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a b s t r a c t

REDDþ was initially conceived of as a multi-level carbon-based payment for environmental services
(PES). It is still often assumed to be a cost-effective climate change mitigation strategy, but this
assumption is mostly based on theoretical studies and static opportunity cost calculations. We used
spatial and socioeconomic datasets from an Amazonian deforestation frontier in Brazil to construct a
simulation model of REDD þ payments to households that can be used to assess REDD þ interventions.
Our SimREDD þ model consists of dynamic optimization and land-use/cover change allocation sub-
models built into an agent-based model platform. The model assumes that households maximize profit
under perfect market conditions and calculates the optimal household land-use/cover configuration at
equilibrium under a given REDD þ PES scenario. These scenarios include PES based on (1) forest area and
(2) carbon stocks. Insights gained from simulations under different conditions can assist in the design of
more effective, efficient, and equitable REDD þ programs.

© 2017 Elsevier Ltd. All rights reserved.
Software and/or data availability

The model described, SimREDDþ, was built in NetLogo v.5.3.1
software for agent-based modeling (Wilensky, 1999). The first and
current version of the model was finalized in October 2016. Net-
Logo, and therefore SimREDDþ, should work on any platform on
which Java 5 or later is installed. Computers with <8 GB of RAM
might run out of memory due to the substantial number of virtual
agents simulated in the model. SimREDD þ script is freely available
from the corresponding author after signature of a Data Use
Agreement between the requester, the corresponding author, and
the Principal Investigators responsible for acquisition of the sen-
sitive household-level socioeconomic data.
t).
1. Introduction

Spatially explicit biophysical and anthropogenic factors corre-
lated with tropical deforestation are well discussed in the literature
(e.g., Geist and Lambin, 2002; Müller et al., 2012; Pfaff, 1999) and
are often key components of land-use/cover change (LUCC) simu-
lation models (Eastman, 2015; Soares-Filho et al., 2002). Examples
of these factors are land slopes and distances from roads, markets,
and protected areas. The observation that the relationships among
such factors shed little light on the decision-making processes that
undergird LUCC (Deadman et al., 2004; Le et al., 2008; Parker et al.,
2003) motivates attempts to elucidate the causal effects of policy
interventions on deforestation (e.g., Blackman, 2013; B€orner et al.,
2016). One way to remedy this deficiency is through use of agent-
based models (ABM), which offer a powerful way to explore
coupled human-natural complex systems (Wilensky and Rand,
2015). ABMs can be used, for example, to inform the design of
policies or programs to curb deforestation while minimizing
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negative impacts on local stakeholders (Iwamura et al., 2016;
Purnomo et al., 2013; Snilstveit et al., 2016). In this paper, we
describe a hybrid optimization-ABM that simulates the effects of
payments for environmental services (PES) to settlers on an old
Amazonian deforestation frontier on LUCC and community welfare.
Payments were structured in accordance with REDDþ (Reducing
Emissions from Deforestation and Forest Degradation, with
recognition of the roles of conservation, sustainable forest man-
agement, and enhancement of carbon stocks; UN-REDD, 2008,
2011) practices. The model presented here was designed to shed
light on issues related to the long-run effectiveness, efficiency, and
equity of REDD þ interventions.

An ABM is a complexity-theory based computerized simulation
(Snooks, 2008) of a number of decision-makers (agents) who
interact through prescribed rules in a dynamic environment (An,
2012; Liu et al., 2007). The independence of agents represented in
an ABM and their interactions allow researchers to capture char-
acteristics over time of complex systems like heterogeneity,
nonlinearity, feedbacks, and emergent properties (An, 2012; An
et al., 2005; Liu et al., 2007). ABMs have the potential to assess
impacts of policy scenarios on coupled human-natural systems as
they attempt tomimic the behavior of institutions and stakeholders
in a virtual representation of reality (e.g., Andersen et al., 2014;
Iwamura et al., 2014; Purnomo et al., 2013). Thus, development
and application of ABMs represent a reasonable early step in policy-
making (Farmer and Foley, 2009), which is substantially less costly
than field-based randomized-control trials and can provide guid-
ance sooner than quasi-experimental evaluations of pilot initiatives
(Sills et al., 2017).

LUCC models based on ABM frameworks are often coupled with
biophysical information about the landscape that can be used for
spatially-explicit model validation (Deadman et al., 2004; Ngo and
See, 2012; Pontius et al., 2011). The spatial component of LUCC-
ABM allows for better virtual representation of real landscapes
and consideration of both natural and socioeconomic contexts (An
et al., 2005; Deadman et al., 2004; Mena et al., 2011). Arguably, the
most important component of a LUCC-ABM is the decision-making
processes of its virtual agents (e.g., farm households). In general,
those processes are based on decision-trees (e.g., Deadman et al.,
2004; Salvini et al., 2016) or the maximization of utility functions
(e.g., Andersen et al., 2014; Monticino et al., 2007). Maximization
problems often include labor, income, and physical constraints (e.g.,
Evans et al., 2001) and are grounded in farm household economics
and agricultural production theories (Angelsen, 1999; Darwin et al.,
1996).

REDDþ was initially conceived as a system of PES for carbon
retention or sequestration (UN-REDD, 2011). It has garnered sub-
stantial international attention as a potentially cost-effective
approach to climate change mitigation (Kindermann et al., 2008).
Negotiations at the 21st Conference of Parties of the United Nations
Framework Convention on Climate Change acknowledged
REDD þ as a strategy to be incorporated into future international
climate regulations (UNFCCC, 2015). Yet, it is widely accepted that
REDD þ will only be effective if payments offset stakeholders' op-
portunity costs, which can vary substantially (Abram et al., 2016;
Borrego and Skutsch, 2014; Torres et al., 2013). A recent meta-
analysis by Phan et al. (2014) reported opportunity costs for
REDD þ range from US$0.05 to $92 Mg CO2

�1. The average cost in
Latin Americawas approximately $5.4 Mg CO2

�1, within the <$0.2 to
$13 Mg CO2

�1 range reported by B€orner and Wunder (2008) for the
Brazilian Amazon. Ickowitz et al. (2017) reported substantially
higher opportunity costs to smallholders over a 30-year time ho-
rizon with a 9% discount rate, ranging from $11 to $77 Mg CO2

�1

across five sites in the Brazilian Amazon. In contrast, Nepstad et al.
(2007) use a much lower opportunity estimate of $1.5 Mg CO2

�1
across the entire region.
Multiple reasons explain why opportunity costs range so widely

across the tropics, but the primary one stems from variation in
possible land uses. Not all tropical forests are located in
plantations due to logistical (e.g., inaccessible regions) or envi-
ronmental reasons (e.g., soil quality, precipitation regimes, and
presence of phytopathogens). In addition, the lack of high-quality
spatial and economic data to estimate opportunity costs often
forces researchers to extrapolate them from one region to others
with very different conditions, land use options, and opportunity
costs (e.g., B€orner et al., 2014; Nepstad et al., 2007), which could
result in inaccurate estimates. Furthermore, when opportunity cost
estimates are static, i.e., they are not allowed to change with
changes in economic conditions over time (Pana and Gheyssens,
2016; Takasaki, 2012), interpretation of results must be made
with extra caution. Given that market conditions can change sub-
stantially over time, more dynamic analyses are warranted. ABMs
can shed light on the extent to which different REDD þ payments
are likely to change business-as-usual behavior through time by
simulating LUCC decision-making by farm households, which
avoids the potential pitfalls of static opportunity cost analyses
(Andersen et al., 2014; Purnomo et al., 2013; Salvini et al., 2016).

Here we describe a hybrid optimization-ABM (e.g., Andersen
et al., 2014) we developed to evaluate the potential impacts of
REDD þ payments on settlers on an Amazonian deforestation
frontier. Impacts are evaluated in terms of land-use/cover change,
CO2 emissions, total program expenditures on PES given program
enrollment rates, and community welfare. Even though our model
was constructed on an ABM platform, we consider it a hybridmodel
because agents' LUCC decisions are strictly based on the solution of
the dynamic optimization problem in which each household seeks
to maximize farm profits.

2. Methods

2.1. Study region

The study region covers approximately 6000 km2 in Rondônia
State, Brazil, including the municipality of Ouro Preto do Oeste and
its five contiguous neighbors, Vale do Paraíso, Nova Uni~ao, Teix-
eir�opolis, Urup�a, and Mirante da Serra, all of which are near the
major federal highway, BR-364 (Fig. 1). The area lies within the “arc
of deforestation” in the Brazilian Amazon (Caviglia-Harris, 2005), a
well-documented heavily deforested old frontier where settlers
began arriving in the 1960s in response mostly to government-
sponsored programs. These include the “National Integration Pro-
gram,” the “Northwest Region Integrated Development Program,”
and “Operation Amazonia” (Caviglia-Harris, 2004; Sills and
Caviglia-Harris, 2008). In the study region, the federal land re-
form agency, INCRA, allocated nearly 9000 lots laid out in a regular
pattern along roads to settlers arriving from other regions. Defor-
estation in the study region has therefore followed a road-related
“fishbone” pattern, and has been the subject of numerous LUCC
studies since the early 1990s (e.g., Dale et al., 1994).

2.2. Datasets

2.2.1. Socioeconomic data
Socioeconomic household survey data from a systematic

random sample stratified by municipality collected from 697
households in 2009were used to parameterize themodel (Caviglia-
Harris et al., 2014). The majority of households in the region,
virtually all of which immigrated from outside the Amazon, are
small-scale producers (98%) with an average property size of 65 ha
(range: 2e240 ha), while the average for medium and large lots



Fig. 1. Study region.
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(top 2%) is 745 ha (range: 240e3000 ha). Households initially
focused on annual and perennial crops, but revenues from these
crops declined by almost 70% between 1996 and 2009 and dairy
and beef cattle production largely replaced that income. Milk
production increased from an average of approximately 17,000 L
per year in 1996 to approximately 30,000 L in 2009. Overall, annual
income per household increased from $4000 to more than $9000
(inflation-adjusted) for the same period and the average number of
cattle owned per household increased from approximately 70 to
140 head. The settlements experienced high rates of deforestation
between 1996 and 2009, with mature forest cover decreasing by
more than 50%. Overall, only about 10% of forest cover remained in
the study region in 2009 (Caviglia-Harris and Harris, 2011; Caviglia-
Harris et al., 2015).
2.2.2. Remote sensing and GIS data
The hybrid model incorporates a spatially explicit LUCC sub-

model based on five spatial layers. (1) The first is a map displaying
the location of 8900 settlement properties (Caviglia-Harris et al.,
2015, Fig. 1). (2) The second is a Landsat 5 satellite-based LUCC
classification map generated in 1996, the year the first survey was
completed, showingmature forest, secondary forest (i.e., forest that
regenerated naturally after abandonment of agricultural land), and
agricultural use classes (Fig. S1; Roberts et al., 2002; Toomey et al.,
2013). (3) The third map, created using the artificial neural
network-based algorithm, shows the ranked suitability (i.e., “risk”)
for deforestation of mature forest patches. The deforestation suit-
ability map was constructed with theMulti-Layer Perceptron (MLP),
an artificial neural network-based algorithm available in TerrSet
v.18.11 software (Eastman, 2015). It indicates the forest patches
within the study region that are more likely to be cleared in the
future (Fig. S2). The map was based on the mapped land-use/cover
changes and persistence between 1986 and 1996 and 11 biophys-
ical maps of the study region. The maps included in the MLP were:
administrative areas at the municipality level; macro-political re-
gions; soil quality; elevation; timber market zones; distances from
previously deforested areas; distance from major roads; distance
from major rivers; distance from protected areas; distance from
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logging areas; and, distance from major markets (Table S1 and
Fig. S3). The calibration accuracy of the MLP was 71% (Table S2). (4)
The fourth is a map of ranked suitability of secondary forest
clearing based on Euclidian distances to agricultural land in 1996.
(5) The final map provides the ranked suitability of agricultural
abandonment based on Euclidian distances to forest patches in
1996. Additionally, the tropical carbon-density map developed by
Baccini et al. (2012) was used to estimate per-hectare averages of
net carbon emissions from LUCC (Figs. S4 and S5).

2.3. Model description

The LUCC model, named SimREDDþ, is described in accordance
to the Overview, Design concepts, and Details (ODD) protocol, a
standard guideline for the description of ABMs (Grimm et al., 2010).
SimREDDþ was built in NetLogo v.5.3.1 (Wilensky, 1999). General
data analyses were conducted with R v.3.3.0 statistical software (R
Core Team, 2016). Algebraic transformations were performed in
Mathematica v.9.0 (Wolfram Research, Inc., 2012). Spatial analyses
were conducted with R, TerrSet v.18.11 (Eastman, 2015), and ArcGIS
v.10.3.1 (ESRI, 2015) software.

2.3.1. Purpose
The model aims to simulate the effects of direct

REDD þ payments conditional on forest cover, including both
retention of mature forest and regeneration of secondary forest.
The objective of the model is to assist in the design of more effec-
tive, efficient, and equitable REDD þ programs and policies in the
long run. The first step in the model is to create a baseline LUCC
scenario at equilibriumwithout REDDþ payments. The second step
introduces REDD þ payments as an additional source of annual
income for households. Payments are proportional to the sum of
the area in mature forest and the area set aside for secondary forest
regrowth on each property. Given a PES scenario, households
choose a new optimal land-use/cover configuration. Based on es-
timates of carbon stocks associated with each land-use/cover class,
the model quantifies net carbon emissions (Mg CO2) from the LUCC
activities.

Two types of PES for forest conservation are often discussed in
the literature: (1) payments based on forest carbon stocks; and, (2)
payments based on forest area. The first scheme is associated to
carbon market-based initiatives (e.g., Hamrick and Goldstein,
2016), while the second approach is often taken by government
conservation programs (e.g., Arriagada et al., 2012; de Koning et al.,
2011). SimREDD þ can simulate these two PES schemes.
REDD þ payments under the carbon market option are applied in
accordance with decentralized/private PES for avoided deforesta-
tion and voluntary carbon market rules that are expected to be
followed by national REDD þ programs (Verified Carbon Standard,
2017a). REDD þ payments based on area ($ ha�1) are referred to as
the policy option in SimREDDþ and are assumed to be annual,
constant, and based on the current area of mature forest cover plus
agricultural areas set aside for secondary forest regrowth on each
property. In practical terms, the implementation of PES policy op-
tion is easier when compared to the carbon market option
described above as it does not require estimation of forest carbon
stocks. Under the carbon market option, REDD þ payments are
based on the differences in carbon emissions under the baseline
and project scenarios ($ Mg CO2

�1). This option also assumes that
REDD þ payments for a given ton of CO2 either removed or not
emitted to the atmosphere (i.e., additional CO2) are made only once
during a hypothetical carbon project lifetime, in accordance with
carbon market standards (Verified Carbon Standard, 2017b). The
project lifetime considered in our simulations is 20 years. Constant
renewal of the hypothetical carbon project is assumed after
expiration because the model is projected into infinity. As result, a
given ton of additional CO2 is rewarded multiple times, but only
once every 20 years. Therefore, a direct implication of changing the
hypothetical carbon project lifetime is that, if length <20 years, a
given ton of additional CO2 is rewarded more frequently in the long
term and hence REDD þ revenues for the household increases. The
opposite effect is observed if the length of the project is > 20 years
It is our understanding that these two schemes encompass the
majority of currently implemented PES interventions focused on
forest conservation and restoration.

In accordance with the framework of the United Nations'
collaborative program on REDDþ (UN-REDD, 2015), the model
considers but makes no distinctions between payments made for
avoided deforestation and promotion of natural regeneration. This
simplification seems justified because secondary forests present at
the beginning of model simulations (in 1996) and newly formed
forest patches created through the abandonment of agricultural
land are both assumed to reach the status of mature forests when
projected into infinity, when no LUCC occurs at model equilibrium
(see Section 2.3.6 and the Supplementary Material for details). The
model reports the total annual amount of money spent by the
simulated REDD þ scheme on PES at equilibrium. The model as-
sumes that enrollment is voluntary and unconstrained and that the
amount of land households allocate to REDDþ (if any) depends on
the extent to which the offered PES offset the households' oppor-
tunity costs. The model does not incorporate the total cost of the
REDD þ interventions as it does not capture transaction or
administrative costs (Luttrell et al., 2017; Thompson et al., 2013).

2.3.2. Entities, state variables, and scales
There are two types of entities in the model, households (or

farmer-agents) and land-use/cover patches (28.5m resolution). The
approximately 6000 km2 of settlements were divided into ten sub-
regions to cope with the computational limitations of NetLogo
(Railsback et al., 2006; Fig. S6; Table S3). Agricultural patches
represent different and unspecified mixes of annual and perennial
crops and pasture. Three variables describe each patch (grid cell) in
the model: (1) a land-use/cover category (mature forest, secondary
forest, or agriculture); (2) a patch-owner identification number;
and, (3) a value related to its suitability of change to a different
land-use/cover class (either the “risk” of deforestation for forest
patches or of abandonment for agricultural patches).

Aboveground carbon stocks were estimated in Mg CO2 ha�1, the
standard unit of carbon emission offsets (Rifai et al., 2015; UNFCCC,
2013a), based on the weight ratio between CO2 and C (44/12), a
biomass carbon fraction of 0.47, and below-to aboveground
biomass ratios of 0.24 and 0.20 for mature and secondary forest,
respectively (IPCC, 2006; Mokany et al., 2006). The averages of
aboveground carbon stocks associated with the mature and sec-
ondary forest land-cover classes were estimated at 537 and 418 Mg
CO2 ha�1, respectively (Baccini et al., 2012; Fig. S4). For agricultural
patches, a total carbon stock at equilibrium of 104Mg CO2 ha�1 was
adopted (Fearnside, 1996). Farmer-agents are assigned a patch-
owner identification number that indicates which patches they
own and the size of their farms. Farms are not allowed to change
sizes over the course of the simulation (i.e., household members do
not split or acquire lots).

2.3.3. Process overview and scheduling
The model represents two processes related to LUCC in the

settlements. The first is quantification of the optimal agricultural
area for each farm. The second is the spatial allocation of defores-
tation of forest patches and abandonment of agricultural patches.
Shifts in the optimal agricultural area result from changes in the
parameter values displayed on the model interface: market price of
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agricultural outputs; REDD þ payments for avoided deforestation
and promotion of natural regeneration; and, wage rates. Simula-
tions endwhen the LUCC equilibrium state is reached, as defined by
the individual farmer-agents' optimal agricultural area under each
payment scenario.

2.3.4. Design concepts
Basic principles: The model is based on the theory of farm

households operating in complete markets (Darwin et al., 1996) in
which households are assumed to behave as if they maximize
profits (Angelsen, 1999; Takasaki, 2013). These farm households are
the farmer-agents in the model. A Cobb-Douglas production func-
tion is embedded into the farmer-agent's profit function. The
literature on farm household production is generally focused on
one crop to avoid problems often encountered in multicrop pro-
duction models (Barnum and Squire, 1979). In light of this limita-
tion and to make the LUCC model as generalizable as possible, the
rice-equivalent (Andersen et al., 2014) was adopted as a single
standard agricultural output. Annual and perennial crops, as well as
animal production, and their respective prices were converted into
their rice-equivalent based on energy content and annual produc-
tivity (Tables S4 and S5; Fig. S7).

Emergence: LUCC patterns emerge based on the optimal agri-
cultural area calculation and the areas more suitable for land-use/
cover change and persistence due to the fact that transitions of
one patch affect the suitability for transitions of neighboring
patches.

Adaptation/learning: Agents do not present adaptive traits (i.e.,
they do not change behavior over time in response to learning).

Objective: The farmer-agent's objective is to maximize a profit
function through a dynamic optimization framework. A Cobb-
Douglas production function (e.g., Barnum and Squire, 1979) de-
termines the volume of rice-equivalents produced as a function of
the household's agricultural area and labor. Predicted production
combined with agricultural output prices determine the house-
holds' revenue. The model assumes that a given agricultural patch
maintains the same productivity into infinity, which is an average
of the production potential of the agricultural land obtained from
the panel data through an ordinary-least squares regression.
Maintenance costs of agricultural patches, deforestation costs, and
labor costs are subtracted from household revenue. In cases that
incorporate REDD þ payments, the latter are added to household
profit.

Prediction/Sensing: Households are treated as homogenous
agents. They are aware of the patches within their farms' bound-
aries, the current land-use/cover class of those patches, and the
suitability of mature and secondary forest patches for deforestation
or of agricultural patches for abandonment. Through the dynamic
optimization exercise, the farmer-agents become aware of the
optimal size of agricultural area and change their land-use/cover
patches to reach that level.

Interaction/collectives: Land-use/cover patches belong to a
farm and a farmer-agent. Farmer-agents interact exclusively with
their own land-use/cover patches with no interactions among
households. Nonetheless, neighboring patches influence the suit-
ability of LUCC of areas that belong to different farmer-agents.

Stochasticity: No stochastic processes are incorporated in the
model. The initialization conditions are based on a LUCC classifi-
cation map of 1996, while the dynamic optimization process is
based on an internal analytical solution. Both procedures are
deterministic.

Observations: Changes in areas of forest and agricultural land at
the sub-region level in the simulation are monitored and compared
to the areas in LUCC classification maps derived from Landsat sat-
ellite imagery. Annual household profits at the equilibrium state of
the model run are also monitored and compared to the 2009 panel
data survey.

2.3.5. Initialization
The model is run for one of its ten sub-regions at a time, with

one farmer-agent created for each farm. Land-use/cover patches are
created following a Landsat 5-based LUCC classification map from
1996 (Roberts et al., 2002; Toomey et al., 2013). Deforestation and
abandonment suitability maps are loaded into NetLogo and their
values are assigned to forest and agricultural patches, respectively.
Similarly, land-use/cover patches are assigned to their respective
farmer-agent owners. The farmer-agents count the patches in each
land-use/cover class within their farms and store those values for
use during the model run. NetLogo then displays the 1996 land use/
cover map on which it overlays property boundary polygons
(Fig. 2). Finally, initial sizes (ha) of mature forests, secondary for-
ests, and agricultural lands at the landscape level are reported and
community welfare is calculated as the sum of all households'
annual farm profit.

2.3.6. Submodels
Profit maximization submodel: The household decision-

making process is assumed to follow a dynamic maximization
framework. Such a framework is required because any additional
deforestation expands the household agricultural area. Households
maximize a profit function under perfect labor market conditions
(Angelsen, 1999; Takasaki, 2013):

P ¼ pAf ðAt ; LtÞ þ pEiðF � AtÞ �wðLt þ gDtÞ � CAAt � CDDt (1)

where pA is the price of the agricultural production output; f ðAt ; LtÞ
is the production function that predicts output produced as a
function of agricultural area (At) and agricultural labor (Lt) at time
t; w is the wage rate associated with agricultural labor and the
deforestation and site preparation labor (g) per unit of deforested
area (Dt); CA and CD are non-labor costs associated with main-
taining agricultural areas (At); and deforestation and site prepara-
tion costs required per hectare of deforested area (Dt), respectively.
The profit function also incorporates the financial benefit from an
environmental service payment represented by pEi ðF � AtÞ, where
pEi is the REDD þ payment ($ unit�1) for payment type i (discussed
further below) based on the total farm area (F) not converted for
agricultural land use (At), under the assumption that all farms were
once forested. To allow an analytical solution, a Cobb-Douglas
production function was chosen for its closed-form solution prop-
erty (e.g., Angelsen, 1999; Bronfenbrenner and Douglas, 1939):

f ðAt ; LtÞ ¼ aAb
t L

4
t (2)

where b and 4 are the land area and labor output elasticities,
respectively, and a is the total factor of productivity. These three
parameters were estimated from the socio-economic panel data
based on the agricultural area and family size of the household,
number of family members with off-farm jobs, and number of
people hired to work on the farm throughout a year. Given that
production functions are likely to vary with property size, pro-
duction function parameters were estimated based on data from
small farms, with 28 large lots excluded from the simulations.
Among the excluded farms are shared Legal Reserves that belong to
the settlements (areas that must remain forested to comply with
Brazilian environmental regulations).

The unit of pEi varies with the REDD þ payments scheme (i)
chosen.With the REDDþ policy option, payments, pEr , are based on
the remaining mature forest area and the area allocated for sec-
ondary forest regrowth in the farm ($ ha�1). With the carbon



Fig. 2. Initialization interface (upper panel) and simulation output (lower panel) for the Urup�a 1 sub-region.
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market option, payments, pEm , are based on the net carbon emis-
sions from avoided conversion of forest to agricultural land and net
carbon sequestration from regeneration of abandoned agricultural
patches ($ Mg CO2

�1), captured by an additional term d (Rifai et al.,
2015). Because payments for a given Mg CO2 can only occur once
over a carbon project lifetime, the average annual REDDþ payment
under the carbon market scheme becomes:

pEm ¼
pErd

T
(3)

where T represents a hypothetical REDD þ project lifetime imple-
mented in accordance with voluntary carbon market standards
(Verified Carbon Standard, 2017b). REDD þ payments are annual-
ized by T, which is the time assumed for agricultural patches set
aside for forest regrowth to achieve the carbon stock status of
mature forest. T years is also the ex ante time assumed for all forest
patches within a given farm to be cleared in the absence of
REDD þ payments (see Figs. S8 and S9 for details). Given
that At ¼ At�1 þ Dt , the deforestation process is captured as:

vAt

vt
¼ _At ¼ Dt (4)

Additionally, the amount of deforestation cannot exceed the
amount of remaining forest, yielding an additional constraint:

F � At � Dt � 0 (5)

The optimal solution can be solved with the construction of the
following Hamiltonian equation (Michel, 1982):

H ¼ pAaA
b
t L4

4

A þ pEiðFt � AtÞ �wðLt þ gDtÞ � CAAt � CDDt

þ ltDt þ jðF � At � DtÞ (6)

where lt is the co-state variable associated with the expansion of
agricultural land and j is the shadow value for the maximum
deforestation constraint (i.e., households cannot clear more land
than they possess). The first-order conditions of the Hamiltonian
equation then become:

vH
vLt

¼ pA4aA
b
t L

4�1
t �w ¼ 0 (7)

vH
vDt

¼ �wg� CD þ lt � j ¼ 0 (8)

�vH
vAt

¼ �pAbaA
b�1
t L4t þ pEdþ CA þ j ¼ _lt � rlt (9)

vH
vlt

¼ Dt ¼ _At (10)

vH
vj

¼
�
F � At � Dt ¼ 0; j>0
F � At � Dt >0; j ¼ 0 (11)

The optimal agricultural land at equilibrium (A*) is given
recursively by solving the optimal control problem (Appendix A):

A*
t ¼

0
BB@wb1�

1
fa�

1
fp

�1
f

A ðrCD þ pEdþ CA þ rjgþ rjþ jÞ1f�1

f

1
CCA

f

bþf�1

(12)

In all of the above equations, j ¼ 0 when there is forest left (i.e.,
the land restriction is not binding). Finally, the deforestation path
(Dt) is defined by:

Dt ¼
8<
:

0; wgþ CD þ j> lt
D*; wgþ CD þ j ¼ lt
D; wgþ CD þ j< lt

(13)

If At <A*, the household deforests at the maximum possible
rate, D. If At >A*, the household abandons agricultural land, lead-
ing to natural regeneration of forest until the optimal amount of
agricultural land is reached. Once the optimal area in agricultural
use is reached, deforestation (Dt) equals zero and the amount of
agricultural land remains at A*. While this model assumes param-
eters to remain constant over time, the model can easily calculate a
new equilibrium land area and the associated implied deforestation
or forest regeneration if conditions were to change after initial
equilibrium is reached.

Optimal agricultural labor at equilibrium(L*) is then calculated
recursively from the profit function (Equations (1) and (2)) given
the optimal agricultural area (A*) as:

P ¼ pAa
�
A*�bLft þ pEi

�
F � A*��wðLt þ gDtÞ � CAA

* � CDDt

(14)

vP

vLt
¼ pA

va
�
A*
�bLft

vLt
�w ¼ pAfa

�
A*�bLf�1

t �w ¼ 0 (15)

L* ¼
�

w

pAfaðA*Þb
�

1
f�1 (16)

Finally, the optimization submodel calculates community wel-
fare, based on the sum of all N individual annual household (i)
profits for each simulation scenario (j) at the LUCC equilibrium state
(PE):

PE;i;j ¼
XN
i¼1

�
pAa

�
A*
t;i;j

�b�
L*t;i;j

�4þpE
�
F�A*

t;i;j

�
�wL*t;i;j�CAA

*
t;i;j

�

(17)

Total annual REDDþ expenditures on PES are also calculated for
a given household enrollment rate in the program. Because welfare
is calculated at the household level, Equation (17) can easily be used
to compare the impacts of REDD þ payments in terms of equity
across household socioeconomic groups (e.g., richest versus
poorest).

LUCC allocation submodel: Once the optimal agricultural land
area is defined, farmer-agents decide what LUCC needs to take
place to adjust land use on their farms to that value. When defor-
estation is required, farmer-agents first clear secondary forest
patches, with preference to patches with higher deforestation
suitability (closer to previously established agricultural areas). If all
secondary forest patches are cleared and the optimal amount of
land in agricultural use is still not yet reached, farmer-agents
convert mature forest patches, also giving preference to patches
with higher deforestation suitability, until the optimal land-use
level is reached or until the entire farm is under agricultural use.
When the optimal amount of agriculture land is less than the
amount previously used for agriculture in the farm, farmer-agents
abandon agricultural patches, affording priority to patches with
higher abandonment suitability (closer to forested areas), until the
optimal level is reached. Finally, the size of each land-use/cover
class and the net carbon balance from the LUCC processes (CO2
emissions minus sequestration) are reported at the equilibrium
state of the model.
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2.4. Model verification and sensitivity analysis

Model verification was conducted for debugging purposes
(Wilensky and Rand, 2015). Local sensitivity analysis was con-
ducted to examinewhich parameters most affect simulation results
(Railsback and Grimm, 2012). Sensitivity analysis of this model was
particularly important because parameter values were either
empirically estimated with the 2009 panel data and assumed to be
constant through the simulations, or obtained from studies based
on different regions of the Amazon Basin (Tables 1 and 2). Sensi-
tivity was analyzed based on the relative change of the following
model parameters and their effects on the optimal level of agri-
cultural land at the equilibria: Cobb-Douglas production function
parameters; price of the agricultural output; agricultural costs; net
carbon emission factor; REDD þ payments; discount rate; and,
hypothetical carbon project lifetime (see Equations (1)e(3)). For
each step of the sensitivity analyses, all independent variables were
held constant except the variable of interest, which assumed
original values decreased and increased by 100% from base value by
10% intervals. The analysis was conducted under both the carbon
market-based and the REDD þ policy payment-based option
schemes. Additionally, a sensitivity analysis of the artificial neural
network-based model used to create the deforestation suitability
map for the mature forest was conducted with TerrSet v.18.11
software. The latter analysis was based on three methods: (1)
forcing a single independent variable to be constant at each step of
the analysis; (2) forcing all independent variables except one to be
constant at each step of the analysis; and, (3) Backwards Stepwise
Constant Forcing. The latter procedure initiates the analysis by
holding constant every variable to determine which has the least
effect on model accuracy. It then tests every possible pair of vari-
ables that include the one with the least effect to identify which
pair of variables has the least effect on accuracy when held con-
stant. The procedure is repeated holding an extra variable constant
at each step until only one variable remains (Eastman, 2015).
2.5. Model validation

Face and empirical validations were conducted at micro- and
macroscales. In accordance with Wilensky and Rand (2015), face
validation involves demonstration that the model's mechanics and
properties correspond to the mechanics and properties observed in
the studied system, as assessed through visual interpretation, while
the empirical validation is based on simulated and real numerical
Table 1
Parameter estimates for the production function.

Agricultural product

all data

Labor (persons year�1) 0.15***

(0.05)
Agricultural area reported by the household (ha) 0.45***

(0.06)
Agricultural area estimated with remote sensing (ha)

Constant 0.97***

(0.21)
Observations 531
R2 0.12
Adjusted R2 0.12
Residual Std. Error 1.02

(d.f. ¼ 528)
F Statistic 37.66***

(d.f. ¼ 2; 528)

Note: *p < 0.10; **p < 0.05; ***p < 0.01; standard errors are noted in parentheses; d.f. ¼
data comparisons. Similarly, microvalidation evaluates whether the
behaviors and mechanisms encoded into the farmer-agents match
real farmer analogs, while macrovalidation checks whether the
emergent simulated behaviors from the model correspond to
aggregated behaviors observed at the landscape level.

At the microscale, face validation focused on the magnitude of
the optimal area of deforestation observed during simulations,
while the empirical validation compared the simulated annual
household revenues, costs, and profits with their analogs obtained
from the 2009 panel data (Caviglia-Harris et al., 2014). Only a
proportion of the products harvested were sold, and that propor-
tion is not captured in Equation (1). Therefore, the proportion of
products sold (q) was empirically estimated and discounted from
the outcome of the profit function to render model estimates
comparable to the panel data (Table 2). At the macroscale, the
model was face validated through pattern comparison of LUCC
simulation maps at baseline equilibrium (without
REDD þ payments) and the most recent LUCC classification map
(2010) available from time series prepared by Toomey et al. (2013).
Empirical validationwas conductedwith the Figure of Meritmethod
(Pontius et al., 2008). The latter is a straightforward way to assess a
LUCC model's prediction accuracy. Its calculation is based on the
proportion of the area of agreements between satellite-based and
simulation maps over the sum of agreements and the area of
disagreement between the same two maps. LUCC models assessed
with the Figure of Merit method generally exhibit prediction accu-
racy <50% (e.g., Fuller et al., 2011; Kim, 2010; Li et al., 2012; Müller
and Mburu, 2009; Vieilledent et al., 2013), but the proposed model
faced an additional limitation to validation insofar as households
had not necessarily reached their optimal LUCC configurations by
2010. Furthermore, recent changes in the Brazilian Forest Code
(Soares-Filho et al., 2014), increasing efforts to control illegal
deforestation (Brasil, 2013, 2008), and the creation of conservation
incentives (Soares-Filho et al., 2016) might reduce the once wide-
spread failures of compliance with forest conservation regulations
in Amazonian Brazil (Fearnside, 2005). These changes could imply
that the total farm area available for conversion to agriculture (F)
should be altered to capture the minimum forested area that
households must preserve (e.g., 0:8,F). However, these factors have
arguably not yet affected the historical patterns of poor confor-
mance with environmental regulations by small farm households
(Nunes et al., 2015). In any case, the fact that the proposed model
does not account for ongoing LUCC in Brazil is another source of
uncertainty in validation.
ion (Mg ha�1)

outliers excluded all data outliers excluded

0.17*** 0.16*** 0.18***

(0.05) (0.05) (0.04)
0.51***

(0.05)
0.40***

(0.06)
0.42***

(0.06)
0.72*** 1.07*** 0.99***

(0.20) (0.24) (0.22)
524 536 529
0.18 0.09 0.11
0.17 0.09 0.11
0.93
(d.f. ¼ 521)

1.05
(d.f. ¼ 533)

0.98
(d.f. ¼ 526)

51.63***

(d.f. ¼ 2; 521)
26.87***

(d.f. ¼ 2; 533)
33.99***

(d.f. ¼ 2; 526)

degrees of freedom.



Table 2
Model parameters.

Parameter Notation Value Source

Cobb-Douglas production function a 2.63 Panel data (Caviglia-Harris et al., 2014, Table 1)
b 0.45 Panel data (Caviglia-Harris et al., 2014, Table 1)
4 0.15 Panel data (Caviglia-Harris et al., 2014, Table 1)

Net carbon emission or sequestration from the conversion of forest to agricultural
land or the converse, respectively

d 433 Mg CO2

ha�1
Baccini et al. (2012; Figs. S3 and S4), Mokany et al. (2006), and
Fearnside (1996)

Price of rice-equivalent pA R$1.3 kg�1 Panel data (Caviglia-Harris et al., 2014; Fig. S7)
Proportion of rice-equivalents sold in the market q 59% Panel data (Caviglia-Harris et al., 2014)
Price of the environmental service payments pE US$10 Mg

CO2
�1

Hamrick and Goldstein (2016, 2009 exchange rate: 2 R$/US$)

Wages w R$25 day�1 Panel data (Caviglia-Harris et al., 2014)
Discount rate r 10% Table S6
Labor cost of deforestation and land preparation g 38 person

day ha�1
Walker (2003)

Maintenance cost of previously established agricultural areas CA R$ 114 ha�1 Panel data (Caviglia-Harris et al., 2014)
Non-labor cost of deforestation CD R$ 50 ha�1 Estimateda (Barreto et al., 1998; Walker, 2003; West et al.,

2014, 1998 exchange rate: 1.16 R$/US$)

a Non-labor cost of deforestation was based on the cost to operate chainsaws reported by Barreto et al. (1998), US$5.7 day�1 for 116.6 m3 day�1 for two persons. Considering
the average volume felled per hectare reported for the same area (37.4 m3 ha�1; West et al., 2014), each feller was estimated to cover on average 1.6 ha day�1. Hence, the non-
labor cost of deforestation was estimated at $3.7 day�1 ha�1 chainsaw�1. Given the average reported Walker (2003) of 11.8 person-day ha�1 for the tree-felling activity
associated with deforestation and assuming that each person carries a chainsaw, the final non-labor cost of deforestation was estimated at US$43.1 ha-1 in 1998.
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3. Results

Simulated maps successfully mimicked LUCC patterns observed
on deforestation frontiers. At the baseline equilibrium state, the
entire deforestation frontier region was cleared. As
REDD þ payments become a factor at the household-level LUCC-
decision making, patches of forest appear at the equilibrium state.
When increases in costs of agricultural and deforestation activities
result in financial losses, deforestation does not occur and agri-
cultural areas are abandoned (Figs. 2 and 6). The LUCC patterns
observed in the simulated landscape are similar to the “fishbone”
patterns observed in the real study area and other deforestation
frontier regions (Roberts et al., 2002).

3.1. Empirical parameter estimation

The parameters of the production function estimated with an
ordinary-least squares regression resulted in the following equa-
tion (Table 1):

f ðAt ; LtÞ ¼ 2:63,A0:45
t L0:15t (18)

inwhich all parameters were significantly and positively correlated
with the production outcome. Other empirically estimated pa-
rameters were based on the average or weighted-average values
from the panel data. Parameters that could not be estimated were
based on values reported in the literature (Tables 1 and 2; Figs. S5
and S7).

3.2. Sensitivity analysis results

Distinct but expected simulation behaviors resulted from
changes in parameter settings during the sensitivity analysis
(Figs. 3 and 4). At equilibrium, parameters a, b, and 4 from the
Cobb-Douglas production function and the sale price of agricultural
outputs (pA) were all positively correlated with the optimal agri-
cultural area (ha). This result is expected because increasing any of
these variables increases the potential revenue obtained from
agricultural land for a given amount of area and labor. Among these
parameters, b, which determines how the agricultural area affects
rice-equivalent production, was the most sensitive e to the point
that its effect on the optimal agricultural areawas the only one that
required expression on a logarithmic scale. As expected, increases
in production and crop prices led to higher profits, which sustains
agricultural land use, covers deforestation expenses, and reduces
the efficacy of REDD þ payments. In contrast, financial and labor
costs associated with maintenance of agricultural patches
(wand CA), deforestation (w, CD, and g), and the discount rate (r)
were all negatively correlated with the optimal area in agriculture.
Intuitively, when labor/non-labor costs increase, maintaining
agricultural land becomes prohibitively expensive and deforesta-
tion is no longer a profitable LUCC decision. Similarly, the amount of
REDD þ payments (pEi ) and, for the carbon market scheme pay-
ment option, the net carbon emission factor associated with the
conversion from forest to agricultural land use or the net carbon
sequestration factor from the conversion from agriculture to forest
(d; Table 2) were also negatively correlated with the optimal agri-
cultural area. As REDD þ payments or carbon stocks increase
compared to the stocks on agricultural lands (baseline), the forest
conservation option becomes more attractive to households. Lastly,
the REDD þ project lifetime (T), under the carbon market scheme
option, was positively correlated with the optimal agricultural area.
This effect reflects the assumption that a given ton of CO2 for which
REDD þ payments have been made will only become eligible for
additional payments under a new carbon project lifetime.

Based on the relationships established by the artificial neutral
networks model, in all three sensitivity analyses of the model used
to create the deforestation suitability map, distance from previous
deforested areas was the most influential biophysical variable to
inform the location of future LUCC, while the administrative areas
at the municipality level was the least influential. The order of
importance of the other biophysical variables varied by the sensi-
tivity analysis method employed (Tables S7eS10).
3.3. Model validation results

The optimal area of deforestation simulated by the model con-
formed to expectations. At the baseline equilibrium, entire farms
are converted to agricultural land. Most important, for the model's
empirical microvalidation, the estimated agricultural household
annual revenues (average ¼ $4927), costs (average ¼ $2155), and
profits (average ¼ $2772) from the profit function differed little
from the revenues (average ¼ $5390), costs (average ¼ $2429), and
profits (average ¼ $2961) obtained from the panel data (p ¼ 0.44,
0.25, and 0.73, respectively; Fig. 5).



Fig. 3. Sensitivity analysis under the carbon market payment option (red lines) and the REDD þ policy payment option (blue lines). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The “fishbone” patterns of deforestation that emerged during
the simulations provide good evidence to support the model's face
macrovalidation. Furthermore, despite the limitations of adopting
the Figure of Meri for the spatially explicit and empirical macro-
validation of the model at equilibrium, the prediction accuracy
score was reasonably high (59%; Fig. 6).
4. Discussion

The most critical component of a LUCC-ABM is arguably the
decision-making processes of its agents. Many decision-making
processes in such models are based on decision trees (Acosta
et al., 2014; Deadman et al., 2004; Salvini et al., 2016). In contrast,



Fig. 4. Empirical microvalidation of the model. Red boxplots represent the outcomes estimated by the profit function, while blue boxplots represent the values reported by the
household. Outliers excluded for enhanced visualization. In the last right panel, observations with negative agricultural profits were excluded. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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the model presented here adopted a microeconomic framework
based on the assumption that perfectly market-integrated house-
holds behave as profit maximizers. Consequently, the decision-
making process was framed as a dynamic optimization problem,
like those often adopted in the environmental and natural resource
economics literature (e.g., Amit, 1986; Barbier, 1999; Brown, 2008).
A potential criticism of the profit maximization assumption is that
many theories of farm households posit them as utility maximizers
rather than profit maximizers (Barnum and Squire,1979; Chayanov,
1926; Taylor and Adelman, 2003). Using these theories, a house-
hold's utility is often captured as a function of trade-offs between
consumption and leisure constrained by limited access to labor
markets. These characteristics are not necessarily accurate repre-
sentations of farm households on the old deforestation frontier of
the Ouro Preto do Oeste region where labor markets function well.
As demonstrated in the microeconomic household models of
deforestation developed by Angelsen (1999), the utility maximi-
zation behavior can be reduced to profit maximization under per-
fect labor market conditions. Profit or utility maximization
dichotomy aside, we acknowledge that the optimizing behavior
assumption itself does not fully explain human decision-making
(Jager et al., 2000; Le et al., 2008). Alternatives to maximization
behaviors discussed in the literature include (i) achievingminimum
levels of satisfaction or (ii) decision trees, where agents repeat the
same action until they run out of resources such as labor or capital
(Deadman et al., 2004; Salvini et al., 2016). Furthermore, an addi-
tional stochastic factor could be added to the final optimal LUCC
calculation as an attempt to mimic imperfect household decisions
or a stochastic optimization approach based on the generation and
use of random variables could be adopted (e.g., Ermolieva et al.,
2015).

The key component of the profit function incorporated into the
model LUCC decision-making process is the agricultural production
function. While the functional form of the production function can
affect the behavior of the farmer-agents (Angelsen, 1999), a Cobb-
Douglas form was chosen due to its closed solution properties
and widespread use in the farm household and LUCC literature
(Angelsen, 1999; Darwin et al., 1996). Despite the numerous data
transformations required for the conversion of heterogeneous
household production outputs to the rice-equivalent, the produc-
tion function generated parameter values similar to those in the
literature. For example, in the function estimated by Barnum and
Squire (1979) for paddy rice farmers in Malaysia, the respective b

and 4 associated with the agricultural land size and labor were
estimated as 0.62 and 0.29. Although, the overall fit of our function
was somewhat low (R2 ¼ 0.12) compared to others in the literature
based on single-crop systems (e.g., R2 ¼ 0.67 reported by the pre-
vious authors), the simulated annual agricultural revenue did not
differ substantially from the values in the panel data reported by
the households in the region (Caviglia-Harris et al., 2014). Addi-
tionally, the global concavity of the profit function ensured that the
simulation had achieved a maximum. Finally, the sensitivity anal-
ysis of the model parameters did not reveal unexpected or con-
tradictory outcomes.



Fig. 5. Agreements and disagreements between smiluated post-1996 deforestation at equilibrium state and the satellite-based post-1996 deforestation in 2010. Agreements
represent areas predicted and as deforested where deforestation ocurred. Disagreements represent areas predicted as deforested where deforestation did not ocurr.

Fig. 6. Land-use/cover patterns within farms from the REDD þ payment simulations. Left window displays how agricultural areas tend to be close to roads. Right window contrasts
the effects of REDD þ payments on large versus small lots. Old forests represent the mature forest patches present at the beginning of the simulation. New forests represent the
areas of forest regrowth in 1996 plus the agricultural areas allocated to forest regrowth throughout the simulation assume to reach the status of mature forest at model equilibrium.
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The fact that our production function does not discriminate
between family and hired labor combined with the assumption of
perfect labor markets implies that households are treated as ho-
mogenous agents. Such characteristics are arguably in contrast to
general LUCC-ABMs that are often based on heterogeneity and
stochasticity (An, 2012; Le et al., 2008). Nevertheless, heterogeneity
is incorporated into the model through the LUCC allocation sub-
model, as expansion of agricultural land is constrained by farm size
(F), which varies across settlements. For instance, the first
orthogonal (i.e., fishbone arrangement) settlements from the 1970s
were 100 ha lots, while the newer ones follow a radial pattern with
each land holding approximately 12 ha (Caviglia-Harris and Harris,
2011).

The LUCC allocation submodel generated the “fishbone” defor-
estation patterns in the simulations since REDDþ payments caused
shifts in land-use/cover equilibria at the landscape level. Based on
sensitivity analyses of the artificial neural networks-model used to
create the deforestation suitability map, distance from previously
deforested areas was the most influential biophysical variable
explaining the location of observed deforestation (between 1986
and 1996), followed by distance from protected areas and elevation.
These results are in agreement with a recent meta-analysis about
the drivers of deforestation conducted by Ferretti-Gallon and Busch
(2014) and other similar studies (Müller et al., 2012; Pfaff, 1999;
Soares-Filho et al., 2010). The Figure of Merit of this model was
high compared to others in the literature and in comparison to
those for decentralized/private REDD projects. For instance, Pontius
et al. (2008) found that close to one-third of the LUCC models they
tested produced Figures of Merit <10% with only one >50%. Simi-
larly, an assessment of deforestation models conducted by Kim
(2010) found no Figure of Merit >8% for a highly deforested area
in Santa Cruz, Bolivia. The median Figure of Merit from 41 model
validation runs conducted by Fuller et al. (2011) for the peat swamp
forests of Central Kalimantan, Indonesia, was 17%, while Li et al.
(2012) reported a 27% Figure of Merit for simulated scenarios of
biofuel-crops expansion in the Great Plains states of the United
States. Müller and Mburu (2009) found Figures of Merit ranging
37e41% after substantially large training cycles to forecast LUCC in
the Kakamega Forest of Western Kenya, while the deforestation
simulations for Madagascar carried out by Vieilledent et al. (2013)
achieved values of 10e23%. However, the spatially explicit valida-
tion of SimREDD þ benefited from the regional context of the study
in one of the most degraded old deforestation frontiers in the
Brazilian Amazon (Toomey et al., 2013). So much forest clearing has
occurred in the study region that the 2010 LUCC classification map
could be empirically validated against the LUCC model output at
the baseline equilibrium state.

The implications of starting the model with the 1996 LUCC
configurations are somewhat important. There were three main
reasons for the selection of 1996 as the first year of the model. First,
it precedes the year when the Kyoto Protocol e the first interna-
tional climate mitigation agreement e was signed at the 7th Con-
ference of Parties to the United Nations Framework Convention on
Climate Change (UNFCCC, 1998) and discussions of whether or not
to include mitigation activities based on avoided deforestation
were still underway (Tolba and Rummel-Bulska, 1998). Second, it
matches the first year of the panel data collection in the settlements
of the Ouro Preto do Oeste region (Caviglia-Harris et al., 2014).
Third, it allows themodel to beginwith a large area of mature forest
in the virtual landscape, which gives the model flexibility to predict
deforestation and/or reforestation (Fig. S1). Abandonment of agri-
cultural patches occurs in the equilibrium state if a household has
previously established more agricultural land than the optimal
level dictated in the scenario settings. The abandonment decision
can result from two distinct implications of the model settings.
Households abandon farmed land when (1) revenues are lower
than costs and agricultural production is not lucrative or (2) when
REDD þ payments exceed agricultural profits. Both settings imply
that farmer-agents set aside part of their agricultural land so that
their new mixture of agricultural land and forest area maximizes
profit.

Simulations from the model present a REDD þ payment
framework similar to the current (2017) situation. The
REDD þ policy payment scheme is based on annual payments for
forest area maintained or recovered, which is similar to PES pro-
gram in countries like Costa Rica, Ecuador, and Mexico (Arriagada
et al., 2012; de Koning et al., 2011; Honey-Ros�es et al., 2009;
Torres et al., 2013). In contrast, the carbon market option assumes
payments based on net carbon emissions avoided (Mg CO2). This
option, in accordance with carbon accounting methodologies pro-
posed by the Intergovernmental Panel on Climate Change (IPCC,
2006, 2003), the United Nations Framework Convention on
Climate Change (UNFCCC, 2013a, 2013b, 2007), and the standards
and methodologies for decentralized/private REDD þ initiatives
developed for the voluntary carbon market (e.g., Avoided
Deforestation Partners, 2012; Pedroni, 2012; Verified Carbon
Standard, 2017b). Numerous ongoing examples of
REDD þ projects that follow the latter payment option are also
described in the literature (e.g., West, 2016). Settings for three key
model parameters determine whether households are better off
with the former or the latter REDD þ payment option: (1) the net
carbon emissions factor (d); (2) the length of the hypothetical
REDD þ project (T); and, (3) the size of REDD þ payments (pEi ). For
instance, theMonarch Butterfly Conservation Fund in Mexico offered
annual conservation payments of $12 ha�1 of forest (Honey-Ros�es
et al., 2009), while the average carbon offset price in the volun-
tary carbon market was $3.30 Mg CO2

�1 in recent reports, with a
range between minimum and maximum prices of $21.60 CO2

�1

(Hamrick and Goldstein, 2016). The length of the decentralized/
private REDD þ projects is often in agreement with the 20e100
year range set by the leading voluntary carbon standard, the Veri-
fied Carbon Standard (Goldstein and Neyland, 2015; Verified
Carbon Standard, 2017b). Lastly, aboveground biomass stocks,
which are used as references for estimating avoided net carbon
emission, vary substantially across tropical forests, with averages
from 40 to 310 Mg ha�1 (Baccini et al., 2012; IPCC, 2006). The
distinct values and ranges presented above illustrate the variety of
potential scenarios that can lead to substantially different LUCC and
welfare outcomes given the PES scheme adopted. Hence, the pro-
posed model, with its two payment options, can provide mean-
ingful insights into the design and potential outcomes of
REDD þ initiatives.

5. Conclusion

A hybrid optimization-ABM model was proposed to investigate
the effects of REDDþ payments on LUCC and community welfare in
settlements on an old deforestation frontier in Brazil. The model,
built into an ABM platform, is based on two distinct submodels, one
for the dynamic LUCC optimization decision and the other for
identification of areas suitable for land-use/cover change and
persistence within the households' lots in the study region. The
optimization submodel, which assumes households behave as
profit maximizers under perfect labor markets, was calibrated
empirically with unbalanced socioeconomic panel data. The key
component of the profit function maximized by the farmer-agents
in the model is the Cobb-Douglas production function, based on a
standard crop output (the rice-equivalent), and function of agri-
cultural area and labor. While the dynamic optimization process
returns deterministic and homogenous results for the farmer-
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agents, differences in household landholdings and initial land-use/
cover configurations incorporate heterogeneity into the model. The
outcome of the model is the optimal land-use/cover configuration
for households at the equilibrium state taking into account the
revenues from REDD þ payments based on the conservation of
forest areas and promotion of natural regeneration. This submodel
allows for the quantification of changes in forest cover and agri-
cultural production in response to different REDD þ payment op-
tions, as well as a means to calculate the changes in welfare at the
community level, which is tightly related to equity issues associ-
ated with PES. The LUCC allocation submodel was constructed with
an artificial neural networks-based algorithm and spatially explicit
biophysical variables correlated with LUCC observed between 1986
and 1996. The latter submodel is responsible for the emergence of
the classic “fishbone” patterns of deforestation observed in the
output of the simulations when REDD þ payments occur. Results
from this submodel can estimate impacts of REDD þ payments on
habitat fragmentation and biological conservation at the landscape
level. The submodel can also serve for the identification and
ranking of forest areas more threatened by future deforestation. A
key feature of SimREDDþ is its ability to simulate two distinct and
widely adopted REDD þ payment options, one based on forest and
forest regrowth areas ($ ha�1), in accordance with national
REDD þ -like conservation programs, and the other based on
avoided net carbon emissions and net carbon sequestration ($ Mg
CO2

�1), in conformance with voluntary carbon market rules.
As expected, without REDD þ payments, and with the

assumption of continued widespread non-compliance with envi-
ronmental regulations, the land-use/cover at equilibrium state is
complete conversion of forests to agricultural land. When
REDD þ payments are incorporated into the simulation, forest
patches appear in the virtual landscape at model equilibria. Similar
results are observed as agricultural and deforestation costs increase
or as agricultural revenues decrease. These results indicate the
mechanics behind themodel are in conformance towhat wewould
expect to observe in reality. Overall, the model can serve as a virtual
impact evaluation tool to explore the effects of PES interventions
intended to impede deforestation. Impacts can be measured in
terms of LUCC, greenhouse gas emissions, program enrollment and
costs, food production, and community welfare. Hence,
SimREDD þ can shed light on a wide range of topics, e.g., natural
resource economics and governance, rural development, food se-
curity, landscape ecology, habitat fragmentation, climate change
mitigation, and equity studies. Insights from simulation scenarios
can improve the design of more effective, efficient, and equitable
REDD þ programs and initiatives that involve farm household
participation.
Acknowledgements

This research was funded by the National Science Foundation
(grant SES-0752936\). Additional funds to the first author were
provided by the Brazilian National Counsel of Technological and
Scientific Development (CNPq; grant 201138/2012-3), the William
C. and Bertha M. Cornett Fellowship and the Tropical Conservation
and Development Graduate Assistantship at the University of
Florida, and the World Wildlife Fund's Prince Bernhard Scholarship
for Nature Conservation.
Appendix A. Analytical solution for the optimal agricultural
land definition

The step-by-step analytical solution involves solving for lt in
Equation (8):
lt ¼ wgþ CD þ j⇔ _lt ¼ 0 (19)

Since _lt and lt are known, Lt is given recursively by Equation (9)
as function of At:

pAbaA
b�1
t L4t � pEd� CA � j ¼ rðwgþ CD þ jÞ (20)

Lt ¼
 
A1�b
t ðrCD þ pEdþ CA þ rjþ rwgþ jÞ

pAba

!1
4

(21)

Once Lt is defined, the expression for the optimal agricultural
land at equilibrium (A*) is given recursively by Equation (7):
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b
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0
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(23)

Appendix B. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.envsoft.2017.11.007.
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