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Abstract 
 

Multi-agent modeling has been successfully used in a large number of distinct scientific 

fields, transforming scientists’ practice. Educational researchers have come to realize its potential for 

learning. Studies have suggested that students are able to understand concepts above their expected 

grade level after interacting with curricula that employs multi-agent simulation. However, most 

simulations are ‘on-screen’, without connection to the physical world. Real-time model validation is 

challenging with extant modeling platforms. Therefore, we designed a technological platform to 

enable students to connect computer models and sensors in real time, to validate and refine their 

models using real-world data. We will focus on both technical and pedagogical aspects, describing 

pilot studies that suggest a real-to-virtual reciprocity catalyzing further inquiry toward deeper 

understanding of scientific phenomena. 
 
Objectives and theoretical framework 
 

A powerful path for applying technology to improve education has been to bring the most 

advanced tools from research labs and adapt them for use in schools. One such well known 

application is the LOGO computer language, proposed by Seymour Papert (Papert, 1980) almost 

forty years ago, which encapsulated the most powerful ideas in Computer Science at the time and 

made them available for children. The same happened to robotics in the late nineties and early 21st 

century (Eisenberg, 2002; Martin, 1996, 1993; Resnick, 2000, 1991; Sipitakiat, 2000). The 

introduction of robotics kits such as the LEGO Mindstorms, many new learning opportunities in 

Engineering and Science were made available for children of all ages, which would be unimaginable 

just some years before, when robotics was only available in advanced laboratories in engineering 
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schools. Mechanical advantage, gearing, mechanism design, data sensing, control, and feedback are 

just some examples of the powerful ideas made available to learners. 

Multi-agent modeling and simulation (e.g., "Repast", Collier, 2001; "Swarm", Langton & 

Burkhardt, 1997; "NetLogo", Wilensky, 1999b), too, went through a similar path. Multi-agent 

methods have been used with great success in fields such as biology, sociology, chemistry, physics, 

economics, psychology, and engineering (Raabe, Roters, Barlat, & Chen, 2004; Rand & Wilensky, 

2006; Thornton & Mark, 2005; Wolfram, 2002). Instead of departing from often very complicated 

“aggregate” behaviors, scientists started to use massive computation power to simulate systems with 

thousands of very simple agents, behaving accordingly to simple rules. This approach is dramatically 

changing scientists’ mindsets and practice, enabling theoreticians to assign rules of behavior to 

computer “agents,” whereupon these entities act independently but with awareness to local 

contingencies, such as the behaviors of other agents. Typical of agent-based models is that the 

cumulative (aggregate) patterns or behaviors at the macro level are not premeditated or directly 

actuated by any of the lower-level, micro-elements. For example, flocking birds do not intend to 

construct an arrow-shaped structure (Figure 1), or molecules in a gas are not aware of the Maxwell-

Boltzmann distribution. Rather, each element (agent) follows its local rules, and the overall pattern 

arises as epiphenomenal to these multiple local behaviors i.e., the overall pattern emerges. In the late 

eighties and early-nineties, Wilensky & Resnick started to realize that agent-based modeling could 

have a significant impact on learning (Resnick, 1994; Resnick & Wilensky, 1993; Wilensky, 1999a; 

Wilensky & Resnick, 1995). Wilensky & Resnick adapted languages and techniques heretofore used 

only with supercomputers and brought them to classrooms. Powerful ideas such as emergence, self-

organization, and randomness were put in the hands (and minds) of children. In the ensuing decade 

and a half, like computer programming and robotics, ABM too has been translated for use in the 

educational context. Wilensky and colleagues have produced a large body of research showing the 

power of this technology for learning (Abrahamson & Wilensky, 2004c, 2005; Blikstein & Wilensky, 

2004, 2005, 2006; Levy, 2004; Resnick & Wilensky, 1998; Sengupta & Wilensky, 2005; Stieff, 2003; 

Wilensky, 1995, 1999a; Wilensky, Hazzard, & Froemke, 1999; Wilensky & Reisman, 2006; Wilensky, 

1999c). In the noughts decade, many other researchers have continued this work and have 

documented learning gains through interaction with curricula developed using multi-agent 

simulation (Abrahamson & Wilensky, 2004; Charles & d'Apollonia, 2004; Jacobson & Wilensky, 

2006; Klopfer, 2003; Wilensky, 2001; Wilensky & Reisman, 2006) For instance, to study the behavior 
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The computer screen becomes a display for two distinct ‘models’: the computer model, 

which is a proceduralization, through programming, of equations, text, or other representations of 

scientific content, and the actual phenomenon, which is discretized by means of sensors and other 

laboratory apparatus to fit into the scale (temporal and physical) of the computer model (see Figure 

3). Because the computer models are carefully constructed to imitate the phenomenon’s visual 

language, the bifocal methodology minimizes interpretive challenges typical of multi-media research. 

That is, the seen and the hypothesized are displayed such that their perceptual differences are 

backgrounded and, therefore, their procedural differences are more likely to be revealed. By thus 

utilizing the power of computation and representation, bifocal modeling constitutes a multi-

disciplinary research tool that offloads aspects of both the interpretive and menial burden of 

scientific practice, freeing cognitive, discursive, and material resources that can thus be allocated 

toward validation of the hypotheses. The adaptable quality of the NetLogo multi-agent modeling-

and-simulation environment enables users to keep calibrating their proceduralized hypotheses until 

their visualization reaches compelling micro/macro similarity to the real-data, such that there are 

grounds to assume that the proceduralized model indeed emulates this phenomenon. 
 

 
Figure 3 – The Bifocal modeling framework: Inscriptions and the phenomenon meet in the computer screen. 

 
We built proof-of-concept systems for bifocal explorations in heat transfer, gas laws, chemical 

reactions, and Materials Science. Figure 4 (top) shows a model to investigate heat transfer using a 

multi-agent approach. Each cell in the hexagonal grid is an agent. The physical counterpart is a grid 

of 19 hexagonal cells and a lid with temperature sensors. Cells are filled with water at different 
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only option is the hexagon, a space-filing and radially-symmetric shape. This example illustrates how 

this ‘dialogue’ between the real and virtual models will impact both the ‘off-screen’ construction and 

the ‘on-screen’ programming. 

The Gas Laws model also reveals some important discretization challenges. In the ‘virtual’ 

world, linear, exponential and logarithmic behaviors can be freely converted and transformed. 

Boundary conditions can be dealt with simple conditional commands. In the world of sensors, 

however, the constraints are much stiffer. Each type of sensor has its own scale, range and boundary 

conditions. While pressing the syringe half way, the pressure sensor will sweep its full range. The 

temperature sensor will typically utilize just 0.5% of its range, while the volume sensor will exhibit a 

non-linear behavior. Extracting and harmonizing data from all these sources will require a significant 

effort in terms of software and hardware development from the modeler, and will reveal not only 

the workings of the natural phenomena being explicitly analyzed (Gas Laws, in this case), but also of 

all the sensors as physical models themselves. We will see more examples of such issues in Section 4 

(Data and Discussion). 
 

User studies: Methods 
 

In three pilot studies conducted in 2005, 2006 and 2007, we compared artifacts generated by 

undergraduate and graduate students under two distinct conditions. In the first one, students created 

purely virtual multi-agent models. In the second, students built models with sensors. All students 

built their models as an assignment in a ‘Learning Environments Design’ course. In 2005 and 2006, 

we had 14 participants (two groups of seven). In 2007, we conducted a shorter model-building 

workshop for undergraduate and graduate students enrolled in a ‘Learning Environments Design’ 

course. In this workshop, three students build bifocal models. Video interviews with students were 

made during the construction of the projects, and a longer individual post-interview took place after 

final projects were presented. Our data include students’ artifacts, field notes and transcriptions of 

interviews. For most projects described in the next section, the complete model-building activity 

took approximately two weeks, between the physical and the computer model. 

 
User studies: Data and Discussion 
 

Our data analysis will focus on particular constructs to which students of the second group 

(physical + virtual models) attended significantly more than the students of the first group.  Below, 
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we summarize the main dimensions along which students exhibited the most significant changes, 

followed by an example from our observations and interviews. 
 

Motivation, gender barrier, and problem-solving strategies 
 

The process of building robotics, sensor equipped devices was very engaging for all students 

(for literature on motivations aspects of educational robotics, see Section 1). Students came to 

school over the weekends to keep working on their projects, and invested long hours in their 

construction. One surprising observation throughout the work was related to the stereotypical 

gender barrier regarding mechanical and electrical construction. Especially on the second year of the 

study, the two groups were led by females, who also took over the soldering tasks and most of the 

construction. Carol, a 24-year old graduate student in education who had never before touched a 

soldering iron, reported the experience as ‘liberating’. Her father was an electrical engineer himself 

and told her to never touch electronics or tools, because they were not “for females.” Being 

immersed in an environment in which physical construction was part of a valued intellectual activity 

(creating computer models) made her experiment with such tools for the first time. Soon, she was 

leading the group in both the construction and modeling tasks. 

But the physical construction was not only engaging and ‘liberating’, but had cognitive 

implications. Students belonging to the second group (virtual + physical modeling) attended to 

phenomenal factors which they would otherwise have overlooked (as they were not mentioned by 

students in the first group), such as energy loss, reversibility, synchronicity, and precision (see the 

continuation of this section for more details). Some new problem-solving avenues were also 

explored: for example, a group designing a sensor-equipped American Sign Language recognition 

glove (Figure 7, top left) was struggling to write a flexible and reliable code for gesture recognition. 

They ended up realizing that for such a problem it would be far more efficient to write a program to 

enable each user to train the system with real-world data from their actual gestures, applying later 

some statistical filtering to the data. Therefore, instead of writing a complex program to recognize all 

possible variations of gestures, they designed a much simpler algorithm, made possible due to the 

availability of physical sensors as ‘extensions’ of the computer model. In a project for studying 

earthquake wave patterns (Figure 7, top center and top right), learners analyzed the propagation of 

multiple waves in a gelatin model they built, which helped them realize many of the errors and 

limitations of the previously designed wave propagation algorithm. Similar findings were detected in 
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other groups as well, such as the one that built systems to study tsunami wave propagation (Figure 7, 

bottom left). 
 

      
 

       
Figure 5. An ASL recognition glove (top), and models for investigating earthquakes waves (middle, on the left, the physical gelatin model, on 
the right, the computer model), Tsunami wave patterns (bottom left). 

 
Scale 

 
Bob, a student building an acid-base reaction model (Figure 8) started to get interested in 

calculating the real-world scale of the virtual chemical reaction, which involved only 100 molecules. 

After several calculations with Avogadro’s number, he was startled by the orders of magnitude of 

difference between what was contained in one drop of water and what the computer model 

enclosed. This insight completely changed his view on the limitations of the computer model. After 
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the calculation, he stated that, given the current algorithm and number of molecules in the computer 

model, no computer in the world would be fast enough to simulate the to-scale speeds of the 100 

molecules that were shown in the screen. Alternatively, no computer will be able to simulate what 

takes place in a real drop of water. This discussion triggered Bob to reflect on modeling itself: do we 

need to simulate the whole drop of water? If not, how much of it do we need to simulate? If just 

100 molecules can mimic what billions do, what are the implications for the work of a scientist? 
 

 
Figure 6 – A model of acid-base reactions 

 
Coefficients, precision 

 
Students of the virtual + physical group were more careful coming up with adjustment 

coefficients for their models. Carol and Charles, two graduate students in education, took an existing 

NetLogo model (forest fire spread) and created physical apparatus to incorporated ‘real’ wind speed 

to the model. Their built an elaborated anemometer with a perforated cardboard wheel, a light 

sensor, a flashlight and a Lego fan (wind was generated with a hair dryer). When they started to 

incorporate the sensor data into the forest fire model, one immediate problem was the conversion of 

the measured wind speed to the scale of the computer model. Their anemometer measured wind 

speed in rotations per minute, but the forest fire model contained several hundred virtual trees. The 

computer model, in the real world, would measure several square miles. Their first step was to 

conduct complex calculations to convert the rotational speed of their anemometer to linear wind 

speed. But that was not enough – the actual hair dryer wind speed would hardly move a branch in a 

real forest. Thus Carol and Charles engaged in the elaborate task of deciding a conversion coefficient 

to wind speed, as to make it meaningful when applied to a large-scale forest, but being careful not to 
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step into non-linear regions of air-flow. For example, switching the hair dryer from low to high 

power would double the resulting air flow – but would doubling the forest fire air speed be 

physically meaningful? They realized, therefore, that their coefficient might be a function, and not 

simply an arbitrary number. In contrast, students of the first group (no sensors), oftentimes resorted 

to “unexplained” coefficients to make the simulation run faster or accordingly to their previous 

expectations. 
 

            
Figure 7 – A forest fire spread model with a wind generator (a hair dryer, left), the mechanism of rotation speed detection with a flashlight 
and a light sensor (center), and a detail of the rotation detection apparatus (right).  

 
Energy loss 

 
Computer models can easily ignore one fundamental process of physics: energy loss. On-

screen agents can move freely in the virtual world without ever experiencing any friction, unless the 

modeler decides to include it in the model. When dealing with the physical world, students do have 

that option: energy loss and friction are a fact of nature they have to deal with. Peter and Ann, who 

decided to build a model to simulate Newtonian motion, started the project sure that it would be a 

straightforward task: after all, Newtonian motion is a well known part of physics and its equations 

are relatively simple. They built the device shown in Figure 8. 
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Figure 8 – The Newtonian motion apparatus (top), in which a sphere is launched at the top of the ramp by a robotic arm, rolls down the 
ramp, and eventually stops in the green carpet, and the NetLogo model (bottom) 
 

After some hours trying to match their physical and virtual models, Peter and Ann were 

frustrated. The conventional Newtonian equations seemed to be insufficient to predict how far the 

real sphere would travel, compared to the virtual sphere. Upon closer investigation, they started to 

gather a list of possible causes for the mismatch, most of which are normally overlooked in 

introductory Physics courses or taught at a much higher level. There was air resistance, irregularities 

in the green mat, variability in the initial impulse of the robotic arm, slight changes in the inclination 

of the whole apparatus depending on the floor of the room, discontinuities in the ramp-mat 

transition, and the path of the sphere movement was never completely rectilinear. The amount of 

new variables was overwhelming. 

The group was startled to realize how much “school” Newtonian physics is just a rough 

approximation of the actual physical phenomenon, and how important the various sources of energy 

loss are in a system. Unable to measure and model all possible variables, they decided to group all 

energy loss sources in one “catch-all” variable. However, differently from the students who did not 

build physical models, Peter and Ann were extremely aware of the dangers and limitations of this 

approach. They realized, for example, that some sources of energy loss have quadratic variations on 
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speed, while some are linearly dependent, and others are invariant. The catch-all variable, thus, was 

their artifact to get the model finished on time, but with the awareness of the complexities of 

Newtonian motion in the physical world. 
 

Synchronicity/time scales 
 

Marcel was inspired by the heat transfer model (see Figure 4) to build his own model to 

investigate this phenomenon. However, he wanted to test how different metals would behave when 

heated. Coming in to the project, he harbored two hypotheses about the nature of each of the foci 

of bifocal modeling. Namely, Marcel supposed that it should be relatively straightforward to build: 

(a) an artifact that enables the measurement of the target phenomenon; and (b) a computer-based 

procedure that emulates this phenomenon. Both hypotheses proved incorrect. He relentlessly 

shifted foci back and forth between the physical and virtual, until he negotiated a common grounds 

of logical (structure, rationale) and visualization (interface) properties that enabled the bifocaling. As 

he stated, “By comparing the dynamics of the model and the wire, I iteratively debugged my 

conceptual model for heat flow.” 

The unsettling element in Marcel’s model, which triggered the frustration of his 

expectations, was time. Upon completing the physical model and connecting it to the computer 

model, he realized that there was a fundamental (and hard) problem to be addressed: synchronicity. 

Sensors were sending temperature data twenty or thirty times a second, but the computer was 

calculating new temperatures for the virtual agents several thousands of times a second. Which 

“side” should be in control? Should the computer model be slowed down to match the real-world 

data, or should the sensor data be manipulated by software to fit into the timing scheme of the 

computer model? Both options have significant implications for modeling, and speak to the 

modeling endeavor itself. If the computer timing would prevail, the sensor data would be greatly 

‘stretched’, and perhaps become meaningless. In the physical model, the inch that separated two 

temperature sensors contained billions of atoms. In the computer model, that same distance 

contained just a couple of agents. The nanosecond events taking place in the real material would 

have to be somehow converted to the model scale. 

Marcel spent a significant part of the workshop thinking about this issue. Being himself a 

graduate student in education and therefore constantly considering issues of learning, it appeared 

that the bifocaling experience had impacted his thinking with respect to the meaning of modeling 
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Conclusions and future work 

 
Our data indicates that there are particular concepts which students of the second group 

were more attentive to: friction/energy loss, precision, scale, time, coefficients, scale conversion, and 

synchronicity. The bifocal approach enabled students to rapidly investigate their hypotheses and 

observe alternative outcomes, debugging their own models and algorithms. This modeling 

framework is an appropriated solution for some types of investigation and content, especially when 

the aforementioned topics (energy loss, etc.) are relevant. Also, as the seen and the hypothesized are 

displayed simultaneously, their perceptual differences are backgrounded and, therefore, procedural 

differences are revealed. By using the power of computation and representation, bifocal modeling 

constitutes a research tool for students which offloads aspects of the interpretive and menial 

encumbrance of scientific practice, freeing cognitive resources that can be allocated in the direction 

of validation of the hypotheses. 

We are currently planning middle and high school implementations to extend this work to 

younger students, as well as improving the hardware and software platforms.  
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