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A B S T R A C T

Fish population dynamics are affected by multiple ecosystem drivers, such as food-web interactions, exploita-
tion, density-dependence and the wider environment. While tactical management is still dominated by single-
species models that do not explicitly account for these drivers, more holistic ecosystem models are used in
strategic management. One way forward in this regard is with individual-based models (IBMs), which provide a
single framework in which these drivers can be represented explicitly. We present a generic marine fish IBM that
incorporates spatial and temporal variation in food availability, temperature and exploitation. Key features of
the model are that it (1) includes realistic energy budgets; (2) includes the full life cycle of fish; (3) is spatially-
explicit and (4) incorporates satellite remote-sensing data to represent the environmental drivers. The rates at
which individuals acquire and use energy depend on local food availability and temperature. Their state vari-
ables, including life stage, size and energy reserves, are updated daily, from which population structure and
dynamics emerge. To demonstrate the use of the model we calibrate it for mackerel (Scomber scombrus) in the
North East Atlantic. Most parameters are taken from the literature, except the background early mortality rate
and the strength predator density dependence, which were estimated by fitting the model to data using
Approximate Bayesian Computation. The calibrated model successfully matches the available data on mackerel
population dynamics and structure. We demonstrate the use of the model for management purposes by simu-
lating the population effects of opening and closing a sector of the North Sea to mackerel fishing. Our model uses
basic principles of behavioural and physiological ecology to establish how spatial and temporal variations in
ecosystem drivers affect the individuals in the population. Population dynamics and structure are calculated
from the collective effects on individuals. Application to a test case shows the method can fit available data well.
Individual-based approaches such as this study have potential for use in strategic management because they can
account for spatial structuring, food-web interactions, density dependence, and environmental drivers within a
single framework.

1. Introduction

The aim of fish stock assessment is to enable management to max-
imise the long-term yield from a fishery, without doing irreversible
damage to the stock or wider environment (Hilborn and Walters, 1992).
This traditionally involved estimating one or more reference points,
such as spawning stock biomass or the rate of exploitation, by fitting
mathematical models to the available data on the fishery and its po-
pulation dynamics (Cadrin and Dicky-Collas, 2013). Increasingly, reg-
ulatory bodies worldwide are adopting an ecosystem-based approach to

fisheries management (Garcia and Cochrane, 2005). This stems from
the realisation that a stock’s biological reference points will depend on
other components of the ecosystem, including food-web interactions,
the associated density-dependent processes (e.g. growth), and the wider
environment (Skern-Mauritzen et al., 2015). Accordingly, a variety of
more holistic models have been developed that can account for these
drivers. Examples include age/size structured models such as OSMOSE
(Shin and Cury, 2004, 2001) and LeMANS (Hall et al., 2006); food-web
models such as Ecopath with Ecosim (Polovina, 1984); and multispecies
oceanographic models such as Atlantis (Fulton et al., 2004). These
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“ecosystem” models have been applied to strategic management ques-
tions, such as testing the response of fish populations or communities to
different fishing scenarios (e.g. Kaplan et al., 2013; Thorpe et al., 2016;
Travers et al., 2010).

The population effects of ecosystem drivers, including the wider
environment, food-web interactions and associated density-dependent
processes, often arise from their effects on the constituent individuals
(Ward et al., 2016). Modelling these individual-level effects requires
inclusion of processes such as adaptive traits (e.g. physiology), varia-
tion among individuals and local interactions, which traditional popu-
lation models cannot easily accommodate (DeAngelis and Grimm,
2014). One way forward in this regard is with individual-based models
(IBMs, also called agent-based models) (Grimm et al., 2005). In IBMs
the lives of individual animals are simulated as they interact with each
other and their environment (DeAngelis and Grimm, 2014). Individuals
have a unique set of state variables (e.g. size and location), while the
landscapes are often dynamic and characterised by environmental
drivers (McLane et al., 2011; van der Vaart et al., 2016). Individual’s
state variables are updated when they interact with each other and their
environment, and it is from simulation of all the individuals that po-
pulation dynamics and structure emerge. In this way, IBMs can in-
corporate food-web interactions, density dependence and environ-
mental drivers, and predict the fate of populations in defined spatially-
explicit landscapes that vary over time.

IBMs have long been applied to fish populations. A major area of
interest has been the merger of IBMs with bioenergetics as a way to
model the response of populations to their physical and biological en-
vironment (Lett et al., 2009). Initial focus was on the food and tem-
perature dependence of growth and survival in young-of-the-year fish
(e.g. Bartsch and Coombs, 2004; Rose et al., 1999; Scheffer et al., 1995).
Since then, increasing computer power has permitted the development
of multi-generational bioenergetics IBMs that include the full life cycle
(e.g. Politikos et al., 2015b). It is these IBMs that can address strategic
management questions, including the effects of environmental drivers
on migrations and reproductive output, and the effects of fishing sce-
narios (Lett et al., 2009). Because of their complex nature, existing full
life cycle bioenergetics IBMs are typically species-specific (e.g.
Pethybridge et al., 2013; Politikos et al., 2015b). Yet, there are many
similarities among species in terms of their energy budgets and the way
they scale with body size and temperature. The same functional forms
often well describe the rates of energy uptake and its expenditure on
vital processes such as maintenance, growth and reproduction (Clarke
and Johnston, 1999; Peters, 1983; Sibly et al., 2013), raising the hope
that a minimum generic bioenergetics model can be developed.

We present a generic marine fish IBM built on basic principles of
behavioural and physiological ecology (Sibly et al., 2013; van der Vaart
et al., 2016). Our model is spatially-explicit, includes a realistic energy
budget and the full fish life cycle. The model landscape consists of
dynamic maps of two variables derived from satellite remote-sensing
(RS): sea surface temperature (SST), and chlorophyll concentration, a
proxy for phytoplankton biomass, which we use to represent baseline
food availability. Individuals respond to their local food availability and
SST according to their energy budgets. To demonstrate the use of the
model we calibrate it for the western component of the North East
Atlantic mackerel (S. scombrus) stock. We chose this particular stock to
demonstrate the potential of the IBM approach because (1) it is well-
defined and subject to a specific management regime; (2) density de-
pendence within the stock is strong, both in terms of passive competi-
tion for food (Jansen and Burns, 2015) and cannibalism (Fortier and
Villeneuve, 1996); (3) its population dynamics are sensitive to en-
vironmental drivers (e.g. recruitment) (Borja et al., 2002; Villamor
et al., 2011); (4) it is widely-distributed and has distinct spawning,
feeding, overwintering and nursery areas (Petitgas et al., 2010),
meaning spatial variation in exploitation and environmental drivers are
important; (5) its wide distribution raises important management
questions that cut across international jurisdictions; and (6) there is

much field data available on its population dynamics and structure, and
experimental data for parameterizing the energy budget. We report that
the model fits data on mackerel population dynamics and structure
well, and demonstrate how it may be applied by simulating the con-
sequences of hypothetical spatial management scenarios.

2. Methodology

2.1. Model overview

In broad terms, the model landscape consists of dynamic maps of
sea surface temperature SST and food availability (Fig. 1). Fish are
grouped into super-individuals (hereafter termed individuals), which
comprise a number of individuals with identical variables (Scheffer
et al., 1995). Individuals move around the landscape according to their
life cycles (e.g. to spawn or feed) (Fig. 1). Each individual has an energy
budget which determines how its characteristics (e.g. body size, life
stage, energy reserves) change in response to local food availability
(including smaller fish) and SST. Fishing pressure at different locations
determines the rate of mortality from exploitation. The abundance re-
presented by each super-individual when it enters the model at the egg
stage is determined by the amount of energy the spawning stock has put
into egg production. Abundance reduces as mortality is applied
throughout life. Population measures are calculated as the sum of the
characteristics of all the individuals including their abundances. The
model is implemented in Netlogo 5.3.1 (Wilensky, 1999).

In the following we describe the generic model and its application to
Atlantic mackerel. For a full technical specification see the
“TRAnsparent and Comprehensive model Evaludation” (TRACE)
document (Augusiak et al., 2014; Grimm et al., 2014; Schmolke et al.,
2010) in the supplementary material. In Section 2 of the TRACE we
provide a model description in the standard Overview, Design Concepts

Fig. 1. An example model interface showing potential spawning S (solid line),
feeding F (dashed line), overwintering OW (dotted red line) and nursery (white
filled) areas (referred to later). Black fish are adults, brown fish are juveniles
and the colour of the landscape corresponds to phytoplankton biomass.
Phytoplankton biomass and SST are obtained from satellite remote sensing, and
the landscape is updated at regular intervals. This example is taken from the
case study of Atlantic mackerel described later (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.).
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and Details (ODD) format (Grimm et al., 2010, 2006).

2.2. Generic model description

2.2.1. State variables and scales
The model landscape comprises a two-dimensional grid of patches

of sea surface (Fig. 1). Each patch is characterised by its baseline food
density (phytoplankton biomass), sea surface temperature (SST), lati-
tude, longitude, area type (e.g. spawning, feeding, transitory), fishing
division (see ICES.dk), whether or not it is open to fishing, and depth.
Fish populations are represented by a number of individuals, char-
acterised by age, gender, life stage (egg, yolk-sac larvae, larvae, juvenile
or adult), length, mass (structural, lipid and gonad) and abundance. The
model proceeds in discrete daily time-steps.

2.2.2. Model schedule
Full details of the model processes are given in Section 2.2.3 (Sub-

models). In each daily time-step, phytoplankton, SST and fishing mor-
tality F are updated first. Individuals begin their daily schedule by
calculating their mortality (see Mortality). Next, they calculate their
swimming speed (Swimming speed) and move (Movement). Individuals
then calculate their energy budgets, except for reproduction (Energy
budget). Energy is allocated to different components of the energy
budget, depending on life stage and time of year (Fig. 2). Most state
variables have been updated at this point. If certain conditions are met,
individuals proceed to the subsequent life stage (Transformation). If in
the spawning period, adults then calculate the costs of reproduction,
allocate energy to reproduction (Energy budget), and spawn. This in-
volves the introduction of new individuals (eggs) into the model in each
year. Eggs then calculate their development (Egg development) and all
individuals age by one day. At the end of each time-step population
measures are recorded. The order in which individuals or patches carry
out a given process is random.

2.2.3. Sub-models
In this section we provide details of the model processes. See TRACE

Section 2 for a full list of parameters; values of most parameters are

taken from the literature.

2.2.3.1. Swimming speed. The speed at which individuals can
sustainably swim Sa is given as a function of their body length L and
their caudal fin aspect ratio Ar (Sambilay, 1990). From this their daily
search radius is calculated.

2.2.3.2. Movement. Movement patterns are species-specific so we do
not provide a generic model.

2.2.3.3. Energy budget. The following sub-models describe the energy
budgets of larvae, juveniles and adults (for overview see Fig. 2) in terms
of individual physiology. We assume the yolk-sac provides sufficient
energy for eggs and yolk-sac larvae to achieve maintenance and
maximal growth/development rates.

2.2.3.3.1. Temperature dependence. We use the exponential
Arrhenius function to describe the effects of temperature SST on rates
of energy uptake and allocation. This has the form −e E K SST/a , where Ea is
the activation energy and K is Boltzmann’s constant.

2.2.3.3.2. Food. Other individuals within the focal individual’s
search radius and ≥3.5 times smaller (see Shin and Cury, 2001)
constitute potential prey. If multiple prey are available then one is
chosen at random to be eaten. Food density (g m−2) is calculated from
the mass of the chosen prey and the predator’s search area. The energy
content of prey depends on how much lipid it has stored. When
individuals do not overlap with potential fish prey they instead eat
phytoplankton, which has an energy content Ep. Although most fish do
not feed directly on phytoplankton, we use it as a proxy for baseline
food availability because it provides a synoptic view of the base of the
food chain.

2.2.3.3.3. Ingestion and energy uptake. Ingestion rate IR is given as a
function of predator density D, food density X, SST and body surface
area (body mass2/3) (Kooijman and Metz, 1983), according to the
Beddington-DeAngelis functional response (Beddington, 1975;
DeAngelis et al., 1975). IR is converted from g day−1 to kJ day−1

using the energy content of food (kJ g−1). A proportion of ingested
energy, an assimilation efficiency Ae, becomes available for allocation
to the processes in Fig. 2.

2.2.3.3.4. Maintenance. Standard metabolic rate SMR, the level
below which an individual cannot survive (Fry, 1971), is used as a
baseline measure of maintenance. SMR scales with body mass M and
with SST. For many species migrations represent a significant energy
cost. We incorporate this by substituting SMR for an elevated active
metabolic rate AMR (kJ day−1) when migrating, given as a function of
M, SST and swimming speed.

2.2.3.3.5. Growth. Fish growth typically has a different form and
rate in the first growing season than in later life. We use the sigmoid
Gompertz function to describe growth rate in optimal conditions as a
function of L and SST in the first growing season (Gluyas-Millan et al.,
1998; Goldman, 2005; Sirnard et al., 1992). After reaching an age
threshold Gthresh, growth switches to von Bertalanffy form (von
Bertalanffy, 1938), again as a function of L and SST (Goldman,
2005). We assume that fish species which exhibit fasting periods
grow only when feeding. Daily growth increment ΔL (cm) is
converted to the difference in structural mass ΔM (g) using a
standard allometric relationship (see FishBase weight-length table at
www.fishbase.org and TRACE Section 3). We define structural mass as
body mass minus lipid stores and gonads. Growth costs are calculated
using +ΔM E E( )c s , where Ec is the energy content of flesh (kJ) and Es
is the energy costs of synthesising flesh (kJ g−1). If insufficient energy is
available to support maximum growth, the growth rate is reduced
accordingly.

2.2.3.3.6. Reproduction. The energy cost of producing a maximum-
sized batch of eggs Bmax (kJ day−1) is modelled as Bmax = Fp M0 (Ec +
Es) / Nb, where Fp is potential fecundity, M0 is egg mass, Ec is the energy
content of flesh, Es is the cost of synthesising tissue and Nb is the

Fig. 2. Conceptual model showing the processes that individuals implement
between time t and t+ 1. Individuals start as eggs, then become yolk-sac larvae
at the end of their development period. They then grow to become larvae, ju-
veniles and finally adults when reaching size thresholds. Juveniles can only
become adults at a certain time of year. The first process in each day is ob-
taining energy, generally by ingestion, although yolk-sac larvae absorb energy
from the yolk-sac. Obtained energy is allocated first to maintenance, with the
remainder going equally to growth and energy reserves (except yolk-sac larvae
which do not store energy, and larvae which prioritise growth). Red boxes in-
dicate an effect of SST, and grey boxes an effect of SST and food availability.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
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number of batches produced. Fp is often related to body size (see
FishBase fecundity table). For total spawners (i.e. Nb= 1) Bmax equals
the maximum total energy costs of spawning. For batch spawners
energy is allocated to each batch over the inter-batch intervals. If less
energy than Bmax is available, batch size is reduced accordingly. We
define gonad mass as equal to the mass of the eggs produced in a batch.
This increases as energy is allocated to a batch, then is reset to zero
when that batch is spawned. The egg production of all females is
divided equally among n new individuals each year. We assume that
male and female investment in reproduction is equal.

2.2.3.3.7. Energy reserves. Fish typically store energy as lipid
(Martin et al., 2017). We propose that when feeding individuals can
store lipid up to their maximum possible energy reserves Emax. The
energy costs of synthesising lipid is accounted for when assimilated
energy is converted to energy stores. The mass of stored lipid and, for
adults, the gonads are added to structural mass to get total mass M.

2.2.3.4. Egg development. Egg development time De typically depends
on temperature (Pepin, 1991) and can be modelled with an Arrhenius
function.

2.2.3.5. Transformation. The transformations of eggs into yolk-sac
larvae at length Lhatch, yolk-sac larvae into larvae, larvae into
juveniles and juveniles into adults (sexual maturation) are defined
using body length thresholds.

2.2.3.6. Mortality. The ways in which the number of individuals, or
their sub-individuals, decrease are as follows. Starvation: If an
individual’s total mass reduces to its structural mass it dies. Explicit
predation: Individuals die from the explicit portion of predation at rate
Mpred, given as ingestion rate of the predator (g day−1) / mass of prey
(g). Background mortality: Eggs and larvae are susceptible to
background mortality Mback at (typically very high) rate Me. Juvenile
susceptibility at length L is given by Mback=Ma (Lmat / L), where Ma is
a constant equal to adult mortality susceptibility (day−1) and Lmat is the
threshold length at which juveniles can sexually mature (Brodziak
et al., 2011). Because Mback decreases with life stage or L, cumulative
mortality depends on growth. Fishing mortality: Fishing mortality rates
F (day−1) at-age vary between years and are applied each day. F is set
to 0 in areas that are closed to fishing (see Hypothetical management
scenarios in Section 2.3.8). Individuals with abundance<1 are
removed from the model.

2.3. Application of the model to Atlantic mackerel

In the following we describe the model’s application to S. scombrus
in the North East Atlantic.

2.3.1. Model landscape
The model landscape spans from −30°W to 10° E and from 47° to

75° N. Landscape patches represent 30×30 km. Potential spawning,
feeding, overwintering and nursery areas are shown in Fig. 1. The
spawning area corresponds to the priority areas for sampling of S.
scombrus eggs in the mackerel egg survey (MEGS, ICES, 2014a) in which
10 °C < SST < 12 °C (Sette, 1943). The feeding area comprises all
patches ≥ 62° north and the northern North Sea (division 4a), above
the lower temperature limit SSTlim (> 7 °C) (Nottestad et al., 2016).
The overwintering area is assumed to be ICES divisions 6a (west of
Scotland) and 4a (northern North Sea). The nursery area includes all
patches that are ≤200m deep (Jansen et al., 2014) to the west of the
British Isles (< 4° west).

2.3.2. Life cycle and spatial patterns
In broad terms, eggs and larvae drift from the spawning towards

nursery areas at a fixed rate; juveniles move locally in the nursery areas
until maturing as adults; and adults cycle between spawning, feeding

and overwintering areas. Migration triggers imposed, but arrival times
in destination areas depend on an individual’s swimming speed. Adults
fast from November until after spawning the following year. See TRACE
Section 2 for full details.

2.3.3. Data
Input data includes fishing mortality F (day−1), phytoplankton

biomass (g m-2), SST (kelvins) and bathymetry. F comes from the stock
assessment as age-specific rates that vary annually. Phytoplankton
biomass and SST were derived from data from the MODIS sensor on
NASA’s Aqua satellite (NASA OBPG, 2017a, 2017b). Eight-day com-
posites are used at a spatial resolution of 30×30 km. Bathymetric data
was obtained from the British Oceanographic Data Centre. See TRACE
Section 3 for details of data processing.

The model was calibrated with indices of spawning stock biomass
(SSB) (Nøttestad et al., 2016, 2015), total annual egg production (TEP)
(ICES, 2017) and recruitment (Jansen et al., 2014).

Data on population structure used to validate the model included
maturity ogives (from stockassessment.org), average weight-at-age
(Nøttestad et al., 2016), monthly variation in the weight of 36 cm fish
(Olafsdottir et al., 2016), and age (Nøttestad et al., 2016) and length
distributions (ICES, 2017). Details of all data are given in Section 2 of
the TRACE.

2.3.4. Initialization
The population size and structure on January 1st 2007 was ap-

proximated using estimates of spawning (SSB) and total stock biomass
(TSB), and length and age compositions from commercial catch samples
(ICES, 2008) and bottom-trawl surveys (ICES, 2017). This population is
then apportioned into 150 super-individuals. Each simulation begins
with a 20-year spin up using 2007 data in an annual loop. See TRACE
Section 2 for full details.

2.3.5. Model simulations
The model simulates the mackerel population from Jan 1st 2007 to

December 31st 2015. We represent the population with 150 individuals,
representing a compromise between computational demands and rea-
lism. See TRACE section 7 for the sensitivity of model outputs and ex-
ecution speed to changes in the number of individuals. Simulations are
forced by F, phytoplankton biomass and SST. F at-age is updated each
year and applied each day. SST and phytoplankton biomass are updated
every eight days.

Outputs that are recorded annually include: SSB, the average weight
at age, adult age distribution on the feeding grounds, TEP, recruitment
(age 0), maturity ogives and length distributions at two times of the
year. The average weight of 36 cm individuals is also recorded monthly.
All outputs are recorded to match the times at which corresponding
data was collected (full details in TRACE Section 2).

2.3.6. Local sensitivity analysis
The sensitivities of predicted SSB, recruitment and egg production

are presented as the change in output relative to 10% change in the
energy budget parameters in Table 1. Changes in outputs were averaged
over an increase and decrease in the parameter, and over five simula-
tions. While one parameter was tested all others were kept at their
baseline values (TRACE Section 2). See TRACE section 7 for a full list of
parameters.

2.3.7. Model calibration
We calibrated the parameters background early mortality Me and

the strength of predator density dependence c using rejection approx-
imate Bayesian computation (ABC), generally following the metho-
dology of van der Vaart et al. (2015). This involved running the model
4500 times, drawing Me and c from uniform prior distributions and
“accepting” the values that minimised the sum of the squared differ-
ences between the model outputs and the data. See TRACE Section 3 for
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full details.

2.3.8. Hypothetical management scenarios
To demonstrate the model’s potential to test spatial management

strategies, we implemented two hypothetical scenarios: (1) closing the
northern North Sea (ICES division 4a, see Fig. 5) to mackerel fishing all
year; and (2) opening division 4a all year. In reality (and all other si-
mulations) division 4a is closed from 15th February to 1st September
(ICES, 2014b). The closure of division 4a is designed to protect the
smaller North Sea component of Atlantic mackerel which are found in
the area (ICES, 2014b).

3. Results

3.1. Local sensitivity analysis

The sensitivities of SSB, recruitment and egg production to key
model parameters are shown in Table 1. SSB is the most robust variable
(relative sensitivities < 1 generally), and recruitment the least. In
particular, recruitment is highly sensitive to the background early
mortality rate Me and the Gompertz growth constant k1. This is ex-
pected because Me is very high and individuals are only susceptible to it
until reaching a size threshold (3 cm), the duration of which is affected
by k1. Hence these parameters jointly determine cumulative early
mortality and recruitment.

3.2. Model calibration

Me and c were calibrated from indices of SSB, TEP and recruitment
using ABC. The values that resulted in the best fits were Me= 0.325
day−1 with credible interval 0.292–0.327, and c= 0.98× 10-12 with
credible interval 1.18×10-13 – 4.86 10-12. These were obtained from
the best-fitting 1% of the 4500 simulations. The posterior credible in-
tervals were significantly narrower than those of the priors (Levene’s
test, p < 0.01), meaning the data had leverage over their values. See
TRACE Section 3 for cross validation and a comparison of the prior and
posterior distributions.

To determine the goodness of fit between the model predictions and
the survey indices of population dynamics used for calibration, we used
the coefficient of determination (R2), i.e. the proportion of the variance
explained. The model predictions and survey indices for SSB, TEP and
recruitment are shown in Fig. 3a–c, respectively. Overall the fits are
good, as indicated by R2 values of 0.70, 0.97 and 0.80, respectively. The
data used for calibration are relative indices, but see TRACE section 7
for a comparison with the stock assessment’s estimates of SSB and re-
cruitment on an absolute scale.

3.3. Model validation

To validate the model, we compared the predicted population
structure to data. Fig. 4 shows the model predictions and data averaged
over 2007 to 2015, except Fig. 4d where the data is averaged over 1984
to 2013. The proportion of each age class that is sexually mature in
February is shown in Fig. 4a. The model and data agree that most in-
dividuals reach sexual maturity when aged two, although there is more

Table 1
Sensitivities of SSB, recruitment and TEP to 10% changes in parameter values,
presented as the change in output relative to change in parameter, averaged
over ten simulations, and over an increase and decrease in the parameter value.
Only the energy budget parameters are shown, along with their standard de-
viations.

Parameter Relative sensitivity of output

SSB Recruitment TEP

Normalizing constant for AMR
(A0)

0.14 ± 0.07 1.67 ± 1.25 1.31 ± 0.64

Assimilation efficiency (Ae) 0.38 ± 0.06 1.38 ± 0.48 0.95 ± 0.41
Strength of predator density

dependence (c)
0.14 ± 0.05 1.58 ± 0.90 1.46 ± 1.07

Maximum consumption rate
(Cmax)

0.35 ± 0.08 1.19 ± 0.50 1.31 ± 0.71

Activation energy (Ea) 0.24 ± 0.10 3.01 ± 0.82 1.38 ± 0.72
Half saturation constant (h) 0.22 ± 0.07 1.68 ± 1.87 1.53 ± 0.81
Bertalanffy growth constant (k) 0.17 ± 0.09 1.72 ± 1.30 1.06 ± 0.51
Gompertz growth constant (k1) 0.18 ± 0.10 7.12 ± 1.66 1.68 ± 0.68
Maximum length after the first

growing season (L1)
0.10 ± 0.06 2.37 ± 1.28 1.38 ± 0.76

Asymptotic length (L∞) 0.74 ± 0.05 1.44 ± 1.04 2.0 ± 0.84
Background adult mortality

(Ma)
0.17 ± 0.05 1.65 ± 0.98 1.45 ± 1.10

Background early mortality
(Me)

0.11 ± 0.07 9.0 ± 1.90 1.77 ± 0.98

Normalizing constant for SMR
(S0)

0.15 ± 0.11 1.46 ± 0.94 1.58 ± 0.86

Fig. 3. Fits of the best-fitting 1% of simulations
from ABC (transparent lines with the single
best-fitting simulation in black) to the survey
indices (red circles) of: a) SSB from the
International Ecosystem Survey in the Nordic
Seas (IESSNS) on the feeding grounds in July-
August of 2010 and 2012–2015; b) TEP from
MEGS in 2007, 2010 and 2013; and c) re-
cruitment (see Jansen et al., 2014). Only out-
puts from the years with data are presented.
Outputs and data were each normalized by di-
viding by their maximum value. R2 values from
the best-fitting simulations are presented on
the plots (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.).
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variability in the age at maturity in the data. Fig. 4b shows the age
distribution on the feeding grounds in summer. The model predicts an
absence of one or two-year-olds. The data suggests that there are few
one year olds, but that two year olds are among the most abundant age
groups. From the age of three both the model and data show a char-
acteristic type 3 survivorship curve, i.e. declining abundance at age.
Fig. 4c shows the mean weight at age three to ten in summer. The
model matches the data well, albeit with a slight overprediction in older
individuals. Fig. 4d shows the average weight of 36 cm mackerel (ap-
proximately 5 years old) from April to September. The model and data
show a similar increase in weight-at-length each month. Fig. 4e and f
show length distribution in ICES division 6a (West of Scotland) in
quarters 1 (Q1) and 4 (Q4). The distributions have multiple modes,
each representing a cohort. Predicted modal length of ages zero to two
are all matched to within one cm, other than age two in Q1. However,
within each cohort predicted length has considerably less variability
than the data. Overall the model matches the observed population
structure well, which supports our representation of the energy budget.

3.4. Hypothetical management scenarios

To demonstrate how the model may be used in a management
context, we simulated two hypothetical scenarios, in which ICES divi-
sion 4a was (1) closed year-round and (2) open year-round, in addition
to the baseline (closed 15th February to 1st September). Fig. 5a–c show
how SSB, recruitment and the length distribution of large individuals
(≥ 33 cm) on February 1st differ under each scenario. Fig. 5d shows the
proportion of adults in division 4a averaged over each month of the
year for reference. SSB and recruitment are highest, and length

distribution is more skewed towards large individuals, when division 4a
is closed, followed by the baseline then open. These results are expected
but highlight the model’s ability to test the consequences of spatial
management scenarios.

4. Discussion

We have developed, calibrated and evaluated a generic IBM which
relates fish population dynamics and structure to spatial and temporal
variation in food availability, temperature and exploitation. Key fea-
tures of the model are that it (1) includes a realistic energy budget; (2)
includes the full life cycle; (3) is spatially-explicit and (4) incorporates
satellite remote-sensing (RS) data to represent the environmental dri-
vers. To demonstrate the use of the model we calibrated it for mackerel
in the North East Atlantic and showed it successfully matches the
available data on population dynamics (Fig. 3) and population structure
(Fig. 4). We then showed the model’s ability to test the population
consequences of simple hypothetical management scenarios (Fig. 5).

Model fits to the data on mackerel population structure (Fig. 4) give
insight into how well different aspects of the energy budget are re-
presented. For example, we consider growth in length to be reasonable
because individuals reach sexual maturity at about the right age
(Fig. 4a), which is determined by length, and because the modes of the
length distribution of different cohorts match well at two different
times of year (Figs. 4e and f). However, there is less variability in the
predicted length of individuals in a cohort than in the data. One reason
could be that each cohort in the model is represented by a small number
(ten) of super-individuals, chosen for computational reasons. We con-
sider growth in mass to be reasonable because predicted weight-at-age

Fig. 4. Comparisons of the IBM predictions
with various data averaged over 2007–2015
(except panel d) which is averaged over
1984–2013) on: a) proportion mature at age
from sampling of commercial catches in
quarter 1; b) the age distribution on the feeding
grounds in July from the International
Ecosystem Survey in the Nordic Seas (IESSNS);
c) the average weight-at-age from the IESSNS
in July; d) monthly variation in the average
weight of 36 cm fish (Olafsdottir et al., 2016);
and e) and f) length distributions from the
Scottish West Coast International Bottom-
Trawl Survey (SWC-IBTS) in quarters 1 and 4
respectively. Dots show mean values and
whiskers the standard deviation.
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in summer matches the data well (Fig. 4c). Storage of lipid when
feeding in summer is reflected in increased weight-at-length and is
supported by the good model fit to data on the monthly variation in the
weight of 36 cm individuals (Fig. 4d). Lastly, total mortality is rea-
sonable because the adult age distribution in summer is matched well
(Fig. 4b). The model also fits data on the mackerel population dynamics
that were used for calibration well (Fig. 3). However, it is because they
were not used for calibration that we consider the data on population
structure to support our energy budget structure.

The main advantage of the IBM approach is that it provides a single
framework that can explicitly incorporate food web interactions, en-
vironmental drivers, density dependence and spatial structuring. This
allows the model to capture two key processes that affect recruitment in
many species. Firstly, the model captures the generally-accepted
“growth-mortality hypothesis” (Anderson, 1988; McGurk, 1986; Ware,
1975). Larval and juvenile background mortality decreases with body
size. As a result, cumulative survival in a cohort depends on its growth
rate, and hence food availability, temperature and the density of
competitors. The predator-prey size ratio also dictates that individuals
become less vulnerable to explicit predation with increasing size. Sec-
ondly, the model captures the effects of parental condition on spawning
success, which has been shown for many taxa (Mcbride et al., 2015).
The initial abundance of a cohort (i.e. the number of eggs initially)
depends on the amount of energy the spawning stock is able to accu-
mulate before spawning. This depends on the history of food avail-
ability, temperature and density of competitors when adults were last
feeding (see TRACE section 7 for more details). In sum, recruitment in
the model emerges from parental condition and early survival. Pre-
dictions are process-based and should be less vulnerable to the pro-
blems of extrapolation than those obtained from standard stock-re-
cruitment curves.

We hope the model will be used to explore the effects of multiple
ecosystem drivers in future. We have demonstrated its ability to test the

population consequences of management scenarios by simulating hy-
pothetical fishery closures in one sector of the North Sea. These simple
scenarios produced expected population responses (Fig. 5), but high-
light how it may be applied going forward. This feature is in demand
because spatial management in fisheries is increasingly prevalent
(Halpern et al., 2012), whether as no-take zones like marine protected
areas, or more nuanced measures such as spatially-explicit quotas
(Rassweiler et al., 2012). Alongside the effects of fishing, the model
could also be used to explore the effects of climate change. This may
involve coupling the model to lower trophic level biogeochemical and
hydrodynamics models, which can provide various forcing variables
under climate change scenarios. One particular application could be to
investigate change in fish distribution in response to increasing in SST,
and its implications to management.

Although we parameterised the model for mackerel in the North
East Atlantic, it should be applicable to other species and locations. This
is because: (1) the energy budget is based on fundamental principles of
behavioural and physiological ecology and incorporates generic laws
for the scaling of energy uptake and expenditure with body mass and
temperature (Sibly et al., 2013); (2) it captures key processes that relate
the environmental drivers to the population structure and dynamics of
many species, such as the effects of parental condition and early sur-
vival on recruitment; and (3) the RS data is freely-available and has
global coverage. Although RS-based estimates of SST and chlorophyll
come with a certain level of uncertainty associated with the satellite
retrievals, the level of these random errors are generally bounded
(often< 30%, GCOS, 2011). Moreover, with the continuous improve-
ment of the quality of satellite data, the error propagation through the
model arising from the model inputs will be greatly reduced. As such
we hope that the model location and extent can be changed to utilize
the satellite data matching the distribution of the chosen species, and
that it will be mainly the values of the parameters that will need to be
changed for different species, many of which can be found at FishBase.

Fig. 5. Simulated a) SSB, b) recruitment and c)
length distributions of large (≥33 cm) fish, all
on February 1st, when ICES division 4a was
open to fishing year round (open), open to
fishing only from Feb 15th to Sep 1st (baseline)
and closed year round (closed). Predictions are
averaged over five simulations in each scenario.
Panel d) shows the mean proportion of the
population in division 4a in each month of the
year, averaged over 15 simulations, with error
bars showing standard deviations. Panel e)
shows the location of division 4a.
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The model should also be able to accommodate multiple species, be-
cause interactions can occur via density dependent effects on ingestion,
or by explicit size-based predation. Unlike previous generic marine fish
IBMs, e.g., OSMOSE (Shin and Cury, 2004, 2001), our model includes
bioenergetics, and we hope it will provide a step towards broadly ap-
plicable bioenergetics IBMs.

The main caveat of our generic approach is that fish populations
exhibit a wide range of spatial patterns that vary over their ontogeny
and thus it is not possible to provide a generic movement sub-model.
Users will need to devise algorithms appropriate to the species being
modelled. In this study we approximated spawning, feeding, over-
wintering and nursery areas geographically from various sources. We
were able to further delineate these areas by environmental features,
such as SST and depth, using information on S. scombrus from the lit-
erature. However, in the current model formulation, movement within
each habitat type follows a random walk, and migration triggers are
hard-wired. One goal of future work should be to develop a more rea-
listic movement model. For example, the approach of Politikos et al.
(2015a, 2015b) could be followed, using survey data on the spatial
distribution of a species to construct environmentally-driven movement
algorithms. Moreover, the delineation of different habitat types could
be informed by habitat suitability modelling (e.g. Brunel et al., 2017;
Morris and Ball, 2006). In this way a population’s spatial distribution
can become an emergent feature of the model just as its population
dynamics are now.

IBMs can play an important role in conservation planning and
wildlife management (McLane et al., 2011), and we hope that this work
will benefit the fisheries management community. IBMs represent a
single framework in which food-web interactions, density dependence,
spatial structuring and the wider environment can be incorporated,
thus being consistent with the ecosystems approach to fisheries man-
agement. The effects of these drivers on fish populations typically arise
from their effects on the constituent individuals (Ward et al., 2016).
Explicit incorporation of these drivers makes IBMs an improvement on
age/size structured models. The basis for our model is a realistic energy
budget, which represents a mechanistic framework by which the eco-
system drivers affect the characteristics of the individuals. Population
measures are then calculated as the sum of these characteristics. This
means that predictions of population-level processes such as recruit-
ment emerge rather than being parameterised. Going forward our
model can be used to address several strategic management questions,
including the population consequences of different management and
environmental scenarios.
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