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ABSTRACT

The field of Game Theory provides a useful mechanism for
modeling many decision-making scenarios. In participating
in these scenarios individuals and groups adopt particular
strategies, which generally perform with varying levels of
success. However, most results have focussed on players that
play the same game in an iterated fashion. This paper de-
scribes a framework which can be used to observe agents
when they do not know in advance which game they are going
to play. That is, the same group of agents could first play
a few rounds of the Iterated Prisoner’s Dilemma, and then
a few rounds of the Linear Public Goods Game, and then
a few rounds of Minority Game, or perhaps all games in a
strictly alternating fashion or a randomized instantiation of
games. This framework will allow for investigation of agents
in more complex settings, when there is uncertainty about
the future, and limited resources to store strategies.
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1 INTRODUCTION

Turocy and von Stengel define Game Theory as ”the formal
study of decision-making where several players must make
choices that potentially affect the interests of the other play-
ers” [33]. Game Theory provides the ability to reduce real
world problems - those which are stylized in the form of a
game - to mathematical models. This has resulted in the
establishment of a huge array of formally recognized prob-
lems. Examples include the Minority Game [7], the Iterated
Prisoners Dilemma [4], Public Goods Game [14], etc. How-
ever, most game theoretic approaches consider each game
in isolation and do not investigate mechanisms, strategies
or behaviours across games. This is inadequate for compu-
tational social simulations, since in reality human beings
are confronted by many (possibly conflicting) games, and
respond differently to each. Cognitive limitations on memory,
time, resources, etc. combined with spatial influences result
in actual behaviour that is not predicted/matched by rational
agent simulations [32]. In parallel, the field of AI has been
developing algorithms and techniques that focus on achieving
human-level competence in several fields. Complex games
with large state spaces such as Checkers [28] and Go [30],
games with imperfect information such as Texas Hold’Em
Poker [6] have been successfully played by algorithms. There
are even algorithms that attempt to induce long-term co-
operative behaviour in partly-competitive settings [9, 13].
However, to the best of our knowledge, there has been no

attempt at finding a general bag of strategies that work in
both competitive and cooperative settings, allow for the emer-
gence of cooperation, altruism, and are flexible enough to be
applied to many games. Human beings, on the other hand,
have limited cognitive abilities and yet are able to (seemingly)
effortlessly switch from domain to domain, and successfully
compete as well as cooperate. We believe this is partly due to
the inadequacy of computational simulation tools available
for complex adaptive agents to play multiple games in hetero-
geneous environments. There are no tools, for example, that
allow machine learning agents to be in competition with evo-
lutionary agents across multiple heterogeneous games. This
paper reports on a game-playing framework called Arena,
that attempts to ameliorate the situation by providing an
Agent-based reconfigurable environment for tournaments. A
tournament, here, is defined to be multiple games played
in some order, with players encountering each other across
games. The primary goal of such a reconfigurable environ-
ment is that researchers can modify players, strategies, game
rules, environments independent of each other, thus enabling
not only a richer simulation but also a controlled increase
in complexity. Arena aims to enable co-evolution of players,
allowing the emergence of trust, reputation and coalitions as
a natural consequence of known player identity across games.

2 RELATED WORK

Multi-Agent systems have been used for simulations of many
problem domains such as Smart-grids [21], vehicular ad-hoc
networks [11], smart buildings [36], e-procurement [35], cloud
computing [23], healthcare [1], and transport [17]. However,
many of these domains are complex enough that getting the
same agent to adapt and perform in a cross-domain manner
is very difficult. Desirable properties such as evolutionarily
stable equilibria, allocative fairness etc. are also difficult to be
formulated across multiple domains in an easily understand-
able manner. Game theory, on the other hand, has been used
to mathematically compute or discover optimizing behaviour
across a plethora of games, with a variety of constraints.
However, it has not been used evaluate ’realistic’ players that
often encounter more than one game and suffer from resource
constraints and bounded rationality. This paper attempts
to create an intersection of game theory and multi-agent
systems such that the advances in agent-modelling and simu-
lation techniques can be applied in a well-understood games.
Current approaches can roughly be divided into multi-agent
simulations and game theory simulations.

Multi-Agent Simulations: Multi-Agent simulation environ-
ments are often general purpose environments, that focus



on providing ease of modelling of problem domain or agent
behaviour or learning strategies. Most simulations tend to
involve the creation of a bespoke implementation that is tied
closely to the domain it is being evaluated against, with many
implementations written in languages such as Netlogo [34] or
environments such as Jason [5], Jade [2], etc. In spite of the
sophistication of the agent environments, there are rarely any
principled frameworks to test the same strategy/learning
algorithm in multiple scenarios, since modelling multiple
problem domains with any fidelity remains onerous. Hence,
despite multiple reports of the importance and value of di-
versity for robustness in multi-agent systems [15, 31], to the
best of our knowledge, there are no agent-based simulation
platforms that allow for a systematic investigation of the
same agent/strategy across heterogeneous problem domains.

Game Theory Simulations: Game theory abstracts away
from the heterogeneity of problem domains and investigates
stylized phenomena where the variables of interest are: pay-
offs, player moves and the presence of equilibria in conditions
of repeated play. Most game theory simulators, to the best of
our knowledge, focus on certain kinds of games. For instance,
Gambit [18] is an attempt to build a generalized game play-
ing framework for non-cooperative games where all players
have access to a common set of strategies and the payoff for
various moves is known at design time.

3 GENERALIZING GAME PLAYING

Current work of game playing tends to focus on the investiga-
tion of strategies for playing specific games, finding equilibria
in repeated play or proving other properties for a specific
game. However, games can vary across many dimensions,
such as number of players (two-player, multi-player), moves
(simultaneous, sequential), payoff (zero-sum, non-zero-sum),
duration (repeated, one-shot), etc. In order to build a gener-
alized game playing simulator, it is important to first agree
on what constitutes a game and more generally a simula-
tion. As was highlighted in the introduction, our system is
specifically designed to support simulations that consist of
multiple heterogeneous games played by agents using a di-
verse set of strategies. For example, a simulation may consist
of 100 rounds of the Minority Game followed by 100 rounds
of the Iterated Prisoners Dilemma. Further, the participants
in this game may be broken down such that 30% are us-
ing a random strategy, 40% are using a Tit-for-Tat strategy,
and 30% are using a random strategy. Interwoven into this
model, we also envisage provision being made for periodic
adaption/evolution steps whereby the participants are able to
adjust/change their current strategy based on diverse means
(ranging from random selection to a performance review or
even the use of some form of genetic programming model).

Specifically, we envisage games to vary on the following
axes:

∙ Number of Players: Two-Player, Multi-Player
∙ Moves: Simultaneous, Sequential
∙ Payoff : Zero-Sum, Non-Zero-sum, Rankings, Range
of values (bounded and unbounded)

Figure 1: Stages of a Game

∙ Identity: Known, Unknown, Irrelevant
∙ Communication Between Players: Possible, Not
possible

∙ Topology: Spatial, Non-spatial

Further, we envisage tournaments to vary on the following
axes:

(1) Communication Between Players: Possible, Not
possible

(2) Game Order: Ordered (known to players), Ordered
(unknown to players), Random

(3) Strategies: Fixed-Bag-Fixed-Choice, Fixed-Bag-
Random-Choice, Evolutionary Adaptation, Machine-
learning adaptation

Note: These are not the only possible axes or options on the
axes. Rather, these are the options that we are currently im-
plementing. To represent these axes in a simulation, we have
fixed on the following model. A simulation is a tournament
that is played between a set of agent players who employ a
fixed range of strategies (this can include meta-strategies that
combine multiple sub-strategies). Each tournament consists
of a number of games to be played, each of which consists
of one or more rounds. Each round of a game involves an
agent using their strategy to make a move. Each move is
a bid / choice made by the agent that is relevant to the
game being played. From here on, we refer to agents and
players synonymously unless specifically required for reasons
of clarity.

3.1 Decomposing Games

Based on our abstract model of a simulation, we propose,
in figure 1, a generalized workflow for the execution of a
tournament:

∙ Start Tournament : The tournament specification (what
games, how many rounds, what agents, and what strate-
gies) is loaded and the simulator initialized.

∙ Create Game: A game is created based on the corre-
sponding specification and agents are linked to it.

∙ Start Round : Triggers the start of a round. This may
involve transmission of a state to each agent or simply
a request to make a move.
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∙ Make Move: Here the agent must decide on its move
which is based on the associated strategy. The agents
move is submitted to the game.

∙ Generate Outcome: The game, once all required moves
are made or a timer expires, decides on the outcome of
the round (who wins and who loses, what is the payoff)
and communicates this to the agents.

∙ Update Strategy : Here, the agent has the opportunity
to update its strategy based on the outcome.

∙ Collect Statistics: When there are no more rounds in a
game, the simulator gathers all specified statistics into
a single resource that is stored for later analysis.

∙ Adapt Strategy : If there are more games to be played,
then there is a chance for the agents to adapt their
strategies. This may make use of some of the statistics
gathered in the previous step. Adaptation can take any
form that is appropriate, from parameter tuning to
the use of evolutionary techniques, to machine learning
techniques.

∙ End Tournament : The tournament finishes, statistics
are collated into a data set that is released as a set
of files and any requested summary statistics are pre-
sented to the user.

Of the above list of game stages, we believe that some are
the responsibility of the simulator, some the game, and some
by the strategy employed by the agent playing the game.
For example, we feel that the stages in figure 1 that are
shaded are the responsibility of the agent / strategy. While
the others are the responsibility of the game / simulator. The
delineation allows us to cleanly separate game design from
strategy design which in turn allows us to develop generalized
strategies that can be used to play a diverse range of games.

3.2 Generalized Game Design

To facilitate the integration of heterogeneous game types, we
have attempted to create an abstract model of a game that
can be customized as necessary.

Underpinning the model is the view of the player as an
agent that interacts with artifacts within the game environ-
ment. These artifacts serve as enablers / constrainers of agent
moves. Through the artifacts, each game specifies whether
agents can recognize each other, whether there is an order-
ing to moves, how many rounds exist in a game, whether
each round has an entry and exit condition, whether payoff /
penalty is dealt to the agents after every round or it accu-
mulates through the game. Thus, each game is envisioned
as a configuration of artifacts. This allows new games to be
created without having to re-write many common aspects
of game playing. Figure 2 shows a sample code that is used
to implement both, Iterated Prisoner’s Dilemma as well as
the Minority Game. This reconfiguration focused approach is
extended deeper into agent-strategies as well, as shall be seen
in the next sub-section. The artifact-based reconfiguration
allows for another feature, evolutionary spread of features
across agents. This means that agents that perform well can
have their strategies copied and modified by other agents

Figure 2: Interaction of Players with Cartago Arti-
facts

(via mechanisms such as clonal plasticity [24]), thus leading
to evolutionary pressure on strategies.

3.3 Generalized Strategy Design

In order that strategies can be re-used across games, as well
as new strategies added to a game, all strategies conform to
an interface that agents can use to generate moves.

Figure 3: Snippet of Strategy Interface

The generateChoice and updateStrategy methods are self-
explanatory. The strategyResources map passed to generate-
Choice contains external data which may be required by the
agent in decision-making. The parameters passed to updateS-
trategy are simply to be stored within the strategy object’s
internal resources map as a key-value pair. The remaining
methods are required by the GUI for ensuring it reacts dy-
namically to user selection of strategies.

3.4 Worked out Example

The Iterated Prisoner’s Dilemma (IPD) and the Minority
Game (MG) are now compared to provide a concrete view
of the generalization via artifacts. IPD and MG share three
artifacts (see Table 1), while differing on three. Their imple-
mentation, therefore, is a simple composition of parametrized
artifacts, which leads to faster and repeatable game creation.
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IPD MG

Number of players 3 or more (always odd) 2
Moves Simultaneous Simultaneous
Amount of Payoff Fixed Fixed
Identity Irrelevant Known
Comm b/w players Possible Not Possible
Topology Non-spatial Non-spatial

Table 1: Comparing IPD and Minority Game

Figure 4: BestPlay example for m=3

Strategy Generalization: Generalizing strategies such that
they can be re-used across games is a little more involved.
Quite often, the strategy is very closely tied to the rules of
the game or the number of available options to the agents.
BestPlay [7] is a strategy created by the creators of the
Minority Game. Recall that the MinorityGame (MG) consists
of a population of N (odd) individuals, who have to make a
simultaneous binary choice. The group that is in the minority,
after making a choice, is the winner that receives a payoff.
Although simple in its setup and play, the dynamics in MG
has been used in multiple fields such as econophysics [3,
37], multi-agent resource allocation [16, 20], emergence of
cooperation [10], and heterogeneity [12, 19]. The BestPlay
strategy utilizes two pieces of information:(a) Memory of the
winning moves from previous m rounds; (b) Vector containing
a pool of strategies. The vector, for each player, is of length
2𝑚 and is used to decide what to play next. Since MG allows
only two moves, 1,−1, the previous m winning moves can
be encoded as a binary number (see Figure 4) The binary
number can then be converted to an integer corresponding
to a position in the strategy vector. In Figure 4, the strategy
vector yields −1, as 010 corresponds to the integer 2, giving

Figure 5: BestPlay example for m=3 and q=3

the result in the third position of the vector. Due to the
nature of the encoding strategies, BestPlay is only applicable
to games that involve selecting one out of two choices in
every move. Since our intention is to allow the same strategy
to be used across as many games as possible, we created
a generalized implementation of BestPlay that retains its
fundamental structure, but is not limited by two choices.

Generalizing BestPlay: The strategy vector can be general-
ized using a simple theorem that demonstrates how an n-ary
code may be converted into an integer [22]. Given 𝑎, 𝑏 ∈ N
with 𝑏>1, there exist non-negative integers 𝑥0, 𝑥1...𝑥𝑛 such
that

𝑎 = 𝑥0 + 𝑥1𝑏+ 𝑥2𝑏
2 + . . .+ 𝑥𝑛𝑏

𝑛

with 0 ≤ 𝑥𝑖 < 𝑏 and 𝑥𝑛 ̸= 0
Consider a game which presents three options (𝑂1, 𝑂2, 𝑂3)

to a player. The strategy vector would now be 𝑞𝑚 as opposed
to 2𝑚, where 𝑞 corresponds to the options available to a
player. Continuing with the previous example of 𝑚 = 3, the
strategy vector now has a length of 33 = 27. The choices
(𝑂1, 𝑂2, 𝑂3) will be represented as options 0, 1, 2. If the previ-
ous 𝑚 winning moves were 𝑂3, 𝑂3, 𝑂3, which corresponds to
code 222, then BestPlay would index into the 26𝑡ℎ position
of the strategy vector (see Figure 5).
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This results in an implementation of the BestPlay strategy,
as shown in Figure 6 and Figure 7, playable in games with
arbitrary number of choices.

Figure 6: Constructor for BestPlay Strategy

Figure 7: Generating a move using BestPlay Strat-
egy

4 AN AOP-BASED GAME SIMULATOR

The goal of this work is to develop a flexible generalized game
simulator through which we can study various properties of
games and associated strategies. Specifically, we want to
enable the development of a simulator that can support a
heterogeneous set of games being played using a diverse suite
of generalized strategies. We also wish to explore how these
generalized strategies perform when applied to multiple game
types that are played sequentially.

Typically, such simulators are implemented using languages
such as NetLogo or using some form of generalized program-
ming language (e.g. Java, C). In contrast, our approach is
to explore the use of Agent-Oriented Programming (AOP)
languages [29] and related technologies. Specifically we will
use the ASTRA language [8], which is a variation of AgentS-
peak(L) [26] together with CArtAgO [27] a framework that
supports the modeling of the agents environment in terms of
shared objects known as artifacts. This allows for modelling
phenomena such as cultural learning where agents can copy
strategies from successful neighbours.

A high level view of the proposed framework is highlighted
in figure 8. In this figure, the stick people are agents, and
the triangles are (CArtAgO) artifacts. In line with section
2, the game artifact specifies a generalized interface through
which agents can interact with a game (e.g. make move)
and the strategy artifacts are generalized artifacts that can
be used to instantiate and use specific game strategies (e.g.
random play, best play, ...). The register artifact provides a
centralized list of players and their availability. When started,
the Tournament Master reads the tournament specification
and creates an initial community of Player agents (who

Figure 8: AOP-based Deployment

create associated strategy artifacts). These players are added
to the registry. The Tournament Master then creates a Game
Master who sets up a Game artifact that the Player agents
connect to. The Game Master is responsible for the execution
of the game. Its first task is to select a set of players to play
the game. This is dependent on the selection policy adopted,
and can be either a random selection of players of specific
types or a fixed set of players. These players are invited to
join the game, the game is played, and at the end, the Game
Master informs the players that the game is over (causing
the players to disconnect from the associated game artifact).

Our initial plan is to generate generic implementations of
the Tournament Master, Game Master, and Player agents.
These implementations will allow enough configuration to
support their use with any game / basic game strategy. How-
ever, the motivation for using an AOP language to imple-
ment this is that, in the future (see our roadmap 5) we
intend to start changing the Player agent to support more
complex game playing behaviours. Due to the clear sep-
aration of concerns enforced through the use of an AOP
language, we believe that this will be easier to achieve
than if we had used a standard general purpose program-
ming language. The current implementation can be accessed
at: https://gitlab.com/aop-arena

5 ROADMAP

This paper describes a prototype, and is therefore only able
to describe features that we have already implemented. How-
ever, we have a roadmap of features that we are working
on implementing. Currently, all implementation is in the
form of ASTRA agents and CArtAgO artifacts. However,
this requires re-compilation of code whenever any aspect of
the experiment changes. For easier experiment design and
setup, we expect that more aspects need to be made into
pure configuration text, so that non-coding-specialists can
also use Arena. The features we expect to add to Arena are:
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(1) Open System with agents that enter and exit a
tournament: Complex domains such as urban mod-
elling often require that simulations be ‘open’, i.e.,
agents must be able to enter, exit and re-enter a simu-
lation.

(2) Game Description Language: A human-readable
and machine-parseable language for describing game
rules, in terms of setup, number of players, sequential or
simultaneous, competitive or cooperative or coalitional,
kinds of payoffs, number of rounds, time-bound or not
etc.

(3) Player Description Language: Players can diverge
on the kinds of strategies that they implement, i.e.,
they may be adaptive agents that adapt their strategies
or machine learning agents that have one strategy that
continuously adapts itself, or agents that possess a
bag-of-strategies which they play in some order.

(4) Tournament Description Language: A human-
readable and machine-parseable language for describing
the order of games, number of repetitions for each game,
open or closed system (can new agents enter in the
middle of a tournament?)

(5) Detection of Emergence within Tournament:
The presence of features such as known identity of
players, multiple heterogeneous games, sophisticated
strategies such as evolution / machine learning could
lead to the emergence of ‘agreements’, unofficial rules,
etc. which would be valuable to detect. We aim to
incorporate tournament-wide emergence detection [25]
mechanisms to allow for automated monitoring of large-
scale tournaments.

6 CONCLUSIONS

This paper reports on a first prototype of a generalized game
playing framework called Arena, that allows for the same
agents to play multiple heterogeneous games. Arena currently
allows strategies, game rules, and players to evolve indepen-
dently of each other. As of this writing, we have implemented
the Iterated Prisoner’s Dilemma, Minority Game, Linear Pub-
lic Goods Game, with agents that can play multiple rounds of
each game, based on a tournament configuration. Strategies
such as Tit-for-Tat, BestPlay have also been implemented in
a generalized manner such that they can be re-used across
games, by merely querying game parameters. We expect
a more mature version of the framework to be a valuable
tool, both for the agents community as well as game theory
researchers.
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