
October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Chapter 1

Tutorials on Agent-based modelling with NetLogo and
Network Analysis with Pajek

Matthew J. Berryman1 and Simon D. Angus2

1Defence and Systems Institute, SPRI Building, Mawson Lakes Campus,
University of South Australia, Mawson Lakes SA 5095, Australia; Email:

matthew.berryman@unisa.edu.au

2Department of Economics, Monash University, Clayton Vic. 3800,
Australia; Email: simon.angus@buseco.monash.edu.au

Complex adaptive systems typically contain multiple, heterogeneous
agents, with non-trivial interactions. They tend to produce emergent
(larger-scale) phenomena. Agent-based modelling allows one to read-
ily capture the behaviour of a group of heterogeneous agents (such as
people, animals, et cetera), with diverse behaviour and important in-
teractions, so it is a natural fit to modelling complex systems. Many
complex systems (and agent-based models thereof) can be thought of
as containing networks, either explicitly or implicitly. Therefore for
complex systems research it is important to have a good understand-
ing of network analysis techniques. This chapter is aimed at beginners
to complex systems modelling and network analysis, using NetLogo (Sec-
tion 1.1) and Pajek (Section 1.2) respectively. It is also aimed at more
advanced complex systems modellers who want an introduction to these
platforms.

1.1. Agent Based Modelling

1.1.1. Introduction

Agent-based modelling is a type of modelling in which the focus is on rep-
resenting agents (such as people or animals) and their interactions.1 In
agent-based models, as in real complex systems, a set of inductively gener-
ated local rules and behaviours of agents give rise to emergent phenomena
at a group or system-wide level.2–4 Agent-based modelling allows one to
effectively capture a very rich set of complex behaviours and interactions,

1

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

2 M. J. Berryman and S. D. Angus

and is therefore highly suited to modelling complex phenomena. It has
gained extensive use in the fields of economics,5 social science,6 ecology,7

and biology,8 amongst many others.
Agent-based modelling is a useful complement to more traditional model

representation using a system of equations. Agent-based modelling more
easily allows one to do things that are difficult to capture in traditional
approaches, such as:

• Model networks of agents where the agents modify the network
dynamically;

• Model agent learning and/or evolution;
• Capture a large range of different types of agents and agent be-

haviour; and
• Explore non-linear interactions between agents.

Agent-based modelling allows for a much richer set of behaviours than
traditional variable-based modelling,9 even if the latter is aided by the use
of computers.1,10 Agent-based modelling does not preclude the use of other
styles of modelling as part of the agent-based model, or in combination with
the agent-based model.

Emergent phenomena are those that arise from the low-level rules and
interactions between the parts (which may be agents).3 Sometimes the
only way to observe them is to let the model run. Brock (2000) discusses
the Santa Fe approach to complex systems science as stressing the iden-
tification of patterns at macro levels and trying to reproduce these using
lower level rules. Agent-based models can be used to test an hypothesis
in the sense that it can rule some emergent possibilities out, given a set
of rules (this is discussed further in Subsection 1.1.5). Exploratory agent-
based model usage, as an inductive processa, can generate new hypotheses,
but ultimately these must be tested with other methods. As with any type
of scientific modelling, it is impossible to conclusively rule hypotheses as
true,11,12 rather one tests the hypothesis by trying to prove its predictions
false.12,13 To quote Blaug (1992)14 on this logical asymmetry, ‘there is no
logic of proof, but there is a logic of disproof.’ Falsification is a crucial
element in the demarcation of science from non-science.12

Validation of a model’s output is not sufficient, one must also verify
aAs discussed by Epstein (2007),11 agent-based models in and of themselves, are a form of

logical deduction: given a set of rules, and initial conditions, the emergent outcomes are
embedded in the rules,4 however surprising these may be. The models remain inductive

generalisations, however.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 3

the assumptions made.15 In the case of agent-based modelling, both the
behaviours of agents and their software implementations must be verified.
The following subsection describes how to implement agent-based models
in software using the NetLogo package.

1.1.2. Introduction to NetLogo

To assist in the development of agent-based models, a number of differ-
ent platforms have been developed.16 These platforms vary in how much
support they provide. Some, like Swarm and Mason, offer a set of software
libraries to be used in programming a model. RePast, in its Simphony (sic)
version, offers a few more tools for quick construction of agent-based models.
Some other agent-based modelling platforms provide fixed sets of rules that
can be used with some chosen parameters, but these are often too restricted
to capture the wide range of phenomena that one might want to model.
NetLogo consists of a programming language (derived from the earlier Logo
language) and a set of libraries, as well as a programming environment.
Like RePast and Swarm it provides a set of programming facilities, however
NetLogoalso provides a graphical tool for quickly constructing interfaces for
running agent-based models. In the following subsections, we describe the
NetLogointerface and detail some of the basics of programming in NetLogo.
Note that sample code can be found at the tutorial web site http://www.

complexsystems.net.au/wiki/ANUPhysicsSS2008ABM_networks. In the
following subsections, all programming commands are indicated by italic
text.

1.1.3. NetLogo Interface

One of the benefits of using NetLogo is its interface. An example picture of
the interface is shown in Figure 1.1. By default, the interface contains just a
2D spatial view of the model environment, which is a square lattice. Unlike
Mason and Repast, NetLogo does not support hexagonal grids. If this is
important to your model, you should investigate these other platforms. In
addition to the 2D spatial view, the developer adds other elements, such as
buttons to set model parameters and graphs to monitor results. Many of
these elements are detailed below.

All elements of the interface may be moved around by first selecting
them by right clicking and choosing select, and then clicking and dragging.
Multiple items can be selected and then moved around together. To edit

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

4 M. J. Berryman and S. D. Angus

Buttons

Plots

2D View

Outputs

Fig. 1.1. This is the NetLogo interface for a sheep versus wolves predator scenario. The
NetLogo file containing this interface, as well as the associated code, can be found at the

tutorial web site.

them in order to change the details as given below, one right clicks on an
element of the interface and selects ‘Edit...’. They can, except for the view,
be deleted by right clicking and selecting ‘Delete’.

The 2D view has several different options that prove useful in modelling.
The size of the grid (the number of cells) can be changed, as can the size
of the cells themselves (in pixels). The edges of the model ‘world’ can be
changed to reflect the system the model is to represent; the choices here are
to treat the edges as walls, or to treat them as wrapping around onto the
cells on the opposite side of the grid. The programming implications are
discussed in the Topology section of the NetLogo Programming Guide.17

The view supports inspecting patches and turtles by right clicking on the
patch and inspecting it, or selecting one of the turtles and inspecting that
from the right-click menu.

To run the software, buttons are typically set up in the interface. When
creating a button, the piece of code to be run is specified. By default,

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 5

this is also displayed as the button name, however a different label can
be specified in the button properties. The piece of code to be run can be
changed by editing the button. Buttons can be set so that the code can be
run repeatedly, until the button is pressed again. To specify this behaviour
tick the ‘forever’ box. It is typical to have at least two buttons, a setup
button, with a correspondingly-named procedure that clears the display
and initialises the state of the model, and a go button, with the ‘forever’
box ticked, for running the model.

Monitors can be used to keep track of some number while the model is
running. The monitor requires a reporter (procedure that returns a value)
to be defined. This can either be a reporter defined in your program if
one exists or it is something long, alternatively it could be a short piece
of code defined in the monitor itself, for example count turtles. For more
information on reporters, see Subsection 1.1.4. Monitors have an option
to be labelled with something different than the piece of code, for example
‘number of turtles’ instead of the corresponding count turtles code.

Inputs, switches, choosers and sliders are all ways of specifying variables
that can then be used by the code, either at initialisation, or while the code
is running. The switches have two settings, on and off, and return a boolean
value (true or false) when the global variable they define is used in code.
The switches, choosers, and inputs all allow for some numerical input, with
different constraints and interfaces.

Plots can be defined, along with their name (which can then be refer-
enced in the code), their axes set up, and plot pens set up. The use of
plot pens is for having multiple graphs on the same set of axes. The profile
(colour, mode, and interval) for the plot pen can be set here, and then that
particular pen can be drawn with by first specifying which pen is to be used
in the code, followed by a list of plotting commands.

More information on the interface can be found in the NetLogo Interface
Guide.18 More information on linking these interface elements with the
program can be found in the following subsection.

1.1.4. NetLogo Programming

Before giving details of the commands, it is necessary to define the types of
agents on which commands can operate. NetLogo has a number of types of
agents—turtles, patches, links, and the observer agent. The observer agent
is a single agent that has a view of the whole NetLogo “world” (turtles,
links and patches), and is used for running the main parts of the program

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

6 M. J. Berryman and S. D. Angus

(linked to buttons on the interface) as well as providing a way of interacting
command by command on the main interface. The patches represent square
(in 2D) or box (in 3D) cells on the main 2D (or 3D) view of the world. The
turtles are agents that can move around on the world surface, and draw.
Links represent relationships between turtles.

In programming NetLogo, one starts with primitives—built-in
NetLogo commands—and combines these into larger modules of code—
procedures and reporters—that can be used themselves as commands, in
particular as given to or used by turtles. The distinction between a pro-
cedure and a reporter is that a reporter returns some value at the end,
using the command report, and is defined differently as follows. The block
of code that forms a procedure begins with to procedure-name on a line by
itself and on the next lines come a set of commands (primitives, or other
defined procedures or reporters), and ends with the keyword end. It is a
good idea, though not necessary in NetLogo, to indent code to indicate code
structure. Note that the procedure name should not contain any spaces, in
NetLogo, whitespace is used to separate out the different primitives, vari-
ables, et cetera that make up a line of code. The only time a space does
not break up the code in this way is if it is part of a string (such as in a
plot name), strings being enclosed by double quote marks. The block of
code that forms a begins with to-report reporter-name and ends with the
keyword end. A reporter should contain one or more lines that have the
keyword report followed by some value, either a variable, or a call to another
reporter which returns some value. Two or more report statements could
be used depending on whether some condition is true or false—see the if
or ifelse statements described in Table 1.2. Once report has been called,
it will exit the reporter immediately, so it should come as the penultimate
line in the reporter, unless it is run only under some condition.

A table of frequently-used basic primitives can be found in Table 1.1.
Many primitives have shortened forms, to save on typing. Where these
exist they are listed separated by commas; only one form of the primitive
needs to be used in each instance. Some of the primitives act globally, other
ones must be used in a particular context, for example by asking a turtle or
patch to run them. This can be done using the ask command on an agent
or agentset (set of agents); more on this later.

NetLogo features a number of commands for working with links to rep-
resent relationships between turtles, which are the nodes of the network.
They come in two different forms, undirected and directed, to represent
different types of relationships. For example, directed links could repre-

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 7

Table 1.1. A list of several frequently-used primitive commands available in the

NetLogo environment. Where a shortened form of the primitive exists, this is indi-
cated by listing the shortened form after the long form, only one (and no comma)

need be used by the programmer.
Command Effect

create, crt n Create n turtles.

clear-all, ca Clears all turtles, patches, plots and output,

as well as resetting the tick counter and other

global variables.

forward, fd and right, rt, and
etc.

commands for moving the turtle. All of these
commands take a single parameter giving the

distance to be moved or angle (in degrees,

clockwise) to be rotated by.

sent a parent-child relationship, whereas undirected links could represent
a sibling relationship. NetLogo primitives for directed links have either -
from/-to or -in/-out in the command name. Those for directed links, have
-with or nothing at all. NetLogo features a number of layout primitives
for laying out networks in the 2D view, such as layout-circle and layout-
radial. NetLogo has commands layout-spring and layout-magspring that
use force-based layout algorithms similar those that Pajek has, as described
in Subsection 1.2.4.

Breeds are a way of specifying different classes of turtles and links.
These different classes can have different state variables (described later),
and can have different behaviours, by asking different breeds to run differ-
ent procedures and reporters. Breeds are specified at the start of the code,
by using the breed keyword, followed by the plural and singular forms of
the breed name (in that order) enclosed in square brackets. For example,
to define a breed for representing wolves, one could write: breed [wolves
wolf]. After definition, a large number of primitives are made available
automatically by NetLogo, starting with the singular or plural form as ap-
propriate. To continue the example of wolves, by using that command one
would obtain primitives like create-wolves and is-a-wolf?. For details of
other primitives created, refer to the breeds section of the NetLogo Pro-
gramming Guide.17 You can change the breed of a turtle (using set breed
new breed) mid-way through running your program, if this makes sense for
your model. You can also change the breed of a link, but you cannot change
between a directed and undirected breeds—NetLogo cannot do this auto-
matically for you, and you must program such behaviour in as required in
a way that makes sense for your particular model.

Variables are placeholders for storing information. There are several

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

8 M. J. Berryman and S. D. Angus

different types of variables in NetLogo:

• Global variables hold values that are accessible anywhere in a
NetLogo program. Global variables are defined at the start of
a NetLogo program, using the globals command, followed by a
list of whitespace-separated variables, the list being enclosed by
square brackets. For example, the command globals [dead turtles
found money] defines dead turtles and found money to be global
variables. Any variables defined in the interface (such as sliders and
monitors) do not need to be specified in the list of global variables
as they are available by default.

• Local variables hold variables that are accessible only within a cer-
tain block of code. A block of code is something enclosed in square
brackets, or within a procedure or reporter. Local variables are
defined using the let keyword. This creates a variable, and assigns
it an initial value, which must be specified. For example, let food
3 creates a variable named food and assigns it the value of 3. Once
defined with the let keyword, a variable can then be used on any
subsequent line in that block of code.

• Variables owned by turtles, links, or patches. These can be defined
by using the -own suffix on a type of agents or the plural form of
a breed name, and then listing the variables. For example, links-
own [capacity latency] defines all links to have variables named
capacity and latency. A number of owned variables are predefined
for turtles, patches and links. The NetLogo Dictionary19 has a
section that lists all the built-in variables owned by turtles, patches
and links. Some important ones to note are xcor and ycor, the
co-ordinates of the turtle (for patches these are named pxcor and
pycor), and who, the turtle’s unique identity number. There is also
a reporter named who, callable in a turtle context, that returns a
turtle’s who number.

All variables, once they exist, can be set (or assigned a value) using the set
command. For those who are used to programming in languages that have a
C (programming language) or C-derived syntax, note that NetLogo uses set
for variable assignment and the = symbol for testing for equality (whereas
in a C-style syntax the = symbol is used for assignment and so == is used
for testing for equality).

There are two types of data structures available: agentsets (using the
same terminology as the NetLogo manual) and lists. Agentsets are just

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 9

that—sets of agents. They are useful because they then provide an easy
way of giving commands to a group of agents that share some property,
for example giving a set of commands to turtles that are on neighbour-
ing patches to the current turtle. A set of commonly-used commands for
constructing agentsets and for working with them can be found in the
Agentsets section of the NetLogo Programming Guide.17 Every time an
agentset is used, its agents will be used in a random order. If you wish to
use a specific order, then you should use a list. Lists are way of structuring
agents or variables, unlike agentsets, which only store agents. A list can
also store other lists, allowing for 2D or higher dimensional data structures.
To change the order after a list is created, a new list must be created, and
items copied over in the desired order into the new list. Primitives such as
replace-item and sort simplify modification of lists, but note that they will
return a new list, which must be assigned to something using set, or using
let if the variable is defined and assigned in one step.

Most interesting algorithms have some control logic for repeating parts
of the code, or selecting between alternative bits of code depending on
some test. A summary of the NetLogo primitives for these can be found in
Table 1.2. More details on these can be found in the NetLogo Programming
Guide.17

NetLogo has a set of commands for writing output to files. To open
a file for reading or writing, one uses the file-open command, followed by
whitespace and then the filename in double quote marks, to denote that it is
a string. For example, to open a file called ‘output.txt’, one uses file-open
“output.txt”, where the quotes are part of the command. Whether it is
opened for reading or writing is determined by whether the next command
given is a command for reading from the file or a command for writing to
the file. Once a file is opened for reading, it cannot be written to, and
vice versa. To switch modes, use file-close, and then file-open again. The
file-open command can also be used to select between multiple files that
have been opened, by just using file-open on the file you want to access
again (even if it was opened before). If a file is opened for writing and it
already exists, then any write commands will write to the end of the file.

NetLogo features a number of commands for plotting. For these to work,
at least one plot (distinct drawing area) must be defined as described in
Subsection 1.1.3. If only one plot is in the interface, and it only has one
pen (for one graph in the plot area) then commands like plot, for plotting
points on a graph, and plot-pen-down, for ensuring that a point is drawn
when the plotting point is set, can be used immediately. If, however, there

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

10 M. J. Berryman and S. D. Angus

Table 1.2. Table of control logic commands, for changing the flow of execution of a

program.
Command Effect

if test [commands when true] This runs a test, and then if true runs the com-

mand. The test must be some reporter that
returns true or false, for example xcor > 0 or

who = 3.

ifelse test [commands when

true] [commands when false]

Like the if command, except that this com-

mand has a section of commands (enclosed in
a second pair of square brackets) to be run

when the returns false.

while [reporter] [commands] While the reporter returns true, this command

runs the commands listed in the second set of
square brackets. Note that one should be care-

ful that the reporter will at some stage return

false, otherwise this will loop forever (until the
program is stopped manually).

foreach [list] [commands] This applies the set of commands to every el-

ement of the list.

map [reporter] [list] This returns a new list, formed from applying

the reporter to each element of the list speci-

fied in the command.

repeat n [commands] This repeats the block of commands n times.

are multiple plots and/or pens, then these should be selected using the
function set-current-plot “plot name” to select a plot, and then if there are
multiple pens in the plot the pen can be selected using set-current-plot-pen
“pen name”. The plot name and pen name strings should match what has
been defined in the interface. There are two primary commands for plotting
points, plot and plotxy. The difference is that the first one uses an x-value
from the last time plot was used (for that particular plot and pen) plus
some interval. The x-value starts with a value of zero for the first time
plot is used for that plot and pen. The interval can be changed in the pen
settings. The plotxy command is used when one wants to specify both x

and y values.

1.1.5. The Art of Agent-Based Modelling

As with any type of modelling, it is part art, part science. The following
is a discussion of several points in modelling, mainly about agent-based
modelling, that we feel are important to make. A more detailed discussion
of these and other points can be found in Appendix B of Miller and Page.1

Part of the art of modelling is simplicity. This is important in mod-
elling, because in modelling we are trying to gain a better understanding of

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 11

the real system through appropriate simplifications. To quote from Shal-
izi (1998):20 ‘Models are only good if they’re easier to handle and learn
about than what they model, and if they really do accurately map the re-
lations we’re interested in.’ Part of picking appropriate simplifications is in
picking simplifications that give better understanding, while still capturing
important parts of what you are trying to model, including interactions
with other parts of the system / other systems. The benefit of agent-based
modelling over traditional variable-based modelling is that simplifications
do not need to be made just to make the model mathematisable or solvable
using a set of mathematical tools. In agent-based modelling it is important
not to oversimplify, however. The power of agent-based models is based on
their ability to accurately and falsifiably explain and model the complexity
of real-world interactions.21,22

In some agent-based models, humans take the roles of some agents.
These participatory agent-based models are useful for educating people
about complexity and emergence in general, or on specific complex systems.
They are also useful for model verification (of the rules) and validation (of
the types of emergent behaviour). Feedback can be provided on the agent
rules, in order to verify them. For validation, participatory actors can
provide the quantitative data to serve the purpose of validation. They can,
however, also provide qualitative feedback on the emergent findings.

To engage people who are experienced in the real-world system to par-
ticipate in your model and provide you with feedback23 NetLogo supports
participatory agent-based modelling through its HubNet facility. More in-
formation can be found in the NetLogo HubNet Guide24 and HubNet Au-
thoring Guide.25

Another technique that is valuable in verifying the software is to embed
within the model certain cases that may be modelled with other techniques,
like equations. For example, in an agent-based SIR (susceptible-infected-
recovered) model of epidemiology,26 one could try embedding within the
agent-based model a simple case that could also be modelled using mean-
field theory. In the example code provided on the tutorial web site, we give
sample code for a predator-prey model, with a few changes this could be
compared with results from the the Lotka-Volterra equations. This helps
rule out major bugs in the software; however since ABMs capture a wider
range of behaviours, this form of verification is somewhat limited.

Good coding practice dictates that code is commented. Try and imagine
yourself reading your code in ten years time. Good comments also help
others read and understand your code. This is important as code should

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

12 M. J. Berryman and S. D. Angus

be shared as part of the model verification process. Code should be shared
more generally as part of good scientific practice, since results should be
repeatable by others. Papers are usually too short to put down all the
details required for replication.

1.2. Pajek

1.2.1. Introduction to Pajek with Reference to Other Net-

work Analysis Tools

Pajek, pronounced ‘Payek’ and meaning ‘spider’ in Slovenian, is a social
network analysis and visualisation tool. It was specifically designed to
manipulate and analyse very large networks having on the order of 103 –
106 nodes. It is not the only tool of its kind, though it has some pleasing
features, which has led to its wide adoption amongst academic practioners.

Other comparable software tools include UCINet and the statnet set of
packages available for the open-source statistical program R. Both of these
tools, like Pajek, are able to produce visualisation and analysis of large
networks.

UCINet is a commerical product and its particular strength is in linear
algebra measures and graph manipulations. On the other hand, it is com-
putationally greedy and although it claims to handle over 32,000 nodes, its
practical limit due to computational requirements is of the order of only
104 nodes, limiting the software in some very large network applications.

In contrast to UCINet, the open-source statnet meta-package in R pro-
vides perhaps the most flexible analysis option. Whilst the start-up costs
are high for learning a scripting language such as R, the benefits include
the embedding of network analysis within other statistical routines, and the
ability to batch run the same network analysis on many different networks
using a script.

Mathematica has a number of combinatoric and other graph theo-
retic packages, along with various visualisation packages. There is also
a NetLogo-Mathematica link package available,27 which provides a real-
time link between Mathematica and NetLogo. This allows one to analyse,
collect, and display data from a NetLogo ABM in real time, using social
network and other graph theoretic measures.

Additionally, for visualisation purposes only, the multi-platform, GPL
licenced software GUESS is certainly worth investigating. Whilst it does
not feature network analysis tools, it is able to take network data input

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 13

cut-out context inter-links

reduction

hierarchy

Fig. 1.2. Different ways of analysing a large graph (after the Pajek manual).28

from many sources (including Pajek) and output attractive visualisations,
such as graph layouts over the top of an image layer (for example an air-
line’s routing network overlayed on a map), in many popular image formats
(including vector graphic formats such as EPS and SVG).

Pajek is situated in this context as a dedicated, flexible, but intuitive
network visualisation and analysis software. It was designed with large
scales in mind and is able to handle very large networks. Similarly, the
Pajek graphical user interface (GUI) enables the management of multiple
networks, components and analysis outputs at once, including those made
within a Pajek session. Furthermore, it has various visualisation algorithms
in-built and these outputs have been used in academic publications for
several years.

To cope with a very large network dataset, it is useful to represent the
graph in a variety of means (see Figure 1.2). Some of these representations
require little analysis (for example cut-outs), whilst others require multiple
processing steps (for example hierarchy analysis). Pajek is able to deal with
many many different analytical approaches. The software is in constant
development as new techniques that are derived in the academic literature
make their way into the Pajek toolset.

In the following subsections, this tutorial discusses how to:

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

14 M. J. Berryman and S. D. Angus

(1) Write and load Pajek format network files;
(2) Visualise a network in a number of ways;
(3) Generate random graph networks (random graphs) for comparison;
(4) Run common graph measures over networks.

1.2.2. Importing Network Data

Pajek can accept a range of information about a network. There are several
fundamental types of data for Pajek:

• Networks: Vertices and edges/arcs (are indexed by their generation
number);

• Partitions: Vertex information of a particular kind—they are actually
class information, such that all the vertices are part of a particular
class; for example ‘Male’ could be partition 1, and ‘Female’ partition
2;

• Vectors: Information on each vertex, on a vertex by vertex basis, for
example ‘Male’ could be represented by 1 and ‘Female’ by 2, but like-
wise, each vertex can have all kinds of unique data attached to it, such
as age, height or weight. Use Partitions for data that more than one
vertex naturally matches, and Vectors for information that is likely to
be matched by only one vertex at a time;

• Permutations: These are produced by functions applying to the whole
network that create a new network based on the original network in-
formation. A permutation is a reordering of the nodes.

• Cluster: These are produced by certain functions that group together
nodes according to some measure, for example their distance in the
network.

• Hierarchy: A tree structure containing the vertices of the graph, and
representing relationships between the nodes; for example the subtrees
(parts of the tree) could represent communities, and these subtrees
when joined up could represent a larger community of communities.

The Pajek interface manages each of these data types separately (see Fig-
ure 1.3).

Pajek uses several different file formats to manage the various data
types. Below we give details of the file formats Pajek uses to read and save
data in. In specifying a network, the usual components of a network are
mandatory, such as vertices (nodes) and edges (links between nodes) or arcs
(directed edges). Note that Pajek rightly treats edges and arcs differently.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 15

Fig. 1.3. Each of the different data types Pajek accepts has its own space in the interface
where data can be opened (folder icon), saved (disk icon) and viewed or edited (edit

button, or double click on the data file name). One can start with any number of files

and generate the rest if needed through algorithms provided by Pajek. One could even
start with no files and generate a random network as discussed in Subsection 1.2.6. Note

that for image clarity reasons, not all menu options are shown here.

See Figure 1.4 to see an example network containing both edges and arcs.
A Pajek network file first begins with *vertices followed by a space

and then the number of vertices in the network. If any of the nodes are
labelled, this can be specified following the *vertices line by specifying
the number of the vertex that you want to label, then a space, and then a
label. If the label has a space in it, then it needs to be surrounded by double
quote marks. Edges can be specified by writing *edges on a new line, and
on the following lines writing each edge (one per line) by specifying the two
nodes, separated by a space. Arcs can be specified in one of two ways:

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

16 M. J. Berryman and S. D. Angus

opposite

arcs

a

b

cd

e
f

g

h

j

k
l

parallel

arcs

loop

vertex

arc

edge

i

isolated

vertex

Fig. 1.4. This figure shows a set of vertices (or nodes) denoted by circles, and edges

(links without arrowheads) and arcs (directed links, with arrowheads) joining them.

(1) by writing the keyword *arcs on a line by itself, and then on the
following lines specify one arc by writing the starting node, destination
node, and arc weight, all separated by whitespace; or

(2) by writing the keyword *arcslist on a line by itself, and then on
each of the following lines specify a starting node, followed by a list of
destination nodes, to be joined in separate arcs (of weight 1) from the
starting node. In this case whitespace separates the nodes listed.

An example network file (example.net) for the graph in Figure 1.4 is
given in Figure 1.5.

There are several things to note about the Pajek network file format

• Vertices cannot be indexed 0 (start with 1);
• Any amount of white space can be used to separate elements on a line,

and whitespace consists only of space characters (not tabs);
• Note that Pajek won’t draw arcs and edges that are from a node to

itself, but they are still there in the data structure.
• Pajek does not support Unix text files, lines need to be ended with a

carriage return and line feed (if you are working on Windows do not
worry about this);

• A network file consists of just the basic information about the net-

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 17

*Vertices 12
1
1
2
2
(...)
4
2

example.cls
*Vertices 12
45
44.2
18
17
(...)
60
65

example.vec

*Vertices 12
1
3
2
4
(...)
5
6

family-rank.per

*Vertices 12
1 a
2 b
3 c
4 d
(...)
*Edges
2 5
5 7
3 4
6 8
*Arcs
6 11 1
10 8 1
*Arcslist
1 2 4 6
2 1 6
3 2 3 7 7
5 6 8
(...)

example.net

Fig. 1.5. Example files referred to in the text.

work (vertices and connections), other information such as each vertex’s
rank, cluster and/or other information for each vertex can be added as
separate files (see Figure 1.3); and

• Each file can be read into Pajek and then saved as a Project: File →
Pajek Project File → Save

In Pajek, one can assign vertices to clusters. The clusters can either be
generated through a clustering algorithm (see Subsection 1.2.7) or loaded
from a file (either one generated previously, or entered manually). To load
from a file, in Pajek select File → Cluster → Read. An example clustering
file (example.cls) for the graph given in Figure 1.4 is given in Figure 1.5.
Examples of permutation and vector files for the graph in Figure 1.4 can
also be found in Figure 1.5.

1.2.3. Visualising Networks

There are several ways to visualise a network. In fact, this is an area of
active current research—consider the difference between the layout of a
subway network versus an electical diagram versus a social network versus
a gene expression network, et cetera. Each network has its own ‘natural’

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

18 M. J. Berryman and S. D. Angus

way of laying out. Sometimes these are connected strongly to physical
interpretations (for example an international flight network overlaid on the
world map), but many networks do not have a physical interpretation (for
example a sexual activity network)—rather, they are just networks: objects
which indicate the relationships between elements (not their location).

Some visualisation tools to try out are:

(1) With your network loaded, use Draw → Draw (or just hit Ctrl+G);
(2) You will see a simple representation, by default, the nodes are arranged

on a circle—try changing this representation, or layout, by using the
different options in Layout → ...

(3) If the network looks strange to you, try using a different starting po-
sition (Layout → Energy → Starting Positions → ...) (see Subsec-
tion 1.2.4);

(4) Now, try a common layout: Layout→ Energy→ Fruchterman Reingold
→ 3D;

(5) Since your screen is in 2D, and the graph is now laid out in 3D, we need
to alter the perspective to ‘see’ it. This can be done this as follows:
Spin → Spin Around (accept 360 Degrees).

(6) This likely was too quick for you .. in which case, use Spin → Step in
degrees → ... and set this value to something very small (like 0.05),
now use Spin → Spin Around again.

1.2.4. Force-Directed Layouts

‘Force-directed’ and ‘spring-directed’ refer to a class of ‘energy’ algorithms
where one can conceive of the network as a collection of balls, connected
by springs of a certain length (refer to Algorithm 1.1). These are a type
of graph embedding algorithm.29,30 The idea is to imagine starting with
this web of balls and springs in a random configuration, and then allowing
them to ‘relax’. The ultimate configuration should be one where spring
tension is minimised, such that connected balls are close together in the
layout space. The initial position is quite important. It can be the case
that this algorithm, like a human untangling many inter-connected springs,
might actually not be able to untangle them all into a ‘good’ layout. Hence,
the option is given in Pajek to vary the starting positions.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 19

Algorithm 1.1 A Force-Directed Layout Algorithm (pseudo-code)
1: Positions ← Generate-random-position-for-all-vertices (X, Y)
2: Energy ← Calculate-total-force-in-springs
3: while Energy ≥ Energy-threshold do
4: Displacements ← Calculate-resultant-force-on-all-vertices
5: Positions ← Positions + Displacements
6: Energy ← Calculate-total-force-in-springs
7: end while

1.2.5. Exporting the Network Layout to Another Program

To get an image file of your current layout, use the Export → 2D → menu
item. Choose a file format that you wish, for example EPS/PS (mainly
used for importing into LATEX), or bitmap (for a web page or MS Word

application).

1.2.6. Generating a Comparison Network

It is often useful to compare a given network to one that is like it in some
ways, but different in others. Random graphs, where a random process
generates a graph, with some statistics the same as the original, are useful
null models.31–34 For instance the work of Watts and Strogatz, in their
influential Nature paper,35 use comparisons between a given graph and its
random graph equivalent (same number of nodes and average degree). We
will do the same.

(1) First, we will generate a random Erdős-Rényi network: Net→ Random
network→ Erdos-Renyi→ Undirected→ General. Specify a number of
Vertices, and the Average Degree (for example 50, and 4). Obviously,
for a comparison net you will want to use the same number of vertices
and average degree as your network of interest.

(2) The network will appear in your ‘networks’ row on the home area of
Pajek.

(3) Let us visualise it. You can do that as before.
(4) Now, since this is probably our first large network, we will do a bit more

with our visualisations: Back in the home area, with the new Erdős-
Rényi random network highlighted, we will create a Partition (of the
vertices) by the property ‘Degree’ (number of incident edges): Net →
Partitions → Degree → Output. New rows should have been added in
the main area of the interface.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

20 M. J. Berryman and S. D. Angus

(5) Highlight the original Erdős-Rényi random network (networks) and use
Draw → Draw Partition (or Ctrl+P). This should bring up a coloured
visualisation.

(6) Make the vertices bigger by using Options → Size → of Vertices (a
good size to use is 10).

(7) Now let us get a better idea of the partitions. Try Layout → Circular
→ using Partition. This will place similar vertices (by their degree/-
partition) together in space.

1.2.7. Common Network Measures

In this subsection we will look at some common network measures. We will
continue working with the large Erdős-Rényi random network we made
earlier. A random network by itself, even visualised with one of the pretty
force-directed placement algorithms, is still just a random network—it is
hard to get much out of it by just visualising it. First we will generate some
outputs from the network, using the sample network file for Figure 1.4. This
file can be loaded by clicking on the folder icon under in the networks section
of the Pajek interface or by clicking File → Network → Read. The process
of generating outputs is going to get a bit confusing unless you pay close
attention to the way that Pajek organises and operates on data. Recall
from Subsection 1.2.2 the different data types for Pajek.

Once a network is loaded using the interface, one can calculate a number
of network measures. A limitation of Pajek is that for some of these, it
doesn’t handle multiple lines and loops well, in that it doesn’t take them
into account when normalising. So it is a good idea to remove them from
the network. It is also a good idea for some network algorithms (in general,
and not just in Pajek) to represent edges by arcs going in both directions.
These pre-processing steps can be found in the Net → Transform submenu
in Pajek. The ones that need to be applied are Edges −> Arcs, Remove
→ Multiple Lines → Single Line and Remove → Loops. You can create a
new network or just overwrite at each step. If you create a new network at
each step, the last one is the one that will automatically be selected for the
following operations.

(1) Degree distribution: What we wish to do is assign each vertex a number
that describes the number of input, output or either input/output edges
that are incident at the given vertex. Hence, we will be aiming to
produce a vector output of (normalised) degrees. The way this is done,
is actually to do a partition of the vertices into their degree numbers

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 21

(we kill two birds with one operation):

(a) Select from the menu Net → Partitions → Degree → All. Notice
that this produces two new lines in Partition and Vectors;

(b) Double-click on the text window of Vectors (see Figure 1.3), to bring
up a simple text file view of the data—notice that each vertex now
has a number associated with it: this is the normalised degree of
each vertex;

(c) Double-click on the text window of Partitions (see Figure 1.3), this
file shows for each vertex, based on its normalised degree number,
which class (or ‘Partition’) of vertex it falls into. Find the vertex
with the highest partition number (in this case, this is the degree)—
you should find it is vertex 6 (‘f’). Go back to the ‘Vector’; infor-
mation for normalised degree and look at that vertex’s normalised
degree. The degrees are normalised (that is, divided) by a factor of
n− 1 .

(d) To make a degree distribution, you will have to export the nor-
malised degree vector into another application (for example MATLAB,
Excel, R, SPSS, or another package) and run a histogram function
over the data. In fact, porting to R and SPSS is integrated into
Pajek for this purpose: Tools → R → Send to R → Current Vector.

(2) Clustering Coefficient: Now what we want to do is calculate the clus-
tering coefficient amongst the 1-neighbourhood of each node. Each
node’s 1-neighbourhood is all the other nodes that it shares an edge
with. For the example graph in Figure 1.4, the 1-neighbourhood of
node a is {b, d, f}. For k the total degree of the node (in this example,
a has k = 3 neighbours), then there are at most k(k − 1) arcs in a
directed network or k(k − 1)/2 edges in an undirected network. The
clustering coefficient is simply the number of arcs or edges between the
neighbours, divided by the maximum possible for the type of network,
k(k − 1) or k(k − 1)/2. In the example network, there is one arc be-
tween the three neighbours (the arc from b to f , the other edges are
all back to node a which isn’t in its neighbourhood). So the clustering
coefficient of node a is 1/(3× 2) = 1/6. Note that Pajek doesn’t com-
pute clustering coefficients for networks with parallel arcs, these can be
removed by either editing the file and selecting Net → Transform →
Remove → Multiple Lines → Single Line. To compute the clustering
coefficients in Pajek use Net → Vector → Clustering Coefficients →
CC1. The CC2 option is for computing the clustering coefficient of the

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

22 M. J. Berryman and S. D. Angus

2-neighbourhood (all of a node’s neighbours, and all of their neighbours
excluding the node you are computing the clustering coefficient for).

(3) Shortest Paths: Now what we want to do is to find the shortest path
between nodes. There are two options for this: Net → Paths between
2 vertices → One shortest and Net → Paths between 2 vertices → All
shortest. The difference is that the first shows only one path if multiple
exist, the latter shows both. Both options will prompt for the starting
node and end node to find shortest path(s) for. Both options also ask
two questions. The first is ‘Forget values on lines?’ If yes is selected,
then any edge weights will be ignored, and a shortest path is one with
the fewest edges. If no is selected, then edge weights are used, and a
shortest path is one with minimum sum of edge weights. The second
question asked is ‘Identify vertices in source networks’. If yes is cho-
sen, then a partition is created, partitioning the edges of the original
network into belonging to the shortest path(s), indicated by a ‘1’, or
not, indicated by a ‘0’. The resulting network has all the nodes that
are in shortest paths, with the edges that lie on shortest path(s) in the
original network being the only edges in the new network.

(4) Betweeness Centrality measures the shortest paths going through each
vertex.36,37 If there are multiple (equal) shortest paths between two
nodes, then instead of adding to the count by one, one adds the fraction
of the shortest paths going through the vertex. The overall count can
then be normalised by (n− 1)(n− 2), the total number of paths, as is
done in Pajek. In Pajek one can use Net → Vector → Centrality →
Betweeness to calculate the betweenness. Pajek does not calculate the
newer, but similar, edge betweenness measure.38

(5) The diameter of a network is the longest shortest path between two
vertices. So one considers every pair of vertices, finds the shortest path
between each of the pairs, and then the diameter is the longest of these
shortest paths. It can be computed in Pajek through Net → Paths
between 2 vertices → Diameter

(6) Hierarchical Decomposition: Net → Hierarchical Decomposition →
Clustering → Run. One runs a hierarchical decomposition when you
wish Pajek to automatically group vertices based solely on the pattern
of connections amongst them without reference to their type. In this
way, hierarchical decomposition can be a revealing method to uncover
similarities in vertex context that may otherwise not be prominent to
the observer. Note that this analysis produces a 2D specific hierarchical
network output which is different to Pajek’s normal ‘Draw’ output. The

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 23

output is sent directly to an external, encapsulated Postscript (EPS)
file that can be converted to a PDF file or other image formats using a
graphics tool like Photoshop, GIMP, or Ghostscript.

There are many measures that you can use—the above are just a starter
to get you going. Exploration in Pajek is rewarding!

References

1. J. H. Miller and S. E. Page, Complex Adaptive Systems: An Introduction
to Computational Models of Social Life (Princeton Studies in Complexity).
(Princeton University Press, March 2007). ISBN 0691127026.

2. M. Prokopenko, F. Boschetti, and A. J. Ryan, An information-theoretic
primer on complexity, self-organisation and emergence, Complexity. (2008).

3. A. J. Ryan, Emergence is coupled to scope, not level, Complexity. 13(2),
67–77, (2007). doi: http://dx.doi.org/10.1002/cplx.20203. URL http://dx.

doi.org/10.1002/cplx.20203.
4. R. Abbott, Emergence explained: Abstractions: Getting epiphenomena to

do real work, Complexity. 12(1), 13–26, (2006). doi: http://dx.doi.org/10.
1002/cplx.20146. URL http://dx.doi.org/10.1002/cplx.20146.

5. L. Tesfatsion, Agent-based computational economics: modeling economies as
complex adaptive systems, Information Sciences. 149, 263–269, (2003).

6. J. Epstein and R. Axtell, Growing Artificial Societies. Social Science from
the Bottom Up. (MIT Press, 1996).

7. V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback,
H. H. Thulke, J. Weiner, T. Wiegand, and D. L. Deangelis, Pattern-oriented
modeling of agent-based complex systems: lessons from ecology, Science.
310, 987–991, (2005).

8. S. L. Spencer, R. A. Gerety, K. J. Pienta, and S. Forrest, Modeling so-
matic evolution in tumorigenesis., PLoS Computational Biology. 2(8) (Au-
gust, 2006). ISSN 1553-7358. doi: 10.1371/journal.pcbi.0020108. URL http:

//dx.doi.org/10.1371/journal.pcbi.0020108.
9. E. R. Smith and F. R. Conrey, Agent-based modeling: A new approach

for theory building in social psychology, Pers Soc Psychol Rev. 11(1), 87–
104 (February, 2007). doi: 10.1177/1088868306294789. URL http://dx.doi.

org/10.1177/1088868306294789.
10. E. D. Beinhocker, Origin of Wealth: Evolution, Complexity, and the Radical

Remaking of Economics. (Harvard Business School Press, September 2007).
ISBN 1422121038.

11. J. M. Epstein, Generative Social Science: Studies in Agent-Based Compu-
tational Modeling. Princeton Studies in Complexity, (Princeton University
Press, January 2007). ISBN 0691125473.

12. K. R. Popper, The Logic of Scientific Discovery. (Routledge, March 1972),
2nd edition. ISBN 0415278449.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

24 M. J. Berryman and S. D. Angus

13. K. R. Popper, Conjectures and Refutations; The Growth of Scientific Knowl-
edge. (Routledge, August 2002). ISBN 0415285941.

14. M. Blaug, The Methodology of Economics: Or, How Economists Explain.
Cambridge Surveys of Economic Literature, (Cambridge University Press,
July 1992). ISBN 0521436788.

15. D. M. Hausman, Ed., Testability and approximation, In ed. D. M. Haus-
man, The Philosophy of Economics: An Anthology, chapter 8, pp. 179–181.
Cambridge University Press, 3rd edition, (2008).

16. M. J. Berryman. Review of software platforms for agent based models. Tech-
nical Report DSTO-GD-0532, Defence Science and Technology Organisation,
Edinburgh, Australia (April, 2008).

17. U. Wilensky. Netlogo programming guide (November, 2008). URL http://

ccl.northwestern.edu/netlogo/docs/programming.html.
18. U. Wilensky. Netlogo interface guide (November, 2008). URL http://ccl.

northwestern.edu/netlogo/docs/interface.html.
19. U. Wilensky. Netlogo dictionary (November, 2008). URL http://ccl.

northwestern.edu/netlogo/docs/primindex.html.
20. C. R. Shalizi. John holland, emergence, (1998). URL http://www.cscs.

umich.edu/~crshalizi/reviews/holland-on-emergence/.
21. K. M. Carley. Simulating society: The tension between transparency and

veridicality. In Proceedings of Agent 2002 Conference on Social Agents: Ecol-
ogy, Exchange and Evolution (October, 2002).

22. S. Odubbemi and T. Jacobson, Eds., Governance Reform Under Real World
Conditions: Citizens, Stakeholders, and Voice. (World Bank, June 2008).

23. A. M. Ramanath and N. Gilbert, The design of participatory agent-based
social simulations, Journal of Artificial Societies and Social Simulation. 7(4)
(October, 2004).

24. U. Wilensky. Netlogo hubnetguide (November, 2008). URL http://ccl.

northwestern.edu/netlogo/docs/hubnet.html.
25. U. Wilensky. Netlogo hubnet authoring guide (November, 2008). URL http:

//ccl.northwestern.edu/netlogo/docs/hubnet.html.
26. M. J. Berryman. A Complex Systems Approach to Important Biological Prob-

lems. PhD thesis, The University of Adelaide (May, 2007).
27. U. Wilensky. Netlogo-mathematica link (November, 2008). URL http://

ccl.northwestern.edu/netlogo/docs/mathematica.html.
28. V. Batagelj and A. Mrvar. Pajek: Program For Analysis and Visualization of

Large Networks—Reference Manual. University of Ljubljana, Slovenia, 1.24
edition (December, 2008).

29. V. Chandru and J. Hooker, Optimization Methods for Logical Inference. (Wi-
ley Interscience, 1999).

30. J. L. Gross and J. Yellen, Eds., Handbook of Graph Theory (Discrete Math-
ematics and Its Applications). (CRC, December 2003), 1 edition. ISBN
1584880902.

31. A.-L. Barabási and R. Albert, Emergence of scaling in random networks,
Science. 286(5439), 509–512 (October, 1999).

32. A.-L. Barabási, Linked: How Everything Is Connected to Everything Else

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Tutorials on Agent-based modelling with NetLogo and Network Analysis with Pajek 25

and What It Means for Business, Science, and Everyday Life. (Plume Books,
April 2003). ISBN 0452284392.

33. D. J. Watts, Six Degrees: The Science of a Connected Age. (W. W. Norton
& Company, February 2004). ISBN 0393325423.

34. E. Ravasz and A.-L. Barabási, Hierarchical organization in complex networks,
Phys. Rev. E. 67(2), 026112 (Feb, 2003). doi: 10.1103/PhysRevE.67.026112.

35. D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ net-
works., Nature. 393(6684), 440–442 (June, 1998). ISSN 0028-0836.

36. L. C. Freeman, A set of measures of centrality based on betweenness, So-
ciometry. 40, 35–41, (1977).

37. L. C. Freeman, Centrality in social networks: Conceptual clarification, Social
Networks. 1, 215–239, (1978–1979).

38. M. Girvan and M. E. Newman, Community structure in social and biological
networks., Proc Natl Acad Sci U S A. 99(12), 7821–7826 (June, 2002). ISSN
0027-8424.

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

26 M. J. Berryman and S. D. Angus

October 12, 2009 21:25 World Scientific Review Volume - 9in x 6in chapter˙ABM˙NA

Subject Index

agent-based modelling, 1–3, 10,
11

emergence, 2, 11
evolution, 2

NetLogo, 1, 3–9, 11, 12
agentset, 6, 8, 9
breeds, 7, 8
button, 4, 5
file input/output, 9
interface, 3
monitor, 5
network link, 5
parameter input, 5
patch, 4–9
plotting, 5, 9
primitive, 6, 7, 9
procedure, 5–8
reporter, 5–8, 10
turtle, 4–9
variable, 5–9
view, 4

network, 6, 7, 12–22
betweenness, 22
cluster, 14, 17
clustering coefficient, 21
degree distribution, 20
diameter, 22

dynamic, 2
Erdős-Rényi, 19, 20
force-directed layout, 18
hierarchy, 14, 22
measures, 20
partition, 14
permutation, 14
random, 19, 20
shortest path, 22
vector, 14
visualisation, 17, 18

nonlinearity, 2

Pajek, 1, 7, 12–23
betweenness, 22
clustering coefficient, 21
degree distribution, 21
exporting visualisations, 19
hierarchy, 22
network file, 15
partition, 19
shortest path, 22
visualisation, 18

R programming language, 12

27

