
Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

International Journal of Child-Computer Interaction xxx (xxxx) xxx

Contents lists available at ScienceDirect

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

The cloud is the limit: A case study of programming on the web, with
the web
David Weintrop a,∗, David Bau b, Uri Wilensky c

a College of Education, College of Information Studies, University of Maryland, United States
b Computer Science, Massachusetts Institute of Technology, United States
c Center for Connected Learning and Computer-based Modeling, Northwestern University, United States

a r t i c l e i n f o

Article history:
Received 8 December 2017
Received in revised form 19November 2018
Accepted 15 January 2019
Available online xxxx

a b s t r a c t

The last ten years have seen a proliferation of introductory programming environments for younger
learners. Increasingly, these environments are moving into the ‘‘cloud’’ where they can be accessed
through web browsers and run on a variety of devices including tablets and smartphones. The shift to
online settings enables a variety of powerful pedagogical features to be incorporated into the design
of these learning environments, including making it easy to share learner-authored programs, browse
projects written by others, and allow learners to incorporate various Internet resources into their work.
Further, the Internet itself can serve as a productive canvas upon which novice programmers can create
in the form of dynamic and interactive web pages. This shift in venue for authoring and editing programs
is particularly well-suited for young learners growing up in an increasingly online world. In this paper,
we present theoretical and practical arguments for online introductory programming environments as
powerful learning tools and present data showing variousways young learners take advantage of features
of the environment enabled by being situated online. In particular, the paper looks at how the online
context can support young learners in authoring programs and interacting with programs authored by
others. The contribution of this work is to advance our understanding of how the Internet can be utilized
as a resource to situate learning and serve as an inviting and accessible pathway into computing.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Today’s learners live in an online world. From coordinating as-
signments through socialmedia and participating in online courses
to turning in homework assignments via Google Classroom and
watching lessons in flipped classrooms on YouTube, the Internet
is becoming an increasingly common context for learning. The
ubiquity of the Internet in and out of school corresponds with,
and contributes to, the growing importance of young learners
being able to fully participate in computational contexts through
the development of essential computational literacy skills. These
skills and practices, recently collected under the umbrella term
‘‘Computational Thinking’’, have far-reaching applications across a
diverse set of content areas and domains [1–4]. Central to our con-
ceptualization of computational thinking is the ability to encode
ideas in away that a computer can execute, alongwith being able to
interpret instructions written by others, creating what diSessa [1]
calls a ‘‘two-way literacy’’. In our increasingly online and connected
world, the Internet can serve as an accessible, familiar, and power-
ful learning context inwhich to develop these computational skills.

∗ Corresponding author.
E-mail addresses: weintrop@umd.edu (D. Weintrop), davidbau@mit.edu

(D. Bau), uri@northwestern.edu (U. Wilensky).

Situating introductory programming learning experiences online
provides a compelling context for young learners to meaningfully
engage in authentic programming practices that carry social and
cultural meaning. Features of these environments include making
it easy for learners to share programs and collaborate on projects,
providing low barriers to entry, and the inclusion of a diverse array
of scaffolds and designs to engage and support novice program-
mers. Having the learning environment online also allows young
learners to pull in resources from the Internet into their projects,
blurring the boundaries of the learning environment and the larger
web. Thus, a growing number of introductory programming tools
are being developed to run in a web browser and leverage various
affordances of situating computational learning online.

This paper seeks to lay the theoretical groundwork for why
situating programming experiences online can be productive for
young learners and present data showing howdesign features sup-
portedby the online context contribute to creating an engaging and
inviting introduction to computing. In particular, the paper looks
at how design features enabled by the online context can support
meaningful and productive interactions for children learning to
program. This paper contributes to our understanding of online
learning of computational ideas, and more broadly, the power of
aligning learning experiences with technologies that hold social

https://doi.org/10.1016/j.ijcci.2019.01.001
2212-8689/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijcci.2019.01.001
http://www.elsevier.com/locate/ijcci
http://www.elsevier.com/locate/ijcci
mailto:weintrop@umd.edu
mailto:davidbau@mit.edu
mailto:uri@northwestern.edu
https://doi.org/10.1016/j.ijcci.2019.01.001


Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

2 D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx

and cultural meaning, especially as they relate to youth growing
up in a connected, online world. To explore these ideas, this paper
presents a case study of Pencil Code, an online programming envi-
ronment that incorporates contemporary Internet technologies to
make it easy for learners to author and share their own interactive
websites. The paper details various ways the design of Pencil Code
incorporates Internet technologies and allows learners to incorpo-
rate resources from the larger Internet into their projects. Next,
using data from a pair of classroom studies, we show how students
used the various Internet-supported features of Pencil Code to have
authentic and meaningful programming experiences. The paper
concludes with a discussion of the ways that programming in the
cloud provides an effective and accessible way to prepare learners
for the digital futures that await them.

2. Theoretical framework & prior work

2.1. Theoretical framework

From the beginning, the idea that computers could serve as
powerful contexts for learning was rooted in constructivist learn-
ing theory [2]. Papert, in creating the Logo programming language,
sought to put the power of computing in the hands of young
learners by designing a language that was accessible and sup-
ported expression, encouraged exploration, and empowered the
learner to pursue projects they found personallymeaningful. Addi-
tionally, Logo and constructionist learning activities incorporated
the creation of public artifacts that could be presented, shared,
and serve as a topic of conversation and object for reflection.
These foundational design features have reverberated through the
world of computer-based learning environments and are featured
prominently in many of the more successful novice programming
tools [5]. Papert’s Logo emphasized powerful ideas and practices
over memorized facts, an objective shared by many of the in-
creasingly diverse tools that are being used to introduce learners
to programming and computational thinking more broadly [6,7].
Where meaningful engagement and expressive programs with
Logo involved drawing geometric landscapes, playing with sen-
tence structures, and writing software for peers, the modern in-
carnation of Logo’s design principles are increasingly grounded in
the ability to write and share programs online [8,9]. In doing so,
novices are introduced to programmingby creating games,models,
and stories that can be seen and played by others around the
world, and participating in a global community connected through
websites, forums, and other social spaces [10]. This form of online
participation is characteristic of the Web 2.0 culture, where users
contribute to the content on the web, acting as producers along
with consumer [11].

An important component of Papert’s constructionist design phi-
losophy was the creation of ‘‘low-threshold, high ceiling’’ learning
environments. ‘‘Low-threshold’’ speaks to the ease-of-entry for
novices - that care should be taken to support learners in having
early successes and design to enable various forms of engagement.
The companion to ‘‘low-threshold’’ is ‘‘high-ceiling’’, meaning in-
troductory tools should also be powerful computing environments,
where users are not limited by the capabilities of the tool, and
as experience and sophistication grow, the tool can continually
support the ideas of the learner. This can take a number of forms,
including designing an environment that is powerful enough to
be used by experts or providing a seamless transition from early
learning experiences with the technology to a fully featured ex-
pert version of the tool. As we will demonstrate below, bringing
novice programming environments online provides multiple op-
portunities to design for both ‘‘low-threshold’’ and ‘‘high-ceiling’’
engagement.

A critical dimension of a ‘‘high-ceiling’’ learning environment is
how it can impart a sense of authenticity to the learner. Shaffer and

Resnick [12], in their review of authenticity in education, identify
four types of authentic education: (1) activities alignment with
outside world, (2) content aligned with what learners want to
know, (3) methods of inquiry aligned with a discipline, and (4)
assessment aligned with instruction. For the first three of these
forms of authenticity, online programming environments align
well with authentic education. As new interfaces and environ-
ments are developed for introductory programming, consideration
of authenticity is important, especially with older learners, as
research has found that high school aged learners are concerned
with the real-world applicability of the programming language
being learned [13,14]. By introducing learners to programming on
the web, and enabling them to develop websites using the same
technologies that professionals use, the learning context aligns
with authentic learning and parallels professional programming
practices. Engaging in recognizable practices of the field and pro-
ducing artifacts that are similar to what experts and profession-
als produce, helps legitimize the learning activity and enable the
learner to identify as a practicing member of that community [15].

2.2. Introductory programming environments and the web

Beginning with Logo in the 1970s, a long line of programming
languages, environments, and activities have been designed to
make programming accessible and intuitive for learners (for a
review or novice programming environments, see: [5–7]). In the
last 15 years, these environments have increasingly incorporated
online components to engage and educate novices. The focus of this
paper is to explore potential benefits and drawbacks associated
with this shift.

When we use the term Online Programming we are referring
specifically to the act of authoring programs using source code ed-
itors whose contents are served via a web server and are rendered
and used inside a web browser. This context for writing programs
is in contrast to standalone, offline programming software ranging
from light-weight source code editors (e.g. Sublime Text, Emacs) to
fully-featured integrated development environments (e.g. Eclipse,
NetBeans). This conceptualization of online programming is in-
tended to take literally the subtitle of the article: programming
on the web, with the web. In these online programming envi-
ronments, the authoring of programs is embedded within and
supported by the infrastructure of the Internet directly. While it
is important to note that many standalone editors have features
that connect with the Internet, such as the ability to collaborate
with others within the editor or access online materials from
within the editors itself, this is different than the fully-online
form of programming discussed in this paper. That being said,
the benefits discussed below are not exclusive to the type of
online programming environment that is the focus of the paper.
For example, offline code editors can still cultivate active online
communities and leverage social networks as a means to improve
the programming experience. This paper is not arguing that only
online programming environments can leverage features of the
Internet to promote engagement and learning, but rather that
such learning and engagement happens especially felicitouslywith
online programming tools.

2.2.1. Programming on the web
In the last few years, as online educational platforms ma-

ture and diversify, an increasing number of tools are adopting a
programming-in-the-browser approach by developing and em-
bedding code editors in websites alongside the web pages that
host the content. Platforms like Khan Academy, Codecademy, and
Code.org’s Code Studio all use in-browser development tools. In
some cases, these in-browser learning environments provide a
fully featured integrated development environment that hasmany



Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx 3

of the features of professional tools. Likewise, stand-alone environ-
ments designed to emphasize creativity and engagement, indepen-
dent of specific curricula, have also moved online. Environments
like Scratch, NetLogo, and ToonTalk that were initially designed
to run locally on the learner’s computer have been rewritten to
run in the browser [16–18]. Notable in this effort is the Blockly
librarywhich is an HTML and JavaScript library designed tomake it
easy to integrate graphical, block-based programming into existing
website and projects [19]. There are a number of benefits to having
the entire programming environment reside on the cloud and
be accessed through a web browser, including portability, ease
of sharing and accessing work, and the previously mentioned
pedagogical and authenticity dimensions. We discuss these and
other benefits in more detail later in the paper.

2.2.2. Programming with the web
While the online environments discussed in the previous sec-

tion are hosted online, learners are not necessarily writing pro-
grams in the language of the Internet, instead, written programs
can only be run in the context in which they are written. For
example, a program written as part of a Codecademy lesson can
only be run inside Codecademy — this constrains the program,
how it can be accessed, and what can be created with it. Thus,
despite the freedom of being online, learners are still constrained
to only view and run their programs through the environments in
which they were written. In contrast, other learning environments
on the Internet are designed to make the web itself the canvas
for learning. For example, Mozilla’s X-ray Goggles tool (http://
webmaker.org/goggles) gives learners the ability to see how live
websites are constructed. Using this tool, learners can load anyweb
page, and with the click of a button, begin to edit content, change
visual features or alter the dynamic behaviors of the site. Here, the
coding still lives in the browser, but now the Internet is acting as
both the programming environment and the canvas. A benefit of
making web-based content the focus of introductory learning is
the transparency of the Internet as a platform. On any web page,
a single click can give the user a peek ‘‘under-the-hood’’ to see
how the page was created. Further, the plain-text formats of HTML
and JavaScript make it easy to parse and reuse for other projects —
enabling Scratch-style remixing, but now with the whole Internet
as the library of potential examples. Another example of this can be
seen in the Snap! programming environment [20], which includes
a url block that allows the user to pull the contents of a web
page into their program. We see these features of programming
on the web, with the web, as particularly compelling and will
demonstrate how learners pull resources from the larger web into
their projects, blurring the lines between the learning environment
and the Internet.

2.2.3. Social aspects of online programming
A third dimension that online learning can bring to introduc-

tory environments is using the Internet itself as a platform for
learners to interact with each other and the programs they have
authored. An early programming environment that productively
leveraged online, connected learning was MOOSE Crossing [21],
which incorporated social aspects to programming by allowing
learners to programmatically create worlds for others to explore
and enable synchronous communication between users. Work in
this environment shows how online contexts can provide pro-
ductive peer-mentoring learning opportunities [21]. Along with
the synchronous communication, a growing number of online
environments include mechanisms for asynchronous communi-
cation in the form of message boards and project galleries. The
Scratch programming environment and its accompanying web-
site has been very successful in building an online community of
learners [22]. Along with a number of language and interface fea-
tures designed to make programming intuitive and engaging [23],

the Scratch website allows learners to share, browse, and remix
projects written by others. Through this forum, learners are able
to engage in a variety of forms of participation in the Scratch
community, including asking for advice from more experienced
users, give feedback on both aesthetics and technical aspects of
projects, and sharing advice from their own experiences working
with Scratch [24]. Similar online support can be found for other
introductory programming learning environments like Looking
Glass Alice [25] and NetLogo [26].

3. Meet pencil code

This study uses the Pencil Code environment to demonstrate
the affordances of programming on the web, with the web for
young learners. In this section, we introduce Pencil Code and
highlight a few of its design features.

Pencil Code is a fully cloud-based, online environment for learn-
ing to program [27]. The editor runs in a browser, and students
save, edit, share, and publish their work online. Its interface (Fig. 1)
is split into two panes: on the left is a dual-modality programming
editor that supports both visual block-based and conventional
text-based code, while the right side is a web page that visually
renders the program the learner is writing. Pencil Code embeds all
student work in the Web: every student project is comprised of
JavaScript and HTML so can be run in anymodern browser and has
a unique, accessible URL that can be used to share, view, and run
the program. Student work is not obfuscated: using ‘‘view source’’
on a published web page shows the student code clearly inside
simple HTML code.

Pencil Code was designed to encourage two main types of pro-
gramming activities. In the spirit of the Logo language, traditional
coding concepts such as loops, conditionals, and functions can be
incorporated into turtle graphics drawing programs starting from
a single line of code such as fd 100. This is accomplished with the
Pencil Code turtle library, which acts as a supplement to the stan-
dard JavaScript used in the editor. Similarly, the visual block-based
interface is a mode for editing code, not a separate language, a fact
made clear by the editor’s ability to move back-and-forth between
block and text presentations of the code [28]. The second type of
programming activities supported is creating live, interactive web
pages with HTML images, buttons, animation and music, that will
appear no different to a visitor to the page than any other website
online. Pencil Code is a ‘‘high ceiling’’ learning environment that
is careful to avoid placing artificial barriers around the learner.
Students can edit JavaScript code of any level of sophisticationwith
either blocks or text. Several widely used professional program-
ming libraries such as jQuery are also included, so coding examples
from general web programming tutorials can be used directly in
Pencil Code programs without modification.

The environment also provides several easy pathways from
the Internet into student programs and vice-versa: for example, a
turtle can ‘‘wear’’ an image found on the Internet using the wear
command. To pull in an existing web resource (like an image or
video), the user need only copy and paste its URL into the program.
Along with using full URLs for the wear command, the student
can also type in descriptions of images and Pencil Code will search
through the Creative Commons image repository to find a related
image, so programming an object to wear grumpy cat will
result in the turtle being replaced by an image of the sour-looking
cat you expect. This ease of incorporation of online resources
further lowers the barrier to expanding beyond the Pencil Code
sandbox and shows that Pencil Code and the programs learners
write are online resources like any otherweb page theymight visit.
Pencil Code also allows students to include HTML and CSS in their
projects, the standard technologies used to define the content and
formatting for web pages. Students can programmatically write

http://webmaker.org/goggles
http://webmaker.org/goggles
http://webmaker.org/goggles


Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

4 D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx

Fig. 1. Pencil Code’s Interface with the coding area on the left and program output on the right.

content into their projects by including HTML in their program
directly, or by defining a starting world for a program by directly
editing the HTML and CSS context for their project in a scaffolded
environment. Because Pencil Code has the jQuery library embed-
ded within it, students can access the DOM elements they create
and manipulate them using the same library as professional web
developers. As with scripts, HTML can be edited in the left pane
in a dual-modality editor. Pencil Code’s use of standard Internet
technologies across all aspects of the environment, including the
languages learners use to create their projects, the projects they
create, and the larger environment in which the programming is
situated, makes clear that nothing is hidden from the learner, they
are programming on the Internet, with the Internet.

4. Methods

In exploring the affordances of programming on the web, with
the web, we use two classroom implementations of introductory
computer science materials using Pencil Code. In both studies, the
curricular materials were designed by the authors, with educa-
tion researchers present in the classroom observing and providing
technical support. A case-study approach is used in this work as a
means to highlight the affordances of learning to program in online
contexts and to document specific forms of interaction enabled
by the online format. The assignments and events reported below
are intended to serve as typical interactions that demonstrate
how the online setting and forms of interactions supported by the
environment had a positive impact on learners’ experiences.

4.1. Context and participants

The first study took place over the first five weeks of an intro-
duction to programming course at a selective enrollment public
high school in a Midwestern city. Ninety students across three
sections of the class spend roughly 45 min of class time a day
working in Pencil Code. These classes were 83% male, racially di-
verse (41% White, 27% Hispanic, 11% Asian, 10% African American,
11% Multiracial), and included student from all four years of high
school: 16% freshmen (ages 14–15), 41% sophomores (ages 15–16),
29% juniors (ages 16–17), 14% seniors (ages 17–18). Just under half
of the students (47%) responded that they speak a language other
than English at home. Fifty-nine percent of the students in the
school are from low-income families. During the five-week Pencil
Code unit, students worked on a number of projects intended to
introduce them to various core programming concepts, including
variables, functions, and conditional and iterative logic (the full
curriculum can be found in Appendix A of [29]).

The second set of classroom data comes from a once-a-week
100-minute-long all-female colloquium course called Computa-
tional Thinking for Girls (CT4G) taught at a different public high

school in the same Midwestern city. Over the course of three
consecutive classes, the girls in the class were introduced to var-
ious features of Pencil Code as they worked towards building a
website that would advertise the class they were participating in.
Thirteen girls (2 8th graders (age 14), 8 freshmen (ages 14–15), 2
sophomores (ages 15 and 16), and 1 junior (age 16) participated
in the class. The school population is 72% African American, 25%
Hispanic, and less than 2% eachwhite and Asian, a distribution that
is reflected in the CT4G classes. Sixty-seven percent of students in
the school are from low-income families. Further details about the
setting and the CT4G program can be found in [30,31].

4.2. Procedures

Both of the implementations followed the same set of research
procedures and data collection strategies. Every class session be-
gan with the instructor in the front of the classroom introducing
the assignment and topics of the day. Every student sat in front
of their own computer so could author their own programs. The
details of the assignments used in the case studies are described
in greater detail below. The researchers created accounts for each
of the students and a portal for them to use to easily access their
Pencil Code accounts. The programming environment students
used was instrumented so every time a student ran a program, the
contents of the program, alongwith programmetadata (the author,
the assignment, a timestamp, etc.) were collected on a remote
server. This gave the researchers access to all of the projects that
the students authored.

During the class sessions, field notes were taken by the present
researchers, paying particular attention to social interactions that
emerged between learners as well as unique or interesting pro-
grams written by learners that could be further analyzed by the
research teamoutside of class time. This data source is a useful sup-
plement to the log data collected as it provides further context for
how features of the online programming environment supported
positive interactions, particularly with respect to the social aspects
of children learning to program.

5. Findings

5.1. From Bieber to basketball to battleship

At the conclusion of both classroom studies, students were
given an open-ended summative assignment that asked them to
create a final project that incorporated the concepts covered in
class (loops, variables, etc.). Given that Pencil Code is designed
to allow learners to program on the web, with the web, many
students pulled in resources from the larger Internet as a means
to create projects that reflected their interests. Across the 95 final



Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx 5

Fig. 2. Three examples of media-rich projects that incorporated resources for the Internet.

Fig. 3. A portion of the class quilt web page comprised of patches written by students.

projects submitted in the two settings, online resources shaped the
assignment both in terms of the content of the projects themselves
and in how students shared and discussed theirwork. For example,
one student in the CT4G class decided to make her final project a
recreation of her favorite Justin Bieber Song, ‘‘Baby’’, by writing a
program to animate the chorus of the song, which used iterative
logic to move through various pictures of babies pulled from the
Internet and culminated in a picture of Justin Bieber and a sign
saying ‘‘You’re Welcome’’ (Fig. 2A). When the class was given a
chance to share their work at the end of the last day of the Pencil
Code unit, this student eagerly volunteered to present her project,
getting the class to join in and sing alongwith her and her program.

Along with musicians, student projects included movie stars,
superheroes, and athletes, as well as images of organizations stu-
dents, were affiliated with and pictures of their friends pulled
in from social media sites. It was not just that students created
websites with static sets of images for others to view, students also
used the Pencil Code platform as an opportunity to show off and
share their knowledge of other topics. For example, one student
who is a big basketball fan created a website that included an in-
teractive questionnaire about basketball, asking users about their
preferences in terms of what their favorite position was and what
style of play they liked. Based on the responses given, the program
would tell the user who their favorite basketball player should
be, including information and images about that player (Fig. 2B).
Other students followed a similar template, writing surveys to
recommend TV shows and to quiz users about their knowledge of
Internet memes.

Another form of final project we often saw was using Pencil
Code to re-create games, often pulling images and screenshots
of the actual game as a way to make the game feel more au-
thentic [32]. Students recreated classic games like Battleship, Pac-
man, and Pong, while also creating custom new games, like text-
based fantasy adventures and zombie-hunting games that pulled
in images from theWalking Dead TV show (Fig. 2C). Other students
took advantage of Pencil Code’s smart image finding logic to create
choose your own adventure games that used images to tell the

story, for example, telling a horror story using commands like:
wear anxious, wear abandoned house, and wear scary
face to tell the story.

In presenting this student work, we highlight specific ways
that learners took advantage of the fact that there was no barrier
between the Internet-based learning environment theywere using
and the Internet as a whole. By situating the learning environ-
ment online and making it easy to pull Internet resources into
their project, learners were able to create personally meaningful
projects, drawing direct connections between their own interests
and the world of computing. This is not to say it is not possible
to download and import images from web pages into standalone,
offline environments, but rather that the amount of effort that
takes is significantly more than simply typing wear grumpy cat
into your program. The result was a set of projects filled with
resources from the Internet and thus the larger world that the
students live in.

5.2. Digital quilts and public projects

One of the powerful aspects of learning to program on the web,
with the web, is that projects can easily be shared, browsed, and
incorporated into other websites. In our introductory program-
ming course, we designed the first assignment to take advantage of
the web-based nature of both the programming environment and
resulting programs. The assignmentwas for each student to design
his or her own ‘‘quilt patch’’ – a program that draws a picture
that somehow represented the program’s author. This being the
first assignment, the goal was for students to explore and try out
different aspects of the tool. At the conclusion of the project, the
researcher supporting the class created a web page to ‘‘stitch’’
the digital quilt patches together into a single web page (Fig. 3).
Because the student projects were themselves websites, this was
easily done using iFrames to create a web page of web pages.
The next day in class, the teacher showed students the class quilt
— which meant loading the quilt web page and watching the
students’ patches render in parallel. Students were then given a



Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

6 D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx

chance to guess who the author of each patch was, and students
got to talk about the meaning of their patch.

Because the patches were written in Pencil Code, the resulting
patches were just normal web pages, meaning their source code
could be opened up and inspected. As part of showing the class
their quilts, the teacher shared the URL to the quilt page with
the students and showed them how to open up each patch in-
dividually, so students could see the code behind each drawing.
In this way, students could not only see their classmates work
but also see how other students authored their patches. This was
particularly useful as some students had introduced sophisticated
logic and employed advanced Pencil Code features to create their
patches. The public and transparent nature of web pages provided
an organic way for students to learn about programming, the ca-
pabilities of Pencil Code, and their classmates all at once. Through
this assignment, various aspects of programming on the web, with
the web come to the fore. Notably, the ability to blend the online
projects together into a single page, the inherently public nature
of the programs, and the ability to inspect projects to see how
theywere created. The quilt project was the first assignment of the
year, based on feedback from the students and teacher, the ‘‘quilt’’
approach was used repeatedly throughout the course as a way for
students to explore the programs written by their classmates.

On the last day of the Pencil Code units, in both classes, we
provided opportunities during class time for students to share their
projects. In the CT4G class, this meant students could volunteer to
come up to the computer connected to the classroom projector
and share their projects by typing in their URL (as mentioned
previously with the Bieber project). In the programming classes,
we used computer monitors that were set up around the room to
let groups of students share their projects and play each other’s
games. Due to the ease of sharing projects, it was possible for
students to describe how their project worked while their class-
mates played their games on their own computers. This sharing
also extended beyond the classroom. Aswe learned in an interview
with one of our students, when she showed her mom one of the
interactive assignments she had completed, her mom responded:
‘‘That’s what you’re learning? That’s actually cool!’’ The student
continued, ‘‘before [my mom] didn’t really know what I was doing,’’
then she went on to explain how her mom was familiar with the
Internet, but not familiar with the field of computer science. In
this instance, the projects being a website not only made it easy
to share within the classroom but crossed the boundaries to the
students’ home, serving as a way to share computing coursework
with a parent who was unfamiliar with programming. By being
a website, the parent better understood what her daughter was
learning as well as the cultural and professional value of the skills
and concepts her daughter was developing.

6. Discussion

Bringing introductory programming tools online provides a
number of cultural and conceptual supports that can be leveraged
to help students engage with core computer science ideas. By
linking the act of learning to programwith the creation of websites
that can easily be viewed and shared, introductory lessons take on a
new form of authenticity both with respect to the tools being used
and the products being created. The Web 2.0 model is grounded
in the idea that the Internet is not a read-only resource, created
by a small group of programming experts. Instead, the web is an
emergent, collaborative creation of millions of users, each with
their own voice. Aligning learning to programwith participation in
the World Wide Web highlights the cultural relevancy of compu-
tational literacy and links the discipline of computer science with
the ubiquitous technologies the field has helped create.

Fromapedagogical perspective, there are a number of strengths
to programming on the Internet that align with the theoretical

framework we bring to this work. By making the creation of web-
sites the output of introductory activities, the act of programming
is situated in a larger practice learners already engage in, browsing
theWeb, giving the approachwhat Papert called cultural syntonic-
ity [2]. Further, websites are public artifacts that can be shared,
viewed, and discussed, as demonstrated by the quilt activity — this
public dimension can facilitate a sense of ownership and pride in
the resulting outcome, as well as make it easy to provide feedback
on projects written by peers, a powerful pedagogical practice [33,
34]. The graphical nature of websites also facilitates learning as
programswritten to dynamically create images, or graphics drawn
on a website, give the author a visual representation that can
facilitate interpreting the behavior of the programming constructs
incorporated into the program [35].

A second important benefit of situating programming online is
that it can help broaden participation in computer science. First,
online learning environments are more accessible than off-line
learning tools due to the breadth of devices (including tablets and
smartphones) that can be used to access the learning environ-
ment. Further, programs started on one device can be continued
on another and viewed and played with a third. The fact the
programs are stored on the Internet makes it possible to progress
in learning to program across various physical devices and from
different locations. Projects started on a computer at a library, can
be continued at a friend’s house or in the school computer lab. In
this way, hosting learning environments online can help pave a
pathway into computing for learners who lack regular access to
the same Internet-enabled device.

A second way online environments can help broaden partic-
ipation in computing is by changing the nature of introductory
computing activities to alignwith a broader range of interests [36].
The diversity of activities and interests that are mediated by the
Web makes it a powerful and compelling context in which to
situate introductory programming activities as can be seen in the
projects we highlighted above, where Justin Bieber, Zombies from
the Walking Dead, and school club websites lived alongside each
other.

The benefits of online learning extend beyond the learner to
also include teachers, system administrators, and the developers
of the tools themselves. The fact the no special software needs
to be installed to access the learning environment circumvents
many challenges that arise when trying to install software on
public or school-maintained computers. From the perspective of
the creator and maintainer of the software, creating applications
that run in web browsers has its own set of benefits, includes the
ease of deploying bug fixes and being able to leverage the wealth
of resources and libraries designed to support the development
of web applications. From a research and evaluation standpoint,
online tools are appealing as it is easy to gather data, which can
then be used to inform future features and improvements to the
learning environment.

While there are many reasons to situate introductory program-
ming tools online, there are also drawbacks to the approach. These
drawbacks have implications for teachers and learners as well as
the designers and builders of such systems. From the perspective of
the teacher and learner, foremost among the potential drawbacks
of using online programming environments is the reliance on
having Internet connectivity in order to use the tool. Hosting a
learning environment online introduces an Internet dependency,
which means they may not be suitable in environments where the
Internet is not always available or is unreliable. Some online tools
can be hosted locally which solves this specific issue but raises
others, such as when and how projects connect to the larger web.
A second related limitation is that in storing work remotely — the
learner has little control over how and when it can be accessed. If
the organization that maintains the learning environment takes it



Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx 7

offline, the learner loses their work. Again, there are workarounds
such as using robust cloud-based storage services such as DropBox
or Microsoft OneDrive, but the integration with these platforms is
rarely seamless and has some of the same potential pitfalls.

Aside from infrastructural limitations, there are also potential
learning issues thatmight arise. For example, framing introductory
programming tools as a way to make custom websites might give
learners the impression that they can create their own Facebook
or Twitter. If such unrealistic expectations emerge, students may
become frustrated or disheartenedwhen their sites do not have the
polish and capabilities of the sites they are used to frequenting. An-
other drawback stems from the transparency inherent in a learning
environment built around creating web pages. A tool where all the
code is publically visible might not be ideal in formal learning set-
tings as it becomes easy for learners to cheat by viewing thework of
peers or others on the internet. A final related limitation the affects
teachers and learners stems from the question of ownership of
onlinematerial.While Pencil Codemakes it extremely easy to bring
in resources from the larger Internet, those resources may not
always be free to use. While this can serve as an effective context
to hold conversations around intellectual property and copyright
issues, there are times this conversation is not desirable or there
are no facilitators to lead that discussion.

There are also potential drawbacks to deciding to situate intro-
ductory programming learning tools on the Internet that affect the
designers, builders, and maintainers of such systems. A primary
concern is the reverse of the benefits of having access to themateri-
als hosted on the Internet. Just as learners can incorporate pictures
of their favorite athletes or audio clips of songs they like, so too can
they incorporate inappropriate material into their projects. This
might include pornographic images, racially insensitive and hate-
filledmaterial, or other content that is not appropriate for younger
learners or educational contexts. Opening up a programming envi-
ronment to the entirety of thewebmeans that the potential for the
incorporation of inappropriate material and thus, the maintainers
of such platforms need to continually expend effort to make sure
the content hosted and available to learners is appropriate for
the audience. This requires continual vigilance. A second potential
challenge for the creators of online programming tools is the lack
of control over how the site is accessed. As new browsers, devices,
and web standards emerge, the creators and maintainers of these
online learning environments need to continually update the plat-
form to ensure learners are always able to access their materials.
While this is also true for stand-alone platforms that need to stay
up to date with upgrades in operating systems, the rate of change
of online technologies usually outpaces offline alternatives. While
these challenges should give pause to designers when considering
whether or not to design for the Internet, the huge upside to the
online context suggests there are reasons to design for the cloud in
spite of these drawbacks.

7. Conclusion

The Internet is increasingly becoming a context in which rich,
meaningful learning takes place. In the case of programming, and
computer science more broadly, situating introductory learning
activities online, and providing accessible ways to draw in re-
sources from the Internet, can result in authentic and engaging
learning. Additionally, in making public web pages the output of
introductory programming activities, it becomes easy to share,
comment on, and customize the learning experience. By outlin-
ing various ways that the Web can serve as an engaging and
effective context for introducing diverse learners to the field of
computer science, this paper contributes to our understanding of
the potential for the Internet to serve as a powerful, personally
meaningful, culturally relevant, and fun way to introduce learners

to the field of computer science. Through creating tools that help
novices learn to program on the Internet, with the Internet, we
hope to inspire the next generation of great software engineers and
start-up entrepreneurs, while also serving as a means to prepare
computationally literate citizens for the digital futures that await
them.

Conflict of interest

Noauthor associatedwith this paper has disclosed anypotential
or pertinent conflicts which may be perceived to have impending
conflictwith thiswork. For full disclosure statements refer to https:
//doi.org/10.1016/j.ijcci.2019.01.001.

References

[1] A.A. diSessa, Changing Minds: Computers, Learning, and Literacy, MIT Press,
Cambridge, MA, 2000.

[2] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic books,
New York, 1980.

[3] J.M. Wing, Computational thinking, Commun. ACM. 49 (2006) 33–35.
[4] D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, U. Wilensky,

Defining computational thinking for mathematics and science classrooms,
J. Sci. Educ. Technol. 25 (2016) 127–147, http://dx.doi.org/10.1007/s10956-
015-9581-5.

[5] M. Guzdial, Programming environments for novices, Comput. Sci. Educ. Res.
2004 (2004) 127–154.

[6] C. Duncan, T. Bell, S. Tanimoto, Should your 8-year-old learn coding? in: Proc.
9th Workshop Prim. Second. Comput. Educ., ACM, New York, NY, USA, 2014,
pp. 60–69, http://dx.doi.org/10.1145/2670757.2670774.

[7] C. Kelleher, R. Pausch, Lowering the barriers to programming: a taxonomy
of programming environments and languages for novice programmers, ACM
Comput. Surv. 37 (2005) 83–137.

[8] D. Fields, M. Giang, Y. Kafai, Programming in the wild: trends in youth
computational participation in the online scratch community, in: Proc. 9th
Workshop Prim. Second. Comput. Educ., ACM Press, 2014, pp. 2–11, http:
//dx.doi.org/10.1145/2670757.2670768.

[9] R. Roque, Y. Kafai, D. Fields, From tools to communities: designs to support
online creative collaboration in scratch, in: Proc. 11th Int. Conf. Interact. Des.
Child., ACM, 2012, pp. 220–223, http://dl.acm.org/citation.cfm?id=2307130
(accessed 17-07-2015).

[10] Y.B. Kafai, Q. Burke, Connected Code: Why Children Need to Learn Program-
ming, MIT Press, 2014.

[11] C. Greenhow, B. Robelia, J.E. Hughes, Learning, teaching, and scholarship in
a digital age web 2.0 and classroom research: what path should we take
now? Educ. Res. 38 (2009) 246–259.

[12] D.W. Shaffer, M. Resnick, ‘‘Thick’’ authenticity: new media and authentic
learning, J. Interact. Learn. Res. 10 (1999) 195–215.

[13] B. DiSalvo, Graphical qualities of educational technology: using drag-and-
drop and text-based programs for introductory computer science, IEEE Com-
put. Graph. Appl. (2014) 12–15.

[14] D. Weintrop, U. Wilensky, To block or not to block that is the question:
students’ perceptions of blocks-based programming, in: Proc. 14th Int. Conf.
Interact. Des. Child., ACM, New York, NY, USA, 2015, pp. 199–208, http://dx.
doi.org/10.1145/2771839.2771860.

[15] J. Lave, E. Wenger, Situated Learning: Legitimate Peripheral Participation,
Cambridge Univ Pr, 1991.

[16] K. Kahn, TOONTALK REBORN re-implementing and re-conceptualising
ToonTalk, in: Proc. Constr. 2014, Vienna, Austria, 2014, p. 8.

[17] U. Wilensky, NetLogo Web, Center for Connected Learning and Computer-
Based Modeling, Northwestern University. http://www.netlogoweb.org,
Evanston, IL, 2015.

[18] Scratch 2.0. (n.d.). In Scratch Wiki. Retrieved July 5, 2018, from https://en.
scratch-wiki.info/wiki/Scratch_2.0.

[19] N. Fraser, Ten things we’ve learned from blockly, in: 2015 IEEE Blocks Work-
shop Blocks Beyond, 2015, pp. 49–50, http://dx.doi.org/10.1109/BLOCKS.
2015.7369000.

[20] B. Harvey, J. Mönig, Bringing ‘‘no ceiling’’ to scratch: can one language serve
kids and computer scientists? in: J. Clayson, I. Kalas (Eds.), Proc. Constr. Conf.
2010 Conf., Paris, France, 2010, pp. 1–10.

[21] A. Bruckman, Situated support for learning: Storm’s weekend with Rachael, J.
Learn. Sci. 9 (2000) 329–372.

[22] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-Hernández, N.
Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, Scratch:
programming for all, Commun. ACM. 52 (2009) 60.

[23] J.H. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch
programming language and environment, ACM Trans. Comput. Educ. TOCE.
10 (2010) 16.

https://doi.org/10.1016/j.ijcci.2019.01.001
https://doi.org/10.1016/j.ijcci.2019.01.001
https://doi.org/10.1016/j.ijcci.2019.01.001
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb1
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb1
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb1
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb2
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb2
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb2
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb3
http://dx.doi.org/10.1007/s10956-015-9581-5
http://dx.doi.org/10.1007/s10956-015-9581-5
http://dx.doi.org/10.1007/s10956-015-9581-5
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb5
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb5
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb5
http://dx.doi.org/10.1145/2670757.2670774
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb7
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb7
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb7
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb7
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb7
http://dx.doi.org/10.1145/2670757.2670768
http://dx.doi.org/10.1145/2670757.2670768
http://dx.doi.org/10.1145/2670757.2670768
http://dl.acm.org/citation.cfm?id=2307130
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb10
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb10
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb10
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb11
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb11
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb11
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb11
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb11
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb12
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb12
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb12
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb13
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb13
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb13
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb13
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb13
http://dx.doi.org/10.1145/2771839.2771860
http://dx.doi.org/10.1145/2771839.2771860
http://dx.doi.org/10.1145/2771839.2771860
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb15
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb15
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb15
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb16
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb16
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb16
http://www.netlogoweb.org
https://en.scratch-wiki.info/wiki/Scratch_2.0
https://en.scratch-wiki.info/wiki/Scratch_2.0
https://en.scratch-wiki.info/wiki/Scratch_2.0
http://dx.doi.org/10.1109/BLOCKS.2015.7369000
http://dx.doi.org/10.1109/BLOCKS.2015.7369000
http://dx.doi.org/10.1109/BLOCKS.2015.7369000
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb20
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb20
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb20
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb20
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb20
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb21
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb21
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb21
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb22
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb22
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb22
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb22
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb22
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb23
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb23
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb23
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb23
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb23


Please cite this article as: D. Weintrop, D. Bau and U. Wilensky, The cloud is the limit: A case study of programming on the web, with the web, International Journal of
Child-Computer Interaction (2019), https://doi.org/10.1016/j.ijcci.2019.01.001.

8 D. Weintrop, D. Bau and U. Wilensky / International Journal of Child-Computer Interaction xxx (xxxx) xxx

[24] D.A. Fields, M. Giang, Y.B. Kafai, Understanding collaborative practices in the
Scratch online community: Patterns of participation among youth designers,
in: N. Rummel, M. Kapur, S. Puntambekar (Eds.), CSCL 2013 Conf. Proc.,
Madison, WI, 2013, pp. 200–207.

[25] K.J. Harms, J.H. Kerr, M. Ichinco, M. Santolucito, A. Chuck, T. Koscik, M.
Chou, C.L. Kelleher, Designing a community to support long-term interest in
programming for middle school children, in: Proc. 11th Int. Conf. Interact.
Des. Child., ACM, New York, NY, USA, 2012, pp. 304–307, http://dx.doi.org/
10.1145/2307096.2307152.

[26] R. Lerner, S.T. Levy, U. Wilensky, Encouraging collaborative constructionism:
principles behind the modeling commons, in: I. Kalas J. Clayson (Ed.), Proc.
Constr. Conf., Paris, France, 2010, pp. 10–14.

[27] D. Bau, D.A. Bau, M. Dawson, C.S. Pickens, Pencil code: block code for a text
world, in: Proc. 14th Int. Conf. Interact. Des. Child., ACM, New York, NY, USA,
2015, pp. 445–448, http://dx.doi.org/10.1145/2771839.2771875.

[28] D.Weintrop, N. Holbert, From blocks to text and back: programming patterns
in a dual-modality environment, in: Proc. ACM SIGCSE Tech. Symp. Comput.
Sci. Educ., ACM, New York, NY, USA, 2017, pp. 633–638, http://dx.doi.org/10.
1145/3017680.3017707.

[29] D. Weintrop, Modality Matters: Understanding the Effects of Programming
Language Representation in High School Computer Science Classrooms, (Ph.D
Dissertation), Northwestern University, 2016.

[30] K. Orton, D. Weintrop, E. Beheshti, M. Horn, K. Jona, U. Wilensky, Bringing
computational thinking into high school mathematics and science class-
rooms, in: Proc. ICLS 2016, Singapore, 2016, pp. 705–712.

[31] C. Brady, K. Orton, D. Weintrop, G. Anton, S. Rodriguez, U. Wilensky, All roads
lead to computing: making, participatory simulations, and social computing
as pathways to computer science, IEEE Trans. Educ. 60 (2016) 1–8, http:
//dx.doi.org/10.1109/TE.2016.2622680.

[32] D. Weintrop, U. Wilensky, Keeping it old school: classic video games as
inspiration for modern student programs, in: Proc. 11th Games Learn. Soc.
Conf., Madison, WI, 2015.

[33] S. Papert, I. Harel, Situating constructionism, in: S. Papert I. Harel (Ed.),
Constructionism, Ablex Publishing Corp., Norwood N.J., 1991, pp. 1–11.

[34] Y.B. Kafai, Minds in Play: Computer Game Design as a Context for Children’s
Learning, Routledge, 1994.

[35] T.L. Naps, G. Rössling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A.
Korhonen, L. Malmi, M. McNally, S. Rodger, Exploring the role of visualization
and engagement in computer science education, in: ACM SIGCSE Bull., 2002,
pp. 131–152.

[36] J.J. Ryoo, J.Margolis, C.H. Lee, C.D. Sandoval, J. Goode, Democratizing computer
science knowledge: transforming the face of computer science through public
high school education, Learn. Media Technol. 38 (2013) 161–181, http://dx.
doi.org/10.1080/17439884.2013.756514.

http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb24
http://dx.doi.org/10.1145/2307096.2307152
http://dx.doi.org/10.1145/2307096.2307152
http://dx.doi.org/10.1145/2307096.2307152
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb26
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb26
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb26
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb26
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb26
http://dx.doi.org/10.1145/2771839.2771875
http://dx.doi.org/10.1145/3017680.3017707
http://dx.doi.org/10.1145/3017680.3017707
http://dx.doi.org/10.1145/3017680.3017707
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb29
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb29
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb29
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb29
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb29
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb30
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb30
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb30
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb30
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb30
http://dx.doi.org/10.1109/TE.2016.2622680
http://dx.doi.org/10.1109/TE.2016.2622680
http://dx.doi.org/10.1109/TE.2016.2622680
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb32
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb32
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb32
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb32
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb32
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb33
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb33
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb33
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb34
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb34
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb34
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://refhub.elsevier.com/S2212-8689(17)30103-4/sb35
http://dx.doi.org/10.1080/17439884.2013.756514
http://dx.doi.org/10.1080/17439884.2013.756514
http://dx.doi.org/10.1080/17439884.2013.756514

	The cloud is the limit: A case study of programming on the web, with the web
	Introduction
	Theoretical Framework & Prior Work
	Theoretical Framework
	Introductory Programming Environments and the Web
	Programming on the web
	Programming with the web
	Social aspects of online programming


	Meet Pencil Code
	Methods
	Context and Participants
	Procedures

	Findings
	From Bieber to basketball to battleship
	Digital Quilts and Public Projects

	Discussion
	Conclusion
	
	Conflict of interest
	References


