) at τ = τ0 − θ for θ = RT0/N , R ∈ Z thewavenumber. This feature
may be characterized as “reappearance” of periodical solutions of a single oscillator
as rotating waves in a ring.

The notion of “reappearance” of solutions of a single oscillator as rotating waves
explains the prominent similarity between the jittering solutions in a single oscillator
and jittering waves in a ring of oscillators. Indeed, assume that we have a jittering
solution in a single oscillator, then the corresponding jittering wave will be observed
in a ring of oscillators. Bipartite jittering solutions correspond to bipartite jittering
waves, which explains the similarity of the multi-jitter scenario in a single oscillator
and in a ring of oscillators.

7 Discussion and Conclusions

We have reported the multi-jitter instability in a single oscillator with pulse delayed
feedback [Eq. (3)] and a ring of pulse oscillators with delayed coupling [Eq. (19)].
In such systems, the basic dynamical regimes are regular spiking and regular rotat-
ing waves, correspondingly. We have shown that both regimes may destabilize in a
multi-jitter bifurcation. In such a scenario, all the multipliers of the basic regimes
become critical simultaneously, and jittering regimes, or jittering waves, with dis-
tinct inter-spike intervals emerge. Near the bifurcation these jittering regimes are
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typically bipartite, i.e. consist of two different values of inter-spike intervals, which
are arranged in distinct sequences for the different regimes.

Bipartite regimes can be encoded by binary sequences, and in both cases the period
of the observed sequences is proportional to the delay. An important feature is that
for an arbitrary binary sequence of a given period, a parameter interval does exist
where the corresponding jittering regime is present and stable. Further, regimes with
the same number of long and short ISIs are stable in the same parameter interval.
This leads to an immense multistability, which increases exponentially as the delay
grows.

In spite of the similarity between the single oscillator system and the ring-coupled
system, the multi-jitter bifurcation in rings has an important distinguishing feature:
For one oscillator, the value of the delay must be large compared to the oscilla-
tor’s natural period. Specifically, the multi-jitter bifurcation giving birth to jittering
regimes of period Π takes place at the delay

τΠ = (Π − 1)
(
1 − Z

(
ψ∗)) + ψ∗,

where ψ∗ is the phase with Z ′ (ψ∗) = −1. Since the PRC Z(ϕ) is typically small
in amplitude, the period of jittering regimes is roughly the delay divided over the
natural period. Thus, to obtain jittering regimes with long periods one needs delays
several times larger than the natural period.

For rings the situation is different. As follows from (20), multi-jitter bifurcations
take place at delays τ = (P + R/N ) (1 − Z (ψ∗)) + ψ∗, where P, R ∈ Z which
implies that jittering regimes with period Π emerge at the delay

τΠ = (Π/N − 1)
(
1 − Z

(
ψ∗)) + ψ∗.

Thus, the period of the emergent jittering solutions is roughly proportional to the
delay multiplied by the number of oscillators, or the total delay along the ring. As
a consequence, even short coupling delays may result in higher-periodical jittering
regimes if the number of oscillators is large enough.

The condition for the bifurcation in the both systems is that the PRC Z(ϕ) is
steep enough, namely, its has intervals with slope Z ′(ϕ) < −1. In this case the map
F(ϕ) = ϕ + κZ(ϕ) describing the phase shift under the action of a pulse becomes
non-monotonous. This means that the non-monotonicity of the phase transition map
is inevitable for the multi-jitter bifurcation. In realistic oscillator models, the non-
monotonicity of the phase transition map F(ϕ) corresponds to a bended shape of
the isochrons in the phase space. In this situation, an external pulse may “switch”
the order of the points on the limit cycle, as illustrated in Fig. 11 for the FitzHugh-
Nagumo model.

The reportedmulti-jitter bifurcation seems to be very degenerate. In higher dimen-
sional, and real systems the bifurcation usually unfolds into a sequence of single bifur-
cations, although one can still observe high multistability of jittering solutions [52].
However, the bifuraction emerges generically in the systems (3) and (19) as soon as its
PRC is steep enough. How can one resolve this contradiction between the degeneracy
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Fig. 11 The isochrons of the FHN model show the structure necessary for a supercritical PRC
steepness Z ′ (ϕ) < −1. The phase order of two different points on the limit cycle, x and y, is
reversed by the corresponding pulse. This means they are carried to new points xnew and ynew
which lie on isochrons with a reversed phase order

of the bifurcation and its generic emergence? Let us elaborate on this question by con-
sidering the map (5). This map transforms a set x = (Ts−P+1, . . . , Ts) of P ISIs into
a new set xnew = (Ts−P+2, . . . , Ts+1). Thus, the phase space of the map has dimen-
sion P . However, along the most of the components of the vector x the map is just a
coordinate shift, so that xnew,1 = x2, xnew,2 = x3,…, xnew,P−1 = xP and so on. Only
the last coordinate of the vector is transformed non-trivially: xnewP = 1 − κZ (ψ) ,

whereψ = τ − ∑P
k=1 xk . This results in a very specific structure of themap Jacobian

D =

⎛

⎜⎜⎜⎝

0 1 0 0
...

. . .
. . . 0

0 . . . 0 1
α . . . . . . α

⎞

⎟⎟⎟⎠ , (28)

where α = κZ ′
(
τ − ∑P

k=1 xk
)
, which in turn leads to the characteristic equation

(9). The important point is that under any admissible perturbations of the system
(3) the structure of the Jacobian preserves. The transformation of the coordinates
x1 . . . xP−1can not have any other form but the one given above because otherwise
it would mean that the intervals of time in the past become longer or shorter while
we move into the future. Similarly, the time ψ between the pulse emission and the
pulse arrival can not be calculated in a different way, otherwise that would mean that
duration of the time interval does not equal the sum of durations of sub-intervals.
These two are fundamental properties of timewhich can not be violated by anymean-
ingful perturbation. Possible perturbations can only affect the delay τ , the feedback
strength κ or the PRC shape. All this may result in change of the coefficient α while
the structure of the Jacobian remains as in (28). Thus, in a certain sense generic
emergence of multi-jitter bifurcations rely on fundamental properties of time.
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Fig. 12 Two different
jittering rotating waves
observed in a ring (26) with
N = 5 and τ = 0. The top
panels depict the moments of
spike generation, the bottom
inter-spike intervals. The
PRC Z(ϕ) is selected as the
one of the electronic
FitzHugh-Nagumo oscillator
[51, 53]
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An interesting and open question is the necessary conditions for the emergence
of jittering. When the multi-jitter bifurcation was first discovered, it was believed
that the presence of a delay is an inevitable component. However, later we were able
to find jittering waves in rings of oscillators without delays, which is illustrated in
Fig. 12. Here, the symmetry related to the equivalence of time intervals in the delay
line is replaced by the symmetry related to the identity of the units in the ring. Thus,
the multi-jitter bifurcation and the emergence of numerous jittering solutions at the
bifurcation point still may take place.

Another question is the whether the ring topology is the only one which supports
multi-jitter instability or it may be observed in networks of more complex structure.
Recently we have started the search for multi-jittering instability in networks with
various typologies different from the ring. Some preliminary results of the study
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are shown in Fig. 13a which provides an example of the jittering regime observed
in a network of four identical oscillators which are coupled all-to-all, including
self-coupling. The coupling delays are all the same and equal τ = 1.55, whereas
the PRC is chosen in the form Z(ϕ) = −μ sin 2πϕ. For μ ≈ 0.03 the two-cluster
periodical regime destabilizes and gives birth to the jittering regime with distinct
inter-spike intervals. The oscillators are still split into two clusters, but the time
intervals between the clusters are not constant anymore but changewith time. Several
features of the emergent dynamics draws the attention. First, the emergent jittering
regime is not bipartite, but consists of various inter-spike intervals. Second, the regime
is not periodic but quasi-periodic. The both features are observed starting from the
bifurcation point, in contrast with the case of a single oscillator where they develop
only for large criticality. However, if the criticality grows, the observed regimes get
more complicated, including the cluster’s destruction, as depicted in Fig. 13b. It is
also noteworthy that the jittering regimes are observed for the PRCwhose slope does
not equal −1 in any point.

To conclude, themulti-jitter instability is a novel dynamical phenomenon recently
discovered in systems with pulse coupling. It is characterized by the destabiliza-
tion of regular spiking regimes and the emergence of the so-called jittering regimes
characterized by irregular inter-spike intervals. The most fascinating feature is the
combinatorial accumulation of co-existent jittering regimes. In systems with delay
this leads to an exponential growth of multistability with the delay time. First dis-
covered in a single oscillator with delayed feedback, the multi-jitter instability was
later observed inmore complex networks. These findings allow to assume a universal
character for this type of dynamics. A central task for the future research in this topic
is to determine the class of systems where a multi-jitter instability can be observed
and to obtain the conditions for its emergence.
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Fig. 13 Jittering regimes in a network of four all-to-all coupled oscillators, the explanation and the
parameters values in the text
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Power-Grids as Complex Networks:
Emerging Investigations into Robustness
and Stability

J.M.V. Grzybowski, Elbert E.N. Macau and T. Yoneyama

Abstract Power grids are ubiquitous engineering systems composed of tens or even
hundreds of interconnected subsystems. Such systems resemble a complexnetwork in
the sense that both the link structure and the nodedynamics are influential to its overall
behavior. Several decades of intensive research on power grids were not enough
to uncover the intricacies of stability issues triggered by the structure-dynamics
interplay. In this context, several attempts have been made to approach these issues.
In this chapter, we review a number of recent results in the topic of robustness and
stability in power grids, developed within the framework of the Theory of Complex
Networks, especially those concerned with the description of node dynamics by
means of the second-order Kuramoto model.

1 Introduction

Power networks are very large-scale distributed systems inwhich electrical machines
and devices interact with each other by means of electric and magnetic interconnec-
tions. TheAC (alternating current) nature ofmodern power networks poweredmostly
by synchronous generators connected in parallel requires synchronous evolution in
time. Therefore, strict frequency synchronization must be maintained despite of sud-
den changes in a system load or unanticipated faults in any of its components [1, 25,
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28]. Those systems are designed aiming to be stable and robust on fails. In special, it
is desired that the system’s synchronized state is preserved even under severe distur-
bances. Usually, this goal is sought by increasing connectivity and interdependence
among a system’s elements. However, this procedure also implies intrincacy of the
interactions at various scales, which by its turns may entail stability problems under
perturbations. Given their interconnected structure and dynamics, power networks
can be regarded as complex networks of oscillators in which the power lines are
the edges while the electrical machines and devices are the nodes. The interacting
dynamics among the constitutive elements results in the emergence of collective
dynamics with peculiar and specific properties [4, 36, 47, 52].

In the context of power systems engineering, classical techniques have been long
applied in the design of power networks [25]. Still, there are several open issues
related to stability and robusteness of these systems. The climax of these issues
happens when a blackout occur, which may leave millions of people in large regions,
even countries, without eletricity [18, 19]. Recently, the concept of smart grids,
in which different types of power sources with distintic capacities and availability
in time are increasingly incorporated into power grids, brings an unprecedented
complexity to the stability and robustness analysis. Therefore, in recent years, this
aspect of power grids has received increasing attention from the Physics andComplex
Networks communities [4, 5, 12, 22, 33, 36, 50, 51, 55]. They aim to exploit concepts
and techniques developed in their research areas to gain insights into themechanisms
underlying the functioning and malfunctioning of power networks. Several recent
publications have brought remarakble contributions to this theme from diverse and
complementary viewpoints. We hope to cover some of these contributions in this
chapter.

The chapter is organized as follows. In the remaining of Sect. 1, we briefly com-
ment on stability and robustness in power networks and then cover basic topics such
as the different types of stability that are of interest in the context of power grids;
the swing equation, which is the basic equation for the modelling of a power gen-
erator and the concepts of topological model, reduced model, structure-preserving
model and generator-motor model, which are the most common approaches taken
into consideration to the modelling of power networks. In Sect. 2, we cover some
alternative approaches to the assessment, understanding and enhancement of sta-
bility and robustness in power networks, as seen from the viewpoint of Complex
Networks Theory. In Sect. 3, we focus on some current limitations of such alterna-
tive approaches and the challenges involved in rendering them applicable in practice.
We also prospect probable features of future power networks and the corresponding
demands they shall pose.

Stability in power networks

Power grids are frequently described as country or continent-wide electric circuits
designed to deliver electric power in an economical and reliable manner. The proper
functioning of a power system requires that power utilities deliver uninterrupted
electrical power on demand, i.e., generation should meet the consumption load at
all times. This mode of operation is called load following and it has to deal with
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dynamical fluctuations on load demands. These small and unpredictable variations
in load cause small perturbations in the steady state of the power network. As the the
actual generation is mostly performed by synchronousmachines, small perturbations
resulting from this stochastic-like load variations must be properly dealt with by the
system, such that all generators remain synchronous over time.

Besides following load demand, power utilities have to deal with unanticipated
power faults, which contribute to originate instabilities and disturbances in the syn-
chronous state of the grid. Power faults can be caused most commonly by short
circuits, which disturb the systems’ steady state and can cause sudden changes in the
network topology and states. In such occasions, a transient period follows in which
generators can experience significant rotor angle excursions away from their original
steady state. Under a severe disturbance, a power network can eventually reach a new
steady state after a transient period, and such new steady state can be significantly
different from the pre-disturbance one. An acceptable steady state is one in which
all the network variables lie within acceptable limits in the post-disturbance period.
If the power grids fails to stabilize in such way, several undesired conditions can
emerge, such as frequency excursion, voltage collapse, generator tripping and load
shedding, among others. In this sense, stability means the ability of the power net-
work to regain synchrony and settle to an acceptable steady-state after being subject
to a large disturbance. For a detailed account on the subject, we refer to [25, 26].

Robustness in power networks

A central matter regarding electrical networks and network structures in general
is the extent to which their topology can support the continuity of the processes
they perform and remain operational under the failure or malfunctioning of a subset
of its nodes or links. Real power networks are designed such that they fulfill the
N − 1 criterion, which means that the power network should be able to operate
upon the unanticipated loss of any of its components, including major generating
units. This means that the sudden loss of any network node must be accommodated
by the remaining nodes. Such structural ability to handle shortcomings and remain
operational is termed robustness. Robustness is generally related to the availability
of redundant paths connecting nodes, which facilitates the redistribution of power
flow upon a line or node failure [11, 37].

1.1 Background and Motivation

Complete frequency synchronization is a stringent requirement in power networks
since they are powered mostly by synchronous generators. This means that the grid
components behave as coupled oscillators and must operate in step relatively to each
other. This is done by interconnecting generators to an steady electrical frequency
that should be maintained over time despite of changes in load demands. By inter-
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connecting synchronous generators, one can increase the rotational inertia of the
system, thus in practice making it less vulnerable to destabilizing disturbances [25,
28].

The rotating nature of synchronous generators requires that a synchronization
process take place every time a generator is connected to the power-grid in order
to avoid the occurrence of large electro-mechanical transients. The synchronization
process consists of matching the frequency, voltage and the phase angle of the gen-
erator’s electrical terminals to those of the oscillating grid [56]. As synchronization
is not handled properly, several issues may arise: the generator can be subject to
mechanical stress due to rapid acceleration or deceleration, the power system can be
subject to voltage deviations from normal, which can be rather large if the generator
is synchronizing to a relatively weak power system [56]. These facts concur to the
destabilization of the power network and, as such, are undesirable. Thereby, the gen-
erator ideally joins the grid as synchronization requirements are met concerning its
frequency, voltage and phase angle, relatively to those of the network. Similarly, as
a generator goes out of synchrony, it shall be disconnected from the grid to avoid the
propagation of instabilities generated by its desynchronized dynamics. This task is
accomplished through manual or automatic control mechanisms that put into oper-
ation circuit breakers that isolate the generator until it is brought back to normal
operation [56].

Understanding the interplay between topology and dynamics of power grids is one
way in which power-grid design can benefit form results from Complex Networks.
As the process of interest is modelled and analyzed as a dynamical complex network
of oscillators, one can unveil relevant aspects of the dynamics of instability and also
their effect upon the power-grid functioning and efficiency. Furthermore, it allows
the investigation of innate features of the network that contribute to the stability
and robustness of the power-grid against failures and perturbations. Towards that
end, different frameworks have been proposed in the literature as a collective effort
to unveil and characterize the relations between synchronization stability and the
network physical topology (given by its physical connections or wires) or electrical
topology (given by its electrical connections or admittances). In addition, several
studies focused on the topology itself and their robustness.

Considering a network of coupled generators, the synchronous operation is read
as

ω1(t) = ω2(t) = · · · = ωN (t), (1)

meaning that angular velocities of all the oscillators are equal. This synchronous
manifold is frequently invoked in theoretical studies of frequency synchronization
in power networks [4, 13, 21, 36].

Before we cover some recent contributions to the understanding of stability and
robustness in power networks from the viewpoint of complex networks, we present
basic concepts of stability as found in classic power system stability theory [26].
Thereby, the next section briefly covers the concept of stability and its variants in the
context of power networks.
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1.2 Basic Concepts: Stability

1.2.1 Rotor Angle Stability

Small-signal stability

Small-signal stability is the capability of the power system to handle small distur-
bances and sustain synchronous behavior upon them. The term small disturbance
refers to minor changes in the generation/load balance upon which the system settles
to a new stable state very near from the original one. It can be caused by the loss of
a load, for instance, which implies the generation/load balance to be upset. Under
small disturbances the small-signal stability of the system can be usually assessed
by means of equations of the power system linearized about the steady-state [25].

Transient stability

Transient stability is the capability of the power system to handle acute short-lived
disturbances and return to synchronous behavior upon them. The term acute distur-
bance refers to considerable changes in the generation/load balance, such as the loss
of a large load, the loss of a generator or a fault on a key transmission line. In this
case, the range of excursion observed in the power system state variables is large
enough to forbid the linearization of power system equations [25]. Thus, the nonlin-
ear equations must be handled in order to assess the stability of the power system.
An illustration of transient stability for the simplified power grid in Fig. 1 is shown
in Fig. 2.

1.2.2 Voltage Stability

Voltage stability is the capability of the power system to sustain steady voltage at
all buses within prescribed tolerable margins [25]. The adequate functioning of the
power grid relies on this requirement being met both during normal operation and
after a disturbance. The study of voltage stability includes the assessment of the
behavior of a power system as subjected to faults, loss of generation and sudden
increase in load, among others.

1.3 Basic Machine Model: The Swing Equation

The net torque or accelerating torque Ta acting on the rotor is given by the dif-
ference between the mechanical torque Tm provided by the prime mover and the
electromagnetic torque Te produced by power transfer. This yields

Ta = Tm − Te (2)
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Note that as Tm > Te, the rotor accelerates, while it deccelerates as Tm < Te. Under
a balanced generation/demand condition, Tm = Te. The effect of the net torque Ta
upon the rotor is expressed as a the rate of change of its angular velocity

J
dω

dt
= Ta, (3)

where J is the total moment of inertia of generator and turbine [25]. While some
authors consider the model (3) in their studies, it is often acknowledged that an
explicit expression for the damping torque is desirable. The damping torque Td is
modeled as a torque proportional to the rotor angular velocity, that is

Td = Dω, (4)

whereD is the damping torque constant. In this case, the accelerating torque is rede-
fined as Ta = Tm − Te − Td and, as a result, the swing equation explicitly accounting
for the damping torque can be written as

J
dω

dt
= Tm − Te − Dω (5)

The electrical power transfer Te between two buses connected by a lossless line
modeled as an inductive reactance X can be assumed to be equivalent to the real

Fig. 1 Scheme of a generator-to-infinite-bus power system. The infinite bus approximates a large
utility whose voltage, angle and frequency remain constant despite changes in power flow from the
generator. During the pre-fault stage (top), the grid operates in steady-state. In the on-fault stage
(middle), a short-circuit to ground occur in a power line and disturbs the steady-state of the system.
In the postfault stage (bottom), the fault is cleared by opening the faulted power line
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Fig. 2 Illustration of transient stability in power networks: the power network is operating under
steady-state (pre-fault) when a line fault F occurs at tF = 0.5s; the faulted line is opened after a
clearing time tC and the transient dynamics follows for t > tC . Scenario a illustrates the case when
tC ≤ tF + Δtcrit , as the rotor angle deviation remains bounded and the angular velocity deviation
settles at zero; b illustrates tC > tF + Δtcrit . The critical clearing time Δtcrit is the largest time
period a given fault can last before the system is rendered transient unstable

power transferred between the buses. The apparent power in the receiving end is
given as

SR = PR + jQR = ERI
∗ = ER

(
ES − ER

jX

)∗
= ER

(
EScosδ + jES sin δ − ER

jX

)∗
, (6)

which gives the expression for real power transfer

PR = ERES

X
sin δ = Pe (7)

As the equations are rewritten in per unit values, the torque and power quantities
canbeused interchangeably.Thus, the swing equationwith damping canbe expressed
as

J
d2δ

dt2
+ D

dδ

dt
+ Pmax sin δ = Pm, (8)

where

Pmax = ERES

X
(9)
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In a network, themaximumpower transfer between two buses i, j can be expressed
as Pi,j and the swing equation for the ith node can be written as

Ji
d2δi
dt2

+ Di
dδi

dt
+
∑
j

Pi,j sin
(
δi − δj

) = Pmi , (10)

where

Pi,j = EiEj

Xi,j
(11)

and Pmi is the mechanical input power in the ith node. Dividing the equation of the
ith node by its moment of inertia Ji, the swing equation can be rewritten in the more
usual form as

d2δi
dt2

= −αi
dδi

dt
+ 1

Ji

⎛
⎝Pmi −

∑
j

Pi,j sin
(
δi − δj

)⎞⎠ , (12)

where αi = DiJi. Alternatively to Eq.12, the swing equation is often described as a
system of first-order equations in the form

δ̇i = ωi

ω̇i = −αiωi + 1
Ji

(
Pmi +

∑
Pi,j sin

(
δj − δi

)) , (13)

where Pi,j is the entry in the ith row and jth column in the matrix of maximum
power transfers that results from the solution of power flow equations. Without loss
of generality, ωi can be regarded as the deviation of the angular velocity of the
ith oscillator relatively to the reference angular velocity of the power system. The
reference electrical frequency f0, commonly set to 50 or 60Hz in real power systems,
serves as a reference rotating frame whose angular velocity is given by 2π f0. This
means that the angular velocity of each oscillator is expressed relatively to a rotating
frame at reference angular velocity 2π f0. As such, the actual angular velocity of the
ith oscillator is given by ωi + 2π f0.

1.4 Modeling Power-Grids as Complex Networks

The basis to the understanding of a power network as a complex network is the fact
that power networks are arranged according to a given topology that is highly influ-
ential on its overall behavior. The topology of the power network can be represented
by a graph that expresses the interconnections among nodes. In this context, either
the physical network or the electrical network, i.e., the impedances or admittances
among nodes, can be considered, depending on the goal of the study. In this subsec-
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tion, the most common approaches to the modeling of power grids are presented on
the basis of Refs. [5, 12, 22, 27, 39].

Topological model

Topological models of power systems are known to neglect node dynamics and seek
relevant knowledge of the power grid by analyzing the structure of its corresponding
graph. In this context, the statistics of the network and its behavior under random
error or intentional attack are considered [6, 12, 22, 35, 44, 50, 51]. The study of
topological features of power systems can help enhance the understanding of how
cascading failures build up from a structural point of view (see for instance Refs. [7,
44, 55, 58, 59]).

Effective network model

In the effective network model, the system loads are assumed to be constant
impedances, such that the original network of generators and loads can be reduced
to a network of generators only. The idea is that the remaining network will only
have nodes where currents are injected. As such, in the reduced network the genera-
tors are interconnected by effective impedances that take into account the equivalent
impedance of transmission lines and loads. This formulation assumes that the power
consumption at any load is a function of voltage magnitude at the load node. Thus,
for a network with nG generators and nL loads, such that n = nG + nL, the original
network impedance matrix of size n × n is reduced to the so-called effective network
of size nG × nG by matrix partitioning or Kron reduction (we refer to [15]). After
the reduction process, the loads become part of the matrix of effective impedances
among generators. The generators can be modeled by the swing equation in Eq.12
and the values of Pi,j, δi, δj are collected from the solution of the power-flow equa-
tions for the reduced network. A clear disadvantage of network reduction is that
the original network topology is lost. As pointed in Ref. [2], this can conceal the
influence of the network topology upon stability. Further, load nodes frequently have
dynamics of their own that add important elements to the evaluation of stability in a
power system [2, 25].

Structure-preserving model

The structure-preserving model, as presented in Ref. [2, 39], proposes a dynamical
model of load buses in which it is assumed that node voltages are constant and
frequency variations about the initial operating point P0

ii
are small, where Pi is the

real power drawn by the ith load bus. Under these conditions, in a network with
generators and loads, the load dynamics is modeled as

Pi = P0
i + Diδ̇i, (14)

where Di > 0 is the frequency coefficient of load that represents the behavior of
power-frequency control systems. Note that, as Di → 0+, one obtains a constant
load model. Rewriting Eq.14, the equation for loads can be expressed as
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Fig. 3 Simplified in-out
scheme of an electrical
machine as it works as a
generator or a motor

Diδ̇i = −P0
i +

∑
j

Pi,j sin
(
δj − δi

)
(15)

The generator nodes can be modeled by the swing equation and the values of Pi,j,
δi, δj are collected from the solution of the power-flow equations for the original
network.

Synchronous motors model

The synchronous motor model, as considered in Refs. [4, 17, 20, 21], assumes
that all the network loads behave as synchronous motors. As such, they can be
modeled by the swing equation, exactly as generators, except for the fact that instead
of delivering power to the network as a generator does (Pi > 0), the synchronous
motor will withdraw power from it (Pi < 0). In essence, the synchronous motor
model is more general than the load model considered in the structure-preserving
and the effective network models. Recall from the formulation of Eq.10 that the
swing equation describing the synchronous motor model reduces to the load model
in Eq.15 as Ji = 0. This approach of modeling power networks is based on the the
fact that a synchronous machine can work either as a generator or as a motor. This
fact is further illustrated in Fig. 3.

2 Emerging investigations into Robustness and Stability in
Power Systems

A number of studies regarding the stability of power networks considered synchro-
nization and stability in the second-order Kuramoto model [4, 8, 9, 13, 16, 17,
20, 43, 48, 52], which can be formally mapped to the classical swing equation
[17, 20]. Not only the characterization of the phase transition is of interest, but
also admissible classes of initial configurations and natural frequency distributions
which lead to synchronization [9], sufficient conditions for initial setups leading to
asymptotic complete phase-frequency synchronization [9], critical coupling for the
onset of synchronization [21], parameter optimization for stability [36], the limits of
existence of coherent and incoherent solutions and observations about the transition
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from incoherence to coherence as a function of system size and inertia [43] and the
role of hysteresis in the phase transition [43]. In the following, a summary of recent
contributions to the topic is presented.

2.1 Basin Stability, Detours, Dead Trees and Transient
Stability

Basin stability and transient stability

The concept of basin stability was applied in a number of works as an interesting
approach to unveil the basin of attraction of an equilibrium point [33, 34, 47, 53].
The basin stability establishes (i) the size of the basin of attraction of the equilibrium
pointwithin the portion of the state-space around it towhich the system can be pushed
due to a disturbance and (ii) the probability that the system will return to steady state
after a disturbance. In the face of a perturbation that moves the systems’ trajectories
from its steady-state, the basin stability allows to determine whether the system will
settle or not as a function of its post-disturbance state. Since this methodology does
not require the linearization of the systems’ equations, it allows the evaluation of
large perturbations, as it happens to be the case of transients in power networks.

The basin stability can be defined in the context of synchronization in power-grid
models. Define B as the set of points that belong to the basin of the synchronous
state and, following [33], define the indicator function

χB (θ, ω) =
{
1, if (θ, ω) ∈ B
0, otherwise.

, (16)

which sorts the points that belong to the basin stabilityB. Further, consider a proba-
bility density function ρ (θ, ω) that assigns a probability of a post-disturbance initial
state (θ, ω). Further,

∫
ρ (θ, ω) dθdω = 1 indicates that all the system states that

may result from a perturbation are considered. The basin stabilityS can be defined
as

S (B) =
∫

χB(θ, ω) ρ (θ, ω) dθdω (17)

and it consists of a numerical value S ∈ [0, 1] that gives the likelihood that the
system will return to steady-state after a perturbation. Figure4 illustrates the concept
in the study of a generator-to-infinite-bus power grid model (in Fig. 5) using the
classical swing equation (Eq.12), as presented in Ref. [33]. In these simulations, we
present the basin of attraction of the equilibrium point (θ − θS, ω) = (0, 0), where
θS = θ∞ + arctan( Pm

Pmax
) is the angle of the generator relatively to the infinite bus,

assumed as θ∞ = 0. After suffering a perturbation, the generator can either return to
steady-state behavior in the casewhen the perturbation drives trajectories somewhere
into the basin of attraction of (θ − θS, ω) or not, in the case it drives the trajectories
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Fig. 4 Basin stability for a generator connected to an infinite bus for different values of maximum
power transfer Pmax , which stands for the coupling between the generator and the infinite bus:
a Pmax = 2, b Pmax = 5, c Pmax = 10, d Pmax = 20

Fig. 5 Generator-to-infinite bus model of a power network. The infinite bus stands for a node with
constant voltage, angular velocity and rotor angle deviation

out of it. In Fig. 4, the basin of attraction of the equilibrium point in the origin is
represented in green. As it can be seen from the figure, the area of the basin of
stability grows as Pmax increases.

From Fig. 4, it can be noted that the concept of basin stability is very illustrative of
the geometry of the basin of attraction of the a system’s steady-state operation point.
Further, as a inherent feature due to its numerical nature, the method unveils a tight
geometric picture of the system’s behavior within a set of perturbations

[
Δδ Δω

]T
.

The stability basin relies on massive computation, since the method is based on
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Fig. 6 Difference between the stability basin obtained by means of the classical model (Fig. 4) and
the extended model considering voltage-angle interplay, as proposed in Ref. [52]

numerical integration of the system states. Nevertheless, as the integration of the
equations for each set of perturbations is an independent process, the evaluation of
the stability basin can be subjected to massive parallel computation. For instance,
the simulations presented in Figs. 4 and 6 were performed using parallel algorithms
tailored for General-Purpose Graphics Processing Unit (GPGPU) by means of the
Compute Unified Device Architecture (CUDA) [41].

Coupling voltage dynamics into the generator equations

One of the main issues with studies considering the classical swing equation is that
bus voltages are assumed constant all over the power network. In reality, this is not the
case, since voltage magnitudes are related to and dependent on the power transfers
and power angle among the nodes. As such, a more realistic and insightful model
shall consider voltage stability as well. Considering a model for the sub-transient
and transient voltage dynamics, an extended version of the second-order Kuramoto
model which can account for voltage-angle stability interplay was studied in Ref.
[52]. Such interplay plays a significant role in the stability of power networks, since
the voltage magnitudes are directly related to the power transfer capability between
two nodes. In turn, power transfer capability is closely related to the size of the basin
of attraction of a node as it is hit by a perturbation (see Fig. 4). To this end, the
oscillator model is formulated as a third order model in which the transient voltage
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dynamics is modeled by a first-order equation. From the power flow equations and
the governing equations for the transient voltages, the node equations read

δ̈ = −αiδ̇ + Pm,i +∑N
j=1 BijEiEj sin

(
δj − δi

)
τiĖi = Ef ,i − Ei + Xi

∑N
j=1 BijEj cos

(
δj − δi

) , (18)

where Ef ,i is the stator field current, Xi is the generator transient reactance, B is the
network susceptance matrix and τi is a time constant associated to the variation of
voltage. As it turns out, the extended model was shown to make different predictions
upon disturbance scenarios. The authors report that the transition to nonstationary
states is facilitated in the extended model due to smaller stability region as com-
pared to those of the classical model [52]. Indeed, we show in Fig. 6 the difference
between the basin of stability of generator-to-infinite bus considering the swing equa-
tion (Eq.12), as proposed in Ref. [33], and the swing equation with voltage-angle
interplay (Eq.18), as proposed in Ref. [52]. As pointed in Ref. [52], the resulting
basin of attraction for the swing equation with voltage-angle interplay is smaller,
thus reflecting the importance of considering the dynamics of voltage in the study of
transient stability.

The role of dead tree gateways

Still regarding the concept of basin stability, the authors in Ref. [53] showed that
the stability of a power network can be hinted by the measure of single-node basin
stability [33, 34]. The idea was to identify nodes in the power network that are crucial
for stability by means of statistical features of the network. In particular, the authors
explore the role of network motifs in the stability of the power-network. As it turns
out, the stability basin of a power network can be evaluated with respect to each
of its nodes by disturbing each node in turn. As practical result, the study of the
relation between network motifs and stability allowed to pinpoint nodes with poor
stability without having to solve the network equations explicitly [53]. In particular,
two kinds of nodes were found to be of significant influence upon single-node basin
stability, namely the detour nodes1 and the dead tree gateways.2Detour nodes were
found to have either fair or high basin stability, while dead end gateways were found
to be very likely to feature poor basin stability [53]. This is somewhat expected since
detour nodes correspond to alternative or redundant paths which can be of great value
in the case of power flow redistribution. On the other hand, dead tree gateways are
expected to be associated with poor stability since no alternative paths exist in the
case of link malfunctioning. This fact was further explored in Ref. [33] and, as a
practical guideline, the authors hint that dead trees and dead tree gateways should be
avoided in real power networks.

1Following the definition in Ref. [38], a detour at a node u belonging to the shortest path between
nodes r and s, PG(r, s) = {r, ..., u, v, ..., s}, is defined as the shortest path between u and s that
does not go through link (u, v), that is, PG−(u,v)(u, s).
2Node adjacent to a dead tree.
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Relating the swing equation to the non-uniform Kuramoto model

In Ref. [13], under the assumption of over-damped generators, the authors apply
singular perturbation analysis to study transient stability in reduced network power
system models in which generators are modeled by means of the swing equation

Jiθ̈i + Diθ̇i = ωi +
n∑

j=1

aij sin
(
θj − θi + ϕij

)
, (19)

where ωi = Pmi − E2
i Re (Yii), aij = EiEj

∣∣Yij∣∣, ϕij = arctan
(
Re(Yij)
Im(Yij)

)
∈ [0, π2) is the

phase shift between generators i and j, Y is the network admittance matrix and
Ei is the voltage at the node i. The authors provide algebraic conditions for syn-
chronization as a function of network parameters. The results are derived on the
basis of the so-called non-uniform Kuramoto model which results from Eq.19 as
one makes Ji = 0. The authors show that, on the long time scale and under the
assumption of over-damped generators, the synchronization conditions for the tran-
sient stability of the coupled swing equations can be approximated with those of
the non-uniform Kuramoto model. The expressions for the critical coupling lead-
ing to complete frequency synchronization are then developed on the basis of the
Non-Uniform Kuramoto model as [13]

�crit = 1

cos (ϕmax)

(
max
i �=j

∣∣∣∣ωi

Di
− ωj

Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

aij
Di

sin
(
ϕij
))

(20)

From Eq.20, the authors in Ref. [13] summarize that frequency synchronization
requires that the network connectivity dominate the non-uniformity in power inputs
and the power losses.

2.2 Local Stability in Networks of Second-Order Kuramoto
Oscillators

Local stability in highly connected networks

In Ref. [4], the authors investigate local stability of highly connected power-grids.
By considering the network equations linearized about the synchronous state, which
reads

δθ̇i = δωi
δω̇i = −αδωi − Pi − Pmaxδθi

∑N
j=1 Lij cos

(
θj − θi

)+ Pmax
∑N

j=1 cos
(
θj − θi

)
δθi

,

(21)
where L is the network Laplacian matrix, one is led to the simplification of the cou-
pling terms as the summation of the couplings is a constant value in the synchronous
state, that is,
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P̄ − Pi

Pmax
=

N∑
j=1

Aij sin
(
θj − θi

)
(22)

This allows the simplification

cos
(
θj − θi

) ≈ 1 (23)

since the phase differences become smaller as the number of terms being summed
increases while the summation remains constant.

This reasoning allows Eq.25 to be rewritten as

δθ̇i = δωi

δω̇i = −αδωi + Pmaxδθi
∑

Lij − Pmax
∑N

j=1 Lijδθj
(24)

As
∑

j Lij = 0, Eq.24 can be simplified to

δθ̇i = δωi

δω̇i = −αδωi − Pmax
∑N

j=1 Lijδθj
(25)

As the states of the i = 1, ...,N coupled systems are collected into the network
state vector δx = [ δθ1 δω1 · · · δθN δωN

]
, one obtains

δẋ = (I ⊗ J + PmaxL ⊗ E) δx, (26)

where J =
[
0 1
0 −α

]
is the Jacobian matrix of Eq.25 and E =

[
0 0
1 0

]
is the inner

coupling matrix of the individual systems. Put into its diagonal form, Eq.26 yields
N vibrational modes with individual dynamics given by

δξ̇i = (J + γiPmaxE) δξi, (27)

where γi are eigenvalues of the Laplacian matrix and γN ≥ · · · ≥ γ2 ≥ γ1 = 0.
According to the MSF framework [45], the local stability of the synchronous state
relies on that of the second mode, i.e., δξ2, whose eigenvalues correspond to its Lya-
punov exponents due to the linearity of Eq.27. As a consequence, one obtains the
Lyapunov exponents as

λ1,2 = −α ±√α2 − 4γ2Pmax

2
(28)

As observed in [4], since α, γ2 and Pmax are positive quantities, the Lyapunov expo-
nents given by Eq.28 are negative, which reveals that the synchronous state is locally
stable for highly connected networks. Indeed, power networks are inherently stable
to sufficiently small perturbations and that is a necessary condition for its function-
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ing, otherwise it would not be able to handle small power fluctuations to which the
grid is continuously subjected [25]. The results directly relate local stability to the
value of the damping coefficient α. Although the damping parameter is represented
in simplified form in the model (24), it is known to depend on a series of factors such
as the presence of automatic voltage regulators and power system stabilizers [25].
Thus, the tuning of the damping coefficient can help enhance the stability of power
networks, as shown in Ref. [36].

Optimizing generator parameters towards most stable steady states

A similar approach was adopted in Ref. [36], as the authors allow for heterogenous
couplings among oscillators and consider a reduced network in which the loads are
modeled as constant impedances. Under the reduced network model the generators
are connected with all-to-all couplings and the values of the coupling between any
two nodes is related to the nodes’ voltages and to the admittance between them.
The main contribution of the study is the derivation of algebraic expressions to the
tuning of generators such that they operate in the point of maximum stability as a
function of a regulation droop parameter, Ri and the damping parameter, Di. The
droop parameter regulates the output of the equation of the variation in mechanical
power relatively to the angular velocity and it is defined as

∂Pmi

∂ωi
= −1

ωRRi
, (29)

where ωR is the grid reference angular velocity. Such parameters are optimized on
the basis of the real part of the smallest nonzero eigenvalue of the coupling matrix
evaluated at the steady-state, which is denoted α2, and Hi is the inertia constant of
the ith generator, which is related to the total inertia of the ith node, Ji, by means of
the expression Ji = 2Hi

ωR
. According to Ref. [36], tuning the droop parameter Ri, the

optimal stability point is reached as

Ri = 1

4Hi
√

α2 − Di
(30)

or, equivalently, tuning the damping parameter, it yields

Di = 4Hi
√

α2 − 1

Ri
(31)

for each generator in the reduced networkmodel. A hypothesis that allows the deriva-
tion of this result is that βi = (Di + 1/Ri) /2Hi = β is the same for all generator
nodes. The authors show by means of numerical simulations that the optimization
of generator parameters improves stability against small perturbations for a model
of the Northern Italy power grid [36]. Indeed, the importance of damping to sta-
ble synchronization is recognized in classical power systems stability theory [25]
and was recognized to have influence upon the onset of synchronization [14, 21].
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Although the hypothesis on uniform β might not hold in practice, the parameter
tuning based on the results presented in Ref. [36] are significant in the sense that
they help enhance the comprehension about the factors influencing local stability in
power networks and even provide an approach to the derivation of near-optimal or
sub-optimal parameter tuning in real power grids.

Algebraic expressions for local stability in the multi-rate Kuramoto model

The local stability of the synchronous state in power networks was also studied by
means of the multi-rate Kuramoto model [14], defined as

Jiθ̈i + Diθ̇i = Pmi + Pmax
∑n

j=1 sin
(
θj − θi

)
, i ∈ {1, ...,m}

Diθ̇i = Pmi + Pmax
∑n

j=1 sin
(
θj − θi

)
, i ∈ {m + 1, ..., n} , (32)

where equations 1 tom describe generators andm + 1 to n load node equations. It can
be noted that as m = n, the coupled equations are all second-order, while for m = 0,
the model (32) becomes a set of coupled first-order equations. It can be noted also
that this formulation assumes all-to-all coupling among the oscillators. Considering
all positive inertia Ji > 0 and damping Di > 0, the authors in Ref. [14] show that
the local exponential stability of frequency synchronization depends on the damping
coefficientsDi but not on the inertia coefficients, Ji. The authors achieve an algebraic
expression that allows the evaluation of local stability as a function of the network
and oscillator parameters.

However, since they are local in nature, the results do not apply in the case of tran-
sient stability studies, in which inertial terms are known to have profound influence
[14, 25].

2.3 Onset of Complete Frequency Locking in
Structure-Preserving Generator-Motor models

The existence of a synchronous manifold

For a power-grid with N nodes, the second-order model for electricity distribution
developed in [17] and further studied in [4] is given by

θ̇i = ωi

ω̇i = −αωi + Pi − Pmax
∑N

j=1 Aij sin
(
θj − θi

) (33)

for i = 1, 2, ...,N , where θi is the phase of the ith oscillator, ωi is time-dependent
frequency, α is a parameter of dissipation due to friction, Pi is the power consumed
(Pi < 0)or generated (Pi > 0) in the ith node at time t. Further,Aij is an entry in the ith
row and jth column of the network adjacency matrix A, which is assumed symmetric
since the network is undirected; if nodes i, j are connected, then Aij = Aji = 1, and
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Aij = Aji = 0, otherwise. As the N oscillators operate in the same frequency ωs, the
network is synchronized. As pointed in [4], the synchronous solution implies

ω̇i = 0
ωi = ωs

, (34)

where ωs is the synchronous frequency. Taking the conditions on Eq.34 into the
equations of the node dynamics (33) yields

θ̇i = ωs

0 = −αωs + Pi − Pmax
∑N

j=1 Aij sin
(
Δj,i
) , (35)

where Δj,i is constant in the synchronous solution. Following [4], define the degree
of the ith node as

ki =
N∑
j=1

Aij (36)

and the existence of a synchronous solution for system (33) is guaranteed by the
condition

Pmax ≥
{ |αωs − Pi|

ki

}
max

=
{∣∣P̄ − Pi

∣∣
ki

}
max

= P∗
max (37)

Note that the condition given by the inequality (37) is satisfied once
∑N

j=1 Aij

sin
(
θj − θi

) ≤ ki.

The onset of frequency synchronization: a necessary condition

In Ref. [17], the authors consider the node equation

θ̇j = ωj

ω̇j = −αω + Pj + Pmax
∑N

k=1 Ajk sin
(
θk − θj

) , (38)

where θj and ωj are functions of time and denote the phase and angular velocity of
the jth oscillator, respectively, α is a damping parameter, Pj is the normalized power
delivered (Pj > 0) or consumed (Pj < 0) in the jth node, Pmax is the maximum
capacity of the transmission line between two nodes and Ajk is the entry of the
symmetric adjacency matrix at row j and column k that is equal to one if nodes j and
k are linked and to zero, otherwise. As one considers a network of coupled generators
and loads, the synchronous state can be taken asω1(t) = ω2(t) = · · · = ωN (t), which
means that the angular velocities of all the oscillators are equal to the synchronous
velocity ωs(t). In this case, ω̇j − ω̇k = 0. Following [4], upon the assumption of the
condition ω̇j = 0, ωj = ωs, j = 1, 2, ...,N for some constant synchronous angular
velocity ωs, Eq. 38 becomes
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0 = −αωs + Pj + Pmax

N∑
k=1

Ajk sin
(
Δkj
)

(39)

where Δkj = θk − θj is a constant. As one recognizes that Δj,i = −Δi,j then, for an
undirected network,

N∑
i=1

N∑
j=1

Aij sin
(
θj − θi

) = 0 (40)

and the system of algebraic Eqs. 35 becomes

N∑
i=1

(−αωs + Pi) = 0 (41)

and, one step ahead,

− Nαωs +
N∑
i=1

Pi = 0 (42)

which finally yields the synchronous frequency of the synchronized network

ωs =
∑

Pi

αN
= P̄

α
, (43)

where P̄ is the average value of all the Pi. Under these conditions, it was shown in [4]
that the summation of the equations of the N nodes yields the synchronous angular
velocity

ωs =
∑ Pj

αN
(44)

In a power-grid, the balance between generators and consumers requires that∑N
j=1 Pj = 0, which means that ωs = 0. Over the time, whenever these conditions

do not hold, instabilities appear. Two indexes can be used to evaluate how effective
a specific power grid is in handling instabilities: synchronization quality and per-
sistence over time. The former refers to how tight the matching among the angular
velocities of the oscillators is, while the latter refers to how long they remain syn-
chronized given a reference time window. Actually, over the time, consumer’s power
request keep changing which requires continuous adjustments in the power supplied
by generators. This scenario implies that in fact the synchronous angular velocity
(frequency) keeps changing over the time.

Following this reasoning, itwas shown inRef. [4] that there is a lower bound for the
existence of a synchronous manifold to coupled second-order Kuramoto oscillators
is given by
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Psm = max
j

{∣∣αωs − Pj

∣∣
kj

}
, (45)

where dj =∑N
k=1 Ajk , is the degree of node j.

Consider the second-order Kuramoto model given by Eq.38, with damping given
by α > 0, and coupling strength Pmax. A necessary condition for complete frequency
synchronization

Pmax ≥ Psm � max
j

{∣∣αωs − Pj

∣∣
kj

}
, (46)

where Pj, j = 1, ...,N is the power injected/consumed by node j and dj stands for
its degree.

This indicates that the variance in the distribution of Pj has to be compensated
with stronger coupling or a high value of the node connectivity. This can also be
seen as one looks for the coupling strength at the onset of synchronization for a fully
connected network.

The onset of complete frequency synchronization: a tight condition

In Ref. [21], the authors consider the deviation equations θ̈i − θ̈j given by

ω̇i − ω̇j = −α
(
ωi − ωj

)+ (Pi − Pj
)+ PmaxE

(
θi, θj, θk

)
(47)

Following [10], the maximum value for the function E, given by

E
(
θi, θj, θk

) = 2 sin
(
θj − θi

)+
N∑

k=1,k �=i,j

(
sin (θk − θi) + sin

(
θj − θk

))
(48)

can be obtained by means of the calculation of the function extremes with respect
to the phase angles θi, θj, θk . There are two solutions and the maximum takes place
for θi = θj or 2θk = θi + θj. In case θi = θj, there is no power flow. For 2θk = θi + θj
the function (48) reaches a maximum. The optimal solution

(
θj − θi

)
opt provides the

maximum of Eq.48 as a function of the number of oscillators in the network. Thus,
the optimal phase difference as found in Ref. [10] is given by

(
θj − θi

)
opt = 2 arccos

(
− (N − 2) +

√
(N − 2)2 + 32

8

)
(49)

and it occurs when the function in Eq.48 reaches

Emax = 2 sin
(
θj − θi

)
opt + 2 (N − 2) sin

((
θj − θi

)
opt

2

)
(50)
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Fig. 7 Optimal phase angle
(
θj − θi

)
opt as a function of the number of nodes N and Emax as a

function of the optimal phase angle and the number of nodes

The behavior of Emax as a function of the number of oscillators is shown in
Fig. 7. Equation50 provides a tight lower bound to the onset of complete frequency
synchronization, as originally observed in Ref. [10] and recently refined in Ref. [16].
Following Refs. [10, 16], consider the optimal phase difference

(
θj − θi

)
opt and Emax

as in Eqs. 49 and 50. For complete frequency synchronization of the second-order
Kuramoto model in Eq.38, N ≥ 2, it is necessary that

Pmax ≥ Pcritical � max

∣∣Pi − Pj

∣∣
Emax

, (51)

where Pi,Pj, i, j = 1, ...,N , are the injected/consumed power and
(
θj − θi

)
opt

∈[
π
2 , π

]
.

As the influence of angular velocities are taken into account, it is possible to
provide a closer estimate to the onset of complete frequency synchronization for
networks of second-order Kuramoto oscillators with all-to-all couplings.

The onset of frequency synchronization: a closer estimate

Following Ref. [21], as one takes the limit
(
θj − θi

)→ (
θj − θi

)
opt then E → Emax.

Consider Eq.49 and admit E = Emax for the purpose of finding Pmax for the onset
of synchronization, as proposed in [21]. Further, denote ωi − ωj = Δωij in Eq.47 to
obtain the following linear ODE
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Δω̇ij + αΔωij = (Pi − Pj
)+ PmaxEmax, (52)

whose solution reads

Δωij = Pi − Pj

α
+ PmaxEmax

α
+ ω0e

−αt (53)

for some arbitrary integration constantω0. As t → +∞, the expression can be rewrit-
ten as

Pmax > max

∣∣αΔωij −
(
Pi − Pj

)∣∣
Emax

, i, j = 1, ...,N (54)

For the purpose of estimating the critical coupling for the onset of complete frequency
synchronization, Eq.54 gives a lower bound forPmax . ConsiderPi, Pj as constants and
one can approximate Pmax by means of the upper bound of the deviation in angular
velocities, Δωmax. As one considers that the angular velocity for a given oscillator
belongs to the interval [ωmin, ωmax], where ωmin = min (ωi) and ωmax = max (ωi),
i = 1, ...,N , one can define that interval by observing each oscillator will rotate with
angular velocity corresponding to its natural frequency as t → +∞ in the case of
weak coupling. Put in terms of an equation, this means that for weak coupling

ωi = Pi

α
(55)

For strong coupling and t → +∞,

ωi = ωs =
N∑
i

Pi

αN
(56)

such that one obtains

Δωmax = ωmax − ωmin = max
i

∣∣∣∣∣
∑N

i Pi − NPi

αN

∣∣∣∣∣ (57)

Therefore, the value of Pmax from Eq.54 can be estimated by means of

Pmax = max

{∣∣αΔωmax − (Pi − Pj
)∣∣

Emax

}
, i, j = 1, ...,N (58)

Note that as ωi = ωj, Eq. 47 becomes
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0 = (Pi − Pj
)+ Pmax

⎧⎨
⎩2 sin

(
θj − θi

)+
N∑

k=1,k �=i,j

(
sin
(
θj − θk

)+ sin
(
θj − θk

))
⎫⎬
⎭
(59)

and one once again obtains the equation

Pmax = max

∣∣Pi − Pj

∣∣
Emax

(60)

Equation60 gives the value belowwhich synchronization between nodes i and j does
not occur. Thereby, a necessary condition for synchronization is that the coupling
strength is larger than Pmax given by Eq.60. Recall that this criterion was developed
under the assumption that the network is fully connected. To generalize the result to
undirected Laplacian matrices not fully connected, one can consider the results in
Ref. [4] to establish that, for highly connected networks, the scaling

Pmax = λ
full
2

λ2
Pfull
max (61)

holds, where λ2 is its smallest nonzero eigenvalue of the Laplacian matrix G of a
highly connected undirected and unweighted network with N nodes and λ

full
2 is the

smallest nonzero eigenvalue of the Laplacianmatrix of the analogous fully connected
matrix [21].

2.4 Synchronizability of Power Networks with Distributed
Generation

Generation decentralization and the robustness against topological failures

The study of networks of second-order Kuramoto oscillators with bimodal distribu-
tion in Ref. [49] focused on the impacts of successive decentralization of generator
units upon dynamic stability, synchrony and robustness against structural failures.
The methodology consisted of evaluating the phase ordering of the power grid model
by means of the order parameter

r∞ = lim
t0→∞

1

Δt

∫ t0+Δt

t0

∑
j

eiθj(t)

N
dt (62)

for increasing decentralization of the generator units. The authors find that the max-
imum allowed perturbation to the steady state shrinks with decentralization. This
indicates that a decentralized grid is more likely to get unstable under a perturbation
than a centralized one of equivalent power under the same perturbation. The reduced
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inertia of smaller generator units seem to reduce their capacity to handle perturbations
to synchronous dynamics, thus facilitating the emergence of rotor-angle instabilities.
Regarding synchrony, it was found that the order parameter increases with decentral-
ization. Similar results were found in Ref. [21] by means of a different methodology
that shows that the critical coupling for the onset of complete frequency synchro-
nization substantially decreases with decentralization. Another factor in favor of
decentralization is the increased robustness against structural failures, as concluded
in Ref. [49]. It is intuitive that decentralized generation tends to be less affected by
the loss of a single transmission line, for example. Besides, the relative importance of
a single generator or particular transmission line decreases in a decentralized power
grid. However, it has to be considered that in a decentralized grid the number of
occasional unanticipated failures tends to increase due to the larger number of nodes
and interconnections.

Further conclusions regarding distributed generation (DG) are presented in Ref.
[29] by means of the evaluation of diverse vulnerability measures against increasing
penetration of DG. The vulnerability measures take into account both the equations
of power flow and statistical measures from Complex Networks theory. The authors
consider the steady-state solution of the power flow equations to assess the vulnera-
bility measures. This approach seems to provide a closer approximation of the power
system properties than early studies based only on system topology [12]. Among the
vulnerability measures, the authors consider the ones based on efficiency of trans-
mission of active power, such as the Operational Vulnerability Index (OVI). The OVI
is lower to the proportion that the distance of transmission of active power increases
and it was found that power grids with shorter electrical distances between sources
and loads have improved reliability [29]. Shorter distances between generation and
loads is a characteristic of power grids with distributed generation, as a fair share of
generation can be located in the distribution network.

3 Perspectives and challenges

There are many challenges regarding the application of the concepts and tools of
complex networks to the study and understanding of power networks.We summarize
below the ones we consider to be the most salient.

Dropping of assumption on homogeneous node parameters and connectivity
over the power network

There are ways in which the study of robustness and stability in power networks
from the viewpoint of complex networks can be enhanced. They mainly involve
relaxing assumptions made on the modeling of loads, transmission lines and network
connectivity. There is a considerable overlap of theory developed in the context of
the Kuramoto model that is applied in studies of power networks. It is common to
have the assumption of homogeneous loads all over the network. This simplifies the
calculations but may render the results little representative of the real power network
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dynamics. As another instance, the assumption on all-to-all connectivity holds for
reduced-network models, in which a connected network of rotating generators and
passive loads are boiled down to a network of rotating generators with all-to-all
connections through links that represent both line impedances and load impedances.
However, the assumption on passive loads (i.e., loads that do not have a dynamical
behavior) is limited, since a fair share of loads do have a dynamical behavior that
influence stability of real power networks.

Assessing and clarifying the limitations of complex network approach

Many of the techniques and tools of complex networks have been applied in the
context of power networks. Important insights have been obtained that enhanced the
understanding of underlying phenomena affecting stability and robustness. However,
many of the discussions lack clarity regarding the limitations of the proposedmethod-
ologies and the consequences of the modelling assumptions upon the applicability
of the results in real power networks.

The increase of renewable sources in power networks

The increasing addition of renewable generation such as solar and wind shall bring
new dynamical features to the interconnected power networks [24, 54]. There are a
number of reasons for that. First, solar and wind power are known to be intermittent
in nature, in the sense that their output at any given time heavily depends upon the
availability of solar radiation and sufficient wind velocity, respectively. As such, the
output of a solar or wind power plant is quite uncertain. Second, the DC nature of
solar and wind power outputs and the AC nature of power networks require the DC-
AC conversion of power bymeans of electronic interfaces. In this process, a potential
increase in the harmonics content of the power signal may affect power quality and
system stability.

These issues are likely to influence the approaches currently in use for generator
and load modeling and, further, the representation of power grids by means of its
corresponding graph.

The impact of smart-grid technologies

The concept of smart-grid refers to power networks in which the subsystems inten-
sively exchange information among them, which contributes to improve efficiency
and reliability of operation and control. This is increasingly important as the share
of renewable sources of intermittent nature in the grid increases. In order to simplify
coordination and control of the overall power network, smart-grids with distributed
generation have been thought of within the framework of microgrids. A microgrid
is thought of as a cluster of generators and loads at the distribution level that are
connected to the host power system by means of a single point of connection [42].
Thereby, each cluster would be designed to be responsive to control and coordination
signals coming from the host power system. The matter of how to define such clus-
ters and optimize them for synchronization seems a problem tailored for the complex
networks framework (check studies in this topic in Ref. [3, 23, 30–32, 40, 46, 57,
60]).
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