
Simulation of Multi-agent Manufacturing Systems 

using Agent-based Modelling Platforms 
 

José Barbosa
1,3,4

, Paulo Leitão
1, 2

 
1
 Polytechnic Institute of Bragança, Quinta Sta Apolónia, Apartado 1134, 5301-857 Bragança, Portugal  

2
 Artificial Intelligence and Computer Science Laboratory, R. Campo Alegre 102, 4169-007 Porto, Portugal 

3 Univ. Lille Nord de France, F-59000 Lille, France 
4
 UVHC, TEMPO research center, F-59313 Valenciennes, France 

E-mails: {pleitao, jbarbosa}@ipb.pt 

 
Abstract- Multi-agent systems (MAS) are driving the way to 
design and engineer control solutions that exhibit flexibility, 
adaptation and reconfigurability, which are important 
advantages over traditional centralized systems. The 
understanding, design and testing of such distributed agent-
based approaches, and particularly those exhibiting self-* 
properties, are usually a hard task. Simulation assumes a crucial 
role to analyse the behaviour of MAS solutions during the design 
phase and before its deployment into the real operation. 
Particularly, Agent-Based Modelling (ABM) tools are well suited 
to simulate MAS systems that exhibit complex phenomena, like 
emergent behaviour and self-organization. This paper discusses 
the simulation of agent-based manufacturing systems and 
introduces the advantages of using ABM tools. The NetLogo 
platform is used to illustrate the benefits of such tools in the 
manufacturing world on the specification of a MAS system for a 
washing machine production line. 

I. INTRODUCTION 

Lately, Multi-Agent Systems (MAS) are being used to 

solve the emergent challenges in manufacturing control 

systems demanding for flexibility, adaptation and 

reconfigurability. Multi-agent systems offer an alternative 

way to design and engineer control systems, differing from 

the conventional approaches due to their inherent capabilities 

to adapt to emergence without external intervention [1]. MAS 

solutions are based on the decentralization of control over 

distributed structures, providing modularity, robustness and 

autonomy, and solving at least 25% of the manufacturing 

problems [2]. 

The required software to develop agents is shorter and 

simpler than the software required by centralised approaches, 

leading to an easier development, debug and maintenance [3]. 

However, the analysis, test, debug and validation of the 

behaviour of the agent-based systems, which are distributed 

by nature, are usually difficult and time consuming, requiring 

the use of tools that support the correction of 

misunderstandings and errors during the design phase and 

before its deployment into the real operation. The use of 

simulation platforms that support a rapid prototyping and 

proof-of-concept is useful to overcome this question. In fact, 

simulation takes even more importance since is one of the 

easiest ways to represent, test and therefore understand the 

system behaviour. However, simulation platforms are usually 

developed case-by-case taking into consideration the 

particularities of the agent-based system and don’t support 

efficiently the simulation of complex phenomena. 

Agent-Based Modelling (ABM) platforms are tools that 

allow the modelling/simulation of complex adaptive systems 

by using agents, providing a way to output the simulation 

results in a graphical manner according to several designed 

scenarios. The simulation results can be used to extract 

conclusions about the system´s behaviour and consequently 

to refine the specification of the agent-based model. These 

tools provide an easy and powerful simulation capability 

which enables a fast testing and prototyping environment. 

The objective of this paper is to discuss the use of 

modelling/simulation tools, and particularly the use of ABM 

tools, to support the development of agent-based 

manufacturing control systems. For this purpose, the existing 

ABM platforms will be briefly analysed and compared and 

then the ABM NetLogo environment will be used to model 

and simulate an agent-based control system for a washing 

machine production line case study. 

The rest of the paper is organized as follows: Section 2 

overviews the importance of simulation of agent-based 

systems and Section 3 discusses the simulation of agent-based 

systems by using ABM platforms and briefly introduces the 

NetLogo modelling and simulation environment. Section 4 

uses a case study to illustrate the applicability of ABM tools 

to model and simulate agent-based solutions. At last, Section 

5 rounds up the paper with the conclusions. 

 

II. SIMULATION OF AGENT-BASED SYSTEMS 

Simulation can be defined as the use of mathematical 

models to recreate a situation, often repeatedly, so that the 

likelihood of various outcomes can be accurately estimated. 

The model is a description of the system, with the detail of 

the model ranging from a simple representation to a complex 

behaviour of all intervenient involved in the system. The 

simulation extends the modelling process by adding time to 

the model and with that, the model behaviour can be observed 

for a better analysis. 

The use of simulation environments can provide several 

advantages [4]: 

978-1-4577-0434-5/11/$26.00 ©2011 IEEE 477



- The system or part of the system can be tested, 

debugged and validated without the need to use the 

(real) physical equipments. 

- The reproduction of different scenarios, abnormal 

conditions or dangerous tests can be done easily and 

safely in this virtual world. 

- Data can be reused for operator training and 

maintenance, and the simulations can be repeated as 

many times as necessary to the correct understanding 

and tuning of the system control. 

- The simulation process can be compressed (by 

accelerating the time span), obtaining results that in 

real environment take long time. 

An example is pilots that are trained in conditions 

simulating high-altitude flights.  

The visualization is an add-on into the simulation. Indeed, 

humans understand better a system or a concept when they 

see things happening in a graphical way and not only in a 

textual way. In fact, “a picture is worth a thousand words”. 

The simulation of control systems is well established as a 

practical tool of control engineers, with simulation techniques 

being used increasingly in last decades for the design and 

analysis of control systems. A good example is the use of 

Matlab and Simulink for modelling and simulating control 

systems. In manufacturing, the simulation allows the 

detection of errors, mistakes and misunderstandings during 

the design phase and before going to the implementation and 

commissioning. This allows reducing time and costs in the 

development of control systems. A good indicator of the 

importance of simulation in engineering can be stated with 

the fact that some universities have already dedicated 

curricula to address simulation topics [5]. 

Agent-based systems, due to its distributed nature, 

introduce new requirements for modelling and simulation, 

and the understanding of the system’s behaviour can be 

increasingly difficult as the system grows in complexity.  

Several environments for the simulation of multi-agent 

systems are reported in the literature, namely in [6]. A well-

known example in the manufacturing domain is the MAST 

(Manufacturing Agent Simulation Tool) simulation 

environment [7], developed by the Rockwell Automation, 

focusing the dynamic product routing. MAST was used to 

simulate two real scenarios [8]: the holonic packing cell at the 

University of Cambridge, UK and the pallet transfer system at 

the Automation and Control Institute (ACIN) of the Technical 

University of Vienna. Another example is found on [9] where 

a Virtual Reality based approach is used to model and 

simulate a holonic application to die-casting industry. 

Nevertheless, these platforms are developed case-by-case 

and according to the application particularities, requiring a 

significant effort to simulate the behaviour of agent-based 

manufacturing control systems. Additionally, the complexity 

associated to the simulation of distributed systems is 

increased in presence of complex phenomena, like adaptation, 

self-organization and chaos, which are common 

characteristics of complex adaptive systems. Normally, 

emergent phenomenon has behaviours that differ from 

classical sciences and the classical methods, like top-down 

techniques of non-linear systems, is not anymore sufficient. 

This suggests the use of computational platforms that 

simplifies these tasks and ensures a framework to 

simulate/validate strategies during the design phase. 

Note that when talking in simulation and MAS, two 

different directions are possible, namely the simulation of 

MAS systems and using MAS systems for the simulation of 

control systems. In this work the focus is centred in studying 

the simulation of designed agent-based control systems and 

not the use of agent-based approaches as simulation 

environments to perform the simulation of control systems. 

 

III. AGENT-BASED MODELLING AND SIMULATING 

ENVIRONMENTS 

ABM is a class of computational models for simulating the 

simultaneous operations and interactions of multiple 

autonomous agents aiming to recreate and predict the 

occurrence of complex phenomena. ABM tools allow the 

modelling of a system or process by using a MAS system, 

and posterior simulation in presence of complex phenomena. 

However, in this work the intention is also to consider the use 

the ABM tools to simulate agent-based control systems. 
These platforms are being used to simulate agent-based 

models for different application domains, such as economics, 

chemical, social behaviour and logistics. An interesting 

example in the manufacturing domain, described in reference 

[10], is the use of the NetLogo platform to simulate the 

dynamic determination of the best path to route the products 

in situations characterized by the occurrence of disturbances. 

A special remark to the use of ticks (universal time) in 

simulation environments instead of the real time clock, 

otherwise it is impossible to compare different simulation 

results (which are dependent of some parameters such as the 

processing power of the PC processor). 

 

A. Analysis of existing ABM platforms 

Several ABM tools are currently available on the market 

presenting different functionalities, graphical interfaces and 

also programming languages. As examples, it is possible to 

refer Repast [11], Swarm [12], NetLogo [13] and Mason [14]. 

The scope of this work is not to survey in detail the available 

ABMs but instead to briefly analyse and compare the tools 

based on previous surveys that already provide detailed 

analysis of the most important available ABM tools. 

Reference [15] presents a survey on free java libraries to 

support agent simulation, being analysed four ABM tools, 

namely Repast, Swarm, Quicksilver and VSEdit 

(www.vseit.de). On a first approach, details such as type of 

license, quality of the provided documentation, type of 

existing support and viability of future product support and 

maintenance were analysed. Taking into consideration the 

previous aspects, the Repast and Swarm platforms were rated 

with higher classifications. On a more technical analysis, the 

478



authors classified aspects like support for modelling, 

simulation control and ease of use. Also in the analysed 

technical parameters, the Repast and Swarm platforms were 

rated with the higher classifications. 

A second survey [16] has evaluated eight ABMs and 

separated them into three groups based on their license: open 

source, shareware/freeware and proprietary. On the first 

group, Mason, Repast and Swarm were included, being Java 

the programming language used by all tools. According to the 

survey the main difference is related to the integration of 

statistics by the Swarm and Repast tools; in opposite Mason 

doesn’t provide this functionality. The second part of the 

survey evaluated the shareware/freeware tools, namely 

StarLogo (education.mit.edu/starlogo/), NetLogo and OBEUS 

tools. The StarLogo and NetLogo are very similar, being the 

last one easy to use and with good documentation support; on 

contrary, OBEUS misses a good technical documentation 

support. In the class of the proprietary tools, AgentSheets 

(www.agentsheets.com) and AnyLogic (www.xjtek.com) 

tools were evaluated, but this class is not considered in this 

analysis, since in this work, the focus is to use open source or 

shareware/freeware tools. 

Another survey [17] compared some ABM tools to study 

their behaviour on complex adaptive systems and their 

capabilities against requirements for analysing self-

organization, adaptation and networked causality. For this 

purpose a simple model was developed and the most rated 

ABMs until now received also the highest classifications. A 

special attention should also be given to the evaluation made 

by [18] where five ABM are evaluated: NetLogo, Repast, 

MASON and Swarm (Objective-C and Java versions). The 

authors developed some models to test some key points in the 

ABMs like execution speed, parameters display and 

behaviour as complexity grows. 

A summary of some of the most important key points 

regarding the evaluation of the MASON, NetLogo, Swarm 

and Repast can be found at Table 1. 

 

TABLE I – CHARACTERISTICS OF SOME ABM PLATFORMS 

 MASON NetLogo Swarm Repast 

Availability (free) 
    

Maturity 
    

Programming 

effort     
Change of 

properties     

User interface 
    

Simulation speed 
    

Documentation 
    

Legend:  Good;   Fair;  Poor 

 

As conclusion, there is no perfect platform to be used, 

being the choice of the correct ABM dependent of the task to 

be performed and the skills of the person who will make that 

task. In short, to starters and to a certain degree of 

complexity, the NetLogo platform is the right choice, due to 

the conjunction of ease of learning and power capabilities, 

combined with the good available documentation. When the 

complexity of the system grows up, requiring simulation 

speed, Repast is a good choice instead of NetLogo, losing 

however the user friendly aspect. Another conclusion from 

these surveys is that the users must also be aware of the 

constant change and evolution of these tools and that their 

exploration and comparison is a hard task. 

 

B. NetLogo Programming and Modelling Platform 

Since the NetLogo tool was chosen to be used in this work, 

due to its good relation between programming effort and 

simulation speed, this section briefly describes this tool. 

The NetLogo application runs on a Java Virtual Machine, 

therefore it is able to run on major available platforms, like 

Windows, Linux, Mac and Solaris. However, its 

programming language is based on the Logo programming 

language [19] and not in Java, making it very easy to be used 

even by persons with low skills in programming. 

NetLogo world is, basically, composed by two types of 

agents, the stationary agents (or patches) and the mobile 

agents (or turtles). The patches are arranged in a grid way, so 

they can form the world in over that the turtles move around. 

There is a third kind of agent that is the link agent, which 

connects turtles so they can form networks, graphs and 

aggregates. NetLogo is fully customizable, for example, the 

user can set the size of the patches and/or the world, and set 

the size, shape or colour of the turtles. 

The NetLogo GUI is structured in a tab way and is 

composed by 3 tabs: Interface, Information and Procedures. 

The Interface tab is the graphical part of NetLogo, i.e. allow 

the user to insert buttons, create graphics and see the world 

behaviour. The Information tab can be used to retrieve and/or 

change some information about the objective, functioning or 

bugs that the model may have. This is useful for the users 

(that are not the designers/developers) as a starting point to 

know the expected behaviour of the model. The Procedures 

tab is the place where the code is built, i.e. creating the model 

with the desired characteristics and expected behaviour. Table 

II illustrates some simple commands used in NetLogo to 

perform actions over agents. 

 

TABLE II - SIMPLE COMMANDS IN NETLOGO 

Desired action Encoding Comments 

Create an agent crt 1 Creates 1 turtle 

Move agent one 

patch upper way 

set heading 0 

fd 1 

Faces agent in upper way 

Move agent 1 patch 

Check if patch 

ahead is empty 

if not any? product-on 

patch-ahead 1 [] 

Checks if on the next 

patch is any agent called 

product 

Remove first item 

from an array 
(e.g. service-list) 

set service-list remove-

item 0 service-list 

Removes the first (0) 

item from the array 
named “service-list” 

Count the total 

number of pallet 
on the system 

count product-on 

patches 

Counts the products (i.e. 

pallets) that are in the 
system (i.e. patches) 

479



The examples given in the previous table shows that the 

programming language of the NetLogo tool is very intuitive 

and therefore easy to understand. 

 

IV. EXPERIMENTAL IMPLEMENTATION 

Aiming to illustrate the applicability of ABM platforms, a 

washing machine production line will be used as case study to 

accommodate an agent-based control system that will be 

modelled and simulated in the NetLogo environment. The use 

of simulation in this work has supported the task of 

specification of an agent-based control system for the process 

control, adjusting the definition of the autonomous agents’ 

behaviour and the interaction among them. 

 

A. Description of the Case Study 

The case study used in this work is a part of a washing 

machine production line, following a product-driven control 

approach. This simplified production line is composed by 11 

machines that are linked together by conveyors, as illustrated 

in Fig. 1, including two particularities: 

- The first one is centred on a workstation (WS) where a 

marriage operation occurs, consisting in joining two 

different components (i.e. Rear Tub and Drum) that 

arrive from two independent conveyors. 

- The other is the existence of an operation that can be 

performed in one of two available and similar 

machines (i.e. tub welding machines). 

 

Fig. 1.  Layout of the production line case study. 

 

All other operations are single machine operations that are 

placed on a sequential order, each one having a processing 

time, according to the type of product to be processed. The 

production line also comprises a station (WS9, functional 

tests), where a quality control check is made to all produced 

products. This station is in charge to run a proper quality 

check program and the product is labelled with the inspection 

results for posterior analysis. 

The products enter the line with a process plan that must be 

fulfilled. The process plan is set to the product taking into 

consideration the variables (e.g. type of the rear tub) and 

operation parameters (e.g. thickness of welding process) 

according to the type of washing machine to be 

manufactured. 

 

B. Implementation Details 

The agent-based model to control this production line was 

developed in NetLogo. The agent-based system is composed 

by 3 types of agents: Product Agents (PA), Quality Control 

Agents (QCA) and Resource Agents (RA). The Rear Tub and 

Drum are examples of PA agents, the machines and 

conveyors are examples of RA agents and WS9 is a QCA.  

The behaviour of the PA agent is very simple. Basically the 

PA is created with a process plan containing the details and 

sequence of operations that must be fulfilled. During its life-

cycle the PA agent will interact with the RA agents in order 

to guarantee the execution of the product according to the 

process plan. The results of the operations’ execution are 

stored for posterior analysis and to support traceability. The 

behaviour of the PA agent can be summarized in the 

following pseudo-code: 

 

Procedure PA 

while process plan is not completed do 

selects next operation 

asks conveyor to move pallet to next WS 

waits the pallet arrival to the WS 

notifies RA about the parameters to execute the operation 

waits the end of the operation execution 

end while 

end 

 

The RA agent presents a different behaviour from the PA 

agent. The RA waits to be requested to perform an operation, 

indicated with the arrival of a pallet to the workstation. When 

the processing starts, the RA agent changes its state to not 

available and executes the proper operation. When the 

processing is finished, the RA agent notifies the PA agent and 

is again available to execute a new operation (after the 

removal of the processed pallet). The pseudo-code describing 

this behaviour is the following: 

 

Procedure RA 

while true do 

waits for PA requests 

executes operation 

notifies PA about results of the operation execution 

end while 

end 

 

The QCA agent represents the quality control station that 

executes a quality check. In this case, it simulates a quality 

control check in a random manner, notifying the results to the 

PA agent: OK if the quality check is according to the 

standards and KO if not. The behaviour of the QCA agent is 

very similar to the RA behaviour, being the difference related 

to the type of operations that they execute. 

Aiming to analyse the behaviour of the system in different 

scenarios (i.e. changing the condition parameters), an 

interaction area is configured with some buttons and sliders, 

allowing the user to change the processing time of each 

machine, and to simulate a malfunction on the WS7 and 

WS11 (i.e. the tub welding machines). An area to visualize 

the results was also included, considering the representation 

480



of some performance parameters, namely the evolution of the 

Work In Process (WIP), the number of finished washing units 

(WU), the number of the finished WUs with defect and the 

average Manufacturing Lead Time (MLT). 

Fig. 2 represents a general view of the implemented agent-

based control system (left area reserved for the interaction 

with the user and results and the right side for the layout of 

the production line). 

 

Fig. 2.  Layout of the production line case study. 

 

C. Discussion of the Experimental Results 

The tests performed on the designed agent-based control 

model allowed to conclude about the system’s behaviour in 

different scenarios. 

In a first scenario, all the machines of the production line 

possess the same processing time, in this case 20 ticks, and no 

delays occur. This scenario is illustrated in Fig. 3. 

 

 

Fig. 3. Test scenario with all machines having the same processing time 

 

As expected, in this test scenario the line is well balanced 

and there is no congestion in the system in terms of products 

to be processed. This scenario was useful to verify the 

correctness of the agent-based control system specification 

and also to detect some small misunderstanding and 

consequently make some adjustments in the control system. 

A second scenario considers that the machine WS7 (one of 

the tub welding machines) gets slow in the operation 

execution due to some kind of problem, being the processing 

time associated to WS7 changed to 25 ticks. As expected the 

system behaviour will change. In fact, the resulted behaviour, 

illustrated in Fig. 4, shows that the increased processing time 

provokes an initially degradation of the balance of the line, 

being the pallets automatically re-routed to the alternative 

machine (WS11). It is also possible to verify that the control 

system adapts dynamically to the changing environment 

conditions. 

 

Fig. 4. Test scenario with the WS7 having an increased processing time 

 

The simulation of the two previous scenarios allows the 

observation that the machine WS11 is not used when the line 

is balanced (in this case when all the processing times are 

tuned to 20 ticks), and in the second test scenario it is used to 

compensate the increased processing time of the WS7. 

Additionally, the MLT is increased since the processing time 

of one machine is now bigger than in the previous scenario. 

Another interesting scenario is to consider a malfunction in 

the WS11 (one of the alternative tub welding machines), 

maintaining the same processing time of WS7. The resulted 

behaviour, illustrated in Fig. 5, shows that the pallets are now 

moving (re-routed) only to the machine WS7 to be processed. 

 

 

Fig. 5. Test scenario where WS11 is unavailable 

 

In this case, and since the line is not well balanced and only 

one tub welding machine is available, a congestion in the 

upstream sequence of the production line appears, and 

consequently the MLT is significantly increased due to the 

time spent by the pallets stocked in the line. Also the WIP 

parameter is increased. 

Fig. 6 summarizes the WIP (maximum value) and MLT 

parameters for the three scenarios simulated. 

 

Fig. 6. Summary of the performance parameters for the experimental tests. 

481



 

After the observation of the graphical results it can be 

stated that the number of products on the systems directly 

depends of the congestion of the line, i.e., if the line is not 

balanced, e.g. due to a slow performance of a WS, the WIP 

rises, creating a congestion on the process line. Other 

conclusion drawn from the graphical results is the time 

necessary to manufacture, in average, a product. These results 

show that if congestion occurs, the average MLT rises 

abruptly due to the fact that products must wait long time to 

be processed. Also regarding to the average MLT, it can be 

observed an increase of 5 ticks from the first to the second 

scenario. This is a consequence of the increase of the 

processing time of the WS7 for the same amount of ticks. 

All these conclusions are easily extracted by the simulation 

provided by the use of an ABM tool, which can easily support 

the design and test of different if-then scenarios. The analysis 

of the behaviour of the agent-based control solution under 

different scenarios allowed to support the design of the agent-

based solution, tuning and refining its specification. 

 

V. CONCLUSIONS 

The design, debug and testing of multi-agent systems, due 

to its distributed nature, assumes a crucial role, being its 

system behaviour not easily understood and usually time 

consuming. For this purpose the use of simulation 

environments are crucial for the development of agent-based 

solutions, and particularly the use of ABM tools that can be 

successfully used as an intermediary tool to help on the 

specification and debugging of multi-agent systems. These 

tools can help to reduce the time and effort due to their 

potential to help, in an easy way, on the specification of the 

agent-based control system. 

This paper discusses the use of ABM tools in simulation of 

agent-based manufacturing systems and compares some of 

the most relevant available ABMs. Aiming to illustrate the 

applicability and benefits of using these tools in the 

simulation of agent-based systems, a production line case 

study for washing machines was considered. For this purpose, 

the NetLogo tool was used as a modelling and simulation 

platform to design the agent-based control system. This 

environment allowed the rapid solution prototyping that can 

be used as an auxiliary tool for the specification of a multi-

agent system to be implemented on the washing machine 

production. Through the simulation of different scenarios, 

some conclusions about the system’s behaviour can be 

extracted and used later to refine and tune some conceptual 

parameters in the specification of the agent-based 

manufacturing control system. 

As a future work, the developed model will continue to be 

used to finalize the specification of the multi-agent control 

system for the production line. Also, and due to some 

NetLogo limitations and aiming to consider more complex 

problems and functionalities, the logical step is to move into a 

more powerful ABM, for example the RepastS tool. 

ACKNOWLEDGMENT 

This work has been financed (or partly financed) by the EU 

Commission, within the research contract GRACE 

coordinated by Univ. Politecnica delle Marche and having 

partners SINTEF, AEA srl, Instituto Politécnico de Bragança, 

Whirlpool Europe srl, Siemens AG. 

 

REFERENCES 

[1] M. Wooldridge, “An Introduction to Multi-Agent Systems”, John Wiley 
& Sons, 2002. 

[2] V. Marik and D. McFarlane, “Industrial Adoption of Agent-Based 
Technologies”, IEEE Intelligent Systems, 20 (1), 2005, pp. 27-35. 

[3] H. V. D. Parunak, “Foundations of Distributed Artificial Intelligence”, 
G. O’Hare and N. Jennings (eds), Applications of Distributed Artificial 
Intelligence in Industry, John Wiley & Sons, pp. 139-164, 1996. 

[4] P. Leitão, J.M. Mendes, A. Bepperling, D. Cachapa and A.W. 
Colombo, “Engineering Tools for the Integration of Service-oriented 
Production Systems” Proceedings of the 13th IFAC Symposium on 
Information Control Problems in Manufacturing (INCOM’09), 
Moscow, Russia, 3-5 June, pp. 1763-1768, 2009. 

[5] L.J. De Vin and M. Jagstam, "Why we Need to Offer a Modeling and 
Simulation Engineering Curriculum," Proceedings of the Winter 
Simulation Conference (WSC'01), 2001, vol. 1, pp.1599-1604. 

[6] A. Uhrmacher and D. Weyns, “Multi-Agent Systems: Simulation and 

Applications”, CRC Press, Inc., Boca Raton, FL, USA. 2009 
[7] P. Vrba and V. Marik, “Simulation in Agent-based Control Systems: 

MAST Case Study”, Proceedings of the 16th IFAC World Congress, 
Prague, 2005. 

[8] P. Vrba, V. Mařík, “Capabilities of Dynamic Reconfiguration of 
Multiagent‐Based Industrial Control Systems”, IEEE Transactions on 

Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 40, 
n. 1, 2010, pp. 1‐11. 

[9] M. Bal, M. Hashemipour, “Applications of Virtual Reality in Design 
and Simulation of Holonic Manufacturing Systems: A Demonstration 
in Die-Casting Industry”, Lecture Notes in Computer Science, vol. 
4659, 2007, pp. 421- 432. 

[10] Y. Sallez, T. Berger, D. Trentesaux, “A Stigmergic Approach for 
Dynamic Routing of Active Products in FMS”, Computers in Industry, 
vol. 60, pp. 204–216, 2009. 

[11] M.J. North, T.R. Howe, N.T. Collier, and J.R. Vos, "A Declarative 
Model Assembly Infrastructure for Verification and Validation", S. 
Takahashi, D.L. Sallach and J. Rouchier (eds.), Advancing Social 
Simulation: The First World Congress, Springer, Heidelberg, 2007. 

[12] N. Minar, R. Burkhart, C. Langton, M. Askenazi, “The Swarm 
Simulation System: A Toolkit for Building Multi-agent Simulations”, 
Santa Fe Institute, Report No.: 96-06-042, June, 1996. 

[13] U. Wilensky, “NetLogo”, http://ccl.northwestern.edu/netlogo/. Center 
for Connected Learning and Computer-Based Modeling, Northwestern 
University. Evanston, IL, 1999. 

[14] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, “MASON: 
a Multiagent Simulation Environment”, Simulation, 81 2005, pp. 517-
527. 

[15] R. Tobias and C. Hofmann, “Evaluation of Free Java-libraries for 
Social-scientific Agent based Simulation”, Journal of Artificial 

Societies and Social Simulation, 7, 2004. 
[16] C.J.E. Castle and A. T. Crooks, “Principles and Concepts of Agent-

Based Modelling for Developing Geospatial Simulations”, Technical 
Report 110, Centre for Advanced Spatial Analysis, University College 
London, UK, September 2006. 

[17] M.J. Berryman, “Review of Software Platforms for Agent based 
Models”, Technical report, Defence Science and Technology 
Organisation, Edinburgh, Australia, April 2008. 

[18] S.F. Railsback, S.L. Lytinen, and S.K. Jackson, “Agent-based 
Simulation Platforms: Review and Development Recommendations”, 
Simulation, vol. 82, n. 9, pp. 609-623, 2006. 

[19] W. Feurzeig, S. Papert, M. Bloom, R. Grant and C. Solomon, 
“Programming-languages as a Conceptual Framework for Teaching 
Mathematics”, SIGCUE Outlook, vol. 4, n. 2, pp. 13-17, 1970. 

482


